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Synonyms

Alarmins; DAMP
Definition

Damage associated molecular patterns (DAMPs) are

molecules released by stressed cells. Interactions

between PRRs and DAMP initiate and perpetuate

immune response similar to pathogen-associated

molecular pattern molecules (PAMPs) that drive
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initiation and perpetuation of the inflammatory

response (Janeway 1989). Many DAMPs are nuclear

or cytosolic proteins with defined intracellular function

that, when released outside the cell following tissue

injury, move from a reducing to an oxidizing milieu

resulting in their functional denaturation (Rubartelli

and Lotze 2007). Also, following necrosis (a kind

of cell death), tumor DNA is released into the extra-

nuclear space/extracellular microenvironment and

functions as a DAMP (Farkas et al. 2007).

Protein DAMPs include intracellular proteins, such

as heat-shock proteins or HMGB1 (high-mobility

group box 1), and proteins derived from the extracel-

lular matrix that are generated following tissue injury,

such as hyaluronan fragments. Examples of nonprotein

DAMPs include ATP, uric acid, heparin sulfate, and

DNA.
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SEEK
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Manchester, UK
Definition

The ▶SysMO-DB project in the ▶SysMO consortium

is developing a general platform to enable the sharing

and exchange of research data/models/processes in

systems biology consortia. This platform is known as

the SEEK (1) and emphasis is placed on conserving and

increasing the reusability of research outputs. The SEEK

provides an index of consortium resources and acts as

a gateway to other tools and services. Examples include

integration with the ▶ JWS Online model repository to

enable model simulations, and the PubMed plugin that

allows publications to be linked to supporting data and

author profiles. This transforms the SEEK from a static

repository to an active, dynamic resource.
Characteristics

The SEEK is accessible via a web-based client and

built on an open source philosophy. It has been adopted

by projects outside the ▶ SysMO consortium, includ-

ing The Virtual Liver project (http://seek.virtuelle-

leber.de/), EraSysBio + (http://www.erasysbio.net),

and UniCellSys (http://www.unicellsys.eu/) by the

time of writing. Development of the SEEK follows

a rapid, incremental cycle that is strongly user oriented

by virtue of frequent interactions, in site visits and

workshops with a focus group of users, the

▶ SysMO-PALS (Project Area Liasons), who are rep-

resentatives from each ▶ SysMO project and are

a mixture of experimentalists, modelers, and
informaticians. The SEEK is also actively

codeveloped by one of its first adopters, the Virtual

Liver project, and is available as a free-standing plat-

form (http://www.sysmo-db.org/) for academic

research groups.

The SEEK encourages the use of community stan-

dards by providing tools to assist with data manage-

ment and annotation, as data exchange and reuse rely

on sufficient annotation, consistent metadata descrip-

tions, and the use of standard exchange formats for

models, data, and the experiments that they are

derived from. The SEEK makes use of its own set of

minimum information models for each data type,

known as JERMs (Just Enough Results Model). The

JERMs are derived from the minimum information

models established by MIBBI and are available as

spreadsheet templates. As entries in such templates

often include items from controlled vocabularies,

such as ontologies, the ▶ SysMO-DB team also

developed an open source tool called RightField,

which makes dynamic browsing of ontologies and

embedding of their elements possible within JERM

templates.

The SEEK’s recommended model format is SBML

(▶Systems Biology Markup Language (SBML)),

which is used by the JWS Online model repository

and simulator, that has been a part of the SEEK since

its inception. The aim of this integration is to provide

researchers and modelers with easy access to modeling

standards such as ▶ Systems Biology Markup Lan-

guage (SBML), ▶ SBGN, and ▶MIRIAM compliant

model annotation.
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▶Data Integration
D

Data Collection (Integration) from
Distributed Sources

▶Distributed Data Access
Data Deluge

▶Data-intensive Research
Data Integration

Roberta Alfieri and Luciano Milanesi

Institute for Biomedical Technologies – CNR

(Consiglio Nazionale delle Ricerche), Segrate, Milan,

Italy
Synonyms

Data collection; Data warehouse
Definition

In systems biology, data integration is an important

approach to better understand the main features of

a biological process, because it represents a way to

combine interesting information related to the reaction

involved in specific network. One possible method to

develop an integration system is the data warehousing

approach (Stein 2003), which allows the integration of

information stored in different biological databases.

The necessity for data integration is widely approved

in the bioinformatics and systems biology community

since bioinformatics data are currently spread across

different databases and they are stored in a wide vari-

ety of formats. Moreover, the achievement of

interesting results in most bioinformatics and systems
biology–related activities, from functional characteri-

zation of genomic and proteomic data to the develop-

ment of mathematical models of biological processes,

requires an integrated view of all relevant data useful

to accomplish those tasks.
Cross-References
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Synonyms

Interoperability; Semantic integration
Definition

Data integration is the process of bringing together

information from multiple, diverse sources such that

it can be interrogated as a whole to provide holistic

knowledge that is greater than the sum of its parts. In

particular, data integration aims to seamlessly expose

information inherent in the relationships between con-

cepts. There are numerous technological challenges

relating to the scalability of data-integration systems,

as well as complex issues concerning both the nature of

the data itself and the means by which the data may be

understood by humans. Visualization is the process of

making data human intelligible, enabling human intu-

ition and expert knowledge to be applied in areas

where algorithmic interrogation is unrealistic.
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Systems biology attempts to take a “universal”

view of complex biological phenomena, treating

them as an integrated whole rather than as individual,

independently functioning components: it is as much

about understanding the interactions between biolog-

ical entities as it is about the entities themselves. This

approach necessitates studies at a variety of levels,

from individual small molecules and macromolecular

complexes to their interactions in a variety of interre-

lated contexts: e.g., the specific biochemical path-

ways in which they participate, the molecular

networks those pathways may form, and, ultimately,

the complete organisms to whose evolution and func-

tioning those networks and pathways contribute.

Supporting systems perspectives with information

technology is challenging in terms of both data inte-

gration and visualization: managing the individual

components in isolation is hard enough; integrating

this information to provide “system-wide” views is

even more daunting.
Characteristics

Issues with Data-Integration Technologies

Traditionally, data integration has involved either

data warehousing or database federation. In data

warehousing, data are extracted from various sources

(databases, “flat files,” and other information-

management systems), transformed into a common

schema (and also possibly audited for quality), and

finally loaded into what is logically a single (usually

relational) data-store for querying by end-users. This

process is often referred to as “ETL” (extract, trans-

form, load). Federating databases, however, retains

the original data sources and schemas at their original

locations, instead providing a distributed query mech-

anism that interrogates the sources in unison, as if

they were logically a single resource. In essence,

federated systems perform a similar process to ETL

but “on the fly.” Warehousing is a predominantly

centralized approach, and federation is inherently

distributed; thus, the same issues of balancing space

complexity (storage) and time complexity (computa-

tional load) apply as with other distributed architec-

tures. Similarly, the usual pros and cons associated

with scalability, run-time performance, and data

integrity must be taken into consideration when

designing data-integration platforms.
Many data-integration issues arise from the need to

reconcile disparate source database schemas; the

more diverse the schemas, the harder the problem.

Traditional (relational) databases explicitly encode

schemas into the database architecture; this requires

the schemas to be “decomposed” when loaded into

a warehouse, or at run-time in a federated system.

Schemas can be very simple, with all information

encoded in a single monolithic table of records – this

makes some queries trivial, but is inflexible, making

re-purposing the data difficult. Alternatively, they may

encode records with finer levels of granularity – this

provides greater flexibility, but imposes on users the

need to formulate significantly more complex queries.

Contemporary approaches attempt to obviate the need

for schemas, relying on the use of ontologies to give

meaning and structure to database contents. Here,

“triple stores” and “schemaless” databases provide

a generic underlying technology, and shared ontol-

ogies for reconstituting those data are managed by

the community.

Various community-driven initiatives are evolving

data-integration standards (e.g., BioSharing,

BioDBcore, BioPax) in close collaboration with

publishers, journals, database curators, software devel-

opers, and so on (Field et al. 2009; Gaudet et al. 2011;

Demir et al. 2010). These are intended to help users

locate and access information dispersed within data-

bases; to help shape the data-preservation/manage-

ment/sharing policies implemented by journal editors

and funders; and to encourage software developers to

embrace and extend community-endorsed standards,

like the systems biology markup language (SBML,

Hucka et al. 2004) and CellML (Garny et al. 2008).

Alongside ontologies and schemas, numerous “mini-

mum information” standards have evolved as a means

of establishing a baseline for the information deposited

in data repositories (Taylor et al. 2008). These check-

lists and guidelines aim to improve the quality and

integrity of recorded data, leading to improved oppor-

tunities for data integration.
Issues with the Data

Irrespective of data-integration technologies, there are

also issues at the data level, especially with identity

and nomenclature. Getting humans to agree on the

meaning of words is hard; getting them to understand

when they are using the same name to mean different



Data Integration and Visualization, Table 1 The variety of names for ‘the same’ gene and its protein product in three different

species, including the many different protein alternative names and gene synonyms

Species Protein Alternative name Gene Synonym UniProtKB:ID

Saccharomyces
cerevisiae

DNA replication licensing

factor MCM4

cell division control

protein 54

MCM4 CDC54,

HCD21

MCM4_YEAST,

P30665

Drosophila
melanogaster

DNA replication licensing

factor MCM4

protein disc proliferation

abnormal

dpa MCM4_DROME,

Q26454

Mus musculus DNA replication licensing

factor MCM4

CDC21 homolog,

P1-CDC21

Mcm4 Cdc21,

Mcmd4

MCM4_MOUSE,

P49717
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things is harder; getting a machine to understand the

difference is harder still. Precision is key; but unfortu-

nately, adherence to standard nomenclatures has been

limited in the life sciences.

Consider the protein shown in Table 1: this has five

protein and six gene names in three different species.

Humans can unravel such complexity relatively easily;

but once we involve computers in the loop of compre-

hension, the task becomes more complicated, and the

level of precision required to specify a particular

protein/gene becomes more difficult to achieve: e.g.,

a text-mining algorithm exploring the literature for

gene dpa or protein “disc proliferation abnormal”

would miss other mentions of the same gene (Mcm4,

HCD21, CDC54, etc.) or protein (cell division control

protein 54, CDC21 homolog, P1-CDC21) unless it had

been programmed to use comprehensive synonym

dictionaries.

Consistent use of identifiers is also an issue. Con-

sider ovine rhodopsin. This protein entered the PIR

database with identifier (ID) OOSH, accession num-

ber (AC#) A03155. Successive changes to its

sequence and annotation then led to changes of its

AC# to A93264, A90319 and then A30407. Later, the

protein also appeared in Swiss-Prot with ID OPSD

$SHEEP, AC# P02700. Its ID then changed to

OPSD_SHEEP; finally, the PIR and Swiss-Prot

entries acceded to UniProtKB, where changes

and refinements continued to be made. Today,

UniProtKB archives 82 versions of the entry for

ovine rhodopsin, including these three different IDs

and five different AC#s; the sequence itself is also

stored in UniParc, with AC#s UPIUPI000059C30D

and UPI0000130E18, the latter being the currently

active sequence of record. Initiatives such as the

MIRIAM Registry (Laibe and Le Novère 2007) and

its associated naming scheme will be crucial in

untangling such “identity crises” in future.
Visualization

Humans are intuitive pattern matchers. Computers, by

contrast, are incapable of the leaps of intuition that are

the essence of human thought processes. Machines

must be programmed to find specific patterns; this

requires programmers to characterize those patterns

in terms that are machine comprehensible. Visualiza-

tion bridges the gap between human intuition and

machine pattern-matching, and constitutes the set of

tools and paradigms that allow computers to aid

humans in knowledge discovery from large, complex

data-sets.

Aside from standard histograms, scatter graphs,

etc., the life sciences also tend to use network-,

structure-, and sequence-visualization approaches.

Network visualization is important because systems

biology tries to understand relationships between bio-

logical entities. Computationally, these relationships

can be represented as “graphs” in the mathematical

sense, i.e., collections of objects (represented by

“nodes”), some of which are linked in some way

(with relationships represented by “edges”). Numerous

exchange formats (e.g., GraphML) have been devel-

oped for encapsulating the properties of generic math-

ematical graphs, with more specific formats (like

SBML, CellML, and BioPax) for capturing networks

and pathways in machine-readable form. The systems

biology graphical notation (SBGN) initiative defines

a mechanism for making such networks human read-

able, providing both a graphical notation for displaying

and a schema for encoding network diagrams

(Le Novère et al. 2009).

Structure visualization encompasses techniques

and formats for representing small molecules

(consisting of perhaps a few tens of atoms and

bonds), through to macromolecular structures (involv-

ing hundreds or thousands of atoms and bonds). For

small molecules, compact representations such as the
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IUPAC international chemical identifier (InChiTM) are

often sufficient to define a molecule’s topological

structure (but the use of InChi as a chemical identifier

is hotly contested, with many arguing that “semantic-

free” identifiers offer a more reliable foundation for

data integration). A plethora of other file formats

explicitly capture atomic coordinates for small mole-

cules; for large molecules like proteins, where the

atomic structure is typically determined experimen-

tally using techniques like X-ray crystallography, for-

mats such as that defined by the protein data bank

(PDB, Berman et al. 2000) are often used for data

exchange. As well as encoding the empirically deter-

mined coordinate data, this format supports basic

annotation of the underlying sequence.

Sequence visualization techniques usually involve

displaying ordered lists of amino acids (in a protein) or

nucleotides (in a chromosome or genome). Here, the

main challenge is to provide mechanisms for mapping

regions of interest (topological domains, coding/non-

coding regions, etc.) onto a sequence, and to allow

comparison between multiple sequences (e.g., to deter-

mine their similarity). The data formats for sequences

are relatively simple compared to those for structure

and network visualization: e.g., the FastA and PIR

formats primarily comprise strings of characters from

the relevant sequence alphabet; the “general feature

format” (GFF) and the schema of the distributed anno-

tation system (DAS) also encode regions of interest

that may be mapped to the sequence. Typically,

sequences are depicted visually as horizontal rows of

color-coded blocks, representing residues or nucleo-

tide bases. Such visualizations allow users to scroll

back and forth, zoom in and out, reorder the sequences

or their features, render them in 3D, etc. Until recently,

users would tend to align tens or hundreds of

sequences; however, developments in next-generation

sequencing (NGS) are likely to drive this into the

thousands, pushing the limits of sequence visualization

into new dimensions.

Conclusions

Capturing life science data for the purposes of data

integration and visualization – whether for sequence,

structure, or network analysis – is challenging. As

techniques like NGS create more data than ever before,

the problems become more complex. In attempting to

paint holistic pictures, systems biology must take into

account the increasing convolutions of integrating
disparate data drawn from a field that is itself growing

in complexity. It has become clear that the ad hoc

mechanisms and file formats that have served the

field for decades are no longer sufficient, and greater

use of ontologies, standards, and identification

schemas will be required to help extract knowledge

from our growing data collections. With increasing

complexity, however, our ability to integrate data

meaningfully using ontologies and schemas is being

pushed to its limits. Ultimately, if we are to be able to

grasp the subtleties of communication, we will need to

be able to more effectively capture the relationships

between data and the biomedical literature (i.e., how

data are described in scientific articles). Tools for

managing this relationship will become crucial in

future.
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Ettore Mosca, Ivan Merelli and Luciano Milanesi
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(Consiglio Nazionale delle Ricerche), Segrate,

Milan, Italy
Synonyms

Genes-to-systems breast cancer database
Definition

The Genes-to-Systems Breast Cancer Database

(shortly, G2SBC Database) is a freely available Web

resource that collects data about genes, transcripts, and

proteins reported in the scientific literature as altered in

breast cancer cells; alterations encompass different

types of mutations and expression variations of tran-

script and proteins. These data are integrated in

a multilevel database (from genes, transcripts, and pro-

teins to molecular networks, cell populations, and tis-

sues), which is coupled with a series of analysis tools

concerning cellular biochemical pathways, protein–

protein physical interactions, protein structures, and

mathematical models of cell behavior.
Characteristics

Motivation

Breast cancer is one of the most common cancer types:

Approximately, it affects 1 out of 10 women and rep-

resents the 25% of all tumors that hit women. From

a scientific point of view, it is increasingly believed

that using a systems biology perspective it is possible

to develop better strategies for cancer treatment; this

consideration is due to the fact that the complex behav-

ior of living systems can be hard to predict from the

properties of individual parts (such as genes, proteins,

and cells). In this context, a multilevel integration of

the available knowledge regarding both biological

components and pathways is a crucial task in order to

promote the system perspective.

Functionality

The G2SBC Database contains several types of molec-

ular alterations associated with breast cancer. These

alterations encompass the genome (mutations and

SNPs), the transcriptome (RNA expression level and

splicing variations), and the proteome (protein expres-

sion level, sequence, structure, and localization).

Molecular alteration data are integrated with informa-

tion concerning the molecular network layer (path-

ways and interactions, retrieved from databases as

KEGG Pathway and BioGRID, respectively) and the

cellular layer (breast cancer types and tissue images

from the Human Protein Atlas, mathematical models

of carcinogenesis, tumor growth, and tumor response

from literature).

The Web site (implemented employing PHP

and JavaScript) by which the database can be

accessed is mainly divided into three sections. The

first concerns the query system, which allows to

retrieve data from the three levels of biological enti-

ties: molecular components, the molecular systems,

and the cellular layer.

The second section concerns the analysis tools

available by means of the Web interface. In particular

there are two tools that rely on the application of

graph theory to biological networks for highlighting

interactions, protein complexes, and hubs.

Concerning the gene-annotation enrichment analysis,
the G2SBC Database provides a tool that enables

the functional annotation of gene lists provided by

the user or retrieved exploring the data from the

database.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100559
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Data Integration, Breast
Cancer Database,
Fig. 1 Integration between

protein expression in different

breast cancer types and

biochemical pathways data.

A use case showing the

differential expression of

some proteins belonging to the

“adherens junction” KEGG

map in lobular carcinoma in

situ and invasive lobular

carcinoma tissue images

collected from the Human

Protein Atlas database. Green:
downregulation; yellow:
similar expression
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Lastly, the G2SBC Database maintains a model-

oriented section, which involves two aspects. The

first one concerns the interaction among cell cycle

regulation and breast cancer: due to this connection it

is possible to retrieve the breast cancer genes involved

in cell cycle control and simulate the associated math-

ematical models. The second regards the mathematical

models related to carcinogenesis, tumor growth, and

response to treatments.

The data integration approach employed to develop

this resource enables the collection of a large amount

of records and the Web tools provided allow to infer

nontrivial knowledge: one example is the integration

of protein expression data available for different types

of breast cancer with the cellular pathways, Fig. 1.

Accessibility

The G2SBC Database is freely accessible at http://

www.itb.cnr.it/breastcancer. An extensive help section

is available and contains some use cases covering the

different sections of the G2SBC Database.
Cross-References
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Definition

Data mining is the process of applying computational

methods to large amounts of data in order to reveal new

non-trivial and relevant information. Data mining is

not only used for finding interesting patterns from the

data but also for exploring large data sets, for building

models that describe the relevant properties of data,

and for making predictions based on the data (Hand

et al. 2001). Due to rapidly evolving biological mea-

surement instruments such as sequencers and array

scanners, data mining problems have become central

in modern biosciences (Baldi and Brunak 2001).
Characteristics

There is some confusion on the meaning of the term

data mining and its relation to overlapping terms such

as machine learning and statistics. As a field of science,

data mining sits between information technology and

statistics. Data mining originated from knowledge dis-

covery research in information science, and it has

traditionally had very little interaction with statistics.

This history also explains much of the critique toward

data mining, to a large extent from the statistical com-

munity. Early data mining methods have been criti-

cized for so-called “data fishing”: searching for

complex patterns without controlling the probability

of them being just random artifacts in the data (Hand

et al. 2001).

However, the difference between statistics and data

mining is vague: statistics is especially interested in

inference and prediction, typically based on some

a priori hypotheses and supporting experimental
designs. In contrast, data mining is more interested in

making inferences from data without much back-

ground information or typically without control over

data producing process, for example, experimental

design. John Chambers (1993) coined the term

“greater statistics” as everything related to learning

from data, and data mining falls within that definition.

Thus, data mining can also be thought of as a field of

statistics making heavy use of visualizations and com-

putationally intensive methods with an emphasis on

algorithmic efficiency.

Machine learning is a related field that shares many

of its methods with data mining. The distinction

between the two is largely historical; machine learning

evolved from artificial intelligence research, whereas

data mining evolved from information science. Artifi-

cial intelligence problems are often conceptually well

defined such as making a correct medical diagnosis

based on data from a patient, whereas the data mining

problem could be, for example, to mine the database of

medical records to find new and surprising associa-

tions. Partly due to the somewhat different goals,

these two communities of computational data analysis

typically rely on different statistical frameworks (Hand

et al. 2001; Baldi and Brunak 2001). Machine learning

research has embraced the flexible Bayesian frame-

work (▶Bayesian inference) for probabilistic model-

ing, while data mining often uses computationally

lightweight frequentist statistics to process large data

sets.

Data Mining Methods

Data mining is to a large extent defined by the methods

that are used in the field. The methods and their goals

are varied, but can be roughly divided into two main

categories: they either try to model the data (learn the

global structure of the data) or try to find patterns of

interest (learn local structures from the data). From

a computational point of view, data mining problems

are often NP-hard, meaning that they do not have an

optimal solution algorithm and need approximated

solutions. This inherent complexity is also one of the

reasons why data mining is seen as an interesting area

for computer science research.

The most common data mining tasks can be divided

into clustering (unsupervised learning), classification

(supervised learning), regression (▶Regression

Analysis), association mining, and text mining

(▶Text Mining) (Hand et al. 2001; Hastie et al. 2009).

http://dx.doi.org/10.1007/978-1-4419-9863-7_979
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Clustering (▶Clustering) tries to find groups of

similar or similarly behaving entities, such as genes,

proteins, or metabolites, from the data. In general,

clustering is blind to the known structures of the

data in a sense that it does not use any knowledge

outside the data to assign the entities to the clusters.

Clustering methods are at the core of data mining,

although arguably no longer a central point of

research. A large variety of clustering methods exists,

but among the most well-known ones are k-means

clustering (▶Clustering, k-Means) and hierarchical

clustering (▶Clustering, Hierarchical) (Fig. 1). One

typical application area for clustering is gene expres-

sion analysis, where clustering can be used for, for

example, grouping cancer samples to discover novel

subtypes.

Classification (▶Classification) falls into two cate-

gories. First, if knowledge of the grouping of the enti-

ties, such as the sex of the providers of the biological

samples, is available, then classification can be applied

to find the themes that make the groups different.

Second, once such themes are identified, classification

can predict the grouping of new entities. Perusing the

previous example on cancer gene expression data,

classification methods can be used to learn the expres-

sion patterns of known cancer subtypes and then to

classify new cancer samples. Common classification

techniques are discriminant analysis, decision trees,

nearest-neighbor methods, neural networks, and sup-

port vector machines.

Regression (▶Regression) comprises a very large

family of methods. The general idea of regression is to

find a function of predictor variables that fits the

observed response with the least error. Hence, regres-

sion can be used for, for example, studying an

organism’s response to the dosage of a drug. The

range of methods varies from the classical linear

regression (▶Linear Regression) through generalized

linear models to generalized additive mixed models

and mixture models.

Association methods (▶Association Rule) search

for relationships between variables. Association rule

mining has found only a few applications in bioinfor-

matics, since most implementations of it need categor-

ical data, and typical measurements in biology are

made on a continuous scale. However, especially in

systems biology, mining associations in the form of

networks has been studied extensively. Example

applications include gene regulatory networks
(▶Data Mining–based Transcriptional Regulatory

Network Construction) and protein interaction

networks.

Text mining (▶Text Mining) methods locate pat-

terns and trends from textual data sets. The two major

application areas in systems biology are analyzing

genomic and proteomic sequences for patterns of inter-

est and mining literature databases for associations

between, for example, genes and proteins.

Visualization

Humans are skilled at quickly locating patterns

from visual representations, which can be harnessed

for efficient data exploration. In statistics, data is

often summarized with variables such as mean

and variance. Visualizations can be thought of as

an extension to simple variables, allowing the over-

view of more complex structures (e.g., contour plots)

and multiple variables simultaneously (e.g., scatter

plots). Visualizations can also be coupled with

data mining techniques. For example, by using

dimensionality reduction techniques to bring the

number of dimensions down to two, and then by

using scatter plots to show the result, a high-

dimensional data set can often be shown in an under-

standable form.

Validation

Not all discovered patterns are necessarily robust or

valid. Data mining methods often find patterns that are

unique to the analyzed data, and cannot be detected

from independent data sources. The same basic phe-

nomenon exists in different forms in different data

mining tasks: in modeling, the problem is known as

“overfitting” (▶Overfitting), whereas in pattern

searching and statistical testing, it is known as “false

positives.” In all cases, one is led to draw overly

optimistic conclusions.

There are different approaches to guarantee valid and

robust results. One approach is to split the data into

a training set (▶Model Training, Machine Learning)

and a test set (▶Model Testing, Machine Learning).

The selected data mining method is applied on the

training data only, and once the pattern has been dis-

covered, its validity is assessed using the test data

(▶Model Validation, Machine Learning). Some data

types allow randomization methods to be used, where

the whole data is used in training, but the trainedmethod

is also applied to a large number of randomized versions

http://dx.doi.org/10.1007/978-1-4419-9863-7_511
http://dx.doi.org/10.1007/978-1-4419-9863-7_1189
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of the original data. Only those original results that are

unlikely in randomized data are selected.

Validation is hard to do well, and it often takes

considerable effort to program a validation approach

that is suitable for the particular data at hand. Ready-

made solutions in most software programs often do not

perform satisfactorily.

Tools and Data Management

It is common to store structurally simple data sets as

flat files, such as comma separated tables. More com-

plex data sets are typically stored in SQL databases, in

XML files or in custom data storage systems. Data

warehouse technologies commonly used in the indus-

try are less often seen in bioscientific data mining.

For preprocessing and analysis, most commonly

used tools are either generic scripting languages (e.g.,

Perl and Python), interactive data analysis environ-

ments (e.g., R (▶R, Programming Language) and

Matlab), and graphical tools (e.g., Weka). Knowledge

discovery professionals in the industry often use spe-

cialized data mining packages, but in systems biology

in academia, a set of open source command line tools is

favored. As the need for data mining methods is grow-

ing due to developments in measurement technology,

commercial companies have started to provide special-

ized graphical tools, which have been later followed by

open source developments. These tools aim to provide

advanced data analysis capabilities to users without

computational background.

Analysis workflows differ, but they all contain

some variants of the following steps: preprocessing,

data exploration, and main analysis. In preprocessing,

the data is formatted correctly, filtered for unneces-

sary or dubious content, and often normalized. Explo-

ration ranges from outputting simple statistics to

elaborate visualizations. The main analysis is often

constructed in the form of a statistical test, although

sometimes a less strict approach is used. Especially

for systems biology work, an additional step is taken

after the main analysis: result integration and expla-

nation. In the integration and explanation step, the

results are often validated (Model Cross-validation,

Machine Learning) against independent data sources,

such as the many biological databases that are pub-

licly available. The intent is to find support for the

results and also to find sound explanations that help to

understand the results as part of the larger “systems

view”.
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Synonyms

Classification; Data mining; Regression
Definition

Data mining is a new field that aims to analyze large

datasets and extract knowledge from data, and it is an

interdisciplinary field involving statistics, pattern
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recognition, information theory, and so on. Generally,

data mining techniques can extract informative pat-

terns from data and construct decision-making sys-

tems. The most popular techniques in data mining

include clustering, classification, regression, etc. Data

mining is being widely used in various fields, including

image processing, marketing relationship, and medi-

cine (Fayyad et al. 1996).

Recently, data mining has been playing an impor-

tant role in bioinformatics, based on which various

tools have been developed to construct transcriptional

regulatory networks. Instead of determining individual

protein-gene regulations with traditional biological

experiments, the integration of emerging high-

throughput data and data mining is able to predict

transcriptional regulations in an automatic way. In

general, the regulation relationship can be predicted

as a classification or regression problem, which aims to

extract regulation patterns from the experimental data.
Characteristics

Data Representation and Preprocess

In data mining, the data are usually formulated as

vectors, where each sample is represented as one vec-

tor. Therefore, the similarity between samples can be

estimated. In constructing transcriptional regulatory

network, one of the most commonly available data

source is microarray data that describes the expression

profile of genes under different conditions. The gene

expression data can be easily used for data mining.

Other kinds of data, for example, ChIP-on-chip (also

known as ChIP-chip) data, can also be represented as

numeric vectors.

However, it is not a trivial task to extract informa-

tive patterns due to the noise inherited in the experi-

mental data. Some data mining techniques are

therefore used to reduce noise and sometimes also

help to reduce the dimensionality of the data, such as

principal component analysis (PCA). Since the gene

expression data can be measured as time series data,

some signal processing methods, for example, Fourier

transform, are helpful to reduce noise and transform

the data into another description space so that the

signal in the data can be easily detected. Another

important issue in data mining is feature selection,

which aims to select important patterns so that the

performance of the classifier can be improved. Popular
feature selection techniques include maximum rele-

vance/minimum redundancy (MRMR), Entropy, and

Mutual information, etc. The selected features can help

to interpret the model and important patterns.

Data Mining Algorithms

Various data mining methods can be grouped into

three groups, that is, supervised methods, unsupervised

methods, and semi-supervised methods, among which

the supervised and unsupervised methods are widely

used in transcriptional regulatory network construction.

In supervised methods, there are some regulations that

are known in advance and are therefore used as training

set to infer the patterns for prediction of new regula-

tions. The supervised methods widely used to construct

transcriptional regulation networks include artificial

neural network, decision tree, genetic algorithm, and

support vector machine. On the other hand, if there are

not any known regulations available, the unsupervised

methods will be helpful, among which the most popular

one is clustering.

Artificial Neural Networks

Artificial Neural Network (ANN) model is designed to

mimic the real biological neural network that can pro-

cess information and make decision. In general, the

ANN model consists of three parts, including input

layer, output layer, and hidden layer. There are some

nodes in each layer that work like the neurons, and the

nodes are interconnected to simulate the information

flow between neurons. The structure of the ANN

model reflects the mapping from input variables to

output variables. The ANN model can handle large

dataset and is robust against noisy data. However, the

ANN model works as black box and it is difficult to

interpret the results obtained in some cases.

Veiga et al. (2008) designed a feed-forward (FF)

and bi-fan (BF) regulatory motif prediction model for

Escherichia coli based on multilayer perception artifi-

cial neural networks (ANNs). The regulatory motifs

predicted consist of transcription factors and regulated

genes, and are highly enriched. Hart et al. (2006) found

that single-layer feed-forward ANN models can effec-

tively discover gene network structure by integrating

global in vivo protein-DNA interaction data (ChIP/

Array) with genome-wide microarray data. The ANN

models were successfully applied to construct the yeast

cell cycle transcriptional regulatory network, which is

composed of hundreds of genes.
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Genetic Algorithms

The genetic algorithm (GA) is a heuristic optimization

method that works like the evolution of biological

processes and aims to find out the global optimization

in the solution space. There are some chromosomes in

GA, which denote possible solutions, and combination

and mutation are used to change the structure of the

chromosomes so that the evolution proceeds to better

solution. The objective function of GA is called fitness

function and is specially designed for the algorithm’s

goal based on expert knowledge. GA performs very

well in searching for optimal solutions although it is

time consuming in some cases.

In the construction of transcriptional regulatory net-

work, it is important to determine the topological

structure of the regulatory network. Seema and

Ramanatha (2010) successfully applied GA to infer

the structure of transcriptional regulatory network.

Kikuchi et al. (2003) presented a modified version of

GA that not only predicts the structure of the regula-

tory network but also predicts the dynamics of the

regulations. In particular, a new fitness function was

designed to improve the performance.

Decision Tree

Decision tree is a decision-making system that utilizes

a tree-like data structure. Decision tree has been widely

used as a decision-making system for a long time due

to its simple structure and interpretability. The popular

decision tree learning methods include Classification

and Regression Trees (CART) and Chi Square Auto-

matic Interaction Detection (CHAID). Decision tree is

robust against noisy data and can handle large dataset

in a short time. In addition, the decision tree can

perform feature selection automatically, which can

help to interpret the model.

Ruan et al. (2009) built an ensemble classifier of

decision trees to construct transcriptional regulatory

network, where each decision tree is learned based on

one specific gene expression dataset. The yeast tran-

scriptional regulatory network was constructed by this

classifier that associates the gene expression level with

binding affinity between transcription factors and

DNAs detected by chromatin immunoprecipitation

and microarray (ChIP-chip) experiment.

From the decision tree ensembles, the logical

rules can be extracted to explain how a set of
transcription factors act in concert to regulate the

expression of their targets.

Support Vector Machine

Support vector machine (SVM) is a newly developed

supervised classifier that is especially useful for dataset

with high dimensionality and small samples, and it can

work on both classification and regression problems.

The success of SVM is attributed to its two new fea-

tures. Firstly, SVM uses kernel technique to describe

the relationship between samples, which enables SVM

to work efficiently without considering the dimension-

ality of the data. Secondly, SVM only uses the samples

near the classification hyperplane, that is, support vec-

tors, to build the classifier so that it can work robustly

against noise.

Qian et al. (2003) used support vector machines

(SVMs) to predict the targets of a transcription factor

based on the association relationships between their

expression profiles. In particular, SVMs successfully

predicted the targets of 36 transcription factors for

Saccharomyces cerevisiae based on the microarray

data obtained under different physiological conditions.

Kumar et al. (2007) presented another framework for

predicting protein-DNA interactions based on

sequence information and SVMs, and gave promising

results.

Clustering

Clustering is one of the most popular unsupervised

learning methods in data mining. Clustering generally

groups samples into different clusters so that the sam-

ples in the same cluster are similar based on the pat-

terns in the data while dissimilar between clusters. The

most important and difficult things in clustering are

how to describe the similarity between samples and

what criteria should be used to make a group for a set of

samples.

In biology, the genes that are always co-expressed

under various conditions are assumed to be

co-regulated by same regulators. Therefore, the

genes can be clustered into groups based on their

expression profiles. If a set of genes are clustered

into one group, these genes are regulated by either

regulators outside of the group or regulators within

the group. Based on the above assumptions, various

clustering techniques have been applied to construct
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transcriptional regulatory network. For example, de

Hoon et al. (2003) first clustered the genes into dif-

ferent groups and then constructed a transcriptional

regulatory network based on the clustering results for

Bacillus subtilis.
D

Cross-References
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▶Maximum Relevance/Minimum Redundancy
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Jordanstown, UK
Synonyms

Sampling; Statistical sampling
Definition

In machine learning (▶Model Validation, Machine

Learning), data sampling (Cochran 1977) is a widely

accepted process concerned with the selection of an

unbiased subset of data, which are representative of

a larger population, for the purposes of constructing

predictive models with machine learning algorithms.

The size of the sample is the number of data items in

a sample, typically denoted as an integer number N.

The major benefit of applying data sampling in the

context of machine learning is it can effectively speed

up the modeling process, which allows the analyst to

build a model and make prediction with relatively little

cost and effort. To achieve this, a sample is required to

contain the essence and reflect the characteristics of the

entire dataset. The key to meet this fundamental

requirement is randomness, i.e. allowing each data

item in the database to have the same probability of

being selected.

Types of data sampling commonly used in machine

learning include the following:

• Simple Random Sampling

Each data item has the same chance of being

selected in the data set.
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• Stratified Random Sampling

The entire dataset is first divided into k disjoint

groups with each group having the size of N1, N2,

. . ., Nk. These subgroups are non-overlapping and

together they are comprised of the whole popula-

tion, i.e., N1 + N2 + . . .+ Nk ¼ N. Then for each

subgroup, a simple random sample is taken in

a number proportional to its size when compared

to the whole population. The collection of these

subsets constitutes a stratified sample. The sub-

groups are referred as strata and the whole proce-

dure is called stratified random sampling.

• Cluster Sampling

The entire dataset is divided into groups of items, i.e.,

clusters, and each cluster becomes a sample unit. This

is an example of two stage sampling. In the first stage,

analysis is carried out on a population of clusters and

each cluster has the same chance of being included in

the sample. After this process, a random number of

items within these clusters is selected.
Cross-References

▶Model Validation, Machine Learning
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Science, University of Manchester, Manchester, UK
Synonyms

AC#; Database AC
Definition

A database accession number, rather like a database

identifier, is a short code used to uniquely identify

a particular entry or record within a particular

database. The code normally contains alphanumeric

characters, and is usually designed to be machine

readable (they are seldom, if ever, human readable).

For example, P02700 is the accession number that

identifies the entry for ovine rhodopsin in the

UniProtKB:Swiss-Prot (UniProt consortium 2011)

protein sequence database: Unlike its largely

human-readable database identifier (OPSD_SHEEP),

this accession number is neither informative nor par-

ticularly memorable to humans.

As already mentioned, accession numbers are data-

base specific, and different databases adopt different

numbering conventions. Hence, for example, in the

PIR protein sequence database, ovine rhodopsin has

the accession number A03155.

Information pertinent to ovine rhodopsin,

which belongs to a superfamily of G protein–

coupled receptors (GPCRs), may also be found

in protein family databases like InterPro (Hunter

et al. 2009), PROSITE, PRINTS, Pfam, and so on:

Examples of accession numbers for the GPCR super-

family entries in these databases are IPR00026,

PS00237, PR00237, and PF0001, respectively. By

contrast with protein sequence database numbering

schemes, it is broadly possible to decipher which

is the parent database from protein family

database accession numbers: For example, IPR

denotes InterPro; PS denotes PROSITE; PR,

PRINTS; and PF, Pfam. The number itself, however,
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gives nothing away about the protein family entry

with which it is associated.

Database accession numbers are intended to

provide a stable means of tracking down particular

database entries. Consider, for example, the DNA rep-

lication licensing factor MCM4. Although its Swiss-

Prot identifier has oscillated since March 1993, from

CD21_YEAST, to C21H_YEAST, CC54_YEAST,

CDC54_YEAST, and finally to MCM4_YEAST, its

accession number remained the same throughout –

that is, P30665. Nevertheless, accession numbers can

and do change between database releases. Thus, for

example, the accession number for the same protein in

the PIR protein sequence database began as S25527,

then became S26641, and finally S56050. Sometimes,

different database entries in the same database are

merged or replaced with or by others (e.g., when

a computer-annotated TrEMBL sequence is discov-

ered to be redundant with an existing manually anno-

tated Swiss-Prot sequence). In such cases, the

accession number of the deprecated sequence is

retained so that it too can be tracked. For example,

in November 2010, the TrEMBL entry D6W429

(ID, D6W429_YEAST) was replaced by UniProtKB:

Swiss-Prot entry P30665 (ID at that time,

CDC54_YEAST): Effectively, the entries were

merged and D6W429 was retired. At that point, the

accession number record of the revised entry was

updated to read, “AC P30665; D6W429.” In this

case, P30665 is denoted the primary accession number

and D6W429 the secondary accession number.

Retaining all the accession numbers in this way

makes tracking the history of particular database enti-

ties much easier.
Cross-References
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Synonyms

Database code; Database ID; DBID
Definition

A database identifier is a short code or name that is

used to uniquely and reliably identify a particular

entry or record within a particular database. The

code normally contains alphanumeric characters

(but may also sometimes contain other symbols),

and, by contrast with database accession numbers, is

usually designed to be human readable or, at least,

human decipherable. For example, OPSD_SHEEP

is the code that identifies the entry for ovine rhodop-

sin in the UniProtKB:Swiss-Prot (UniProt consortium

2011) protein sequence database: Here, OPSD

is a shorthand that identifies the protein “rhodopsin”;

SHEEP is, self-evidently, a label that identifies

the species in which this particular rhodopsin is

found.

As already mentioned, identifiers are database

specific, and different databases adopt different
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naming conventions. Hence, for example, in the PIR

protein sequence database, ovine rhodopsin has

identifier OOSH.

Information pertinent to ovine rhodopsin, which

belongs to a superfamily of G protein–coupled recep-

tors (GPCRs), may also be found in protein family

databases like InterPro (Hunter et al. 2009),

PROSITE, PRINTS, Pfam, and so on: Examples of

identifiers for the GPCR superfamily entries in these

databases are 7TM_GPCR_Rhodpsn, G_PROTEIN_

RECEP_F1_1, GPCRRHODOPSN, and 7TM_1,

respectively. Although some of the identifiers here

are more cryptic than others, in each case, the code

is broadly readable or decipherable, each in some way

pointing to 7TM proteins, to GPCRs and/or to

rhodopsins.

Although database identifiers were intended to

provide a stable means of tracking down particular

database entries, in practice, they can and do change

between database releases. Thus, for example, prior

to March 1993, the Swiss-Prot identifier for ovine

rhodopsin, OPSD_SHEEP, was OPSD$SHEEP.

Less subtle and more frequent changes also occur;

hence, for example, in March 1993, the Swiss-Prot

identifier for DNA replication licensing factor

MCM4 was CD21_YEAST: This changed to

C21H_YEAST, CC54_YEAST, CDC54_YEAST,

and finally to MCM4_YEAST in 1994, 1995, 2005,

and 2011, respectively. This kind of identifier vola-

tility can make tracking particular database entities

problematic, and is partly why additional forms of

identification, in the form of accession numbers,

are also vital.
Cross-References

▶Data Integration and Visualization
References

Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A

et al (2009) InterPro: the integrative protein

signature database. Nucleic Acids Res 37(Database Issue):

D211–D215

UniProt Consortium (2011) Ongoing and future developments

at the universal protein resource. Nucleic Acids Res

39(Database issue):D214–D219
Database of Quantitative Cellular
Signaling (DOQCS)

G. V. Harsha Rani and Upinder S. Bhalla

Neurobiology, National Center for Biological

Sciences, Tata Institute of Fundamental Research,

Bangalore, India
Synonyms

DOQCS: Database of quantitative cellular signaling;

GENESIS: General neural simulation system;

MATLAB: Matrix laboratory; MIRIAM: Minimal

information required in the annotation of models;

MySQL: My structured query language; ODE: Ordi-

nary differential equation; PHP: Hypertext preproces-

sor; URL: Uniform resource locator
Definition

The Database of Quantitative Cellular Signaling

(DOQCS) is a repository of models of signaling path-

ways available at http://doqcs.ncbs.res.in. This is

a curated database in which all models have been

implemented and tested. The database is free for

content access and download. Models are presented

in various data formats, and each entry includes reac-

tion diagram, annotation, and links to other models

and literature.
Characteristics

Role

Technical advances in biological information capture

have yielded intimidating quantities of data pertaining

to many areas of biology, including biochemical sig-

naling. In parallel, continuing developments in soft-

ware and simulators have helped researchers to

develop and explore increasingly detailed biological

models of complex signaling pathways. Model data-

bases are an emerging category of bioinformatics

tools that serve the intersection of these trends

(Ghosh et al. 2011).

DOQCSwas designed to integrate several modeling

requirements to provide a resource for model
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Database of Quantitative Cellular Signaling (DOQCS),
Fig. 1 Entity Relationship diagram for the DOQCS database.

The accession table is used as an entry point into the model. The

accession number is the unique identifier for each model. Most

other tables in the database refer to this (broken line). Similarly,

each pathway has a unique pathway number used by other tables

(the black line). Model parameters are stored in the molecule,

enzyme, and reaction tables. The identity of reactants (substrates

and products of reactions and enzymes) and hence the connec-

tivity of the model is stored in the “Molecule List” table. The

channel and geometry information are stored in respective

tables. Original and converted model files are stored as large

text objects in the “File Format” table

Database of Quantitative Cellular Signaling (DOQCS) 535 D

D

development. It includes a collection of models of

signaling pathways, but has a special emphasis toward

organizing the data both in terms of schematic descrip-

tions as well as searchable model data. It provides

reaction schemes and associated rate constants,

enzyme parameters, concentration terms, as well as

contextual data including data sources and tissue type.

Scope

DOQCS includes compartmental chemical kinetic

models solved using systems of ▶ ordinary differen-

tial equations (ODE), and also using stochastic

methods such as the ▶Gillespie Stochastic Simula-

tion (Gillespie 2007). It also includes a few one-

dimensional spatial models which have been

expanded out into large ODE systems by treating
inter-compartment diffusion as a reaction term.

DOQCS is particularly rich in models on synaptic

plasticity and MAPK signaling.

Database Structure

DOQCS is implemented using ▶ relational database;

it is structured as a set of accessions, each of

which represents a complete model. Accessions may

consist of one or more signaling pathways, and

each pathway is specified in terms of several mole-

cules, enzymatic reactions, and binding reactions.

This conceptual structure has been previously

described (Sivakumaran et al. 2003) and is briefly

recapitulated here. The underlying table structure

has been revised based on additional navigation and

data requirements considered in this paper (Fig. 1).
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Database of Quantitative Cellular Signaling (DOQCS), Fig. 2 Screenshot of overview page of DOQCS accession, showing

directory-tree-like hierarchy structure, block diagram and basic annotations
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As before, DOQCS is implemented using Linux/

Apache/MySQL/PHP.

The accession table specifies the primary model

entry into the database and holds substantial contextual

data as well as a summary diagram for each model. The

contextual data include▶MIRIAM compliant annota-

tions. Further fields including tissue, cell type data in

addition to fields on curation level and model type

annotation are added.

The Pathway table provides additional overview

information about the models, including reaction dia-

grams and annotations.

The remaining tables provide low-level model

details: molecular identity, rate constants, and sub-

strate/product lists.

Compartmental details are stored in Geometry

table.
Original and converted model files are stored as

Large Text Objects in the File Formats table.

Database Interface

The web interface to DOQCS facilitates navigation

either through links (URL-based navigation) or

through searches (form-based navigation) (Fig. 2).

The URL-based navigation matches the conceptual

organization of the database into accessions, pathways,

and biochemical entities. These levels are explicitly

represented using a directory-tree-like hierarchy in the

web interface. The root of the tree is the accession,

folders include different pathways within the acces-

sion, and the molecules, reactions, and enzymes are

represented as entries within the pathways. A click on

any level of the tree brings up the details pertaining to

that level of the database, as mentioned above.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1525
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Overview data is provided on the accession and path-

way pages, and detailed biochemical parameters are

found on the reaction and molecule pages.

Each of these pages includes richly hyperlinked

results from the navigation. For example, each pathway

page has links to all related pathways in the database.

Further, each biochemical entity page has links to all the

reactions or other molecules that interact with it.

The second major navigation option is through

searches. This uses a query-based form present at the

top of each page of DOQCS. In additional to simple

queries as previously described (Sivakumaran et al

2003), additional several complex searches

are possible for textual pattern matching within

various subfields, as it is common on most databases.

More sophisticated searches can also be carried out

based on connectivity or functional criteria.

Typical connectivity criteria specify that a given

molecule is a substrate of another. A functional crite-

rion might be that a given molecule acts as an enzyme.

Data Sources and Curation

Except for few models that were explicitly developed

for the database by the curation team, all other

models are published models which have been tested

before putting online and in the accession table citation

information is included as a link to PubMed. This

procedure frequently reveals ambiguities in model rep-

resentation, and in some complex models, the original

implementation is difficult to replicate. In all cases, the

extent of the fit between published and internally tested

representations is reported as an important entry in the

validation field in the table.

File Formats

DOQCS supports three file formats: Kinetikit, SBML,

and MATLAB. All models in the database have

been implemented using GENESIS/Kinetikit simula-

tor (Bhalla 2002; Vayttaden and Bhalla 2004) and

are available in its internal model file format

which includes annotation information. In cases

where the original publication includes model

files, these are also presented unchanged for down-

load. Most models have also been converted to

MATLAB and SBML. All converted models have

been tested for equivalent function to the GENESIS/

Kinetikit form.
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Definition

Over the last decade, systems biology (SB) has been

one of the fastest growing fields in the life sciences.

There are many interpretations and definitions for the
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SB field (Westerhoff and Alberghina 2005), but most

scientists agree that an SB study combines experimen-

tal and theoretical (including modeling) approaches.

As such the increase in number of SB studies correlates

with the increase in mathematical models for biologi-

cal system, which is evident from a recent inventory

(Huebner et al. 2011). Not only did the number of

models increase, also the size of the models has

increased. The latter effect is due to the larger size of

the systems being studied but more importantly due to

a more complete representation of the biological

system in the models.

The aim of many SB studies is to relate systems

behavior to characteristics of the components of the

system. This is a subtle but important difference from

the classic theoretical biology approaches, where core

models were constructed to describe biological behav-

ior using mathematical equations that were as simple

as possible, not necessarily reflecting biological

mechanisms. Specifically in so-called bottom-up

SB models, a strong mechanistic link is maintained

between model components and biological entities.

Such models can be used to critically test our

biochemical knowledge of a given system (e.g.,

Teusink et al. 2000).

The increase in number and size of kinetic models

and the more realistic representation of biological

components in these models have led to the develop-

ment of a number of model database initiatives. In this

section, descriptions of several of these initiatives are

given and the advantages of storing models in such

databases and the consequences for model reuse, anno-

tation, and dissemination are discussed.
Characteristics

Why Model Databases

The increased size of kinetic models in SB studies

necessitates the storage of the models in a publically

accessible form. Whereas it is easy to code a two-

variable model from a publication, the effort and

chances of making errors becomes much larger with

increased model sizes. Clearly, if a model were avail-

able in a repository from which it can be downloaded

and used without recoding the model, this would save

a lot of work and would also eliminate coding errors

(if the model in the database were properly curated).
Models have increased in size for two reasons:

firstly because larger systems are being studied and

secondly because the models are more detailed. In

some cases, the modelers are actually attempting to

build replicas of the real system. In the latter case,

where the model variables have a well-defined

mechanistic interpretation, it is important to annotate

the model. The information in such annotated models

is ideally suited for storing in relational databases.

Strong searching capabilities, easy access and dis-

semination via standard formats and protocols, linking

to other databases, and possibilities of incorporation of

automated workflows are just a few of the added

advantages of storing models in databases.

Minimal Requirements for Model Databases

A model repository or database must fulfill three min-

imal criteria to make it useful. Firstly, the models’

descriptions must be correct, i.e., they must be identi-

cal to the model description in the publication where

the model was first presented (see ▶CellML Model

Curation). Secondly, the models must be available for

download from the repository in a standard model

description format, such as ▶Systems Biology

Markup Language (SBML) or ▶CellML. Thirdly,

the models must be annotated (model annotation).

A minimal annotation should link the model to the

reference where it was published and it should be

clear how the model variables and parameters link to

the species and constants in that publication.

A nice-to-have functionality for kinetic model

repositories is a simulation tool, such that the models

in the repository can be directly inspected and simu-

lated, for instance in a web browser. The first initia-

tives that stored kinetic models of biological systems

started out as model repositories with a simulation

engine (see ▶ JWS Online and the ▶Virtual Cell

(VCell) Modeling and Analysis Platform).

A large number of model databases have been ini-

tiated in the last decade. Some of these initiatives focus

on a specific subset of models, such as models for

signal transduction pathways (▶DOQCS: Database

of Quantitative Cellular Signaling), for the cell cycle

(▶Cell Cycle Database), for neuronal models

(modelDB), while other databases are more general

repositories (▶BioModels Database: a repository of

mathematical models of biological processes, ▶ JWS

Online, ▶CellML, ▶Virtual Cell, ▶WebCell).
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Model Annotation

Whereas the focus in theoretical biology studies used

to be on the mathematical aspects of a model, i.e., on

the analytical and numerical analyses, in systems biol-

ogy studies the direct link to experimental data is much

stronger and it therefore becomes more important to

relate model components to biological entities, i.e., to

annotate models.

In addition to a minimal reference annotation to

link models in the database to the scientific publica-

tion in which the model is described, a further anno-

tation of model components to biological entities

using controlled vocabularies (e.g., SBO terms)

greatly enhances the application strength of mathe-

matical models. The annotation of models makes it

much easier to search for specific components in

models, or to compare or even link models for

overlapping systems.

The Minimal Information Required in the Annota-

tion of Models (▶MIRIAM) is an example of guide-

lines for annotating models, and it links model

variables to ontology terms (e.g., to a systems biology

ontology, SBO term) and thereby to unique identi-

fiers. Thus, where modelers can use names as G6P,

Glu6P, Glc6p, or X2 to denote a variable such as

glucose 6-phosphate, if such variable names are

linked to an identifier such as a ChEBI number they

can all be related to glucose 6-phosphate. This anno-

tation relates model constituents unambiguously to

a known entity, where the references information is

given in a {“data type,” “identifier,” “qualifier”} trip-

let. The “data type” is given as a Unique Resource

Identifier and can be an Uniform Resource Locator

(url) or a Uniform Resource Name (urn), for instance

for a model variable Ca2+ which is a reactant in

a reaction the data type could be a url: “http://www.

ebi.ac.uk/chebi/” with identifier: “CHEBI:29108”

and qualifier: “is.” MIRIAM extends beyond the

annotation of model components; it also requires

a reference correspondence, standard model format,

and the possibility of instantiation of a model

simulation.

Biomodels (▶BioModels Database: a repository of

mathematical models of biological processes) was one

of the first model database initiatives to strongly pro-

mote model annotation and has played an important

role in development in many model description, anno-

tation, and simulation standards.
What Information Should Be Stored in Model

Databases?

For each model entry in the database, its description

file in a standard format and an annotation file would

be the minimal information to be stored (in SBML, the

two can be combined in a single xml file). In this

section, the focus is on models described as determin-

istic ordinary differential equations, which is the class

in which the majority of the kinetic models in SB

studies are described. For a more general treatment,

see the section on kinetic models (▶Kinetic Modeling

and Simulation).

A typical model description would include the fol-

lowing: (1) description of a set of reactions, (2) rate

equations for the reactions, (3) parameter values, and

(4) initial conditions. In addition, models can contain

events, functions, and algebraic equations, but the above

four components are generic. The reaction description

and the rate equations can be combined to give a set of

differential equations, and some models are defined in

differential equations only, without specifying the reac-

tions and their rate equations. The standard model

description formats allow for these different ways to

describe kinetic models. Whether a model is described

in terms of reactions or as ODEs does not influence the

numerical integration (since these are performed as

differential equations), but the model description can

affect the functionality of the model.

The Importance of Specifying Reactions

If a model is described in ODEs without explicit ref-

erence to the reactions in a system, it is not always

possible to dissect the contributions of the individual

reactions to an ODE.

The famous Lotka-Volterra model for predator-

prey interaction might serve as an example to illustrate

the point. This model is usually presented in the form

of ODEs:
d x t½ �ð Þ=dt ¼ x t½ � � ða� b � y t½ �Þ

d y t½ �ð Þ=dt ¼ y t½ � � c � x t½ � � dð Þ

with x[t] and y[t] the densities of prey and predator,

respectively, and a, b, c, and d positive parameters.

From these ODEs, it is not immediately clear that the

system consists of three reactions: (1) a birth rate of

prey (a*x[t]), (2) a death rate of predator (d*y[t]), and

http://dx.doi.org/10.1007/978-1-4419-9863-7_1525
http://www.ebi.ac.uk/chebi/
http://www.ebi.ac.uk/chebi/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1607
http://dx.doi.org/10.1007/978-1-4419-9863-7_1607
http://dx.doi.org/10.1007/978-1-4419-9863-7_1088
http://dx.doi.org/10.1007/978-1-4419-9863-7_1088
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(3) a rate for prey consumption by predator leading to

a decrease of prey (� b�y t½ ��x t½ �) and an increase of

predator (c�y t½ ��x t½ �). From the ODEs, it cannot be

automatically derived that (3) is a single reaction

with a different stoichiometry for prey consumption

and predator growth. If the ODEs would be given in

terms of reactions this uncertainty would not exist, for

instance:
d x t½ �ð Þ=dt ¼ v1� v2

d y t½ �ð Þ=dt ¼ e�v2� v3

with v1 ¼ a�x t½ �, v2 ¼ b � y t½ � � x t½ �, and e ¼ c/b, and

v3 ¼ d * y[t]. When the ODEs are given in terms of

reactions, a reaction network can automatically be

drawn:

X Y1 2 3
e

The Lotka-Volterra model is not a mechanistic

model and the translation to explicit reactions is not

so important. In addition, it is not difficult to make the

translation into reactions with some background infor-

mation. However on the basis of the ODEs only,

a computer cannot make the translation to the network

automatically. For larger models, such a translation

becomes much more difficult, even for humans. See

Conradie et al. 2010, for an example of a study where

considerable effort was made to translate a model

defined in ODEs back to the original reactions for

which it was defined.

If a model is defined in terms of reactions, it is easier

to identify the biological system it refers to and to

search for components or compare (parts of) models.

A reaction is defined in terms of substrates and prod-

ucts and a unique identifier can be given for a reaction

(e.g., KEGG, see entry ▶KEGG pathway database;

www.genome.jp/kegg/). If the process is enzyme cat-

alyzed, as is the case for most reactions in the cell,

a corresponding E.C. number exists. Such identifiers

are important as they can give information on thermo-

dynamic constants (e.g., Keq for a reaction), and they

can give indications for enzyme kinetic constants as

stored in enzyme kinetic databases. Furthermore, by

defining a mathematical model in terms of reactions it

is possible to describe the modeled system in

a standard format. BioPAX (Biological Pathway

Exchange; www.biopax.org/) is a standard language
to represent biological pathways and is widely

supported by database initiatives.

Thus, although the traditional way of defining

models in terms of ODEs without explicit reference

to reactions has no consequence for the time integra-

tion of the model, it does affect the functionality of the

model both in terms of comparing to other resources

and in terms of analyses that can be made with the

model. For instance, automated drawing of reaction

network graphs or ▶metabolic control analysis

(MCA) can only be performed for models defined in

terms of reaction steps.

Rate Equations

For some model organisms, a fairly complete set of

reactions occurring in a cell has been constructed (at

least for metabolism). Such structural models, which

define a reaction network, have been defined for much

larger system than have been used for kinetic models.

The reason for this is that the information needed for

building a kinetic model is more extensive and not as

simple and condition independent as for structural

models.

For well-studied enzymes, a kinetic mechanism

might be known and then a rate equation can be

derived from the mechanism. However, for many

enzymes no mechanism is known and then often

a generic rate equation is used based on a simplified

mechanism such as a random order rapid equilibrium

binding mechanism. If the enzyme can be studied in

isolation, kinetic parameters can be estimated by

fitting the rate equation on the experimental data set

for the isolated enzyme. If the enzyme cannot be

studied in isolation, the kinetic parameters are often

fitted on behavior of the complete system. In the latter

case, it is much more difficult to make specific per-

turbations to the enzyme and even simpler rate equa-

tions must be used since the parameters are often not

identifiable.

The above paragraph indicates some of the difficul-

ties of obtaining suitable rate equations for kinetic

models, which are treated in more detail in the sections

on model construction and ▶model validation. For

this section, it is sufficient to know that for many

systems we can define the reaction network with

good confidence and can store this information well

in a database. But for the equations that can be used to

describe the rate of the reactions, the situation is not so

simple.

http://dx.doi.org/10.1007/978-1-4419-9863-7_472
http://www.genome.jp/kegg/
http://www.biopax.org/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1084
http://dx.doi.org/10.1007/978-1-4419-9863-7_1423
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Although the number of possible rate equations that

can be used in mathematical models might appear

limitless, the situation is not quite that bad. Due to

the limited number of substrates and products for

most reactions, the possible combinations, even when

taking several mechanisms into account, is not that big.

Thus, libraries for rate equations have been

constructed, and when storing models in databases

a reference to such a library can be made if a standard

mechanism was implemented for a reaction. In prac-

tice many models will also include nonstandard

rate equations that are derived specifically for

a reaction, and these must be included in the model

storage as well. Some model simulators such as

COPASI (www.copasi.org/) refer to an internal rate

equation library. When building a model, the user can

select a rate equation from the library or use a user-

defined reaction (that is then added to the library).

When exporting the model from the simulator, each

equation is given explicit in the SBML file.

Kinetic Parameters

One of the advantages of using rate equation libraries

is that it is possible to give identifiers to each of the

model parameters. In much the same way that mod-

elers pick names for variable species, they also use

names for parameters that cannot always be uniquely

related to known constants. If parameters in rate equa-

tions were annotated, it would be possible to relate

them to existing kinetic constants and make links to

database resources.

Unique identifiers for small chemical species and

for enzymes are quite well accepted and used, but for

rate equations this is not so common. This makes it

harder to store kinetic information in a database and

limits the strength of database searches and functional

comparisons with other rate equations or parameter

values. The situation is worse for reactions for which

we do not know the kinetic mechanism as now differ-

ent rate equations can be used to describe the same

reaction. The functional behavior of different rate

equations might be similar (this is to be expected if

they were constructed from the same data set), and

would therefore not lead to very different model sim-

ulation results. However, the different equations make

it hard to compare (or use) kinetic parameters obtained

for different rate equations.

This touches on an important aspect of one of the

advantages of using databases for model storage:
interactivity and exchange between different data-

bases. Whereas molecules, reactions, and enzyme

identifiers are largely species and condition indepen-

dent, this does not hold for rate equations or parameter

values. Thus, the strong point of connecting databases

to search for kinetic parameters for rate equations

should be used with caution and might be difficult to

automate.

A simple example might make the problem clearer.

Let us consider the well-known Michaelis-Menten

equation for the enzyme-catalyzed conversion of S to P
V ¼ Vm�S=ðKmþ SÞ

For the original derivations, Michaelis and Menten

assumed equilibrium binding of enzyme and substrate

and then the Km value has a mechanistic interpretation

as the dissociation constant (Kd) of the enzyme-

substrate complex (Km ¼ Kd ¼ kd/ka; with kd the

rate constant for the dissociation reaction and ka the

rate constant for the association reaction). In a later

derivation, Briggs and Haldane relaxed the equilib-

rium binding assumption to a quasi-steady-state

approximation for the enzyme-substrate complex,

which gives a different mechanistic interpretation for

the Km value (Km ¼ (kd + kcat)/ka). Although the

assumptions for the derivation and the resulting inter-

pretation of the Km value are different, the equation for

the description of the enzyme activity is identical.

Interestingly, in practice the Km value is determined

as the substrate concentration giving half-maximal reac-

tion rate, irrespective of the mechanism or assumptions.

The enzyme characteristics and the experimental con-

ditions determine whether the equilibrium binding

assumption or the quasi-steady-state approximation

assumption holds (if any). However, the mechanistic

interpretation of the Km value is independent of the

experimental determination, and many researchers

have become a bit careless in using and reporting Km

values. If the Km value is operationally defined as the

substrate concentration giving half-maximal enzyme

http://www.copasi.org/
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activity, this can still work fine. However, for multiple

substrate/product reactions, the rate equation becomes

dependent on the kinetic mechanism used, and for

ordered binding mechanisms the definition of the inhi-

bition constants is related to the mechanism. For such

reactions, it is important to publish the kinetic rate

equation together with the Ki values.

Irrespective of the mechanistic interpretation of

kinetic parameters, their values are usually dependent

on the assay conditions under which they were deter-

mined. The kinetic parameter values should be deter-

mined under conditions that closely reflect the

conditions that are simulated in the model. Where

a model simulates the intracellular cytosol, it is hard

to imitate those conditions ex vivo. Often kinetic

parameters are determined in vitro, and some guide-

lines for mimicking cytosolic conditions have been

formulated (van Eunen et al. 2010).

The contents of databases are dependent on the way

the data are represented in the scientific literature. For

the representation of enzyme kinetic data, standards

have been formulated by the ▶ STRENDA commis-

sion (Standards for Reporting Enzymology Data,

http://www.beilstein-institut.de/en/projects/strenda/).

A number of databases exist where enzyme kinetic

data are collected. This might seem in conflict with the

above advice to use published kinetic parameters with

caution, but these database initiatives give information

on the following: (1) the experimental conditions

under which the parameters were determined, (2) the

associated rate equation, and (3) the experimental data

used for the parameter determination (e.g., SABIO-

RK). Some kinetic parameters such as Keq and kcat

are relatively constant (e.g., not sensitive to a particular

kinetic mechanism assumed in its estimation), when

they are measured under the correct physiological con-

ditions. Other kinetic parameters, such as Vmax values

can vary largely as they are not only dependent on the

assay conditions but also on expression level of the

enzyme, i.e., on the growth conditions of the organism.

The relevance of this long section on enzyme

kinetic parameters for model databases is that data-

bases that store the kinetic parameters will facilitate

the reuse of the parameter values. There is a significant

risk involved in reusing parameter values, if the user

does not check carefully how the parameter values

were determined. A close link of the parameter values

and rate equations to experimental data seems

necessary.
Linking Models to Data Sets

One can roughly distinguish two types of data sets that

are connected to mathematical models: data for model

construction and data for model validation. In principle

these should be independent data sets, and they can be

very different. For instance in a typical bottom-up

modeling approach, it is possible to have kinetic data

for each of the individual enzymes that is used for

parameterization of the enzyme kinetic rate equation

as part of the model construction. In such a study, data

for the complete system could be used for model val-

idation. Of course, this is just a scenario and other

types of data sets are possible. In many studies it is

not possible to separate the model components func-

tionally from the system, and then one cannot charac-

terize the individual components in isolation.

Because the bottom-up approach nicely separates

the model construction data sets from the model vali-

dation data sets, I will expand a little further on how

such data sets can be linked to model storage in data-

bases. The first question to ask is whether experimental

data should be stored in a model database. On the one

hand, one can argue that the data are not part of the

model description, and are not necessary for model

simulation or analysis and could therefore be kept

separate from the model. On the other hand, the data

for model construction are closely linked to the model

and can enhance the model functionality significantly.

Firstly, if all data for model construction are made

available, the model construction becomes

a completely transparent process and could be

reproduced by other scientists, which is an important

aspect of scientific research. Secondly, it enables

researchers to make changes to the model, for instance

using the same experimental data sets but applying

different rate equations. A last advantage to explicit

linking of the data sets to the model is that it makes it

possible to completely separate the construction and

validation data sets.

The above given advantages should be sufficient

motivation to link experimental data sets to the exper-

imental data that was used for the model construction,

but it does not provide with a strong argument to store

the data in the same database as where the models are

stored. For instance it would be possible to store all the

experimental data in a specialized database for enzyme

kinetics, such as SABIO-RK (sabio.villa-bosch.de/) or

Brenda (http://www.brenda-enzymes.info/), and then

link the model to the external database. Whereas such

http://dx.doi.org/10.1007/978-1-4419-9863-7_1102
http://www.beilstein-institut.de/en/projects/strenda/
http://www.brenda-enzymes.info/
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a link to external databases is easily made, it is some-

times more convenient to also store the experimental

data in the model database. For instance, several of the

model databases (e.g., JWS Online and Biomodels) are

part of data management systems of large research

projects, and then it can be advantageous to keep the

data in a secure database and have direct access to the

data without external links. For instance, JWS Online

is used in active model development where for each

reaction there is a data set available that is directly

available via the network schema. These data sets are

sometimes updated and linked to versioned models.

Only the final model is released to the public and

then the data is made available.

Clearly, different solutions can be used to store

models, kinetic parameters, rate equations, and the

associated experimental data. It is important that

a link between the model and the experimental data is

made explicit and that it can be followed, how the link

is made is not so important. In some of the above-

mentioned systems biology projects, in addition to

experimental data there is a lot of additional informa-

tion stored and often a much greater functionality is

provided in a complete data management structure.

Data and Model Management Structures

The multidisciplinary character of systems biology

projects and the scale of many of these projects neces-

sitate the collaboration between sometimes-large num-

bers of research groups. Although each research

project could in principle come up with its own unique

solution for data and model management, it would

make more sense to develop more generic tools that

can be used by many research groups. An example of

such a data management system that is being devel-

oped centrally is the data management group for the

▶ SysMO projects (www.sysmo.net/). The SEEK

(▶Data and Model Management Platform, SEEK)

(Wolstencroft et al. 2011) is the centrally developed

software package that gives a wide functionality to

each of the individual research groups, one of which

is the storage and curation of mathematical models, but

it also makes it possible to make explicit links between

models and experimental data.

The SEEK has been a large success and is now also

implemented in several other SB projects. SEEK can

be downloaded, installed, and adapted to anyone’s

needs, and this has helped strongly in the package

being incorporated in, e.g., the UniCellSys project
(www.unicellsys.eu/), EviMalaR (www.evimalar.org/),

the Virtual Liver (www.virtual-liver.de/), and many

more research projects.

Web-Services and Workflows

One of the biggest advantages of using a database for

storing data is the possibility to structure the data

according to its expected use. One can store the data

such that expected queries run most efficiently. It is

a relatively simple step to not only structure the data

storage but also the way in which queries are made and

output is given. Most databases allow access to their data

via so-called web-services (see ▶Web Service), which

are structured queries. There are different types of web-

services, which are treated in more detail in another

section. For the model databases, such web-services can

be a simple search query to select all models for a certain

organism, or pathway, but it can also involve running

simulations of models that have been selected before.

Such workflows that run a set of web-services in succes-

sion can be defined in software tools specifically

designed for this task, such as Taverna, or inmore generic

programs such as Mathematica. Workflows are very

powerful tools that automate tedious and repetitious jobs.

An important aspect of web-service construction is

the formulation of the specific format in which the

query must be made and the answer will be given.

Recent initiatives have focused on the formulation of

standards for model simulation descriptions. MIASE

(Minimal Information About a Simulation Experi-

ment) proposes a minimal set of information needed

to reproduce simulation experiments, and SED-ML

(Simulation Experiment Description Markup Lan-

guage) encodes this information.

The Silicon Cell Initiative

Model databases greatly enhance the accessibility of

published kinetic models. The storage of curated

models is important to prevent losing the models,

which are often custom coded, and to make the models

publicly available in standard formats. The reproduc-

ibility of (model simulation) results is an important

aspect of the scientific process and this is ensured in

the curation process of the model databases.

Model accessibility is also important for future

model reuse. Whether a specific model will be reused

is largely dependent on how it was constructed. If

a model was made to address a specific research

question, the model structure and kinetic parameters

http://dx.doi.org/10.1007/978-1-4419-9863-7_1436
http://www.sysmo.net/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1435
http://www.unicellsys.eu/
http://www.evimalar.org/
http://www.virtual-liver.de/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1368
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might be very dependent on the specific conditions

that were applied. Then model reuse might be limited

to these conditions. However, if a model was

constructed using the above-discussed bottom-up

approach, using experimental data for each of the

individual reaction steps, the model (or parts of it)

can be reused. If the kinetics of the individual reaction

steps were measured under physiological conditions,

they are to a large extent model independent. This

holds for the kinetic mechanism and the kinetic

parameters but to a lesser extent to the Vmax values

(which are dependent on the enzyme expression

levels). Since the enzyme expression levels will be

dependent on the growth conditions, these could very

well be model dependent.

The ▶ silicon cell initiative (e.g., Snoep and

Westerhoff 2004) advocates the use of rate equations

based on kinetic parameters that were experimentally

determined for the individual reactions. Construction

of kinetic models with such rate equations followed

by an independent model validation for the system

would lead to kinetic models that can be reused in

a modular approach to building models of larger sys-

tems. Whereas it is unlikely that a detailed kinetic

model for a whole cell can be constructed in a single

step with a bottom-up approach, the Silicon Cell

approach would be to validate models for parts of

the cell and then merge them to simulate a larger

part of the system. After merging, the resulting

model can again be validated. In such a modular

approach, a gradual increase in model size will pre-

vent the accumulation of experimental error in the

individual model parameters. Model validation is

crucial in this approach, and the definition of modules

should largely be determined by whether they can be

validated, i.e., define a module such that it can be

validated.

In this section, several aspects of model databases

were introduced and discussed. A number of these

database initiatives will be highlighted in assays and

several additional definitions will be formulated.
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Data-Intensive Research

Sabina Leonelli

ESRC Centre for Genomics in Society, University of

Exeter, Exeter, Devon, UK
D
Synonyms

Computational data analysis; Data deluge; Data-driven

science; Data-intensive science
Definition

Data-intensive research can be characterized as the

attempt to extract biological knowledge from the

huge amounts of data produced through experiments

and high-throughput technologies (e.g., new genera-

tion ▶DNA sequencing) and disseminated through

cyberinfrastructures (e.g., community databases and

▶Bio-Ontologies). Data-intensive research encom-

passes a wide variety of scientific methods, whose

common feature is to rely on the accumulation and

sharing of evidence on a large scale and across

research contexts as a starting point for the research

process. Also central to data-intensiveness is the idea

of automated data analysis, defined as the extraction of

biologically significant patterns from data through

computational means, with as little human intervention

as possible (see also ▶Automated Reasoning). Com-

putational tools for ▶ data mining are expected to

facilitate the generation of new hypotheses and thus

to help identify fruitful research directions, which can

be explored further through in vivo experimentation.

At the same time, both champions and critics of data-

intensive research recognize that data analysis cannot

be understood as purely inductive and that the human

input and skills involved, such as the ability to interpret

data, construct models, and formulate hypotheses, can-

not be fully automated. Data-intensive research is thus

not one single, inductive, computer-driven method for

discovery. Rather, it encompasses a variety of methods

of data analysis, all of which rely on iterative feedback

between ▶ experimentation in vivo and the consulta-

tion of data available in silico; and between inductive,

deductive, and explorative reasoning (Kell and Oliver

2004; O’Malley et al. 2009).
Characteristics

What does it mean for research to be based on empir-

ical evidence? This question, one of the oldest within

the philosophy and history of science, is being

reformulated and reconsidered within contemporary

biological and biomedical science. In these areas, and

particularly within system biology with its emphasis

on data sharing and interdisciplinary integration, tech-

nological innovation and shifting ideas about what

counts as evidence have transformed practices of data

collection, dissemination and analysis, with profound

methodological consequences for experimental and

modeling practices. This entry sketches some charac-

teristics of this broad trend.

The Data Deluge

The activities of data gathering and data use appear to

have acquired relative independence from other scien-

tific activities such as hypothesis-testing, modeling,

and explanation. Up to the second half of the twentieth

century, biological data were largely produced as evi-

dence to support a specific experimental hypothesis.

This is still the case in several research areas, but not

within molecular and system biology, where high-

throughput technologies such as sequencing and

micro-array experiments have changed the way in

which data are produced. In these fields, the activity

of data gathering has become increasingly automated

and technology-driven, resulting in the production of

billions of data-points in need of a biological interpre-

tation (Hey et al. 2009). Consequently, massive

research efforts are being devoted to the dissemination

of data online, in the hope that free and widespread

access to large datasets will enable scientists to use

them to understand biological phenomena, thus gener-

ating new paths toward discovery.

Thanks to the variety of computational tools devel-

oped to collect, store, and distribute them, data are now

available to researchers on an unprecedented scale.

This partnership between biology and computer sci-

ence constitutes both the strength and the weakness of

data-intensive research. Several commentators have

argued that the extraction of knowledge from such

large, cross-disciplinary datasets constitutes a new sci-

entific method, often depicted as “data-driven.” The

underlying idea is that data already available online

constitute formidable sources of insight, which can be

used to generate research programs without

http://dx.doi.org/10.1007/978-1-4419-9863-7_100249
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http://dx.doi.org/10.1007/978-1-4419-9863-7_1294
http://dx.doi.org/10.1007/978-1-4419-9863-7_52
http://dx.doi.org/10.1007/978-1-4419-9863-7_80
http://dx.doi.org/10.1007/978-1-4419-9863-7_599
http://dx.doi.org/10.1007/978-1-4419-9863-7_117
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necessarily starting from a specific hypothesis to be

tested and without necessarily possessing the same

expertise as the original data producers (Kell and Oli-

ver 2004). At the same time, it has become clear that

the sheer scale and diversity of data to be analyzed

requires the creation of sophisticated tools for data

mining, which in turn needs to be informed by relevant

expertise in the theory and practice of all the relevant

domains within biology (Blake and Bult 2005, Buetow

2005).

Three Data-Intensive Research Methods

The following three cases provide good examples of

the advantages and limitations of data-intensive

research methods:

• Discovery through triangulation of existing

evidence

The opportunity to access data through a web of

interlinked repositories and databases is enabling

scientists to retrieve more and more data of possible

relevance to their research interests. It is now pos-

sible to gather and integrate data obtained on a wide

variety of organisms by laboratories across the

globe, no matter the specific expertises and interests

guiding the production of data at each location. This

is particularly true in the case of research on

▶model organisms, where researchers can retrieve

large portions of the data available on the same set

of phenomena through community databases. This

unrivaled level of data sharing is fueling the discov-

ery of new regulatory roles of specific genes or

pathways. The triangulation of existing evidence

thus furthers and transforms existing understand-

ings of phenomena. This research strategy is hardly

new, yet the use of digital technologies makes it

tremendously more efficient. It is crucial that the

data in question are in a digital format, which makes

it possible to disseminate them widely and retrieve

them instantly.

• Discovery through data mining

Online databases can also be searched for emerging

patterns or correlations that could not have been

predicted otherwise. A striking instance of this

method is the idea of “random walks” through

data, where software is used to mine datasets to

spot statistically significant patterns (e.g., gene

expression). It is not obvious that these patterns
also have biological significance, and what they

teach us about the biology of organisms needs to

be investigated through further experimentation.

Yet, computational analysis here offers a shortcut

toward discovery by pointing to patterns that have

at least the potential to enhance existing under-

standings of biological phenomena.

• Discovery through spotting gaps

Data mining can lead to discovery by pointing

researchers toward areas of investigation that were

not previously charted. A good example is the dis-

covery of “ultra-conserved regions” in vertebrate

DNA and their regulatory role in development

(Blake and Bult 2005); or, more generally, the dis-

covery of correlations between the presence of spe-

cific alleles in an individual’s genotype and the

occurrence of a phenotypic trait, which might

open the way to the investigation and discovery of

mechanisms responsible for the development of

that trait (this is the approach underlying genome-

wide association studies). In these ways, data-

intensive research helps to identify gaps in the

existing knowledge about a given entity, thus open-

ing up new areas for investigation.

Beyond Induction

As exemplified by the above cases, at the core of data-

intensive research is an emphasis on the epistemic

value of data beyond the experimental context in

which they are originally produced. Supporters of

data-intensive research stress that the way in which

data can be used as evidence varies depending on the

scientific context in which they are considered. This

flexibility as “rawmaterials” of science is what makes

the dissemination and integration of data across bio-

logical domains into an effective route toward dis-

covery (Leonelli 2009). This does not necessarily

mean that the accumulation and sharing of data con-

stitutes the best starting point for inquiry, yet critics of

data-intensive approaches have stressed the risk

of “induction beckoning again” (Allen 2001) and

emphasized that proponents of data-driven science

tend to portray data as the primary source of scientific

knowledge and to stress the value of inductive

procedures over and above other research methods.

This impression is heightened by the frequent

juxtaposition of data-intensive methods to

http://dx.doi.org/10.1007/978-1-4419-9863-7_76
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“hypothesis-driven,” deductive research, which sug-

gests that data mining can lead to the formulation of

testable claims without recourse to preconceived

hypotheses (Evans and Rzhesky 2010). These inter-

pretations of data-intensive research as purely induc-

tive and independent from existing theoretical

expectations are very problematic and untenable in

the face of actual scientific practice. Reusing data for

the purposes of discovery involves a complex ensem-

ble of skills and methodologies, which go well

beyond an inductive approach. Extracting biologi-

cally meaningful inferences from high-throughput

genomic data involves, for instance, reliance on the-

ories about gene expression and regulation, specific

models of the biological processes being regulated,

common standards for the formatting and visualiza-

tion of genomic data, and familiarity with the instru-

ments and organisms from which data were originally

obtained. This methodological complexity is what

makes it difficult to pinpoint the epistemic character-

istics of data-driven research as a unique, emerging

mode of inquiry. At the same time, methodological

complexity aligns this form of research with the goals

and methods favored in system biology: the pursuit of

complex, interdisciplinary interactions; and the use of

a variety of methods to achieve an integrated under-

standing of living organisms (Philippi 2006).

The Limits of Automation

Another characteristic common to the three examples

of data-driven methods given above is reliance on

automated data analysis: “smart” software is assigned

a prominent role in facilitating the extraction of pat-

terns from data, either through statistical analysis or

through search mechanisms in databases. While auto-

mated techniques for data analysis and hypothesis gen-

eration are proliferating and becoming increasingly

sophisticated, there are two good reasons to believe

that biological research cannot and should not be fully
automated:

1. Research within the field of bioinformatics, and

particularly database curation, has shown that data

mining processes are only reliable when resources

and expertise are invested in selecting high-quality

data for insertion in databases; and in building data-

bases that make use of efficient search engines,

visualization systems for data, and interoperable
▶ ontologies (Renear and Palmer 2009). Indeed, it

has been claimed that data-intensive science cannot

advance without substantial investment in a reliable

cyberinfrastructure which can be easily updated by

users, particularly when this approach is put to the

service of systems biology (Philippi 2006).

2. Successful examples of data-intensive science illus-

trate the need for these methods to be embedded in

a wider spectrum of scientific practices, ranging

from theoretical analysis to ▶ experiments and

field observations. Data-intensive research thrives

when exposed to iterative feedback with in vivo

research (O’Malley et al. 2009).

The Heuristic Value of Data-Intensive Science

The relation between data-intensive science and other

forms of research is difficult to describe in simple and

general terms, yet this complexity is precisely what

makes data-intensive methods interesting as a new

approach to scientific inquiry. Recent advances in

bioinformatics and successful applications of data-

driven methods have shown that the analysis of data

in silico cannot be fully automated, nor should it be

disjoint from experimental research in vivo. How-

ever, computational tools have the power to substan-

tially transform how research is performed and the

ways in which ▶ experiments are set up, carried out,

and verified. Data-intensive science has great heuris-

tic value, since findings emerging from the analysis of

large datasets can be used to challenge and re-direct

the means and targets of experimental research. This

does not mean that data-driven methods should

always be conceived as the starting point for experi-

mental inquiry. They constitute resources that can

potentially complement all stages of research and

can thus be fruitfully applied to any project, even if

in each case their function is likely to be different

depending on the specific goals, context, and

resources available.
Cross-References

▶Automated Reasoning

▶Bio-Ontologies

▶Community Database

▶Data Mining
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▶DNA Sequencing

▶Experiment

▶Ontology Lookup Service for Controlled

Vocabularies and Data Annotation
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▶Data-Intensive Research
Date Hub

▶Hub
DBID

▶Database Identifier
dbSNP

Jingky Lozano-K€uhne
Department of Public Health, University of Oxford,

Oxford, UK
Synonyms

Single-nucleotide polymorphism database
Definition

A database containing information about genetic

variations. It was established by the National Center

for Biotechnology Information as a central repository

of data for both single-base nucleotide substitutions

and short deletion and insertion polymorphisms

(Sherry et al. 2001).
Cross-References

▶ SNPedia
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DDBJ Genome Resources

Akos Dobay1 and Maria Pamela Dobay2
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Studies (IEU), University of Zurich, Zurich,

Switzerland
2Department of Physics, Ludwig-Maximilians

University, Munich, Germany
Definition

The DNA Data Bank of Japan (DDBJ; http://www.

ddbj.nig.ac.jp) is a collection of nucleotide
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DDBJ Genome Resources, Table 1 List of the databases

available at DDBJ

Service

name Description

INSD-

core

The INSD-core data contain all the traditional

sequences of complete genomes, but exclude

whole-genome shotgun (WGA) sequences, mass

sequence for genome annotation (MGA), and third

party annotation (TPA) (Kaminuma et al. 2010;

Kaminuma et al. 2011)

WGS The whole-genome shotgun contains large sets of

overlapping and finished sequences without

annotation from ongoing genome projects

(Kaminuma et al. 2010; Kaminuma et al. 2011)

MGA The mass sequence for genome annotation is

comprised of sequences that are produced in a large
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sequence data. Although DDBJ collects data

worldwide, most of the direct submissions are

from Japanese researchers. DDBJ continuously

exchanges the collected data with the European

Bioinformatics Institute (▶EBI Genome Resources)

and the National Center for Biotechnology Informa-

tion Database (NCBI; http://www.ncbi.nlm.nih.gov).

The three databases are part of the International

Nucleotide Sequence Database (INSD; http://www.

insdc.org) consortium, whose function is to

ensure the integrity of the shared information.

Apart from the genome resources, DDBJ also has

resources for protein sequences and protein

structures.

quantity for the purpose of genome annotation

(Kaminuma et al. 2010)

TPA Third party annotation data are assembled using

primary entries of publicized nucleotide sequence

data collections, with additional features

determined by experimental or inferential methods

from a pool of experts (Cochrane et al. 2010)

DTA DDBJ trace archive is a permanent repository of

DNA sequence chromatograms

DRA DDBJ sequence read archive is a repository for

sequencing data from next-generation sequencing

technologies. A web-based metadata creation tool

called MetaDefine has been released in March 2010

to facilitate the submission process

DAD The DDBJ amino acid database contains amino acid

sequences extracted from the nucleotide flat files

present in theDDBJperiodical releaseandTPAdataset

GTPS The Gene trek in prokaryotic space is a re-annotated

database that uses motif scans

GIB The genome information broker is a comprehensive

data repository of complete microbial genomes

GIB-V The genome information broker for viruses is a

repository for complete virus genomes. For other

virus genome resources, refer to the ▶NCBI viral

genomes resources

CIBEX The Center for Information Biology Gene

Expression database (http://cibex.nig.ac.jp) is a

public database for mircoarray data (▶Microarray

data, parallel and distributed preprocessing)

DOR The DDBJ omics archive stores quantitative data

from both microarrays (▶Microarray data, parallel

and distributed preprocessing) and new high-

throughput sequencing platforms. DOR also

integrates CIBEX and exports the data to

ArrayExpress database (▶EBI genome resources;

Kodama et al. 2010)

GTOP The genomes TO protein structures and function

database consists of data analyses of proteins by

application of various computational tools to the

amino acid sequences of genome projects

sequenced to its entirety (Kawabata et al. 2002;

Fukuchi et al. 2009)
Characteristics

DDBJ was an initiative of Japanese molecular biolo-

gists and biophysicists (Tateno and Gojobori 1997)

that began its activities in 1986, in collaboration

with the European Molecular Biology Laboratory

(EMBL; http://www.embl.de) and the genetic

sequence database (Genbank; http://www.ncbi.nlm.

nih.gov/genbank) of the National Institutes of

Health (NIH; http://www.nih.gov). The maintenance

and the development of DDBJ are organized by

the Center for Information Biology and DNA

Data Bank of Japan (CIB-DDBJ; http://www.cib.

nig.ac.jp/) of the National Institute of Genetics

(NIG; http://www.nig.ac.jp/english/index.html).

Ninety-nine percent of the data coming from Japanese

researchers and available from INSD are submitted

through DDBJ (Kaminuma et al. 2010, 2011).

Researchers from China, Korea, and Taiwan

are also mostly submitting their data through

DDBJ. When the submission does not include

a large number of sequences, as the case is from

whole-genome shotgun (WGS) data or mass sequence

data for genome annotation (MGA) (Sugawara

et al. 2009), DDBJ offers a user interface

called SAKURA. Up to now, DDBJ has released

several databases. As the case is in the ▶NCBI

BioProject genome resource, researchers have the

option to submit their projects prior to full comple-

tion. DDBJ also provides genomic information

as well as resources for protein sequences and protein

structures. Table 1 summarizes the available data-

bases in DDBJ.
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Other Resources

The DDBJ also includes patent data transferred from

the Japan Patent Office (JPO; http://www.jpo.go.jp),

the Korean Intellectual Property Office (KIPO; http://

www.kipo.go.kr), as well as from the United States

Patent and Trademark Office (USPTO; http://www.

uspto.gov) and the European Patent Office (EPO;

http://www.epo.org).
Cross-References

▶EBI Genome Resources

▶Genome Annotation

▶Microarray Data, Parallel and Distributed

Preprocessing

▶NCBI Bioproject Genome Resources

▶NCBI Viral Genomes Resources
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De Novo Computational Discovery of
Motifs

Jianhua Ruan

Department of Computer Science, University of Texas

at San Antonio, San Antonio, TX, USA
Definition

A class of computational methods for finding tran-

scriptional binding motifs within a set of promoter

sequences. This is different from the scenario where

one needs to search promoter sequences for the binding

sites of a known transcription factor binding motif

(e.g., a consensus or a PSWM).
Death Rate

▶Life Span, Turnover, Residence Time

▶Lymphocyte Population Kinetics
Decentralized Version Control

▶Distributed Version Control System (DVCS)
Decision Rule

▶ Prediction Rule
Decision Theory

▶Bayesian Decision Analysis

http://www.jpo.go.jp
http://www.kipo.go.kr
http://www.kipo.go.kr
http://www.uspto.gov
http://www.uspto.gov
http://www.epo.org
http://dx.doi.org/10.1007/978-1-4419-9863-7_1036
http://dx.doi.org/10.1007/978-1-4419-9863-7_1332
http://dx.doi.org/10.1007/978-1-4419-9863-7_971
http://dx.doi.org/10.1007/978-1-4419-9863-7_971
http://dx.doi.org/10.1007/978-1-4419-9863-7_1035
http://dx.doi.org/10.1007/978-1-4419-9863-7_1038
http://dx.doi.org/10.1007/978-1-4419-9863-7_712
http://dx.doi.org/10.1007/978-1-4419-9863-7_713
http://dx.doi.org/10.1007/978-1-4419-9863-7_1530
http://dx.doi.org/10.1007/978-1-4419-9863-7_837
http://dx.doi.org/10.1007/978-1-4419-9863-7_1456


Decision Tree 551 D

D

Decision Tree

Daniel Berrar1 and Werner Dubitzky2

1Interdisciplinary Graduate School of Science and

Engineering, Tokyo Institute of Technology,

Midori-ku, Yokohama, Japan
2Biomedical Sciences Research Institute, University of

Ulster, Coleraine, UK
Synonyms

Classification tree; Regression tree
Definition

A decision tree refers to both a concrete decision

model used to support decision making and

a method to construct such models automatically

from data. As a model, a decision tree refers to

a concrete information or knowledge structure to sup-

port decision making, such as classification (▶Model

Testing, Machine Learning) and regression

(▶Regression Analysis) tasks, processes or analyses.

As a method, a decision tree comprises various tech-

niques to construct decision tree models in a highly

automated fashion using specific algorithms and mea-

sures from the field of statistics, machine learning

(▶Model Validation, Machine Learning) and artifi-

cial intelligence.
Characteristics

Decision-Tree Structure

Adecision tree is composed of nodes and branches that

connect the nodes (Quinlan 1993; Hastie et al. 2001;

Duda et al. 2001). Two basic node types are distin-

guished: leaf nodes and non-leaf nodes (a special non-

leaf node is the root node). Each non-leaf node is

labeled with an attribute or a question. The branches

emanating from a non-leaf node correspond to the

possible values of the attribute or the answers to the

question. The leaf nodes of a decision tree are labeled

with a class or category.
Figure 1 illustrates decision tree structures based on

two simple examples from everyday life. To empha-

size the tree analogy, the decision trees depicted in

Fig. 1 have their root node at the bottom of the diagram

and the leaf nodes at the top. In practice, decision trees

are usually visualized with the root node at the top and

the leaf nodes at the bottom.

Consider Fig. 1. In the Name Title example, there

are three leaf nodes labeledMr,Mrs, andMiss, and two
non-leaf nodes labeled with the attributes Gender (root

node) and Marital Status. The branches are labeled

with the corresponding attribute values: male and

female (for attribute Gender) and married and not

married (for attribute Marital Status). In the Jogging

example, there are seven leaf nodes (labeled Yes and
No, respectively), three non-leaf nodes (labeled with

the attributes Outlook, Humidity, and Temperature),

and ten branches labeled with the corresponding attri-

bute values. Figure 1 also illustrates the corresponding

decision rules (▶Prediction Rule).

A decision tree whose leaf nodes are labeled with

discrete class labels is referred to as classification tree

(▶Model Testing, Machine Learning). A decision tree

that uses continuous values or value ranges is referred

to as regression tree (▶Regression Analysis) (Breiman

et al. 1984). A decision-tree structure represents

a ▶ directed acyclic graph which satisfies the follow-

ing properties:

1. There is exactly one node, called the root, into

which no edges (branches) enter.
2. Each node other than the root has exactly one enter-

ing edge (branch).

3. There is a unique path from the root to each non-

root node.

Each path from a decision tree’s root node to a leaf

node can be interpreted as a decision rule (▶Decision

Rule, ▶Machine Learning) which has a condition and

conclusion part. This may be expressed using the

IF-THEN notation or the symbol for logical implica-

tion as follows:
IF condition THEN conclusion

condition ) conclusion

If the input information meets all the conditions

described in the condition part, then the conclusion

http://dx.doi.org/10.1007/978-1-4419-9863-7_100214
http://dx.doi.org/10.1007/978-1-4419-9863-7_101273
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Gender

Outlook

Temperature

Temperature
female

male

married not married

high

R1: IF male THEN Mr
R2: IF female AND married  THEN Mrs
R3: IF female AND not married  THEN Miss

Corresponding decision rules:

Name Title: Decision tree model used to
determine name title

Jogging: Decision tree model
used to decide whether
or not to go jogging

Some of the corresponding decision rules:

lowm
ed

iu
m

sunny
rainy

overcast

< 20 C

< 25 C

≥ 20 C

≥ 25 CMarital Status

Humidity

Mr Mrs Miss

No

Yes

No

No

Yes

Yes

Yes

. . .
R1: IF sunny AND high THEN No
R2: IF sunny AND medium AND <20C THEN Yes

R7: IF overcast THEN Yes

Decision Tree, Fig. 1 Simple decision trees facilitating classi-

fication tasks in everyday life: determining the English (name)

title or honorific (left diagram), and deciding whether or not to go

jogging (right diagram). Circles depict leaf nodes, boxes depict
non-leaf nodes, and arrows represent branches. The rule sets

below the decision trees describe the corresponding decision rules
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stated in the conclusion part is asserted. Thus, the

decision structure of a decision tree can be formulated

as a set of decision rules (this is illustrated in Fig. 1).

The decision rules derived from a decision tree may be

associated with quantities expressing confidence and

support as illustrated in Fig. 2.

Decision-Tree Construction

Once a decision tree is constructed, it can be used to aid

decisions of a decision maker, humans or machines.

There are two basic approaches for creating decision

trees. Firstly, decision trees may be generated manu-

ally by knowledge engineers working with human

experts or textbooks. This approach is effective in

well-understood domains but involves a considerable

human effort and time. Secondly, decision trees may

be derived automatically from available examples

(data) by suitable machine learning (▶ Induction)

algorithms. The two basic steps involved in the

machine learning approach are:

1. Obtain facts (data) about the decision making prob-

lem or studied phenomenon.
2. Derive the decision tree (or equivalent set of deci-

sion rules) by means of an inductive process that

generalizes from the available facts (data).

In not so well-understood domains (like biological

knowledge discovery), the machine learning

approach has the added advantage that by automati-

cally generating a decision tree from available data it

may be possible to reveal relationships in the data

that may not be obvious to the investigator or

decision maker. A decision-tree learning algorithm

determines, for instance, which attribute should be

placed at the root node given the input data,

thus providing an insight as to what attribute has

the strongest influence in the partitioning of the

underlying instances. The knowledge-discovery

aspect as well as the symbolic encoding of the knowl-

edge they represent make decision trees a useful

method for exploring biological data. Decision

trees have been widely used for exploratory

data analysis, classification, and regression tasks in

biology (Zhang et al. 2001; Kingsford and Salzberg

2008).

http://dx.doi.org/10.1007/978-1-4419-9863-7_733


R1: IF X=0 AND Y=0 THEN B

[support = 0.1, confidence = 1.0]

See rule R1

See rule R2
See rule R3

See rule R4

R2: IF X=0 AND Y=1 THEN A OR B

R3: IF X=1 AND Y=0 THEN A 

R4: IF X=1 AND Y=1 THEN A 

X=0

Y=0 Y=1 Y=1Y=0

X=1

Non-Leaf Node #1
class A: 6 instances
class B: 4 instances

Non-Leaf Node #2
class A: 2 instances
class B: 2 instances

Non-Leaf Node #3
class A: 5 instances
class B: 2 instances

Leaf Node #1
class A: 0 instances
class B: 1 instance

Leaf Node #3
class A: 2 instances
class B: 0 instances

Leaf Node #2
class A: 1 instance
class B: 1 instance

Leaf Node #4
class A: 3 instances
class B: 2 instances

Class Class Class
X Y Label X Y Label X Y Label

#1 A #1 A #6 A
#2 A #2 A #7 B
#3 A #3 A #10 B
#4 A #4 A
#5 A #5 A
#6 A #8 B
#7 B #9 B
#8 B
#9 B
#10

1 0 1 0 0 1
1 0 1 0 0 0
1 1 1 1 0 1
1 1 1 1
1 0 1 0
0 1 1 0
0 0 1 0
1 0
1 0
0 1 B

entropy (X=1) = 0.86

entropy (training set ) = 0.97

entropy (X=0) = 0 .92

Partition of Learning Set Based on Attribute X

Element of partition whose
instances have X = 1

Element of partition whose
instances have X = 0

Attributes

Training Set
(Learning Instances)

Instance
#

Attributes Instance
#

AttributesInstance
#

[support = 0.2, confidence = 0.5]

[support = 0.3, confidence = 0.6]

[support = 0.2, confidence = 1.0]

Decision Tree, Fig. 2 Illustration of decision-tree learning based on a training set with ten instances and two attributes. Top:
Training set and partition determined for root node. Bottom: resulting final decision tree (left) and decision rules (right)
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Decision-tree learning generalizes from observa-

tions by a process of induction. This process takes as

input a set of specific observations or instances and

generates general rules that cover them. To facilitate

automated decision-tree learning, the learning obser-

vations or instances (referred to as training set

[▶Model Training, Machine Learning]) are usually

expressed as a table where a row represents an instance
and a column represents either an attribute and its

values or the class labels.

Using the training instances as input, a decision-tree

learning algorithm generates a decision-tree model by

recursively partitioning the instances via the following

main steps:

1. Initialize. Provide the full set of observations (training
set) as input to the decision-tree learning algorithm.

http://dx.doi.org/10.1007/978-1-4419-9863-7_232
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2. Analyze attributes: Determine the attribute that pro-

duces the most uniform grouping or partitioning of

instances based on the class label of the instances.

3. Create node: If the predefined uniformity threshold

is reached, create a leaf node and label it with the

corresponding class label. Otherwise, create a non-

leaf node that tests the attribute, assign to it the

instances of the corresponding partition, then go to

Step 2.

The eventual result of the decision-tree learning

procedure outlined above is a decision-tree model in

which all or the majority of instances at a leaf node

show the same class label.

A challenge in decision-tree learning is to maximize

uniformity or purity of the instances assigned to the

leaf nodes of a decision-tree model while ensuring that

the model generalizes well to unseen instances, i.e.,

instances that do not feature in the training set. The

latter is also referred to as generalization ability, or

bias-variance trade-off.

Measures of uniformity, purity, or homogeneity

commonly employed by classification tree learning

algorithms include the information theory measures

of entropy (▶Entropy), the Gini index, and the

Kolmogorov–Smirnov distance. Regression-tree

learning algorithms make use of variance minimiza-

tion techniques for the same purpose.

The following example illustrates the concept of

decision tree learning for a binary classification task

(▶Model Testing, Machine Learning), i.e., a task

involving exactly two class labels. The training set

(▶Model Training, Machine Learning) in this example

comprises ten instances, each described by two numeric

attribute values and one class label. The attributes are

called X and Y and assume values from the set {0,1},

and the class labels are drawn from the set {A,B}. Six

instances in the training set carry the class label A, and

four the label B. Figure 2 depicts the training set as well

as a partition (composed of two groups of instances)

obtained from applying the information-theoretic

entropy uniformitymeasure. According to this measure,

higher uniformity corresponds to more information,

which is corresponds to lower entropy.

Because the ▶ information gain for the partition

derived from the values of attribute X is higher than

that for attribute Y, attribute X is chosen to split the data

at the root node. This is illustrated by the decision tree

depicted in Fig. 2. The same learning process is
applied to the remaining attributes (in this case only

attribute Y) at the next level. This leads to the deci-

sion-tree model and decision rule (▶Prediction Rule)

depicted in Fig. 2. The model consists of three non-leaf

nodes (including the root node) and four leaf nodes.

Whereas three leaf nodes are unambiguously associated

with the class label A and B, respectively, Leaf Node #2

cannot be assigned to a unique class label.

The class label frequencies represented by the leaf

nodes are used to express likelihood estimates for the

classification of unseen instances. Unseen instances

are those that comply with the structure of the learning

instances but have not been used in the decision learn-

ing process. To illustrate this idea, consider the deci-

sion tree model in Fig. 2. An unseen instance that is

characterized by the attribute values X ¼ 1 and Y ¼ 0

would be labeled (classified) with the class label A.

Because three out of five instances in the corresponding

Leaf Node #4 carry the class label A, the conditional

probability for this classification would be given as 3/5.

The conditional probability associatedwith the predicted

outcome of decision tree and similar models is also

referred to as confidence. Another measure that is fre-

quently used in the context of decision trees is called

support. The support of a decision rule (corresponding to

a path from root to a leaf node in a decision treemodel) is

determined as the proportion of instances in the learning

set that satisfy the rule. For example, the decision rule R3

corresponding to Leaf Node #4 in the decision tree

model in Fig. 2 has a support of 3/10 because 3 of 10

items (#1, #2, and #5) satisfy the rule. The aim in

decision tree learning is to construct a decision tree

model with a high confidence and support.

Strengths and Weaknesses of Decision Trees

Strengths

• Decision-tree models capture knowledge in an

easy-to-interpret knowledge structure, either as

hierarchical trees or sets of decision rules.

• Decision-tree learning offers a powerful approach

to automatically discover decision-tree models

from large data sets. Decision-tree learning can be

used to reveal important relationships in data.

• The computational costs associated with decision-

tree learning are low to moderate.

• Decision trees can process both discrete and con-

tinuous variables and have an intrinsic ability to

handle missing values.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1554
http://dx.doi.org/10.1007/978-1-4419-9863-7_231
http://dx.doi.org/10.1007/978-1-4419-9863-7_232
http://dx.doi.org/10.1007/978-1-4419-9863-7_719
http://dx.doi.org/10.1007/978-1-4419-9863-7_837
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Weaknesses

• Decision-tree learning is highly sensitive to

changes in the training set. Small changes in the

learning set may lead to considerably different

decision-tree models. This is also referred to as the

stability problem in machine learning.

• For a given data set or decision problem, the

orthogonal decision regions generated by axis-

parallel decision-tree learning methods may not

sufficiently approximate the true underlying deci-

sion regions.

Decision-Tree Algorithms and Tools

There is a large variety of decision-tree algorithms and

tools; open source tools widely used in computational

biology include Weka (Weka, Machine Learning

Tool) and R (▶R, Programming Language).
Cross-References

▶Directed Acyclic Graph

▶Entropy

▶ Induction

▶ Information Gain

▶Model Training, Machine Learning

▶Model Validation, Machine Learning

▶Overfitting

▶ Prediction Rule

▶R, Programming Language

▶Regression Analysis
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Synonyms

Declarative programming
Definition

A declarative programming language is a program-

ming language where the programmer specifies the

goal or what should be achieved, rather than how
a goal should be achieved. Logic programming

languages, such as Prolog, are declarative languages,

as are many database query languages. They are often

contrasted with imperative languages such as C/C++,

Java, FORTRAN, Python, and Perl. Imperative lan-

guages are concerned with procedures: the program-

mer specifies a series of instructions or statements

that must be executed one after another in a specific

order to achieve the output or goal of the program.

Declarative languages are concerned with the rela-

tions between statements. In declarative languages

based on logic such as Prolog, computations are

based on the evaluation of logical statements using

mechanisms such as ▶ deduction, ▶ induction, or

▶ abduction: there is an important separation

between the logical statements and the mechanisms

of reasoning with those statements.
Cross-References

▶Abduction

▶Deduction

▶ Induction

▶ PROLOG
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Declarative Programming

▶Declarative Language
Decrease

▶Reduction
Deduction

C. Maria Keet

KRDB Research Centre, Free University of

Bozen-Bolzano, Bolzano, Italy
Definition

Deduction is a way to ascertain if some theory T, which

consists of one or more axioms expressed in a suitable

logic language, entails a conclusion, which is an axiom

a that is not explicitly asserted in T; this is written as

T j¼ a. That is, a can be derived from the premises

using a set of deduction rules.

Usage

Deduction is used widely in ▶ knowledge representa-

tion and the semantic web, including checking consis-

tency of ▶ bio-Ontologies, using automated reasoners

(▶Automated Reasoning).
Characteristics

There are various ways how to ascertain T j¼ a, be it
manually or automatically. One can construct a step-

by-step proof (▶ Proof, Logic) “forward” from the

premises by applying the deduction rules or prove it

indirectly such that T [ {:a} must lead to

a contradiction. The former approach is called natural

deduction, whereas the latter is based on techniques

such as resolution, matrix connection methods, and

sequent deduction (which includes tableaux).

Concerning deduction rules for tableaux and first

order predicate logic formulae, we have, as with the
example in proof, the two deduction rules that if

a model satisfies a conjunction, then it also satisfies

each of the conjuncts,

f ^ j

f

j

and if a model satisfies a disjunction, then it also

satisfies one of the disjuncts,

f _ j
f j j

In addition, there are two rules for the quantified for-

mulas. First, if a model satisfies a universally quanti-

fied formula (8), then it also satisfies the formula where

the quantified variable has been substituted with some

term (and the prescription is to use all the terms which

appear in the tableaux),

8x:f
f X=tf g
8x:f

and, second, for an existentially quantified formula, if

a model satisfies it, then it also satisfies the formula

where the quantified variable has been substituted with

a new Skolem constant,

9x:f
f X=af g
Example

Let us take some arbitrary theory T that contains two

axioms stating that relation R is reflexive (8x.R(x,x),
a thing relates to itself) and asymmetric (8x,y. R(x,y)
!:R(y,x); if a thing a relates to b by relation R, then b
does not relate back to a). We then can deduce, among

others, that T [ {:8x,y.R(x,y)} is satisfiable. We do

this by demonstrating that the negation of the axiom is

unsatisfiable.

To enter the tableau, we first rewrite the asymmetry

into a disjunction using equivalences, that is, 8x,y.
R(x,y) ! :R(y,x) is equivalent to 8x,y. :R(x,y) ∨ :R
(y,x), and add a negation to {:8x,y.R(x,y)}, which

http://dx.doi.org/10.1007/978-1-4419-9863-7_1334
http://dx.doi.org/10.1007/978-1-4419-9863-7_81
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Deduction, Table 1 Tableau example

Number Tableau Explanation

1 "x.R(x,x)

"x,y. ¬R(x,y) Ú ¬R(y,x)

"x,y.R(x,y)

R(a,a)

"y. ¬R(a,y) Ú ¬R(y,a)

"y.R(a,y)

R(a,a)

¬R(a,a) Ú ¬R(a,a)

R(a,a)

¬R(a,a) ¬R(a,a)

Reflexivity axiom in the original theory T

2 Asymmetry axiom in the original theory T

3 The negated axiom added to theory T

4 Substitute x for term a in 1,2,3

5

6

7

8 Substitute y for term a in 2 and 3

9

10

11

12 Split the disjunction of 10

13 Which each generate a clash with 9 and 11, hence, :8x,y.R(x,y) is entailed by T
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thus becomes 8x,y.R(x,y). Then, to start the tableau, we
have three axioms (Table 1).

Cross-References

▶Automated Reasoning
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Deductive Reasoning

Angelika Kimmig

Departement Computerwetenschappen, Katholieke

Universiteit Leuven, Heverlee, Belgium
Definition

Deduction is the process of inferring whether a given

statement is entailed, that is, whether it logically fol-

lows from a theory.
Characteristics

Deductive reasoning allows one to infer statements

that are logical consequences of a set of given

statements (Genesereth and Nilsson 1987). For

instance, given a theory stating that all swans

are white (8x:swanðxÞ ! whiteðxÞ) and that Odette

is a swan (swan(Odette)), it can be deduced that

Odette is white (white(Odette)). The example uses

one of the general inference rules of first order

logic, which can be written as
8x:pðxÞ!qðxÞ and pðaÞ

qðaÞ .

The top part denotes the statements present in the

given theory (read as “whenever a property p

holds for some object x, another property q also

holds for x” and “p holds for the given object a”),

and the bottom part the deduced statement (“q holds

for a”).
In contrast to ▶ induction, deduction does not

hypothesize new knowledge, but makes information

implicitly contained in a logical theory explicit.

It thus is truth-preserving: whenever the premises

of deductive inference hold, the conclusions must

hold as well. Deduction either generates additional

statements that follow logically from the theory,

or verifies a given statement by constructing

a proof (▶ Proof, Logic). Deductive reasoning is the

basis for theorem proving and logic programming

(Flach 1994).
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Deductive-nomological (DN) Analysis

Max Kistler

IHPST, Université Paris 1 Panthéon-Sorbonne,

Paris, France
Definition

The deductive-nomological (DN) analysis, explicitly

formulated by Hempel and Oppenheim (1948/1965),

has had enormous influence as an account of

both causation and scientific explanation, in particu-

lar in the tradition of logical empiricism. Instead

of considering that explanation by laws replaces

causal explanation, the DN analysis suggests that

causation can be analyzed in terms of lawful, or

“nomological,” explanation. Carnap has given

a classical statement of this view: “What is meant

when it is said that event B is caused by event A?

It is that there are certain laws in nature from

which event B can be logically deduced when they

are combined with the full description of event A.”

(Carnap 1966, p. 194).
Cross-References
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Degree Centrality

Deepak Sharma1 and Avadhesha Surolia2
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Institute, Gurgaon, India
2Molecular Biophysics Unit, Indian Institute of

Science, Bangalore, India
Definition

Degree centrality is defined as the number of links

incident upon a node (i.e., the number of ties that a

node has). If the network is directed (meaning that ties

have direction), then two separate measures of degree

centrality are defined, namely, indegree and outdegree.

Indegree is a count of the number of ties directed to

the node (head endpoints) and outdegree is the number

of ties that the node directs to others (tail endpoints).

In such cases, the degree is the sum of indegree and

outdegree.
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Deltaretroviridae
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Institute of Technology, Iizuka, Fukuoka, Japan
Synonyms

Deltaretrovirus
Definition

Retroviridae is a family of retroviruses whose replica-

tion involves one reverse transcription step. Older pub-

lications often refer to three retrovirus subfamilies

Oncovirinae, Lentivirinae, and Spumavirina. Nowa-

days, the classification is obsolete and retrovirus is

grouped into two subfamilies Orthoretrovirinae and

Spumaretrovirinae. The genera Betaretrovirus,

Gammaretrovirus, Alpharetrovirus, Deltaretrovirus,

and Lentivirus belong to the subfamily of

Orthoretrovirinae (Index of Viruses – Retroviridae

2006). Deltaretroviridae are complex retroviruses,

whose genomes contains besides LTR-gag-pol-env-

LTR a number of accessory genes. Deltaretrovirus

infects vertebrates. Bovine leukemia virus (BLV),

Human T-lymphotropic virus 1, 2, 3, and 4 (HTLV-1,

-2, -3, and �4) and Simian T-lymphotropic virus 1, 2,

and 3 (STLV-1, -3, -4) were isolated from cow, human,

and various nonhuman primates. HTLV-1 and its sub-

types are thought to originate from various indepen-

dent interspecies transmissions from simians to

humans starting around 50,000 years ago. The most

recent HTLV-1 subtype f probably emerged some

3,000 years ago (Van Dooren et al. 2001).

HTLV-1 and HTLV-2 are human-pathogenic

viruses that are transmitted by sexual contact,
breastfeeding, and needle sharing during intravenous

drug abuse. Worldwide an estimated 10–20 million

people are infected with HLTV-1, the etiological

agent of adult T-cell leukemia/lymphoma (ATL), and

HTLV-1 associated myelopathy/tropical spastic

paraparesis (HAM/TSP). Endemic areas include

Southwest Japan, Caribbean islands, Central Africa,

South America, and Melanesia. HTLV-2 infections

are endemic in Central Africa and native populations

of North, Central, and South America and associated

with HAM/TSP-like illness. HTLV-3 and HTLV-4 are

largely uncharacterized in terms of pathogenicity and

epidemiology (Wolfe et al. 2005).
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Synonyms

Dense overlapping regulon motif; DOR
Definition

Dense overlapping regulons (DORs) were found in the

Escherichia coli transcriptional regulation network.

A set of operons, Z1, . . ., Zm, are each regulated by

a combination of a set of input transcription factors,

X1, . . ., Xm.
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Process Systems Engineering, Imperial College,

London, UK
Synonyms

DOE; Optimal experiment design
Definition

The aim is to design experiments in order to maxi-

mize the information content of the measurements in

the context of their utilization for estimating the

model parameters. This is equivalent to minimizing

the variances of the parameters to be estimated. The

variances are a measure for the uncertainty of the

parameters, also represented by individual confidence

interval approximations. Design of experiments

(DoE) aims at minimizing the variances of the param-

eters to be estimated. Experiment design for parame-

ter precision aims at determining optimal

experimental settings and measurement times in

order to maximize the information content from the

measured data generated by these experiments. This

is equivalent to minimizing the confidence ellipsoid

of the parameters to be estimated.
Characteristics

DoE aims to address the following questions:

• What should be the initial conditions for the

experiment?

• How long should we run the experiment?
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• How should we vary the controls (e.g., the time

profiles of feed flowrates)?

• When should we take the measurement samples?

The overall aim is to generate the maximum amount

of information for a subsequent estimation of the

model parameters, while trying to maintain the process

within the required operating envelope. In mathemat-

ical terms, we want to minimize somemeasurec of the

variance-covariance matrix, ny, of the parameters (y) to
be estimated:
D-optimality
minx C V#ð Þ: (1)

The variance-covariance matrix is given by:

θ1

Design of Experiments, Fig. 1 The different design criteria

for a two-dimensional confidence ellipsoid (Adapted from PSE,

Ltd)
V# ¼ H�
#

� ��1
; (2)

where H�
# is the information matrix which is a ny x ny

matrix (ny is the number of parameters (y) to be esti-

mated) and is given by:
H�
# ¼

XN exp

l¼1
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(3)

where x is the set of experiment decision variables in

all experiments, NEXP is the number of experiments,

SVi is the set of measured state variables in experiment

l, Nil the number of sampling points for measured

variable i in experiment l, riml the m-th measurement

time for variable i in experiment l, zil(riml) the model-

predicted value of variable i at time point riml in
experiment l and s2ilzil riml; bilð Þ The variance of the

measurement error of variable i at time point riml in
experiment l.

In order to compare the magnitude of different

variance-covariance matrices, various real-valued

functions have been suggested as a measure of opti-

mality. The three most commonly used criteria are:

A-optimality: minimize the trace of the variance-

covariance matrix:
CA V#ð Þ ¼ 1

Ny

XNy
m¼1

V#ð Þm;m: (4)
This minimizes the sum of the variances of the

individual parameter estimates. It corresponds to

minimizing the dimensions of the smallest hyper rect-

angle within which the confidence ellipsoid can be

inscribed.

D-optimality: minimize the determinant of the var-

iance-covariance matrix:
CD V#ð Þ ¼ det V#ð Þ 1
Ny: (5)

This is also known as the minimum volume crite-

rion since it minimizes the volume of the confidence

ellipsoid.

E-optimality: minimize the largest Eigen value of

the variance-covariance matrix:
CE V#ð Þ ¼ lMAX V#ð Þ: (6)

The Eigen values of the variance-covariance matrix

correspond to the lengths of the minor and major axes

of the confidence ellipsoid. By minimizing the largest

Eigen value, the design renders the confidence ellip-

soid as spherical as possible.

Figure 1 shows a graphical interpretation of the

different design criteria for a two-dimensional confi-

dence ellipsoid.
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Synonyms

Design of experiments; Experimental planning;

Statistical experimental design
Definition

An ▶ experimental design is a protocol that defines all

aspects of a planned experiment. This includes

a definition of the populations of biological organisms

and the conditions of interest, procedures for selecting

the individuals from the populations or allocating them

to treatments, and the organization of experimental

material from the selected individuals in the experi-

mental framework. Statistical experimental design
(Kreutz and Timmer 2009; Montgomery 2001;

Oehlert 2000) is conducted in conjunction with

statistical inference, i.e., in situations where measure-

ments on the selected individuals are used to make

biologically relevant conclusions regarding the

unknowns. Statistical experimental design avoids
▶ bias, i.e., it avoids systematic errors in the conclu-

sions, and ensures that the experiment is efficient,

(▶Efficiency) i.e., it minimizes the uncertainty in the

conclusions for a given amount of cost.
Characteristics

As an example, consider an experiment which com-

pares the expression of genes in subjects with type II

diabetes to healthy controls using a whole

transcriptome shotgun sequencing (RNA-seq) (Wang

et al. 2009) technology. Statistical experimental design

is characterized by the following steps.

Step I: Define the Problem

Define Who or What Is Being Studied

The first step in experiment planning is to clearly

define the populations and the conditions to be

represented by the subjects in the study. In systems

biology, it may be practical to initially focus the study

on smaller populations. In the example of type II diabe-

tes, if literature suggests that the effect of the disease is

different in men and women, the experiment may limit

the scope of the study to a single gender initially, then

plan a follow-up experiment to verify that the conclu-

sions apply to the other gender. Subject availability may

impose additional constraints. For example, if the dia-

betes study can only access subject samples from

a single health-care institution, the population is limited

to that institution only, and a larger follow-up experi-

ment is necessary to broaden the conclusions.

Define What Is Being Measured

It is also important to define the ▶ response, i.e., a

measurable aspect of the biological samples for which

the variation between conditions or treatments is of

interest. In systems biology, many responses are quanti-

tative measurements at the molecular level, such as gene

expression. It is common to simultaneously measure

a large number of responses. For example, the diabetes

experiment simultaneously quantifies the expression of

tens of thousands of genes on each biological sample.

The definition of the response can be nontrivial. In the

example RNA-seq experiment, gene expression can be

quantified separately for each isoform, or as the sum of

the expression of all of its isoforms, and the latter can be

calculated over the unions or the intersections of the

exons (Garber et al. 2011). The definitions can have
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important implications for interpreting the data and for

the biological conclusions.

Translate the Research Question into a Statistical

Hypothesis

Many systems biology experiments aim at finding rel-

ative changes in the response between conditions. In

the diabetes example, of interest are (log)-fold changes

in the transcription rate between the populations of

healthy subjects and the subjects with the disease,

separately for each gene. In statistical terminology,

this translates into testing the null hypothesis of “no

change” against the alternative hypothesis, e.g., log-

fold change different from zero. Not all nonzero values

of (log)-fold change are of practical importance, and

the range of biologically relevant values needs to be

specified in advance.

Step II: Sample Selection and Resource Allocation

Define the Experimental Unit

▶Experimental units are the basic currency of sample

selection and resource allocation. An experimental unit

is the subject, sample, or object that carries the condition

or the treatment. For example, in the diabetes experi-

ment, the experimental unit is a person (i.e., a patient). If

multiple treatments are assigned to the same subject in

different areas, (e.g., a different topical treatment is

applied to different patches of the skin), then the exper-

imental unit is an area (e.g., skin patch). If a treatment is

assigned to pools of biological material from multiple

subjects, then the experimental unit is a pool.

Replication

Quantities such as transcript abundance vary naturally

in the populations and introduce biological variation in

the response. In addition, sample processing and han-

dling can interfere with its composition, and measure-

ment technologies can be somewhat imprecise,

introducing technical variation. As the result, the

observed difference in the response can be either the

systematic effect of the condition or treatment, or

a random artifact of these sources of variation. The

goals of replication are to (1) evaluate the extent of

biological and technical variation, (2) assess whether

the observed change in the response is likely to arise

from this variation by random chance, and (3) increase

the precision of the conclusions, since increasing the

number of replicates increases our confidence that the

difference is indeed systematic.
The two sources of variation lead to two possible

replication types. Biological replicates are multiple

experimental units with the same condition or treat-

ment. For example, in the diabetes experiment, biolog-

ical replicates are multiple subjects from a disease

group. Technical replicates are multiple measurements

on the same experimental units. They address the pre-

cision of the measurement protocol but not the biolog-

ical variation. Even sensitive technologies such as

RNA-seq do not eliminate the presence of biological

variation. Therefore, experiments that focus on the

populations always require biological replicates as

part of the design.

Randomization

Randomization guards the experiment against ▶ bias.

Bias occurs when the experimental units with different

conditions are selected or handled in systematically

different ways, not intended by the purpose of the

study. The two sources of variation (biological and

technical variation) lead to two sources of bias. The

first occurs when subjects selected from the groups

differ in known or unknown biological characteristics

(such as age, gender, or ethnicity) that affect the

response. The second occurs due to systematic differ-

ences in the technical aspects of the experiment

between conditions, such as in protocols of specimen

collection or time of data acquisition.

When these sources are unaccounted for, they

become confounding factors, i.e., they affect the

response in addition to the condition or treatment,

and bias the results. Confounding cannot be removed

by increasing the sample size or by demonstrating the

reproducibility of the results in a repeated instance of

the same workflow. Instead, confounding can be

removed by randomization. A randomization of the

experimental units (e.g., a random selection of samples

from the underlying population) and the randomization

of the order of sample processing and data acquisition

distribute the confounding factors roughly equally

across groups and eliminate the bias.

Blocking

A completely randomized design has two drawbacks.

First, although randomization averages the allocation

of confounding factors between conditions, it can yield

unequal allocations in experiments with a small num-

ber of replicates. Second, in randomized experiments,

the variability of the response within each group is the
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combination of the biological and technical variation,

and it may be difficult to detect the systematic differ-

ences between conditions.

Blocking improves upon these two aspects when

confounding factors are known in advance, and is

performed by imposing restrictions on randomization.

The two sources of variation (biological and technical)

lead to two types of blocking. In the context of sample

selection, blocking is sometimes referred to as

matching. In the diabetes example, a block is

a combination of known confounding factors

(e.g., age, gender, ethnicity). The design enforces an

equal number of subjects with diabetes and controls in

a block, and randomly selects subjects with these char-

acteristics from the population. When multiple mea-

surements are possible on a same subject, e.g., two

treatments can be applied to two skin patches, the

subject forms a block and receives both treatments,

and the pairs of the patches are matched.

For data acquisition, blocking is sometimes referred

to as multiplexing. If a particular experimental step is

noisy but can accommodate multiple samples, it can be

viewed as a block. Blocking enforces the constraint that

the step processed an equal number of samples from

each condition. An example of block is a two-color

cDNA mocroarray, and a variety of strategies for allo-

cating samples to arrays have been proposed (Dobbin

and Simon 2002). In an RNA-seq experiment, blocking

can utilize the capacity to label the samples with sam-

ple-specific sequences (“bar codes”) that allow multiple

samples to be sequenced in a same lane of a flow-cell,

making within-lane differences more consistent (Auer

and Doerge 2010). Blocking strategies for mass spec-

trometry-based proteomic experiments have also been

discussed (Oberg and Vitek 2009). A randomization of

samples within blocks is always required to account for

the unknown confounding effects.

Blocking enforces a strict balance of the

confounding factors between conditions and prevents

bias. In addition, if the downstream statistical analysis

distinguishes the variation of the response between the

blocks from the within-block variation between the

conditions, it increases the sensitivity of tests.

Step III: Statistical Modeling

Describe the Anticipated Properties of Data in

a Statistical Model

Unfortunately experimentalists often consider statisti-

cal modeling as a separate task, which can be deferred
to a statistician once the data are collected. In practice,

experimental design and statistical modeling are

tightly interconnected. The understanding of the down-

stream statistical analysis helps us determine the opti-

mal design and maximize our ability to detect

quantitative changes in the response for a given

amount of replication and cost.

Statistical inference requires a probability model

that describes three aspects of the experiment. First,

the model describes the sources of systematic varia-

tion in the response (such as conditions, subjects, and

blocks) in the experimental design. Second, the

model describes the scope of interpretation that we

associate with the biological replicates, i.e., whether

we restrict our conclusions to the subjects in the

study or generalize the conclusions to the entire

underlying populations. In systems biology, many

experiments aim at generating initial hypotheses for

a subsequent follow-up, and the number of biological

replicates is too small to adequately represent the

underlying populations. In these cases, it is useful to

restrict the scope of the conclusions to the selected

samples only and treat them as fixed units. On the

other hand, experiments at the validation stage aim at

generalizing the conclusions to the underlying

populations, and in this case, the biological replicates

are best viewed as random selections from the

populations and are represented in a mixed or

multilevel model.

Finally, the probability model describes the nature

of the nonsystematic variation in the response, based

on the information from a pilot study or from the

literature. For example, in gene expression

microarrays, the variation of log-response can be

assumed normally distributed and leads to models

such as analysis of variance (ANOVA) (▶Analysis

of Variance (ANOVA) Tables). In the RNA-seq exam-

ple, the response is the count of reads and can be

described using a Poisson or a negative binomial

distribution. Frequentist modeling treats the unknown

parameters of these distributions as fixed, while

Bayesian models specify the prior distributions of

all the parameters, and Empirical Bayes models

estimate the parameters of the prior distributions

from the data.

Describe the Model-Based Testing

A consequence of each probability model is the proce-

dure for testing the scientific hypothesis of interest.
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For example, in analysis of variance, testing the null

hypothesis of the same expected gene expression in

two conditions leads to the student’s t-test. Count

response leads to the Fisher’s exact test or tests based

on Poisson regression. In experiments with multiple

responses, such as the expression of genes, a separate

hypothesis is tested for each gene and the testing

requires controlling a multivariate error rate, such as

the false discovery rate.

Derive Model-Based Requirements of Sample Size

The combination of the protocol of replication, ran-

domization, and blocking and of the probability model

allows us to calculate the sample size (▶ Power and

Sample Size) (Lenth 2001;Wittes 2002), i.e., the desir-

able number of biological and technical replicates,

with two goals. First, sample size calculations are

used to evaluate the expected operational characteris-

tics of the experiment. The number of replicates should

be large enough to enable the detection of biologically

significant changes in the response, but not too large in

order to optimize the cost. Second, sample size calcu-

lations allow us to compare various strategies of sam-

ple selection and resource allocation, e.g., various

strategies of allocation samples to blocks. The optimal

strategy will maximize our ability to detect a change in

the response for a fixed number of biological and

technical replicates.

In frequentist modeling, each test is characterized

by five properties: (1) the probability of type I error

(i.e., the probability of rejecting the null hypothesis

when it is true), (2) the probability of type II error

(i.e., the probability of not rejecting the null hypothesis

when the alternative is true), (3) the extent of known

sources of variation, (4) the biologically significant

change in the response, and (5) the number of biolog-

ical and technical replicates in each condition.

A modification is introduced for experiments with

multiple responses, such as RNA-seq. The probability

of type I error in (1) is replaced with the false discovery

rate, and an additional quantity (6), the expected pro-

portion of the true null hypotheses in all tests, is spec-

ified. The quantities (l)–(6) are interconnected, and

a prior specification of all of them but one allows us

to solve for the remainder. In particular, the specifica-

tion of (l)–(4) and (6) allows us to solve for the sample

size.

Several general conclusions can be made from the

calculations of sample size. Detection of smaller
changes in the response between conditions requires

more replication. Experiments with larger variation

also require more replication. An increase in the num-

ber of biological replicates is always more efficient

than an increase in the number of technical replicates,

and experiments without biological replication cannot

generalize their conclusions to the underlying

populations. Experiments with more responses, and

also experiments with a smaller proportion of expected

changes in multiple responses, have more opportunity

for false discoveries and therefore require more

replication.

The implementation of the steps of the experimental

designs described in this entry depends substantially

on the characteristics of the biological system and on

the technology at hand. The rapid technological

advances introduce constant changes into how

the experiments are performed and into the properties

of the resulting datasets. At the same time, they moti-

vate new developments in statistical methodology.

As the result, experimental planning becomes increas-

ingly complex and cannot always be achieved in a fully

automated fashion. A close collaboration between

experimentalists and statisticians at all steps of the

experiment, starting from the earliest stages of exper-

iment planning, is highly recommended.
Cross-References

▶Analysis of Variance

▶Design of Experiments

▶Experimental Design, Variability

▶ False Discovery Rate (FDR)

▶ Fisher’s Test

▶ Frequentist Inference

▶Hypothesis Testing

▶Hypothesis Testing, Bayesian vs Frequentist

▶Hypothesis Testing, Parametric vs Nonparametric

▶Mixed and Multi-Level Models

▶Multiple Hypothesis Testing

▶ Poisson Regression

▶ Power and Sample Size

▶Quantitative Experiment Design

▶RNA-Seq

▶ Sample Variability, Inter-groups

▶ Sample Variability, Intra-groups

▶ Statistical Methods in Systems Biology

▶ Student’s t-Test

http://dx.doi.org/10.1007/978-1-4419-9863-7_1192
http://dx.doi.org/10.1007/978-1-4419-9863-7_1192
http://dx.doi.org/10.1007/978-1-4419-9863-7_1193
http://dx.doi.org/10.1007/978-1-4419-9863-7_1379
http://dx.doi.org/10.1007/978-1-4419-9863-7_1191
http://dx.doi.org/10.1007/978-1-4419-9863-7_223
http://dx.doi.org/10.1007/978-1-4419-9863-7_451
http://dx.doi.org/10.1007/978-1-4419-9863-7_100518
http://dx.doi.org/10.1007/978-1-4419-9863-7_1181
http://dx.doi.org/10.1007/978-1-4419-9863-7_1183
http://dx.doi.org/10.1007/978-1-4419-9863-7_1182
http://dx.doi.org/10.1007/978-1-4419-9863-7_1196
http://dx.doi.org/10.1007/978-1-4419-9863-7_1211
http://dx.doi.org/10.1007/978-1-4419-9863-7_1199
http://dx.doi.org/10.1007/978-1-4419-9863-7_1192
http://dx.doi.org/10.1007/978-1-4419-9863-7_1217
http://dx.doi.org/10.1007/978-1-4419-9863-7_742
http://dx.doi.org/10.1007/978-1-4419-9863-7_245
http://dx.doi.org/10.1007/978-1-4419-9863-7_246
http://dx.doi.org/10.1007/978-1-4419-9863-7_1177
http://dx.doi.org/10.1007/978-1-4419-9863-7_1184


Developmental Biology, Classical Sea Urchin Experi-
ments, Fig. 1 Spemann Mangold experiment – When a small

region of the embryo, the dorsal lip, is grafted to the opposite

(ventral) side of a host gastrula embryo (on the left), the resulting

Xenopus laevis tadpole develops a Siamese twin 3 days later

(right)

D 566 Deuterated Glucose (2H-Glucose)
References

Auer PL, Doerge RW (2010) Statistical design and analysis of

RNA sequencing data. Genetics 185(2):405–416

Dobbin K, Simon RM (2002) Comparison of microarray designs

for class comparison and class discovery. Bioinformatics

18(11):1438–1445

Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Com-

putational methods for transcriptome annotation and quanti-

fication using RNA-seq. Nat Methods 8(6):469–477

Kreutz C, Timmer J (2009) Systems biology: experimental

design. FEBS J 276:923–942 From Melissa

Lenth RV (2001) Some practical guidelines for effective sample

size determination. The Am Statist 55(3):187–193

Montgomery DC (2001) Design and analysis of experiments,

5th edn. Wiley, New York

Oberg AL, Vitek O (2009) Statistical design of quantitative mass

spectrometry-based proteomic experiments. J Proteome Res

8(5):2144–2156 Exp design

Oehlert GW (2000) A first course in design and analysis of

experiments, 1st edn. W. H. Freeman, New York

Wang Z, Gerstein MB, Snyder M (2009) RNA-seq:

a revolutionary tool for transcriptomics. Nat Rev 10:57–63

Wittes J (2002) Sample size calculations for randomized con-

trolled trials. Epidemiol Rev 24:39–53, From Stephane
Deuterated Glucose (2H-Glucose)

▶Lymphocyte Labeling, Cell Division Investigation
Deuterated Water (2H2O)

▶Lymphocyte Labeling, Cell Division Investigation
Developmental Biology, Classical Sea
Urchin Experiments

Philippe Huneman

Institut d’Histoire et de Philosophie (IHPST), des

Sciences et des Techniques, Université Paris 1

Panthéon-Sorbonne, Paris, France
Definition

Manipulations of sea urchin embryos have been impor-

tant benchmarks in the development of embryology, after
the framework set by the Entwicklungsmechanik (e.g.,

Roux, His, etc.) in the 1890s: perturbing at various stages

the development in order to unravel the mechanisms at

each stage of development. Sea urchins were easy to

handle model organisms, even if until Hans Spemann

the embryological techniques were quiet crude.

The first crucial experiment was done by Hans

Driesch (1894): a sea urchin, when divided after the

first cell stage (or before the fourth), develops into two

sea urchins. The later the stage, the smaller

the embryos. This experiment was, first by Driesch

himself, seen as an argument for vitalism (the vital

power being efficient in both embryo; cutting it off

should have simply broken a purely material disposal).

Hans Spemann did two important experiments: in

the first, one half of a blastomere of a sea urchin

develops into a complete one. In the second one,

done with Hilde Mangold (1924), a set of sea urchin

cells from one embryo induces Siamese twins when

grafted in another urchin embryo (although not any

cut of the urchin leads to this result) (Fig. 1). This

second kind of experiments has been understood as an

argument against preformism (see ▶ Preformation

and Epigenesis). Specifically, it gave an evidence

for embryonic induction. Spemann and Mangold

saw as an “organizer” the substance which induces

the second sea urchin embryo. More precisely,

because the fate of the transplanted cells could there-

fore be traced during development, Spemann and

Mangold were able to demonstrate that the graft

became a notochord, yet induced neighboring cells

to change fates. These neighboring cells adopted dif-

ferentiation pathways that were more dorsal, and

http://dx.doi.org/10.1007/978-1-4419-9863-7_708
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produced tissues such as the central nervous system,

somites, and kidneys. Afterward, against Spemann’s

vitalism, it has been proven that even killed cells from

the organizer substance were able to induce the devel-

opment, which prevented vitalistic interpretations of

the organizers.
D
Cross-References

▶Explanation, Developmental

▶ Preformation and Epigenesis
Developmental Cancer Networks

▶Cancer Networks
Developmental Control Networks

Eric Werner

Department of Physiology, Anatomy and Genetics,

University of Oxford, Oxford, UK

Department of Computer Science, University of

Oxford, Oxford, UK

Oxford Advanced Research Foundation, Fort Myers,

FL, USA
Synonyms

Cancer networks; Cenes; Developmental networks;

Stem cell networks
Definition

A developmental control network or cene is a network

that controls the development of multicellular organ-

isms by controlling cell states. The nodes in the net-

work are cell control states. Edges in the network

denote cell actions including jumps to new cell

states. Branches in the network denote cell division

where each daughter cell enters a possibly new

control state.
Characteristics

Developmental control networks or cenes can be

linked together to form larger cenes. The global devel-

opmental control network in a genome is called the

cenome. The topology of the cene determines its ideal

dynamic phenotype. Developmental control networks

can be deterministic or stochastic. They can be condi-

tionally activated by satisfaction of some condition F.
They can involve cell-cell signaling. Cenes are abstract

but executable networks that guide the development of

multicellular organisms. Changes in developmental

control networks can result in major evolutionary tran-

sitions in the morphology and function of organisms.

Examples of cenes include ▶ stem cell networks,

▶ cancer networks and terminal, and progenitor cell

Developmental Control Networks (for details seeWer-

ner 2011a, b).

Developmental Networks are Executable

Networks

Developmental control networks or cenes are execut-

able networks. The cell has an interpretive executive

system, the IES, that interprets and executes the direc-

tives in developmental control networks. This system

co-evolved with the developmental control networks

(Werner 2011a).

Subnetworks within Developmental Control

Networks

Any network can link subnetwork of another develop-

mental network. This means the link has further devel-

opmental progeny generated by that subnetwork. In

this way more and more complex cenes are built up.

Developmental Networks Subsume Gene

Networks

Developmental control networks subsume and control

lower level reactive network in the cell. The cell is

a living organism that needs to react to local information

to survive. Thus, the cell is locally reactive, but is

globally controlled by its developmental networks.

Hence, there are levels of network control in the cell.

In generating the embryo, the global developmental

network makes use of a cell’s ability to move, to com-

municate, and to react to its environment. Hence, while

the global developmental network does not uniquely

determine the outcome of the ontogeny of an organism,

it constrains to reach its ultimate form and functions.
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Developmental Control
Networks, Fig. 1 Flexible
exponential-linear stochastic
stem cell network. One stem
cell (S) divides to produce two

cells (J1 and J2) that each

stochastically activates either

the stem cell itself or

a terminal cell (Werner 2011b)
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Stochastic Developmental Networks

A stochastic developmental control network contains

links to nodes that have an associated probability p and

only jump to that node with probability p. Consider an

example of a stochastic, flexible developmental net-

work whose characteristics and topology are deter-

mined by the probabilities of its links:

The network in Fig. 1 is very flexible. Depending

on the probability distribution, the network can

range between being exponential, linear, or terminal,

as well as every mixture in between. Furthermore,

the network can be deterministic, stochastic, or

mixture of both. This flexibility is partly the result

of separating out the probability distributions for the

behaviors of the two daughter cells. It shows that

the architecture of the network imposes constraints

on what kinds of developmental dynamics are in

principle possible. The probability distribution pre-

supposes a network architecture of possible develop-

mental paths.

The cell S is only a stem cell stochastically and not

intrinsically when p< 1 and q< 1.When p¼ q¼ 1 the

network is deterministic exponential. When p ¼ 1,

q ¼ 0 or p ¼ 0, q ¼ 1 the network is deterministic

linear, that is, a deterministic 1st order geometric stem

cell network. If p ¼ q ¼ 0 the network is terminal.

When p ¼ 1 and q < 1, or when q ¼ 1 and p < 1,

then the network is mixed deterministic linear with

stochastic exponential tendencies.

If probabilities p¼ q then as p and q approach 1 the

network approaches the behavior of a deterministic

exponential network. However, if p and q are differ-

ent then this network can simulate a linear stochastic

network as well when, for example, p approaches

1 and q approaches 0, or vice versa. As the probabil-

ities p and q decrease, the more frequently the cancer
stem cell results in a terminal tumor that does not

develop further because it consists only of cells of

terminal type T. This shows that stochastic cancer

Stem Cell Networks (▶Cancer Networks) can in

some cases go into spontaneous remission. While

this network can also exhibit exponential growth

even in a stochastically linear probability distribu-

tion, because of the two backward loops, there is

a diminishing probability that it remains exponential.

Thus, whether this network results in linear or expo-

nential proliferation depends on the probability

distribution.

For this stochastic network, if the probabilities

p ¼ 1�q then the higher the probability of p the more

the network approximates a deterministic linear devel-

opmental network. Since, in this case the distribution is

antisymmetric, the cell population partition of cell

types consists of an equal number of exponential

stem cells and terminal cells, with the majority of

cells being linear stem cells. This corresponds to the

observed distribution in epidermal basal stem cells. If,

on the other hand, we have a symmetric distribution

where p ¼ q then the higher the probability of p

the more the network approximates a deterministic

exponential network. Thus, the type of cancer network

we have depends on the probability distributions over

the connecting stochastic links.

The Network Evolution of Multicellular Organisms

The evolution of multicellular organisms is directly

linked to the increasing complexity of their

developmental control networks. These networks are

an autonomous layer on top of normal gene networks

(Werner 2011a, b).

Developmental control networks provide a power-

ful framework for explaining diverse developmental

http://dx.doi.org/10.1007/978-1-4419-9863-7_571
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phenomena beyond stem cells and cancer. These

include bilateral symmetry and the evolution of the

internal skeleton in bilateral symmetric animals

(Werner 2012a, b).
D

Cross-References

▶Cancer Networks

▶Cene

▶Cenome

▶ Stem Cell Networks
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Sciences et des Techniques, Université Paris 1

Panthéon-Sorbonne, Paris, France
Definition

A developmental module is a set of cells, or genes,

which is more intrinsically connected than connected

to its surroundings, which is constant across some

clades, and which plays a specific causal role in devel-

opment. For example endoderm is a developmental

module, but also the Gene Regulatory Network of the

skeletogenic micromere cell lineage in sea urchins

(Oliveri et al. 2008). Developmental modules are

important units of analysis because they are constant
across many species, and developmental theory (unlike

the evolutionary viewpoint) is mostly interested in

commonalities across phyla (e.g., in regular constant

developmental mechanisms such as apoptosis) rather

than in differences. Developmental modules exist at

many levels: genetic (GRNs), cellular (morphogenetic

fields), and tissues (germ layers: ectoderm, etc.), and

therefore may have some overlap.

Although quasi-independence defines modules in

general, developmental modules are not necessarily

the same modules as the ones identified by physiology

or morphology (Winther 2001). For instance, the

mesoderm – a developmental module – gives rise to

the heart (a physiological module), but is also involved

in the production of the vertebrate eye (another phys-

iological module).

Modularity seems tied to evolvability (Wagner and

Altenberg 1996) because it entails that no variation in

a subpart is likely to change the functioning of the

whole; therefore, mosaic evolution can be possible.

Developmental modularity fulfills the same evolution-

ary requirements. It raises the question of its evolu-

tionary origins: is it given with the first elementary

eukaryote and generally the most basic of cell mecha-

nisms? Or has it been selected for some advantages, or

evolved as a by-product of selection for some devel-

opmental mechanisms? No consensus is yet attained.
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Definition

Developmental Systems Theory (DST) regards evolu-

tion as change not in gene frequencies, but in the

spatial and temporal structure of developmental pro-

cesses or systems. DST arose out of Oyama’s (2000)

concerns about the role of ▶ information in the Mod-

ern Synthesis (MS) of evolutionary biology, which

holds that genes, whether individually or in combina-

tion, encode information about the developmental

construction of phenotypes. The MS thus makes an

inherently dualistic distinction between material

genes and bodies, and the ▶ information encoded in

them, which “passes through bodies and affects them,

but it is not affected by them on its way through”

(Dawkins 1995).

A central difficulty of this account is that it views

the genome as a representation of development,

whereas the genome is in reality just one among

many dynamical components in a developmental sys-

tem which includes ribosomes, methylation, RNA

splicing, transcription factors, intercellular signaling,

and environmental and cultural resources. If we wish

to hold to the metaphor of information, we are forced

to regard that information as distributed throughout

the entire developmental system. Yet as Oyama

(2000) points out, this “means that information is

not ‘out there,’ that it is not in the nucleus or anyplace

else, that it is a way of talking about certain interac-

tions rather than their cause or a prescription for

them.”

Oyama’s point is that there certainly exist continu-

ities and correlations between organisms and their

environments which we may refer to as information;

however, information in this sense is not a commodity

which can be carried, stored, or transmitted in genes or

in any other way. Nijhout (in Oyama et al. 2001), for

instance, reports on a computer simulation of gene

frequencies in a population subject to phenotypic

selection. While the resulting phenotype exhibits
gradual change over time, the correlation between

genes and phenotype varies wildly, making it infeasi-

ble to talk about the informational content of any

particular determinant in isolation from the entire

genetic and environmental matrix.

Rather, information is an intrinsic aspect of the

developmental process which is reconstructed in each

individual organism, and is therefore strongly depen-

dent on time and context. Consequently, in DST, the

concept of a genetically programmed organism is

replaced by the idea of a life cycle process which

reconstructs itself out of an entire developmental sys-
tem of genetic, environmental, and other resources

available to the life cycle.

Like Oyama, various authors have objected to the

use of the information metaphor. A recent analysis

concluded that, instead of expanding it as in DST,

information should be dropped from the biological

lexicon because it is inimical to biological thought

and thus is hindering the development of a theory of

organisms (Longo et al. 2012).

The rather abstract formulation of DST has on the

one hand excited criticism that it is far removed from

the practicalities of evolution in a slowly changing

environment. On the other hand it has also facilitated

dialogue between a growing community of authors

who emphasize the need to integrate developmental,

evolutionary, and ecological processes into a single

coherent theory. The link between DST and evolu-

tionary-developmental biology is clear, and the man-

ifestly hierarchical definition of the life cycle meshes

well with multilevel theories of selection. Also, from

the DST perspective, ontogeny, phylogeny, and

niche-construction are respectively the enaction of

life cycle, evolutionary and cultural continuity in the

internal structural relationships of a developmental

system.
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Differential Adhesion Hypothesis

Anja Voss-B€ohme

Center for Information Services and High Performance

Computing (ZIH), Technical University Dresden,

Dresden, Germany
D

Synonyms

DAH
Definition

The Differential Adhesion Hypothesis (DAH) is a

theory advanced by Steinberg (1962) to explain the

mechanisms of cell sorting. The latter are in vitro

observations, where mixed heterotypic cell aggregates

sort out into homotypic clusters. The sorting proceeds

via the coalescence of small clusters into larger ones

until a complete de-mixing of cell types is achieved.

The DAH postulates that, analogous to the de-mixing

of immiscible fluids, differences in the cell-type-
specific strengths of intercellular adhesion cause mea-

surable tissue surface tensions which drive the sorting

process to minimize these tensions. It predicts that

round cell aggregates emerge where either the cell

type with the highest homotypic intercellular adhesion

is in the center of the aggregate and is surrounded by

cells with lower homotypic intercellular adhesion or

a serial arrangement of homotypic clusters arises. The

DAH has been challenged both by experimental and

theoretical works; for a review see Green (2008). By

now, it is fairly generally excepted that differential

adhesion causes cell sorting, although there is

a recent debate on whether additional intercellular

interactions could contribute to cell sorting and affect

the final sorted pattern as well (Green 2008; Krieg et al.

2008; Voss-Boehme and Deutsch 2010).
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Differential Equations with Deviating
Arguments

▶Dynamical Systems Theory, Delay Differential

Equations
Differential Evolution

Zhong-Yuan Zhang

School of Statistics, Central University of Finance and

Economics, Beijing, China
Definition

Differential evolution (DE) (Xu et al. 2007) tries to

find the optimal solution of an objective function f(x) :
ℝn ! ℝ by collective-intelligence-based-search strat-

egy. DE is initialized with a swarm of particles {xi ϵ
ℝn: i ¼ 1, 2, ···, N} that serves as the candidate solu-

tions, and the particles are updated by turns. For exam-

ple, when updating the particle xi at step t + 1, one

randomly selects three other distinct particles a, b, and

c firstly, then every dimension j of xi is mutated with

the predefined probability Pr as follows:
x
ðtþ1Þ
ij ¼ aj þ gðbj � cjÞ;

where the parameter g 2 [0, 2] is predefined and called

the differential weight.

Otherwise:

x
ðtþ1Þ
ij ¼ x

ðtÞ
ij :

Of x
ðtÞ
i and x

ðtþ1Þ
i , the one that has higher fitness with

respect to the objective function f(x) is passed on to the
next generation.
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The iteration process is terminated when some stop

criterion is satisfied.
Cross-References

▶ Identification of Gene Regulatory Networks,

Neural Networks
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▶Gene Expression Biomarkers, Ranking

▶Relative Expression Analysis
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Differentiation Potency

Steven D. Rhodes

School of Medicine, Indiana University, Indianapolis,

IN, USA
Definition

Differentiation potency is the property of a particular

cell, such as a stem cell, to give rise to multiple
distinct cell types. Three major categories of potency

are totipotency, pluripotency, and multipotency. Toti-

potent cells are capable of differentiating into every

cell type of a particular organism in addition to the

extraembryonic tissues. An example of totipotent

cells is those produced upon the fusion of a sperm

and an egg up to the stage of a morula. Pluripotency

describes the potential of a stem cell to differentiate

into cells comprising any of the three germ layers:

ectoderm (gut, lung, etc.), mesoderm (blood, bone,

muscle, etc.), and endoderm (skin, nervous system,

etc.). Examples of pluripotent stem cells include

embryonic stem cells and induced pluripotent stem

(iPS) cells. Multipotent cells are those that can differ-

entiate into multiple cell lineages, but only to

a restricted family of closely related cell types. Hema-

topoietic stem cells are an example of multipotent

stem cells as they can give rise to all blood cells but

not other tissue types such as neurons, muscle, or

epithelium.
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Master Equation
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Diffusion Driven Lattice-Gas Model for
Translation

▶ Stochastic Modeling of Translation Elongation and
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Diffusion Processes

▶ Stochastic Processes, Fokker-Planck Equation
D

Digital Metrics

Virginio Cantoni, Riccardo Gatti and Luca Lombardi

Department of Computer Engineering and Systems

Science, University of Pavia, Pavia, Italy
Definition

Given two pixels p and q in a bi-dimensional space,

with coordinates (x, y) and (s, t), the following dis-

tances are defined as follows:

• City block distance (4-connectivity) (Table 1)

D4 p; qð Þ ¼ x� sj j þ y� tj j (1)
Digital Metrics, Table 1 City block distance: pixels classifi-

cation in a 5 � 5 neighborhood

4 3 2 3 4

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

4 3 2 3 4

Digital Metrics, Table 2 Euclidean distance: pixels classifica-

tion in a 5 � 5 neighborhood

2√2 √5 2 √5 2√2
√5 √2 1 √2 √5
2 1 0 1 2

√5 √2 1 √2 √5
2√2 √5 2 √5 2√2

Digital Metrics, Table 3 Chessboard distance: pixels classifi-

cation in a 5 � 5 neighborhood

2 2 2 2 2

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

2 2 2 2 2
• Euclidean distance (Table 2)

DE p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� sð Þ2 þ y� tð Þ2

q
(2)

• Chessboard distance (8-connectivity) (Table 3)

D8 p; qð Þ ¼ max x� sj j; y� tj jð Þ (3)

These definitions can be easily extended to the 3D

space.
Cross-References

▶Distance Transform and Travel Depth
Digital Organism

Christoph Adami

Department of Microbiology and Molecular

Genetics, Michigan State University, East Lansing,

MI, USA
Synonyms

Avidian
Definition

A digital organism is a self-replicating computer

program, usually within the Tierra or Avida evolution

platforms.
Cross-References

▶Artificial Evolution

http://dx.doi.org/10.1007/978-1-4419-9863-7_279
http://dx.doi.org/10.1007/978-1-4419-9863-7_975
http://dx.doi.org/10.1007/978-1-4419-9863-7_100077
http://dx.doi.org/10.1007/978-1-4419-9863-7_1485
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Dimer

Xiaoping Liu

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

A dimer is a molecule consisting of two subunits called

monomers. In biochemistry and molecular biology,

dimers of proteins or nucleic acids are often observed.

If the two subunits constituting a dimer are the same

monomers, the dimer is called a homodimer. If the two

subunits constituting a dimer are different monomers,

the dimer is called a heterodimer.
Directed Acyclic Graph

Lin Wang

School of Computer Science and Information

Engineering, Tianjin University of Science and

Technology, Tianjin, China
Synonyms

Acyclic digraph; Directed acyclic network
Definition

A directed graph, or digraph, is a graph with directions

assigned to its edges. A digraph is usually denoted by

D ¼ (V, A) where V¼fv1; � � � ; vng is a finite set of

nodes and A is a set of ordered pairs of nodes called

arcs. In a digraph, a cycle C¼fc1; � � � ; ckg of D is

a closed and non-repetitive sequence of nodes in V

such that ðcj; cjþ1Þ 2 A; j ¼ 1; � � � ; k � 1, c1 ¼ ck,
and ci 6¼ cj; i; j ¼ 1; � � � ; k � 1. A directed acyclic

graph is a digraph without any cycles.
References

Zhang XS (2000) Neural networks in optimization. Kluwer,

Dordrecht
Directed Acyclic Network

▶Directed Acyclic Graph
Directory

▶Workspace
Disassembly of the Pre-initiation
Complex

▶ PIC Disassembly
Discontinuous Epitope

Ramachandran Srinivasan

G.N. Ramachandran Knowledge Centre for Genome

Informatics, Institute of Genomics and Integrative

Biology, Delhi, India
Synonyms

Conformational epitope
Definition

Epitopes whose residues are distantly placed in the

sequence brought together by physicochemical folding

constitute discontinuous epitopes. The epitope struc-

ture is defined by protein folding process when the

residues forming a discontinuous epitope are juxta-

posed, enabling the antibody to recognize its three-

dimensional structure.
Discrete Model

▶Logical Model

http://dx.doi.org/10.1007/978-1-4419-9863-7_100023
http://dx.doi.org/10.1007/978-1-4419-9863-7_100365
http://dx.doi.org/10.1007/978-1-4419-9863-7_423
http://dx.doi.org/10.1007/978-1-4419-9863-7_1531
http://dx.doi.org/10.1007/978-1-4419-9863-7_1623
http://dx.doi.org/10.1007/978-1-4419-9863-7_100270
http://dx.doi.org/10.1007/978-1-4419-9863-7_366
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Disease Classification or Discrimination

James J. Chen

U.S. Food and Drug Administration, National Center

for Toxicological Research (HFT-20),

Jefferson, AR, USA
D

Synonyms

Disease identification; Disease taxonomy
Definition

Disease classification is to systematically group dis-

eases into classes in a hierarchical structure according

to characteristics of disease: etiology, pathology, phys-

iology, prognosis, and combinations of these. Every

disease is grouped into one and only one class. Disease

discrimination is used to identify a set of features that

classy diseases into classes. Disease identification is to

examine and classify diseases into specific classes.

Disease taxonomy is the practice and science of clas-

sification of diseases. Disease taxonomy is

a completing list of all disease types in the classifica-

tion system.

International Statistical Classification of Diseases

and Related Health Problems is a system of codes for

classifying diseases and health problems published by

the World Health Organization. The Medical Dictio-

nary for Regulatory Activities is a clinically validated

international medical terminology used by the biophar-

maceutical industry and is used as the adverse event

classification dictionary endorsed by the ICH.

Molecular classification of diseases based on geno-

mic and proteomic profiling is used within the field of

systems biology. Molecular classification uses statisti-

cal and machine learning methods to identify molecu-

lar markers of a specific disease or to develop

prediction models to classify disease types (Baek

et al. 2009). Classification models select a set of

molecular features to discriminate between different

types of disease or between disease and normal groups

(Ramaswamy et al. 2001). The selected molecular

features, individually or as a set, may be further devel-

oped to be probable biomarkers or valid biomarkers for

disease classification or disease discrimination.
References

Baek S, Tsai C-A, Chen JJ (2009) Development of biomarker

classifiers from high-dimensional data. Brief Bioinform

10:537–546

Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH,

Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP,

Poggio T, Gerald W, Loda M, Lander ES, Golub TR

(2001) Multiclass cancer diagnosis using tumor gene expres-

sion signatures. Proc Natl Acad Sci 98:15149–15154
Disease Databases

Jingky Lozano-K€uhne
Department of Public Health, University of Oxford,

Oxford, UK
Definition

Disease databases are resources containing informa-

tion on diseases, syndromes, and other medical

conditions. They may provide specific information on

the signs and symptoms, risk factors, treatment

regimen, and/or results of studies done on known

diseases and medical conditions. Diseases databases

are available both in printed and online publications.

Nowadays, online resources have already supplanted

many printed publications. Selected online disease

databases used in systems biology researches are

presented below.
Characteristics

Classification of Disease Databases

A disease database can be categorized as general

or specialized database depending on its scope.

General disease databases contain a wider scope of

diseases and medical conditions, while specialized

databases are limited to certain types of diseases

such as cancer, tropical diseases, or genetic diseases.

Many online disease databases such as the

“MedlinePlus,” “Diseases Database,” and the

“Online Mendelian Inheritance in Man (OMIM)”

are publicly accessible for free. Some databases are

maintained by universities and government institu-

tions, while others are maintained by private organi-

zations or interest groups.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100369
http://dx.doi.org/10.1007/978-1-4419-9863-7_100373
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General Disease Databases

1. MedlinePlus (http://www.nlm.nih.gov/medlineplus/)

is an online publication of the United States National

Library of Medicine (NLM) that provides informa-

tion on diseases, health conditions, treatments, and

wellness issues. This database provides reliable and

up-to-date health information for free. The health

topics on the Website are categorized by body loca-

tion/system, disorders or conditions, diagnosis and

therapy, demographic groups, and health and well-

ness issues. One can find meaning of medical terms,

search information on a disease, or view medical

illustrations and videos on the Website. It is linked

to the ▶MEDLINE/▶PubMed database for further

information on researches on a certain disease and

other related topics of interest such as systems biol-

ogy (National Library of Medicine 2011).

2. Diseases Database (http://www.diseasesdatabase.

com) is one of the free Websites that provides

a medical textbook-like index and search options

about human diseases, medical disorders, signs and

symptoms, medications, and other information. It

has dictionary-type definitions of terms which are

linked to the National Library of Medicine’s

Unified Medical Language System. It also has

subject-specific links to other Web resources. This

cross-referenced database is funded by the Medical

Object Oriented Software Enterprises Ltd and has

been designed for physicians and other health

workers and students. Researchers will find general

knowledge about their disease of interest in the data-

base and numerous links to other related databases

and references. The Website follows the Health on

the Net (HON) code of conduct for medical and

health Websites and is edited by Dr. Malcolm H.

Duncan who is also the Director of the database’s

sponsoring company (Duncan 2011).

3. OpenMED@NIC (http://openmed.nic.in/) is an

open-access database which contains archives of

peer-reviewed scientific articles and technical doc-

uments in the field of Medical and Allied Sciences.

It includes a big collection of published articles

about diseases which is indexed by year and subject.

The site also includes conference proceedings and

journal articles on biological phenomena, cells,

enzymes, and genetic processes among others. No

registration is required for searching the archive and

downloading documents. However, a one-time
registration is required for authors or owners who

wish to submit documents for sharing to enable

them to upload their files to the Website. All sub-

mitted documents are first reviewed by the

OpenMED editor before it is posted online for free

public access. Non-English contributed documents

are also accepted provided that the abstract and

keywords are in English. OpenMED is hosted by

the Bibliographic Informatics Division of National

Informatics Centre in India (OpenMED@NIC

2011).

There are other online databases that may be useful

in doing research on diseases such as the

MediLexicon (http://www.medilexicon.com/), the

NCBI Biosystems Database (http://www.ncbi.nlm.

nih.gov/biosystems/), Free Medical Journals (http://

www.freemedicaljournals.com/), GPnotebook (http://

www.gpnotebook.co.uk), Jeghers Medical Index

(http://www.jeghers.com/), SciVerse Scopus (http://

www.info.sciverse.com/scopus/), and also country-

specific databases like the Indian Biomedical Journals

Database (http://medind.nic.in/imvw/).

Specialized Disease Databases

1. Prion Disease Database or PDDB (http://prion.

systemsbiology.net) is a public database for systems

biology research on Prion disease, a fatal neurode-

generative disorder found in humans and animals.

The database is a product of the joint effort between

the Institute for Systems Biology in Seattle, Wash-

ington and the McLaughlin Research Institute in

Great Falls, Montana, USA. It contains genetic

data, microarray data, and other datasets that are

useful for genetics and systems biology studies

related to Prion disease. The information available

in the PDDB are collected from public sources and

collaborating laboratories. PDDB users can also

share, store, and also analyze their own data through

theWebsite. Analysis software tools are provided on

the Website. PDDB is powered by the GDxBase

software which is also used in different disease

Websites (Gehlenborg et al. 2009).

2. The Human microRNA Disease Database (HMDD,

http://202.38.126.151/hmdd/mirna/md/) is a data-

base containing information on microRNAs

(▶Cell Cycle Regulation, microRNAs) and their

disease associations. It contains microRNA names,

diseases, dysfunction evidences, literature citations,

http://www.nlm.nih.gov/medlineplus/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1297
http://dx.doi.org/10.1007/978-1-4419-9863-7_164
http://www.diseasesdatabase.com
http://www.diseasesdatabase.com
http://openmed.nic.in/
http://www.medilexicon.com/
http://www.ncbi.nlm.nih.gov/biosystems/
http://www.ncbi.nlm.nih.gov/biosystems/
http://www.freemedicaljournals.com/
http://www.freemedicaljournals.com/
http://www.gpnotebook.co.uk
http://www.gpnotebook.co.uk
http://www.jeghers.com/
http://www.info.sciverse.com/scopus/
http://www.info.sciverse.com/scopus/
http://medind.nic.in/imvw
http://prion.systemsbiology.net
http://prion.systemsbiology.net
http://202.38.126.151/hmdd/mirna/md/
http://dx.doi.org/10.1007/978-1-4419-9863-7_46


Disease Marker Identification 577 D

D

and tissue expression pictures in some cases. The

database is not only useful for studying the associ-

ation of microRNAs with diseases but also for

investigating their roles in biological processes

such as tissue differentiation, embryonic develop-

ment, cell growth, proliferation, and ▶Apoptosis

(Lu et al. 2008).

3. Online Mendelian Inheritance in Man (OMIM,

http://www.ncbi.nlm.nih.gov/omim/) is a public

database primarily designed for physicians, health

professionals, students, and researchers concerned

with genetic disorders. OMIM is the online version

of the database of ▶Mendelian traits and disorders

which was initiated by Dr. Victor A. McKusick in

the early 1960s. The printed versions entitled

“Mendelian Inheritance in Man (MIM)” were

published between 1966 and 1998. It was made

available online starting 1987 through collaborative

efforts of the National Library of Medicine and the

Willian H. Welch Medical Library at Johns

Hopkins University and was further developed in

1995 by the National Center for Biotechnology and

Information (NCBI). OMIM contains information

on Mendelian traits and disorders and more than

12,000 genes. It also contains full citation informa-

tion, pictures of disorders (where appropriate),

and links to other genetic resources. Its content

is authored and edited at the McKusick-Nathans

Institute of Genetic Medicine, Johns Hopkins

University School of Medicine (OMIM 2011).

Baxevanis (2002) published an article about the

details of OMIM’s layout of records and specific

data entries as a guide for searching information for

genes involved in human diseases.

There are numerous databases available online for

specific diseases. It would be a big challenge to count

and index these continuously growing resources. What

was mentioned above are just the commonly accessed

databases in systems biology research. To name addi-

tional ones, there is the Pathogenic Pathway Database

for Periodontitis (http://bio-omix.tmd.ac.jp/disease/

perio/), the Integrated Clinical Omics Database

(http://omics.tmd.ac.jp/icod_en/portal/top.do), the

Kyoto Encyclopedia of Genes and Genome (KEGG,

http://www.genome.jp/kegg/), the Rare Metabolic

Diseases Database (RAMEDIS, http://www.ramedis.

de), BIOBASE Biological Databases (http://www.

biobase-international.com/), and many more.
Cross-References

▶Apoptosis

▶Cell Cycle Regulation, microRNAs

▶MEDLINE

▶Mendelian Traits

▶MEDLINE and PubMed
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Disease Mechanism Networks

▶Ontology Analysis of Biological Networks

▶ Functional/Signature Network Module for Target

Pathway/Gene Discovery
Disease Ontology

Olivier Bodenreider

Lister Hill National Center for Biomedical

Communications, US National Library of Medicine,

Bethesda, MD, USA
Definition

Background

Disease ontologies can be traced back to the seven-

teenth century, when health authorities in London used

a standard list of about 200 causes of death to compile

accurate health statistics known as the Bills of Mortal-

ity (Bodenreider 2008). This list was later integrated

into the International Classification of Diseases, the

11th revision of which is currently under active devel-

opment. Among the several hundredths of biomedical

ontologies currently available, a few dozen provide

coverage of diseases. A selection of these ontologies

is presented in this brief review.

Biomedical Ontologies

Biomedical ontologies represent the properties of

biomedical entities and their relations to other bio-

medical entities. As such, biomedical ontologies are

artifacts used to represent and share knowledge about

the biomedical domain (Bodenreider and Stevens

2006). More specifically, biomedical ontologies tend

to focus on definitional knowledge (i.e., what is

always true of biomedical entities), as opposed to

assertional knowledge, usually found in knowledge

bases. Ontologies also differ from terminologies,

whose focus is purely naming, and from thesauri, in

which knowledge is usually organized for a specific

purpose (e.g., information retrieval). Despite these

differences, the term “ontology” is often used loosely,

as an umbrella name for these various kinds of

artifacts.
Disease Ontologies

Disease ontologies are biomedical ontologies provid-

ing coverage for the domain of diseases, disorders,

illness, etc. The degree to which these words are

synonymous is subject to debate (Ceusters and

Smith 2010), but disease ontologies generally cover

conditions understood as or suspected of being

a deviation from a healthy status and, less frequently,

diagnostic criteria for these conditions. Some

disease ontologies also cover the manifestations of

these conditions, that is, the signs and symptoms

associated with them. However, the relations between

conditions and their manifestations are usually not

recorded in ontologies, as such relations are not def-

initional for most diseases. In fact, except for the

so-called pathognomonic manifestations, there is

a probabilistic, not systematic relation between

a manifestation and a condition. Phenotypes are the

observable characteristics of organisms resulting

from the genetic makeup of a particular organism.

There is partial overlap between phenotypes and dis-

ease manifestations, and phenotypes may be covered

by disease ontologies.

The principal use of disease ontologies is to

support the annotation of diseases in biomedical

datasets, including the curation of knowledge bases,

the clinical documentation of electronic health

records and the indexing of the biomedical literature.

Disease ontologies are also used for aggregation

purposes (e.g., for grouping myocardial infarction

and mitral stenosis under cardiovascular diseases),

as well as for clinical decision support (e.g., drugs

contra-indicated with asthma should not be pre-

scribed to patients diagnosed with specific forms of

asthma, such as seasonal asthma and occupational

asthma).
Characteristics

Existing Disease Ontologies and their

Characteristics

In this section, we review 17 ontologies, which roughly

qualify as disease ontologies according to the defini-

tion above. The list of ontologies is shown in Table 1,

along with a URL fromwhich more information can be

obtained. A list of salient characteristics for disease

ontologies is presented in Table 2. Finally, for each

ontology, we provide a brief description and a list of

http://dx.doi.org/10.1007/978-1-4419-9863-7_487
http://dx.doi.org/10.1007/978-1-4419-9863-7_584
http://dx.doi.org/10.1007/978-1-4419-9863-7_584


Disease Ontology, Table 1 List of disease ontologies

DO Disease Ontology – http://diseaseontology.sourceforge.net/

DSM Diagnostic and Statistical Manual of Mental Disorders – http://www.psych.org/

HPO Human Phenotype Ontology – http://www.human-phenotype-ontology.org/

ICD International Classification of Diseases – http://www.who.int/classifications/icd/en/

ICPC International Classification of Primary Care – http://www.globalfamilydoctor.com/wicc/

IDO Infectious Disease Ontology – http://www.infectiousdiseaseontology.org/

LOINC Logical Observation Identifiers Names and Codes – http://loinc.org

MEDCIN MEDCIN – http://www.medicomp.com/

MedDRA Medical Dictionary for Regulatory Activities – http://www.meddramsso.com/

MeSH Medical Subject Headings – http://www.nlm.nih.gov/mesh/

MPATH Mouse Pathology Ontology – http://www.pathbase.net/

MPO Mammalian Phenotype Ontology – http://www.informatics.jax.org/searches/MP_form.shtml

NCI Thes. NCI Thesaurus – http://ncit.nci.nih.gov/

NDF-RT National Drug File-Reference Terminology – http://evs.nci.nih.gov/ftp1/NDF-RT/

OMIM Online Mendelian Inheritance in Man – http://www.ncbi.nlm.nih.gov/omim/

PATO Phenotypic Quality Ontology – http://obofoundry.org/wiki/index.php/PATO:Main_Page

SNOMED CT SNOMED CT – http://www.ihtsdo.org/

Disease Ontology, Table 2 List of salient characteristics for disease ontologies

Component The disease ontology is a component of a broader ontology

Specialized The disease ontology only covers a specific group of diseases

Human The disease ontology mainly covers human diseases

OBO The disease ontology is part of the Open Biomedical Ontologies (OBO) family of ontologies

Clinical The disease ontology is mainly used in clinical practice

Definitions The disease ontology includes definitions (textual or logical)

Translations The disease ontology is available in other languages than English

Publicly available The disease ontology is publicly available

X-ref The disease ontology has cross-references to other disease ontologies (natively or through the UMLS)
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characteristics summarized in Table 3, with additional

notes in Table 4.

• Disease Ontology (DO): Controlled terminology

originally created for annotation purposes as part

of the NuGene project at Northwestern University.

Still under development.

• Diagnostic and Statistical Manual of Mental Dis-

orders (DSM): Standard classification of mental

disorders in the United States, developed by the

American Psychiatry Association and used by

a wide range of mental health professionals across

clinical settings.

• Human Phenotype Ontology (HPO): Controlled

vocabulary for the phenotypic features encountered

in human hereditary and other diseases, used for the
annotation of the genetic diseases listed in OMIM.

Developed by a consortium including Charité Hos-

pital (Berlin) and the University of Cambridge

(UK).

• International Classification of Diseases (ICD):

Classification from the World Health Organization

(WHO) family of health classifications, with many

local adaptations. ICD9-CM, developed by the Cen-

ter for Medicare & Medicaid Services (CMS) for

use in the US, includes clinical modifications.

Broad coverage of diseases and health problems.

• International Classification of Primary Care

(ICPC): Classification of reasons for encounter,

diagnoses or problems, and process of care. Devel-

oped by the World Organization of Family

http://diseaseontology.sourceforge.net/
http://www.psych.org/
http://www.human-phenotype-ontology.org/
http://www.who.int/classifications/icd/en/
http://www.globalfamilydoctor.com/wicc/
http://www.infectiousdiseaseontology.org/
http://loinc.org
http://www.medicomp.com/
http://www.meddramsso.com/
http://www.nlm.nih.gov/mesh/
http://www.pathbase.net/
http://www.informatics.jax.org/searches/MP_form.shtml
http://ncit.nci.nih.gov/
http://evs.nci.nih.gov/ftp1/NDF-RT/
http://www.ncbi.nlm.nih.gov/omim/
http://obofoundry.org/wiki/index.php/PATO:Main_Page
http://www.ihtsdo.org/


Disease Ontology, Table 3 Some characteristics of 17 disease ontologies (see Table 2 for the definitions of the characteristics)

Component Specialized Human OBO Clinical Definitions Translations Publicly available X-ref

DO No No Yes Yes No Textual No Yes Native

DSM No Yes Yes No Yes None* No No UMLS

HPO No Yes Yes Yes No* Textual No Yes Native

ICD No No Yes No Yes None Yes No UMLS

ICPC No Yes* Yes No Yes None Yes Yes Native to ICD,

UMLS

IDO No Yes Yes Yes No Textual No Yes None

LOINC No Yes Yes No Yes Logical* Yes Yes UMLS

MEDCIN Yes No Yes No Yes None No No UMLS

MedDRA No Yes* Yes No Yes None Yes No UMLS

MeSH Yes No Yes* No No Textual Yes Yes UMLS

MPATH No No No Yes No Textual No Yes None

MPO No No No Yes No Textual No Yes None

NCI Thes. Yes Yes* Yes No Yes* Logical,

textual

No Yes Native, UMLS

NDF-RT Yes No Yes No Yes Logical* No Yes UMLS

OMIM No Yes Yes No Yes Textual* No Yes UMLS

PATO No No Yes* Yes No Logical,

textual

No Yes None

SNOMED CT Yes No Yes No Yes Logical Yes Yes* UMLS

∗Refer to additional notes in Table 4

Disease Ontology, Table 4 Additional notes on Table 3 items

DSM Provides diagnostic criteria for many mental disorders

HPO PhenExplorer is a clinical diagnostic tool based on HPO annotations of OMIM diseases

ICPC Primary care can be considered a specialty

IDO IDO borrows concepts from other OBO ontologies

LOINC Although LOINC does not use description logics (DL), its organization is close to DL representation

MedDRA MedDRA is not restricted to any medical specialties, but focuses on adverse events

MeSH MeSH covers, but is not limited to human diseases

NCI Thes. NCIt essentially covers cancers and cancer-related diseases; used in clinical research

NDF-RT Weak logical definitions (primitive classes)

OMIM OMIM contains extensive narrative descriptions more than definitions

PATO PATO represents all kinds of phenotypes, including in humans

SNOMED CT Freely available for use in the IHTSDO member countries

D 580 Disease Ontology
Doctors (Wonca). Coverage of diseases and

health problems at the level of detail required for

primary care.

• Infectious Disease Ontology (IDO): Set of ontologies
for specific infectious diseases, including malaria,

influenza, and tuberculosis, sharing a core ontology.

Covers entities relevant to both biomedical and clini-

cal aspects of most infectious diseases. Developed

by the Infectious Disease Ontology Consortium.
• Logical Observation Identifiers Names and Codes
(LOINC): Set of names and codes for laboratory

and other clinical observations (elements of clinical

phenotypes). Developed at the Regenstrief Institute.

Coverage restricted to clinical observations.

• MEDCIN: Developed by Medicomp Systems,

MEDCIN is a vocabulary for clinical documenta-

tion and a knowledge base for clinical decision

support. It provides coverage for elements
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coverage of disease entities

UMLS Unified Medical Language System – https://uts.nlm.

nih.gov

BioPortal NCBO BioPortal – http://bioportal.bioontology.org/
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including symptoms, medical history, physical

examination, tests, and diagnoses.

• MedDRA: Created by a pharmaceutical industry trade

group, the Medical Dictionary for Regulatory Activ-

ities (MedDRA) is a medical terminology used to

classify adverse event information associated with

the use ofmedications, vaccines, andmedical devices,

especially for reporting to regulatory agencies.

• Medical Subject Headings (MeSH): Controlled

vocabulary developed by the US National Library

of Medicine for the indexing and retrieval of the

biomedical literature, especially in the MEDLINE

bibliographic database. Broad coverage including

diseases.

• Pathbase pathology ontology (MPATH): Ontology

of mutant and transgenic mouse pathology pheno-

types used for the annotation of Pathbase,

a repository of histopathology images. Developed

by the Pathbase European Consortium.

• Mammalian Phenotype Ontology (MPO): Con-

trolled vocabulary for the annotation of mammalian

phenotypes, currently used for the annotation of

phenotypic data in mouse and rat databases. Devel-

oped at the Jackson Laboratory. Coverage restricted

to phenotypes.

• NCI Thesaurus (NCIt): Controlled vocabulary

developed by the National Cancer Institute to sup-

port the integration of information related to cancer

research. Broad coverage including diseases.

• National Drug File-Reference Terminology

(NDF-RT): Reference terminology for medications,

providing information including pharmacologic

class, therapeutic intent, mechanism of action, and

physiologic effect. Produced by the US Department

of Veterans Affairs, Veterans Health Administra-

tion (VHA). Coverage of diseases through their

relations to drugs (therapeutic intent).

• Online Mendelian Inheritance in Man (OMIM):

Knowledge base on human genetic diseases devel-

oped at Johns Hopkins University and available

through the NCBI Entrez system. Coverage

restricted to genetic diseases.

• Phenotypic Quality Ontology (PATO): Ontology of
phenotypic qualities, intended for use in a number

of applications, primarily defining composite phe-

notypes and phenotype annotation. Coverage

restricted to phenotypes.

• SNOMED CT: The largest clinical terminology,

maintained by the International Health
Terminology Standard Development Organization

(IHTSDO) for use in electronic health records and

adopted by seventeen countries to date. Broad cov-

erage including diseases.

Ontology Repositories

Many of the disease ontologies listed above are present

in ontology repositories (Table 5), which offer a con-

venient way of integrating disease resources annotated

to different ontologies. TheUnified Medical Language
System (UMLS) is a terminology integration system

developed by the US National Library of Medicine.

The UMLS establishes a correspondence among terms

from different terminologies for a given biomedical

entity. It integrates a number of the terminologies

presented above, as well as many other biomedical

terminologies. Developed by the National Center for

Biomedical Ontology (NCBO), The BioPortal is

another such repository, which offers mapping

among terms from different ontologies. The BioPortal

provides systematic coverage of the ontologies from

the Open Biomedical Ontologies (OBO) family, as

well as many other ontologies. The NCBO also

indexes resources, such as clinical trials and gene

expression databases, in reference to ontology entities

from the BioPortal.
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Synonyms

Disease system analysis; Disease progression
Definition

Disease progression describes the change of disease

status over time as function of disease process and

treatment effects. The status of a subject, such as

a patient, may be represented by a numerical

quantity S (Chan and Holford 2001). In practice, ↗
biomarkers are frequently used as a proxy to monitor

disease status. In a healthy subject, mechanisms of

homeostasis ensure that the status S is relatively con-

stant and remains within a normal range. The change in

disease status shows minimal variation over time t,

which mathematically is expressed as dS/dt � 0

A disease process is characterized by a change of S,
taking it outside of the normal range. As disease pro-

gresses, the status S continues to move further away

from the normal range, or in terms of change over time,

dS/dt 6¼ 0.

The change of status S over time can be described

by mathematical expressions that model biological

processes. As an example from Dayneka et al.

(1993), change can be explained in terms of

a constant rate of synthesis kin and a first-order process

of decay or elimination kout:
dS=dt ¼ kin � koutS: (1)
If kin ¼ koutS, synthesis and elimination cancel each

other out and the status is in homeostasis. A disease

process (dp) may affect the rate of synthesis or elimi-

nation. This may be modeled by introducing temporal

change in the rate of synthesis
dkin=dt ¼ fdp; synth kin; tð Þ (2)

or in the rate of elimination
dkout = dt ¼ fdp; elim kout; tð Þ: (3)

Models of disease progression may provide insight into

the biology behind the evolution of a target disease, and

help identify the best treatment that either control or

stop disease progression. The selection of the best

course of action is a function of the effect of a given

treatment on disease status over time. It is therefore

paramount that disease progression models include bio-

logical aspects (i.e., genetic, transcription, and cross

talks) that are involved in the evolution of the disease.
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Definition

Disease risk assessment could be defined as the sys-

tematic evaluation and identification of ▶ risk factors

responsible for a disease, estimation of risk levels

and finding possible ways to counter the onset and
progression of a disease within the population.
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The following facts are very important and considered

for disease risk assessment (Fig. 1):

• Estimation of risk factors involves the evaluation of

variables and factors which can be indicative of the

likelihood development of a particular disease. For

example, the risk factors such as age, smoking,

elevated levels of cholesterol and LDL, low levels

of HDL, family history of premature coronary heart

disease, etc. are indications of incurring cardiovas-

cular disease.

• As the current focus has shifted toward preventive

intervention than the disease cure, the risk assess-

ment involves genotyping of tissues to identify

“SNP markers” associated with a genetic disease.

The SNP/genetic markers could be used to estimate

the disease susceptibility in a new born/unborn

child. This becomes useful in administrating the

preventive treatment to the child.

• Integrated approaches in proteomics and genomics

can create a rich resource of “predictive

biomarkers” that is, signature molecules, which

are biochemically measurable. Such biomarkers

can help in secondary disease prediction (i.e.,

whether a diabetic person has a susceptibility of

developing cardiovascular disease).

• Evidence-based data (▶Evidence-based Medicine)

such as family history, demographic, and clinical

data can be used to develop disease prediction tools.

Such predictive models having variables (factors

which may influence the disease) gathered from

cohort-based studies can be used in these studies.

Cohort-based studies which are analytical
investigations, are conducted on a group of people

to gather evidences on a probable cause for

a disease.
Disease Risk Assessment is a Challenge for
Complex Diseases

Complex diseases result from the combined effects of

multiple genetic and environmental factors and each

such factor alone has only marginal contribution to the

disease. Type 2 diabetes, coronary heart disease, and

myocardial infarctions are examples of such diseases

where genetic profiling has led to limited predictive

values. Complete knowledge of causal mechanisms,

which involves identification of all the possible

combinations of the causal factors (gene–gene interac-

tions, gene–environmental interactions), is required.

Monogenic diseases like Huntington disease, PKU,

and hereditary cancers where identification of causal

mechanisms and risk prediction in these diseases are

comparatively straightforward are caused by DNA

variations in a single gene. (Teramoto et al. 2008;

Wei et al. 2009).
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Synonyms

Bioinformatics; Genomics; Metabolomics; Parasitol-

ogy; Proteomics; Transcriptomics
Definition

Malaria continues to be an enormous threat to the

society, and the emergence of drug-resistant parasite

strains has severely challenged the methods of disease

prevention and control. In order to combat this situa-

tion, better understanding of the disease is required to

identify new drug targets and vaccine candidates.

Hence, we need to expand our research horizon and

move beyond the regular reductionist approach of

studying a single gene/protein or a biochemical path-

way. With the help of high-throughput technologies

and interdisciplinary tools, a holistic approach toward

the understanding of the disease has been developed

(Fig. 1). These initiatives commonly referred to as

“systems biology” are further classified into geno-

mics, proteomics, and metabolomics based on the

component of the biological system they deal with.

Genomics is concerned with the study of genomes of

organisms and majorly involves DNA sequencing. It

provides insights into the mechanism of gene
expression and regulation and also establishes phylo-

genetic relationships between different organisms.

An upcoming extension of genomic studies is

transcriptomics which involves identification of

actively expressing genes at any given point of time.

Microarray technology is generally used to quantify

the expression levels of various mRNAs and RNA-

Seq provides details about the nucleotide sequence of

transcripts being expressed. Proteomics deals with

the comprehensive analysis of the entire complement

of proteins present in a given system. Mass spectrom-

etry is the main tool used for proteomic studies and it

has revolutionized this field due to its extremely high

sensitivity and diverse qualitative and quantitative

applications. Metabolomics involves the study of the

metabolites (metabolic intermediates, hormones, sig-

naling molecules, etc.) present in a given system at

a particular time and provides an instantaneous

glimpse into the physiology of any system. Bioinfor-

matics makes use of computational and statistical

approaches to develop algorithms and databases

which help to integrate and analyze the information

obtained from genomic, proteomic, and metabolomic

studies.
Characteristics

Malaria

Malaria is a debilitating disease affecting almost

200–300 million people worldwide annually. It is

caused by the protozoan parasite belonging to the

genus Plasmodium, which is carried by the female

Anopheles mosquito and transmitted by mosquito

bites in humans. Malaria inflicts mostly children and

is centered around the tropical and subtropical regions

of the world, being most widespread in Africa, some

parts of South America, and Asian countries including

India. In humans, malaria is caused by infection of the

red blood cell with any of the five species of the

parasite – Plasmodium falciparum, Plasmodium

vivax, Plasmodium malariae, Plasmodium ovale, and
Plasmodium knowlesi. Of these, maximum mortality

and morbidity is caused by P. falciparum followed by

P. vivax. All types of malaria are associated with

febrile episodes with periodic paroxysms and chills in

addition to nausea, headache, and general weakness.

Population groups such as children, pregnant women,

HIV/AIDS-infected individuals and travelers to

http://dx.doi.org/10.1007/978-1-4419-9863-7_221
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Disease System, Malaria, Fig. 1 Life cycle of P. falciparum
and the systems biology approaches used for understanding the

disease. “T,” “P,” and “M,” respectively, represent the availabil-

ity of transcriptomic, proteomic, and metabolomic evidence for

the particular stage in the parasite’s life cycle (Adapted and

modified from Das A et al., Systems Biology of Malaria: An

Indian Perspective. Biobytes Vol. 5, 2009)
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malaria endemic areas are at a higher risk for malaria

due to lower immunity (reviewed by Gracia 2010).

Malaria is a disease that has been a major research

focus for several years. Yet, vaccines against malaria

are elusive. The best bet in the development of

malaria vaccines has been the RTS,S vaccine

(Mosquirix) which has been recently demonstrated

by Joe Cohen, a GlaxoSmithKline research scientist,

to provide about 50% protection in infants (Olotu

2011). Still, the most popular and effective methods

of controlling malaria are control of its mosquito

vector and the use of bed nets. However, malaria is

not completely preventable and continues to be an

enormous threat to the society. This problem is
further compounded by the emergence of drug-

resistant strains of the parasite. Both P. falciparum

and P. vivax have become resistant to common anti-

malarials and recently new P. falciparum strains

resistant to artemisinin, one of the most effective

antimalarial available, have also emerged (reviewed

by Gracia 2010). Traditionally, most studies on

malaria have focused on the biochemical, cell biolog-

ical, and genetics of single gene or protein. In recent

times however, the focus in malaria research has

shifted to the analyses of gene and protein expression

at the global level, revealing several interesting fea-

tures of this parasite that may be useful in the discov-

ery of novel antimalarial drug targets.
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Systems Biology of Malaria

The recent availability of genome sequences of many

pathogens has enabled systems analyses of infectious

diseases. The advantage of using systems biology

approaches is that they allow visualization of

a system as a whole in response to its environment. In

case of the malaria parasite, functional genomics data,

global transcriptome data, and proteome data from

both laboratory strains and clinically isolated parasites

as well as metabolome data from laboratory strains are

now available and have made striking revelations

about the physiology of the malaria parasite.

Genomics

The deadliest form of malaria is caused by

P. falciparum, which alone is responsible for about

a million deaths annually. The complete life cycle of

P. falciparum consists of three stages – the mosquito

stage, the liver stage, and the human blood stages. The

blood stages of the malaria parasite are responsible for

most of the pathophysiology associated with malaria.

As a result, the blood stages of P. falciparum have

received maximum research focus. The release of the

complete genome sequence of P. falciparum in 2002

incited systems biology analyses of the parasite. The

22.8 Mb genome of P. falciparum was shown to con-

tain 14 linear chromosomes, a circular plastid-like

genome, and a linear mitochondrial genome (Gardner

et al. 2002). About 3.9% of the P. falciparum genome

was shown to encode for different families of antigenic

determinants essential for parasite virulence. Subse-

quent transcriptome analysis showed that about 60%

of the 5,409 predicted open reading frames of the

parasite were transcriptionally active in the blood

stages of the parasite (Bozdech et al. 2003). This

study utilized 7,462 individual 70 mer oligonucleo-

tides representing 4,488 of the 5,409 ORFs manually

annotated by the malaria genome sequencing consor-

tium. The transcriptome analysis of the blood stages

revealed for the first time that induction of any parasite

gene occurred once per cycle and only at a time when it

is required. More recently, transcriptome analyses of

parasites isolated from malaria patients have been car-

ried out, which have revealed the existence of distinct

parasite physiologies in the wild (Daily et al. 2007).

This study analyzed the transcriptome of malaria par-

asites isolated from venous blood samples from 43

malaria patients from Senegal with a diverse age
range, parasitemia and hematocrit (reflecting severity

of disease). The parasite transcriptome profiles thus

obtained were then statistically clustered to obtain

gene expression patterns for different parasite groups,

if any. The genes were also mapped onto their

S. cerevisiae orthologs in order to identify the possible
pathways. This study revealed the presence of three

distinct physiological clusters of P. falciparum as

found within the malaria-infected individuals. These

corresponded to first, active growth based on glyco-

lytic metabolism, second, a starvation response accom-

panied by metabolism of alternative carbon sources,

and third, an environmental stress response. The gly-

colytic state closely resembled the ring stages of the

parasite in culture; however, the other two states were

novel and specific to the parasites in vivo, indicating

that gene expression profiles in the wild may differ

significantly from those in cultures.

Proteomics

Although interesting, transcriptomes may not reveal

the true physiological states of clinical malaria para-

sites. There is increasing awareness about greater

reliability and accuracy of proteomics over

transcriptome analyses. It has been demonstrated

that in many cases transcriptome profiles are not

reflective of the protein complement of a cell, as

temporal and spatial differences arise between the

two. In fact, studies that correlate the transcriptome

and proteome data from laboratory cultures of

P. falciparum indicate that there is a significant time

delay between the abundance of transcripts and

corresponding proteins in the asexual stages of the

parasite (Le Roch et al. 2003). Most recently, the

clinical proteome of P. falciparum and P. vivax has

been reported for the first time (Acharya et al. 2009;

2011). Although proteomic analyses of the parasite-

infected RBC had been carried out earlier, the prote-

omics analysis of clinical parasites isolated directly

from patients is a challenge due to several factors

such as low parasite density in the venous blood of

patients and the presence of abundant host proteins

that mask identification of low abundant parasite pro-

teins. This study had identified about 100 proteins

from the major malaria parasite P. falciparum. The
highlights of the study were the identification of

several well-known and putative drug targets in

P. falciparum and the detection of several proteins
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in clinical parasites that were not expressed by the

laboratory culture of the parasite. This study is the

first of its kind since it utilized parasites directly

isolated from the peripheral blood without culture

adaptation or influence by external factors.

Metabolomics

More recently, metabolome analysis of the parasite

has been carried out using laboratory cultures.

Metabolomic analyses in models of infectious dis-

eases have been especially useful in elucidating

metabolic modulation of the host by the parasite and

may aid in the detection of biomarkers. The most

striking revelation of the metabolome analysis of

P. falciparum has been the presence of citrate,

aconitate, and a–ketoglutarate, which are metabolic

intermediates of the tricarboxylic acid (TCA) cycle,

in the parasite asexual stages. The study not only

provided the evidence for a functional TCA cycle

but also suggested it to be organized in a branched

pathway rather than the canonical cyclic pathway,

with amino acids glutamate and glutamine as the

major carbon sources (Olszewski et al. 2010). This

study further highlighted the importance of

metabolomic technologies in elucidating the architec-

ture of metabolic networks and identification of novel

plausible drug targets. Metabolomic analysis of urine

and plasma samples from P. berghei–infected mice

(rodent model of malaria) revealed the presence of

a unique biomarker, pipecolic acid, in the urine of

malaria-infected mice which was completely absent

in urine samples collected from normal mice (Li et al.

2008). This suggests the use of metabolic profiling as

a diagnostic tool in malaria infections.

Bioinformatics

In addition to the above experimental approaches, bio-

informatics analysis of Plasmodium genes at a systems

level has revealed several interesting features of the

parasite. A systems level interactome analysis of chap-

erones in Plasmodium falciparum has been reported

based on the presence of orthologs of parasite proteins

and established yeast-two-hybrid data (Pavithra et al.

2007). This study predicted the possible roles of sev-

eral hypothetical proteins based on their interactions

with P. falciparum–encoded chaperones and uncovers

parasite-specific chaperone-dependent pathways. In

addition, the study proposed a putative mechanism by
which Geldanamycin, an Hsp90 inhibitor shown to

abrogate parasite growth in cultures, may work reiter-

ating the usefulness of such a systems level approach in

generating testable hypotheses (Banumathy et al.

2003). Similarly, another bioinformatic study

addressed the question of PfEMP1 diversity, which is

the major antigenic protein present on the infected

erythrocyte membrane and a potential vaccine candi-

date for malaria. The study was conducted in seven

genomes using sequence alignment and distance tree

analysis (Rask et al. 2010). It described multiple novel

features about PfEMP1 domain organization thereby

providing a platform for the understanding of PfEMP1

expression and function.

Systems Analysis of Malaria Vector

Malaria eradication programs center around vector

control methods in a large way and thus understanding

of the biology of the Anopheles mosquito is equally

important as that of the parasite biology inside the

human host. Malaria transmission in the wild is largely

determined by vectorial competence i.e., ability of the

particular mosquito species or strain to replicate and

transmit the parasite to human host. Systems biology

approaches have unraveled some aspects of this host-

pathogen interaction.

Whole genome sequencing of Anopheles gambiae
and other insects has enabled systematic analysis of

divergent protein families which have evolved to facil-

itate specific interactions with the parasite. The viru-

lence caused by the sporogenic development of the

parasite in the mosquito imposes a fitness cost on the

vector which can be expressed as reduction of mos-

quito survival or decrease in parasite fecundity. Vector

longevity will definitely have a better impact on

malaria transmission and this is also emphasized by

the expanded immune repertoire present in the mos-

quito. Large-scale functional genetic screen of mos-

quito genes pointed out PRRs (putative pattern

recognition receptors), TEP (thioester-containing pro-

teins), CTL (C-type lectins) and LRIM (leucine rich-

repeat immune proteins) to be especially important in

this regard (reviewed by Bongfen et al. 2009). This

conjecture was further supported by a global proteomic

study on the saliva of A. gambiae which revealed

overrepresentation of proteins involved in signaling

and immune response functions (Choumet et al.

2007). A recent large-scale genomic study addressed
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the susceptibility of different Anopheles populations to
infection by human malaria parasites and found that

the exophilic subgroup is more susceptible than the

endophilic subgroup (Reighle et al. 2011). Such stud-

ies will play an important role in determining the

epidemiology of malaria and develop better control

and prevention strategies.

Conclusion

From the above discussion, it is clear that systems

level approaches have been extensively initiated to

understand the biology of the malaria parasite and

have indeed been fruitful in uncovering several

novel aspects of parasite biology that would not

have been possible by classical studies involving

one gene or one protein. There are emerging evi-

dences which highlight that physiology of the parasite

is different under in vitro and in vivo conditions

(reviewed by LeRoux et al. 2009), and, thus, efforts

should be made to understand the biology of the

parasite directly isolated from malaria patients. This

will give insight into the real disease scenario and

enable better understanding of disease pathogenesis,

transmission, and therapeutic targets. In the future,

these studies may reveal several features of malaria

infection and will thereby contribute to the discovery

of novel antimalarial drug targets as well as vaccine

candidates. Such studies have provided an opportu-

nity for scientific groups with different expertise to

pursue research in a coherent manner, and this forms

the key feature for the success and impact of systems

biology studies.
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Synonyms

Movement disorders; Neurodegenerative diseases
Definition

Parkinson’s disease (PD) is a movement disorder and

an age-associated neurodegenerative disease. Motor

impairment in PD is caused by degeneration of dopa-

minergic neurons in the substantia nigra (SN) of the

midbrain which leads to depletion of the neurotrans-

mitter dopamine in the striatum. Neurodegeneration

in PD is a culmination of several interdependent pro-

cesses including oxidative stress, mitochondrial dam-

age, protein aggregation, proteasome inhibition,

etc. However, the dynamics and interdependence of

the disease pathways, their temporal order, synergy,

and regulation cannot be understood completely by

isolated experiments. Systems biology based

dynamic modeling and predictive analyses supported

by experimental data can address this issue and pro-

vide a superior understanding of PD pathology at the

molecular level aimed at improved diagnosis and

therapy.
Characteristics

Parkinson’s disease (PD) is an age-associated neuro-

degenerative disease clinically defined as a movement

disorder. The clinical symptoms of PD include

akinesia (impaired body movement), rigidity, resting

tremor, and postural instability. The patients also

exhibit nonmotor symptoms including autonomic dys-

function, cognitive, neurobehavioral, sensory, and
sleep dysfunctions and dementia. Most PD cases are

sporadic arising spontaneously with unknown origin.

PD is common among subjects aged >60 years with

the prevalence and severity increasing with age. Inter-

estingly, men are more affected than women (Hoehn

and Yahr 1967; Chaudhuri et al. 2006). Diagnosis of

PD even today is symptomatic and depends on neuro-

logical recognition of clinical symptoms.

Pathology of PD

Voluntary movement is controlled in the brain by the

nigrostriatal pathway involving dopaminergic neurons

originating from the substantia nigra (SN) region of the

ventral mid brain and projecting into the striatum

(Fig. 1). These neurons synthesize and supply the

neurotransmitter ▶ dopamine (DA) to the striatum

where it participates in a complicated neurochemical

network that ultimately controls body movement. Bio-

chemical, pathological, and imaging data from PD

patients have indicated that a gradual loss of these

dopaminergic neurons causing decreased DA supply

result in motor impairment and PD symptoms (Burke

1998).

Although there are several approaches for PD ther-

apy, a permanent cure is not available. Most pharma-

cological drugs strive at replenishing the lost DA; but

many patients develop motor complications with

chronic treatment (Diaz and Waters 2009). Further,

most drugs do not exhibit significant neuroprotection.

The failure to obtain an effective PD drug is attributed

partly to the lack of complete understanding of the

pathology at the molecular level. Therefore, there is

a need to obtain a comprehensive network of

interacting molecules and pathways involved in neu-

ronal death in PD.

Molecular Mechanisms in PD

The etiology of PD is contributed by a combination of

physiological ▶ aging, environmental factors, and

genetic mutations. Neurodegeneration in PD involves

interdependent mechanisms such as▶ oxidative stress,

mitochondrial damage (▶Mitochondrial Dysfunction,

Parkinson’s Disease), proteasome inhibition

(▶Proteasome Inhibition, Parkinson’s Disease), pro-

tein ▶ aggregation, neuroinflammation, etc. (Betarbet

et al. 2002). The brain is particularly vulnerable to

oxidative stress because, it (1) consumes relatively
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higher amounts of oxygen (2) accumulates lipids and

iron that promote oxidative damage (3) has lower

antioxidant defenses. Among the brain cells, neurons

in general and dopaminergic neurons in particular are

highly susceptible to oxidative damage because they

(1) generate oxidative stress during dopamine metab-

olism (2) have lower levels of the antioxidant ▶ gluta-

thione (GSH) and (3) increased iron content.

Mitochondrial damage in SN neurons is caused by

oxidative stress mediated selective inhibition of

mitochondrial complex I (CI) (Bharath et al. 2002;

Abou-Sleiman et al. 2006).

Inhibition of protein processing is linked to aggrega-

tion of cellular proteins in the SN dopaminergic neurons

as intraneuronal protein deposits called “Lewy bodies

(LBs)” (▶Lewy Bodies, Role of Alpha-syn). LBs rep-

resent a pathological hallmark of PD with a-synuclein
(a-syn) protein as the major component (Shults 2006).

Neuroinflammatory pathways also contribute to the

degenerative process in PD (Glass et al. 2010).

Although PD involves a complex network of events,
the precise relationship, synergy, and temporal order

among these pathways are not clear (Fig. 2).

Systems Biology Applications in

Neurodegeneration

It could be surmised that designing experiments to

analyze the comprehensive dynamics of all the events

in PD could be difficult. However, systems biology

based in silico predictive technology can address this

issue by recapitulating an accurate and simultaneous

view of individual and interlinked pathways at the

molecular level. Such a virtual platform should include

all the relevant proteins and their genes and transcripts

with their relationship quantitatively represented. The

platform should integrate these species in intra and

intercellular pathways providing a comprehensive

view at the cellular and tissue level. The platform

should be certified against predefined in vitro and

in vivo studies reported in scientific literature with

flexibility to include new data. Such a platform could

assay all intermediate and endpoint biomarkers and

http://dx.doi.org/10.1007/978-1-4419-9863-7_652
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manipulate different triggers, inhibitors, and activa-

tors. This also includes percentage, knockout, dose–

response, overexpression, and mutational analysis.

Different customized studies can be defined and exe-

cuted through an interactive graphical user interface

mode or a high-throughput approach.

Accordingly, a typical in silico PD platform should

include an exhaustive list of ▶molecular markers

representing important pathways in normal physiology

and neurodegeneration as follows:

1. Markers that represent physiological aging to dis-

tinguish aging and neurodegeneration. Aging state

is depicted by markers of oxidative stress, mito-

chondrial activity, and quantitative changes in insu-

lin growth factor, melatonin, homocysteine, etc.

2. Pathways representing PD state including neurode-

generative and neuroinflammatory events and

related endpoint biomarkers of mitochondrial dys-

function, oxidative stress, endoplasmic reticulum
stress, proteasomal dysfunction, protein aggrega-

tion, neurotrophin/growth factor signaling, etc.

3. Amalgamation of signals from all cell types

involved, including dopaminergic neurons,

microglia, and astrocytes and relevant pathways

covering all disease stages.

4. Incorporation of different triggering factors includ-

ing environmental toxins (rotenone, 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine or MPTP

(▶ Parkinson’s Disease, MPTP) and genetic factors

(familial mutations) which induce

neurodegeneration in the aging neurons.

We recently generated such a platform to carry out

simulations linking disease pathways in PD with

experimental validation (Vali and Bharath 2009). The

methods in model construction are as follows and are

applicable to similar biological phenomena:

A bottom–up approach was adopted to build the plat-

form. Initially, the various phenomena related to

http://dx.doi.org/10.1007/978-1-4419-9863-7_100946
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neuronal dynamics were built as base modules and

progressively integrated. These modules included:

(a) Comprehensive mitochondrial bioenergetics

(b) Generation of reactive oxygen and nitrogen spe-

cies (ROS/RNS) including dopamine metabolism

and iron

(c) GSH and Ca2+dynamics

(d) Proteasome inhibition and protein aggregation

Modeling involved a detailed study of the individual

pathways and components. Interactions among these

components and their regulation were arranged to

obtain a basic interaction map. The static map was

made dynamic by incorporating (1) physiological con-

centrations of individual molecules and enzymes/

proteins (2) catalytic rates and reaction mechanisms in

flux equations. Most of these data were obtained from

published scientific literature involving experimental

methods. After individual modules were built and vali-

dated against published data, the cross-talk among these

phenomena was integrated such that the output from

a module either created the input to another module or

provided regulatory control. These interactions cross-

linked and integrated the base modules thus generating

a complete integrated system. The performance of such

a complex network would be different from isolated

experimental data obtained from these phenomena.

The modeling of kinetic phenomena such as time-

dependent potential differences in trans-mitochondrial

membrane potential, proton motive force, ion fluxes,

and other metabolic reactions were performed utilizing

modified “Ordinary Differential Equations” and “Mass

Action Kinetics” and the integration of the pathways

were solved by the Radau and Euler methods. Such

modeling experiments reconcile numerous formerly

unrelated features of PD in a chronological manner

thus elucidating disease progression based on the com-

bined molecular actions of different mechanisms.

Using this platform, we carried out few studies

exploring the mechanistic and therapeutic aspects of

PD (Vali and Bharath 2009). Firstly, we integrated

GSH metabolism and mitochondrial dysfunction asso-

ciated with PD. This study inferred that the mitochon-

drial damage affected the cellular GSH synthesis

thereby enhancing the oxidative damage and exacer-

bating neurodegeneration. Secondly, we have also

traced the neuroprotective function of curcumin

(a polyphenol from turmeric) and its bioconjugates.

We found that curcumin and its conjugates induced

GSH production, protected against oxidative stress and
mitochondrial damage with therapeutic potential in

PD. In a third study, modeling envisaged that the

A53T mutant of a-syn can accumulate and disrupt

mitochondrial function in dopaminergic neurons. In

the presence of proteasome inhibition, mitochondrial

turnover is further reduced, resulting in decreased ATP

synthesis and in turn decreasing GSH synthesis.
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Definition

DOCN represents the relationship across disease, can-

didate genes, regulatory genes and their functions to

define the causal relationship through a gene or protein

network. The connectivity across the network is

established through directed graphs where the nodes

or genes are variables, which are connected through

edges. The graph indicates interaction between and

across the genes (nodes) to ultimately describe the

causal mechanism of a disease. In the DOCN, the

graph shows how the change of the state of one
C
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Networks, Fig. 1 Data
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variable affects the certainty of the state of another

variable hence these causal networks are graphical

representations of causal relationships between the

variables of the graph. For example, obesity is one of

the factors for developing insulin resistance, which in

turn is the cause for type 2 diabetes.
Characteristics

Usage of the Disease-Oriented Causal Networks

Disease mechanisms can be explained using causal

networks. These networks are used to identify genes,

underlying pathways or interactions that can be causal

driver of the disease. For example, causal genes

involved in the pathogenesis of a disease can be

revealed by studying gene regulatory networks,

which are directed graphs and depict causal interac-

tions and functional correlation between the genes.

The intricate genetic interactions and gene-to-

phenotype correlation of a complex disease could be

better understood by integrating data from multiple

sources (genotype information, gene-expression, PPI

information, etc.) to construct the causal probabilistic

networks. Such networks are based on probabilistic

approaches where it is believed that one node in the

network affects the state of other nodes in the network

(Fig. 1).
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Data Integration to Create Causal Disease

Networks

The advantage of integrating the multiple molecular

data that is, RNA profiling, genotyping/SNP typing,

protein expression and/or protein–protein interaction

is to enhance the identification of genes in genomic

loci or disease loci. Further, the data integration

methods also help in knowing whether given loci are

jointly associated with the disease. This association

may be due to the co-alteration in transcript/protein

levels, or two closely linked loci are altered indepen-

dently to affect the RNA/protein levels. The statistical

procedures are used examine the joint probabilities of

genotype association, RNA/protein expression, and

clinical disease data. The entire data could be modeled

to know whether they are related in a causal or reactive

relationship.
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▶Biological Disease Mechanism Networks
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Synonyms

Capacity; Potentiality; Power; Tendency
Definition

Dispositions are properties that need enabling condi-

tions for being manifest.
Characteristics

Dispositional Versus Categorical Properties

Properties of objects or systems are usually distin-

guished into dispositional properties and categorical

properties. Everyday paradigm cases of dispositional

properties are, for instance, courage and fragility; par-

adigm cases of categorical properties are shape and

structure of an object or a system. Whether it is possi-

ble to explicitly define individual dispositions (and to

provide a general definitional scheme for “disposition”

as a generic term) is a major dispute in the debate about

dispositions (see section “Conditional Analysis”).

In the case of dispositional properties, it is impor-

tant to distinguish between an object or system having

a property on the one hand and manifesting (▶mani-

festation) the property under ▶ enabling conditions on

the other hand. A person may be a courageous person

all his life, but has only few occasions to show coura-

geous behavior. Similarly, a glass may be fragile but

this disposition will become manifest (i.e., the glass

will break) only if given certain enabling or stimulus

conditions obtain (e.g., striking of the glass). On the

contrary, if objects or systems possess categorical

properties (e.g., the roundness of a billiard ball) they

will be manifest unconditionally. Thus, concepts for

categorical properties do not entail the distinction of

having the property and manifesting it.

In the biological sciences many examples of disposi-

tional properties can be found. These examples include:

the capacity of amino acid chains to fold into a specific

three-dimensional structure, the capacity of genes to

become activated, the ability of muscle fibers to contract,

the pluripotency and totipotency of cells, the fitness

(capacity to reproduce successfully and survive) of organ-

isms, the ▶ evolvability/adaptability of populations, and

the sustainability of ecosystems.

The Importance of Dispositions in Science

Dispositions have been controversial since early

modern times because they were conceived of as
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hidden causes (▶ causality) that bring about effects

(i.e., their manifestations). Moliére in his Le Malade

imaginaire ridicules explanations (▶Explanation

in Biology) in terms of dispositions by pointing out

that one might explain why opium puts people

to sleep by appealing to its “dormitive virtue.”

However, it is explanatory empty to refer to hidden

causes that are epistemically accessible only via

a single effect.

Since the 1930s (cf. Carnap 1936) it became appar-

ent that dispositional concepts do play an important

role in science and furthermore interest in disposi-

tions as an analytical tool for characterizing science

has resurged considerably in the last two decades

(e.g., Mellor 2000; Choi and Fara 2012). The

concept of a disposition is an important tool in

the analysis of science because it points to the fact

that the properties/behavior of systems may only

be manifest given certain enabling or stimulus condi-

tions, for example, contextual factors. This is partic-

ularly true in the biological sciences. We attribute

many properties to biological systems (e.g., the abil-

ity of muscle fibers to contract) that become manifest

only given the presence of specific enabling condi-

tions (e.g., the presence of ATP and an appropriate

stimulus).

Conditional Analysis

Certain aspects of dispositions have been debated (see

Mumford 1998 for a comprehensive overview). We

will discuss some of these issues in order to clarify

what is implied by the attribution of a disposition to an

object or a system.

First, what are the conditions under which we can

legitimately attribute a disposition D to a system s? To

give a precise answer to this question requires speci-

fying the relation between having a disposition and

manifesting it. One major issue in the debate about

dispositions is whether this connection can be made

more precise – whether particular dispositions can be

defined explicitly in terms of their manifestations and

enabling conditions.

The starting point for such attempts is the so-called

▶ simple conditional analysis (SCA). Let Ds stand for

system s having the disposition D, that is, s being

disposed to M (manifestation) provided enabling con-

ditions E obtain. According to the simple conditional
analysis, the necessary and sufficient conditions for

s having D can be symbolized as follows:
SCA : Ds $ ðEs ! MsÞ

which is to be read as: s has Disposition D if and only

if: if s were confronted with E, then s would necessarily

manifest M. Thus, given SCA and given the knowl-

edge regarding how to test the counterfactual claim

“Es ! Ms,” we know under which conditions we can

legitimately attribute D to s.

One problem with the SCA is that manifestations

cannot easily be specified. What exactly are the man-

ifestations of being courageous or of fragility (cf. Prior

1985, 6–10)? Likewise, it is difficult to spell out the

exact enabling conditions for a disposition (e.g., break-

ing, hitting, and throwing in particular ways). This is

even truer for biological dispositions because the way

in which the context is involved in the manifestation is

diverse and complicated, and the enabling conditions

are very complex.

Another significant problem for the simple condi-

tional analysis is a family of counterexamples that

shows that the right hand side of SCA (Es ! Ms) is

neither necessary nor sufficient for the left hand side

(Ds). There are various such counterexamples

discussed under the headings of “antidotes,” “finks,”

“masks,” etc. For example, if we understand “fatally

poisonous” as “disposed to kill if ingested,” someone

might take the poison but, nevertheless, survive

because of some antidote that has been ingested as

well (Bird 2007, 27). In such a case, the substance is

fatally poisonous, but the manifestation does not take

place even though the enabling conditions (ingestion)

did occur. A fortiori the right hand side of SCA is not

a necessary condition for the left hand side. There are

possible interferences, which invalidate SCA. Thus,

the manifestation of a disposition requires not only

enabling conditions but also the absence of interfering

factors. Only if all of these conditions can be listed

explicitly, the SCA would provide an explicit defini-

tion of a dispositional concept. It is, however,

a controversial issue whether it is even in principle

possible to list all relevant factors. Take the example

of the differentiability of cells. The process of mani-

festation, that is, the differentiation of a cell into

a specific cell type is a very complex and temporally

http://dx.doi.org/10.1007/978-1-4419-9863-7_53
http://dx.doi.org/10.1007/978-1-4419-9863-7_61
http://dx.doi.org/10.1007/978-1-4419-9863-7_61
http://dx.doi.org/10.1007/978-1-4419-9863-7_805
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extended process, which requires that many genes are

correctly activated or repressed, that plenty of proteins

are properly synthesized and interact in the right way

with each other. According to the ▶ complexity of the

differentiation process, numerous factors could disturb

this process and prevent the manifestation. It is hardly

imaginable that one could (even in principle) prepare

a complete list of all possible interfering factors.

Intrinsicality

A second instructive debate concerns the

▶ intrinsicality of dispositions. Roughly speaking,

a property is intrinsic if a system possesses the property

independently of what is going on in its context. Shape

is an intrinsic property, whereas being smaller than

everybody else in the room is an extrinsic (relational)

property.

The rationale for attributing a disposition to

a particular system seems to imply that dispositions

are intrinsic. The rationale is as follows: The phenom-

enon of sugar dissolving in water is, strictly speaking,

a property of a combined system – sugar plus water. If

we describe the phenomenon in terms of a disposition

being manifest rather than in terms of a property of

a compound system, we usually introduce a distinction

between a system (e.g., sugar), which is endowed with

a disposition, and external, for example, contextual

conditions. If we ascribe solubility to sugar, then we

focus on those conditions for obtaining of the phenom-

ena that are due to sugar only. The disposition (solu-

bility) comprises exactly those conditions of the

phenomenon that the system (sugar) possesses inde-

pendently of what is going on in the context. Thus,

even though the manifestation of dispositions (e.g., the

dissolving in the case of solubility) depends on extrin-

sic factors, it is usually held that the disposition itself
(e.g., the solubility of salt) is intrinsic. But

intrinsicality may not be a necessary feature of dispo-

sitions (cf. McKitrick 2003; Choi and Fara 2012). The

challenge is particularly clear in the case of some

biological systems: The importance of the context

undermines the claim that all dispositional properties

are intrinsic. As Alan Love (2003) has pointed out for

the example of the ▶ evolvability of populations

(▶ adaptation), in many cases external factors are not

only the enabling conditions for biological dispositions.

Rather, they determine jointly with intrinsic factors the

very nature of the disposition as well as its causal
efficacy. For example, whether a population is evolvable

or not is not independent of contextual factors like

migratory abilities and landscape topography. Hence,

the intrinsic character of the biological disposition

“evolvability” is called into question.

Single-Track Versus Multi-Track Dispositions

Courage, it seems, is a disposition that will be

manifested in different situations by different behaviors.

It is a multi-track disposition, that is, one disposition

with multiple possible manifestations. However, the

SCA-tradition has often assumed that dispositions are

individuated in terms of one set of enabling conditions

and one manifestation (single-track dispositions). The

drawback is a proliferation of dispositions, for example,

different courage-dispositions – one for each kind of

courageous behavior, for example, courage in the face

of death and courage in the face of financial stress.

In biology, there are many possible candidates for

multi-track dispositions: the manifestation of

evolvability for a population can result in different

changes of gene frequency of a population; the

pluripotency of stem cells can become manifest in

muscle cells, bone cells, etc. But on closer inspection

it becomes apparent that the characterization of these

dispositions as “multi-track” depends on a fine grained

analysis of the manifestation states. If we raise the

graininess of the analysis, just one and not multiple

possible manifestation states can be identified. For

example, the evolvability of a population will be man-

ifest if its gene frequency has changed independent of

the kind of gene whose frequency has changed and

independent of the exact dimension of the change.

Reduction

A further frequently disputed question concerns the

issue of ▶ reduction. Dispositions, such as fragility,

are necessary conditions for the obtaining of the man-

ifestation (provided the simple conditional analysis or

something akin is correct). This is often analyzed as:

Fragility is causally efficacious (▶ causality) in bring-

ing about the manifestation. An ensuing question that

has been widely discussed is whether a disposition can

be considered causally efficacious on its own or

whether it is causally efficacious in virtue of an under-

lying causal basis, such as molecular structure.

It is important to distinguish two issues in this

debate. First, fragility and other every-day dispositions

http://dx.doi.org/10.1007/978-1-4419-9863-7_55
http://dx.doi.org/10.1007/978-1-4419-9863-7_803
http://dx.doi.org/10.1007/978-1-4419-9863-7_802
http://dx.doi.org/10.1007/978-1-4419-9863-7_896
http://dx.doi.org/10.1007/978-1-4419-9863-7_81
http://dx.doi.org/10.1007/978-1-4419-9863-7_53
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are macroscopic properties. We tend to assume that

macroscopic properties of systems can be reduced to

their molecular structure. A glass, for instance, is frag-

ile in virtue of its molecular structure. This, however, is

true for dispositional and categorical properties alike.

The glass has its shape (a categorical property) in

virtue of its molecular structure (and/or arrangement)

as well. So this is not a special issue for dispositions.

A second, different, issue is whether there can be

bare dispositions or whether every dispositional prop-

erty needs to be reduced to categorical properties, such

as the microstructural configuration. The question is

whether there might be irreducible dispositional prop-

erties that cannot be identified with a set of categorical

(e.g., microstructural) properties. The physical prop-

erty “charge” or other fundamental dispositions might

be candidates for bare dispositions because there

are no microstructural properties that they might be

identified with.
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Synonyms

Distance field; Distance map
Definition

The Distance Transform (DT) is an operator usually

applied into the domain of 2D binary image (where

each point is classified as foreground or background)

but it can be extended to 3D domains too. The result of

the transform is a new image whose foreground pixels

are labeled with a value that represents the minimum

distance from the background.

There are many different types of DT which differ

mainly on the type of metric used to evaluate the
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distance. Most commonly used ▶ digital metrics are

“chessboard” metric, “Euclidean” metric, or “city

block” metric (Fig. 1).

The simplest method to obtain a DT is to apply

a sequence of erosion operations frommathematical mor-

phologywith a proper structuring element defined through

the chosen metric. This sequence of operations must be

performed until all foreground pixels are covered.

The DT is applied in skeletonization, shape descrip-

tion, and symmetry evaluation processes.
Cross-References
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Synonyms

Distance field; Distance map
Definition

For the pockets analysis in proteomics, the minimum

distance of a point from a reference surface, that is the
▶ convex hull (or a related surface), is called travel

depth. For the evaluation of this feature, an effective

tool is given by the ▶ distance transform.
Characteristics

In biology, the travel depth parameter has been intro-

duced by Coleman and Sharp (Coleman and Sharp 2006)

(Coleman and Sharp 2010). The travel depth is the value

of the distance associated to each point of a pocket sur-

face from the ▶ convex hull (a 2D example is shown in

Fig. 1). The shape and the properties of the molecular

surface determine what interactions are possible with

ligands or other macromolecules. In particular, the active

sites are generally described as shallow and deep spots on

the molecular volume. Experimentations have shown

that active sites usually correspond with areas on the

surface having a high travel depth value and thus they

coincide with the bottom of protein’s pockets.

How to Obtain Travel Depth for a Given Protein 3D

Structure

The first step is to define the reference protein’s vol-

ume inside a cubic grid of voxels (Cantoni et al. 2010).

This reference volume could be, for example, the van

der Walls volume, the solvent excluded surface (SES),

or the solvent accessible surface (SAS). The second

step is to build the convex hull of the molecule’s

volume that will define the boundaries in the 3D

space in which to apply the distance transform algo-

rithm. The convex hull of a molecule is the smallest

convex polyhedron that contains the molecule voxels.

In R3 the convex hull is constituted by a set of facets,

usually triangles and a set of ridges (boundary ele-

ments) that are edges. Each triangle that belongs to

the convex hull must then be inside the 3D grid and

http://dx.doi.org/10.1007/978-1-4419-9863-7_1304
http://dx.doi.org/10.1007/978-1-4419-9863-7_975
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also all the voxels belonging to the volume of the

convex hull must be labeled inside the grid. The region

on which the distance transform is applied is called

concavity volume and is obtained by:
R ¼ CH \ RV (1)

where R is the concavity volume, CH the convex hull,

and RV the reference molecular volume (e.g., the SES).

Within the region R the following propagation is

applied:

Di ¼
1 if i 2 BCH

0 otherwise

( )

A ¼ BCH;

N ¼ A� Kð Þ \ R;

E ¼ N � A;

while E 6¼ � do

8e 2 E : de ¼ minn2ne dn þwnð Þ;
A ¼ N;

N ¼ A� Kð Þ \ R;

E ¼ N � A;

done

Where:

• A represents the increasing set of voxels contained

in R; E corresponds to the recruited set of near

neighbors of A contained in R (i.e., the voxels

reached by the last propagation step).
• BCH represents the surface of the convex hull.

• minn2ne(dn + wn) represents the minimum value

among the distances de in the near neighbors

belonging to D already defined, incremented by

the displacement wj between the locations (e, n):
that is, if e and n have a common face wn ¼ 1; if

e and n have a common edge wn ¼ √2; if e and

n have a common vertex wn¼ √3. At each iteration,
new voxels, inside R, are reached by the propaga-

tion process and the value they take is determined

by the neighbor distance (from the convex hull) and

the voxels distance from the neighbor involved; this

in order to simulate an isotropic propagation pro-

cess and the proper distance evaluation.

• E¼Ø corresponds to the regime condition: no other

changes are given and the connected component of

R, adjacent to the border BCH, is completely

covered.

The travel depth represents the distance of each

voxel of A from BCH.
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Definition

Distributed Data Access refers to the search and explo-

ration of data stored in distributed data repositories, as

well as the gathering of data from various sources to

find interesting and useful information and answer

a specific scientific question.
Characteristics

Biological Data Issues

Biological data (protein structure and function, DNA

sequences, andmetabolic pathways) can concern many

life science domains, such as genetics, structural biol-

ogy, microarrays, pharmacology, etc. They are

characterized by two main features: heterogeneity

and huge volume.

Heterogeneity

Biological repositories are highly diverse in both vari-

ety and granularity. For example, biological data types

can vary from images and drawings to graph struc-

tures, from unstructured text to data tables, from

sequence to three-dimensional protein structures,

etc. Moreover, each researcher can focus on different

levels of biological problems. This makes the reposi-

tory store data with different granularities, such as,

from genomic and protein sequences to protein activ-

ities, from cell structure to two-dimensional or three-

dimensional structured data of huge molecules (Tao

2006). Table 1 shows a list of the biological data types

and a related schematic description of their content

(BioInfoBank Library 2010).

Huge Volume

Due to the advances of the research activity in the life

science, huge amounts of data are generated by
Distributed Data Access, Table 1 Types of biological data

Experimental

data

Data revealed from direct laboratory experiment

Raw data Data which have never been a subject of manipu

Sequence data Data containing protein sequences or obtained fr

Structure data Data modeling three-dimensional protein structu

Phylogenetic

data

Data about evolutionary relations among various

sequencing data and morphological data matrice

Metabolic data Data containing metabolic pathways (enzymatic
researchers all over the world. For example, an orga-

nization that generates data, that is, a sequencing lab-

oratory, starts by processing raw data (collected by

sample tracking), followed by analytical processing

to translate the signal to measurements, and finally to

obtain biological data (such as sequence tags or abun-

dance of gene or proteins). Daily production rates are

in the order of tens of gigabytes (Topaloglou et al.

2004). For example, from 1996 to 2010 the GenBank

(the NIH genetic sequence database populated by an

annotated collection of all publicly available DNA

sequences) increased the number of entries with an

exponential rate, that is, from 1 million sequences to

49 million (GenBank 2011).

Data Access and Integration

Biological information is highly interconnected and

often context-dependent. In practice, genomic data

and its associated information generated by experi-

mental or computational methods is stored in hundreds

of independent, overlapping, and heterogeneous data

resources geographically distributed. They are stored

in a variety of formats, ranging from unstructured data

(i.e., textual data) to strongly structured database data,

depending on its content (Baralis and Fiori 2008).

Moreover, there are millions of articles composing

the scientific research literature, most of them accessi-

ble on the Web.

Biological scientists often require the execution of

“cross-queries,” that is, the discovery of information

from different repository locations and the merging of

results retrieved by various datasets (Haider et al.

2009). For such a reason, a typical data-integration

problem is the gathering of data from various sources

to find relevant information and answer a specific sci-

entific question. To do that, the simple solution of

moving all these data into a central location for inte-

grated querying with other resources is unfeasible, due
s (observations, digital images, notes, etc.)

lation or processing

om a DNA sequencing process

res, DNA, RNA, or small molecules

groups of organisms (information is revealed through molecular

s)

reactions in living organisms) and systems biology information
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to physical transfer challenges (too long transfer time)

and privacy-preserving issues. On the contrary, the

most common approach currently exploited consists

in maintaining the information stored in geographi-

cally distributed databases whereby individual data

providers are responsible for updates and release

cycles (Smedley et al. 2008). The query response is

obtained by collecting and merging the information

obtained from various data sources and return a final

result to the user. Lastly, the results to be returned

should be in standard formats and where possible,

semantically annotated to ensure interoperability with

other databases and tools (Haider et al. 2009). In the

following we describe two systems that have been

developed for biological data integration.

The Distributed Annotation System (DAS) (Dowell

et al. 2001) is a widely adopted protocol for dynami-

cally integrating a wide range of biological data from

geographically diverse sources. Its applicability is

growing and evolving in response to new challenges

facing integrative bioinformatics. An extended version

of the DAS specification (version 1.53E) incorporates

several recent developments, including its extension to

serve new data types and an ontology for protein fea-

tures (Jenkinson et al. 2008). Data distribution,

performed by DAS servers, is separated from visuali-

zation, which is done by DAS clients that integrate

information from multiple servers. It allows a single

machine to gather up sequence annotation information

from multiple distant Web sites, collate the informa-

tion, and display it to the user in a single view. The

DAS specification has several client implementations

(Jenkinson et al. 2008): the Ensembl genome browser

(to display data from a wide variety of genomic, gene,

and protein sequence coordinate systems), SPICE (to

combine protein sequence and structural annotations),

the DASMIweb portal (to integrate protein-protein and

domain-domain interaction datasets), and iPfam (to

compare the interaction topologies of different sources

by overlaying them in a node graph).

Recently the BioMart Central Portal, a system

offering access to a wide set of biological datasets,

has been implemented (Haider et al. 2009). It is

a Web server interface of BioMart software (Smedley

et al. 2009) and provides a unified view over disparate

data sources that enable bioscientists to retrieve data

from one or multiple sources in a simple and efficient

way. It provides access to a variety of datasets that can

be queried independently or in a federated way
enabling users to ask complex questions over data

sources that may be located at different geographical

locations. It is used to access many of the large

biological datasets in the public domain, such as

dbSNP Ensembl genomic, Uniprot protein, Reactome

pathway, HGNC gene name, Wormbase genomic, and

PRIDE proteomic data (a complete list is available at

http://www.biomart.org/biomart/martview/). As of

March 2009, BioMart Central Portal brings together

an extensive range of databases serving more than 100

datasets with an average monthly usage of over one

million server hits (Haider et al. 2009).

Data Analysis

The number of available complete genomic sequences

is doubling almost every 12 months (Meyer 2006),

whereas according to Moore’s law, available compute

cycles (i.e., computational power) double every

18 months. That is, biological data to be processed

are growing more quickly than computational and

technological instruments. Additionally, since the

analysis of genomic sequences requires binary com-

parisons of the genes involved in it, the computational

overhead is very high. The impact of such issues is

plotted in Fig. 1 (Meyer 2006), which contrasts the

number of genetic sequences obtained with the number

of annotations generated. The figure shows that the

knowledge (annotations, models, patterns) has

a sublinear rate with respect to the available data

sequences which they are extracted from.

To handle this abundance in data availability

(whose rate of production often far outstrips the

capability of the scientists to analyze it), automatic

data analysis techniques are used. In particular, the

exploitation of Data Mining algorithms (Fayyad et al.

2006; Grossman et al. 2001) in science helps scientists

in hypothesis formation and gives them a support on

their scientific practices and solving environments,

getting the benefits coming from knowledge that can

be extracted from large data sources. Moreover,

since data is large and is maintained over geographi-

cally distributed sites, the computational power of

distributed systems is often exploited for knowledge

discovery in scientific data. Distributed Data Mining

algorithms are very suitable to such a purpose.

The Grid (Foster et al. 2003) is a privileged

computing infrastructure to develop applications over

geographically distributed sites. The Grid involves the

integrated and collaborative use of remote computing

http://www.biomart.org/biomart/martview/


100000000

10000000

1000000

100000

10000

1000

N
um

be
r 

of
 e

nt
rie

s 
in

 d
at

ab
as

e

100

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

Year

Sequences

Annotations

Distributed Data Access,
Fig. 1 Using a logarithmic

scale, the growth of sequence

databases and annotations

D 602 Distributed Data Access
power, storage, software, and data managed and shared

by different organizations. This technology has shown

to be very reliable in solving large-scale bioinformat-

ics-related problems and improving the efficiency and

effectiveness of the computation on biological data

(Cesario and Talia 2010). In the last years, various

international scientific projects have been developed

(and are currently under development) on this field.

The most important are Euro BioGrid (Eurogrid 2001),

Asia Pacific BioGrid (APBiogrid 2001), UK BioGrid

(UKBiogrid 2001), and North Carolina BioGrid

(NCBiogrid 2001) showing that the Grid is a reliable

and useful infrastructure for the management and anal-

ysis of distributed biological data.
Cross-References
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Distributed Data Management

Pietro Hiram Guzzi1, Giuseppe Tradigo2 and

Pierangelo Veltri2

1Department of Experimental Medicine and Clinic,

University Magna Gratia of Catanzaro, Catanzaro,

Italy
2Department of Medical and Surgical Sciences,

University Magna Græcia of Catanzaro,

Catanzaro, Italy
Synonyms

Data Management: Data processing; Data storing and

querying
Definition

Database

A database is a set of information semantically orga-

nized and correlated such that it can be used to guide

processes or opportunely combined to form knowledge.

Databases can be reconducted to database management

systems that include all procedures necessary to orga-

nize, store, index, and query data and to keep data

always consistent, that is, always valid.

Distributed Processing

The distributed processing means solving an

input problem by means of subprocesses evaluated on

different processing unit. Processing unit may

be located on single computational machine or can be

dislocated on different machine wired and located in

the same building or geographically distributed.

Data Management

Organizing information in data containers for storing,

saving, and maintaining them allowing querying and

information retrieval.
Distributed Data

Information organized in a semantically related way,

also divided in pieces of information with rules to be

able in reconstructing them. Pieces of information may

represent data duplication (minimizing data loss risks)

or partition (saving space).
Characteristics

Availability of data in digital way with an increasing

data precision and quality is increasing the need of

both support and spaces for data storing as well as

procedures and structures for data exchanging. In

such a scenario, the term Distributed Data Manage-

ment refers to a set of methodologies, architectures,

and tools enabling the efficient management of data

stored in geographically distributed databases aiming

both to reduce access time and to allow efficient

knowledge extraction. In research contexts, distributed

data management refers to a set of technologies

enabling the realization of a distributed laboratory in

which different research unit collaborate performing

different experiments on the same project.

Distribution may help in saving spaces and improve

data availability and replication. It is the case of bio-

logical data management where data produced are

huge and information extraction often is a hard task.

For example, data produced by many experimental

platforms used in the biological field have been largely

used in many studies to identify molecules that may be

related to human diseases (Cannataro et al. 2010).

Computational intensive applications for data manip-

ulation require distributed processing, as in biological

applications, where, thanks to always more accurate

techniques to manipulate or to simulate information

obtained from molecules are available (Cannataro

et al. 2010), a typical study involves large number of

samples and huge amount of data. Data distribution

allows retrieving information in similar way as in

centralized data management structure, allowing scal-

ability in terms of data and users, where parallel data

manipulation from different users allows to improve

knowledge of the database.

Main requirements of distributed data storing with

several nodes each with part of database and part of

local data are as follows:

• The introduction of a commonly shared data model

able to capture both raw data of the experiment and

http://www.mygrid.org.uk/
http://dx.doi.org/10.1007/978-1-4419-9863-7_100316
http://dx.doi.org/10.1007/978-1-4419-9863-7_100320
http://dx.doi.org/10.1007/978-1-4419-9863-7_100320
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related metadata; currently existing approaches are

often based on XML-based languages for the rep-

resentation of data and metadata, for example, all

the languages developed by the HUPO-PSI

initiative (www.hupo-psi.org).

• The definition of a uniform and widely accepted

access and manipulation strategy for such large

datasets enabling the sharing of information coming

from single experiment on a specified laboratory

has to be shared and validated in a distributed lab-

oratory environment.

• The definition of a high performance data transfer

strategy.

• The definition of a set of rules and prescription

guaranteeing data privacy.

The advantages of distribution for data management

has been considered in previous studies (see for

instance Valduriez (1993)), and it has been becoming

always more and more required for solving problems

where computational time requires several nodes and

input data is very large (it is the case for instance of

proteins interactions simulation or protein structure

prediction Branden and Tooze (1999)). As an appli-

cation example, consider a distributed laboratory as

a framework environment composed of several

nodes, each one associated to a laboratory running

its local database. The framework efficiently supports

distributed storage and manipulation of experimental

data. Each node contains an application programming

interface mounted on a data storage system

hosting data produced by the laboratory. Scientists

may cooperate working each in his/her own labora-

tory each one running tens of experiments on different

available biological data sets (as for instance for

mass spectrometers as in Veltri (2008)). Such

a configuration can potentially lead to terabytes of

data produced each week or even each day. Pushing

these considerations to their limit data processing

(e.g., reduction of noise and allowing data compara-

ble in terms of instrument accuracy) can easily scale-

up minimal computational requirements. Algorithms

for data manipulation and information extraction, that

often use access to external databases, in a such

scaled-up context become heavy time-consuming

tasks, whereas in a distributed data management

environment allow the cooperation and problems

tractable.
Cross-References

▶General-Purpose Computation, Graphics Processing

Units

▶Grid Computing, Parallelization Techniques
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▶Distributed Query Processing
Distributed Query Processing

Steve R. Pettifer and Teresa K. Attwood

Faculty of Life Sciences and School of Computer

Science, University of Manchester, Manchester, UK
Synonyms

Distributed Query Optimization; Distributed Querying
Definition

A distributed query is a kind of database query that

interrogates multiple databases. These can be

colocated (typically for performance), or distributed
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across geographically separate locations (typically

used for data integration). Each component database

usually holds only a part of the integrated whole. The

source query is translated into several individual

queries, which are executed on the separate databases.

The results of each query are then reassembled to give

the required result.
D

Cross-References

▶Data Integration and Visualization
Distributed Querying

▶Distributed Query Processing
Distributed Revision Control

▶Distributed Version Control System (DVCS)
Distributed Version Control System
(DVCS)

Catherine M. Lloyd

Auckland Bioengineering Institute, University of

Auckland, Auckland, New Zealand
Synonyms

Decentralized Version Control; Distributed revision

control; Revision control; Source control; Version

control
Definition

Version control is the management of changes to

documents, programs, and other information stored
as computer files. It is most commonly used in

projects where a team of people may be working on

the same files concurrently. In contrast to a central-

ized version control system, in a distributed version

control system there is no single central repository.

In the case of the CellML model repository, this

allows modelers to be able to work independent

of the online CellML model repository, and share

their changes directly with each other until they

decide the model is ready to be uploaded into the

repository.

The version control software employed by the

CellML model repository is Mecurial (http://mercu-

rial.selenic.com/).
Cross-References

▶CellML Model Repository
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Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire,

Institut de Génétique Humaine UPR 1142, Université

Montpellier 2, Montpellier, France
Synonyms

D gene; Diversity; Diversity gene
Definition

The diversity (D) gene, or “diversity” is

a ▶ leafconcept of the “▶GeneType” concept of iden-

tification (generated from the ▶ IDENTIFICATION

Axiom) of ▶ IMGT-ONTOLOGY, the global refer-

ence in ▶ immunogenetics and ▶ immunoinformatics

(Giudicelli and Lefranc 1999; Lefranc et al. 2004,

2005, 2008; Duroux et al. 2008), built by IMGT®, the

international ImMunoGeneTics information system®

(http://www.imgt.org) (▶ IMGT® Information Sys-

tem). “Diversity” identifies a gene that rearranges

at the DNA level and codes the diversity region of

the variable domain of an immunoglobulin (IG)

or antibody or of a T cell receptor (TR) chain

(▶Chain Type).

It is one of the four leafconcepts that are

characteristics of the IG and TR loci (Lefranc

and Lefranc 2001a, b), the other three being “vari-

able” (V), “joining” (J), and “constant” (C) (▶Vari-

able (V) Gene, ▶ Joining (J) Gene, ▶Constant (C)

Gene).

The diversity (D) genes are observed in three loci:

IG heavy (IGH), TR beta (TRB), and TR delta (TRD),

where they participate to V-D-J rearrangements

(Lefranc and Lefranc 2001a, b) (▶ Immunoglobulin

Synthesis). An IG or TR diversity (D) gene has three

possible and exclusive configurations (▶Configura-

tion Type): a germline configuration (before DNA

rearrangement), a partially rearranged configuration

(after D-J DNA rearrangement or, less frequently,

V-D or D-D rearrangements), and a rearranged config-

uration (after a complete V-D-J DNA rearrangement,

that eventually may involve several D). In the germline

configuration, a diversity (D) gene possesses in 50
(upstream) and in 30 (downstream) a recombination

signal (50D-RS and 30D-RS, respectively) (▶Recom-

bination Signal (RS)). These 50D-RS and 30D-RS are

specifically recognized by the enzyme recombinase

that, in the most usual chronology, allows first a D

gene to be rearranged to a J gene, and then a V gene

to be rearranged to the previously rearranged D-J gene.

The sequence resulting from the V-D-J rearrangement

encodes the V-DOMAIN (▶Variable (V) Domain) of

the IGH, TRB and TRD chains (▶Chain Type)

(Lefranc and Lefranc 2001a, b).
Cross-References

▶Chain Type

▶Configuration Type

▶Constant (C) Gene
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▶Gene Type
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▶ IMGT-ONTOLOGY, IDENTIFICATION Axiom

▶ IMGT-ONTOLOGY, Leafconcept

▶ Immunogenetics

▶ Immunoglobulin Synthesis

▶ Immunoinformatics

▶ Joining (J) Gene

▶Recombination Signal (RS)

▶Variable (V) Domain

▶Variable (V) Gene
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▶Diversity (D) Gene
Dividing Cells Depletion

▶Quantifying Lymphocyte Division, Methods
DNA Chip

▶DNA Microarrays
DNA Content

▶Lymphocyte Labeling, Cell Division Investigation

▶Quantifying Lymphocyte Division, Methods
DNA Damage

Paolo Plevani

Dipartimento di Scienze Biomolecolari e

Biotecnologie, Università di Milano, Milan, Italy
Definition

DNA is modified by numerous chemico-physical

agents causing a variety of lesions on the DNA

molecule.
Cross-References

▶Cell Cycle Checkpoints
DNA Damage Checkpoint

▶Cell Cycle Checkpoints
DNA Damage Response

▶Cell Cycle Arrest After DNA Damage
DNA Labeling

▶Modeling, Cell Division and Proliferation
DNA Methylation

Yan Zhang

Key Laboratory of Systems Biology, Shanghai

Institutes for Biological Sciences, Chinese Academy

of Sciences, Shanghai, China
Definition

DNA methylation refers to the addition of a methyl

group to the 5 position of the cytosine pyrimidine ring

or the number 6 nitrogen of the adenine purine ring in

DNA strand. This modification can be inherited through

cell division. The attachment of a methyl group to these

nucleotides can serve many important biological pur-

poses and is a crucial part of normal development and

cellular differentiation in higher organisms.
Characteristics

The DNA in many different types of organisms can

undergo DNA methylation, though it does not always

necessarily serve the same function. In plants, for exam-

ple, scientists believe that methylation occurs to deacti-

vate genes that could otherwise cause harmful

mutations. In fungi, DNA methylation is used to mod-

erate and control the expression of certain genes based

on the particular conditions affecting the fungus.
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Methylation in mammals similarly moderates and

inhibits the expression of certain genes; additionally, it

is involved in the production of chromatin, a protein-

DNA complex that makes up the structure of

chromosomes.

DNA methylation stably alters the gene expression

pattern in cells. DNAmethylation is typically removed

during zygote formation and reestablished through

successive cell divisions during development. How-

ever, the latest research shows that hydroxylation of

methyl group occurs rather than complete removal of

methyl groups in zygote (Iqbal et al. 2011). Some

methylation modifications that regulate gene expres-

sion are inheritable and are referred to as epigenetic

regulation (Fig. 1).

In addition, DNAmethylation suppresses the expres-

sion of viral genes and other deleterious elements that

have been incorporated into the genome of the host over

time. DNAmethylation also forms the basis of chroma-

tin structure, which enables cells to form the myriad
characteristics necessary for multicellular life from

a single immutable sequence of DNA. DNA methyla-

tion also plays a crucial role in the development of

nearly all types of cancer (Jaenisch and Bird 2003).

DNA methylation at the 5 position of cytosine has

the specific effect of reducing gene expression and has

been found in every vertebrate examined. In adult

somatic tissues, DNA methylation typically occurs in

a CpG dinucleotide context; non-CpG methylation is

prevalent in embryonic stem cells (Lister et al. 2009).
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DNA Microarrays

J€urg B€ahler and Samuel Marguerat

Department of Genetics, Evolution & Environment

and UCL Cancer Institute, University College London,

London, UK
Synonyms

Arrays; cDNA microarrays; DNA chip; Microarrays;

Oligo microarrays
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dye A dye B
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Definition

This term refers to hybridization-based analytic plat-

forms composed of hundreds to millions of DNA

probes with defined sequences arrayed on a solid sur-

face to measure, in parallel, nucleic acids present in

a complex sample (Wheelan et al. 2008). The sample is

first labeled with a fluorescent dye and then hybridized

to the DNA microarray. After hybridization and wash-

ing, the fluorescence signal intensities from each probe

are recorded using a laser scanner, providing

a semiquantitative measure for the amount of nucleic

acid molecules whose sequence is complementary to

any given probe. One or two samples can be hybridized

on a single microarray. When two samples are ana-

lyzed together, they are labeled with different dyes and

the relative intensities of the two dyes are analyzed for

each probe (two-color array; Fig. 1). When only one

sample is analyzed, the absolute signals of the probes

are used instead. Microarray probes are either PCR
ay

icroarray
canning

Data extraction
and analysis
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products or shorter DNA primers (typically 25–60

nucleotides). Probes are either printed on a solid sur-

face using a robot, or synthesized directly on the

surface.

DNA microarrays provide a versatile platform to

analyze RNA transcript levels and structures as well as

genome structure (array CGH). When applied to the

study of▶ transcriptomes, DNA microarrays typically

consist of probes directed against annotated gene fea-

tures. However, a specialized type of microarray,

called “tiling array,” consists of probes with sequences

tiled systematically across a genome. Tiling arrays

permit the analysis of the transcriptional landscape of

cells or tissues without being restricted by existing

gene annotations.
Cross-References

▶Cell Cycle Analysis, Expression Profiling
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▶ Post-Replication Modification
DNA Polymerases

Zoi Lygerou

School of Medicine, Laboratory of General Biology,

University of Patras, Patras, Greece
Definition

DNA polymerases are enzymes that synthesize new

DNA by moving along the template strand and synthe-

sizing a new strand of complementary DNA sequence

by nucleotide polymerization in the 50 to 30 direction.
Cross-References

▶DNA Replication
DNA Repair

Paolo Plevani

Dipartimento di Scienze Biomolecolari e

Biotecnologie, Università di Milano, Milan, Italy
Definition

The various types of molecular processes repairing

specific classes of lesions in the DNA.
Cross-References
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Synonyms

DNA synthesis
Definition

DNA replication is the process of making an identical

copy of the genetic material within each cell

(Alberts et al. 2007; DePamphilis 2006). In eukaryotes,

DNA replication takes place during a defined period

of the ▶ cell cycle, called S (for synthesis) phase.

DNA replication must be carried out with great

precision every time the cell divides, so that genetic
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information is preserved. Control mechanisms ensure

that every base of the genome is replicated once and

only once per cell cycle, thereby safeguarding genomic

integrity.
D

Characteristics

We present key characteristics of DNA replication in

eukaryotic cells.

Replication Forks Move Continuously Along the

Genome as Replisomes Catalyze DNA Synthesis

Each cell must accurately copy millions of bases of

DNA (six billion base pairs in a human cell) before

every cell division. DNA replication initiates from

thousands of sites along eukaryotic chromosomes,

called ▶ replication origins. Unwinding of the double-

stranded DNA at replication origins (origin firing) cre-

ates a replication bubble consisting of two Y-shaped

DNA structures called ▶ replication forks where DNA

synthesis takes place (Fig. 1). Replication forks move

outward in both directions from the origin as the DNA is

replicated, eventually merging with a replication fork

moving in the opposite direction (fork conversion).

Since the two strands of the template DNA have oppo-

site orientations (antiparallel) and DNA synthesis can

only take place in the 50 to 30 direction, one of the DNA
strands in a replication fork is replicated continuously

(leading strand) while the other is replicated in

a backstitch fashion in pieces of around 100–200 base

pairs, called Okazaki fragments (lagging strand).

Multisubunit protein complexes comprising over 100

proteins (▶Replisome) carry out the steps required for

DNA synthesis (DePamphilis 2006). A DNA helicase,

made up from the hetero-hexameric MCM complex

assisted by the tetrameric GINS complex and Cdc45

(CGM complex), unwinds the double-stranded tem-

plate ahead of the replication fork, while replication

protein A (RP-A) binds and stabilizes the single-

stranded DNA exposed by the helicase. ▶DNA Poly-

merase a-primase lays down RNA-DNA primers for

replication and is then replaced (polymerase switching)

by polymerase e on the leading strand and polymerase d
on the lagging strand. The replication clamp PCNA

(proliferating cell nuclear antigen), a homo-trimer

loaded by the clamp loader RF-C (replication factor

C) encircles the DNA, holds the polymerases in place,

and choreographs the multiple transitions that take
place at the replication fork. Okazaki fragments on the

lagging strand are stitched together by the action of the

endonuclease Fen1 and DNA ligase. A fork protection

complex (consisting of timeless, tipin, claspin, and

And1/ctf4) safeguards integrity of the fork when poly-

merases are forced to stall. Topoisomerases ensure that

topological tension introduced by replication is

relieved. Newly synthesized DNA is repackaged into

chromatin by histone deposition complexes such as

CAF-1, which is recruited to the replication fork

by interactions with PCNA. The replisome copies

the leading and lagging strand at the same time and

replication forks move continuously along the genome,

producing identical copies of the cell’s geneticmaterial.

DNA Replication in Eukaryotes Is Complex and

Uncertain

Origin selection and activation is a crucial part of

replication and various organisms have evolved differ-

ent ways to define origins of replication (Gilbert 2004).

In bacteria, there is a single, sequence-specific origin

of replication and origin activation is deterministic: the

origin fires in every cell cycle with high fidelity. At the

other extreme, in early fly and frog embryos origin

selection is a stochastic process. In Xenopus

preblastula embryos, where replication must be com-

pleted fast, replication initiates apparently at random

and at short intervals (8–15 kb) without discernible

sequence specificity. Most eukaryotic cells seem to

follow an intermediate route between a fully determin-

istic and a fully random origin selection mechanism.

Replication initiates from relatively specific regions

along the genome. In each cell cycle a fraction of

these regions are activated, giving rise to a different

distribution of initiation events along the genome at

every S-phase. Moreover, the timing of firing of each

origin of replication is not fully determined: though

some origins tend to fire on average early and others

late, generating a reproducible timing program in a

population of cells, the time at which a given origin

will fire may differ from cell to cell, giving rise to

uncertainty also in the time domain. The process of

DNA replication thus follows a unique pattern in each

cell in a population. Every cell must therefore remem-

ber, at every point in time, which parts of its genome

have been replicated, and should not be replicated

a second time and which parts remain unreplicated.

Such molecular memory is brought about by origin-

bound multisubunit protein complexes.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1445
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Dynamic Origin-Bound Complexes Safeguard

Once per Cell Cycle Replication

Every part of the genome must be replicated once and

only once per cell cycle. This is ensured by ordered

transitions in protein complexes bound at origins of

replication (Blow and Dutta 2005, Fig. 2). When mito-

sis is completed and cells move into a new G1 phase,

all putative origins become licensed (▶DNA Replica-

tion Licensing) for a round of replication by the assem-

bly of ▶ prereplicative complexes onto origins,

consisting of the six subunit origin recognition com-

plex (ORC), the loading factors Cdc6/Cdc18 and Cdt1,

and the six subunit MCM complex, which will later act

as the replicative helicase. As cells move into S-phase,

specific origins are activated by modifications and

recruitment of additional factors (Cdc45, the GINS

complex, Dpb11/TopBP1, Sld2/RecQL4, Sld3/

Treslin, Mcm10, and others) which turn the pre-

replicative complex into a pre-initiation complex,

lead to activation of the helicase, recruitment of poly-

merases, and origin firing. Complexes which remain at

origins after firing (or passive replication from a fork

coming in from a nearby origin) are at the post-

replicative state, and cannot support replication initia-

tion again until mitosis has been completed and a new

round of licensing has taken place. It is therefore the

composition of complexes along the DNA which dic-

tate when and where replication will initiate.
The Cell Cycle Control System Orchestrates

Transitions

DNA replication must be accurately controlled in

space and time and must be coordinated with cell

cycle progression. How are the ordered transitions of

origin-bound complexes brought about at the correct

point in time during the cell cycle? Cyclin dependent

kinases (CDKs) (▶Cyclins and Cyclin-dependent

Kinases), the master regulators of the cell cycle,

cross-talk with origin-bound complexes to ensure

once per cell cycle replication (Blow and Dutta 2005,

Fig. 2). When mitosis is completed, CDK activity

levels are low. Only then can pre-replicative com-

plexes assemble at origins of replication (window of

opportunity). Increase in CDK activity levels at the

G1/S transition signals conversion of pre-replicative

complexes to pre-initiation complexes and entry into

S-phase. CDK activity levels over the G1/S transition

threshold however inhibit further assembly of pre-

replicative complexes, ensuring that licensing will

only take place again after mitosis has been completed

and CDK activity levels have dropped (▶Cell Cycle

Transitions, Mitotic Exit). The CDK cycle therefore

restricts licensing and replication to different windows

of the cell cycle, guarding against re-replication. To

ensure that mitosis only occurs after DNA replication

has been completed, replication complexes signal to

the cell cycle control system to inhibit CDK activity

http://dx.doi.org/10.1007/978-1-4419-9863-7_1443
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from reaching the levels required for mitotic entry

(▶G2/M Checkpoint) until every part of the genome

has been replicated. Defects in the cross-talk between

CDKs and origin-bound complexes can lead to over-

replication of the genome or a catastrophic entry into

mitosis with unreplicated DNA.

Mathematical Models of DNA Replication

As eukaryotic DNA replication is characterized by

a high degree of uncertainty, both in the location and

in the time of activation of origins along the genome,

mathematical models have been employed to capture

how DNA replication may be progressing in each cell

in a population and to allow accurate interpretation of

experimental data (reviewed in Hyrien and Goldar

2010). One of the first models to be developed was

a stochastic model for DNA replication based on the

KJMA model of phase transition kinetics, originally

used to analyze single-molecule data of DNA replica-

tion in cell-free extracts of Xenopus laevis embryos

and further exploited for analyses of DNA replication

dynamics (Herrick et al. 2002; Hyrien and Goldar

2010). A stochastic hybrid model of eukaryotic DNA

replication incorporating exact locations and firing

propensities of origins along a complete genome was

proposed by Lygeros et al. 2008. The model was

instantiated using experimental data for Schizosac-

charomyces pombe and Monte Carlo simulations

were used to reproduce full genome replication at the
single-cell level and statistically analyze the properties

of the process at the population level. Spiesser et al.

(2009) modeled replication in Saccharomyces deter-

ministically using data for location and firing times of

a fraction of replication origins. De Moura et al. 2010

developed a stochastic model of DNA replication

which was employed for quantitative analysis of the

dynamics of replication of chromosome VI of S.

cerevisiae, while Yang et al. 2010 presented an ana-

lytical model of DNA replication with which replica-

tion timing across the S. cerevisiae genome was

analyzed. A model to analyze replication fork failure

in metazoan cells was developed by Blow and Ge

2009. The model assumes stochastic origin activation

in a cluster of 5–100 potential origins on a circular

250 kb DNAmolecule, modeling replication in a series

of discrete time steps.

Uncertainty and Robustness in DNA Replication

Model predictions and single cell experiments indicate

that random selection and activation of origins of rep-

lication results in an exponential distribution of dis-

tances between active origins. Such a distribution

would produce infrequent large inter-origin gaps,

which would need a long time to be replicated. This

complication of random origin selection has been

named the random completion or random gap prob-

lem. Several hypotheses have been proposed to resolve

this paradox (reviewed in Legouras et al. 2006;

http://dx.doi.org/10.1007/978-1-4419-9863-7_38
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Hyrien and Goldar 2010), including redistribution of

a limiting factor, defined spacing of active origins, or

origin redundancy. It has also been suggested that

S-phase may in fact last longer than previously

assumed, occupying much of what is currently thought

of as the G2 phase of the cell cycle (Lygeros et al. 2008).

Given the uncertainty inherent in stochastic origin

selection, why have eukaryotes not opted for

a deterministic mode of origin selection? It is likely

that stochastic origin selection offers robustness because

of redundancy (Legouras et al. 2006): there are many

more origins ready to fire than those actually required to

complete S-phase which can be used if need arises. One

example of this is DNA damage: when cells experience

DNA damage and active forks arrest, the presence of

dormant origins becomes essential for the completion of

DNA replication (Blow and Ge 2009). Differences in

transcriptional programs in different cell types offers

another example: transcription cross-talks with origin

selection and origin usage changes under different met-

abolic conditions or differentiation. The excess in puta-

tive origins may therefore ensure timely completion of

replication under various, often adverse, conditions.

Higher-Order Organization of DNA Replication

Within the Cell Nucleus

We have thus far considered DNA replication as

a linear process along the DNA. DNA is however

tightly packaged within the cell nucleus and DNA

replication is topologically organized, providing an

additional level of regulation. Replication origins

appear to fire in clusters (of 6–12 active origins within

an approximately 1 Mb region) which are co-regulated

and are visible within the cell nucleus as replication

foci (or factories). Such a topological organization

may offer a number of advantages: sequestration of

replication proteins within factories may help increase

their local concentration facilitating the kinetics of

DNA replication; co-replication of origins within

a similar chromatin context may facilitate the inheri-

tance of epigenetic modifications at a given locus;

local organization in clusters provides the possibility

for differential regulation within a cluster (e.g., local

firing of dormant origins in the vicinity of DNA dam-

age) and outside the cluster (e.g., global inhibition of

replication when DNA damage is present elsewhere in

the genome). Future work will hopefully elucidate how
the process of DNA replication is organized in time

and space and how it cross-talks with other cellular

processes, such as transcription and the inheritance of

epigenetic states.
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Definition

DNA replication licensing is the process of

marking origins of replication as competent for

a new round of replication. It takes place in late

mitosis and G1 and consists of the loading of

the hexameric MCM complex, which will later

act as the replicative helicase, onto origins of replica-

tion. It requires the origin recognition complex

(a six subunit complex which binds to origin

DNA) and the MCM loading factors Cdc6/Cdc18

and Cdt1.
Cross-References
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Synonyms

Deoxyribonucleic acid sequencing
Definition

DNA sequencing is the procedure of determining the

order of nucleotide bases, i.e., adenine, guanine, cyto-

sine, and thymine, in the DNA molecule (Maxam and

Gilbert 1977).
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Definition

DA is a catecholamine that occurs in a wide variety of

animals, including both vertebrates and invertebrates.

In the brain, DA functions both as a neurotransmitter

and a neurohormone. DA functions by activating the

five types of DA receptors termed D1–D5. DA is

produced in several areas of the brain, including the

SN and the ventral tegmental area. DA is released by

the hypothalamus as a neurohormone which inhibits

the release of prolactin from the anterior lobe of the

pituitary. Swedish scientist Arvid Carlsson, the Nobel

laureate performed fundamental biochemical experi-

ments demonstrating the neurotransmitter role of DA

which later paved the way for the first clinical therapy

of PD.

DA is also a precursor for other catecholamine

neurotransmitters, epinephrine and norepinephrine.

Biosynthesis of DA in the body occurs from the

amino acid precursor, L-tyrosine, by a two-step reac-

tion (Fig. 1).

DA synthesized at the presynaptic terminal follow-

ing suitable stimulus, is released into the synaptic cleft

and is taken up by DA receptors on the postsynaptic

terminal. D1 and D5 receptors belong to D1-like
Dopamine, Fig. 1 Synthesis of DA from L-tyrosine
family of receptors which are stimulatory in function

and their activation results in increased production of

the second messenger cyclic adenosine-50-
monophosphate (cAMP), while D2, D3, and D4 recep-

tors belong to the D2-like family of receptors which

are primarily inhibitory and inhibit the production of

cAMP. Whatever be the type of receptor, on comple-

tion of its function, DA is degraded by either mono-

amine oxidase A/B (MAO A/B) or catechol-O-methyl

transferase (COMT) at the synaptic cleft or following

reuptake into the presynaptic neuron. Alternatively,

the DA undergoing reuptake into the presynaptic neu-

ron is repackaged into vesicles for the next cycle of

synaptic activity.

DA synthesizing (dopaminergic) neurons project

axons to larger brain regions which control behavior

and cognition, voluntary movements, motivation, pun-

ishment and reward, inhibition of prolactin production,

sleep, mood, attention, working memory, and learning.

DA is commonly associated with the pleasure system

of the brain, providing feelings of enjoyment and rein-

forcement to motivate a person proactively to perform

certain activities. DA is released by naturally reward-

ing experiences such as food, sex, use of certain drugs,

and stimuli that are associated with them.

The nigrostriatal pathway that involves dopaminer-

gic neurons from the SN into the striatal region of the

brain is the region of focus in PD pathology. This

pathway is directly involved in controlling voluntary

movement. Gradual loss of these neurons in PD

patients causes drastic DA deficiency in the striatum

consequently reducing the ability to perform smooth

and controlled movements.

It could therefore be surmised that DA can be

administered as a therapeutic molecule for controlling

the motor symptoms of PD. However, DA supplied as
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a drug acts on the sympathetic nervous system, pro-

ducing effects such as increased heart rate and blood

pressure. Since DA cannot cross the blood-brain bar-

rier, it does not directly affect the central nervous

system. Therefore, the therapeutic approach for PD

involves the administration of DA precursor

L-dihydroxy phenyl alanine (L-DOPA or levodopa),

which can cross the blood-brain barrier and induce

DA synthesis.
Cross-References
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Synonyms

Pharmaceutical discovery
Definition

Drug discovery is “the process of identifying chemical

entities that have the potential to become therapeutic

agents” (Decker and Sausville 2007).

There are two different approaches to drug discov-

ery: empirical and rational. Empirical drug discovery

involves finding a compound that produces a desired

therapeutic effect in vitro. Initially, there is no

understanding of the candidate drug’s mechanism of

action. In rational drug discovery, on the other hand,

the target is known from the beginning; scientists then

attempt to find or design compounds which would

interact with the target of interest (Decker and

Sausville 2007).
Cross-References
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Jean-Marc Schwartz

Manchester Institute of Biotechnology, Faculty of Life

Sciences, University of Manchester, Manchester, UK
Definition

The metabolic drug scope is an extension of the

concept of scope in metabolic pathways. The scope

of a metabolic compound is the set of all compounds

that can be generated in principle by transformations of

the seed compound, irrespective of kinetic and ther-

modynamic laws that determine the rate at which these

transformations might actually take place (Handorf

et al. 2005). When a set of several seed compounds is

considered, the resulting scope is the set of all

compounds that can be generated by transformations

and combinations of the seeds.

The scope of metabolic compounds is generated

through an expansion process. The principle used is

that for any reaction to take place, all necessary sub-

strates must be present. Starting from the seed com-

pounds, products generated by metabolic reactions

using the seeds are iteratively added, until no further

reaction is possible.

By extension, the metabolic drug scope is the scope

generated by the enzymatic targets of a drug. The

metabolic drug scope is constructed by the expansion

of a set of seeds containing the substrates and products

of all metabolic reactions targeted by the drug. Essen-

tially, the metabolic drug scope represents the largest
possible network that a drug might influence in

a metabolic system (Schwartz and Nacher 2009).
Cross-References
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Synonyms

Molecular drug target; Target
Definition

A drug target is a macromolecule that undergoes

a specific interaction (e.g., binding, inhibition)

with a drug. A target is linked to a specific disease;

the interaction between a drug and a target is

expected to elicit an effect on the course of the

disease.

There are four main types of drug targets: proteins,

polysaccharides, lipids, and nucleic acids. Among

them, proteins are considered the best source of drug

targets as most drugs have been shown to interact with

them. Proteins can be further divided into seven fam-

ilies: G-protein-coupled receptors, ion channels, pro-

tein kinases, zinc metalloproteases, serine proteases,
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nuclear hormone receptors, and phosphodiesterases

(Giegel et al. 2007).

Some targets belong to or are associated with path-

ogenic organisms (e.g., bacteria, viruses, and fungi),

which cause infectious diseases (Gies and Landry

2008).
D
Cross-References
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Definition

Target of a drug that is not the primary target, which

may give rise to undesirable pathophysiology leading

to adverse events.
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Synonyms

Dynamic conditional independent graphs
Definition

Dynamic Bayesian network is a representation of

stochastic evolution of a set of random variables

X ¼ {x1, x2, . . ., xn} over discretized time. It consists

of a directed graph representing conditional indepen-

dences and a family of conditional distributions
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P(xi(t)|Pa[xi(t-1)]), where Pa[xi(t-1)] represents the

set of parent nodes of the node xi(t). The temporal

process of a dynamic Bayesian network is assumed to

be a time-homogeneous Markov process:
P½XðtÞjXð0Þ;Xð1Þ; � � � ;Xðt� 1Þ� ¼ P½XðtÞjXðt� 1Þ�;
(1)

The joint distribution over all the possible trajecto-

ries of the process is decomposed into the following

product form:
P½Xð0Þ;Xð1Þ; � � � ;XðTÞ� ¼ Pð0Þ
YT
t¼1

P½XðtÞjXðt� 1Þ�;

(2)

Therefore, given an initial state of random vari-

ables, their evolution is given by:
P½Xð1Þ; � � � ;XðTÞjXð0Þ� ¼
YT
t¼1

P½XðtÞjXðt� 1Þ�

¼
YT
t¼1

Yn
i¼1

PðxiðtÞjPa½xiðt� 1Þ�Þ;

(3)
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Definition

It is easier to deduce the static structure of a biological

system from experimental data than to account for its

full dynamic repertoire. Nonetheless, knowledge of the

static structure reveals strict constraints that can form

the basis for constructing dynamic models. While this

conversion step from static to dynamic models is any-

thing but solved, this essay discusses some generic

strategies toward accomplishing the task.

Characteristics

Experimental and Computational Strategies of Model

Construction

Metabolic pathway systems are characterized by three

classes of components: metabolites and their concen-

trations, enzymes and modulators, and fluxes that

describe how much material flows through the sys-

tems. Sole knowledge of metabolites at the normal

state of a pathway system is not sufficient to deduce

fluxes, and sole knowledge of fluxes does not permit

inferences on the metabolite concentrations. Three

trends in metabolic analysis are in the process of con-

verging and have the potential to offer new insights:

1. Systematic profiling of metabolite concentrations

using NMR spectroscopy and mass spectrometry

2. Experimental metabolic flux analysis

3. Computational methods

Many platforms are now available to provide

targeted analysis of hundreds of metabolites in a single

biological sample. The metabolic profiles thus

obtained have been used to distinguish molecular alter-

ations between two samples, whether derived from

benign and metastatic cancer, or from a mutant and

the corresponding control. Current profiling methods

are mainly based on two analytical techniques: nuclear

magnetic resonance (NMR) spectroscopy and mass

spectrometry (MS) coupled to a pre-separation tech-

nique such as chromatography or electrophoresis.

http://dx.doi.org/10.1007/978-1-4419-9863-7_428
http://dx.doi.org/10.1007/978-1-4419-9863-7_72
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Of the two platforms, MS-related techniques are con-

sidered more sensitive and have been used to obtain

one-time snapshots of thousands of metabolites. NMR

spectroscopy has its own advantages, because it is

noninvasive and of a high-throughput nature and can,

therefore, be used to execute dense in vivo time-series

measurements of moderately large collections of

metabolites. With considerable advances being made

on both analytical fronts, it is to be expected that time-

resolved profiles of thousands of metabolites will

become the norm rather than the exception in the

foreseeable future.

In contrast to the concentrations of enzymes and

metabolites that define cellular metabolism, metabolic

fluxes cannot be measured directly but rather need to

be inferred from measurable quantities. A method

developed for this purpose, metabolic flux analysis

(MFA), dates back to the 1970s, where one of its

early applications was to infer the rates of intracellular

reactions from the measurements of secreted metabo-

lites and from coarse knowledge of the pathway struc-

ture (Aiba and Matsuoka 1979). Since then, the use of

stable isotopes (mostly by feeding 13C-labeled sub-

strates to cultured cells) was shown to refine the flux

estimates considerably, especially for ratios of fluxes

at branch points (Stephanopoulos 1999). These local

flux ratios, when combined with a stoichiometric

model of the metabolic pathway system, furthermore

permit the determination of absolute rates for all fluxes

through an iterative fitting algorithm (Wiechert 2001).

Evidently, this process poses a challenge for undertak-

ing MFA in higher organisms because their pathway

structure is more complex and, in many cases,

ill-defined. To address this challenge, more advanced

experimental design and techniques like dynamic

labeling are required, but so far their application has

been limited (Voit et al. 2004; Schaub et al. 2008).

In addition to experimental approaches, computa-

tional methods have been developed and successfully

used to study metabolic pathway systems, thanks in

part to advances in computers and the increasingly

easy access to them. Most existing methods fall into

two categories: (1) stoichiometric and flux-based

models; and (2) dynamic, kinetics-based models.

Models from the former class are based on the

assumption that the metabolic transients are much

faster than both cellular growth and environmental

fluctuations. Consequently, the metabolic fluxes are

assumed to be in a quasi-steady state where, for any
metabolite pool, the fluxes governing its synthesis

and degradation are equal, thus leading to the name

“flux balance analysis” (FBA; Palsson 2006). FBA

extends stoichiometric network analysis by also

accounting for thermodynamic and other physico-

chemical constraints that limit the reactions within

the network. Furthermore, and in contrast to MFA,

FBA identifies a particular flux distribution under the

assumption that the cell strives to meet a specific

objective such as maximizing growth.

A significant feature – but also its major weakness –

of FBA is that it contains no information about metab-

olite concentrations. This may pose a problem if the

purpose of an investigation is, for example, to investi-

gate the effect of a certain mutation on the intracellular

level of a metabolite serving as a biomarker. In such a

case, dynamic, kinetics-based models that center on

metabolite concentrations appear to be a better fit.

Traditionally, the formulation of dynamic models of

metabolic pathway systems starts with finding

a functional representation for each reaction that best

describes its kinetics in vitro. Given the explicit repre-

sentations of individual reactions, the next step is to

integrate them into a system of ordinary differential

equations (ODEs) where each equation describes the

temporal change in one metabolite as a difference

between the sums of rates (fluxes) of its synthesis and

degradation. Lastly, having determined the initial con-

centrations, one solves the ODE model to obtain the

metabolic concentrations at different time points,

which are not necessarily at steady state, and compute

fluxes if needed. Overall, the design of dynamic

models requires many kinetic details, but these models

eventually offer the ability to predict all metabolite

concentrations and fluxes under non-steady-state

conditions.

Interestingly, there is little overlap between the

two different kinds of metabolic models. The only

common characteristic is that they both yield flux

estimates at the steady state, although with distinct

tactics: one uses a top-down approach by directly

predicting the fluxes under a quasi-steady-state

assumption, whereas the other takes a bottom-up

approach through solving the integrated ODE model

toward the steady-state. For a metabolic pathway

system, however, the kinetic data obtained individu-

ally with purified enzymes may not reflect the true

kinetic behavior in vivo. Therefore, a sensible

approach would be first to determine the flux
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pathway with feedback inhibition by the product (X2)
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distribution with methods of MFA or FBA and then to

infer the kinetic parameters based on concentration

measurements and functional descriptions of individ-

ual reactions. Such a merger of two otherwise distinct

modeling techniques has the following attraction: not

only is the resulting model more accurate at the level

of fluxes, but one also gains information on metabo-

lite concentrations. This type of merger is greatly

facilitated by using canonical models within the

framework of Biochemical Systems Theory (BST)

(Savageau 1976; Voit 2000) because mechanistic

assumptions regarding the enzymatic processes can

be minimized.

Let us illustrate the idea with a linear pathway

(Fig. 1). Suppose a fixed amount of substrate X0 is

converted into product X2 in two steps, with X2

inhibiting the synthesis of the intermediate X1 through

feedback.

In FBA, the assumption of a metabolic quasi-steady

state leads to the following flux balance equations:

v1 � v2 ¼ 0

v2 � v3 ¼ 0
(1)

Equation 1 is underdetermined since the number of

fluxes exceeds the number of metabolites (equations)

where the steady-state constraints are imposed (i.e.,

X1 and X2). Therefore, infinitely many solutions exist.

In this case, a particular solution may be obtained if

one of the three fluxes can be directly measured, as it

might be the case for substrate uptake (v1) or product
formation (v3). If none of the three fluxes is measur-

able, one might be able to make reasonable assump-

tions regarding the biomass composition of the system,

such as:

a1X1 þ a2X2 �!v4 Biomass; (2)

where a1 and a2 represent stoichiometric coefficients

for the two species. Linear optimization can be used to
identify a flux distribution that achieves maximal

growth by solving the task in Eq. 3:

maximize v4

subject to v1 � v2 � a1v4 ¼ 0

v2 � v3 � a2v4 ¼ 0

(3)

Notably, no explicit accounts of metabolite concen-

trations are involved in FBA, and the result exclusively

addresses fluxes.

As an alternative, one can construct an ODE

model using traditional enzyme kinetics. For instance,

assuming that all reactions follow the classic

Michaelis–Menten type kinetics and that the inhibition

by X2 is competitive, the corresponding ODE model is

formulated as:

X0 ¼ constant

_X1 ¼ v1� v2 ¼ V1X0

X0þK1ð1þX2 K4= Þ�
V2X1

X1þK2

_X2 ¼ v2� v3 ¼ V2X1

X1þK2

� V3X2

X2þK3

(4)

Solving Eq. 4 requires knowledge of the initial

metabolite concentrations and of all kinetic parameters

(Vi and Ki). In practice, these are often determined

using purified enzymes and thus prone to uncertainties

due to the fact that in vivo systems are quite different

from in vitro experiments. A novel means of parameter

estimation, thanks to the advent of metabolic time-

series profiles, is to substitute the differentials on the

left-hand side of Eq. 4 with estimated slopes at discrete

time points, transform the coupled system of differen-

tial equations into several sets of decoupled algebraic

equations, and identify the optimized values of param-

eters via regression (Voit and Almeida 2004). For

some metabolic systems, we can even derive the

dynamic flux profiles from the slope data in the first

place and then estimate the parameters on a flux basis

(Goel et al. 2008).

In cases where the time-series metabolic profiles are

not accessible, the steady-state flux distributions, as

determined by MFA or FBA, can be valuable for

parameter estimation. The idea is that instead of

using the estimated fluxes at multiple time points

within one experiment, one may slightly perturb the

system many times and record or predict the steady-

state responses. With flux and concentration data from

multiple perturbation experiments, the task is again
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reduced to fitting parameters individually for each flux.

To illustrate the point, it is convenient to model the

linear pathway in Fig. 1 with power-law functions, as

proposed in BST:
ln g2

1
2

3

ln X1

f2,1

Dynamic Metabolic Flux Analysis, Fig. 2 Estimation of f2,1
and g2 using data from three observed steady states. The colored

circles refer to the log-transformed values (ln X1, ln v2) taken
either from the nominal steady state (1) or from new steady states

where, for instance, the input substrate X0 is increased (2) or the

activity of enzyme catalyzing v3 is decreased (3)

D

X0 ¼ constant

_X1 ¼ v1 � v2 ¼ g1X
f1;0
0 X

f1;2
2 � g2X

f2;1
1

_X2 ¼ v2 � v3 ¼ g2X
f2;1
1 � g3X

f3;2
2

: (5)

In Eq. 5, each flux has two or three unknown param-

eters (rate constants gi and kinetic orders fi,j). Thus, we
need flux and concentration data at three or more

different steady states for parameter estimation. This

argument is valid, because a flux, say v2, reduces to

a linear equation, when we take logarithms of the

power-law representation:
ln v2 ¼ ln g2 þ f2;1 lnX1: (6)

We can see that the kinetic order f2,1 is the slope in
the plot of ln v2 versus ln X1, while the logarithm of

the rate constant ln g2 is the y-intercept (Fig. 2).

If experimentally feasible, it is important that enough

data are obtained to allow a statistical regression

analysis.

Many experimental strategies are available for arti-

ficially driving the pathway of interest to different

metabolic steady states. For instance, one may slightly

perturb the system, which is initially at a nominal

steady state, by changing the amount of substrate fed

into the pathway. Another approach is to genetically

modify the activity of pathway enzymes, for instance,

through a gene knockdown experiment. In the latter

approach, one must also measure the relative enzyme

activities compared to those in the control to adjust for

the bias introduced to the rate constants.

Overall, the transformation of steady-state, flux-

based models into dynamic, kinetics-based models

requires large amounts of concentration measure-

ments, which despite the substantial improvements

that have recently been made in the field of

metabolomics, remains a challenge. The issue is espe-

cially significant in plant biology: not only do plants

synthesize a far more diverse array of metabolites than

do animals and microorganisms, but we also lack

the ability to identify the majority of signals from

metabolic profile data (Saito and Matsuda 2010).

Nevertheless, even in this complicated case of plants,
it was shown that even without a comprehensive set of

concentration data, the conversion can still be accom-

plished through a combination of model reduction and

optimization methods (Lee and Voit 2010).
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Synonyms

Feasible parameter space; k-cone space; Modal

analysis
Definition

Genome-scale metabolic reconstruction constitutes

a paradigm in systems biology that currently

extends its escope to eukaryotes, prokaryotes, and

archaea (Oberhardt et al. 2009). Among a variety

of biological questions that can be surveyed with

these metabolic reconstructions, the dynamical

description of metabolism is a noteworthy issue for

exploring how the metabolic phenotype changes
under external perturbations or internal gene dele-

tions. In the assumption that linear perturbations

occur around a metabolic steady state, one can expect

that even though the perturbation induces changes

in the metabolic concentrations of the network,

the system recovers its initial metabolic profile. The

dynamical description of this relaxation process is

described by:
dm

dt
¼ J

0 � m (1)

where J
0
is a diagonal matrix whose entries are the

eigenvalues of the Jacobian matrix while m is a vector

that specifies the modes of the system, i.e., the set of

metabolites whose concentrations dynamically corre-

late at each timescale. Timescale distribution is defined

by the negative inverse of J
0
eigenvalues.

Even though this theoretical framework can be

straightforwardly applied to genome-scale metabolic

reconstructions, a major limitation in dynamic model-

ing is the current lack of kinetic information. With

the purpose to overcome this limitation, the k-cone

has been suggested as an appealing scheme for

exploring dynamic behavior of genome-scale recon-

structions. This formalism refers to the feasible

space of kinetic parameters that ensures a steady-

state behavior in metabolic networks. From

a mathematical point of view, this space is defined

through the next equation:

S � diagðCÞ � ~k ¼ 0 (2)

where S is the stoichiometric matrix and diag(C)

is a diagonal matrix whose entries are determined

by a function of metabolic concentrations at steady

state (C ¼ Pxi
jSRij j, where SRij refers to the reactant

stoichiometric coefficients). In addition, ~k represents
a vector whose dimensionality is determined by

the number of metabolic fluxes in the network. The

combination of modal theory and k-cone space

supply with a statistical pipeline for exploring

and surveying the dynamical behavior of genome-

scale metabolic reconstructions, this framework

being independent of a complete knowledge of

the kinetics underlying the metabolic network

and strongly dependent on metabolome data, see

Fig. 1.
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view. (a) The metabolic state of a system can be obtained from

metabolome data. (b) From this information and assuming that

law mass action govern all metabolic reactions in the network,

the feasible space of kinetic parameters, the k-cone, can be

calculated. (c) Once defined the feasible set of kinetic

parameters ensuring a steady state in the metabolic systems

a Jacobian library can be calculated. (d) Finally, the modal

library is recovered from the diagonalization of the Jacobian

library. The Jacobian and the modal libraries contain informa-

tion about the timescales and the metabolic pools formed during

the relaxation process, respectively
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Characteristics

Modal Analysis

Cells are continuously exposed to environmental per-

turbations whose biological effects are controlled by

genetic, protein, and metabolic circuits for ensuring

a proper functional state. In the particular situation

where the perturbation is small, one expects that ini-

tially the metabolite concentrations change inside the

cell; however, with time, these concentrations recover

their original values characterizing a functional state in
the cell. Thus, with the purpose of studying the

dynamic properties of metabolism, it is convenient to

find a way to study how a metabolic network relaxes to

its steady state after an environmental perturbation has

occurred (Kauffman et al. 2002). Modal analysis is

a conceptual framework which is useful for this

purpose by assuming that the perturbations occurred

very close to a metabolic steady state. In this context,

the temporal evolution of the systems is obtained by

linearizing the dynamic mass balance equations

around a reference point, i.e., the steady state.
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In general, the temporal behavior of a metabolite

concentration is calculated as a balance among the

metabolic flux of those reactions that contribute to

increase and decrease the production and use of

metabolites. This principle is conserved at genome

scale and the temporal behavior of a metabolic net-

work integrated by n reactions and m metabolites is

given by:
d~x

dt
¼ S � ~V (3)

where S denotes the ▶ stoichiometric matrix which is

formed from the stoichiometric coefficients of the

reactions that comprise a metabolic reconstruction.

This matrix is organized in such a way that

every column corresponds to a reaction and every

row corresponds to a metabolic compound (as exem-

plified by Fig. 2 panel D). In addition, ~V refers to

a vector that contains the fluxes of the reactions

included in the reconstruction. Here d~x
dt is a vector

with time derivatives of the metabolite concentrations

and it is equal to zero when the system has reached

a steady state.

Here we limit our description to analyze the

dynamical metabolic profile when small perturbations

are applied to the metabolic reconstruction. Thus, in

order to model the deviation from the steady-state

concentration, we selected ~x 0¼~x�~xst as our central

variable where~xst and~x indicate the concentrations of

the metabolites at the steady and perturbed state,

respectively. Under this assumption, a Taylor

expansion around~x
0
lets us to obtain:
d~x 0

dt
¼ J �~x 0 (4)

with J being the Jacobian matrix, which in turn is

obtained through:
J ¼ S � G (5)

where G is the gradient matrix formed with the partial

derivatives between the flux of the i-esime reactions of
~V, Vi, and the concentration xj:
G ¼ @Vi

@xj
(6)
In this contextual scheme, the Jacobian matrix con-

tains information about the topology of the metabolic

network and the thermodynamics of the reactions

(Jamshidi and Palsson 2008).

As we mentioned earlier, the objective of using

the theory of modal analysis is to recover dynamical

information of the system, in particular (1) how the

metabolism rearranges its constituents while it relaxes

toward a steady state and (2) which are the timescales

during this process. Even though these questions can

be explored from Eq. 5, modal analysis is a proper

formalism to explore these issues in a more direct

way. Thus, by applying a diagonalization on Eq. 5 we

obtain:

J ¼ M � J 0 �M�1 (7)

Notably, J 0 defined in Eq. 7 is a diagonal matrix

with the eigenvalues of J ordered descendingly and the

termM is a matrix whose columns are integrated by the

eigenvectors of J. By substituting Eq. 7 into Eq. 4 we

obtain:
d~x 0

dt
¼ J �~x 0 ¼ M � J 0 �M�1 �~x 0 (8)

M�1 � d~x
0

dt
¼ M�1 �M � J 0 �M�1 �~x

0

(9)

By defining the metabolic modes as:
m ¼ M�1 �~x 0 (10)

Equation 9 can be written in compact form as:
dm

dt
¼ J 0 � m (11)

Thus, meanwhilem contains information of how the

network coordinates and organizes its metabolites to

reach the steady-state condition, and the diagonal

matrix J
0

specifies the timescales in which this process

happens. This latter issue is given by the negative

inverse of the eigenvalues of J
0

(Kauffman et al.

2002; Resendis-Antonio 2009).

k-Cone Space

As we mentioned in the last section, the dynamical

description of metabolism constitutes a cornerstone

http://dx.doi.org/10.1007/978-1-4419-9863-7_1366
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Dynamic Metabolic Networks, k-Cone, Fig. 2 Example of

the application of the theory of modal analysis and the k-cone
formalism to a hypothetical metabolic network. (a) The box
shown in this figure recapitulates the mathematical equations

described in this essay. (b) A hypothetical metabolic network

composed of three metabolites which interconvert to each other

with reaction constants ki. (c)Box showing the balance equations
in terms of the fluxes Vi or the metabolite concentrations and

kinetic constants. (d) Box exemplifying the matrices mentioned

in the text constructed according to the network from (b)
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in systems biology for surveying the mechanism by

which cells respond under external perturbations.

However, given that a variety of kinetic information

is unknown in most of the biological systems, this

formalism has been applied in few cases at genome
scales. For instance, in the example depicted in Fig 2,

it can be seen that the knowledge of the kinetic

constants is needed to obtain the Jacobian matrix J
(panel D). With the purpose of overcoming this issue,

some databases are emerging (Rojas et al. 2007;
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Scheer et al. 2011) that store the numerical values of

some parameters required for analyzing certain biolog-

ical circuits at well-defined physiological conditions.

Although, these databases represent important contri-

butions to enrich the model and experimentally assess

its outcomes predictions, there is evidence that the

numerical values of the kinetic parameters can vary

depending on the physiological context. In fact, there

is evidence that measurement in vitro and in vivo can

differ by some orders of magnitude (Famili et al.

2005). In this contextual scheme, the elaboration of

alternative procedures that allows us to estimate the

range of each parameter participating in the reactions

conforming a metabolic network would be of great

value.

In general terms, the temporal evolution of the

metabolite concentrations can be founded by solving

Eq. 3, but this requires a complete knowledge of the

values of S, ~V, and the initial conditions, a fact that is

not always fulfilled. However, if we suppose that all

the reactions obey law of mass action, Eq. 3 can be

written as:
d~x

dt
¼ S � diagðCÞ � ~k (12)

where diag(C) is a diagonal matrix whose entries are

determined by a function of metabolic concentrations

at steady state (C ¼ Pxi
jSRij j, such that SRij refers

uniquely to the reactant stoichiometric coefficients)

and ~k is a vector with the unknown kinetic constants

and whose dimensionality is determined by the number

of metabolic fluxes included in the metabolic recon-

struction. Given that the numerical values of the

kinetic constants remain along time, the numerical

value of ~k can be straightforward identified at the

steady-state regime. In such a situation, Eq. 12 is

written as:
Q � ~k ¼ 0 (13)

where, we have stated that S�diag(C) ¼ Q for simplic-

ity in notation. Thus, we concluded that the numerical

range of the kinetic parameters can be estimated

through the right null space of Q. The feasible space

of kinetic parameters that ensure the presence of

a steady-state behavior in metabolic networks is called

the k-cone (Famili et al. 2005). This multidimensional
space let us identify and explore the potential response

of the metabolic phenotype for a microorganism and

allows us to survey how the metabolism coordinately

acts to reach a steady state after one perturbation

occurs. Remarkable, by selecting an ensemble of

kinetic parameters belonging to the k-cone, one can

build a library of feasible dynamic behavior and

explore the average or most frequent behavior.

Furthermore, this dynamic library can contribute to

classify those parameters that have a high from those

with a low numerical variability for recovering the

steady state.

In order to apply this framework at the genome

scale, an important issue is to have a well-defined

metabolic profile at a steady state. As described in

Fig. 1, the variety of technologies used in metabolome

high-throughput data can fulfill this latter requirement.

As we have seen throughout this essay, the combined

effect of theory of modal analysis and the k-cone

formalism supply with a pipeline to explore and survey

the dynamical behavior of genome-scale metabolic

reconstructions. This method is strongly dependent

on quantitative metabolic profile of the organism in

study and independent of a complete or partial knowl-

edge of the kinetics underlying the metabolic network

(Resendis-Antonio 2009).
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Synonyms

Community; Modular; Modularity; Module network
Definition

The main idea of dynamic modularity comes from the

need to systematically explain the influence of a simple

genetic change or environment perturbation on the

behavior of an organism, which is also the ultimate

goal of studying biological networks. However,

research on dynamics of molecular networks remains

very challenging even though a huge number of high-

throughput data are available nowadays because the

state space of networks grows exponentially with

the number of network components (Alexander

et al. 2009). So, methods to reduce the complexity of

the analysis are of great interest. Thus, dynamic mod-

ularity appears, which can be used to explore molecu-

lar network dynamics to some extent by two steps.

First, the network is decomposed into smaller building

blocks that can be analyzed more easily, among which
usually network modules (▶Modularity; ▶Module

network) are of an imaginable form for decomposition

because of network ▶modularity. And second, the

dynamical connectivity between different modules

(▶Modularity; ▶Module network) is quantified

under various conditions. The typical method for this

purpose is modular response analysis (MRA) proposed

by Kholodenko et al. (2002).
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Definition

Asymptotic methods comprise a class of systematic

mathematical procedures that allow the dominant
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processes operating in a givenmodel to be identified, for

the model to be reliably simplified by neglecting those

effects that are identified as negligible and for the error

arising from the simplification to be rather precisely

characterized. The techniques are widely applied in

the study of differential-equationmodels but are equally

applicable to discrete systems, differential-delay equa-

tions, and stochastic models, for example. Typical

applications in systems biology include in reducing the

complexity of network models (possibly expressing

them in modular form) and in integrating across dispa-

rate spatial and/or temporal scales in multiscale formu-

lations. The techniques permit the extraction of

parameter dependencies from, and more extensive ana-

lytical treatment of, the governing models, as well as

complementing their numerical study.
Characteristics

The numerous general texts available on asymptotic

methods include Murray (1984); Hinch (1991);

Holmes (1995); and Kevorkian and Cole (1996). An

ordinary differential equation (ODE) model that exem-

plifies many of the key aspects of singular-perturbation

methods as applied in systems biology is one that is

widely adopted as a deterministic description of the

enzymatic reactions

Sþ E Ðk�1

C�!k2 Pþ E
k1

in which a substrate S reacts with an enzyme E to form

a complex C that decomposes irreversibly into the

enzyme and a product P. Using the same notation for

the concentrations of each of these species then gives

the ▶Ordinary Differential Equation (ODE)
dS

dt
¼ �k1ESþ k�1C;

dE

dt
¼ �k1ESþ k�1 þ k2ð ÞC;

dC

dt
¼ k1ES� k�1 þ k2ð ÞC;

(1)

typically subject to the initial conditions
S ¼ S0; E ¼ E0; C ¼ 0 at t ¼ 0 (2)
for prescribed constants S0 and E0. An essential

first step in the application of asymptotic techniques

is to non-dimensionalize the model, thereby reducing

the number of parameters present, identifying the

relevant parameter groupings and, most importantly

in the current context, characterizing the relative

importance of these dimensionless groups and hence

of the processes that each embodies. The choice of

non-dimensionalization is somewhat arbitrary, but

it is often convenient to scale out the initial data, i.e.,

in the case of Eqs. 1 and 2 to set, having noted that

E ¼ E0 � C,

S ¼ S0Ŝ; C ¼ E0Ĉ; t ¼ t̂=k1S0: (3)

This yields

dŜ

dt
¼ r � 1� Ĉ

� �
Ŝþ k�1Ĉ

� �
;

dĈ

dt̂
¼ 1� Ĉ

� �
Ŝ� k�1 þ k2ð Þ� �

Ĉ;

(4)

with

Ŝ ¼ 1; Ĉ ¼ 0 at t̂ ¼ 0: (5)

Here the number of parameters has been reduced

from five in Eqs. 1 and 2 to three dimensionless

groupings
r ¼ E0=S0; k�1 ¼ k�1=k1S0; k2 ¼ k2=k1S0; (6)

the first of which is a concentration ratio, while the

other two are ratios of possible timescales. The extent

to which the number of parameters can be reduced

depends on the problem; a direct application of the

Buckingham p theorem gives a lower bound on how

many fewer there are in the dimensionless formulation

(and the actual value, two, in the above example),

while the number of variables to be scaled, e.g., three

in the case of Eq. 3, is typically an upper bound.

If reasonable (at least order of magnitude) estimates

are available for each of the parameters, the next step is

to determine which of the dimensionless groupings is

small (or large) and hence available for exploitation

in an asymptotic analysis (subtleties can arise in iden-

tifying the combination of dimensionless parameters

that can be most effectively exploited in this way – see

Segel and Slemrod (1989), for example – and

http://dx.doi.org/10.1007/978-1-4419-9863-7_1419
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distinguished limits, described below, have a role to

play in this regard). In the case of regular perturbation

problems, a uniformly valid approximation is obtained

simply by discarding all terms multiplied by the small

parameter. Singular perturbation problems are more

delicate, since different approximations hold on differ-

ent scales, thereby capturing the ▶ slow-fast dynam-

ics: this can be illustrated by considering the limit of

Eqs. 4 and 5 in which r is small. Then for t̂ ¼ O (1) (the

shortest relevant timescale, corresponding to the inner

region or boundary layer) the appropriate approxima-

tion to Eq. 4 is, at leading order in r,
dŜ0
dt̂

¼ 0;
dĈ0

dt̂
¼ 1� Ĉ0

� �
Ŝ0 � k�1 þ k2ð ÞĈ0; (7)

so that Ŝ0 ¼ 1 and
Ĉ0 ¼ 1� e� 1þk�1þk2ð Þt̂
� �

= 1þ k�1 þ k2ð Þ: (8)

The outer region sets t̂ ¼ �t=rk�2 (to obtain

a balance in the first of Eq. 4), Ŝ ¼ �S and Ĉ ¼ �C and

a different approximation then holds as r! 0, namely,

k2
d �S0
d�t

¼ � 1� �C0ð Þ�S0 þ k�1
�C0;

0 ¼ 1� �C0ð Þ�S0 � k�1 þ k2ð Þ �C0;

whereby the second equation in Eq. 4 is replaced by its

quasi-steady approximation (▶ Flux Balance Analysis,

for example) leading to a Michaelis-Menten expres-

sion (a special case of the ▶Hill Equation):
d �S0
d�t

¼ �
�S0

k�1 þ k2 þ �S0
; �C0 ¼

�S0
k�1 þ k2 þ �S0

: (9)

The initial data on Eq. 8 are provided by the

matching condition
lim
�t!0

�S0 �tð Þ ¼ lim
t̂!þ1

Ŝ0 t̂ð Þ ¼ 1

(more generally, however, the matching conditions

need not correspond to the original initial conditions).

The approximations valid on each of these timescales

can be combined into a uniformly valid or composite

approximation.
The reduced problems obtained in the above fash-

ion are more amenable to analytical solution (as in

Eq. 8) than is the full problem, are numerically better

conditioned (their stiffness having been removed), and

contain fewer parameters (e.g., Eqs. 7 and 9 each

involve only the single grouping k�1 þ k2), so can

more readily be fitted to experimental data. It is note-

worthy in particular that for such purposes it may not

be necessary to have any quantitative information

about the small parameter, beyond that it is indeed

small. In the above, only leading order approximations

have been given – more accurate expressions can be

obtained by expanding the solutions in each region in

powers of the small parameter and balancing the terms

that involve the same power (in more complicated

examples, terms depending on the logarithm of the

small parameter may also need to be introduced in

order to match successfully etc.).

The above assumes the problem to contain a single

small (or large) parameter. In many applications (and

almost invariably in the case of complex systems, such

as are common in the modeling of ▶ gene regulatory

networks and of ▶metabolic and signaling networks)

multiple such parameters are present; typically one of

these would be identified as that in which the expan-

sions are to be performed and the relative sizes of the

others are then characterized by expressing them in

terms of powers of this small parameter; there can,

however, be ambiguity in how this is accomplished.

Distinguished limits, in which such characterizations

are identified in part on mathematical grounds as giv-

ing the fullest set of relevant balances within the equa-

tions, can then be of particular value, as they can also

be (because of their broad validity) when limited infor-

mation is available about the sizes of some of the

parameters.

The discussion above pertains to circumstances in

which the method of matched asymptotic expansions

applies. Another broad set of techniques (multiple
scales, having two-timing as a special case) was origi-

nally developed largely in the analysis of nonlinear

oscillations (whereby rapid oscillations are subject to

a slow rate of decay, for example: since the oscillations

persist, the fast and slow scales must be captured for all

times, rather than the former being relevant only in the

boundary layer); here secularity conditions, instead of

matching, play a central role. This class of techniques is

of particular importance in integrating between scales

(homogenization – see Mei and Vernescu (2010), for
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instance), having the potential within systems biology

to embed cell-scale behavior systematically within tis-

sue-level models, say (cf. ▶mixed and multi-level

models).

Since the above example is an ODE system, it

should be emphasized that the techniques are equally

effective in the analysis of, inter alia, ▶ partial differ-

ential equation (PDE) models, differential-delay

equations, discrete systems, and stochastic models

(cf. van Kampen (2007), for example, reduction of

the ▶master equation to a ▶Fokker-Planck equation

being a common upshot) and may be of value in under-

pinning the development of a ▶mean-field approxi-

mation. Given the disparate timescales that almost

invariably arise in such applications, they can be of

particular effectiveness in simplifying a complex

▶ biological network model containing numerous dis-

tinct pathways and may then provide systematic

approaches to ▶modularity-based network

decomposition.

The methodologies in question remain areas of

active research and issues that go beyond those

described above include the following.

(a) Asymptotics beyond all orders. In certain applica-

tions, the calculation of algebraic terms (those

involving powers of the small parameter) does

not suffice in the sense that important phenomena

manifest themselves only in terms that are expo-

nential small: these terms are “hidden” beyond

a (divergent) algebraic series and hence lead to

additional complexities; a particular application

is to the failure of signal propagation in spatially

discrete systems – see King and Chapman (2001)

and references therein.

(b) Intermediate asymptotics (Barenblatt 1996). An

independent variable, rather than one of the dimen-

sionless constants, can be taken to be the small or

large quantity, the analysis of large-time behavior

(such as traveling-wave propagation in Fisher’s

equation) being a common such application.
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Dynamical Systems Theory, Bifurcation
Analysis

Alan Champneys and Krasimira Tsaneva-Atanasova

Department of Engineering Mathematics, University

of Bristol, Bristol, UK
Synonyms

Numerical continuation; Parameter studies;

Path-following; Qualitative analysis
Definition

Bifurcation theory refers to the study of qualitative

changes to the state of a system as a parameter is varied.
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It can be applied to▶ steady state systems, or to dynam-

ical systems and can be understood best at the level of

a mathematical model, although recent techniques

allow the method to be applied to experiments with

feedback control. Typically the theory is applied to

a▶ continuousmodel, but can also be used in▶ discrete

models and mathematics, difference equations. There

are dedicated numerical implementations of bifurcation

theory using path-following, or numerical continuation.

There is a distinction between a local ▶ bifurcation,

which can be understood in terms of a change to the

number or stability of simple steady states, and a global

bifurcation, which cannot. Often global bifurcations

cause catastrophic changes to the ▶ attractor of

the system. Typical local examples are the ▶Hopf

bifurcation which leads to the onset of oscillation and

the ▶ saddle-node bifurcation where a stable steady

state is created or destroyed, often leading to bistability.
Characteristics

Once a model of a biological system has been

constructed and, consequently, the number of

parameters in the model carefully defined and

evaluated – perhaps using ▶ optimization and param-

eter estimation – one may wonder how the long-term

behavior of a dynamical system changes when these

parameters are changed. This question is the basis of

bifurcation theory and it underlies a qualitative

understanding of many biological processes and tran-

sitions, such as the onset of oscillation, switching,

morphogenesis, multi-stability, emergence, and

localization.

Bifurcation theory can be applied to a wide variety

of deterministic models and processes, including

▶ partial differential equation (PDE) models

and ▶ dynamical systems theory, delay differential

equations but for simplicity this entry shall consider

only the context of ▶ dynamical systems theory,

ordinary differential equations. Specifically, consider

such a parametrized ▶ODE model written in

state-space form:
x ¼ f x;Að Þ; (1)

where x E Rn is the set of states of the system, l E Rp is

a parameter set, and a dot denotes differentiation with

respect to time.
In contrast with many equations arising in physics,

engineering, and economics, a key feature of most

biological models of the form (Danino et al. 2010) is

that they are nonlinear, essentially because of large

deformations, excitability, thresholding and interac-

tion processes governed by the ▶ law of mass action.

Nonlinear systems can have multiple ▶ stable steady

states, or ▶ attractors, that can have many different

stable regions, or basins of attraction in state space.

They can also often support ▶ limit cycle periodic

oscillations. Moreover, as a parameter is varied,

a new attractor can emerge out of “thin air,” typically

when an unstable state gains local stability. For this

reason, usual numerical methods and computer simu-

lation for ordinary differential equations (▶ Partial

Differntial Equations, Numerical Methods and Simu-

lations; ▶Ordinary Differential Equation (ODE),

Model) can be highly unreliable in understanding the

true dynamics of the system, if the method is based on

simulation from fixed initial conditions. Bifurcation

theory can be especially useful in this context as it

enables the tracing of paths of unstable states as param-

eters vary and hence determine precisely the transi-

tions (or “bifurcation points”) at which qualitatively

distinct stable behavior emerges.

The codimension of a bifurcation is defined as the

number of parameters required to observe a bifurcation

in a structurally stable way. So a codimension-one bifur-

cation can be observed at an isolated value of a single

parameter, whereas a codimension-two bifurcation

would typically only be seen at an isolated point in

a two-parameter diagram. There is a distinction drawn

between local bifurcations that can be understood in

terms of loss of ▶ stability of a simple state such as an

equilibrium or a limit cycle and global bifurcations that

cannot. Often global bifurcations involve

rearrangements of stable and unstable manifolds of

other simple states, such as in homoclinic bifurcations.

A codimension-one bifurcation can often be

represented in a bifurcation diagram that depicts

a measure, or norm, of a system state against a single

parameter; see Fig. 1 for examples. Codimension-one

bifurcations can also be used to divide regions in

a parameter plain in which qualitatively distinct

bifurcations can occur.

A comprehensive treatment of local bifurcations of

codimension-one and two, and many examples

of global bifurcations can be found in Kuznetsov

(2004). That book also contains analytical and
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Fig. 1 Schematic bifurcation diagrams depicting

codimension-one local bifurcations. (a) An s-shaped fold featur-
ing two saddle-node bifurcations (at parameter values l1 and l2)

and a consequent parameter interval between these two values in

which bistability is observed. In this and subsequent panels, solid
lines represent paths of stable steady states and dashed lines

unstable steady states. Also ||x|| represents a characteristic

norm or scalar measure of the vector state x. (b) A supercritical

pitchfork bifurcation (upper plot) and a transcritical bifurcation

(lower plot). (c) A supercritical Hopf bifurcation (upper plot)
and a subcritical Hopf bifurcation (lower plot). Here, a curve

composed of solid circles represents a path of stable limit cycle

oscillations, whereas a curve of open circles represents a path of
unstable limit cycles. (d) A representation of a supercritical Hopf

bifurcation in state and parameter space
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numerical techniques for analyzing bifurcations in

practical examples, principally using the theory of

center manifolds and normal forms. That theory can

be seen as a counterpart to more traditional ▶ dynam-

ical systems theory, asymptotics, and singular pertur-

bations. The qualitative geometry or topology of

bifurcations is also stressed by Shilnikov et al.

(2001). Many examples in biological systems, espe-

cially in ▶ reaction-diffusion-advection equations are

found in Murray (2007), and applications to cell biol-

ogy in Fall et al. (2002). A more elementary introduc-

tion to bifurcation theory and nonlinear dynamical
systems theory, stability analysis in general can be

found in Strogatz (1994). For more on numerical tech-

niques for performing parameter continuation and

bifurcation analysis, see Krauskopf et al. (2007).

Rather than reiterate this theory, this entry shall try

to give a qualitative flavor to how bifurcation theory

can underlie several key phenomena in biological

systems. Specifically treated are threshold behavior,

oscillation, bi- and multi-stability, synchronization

and emergence of collective behavior, before some

final remarks on bifurcation theory applied directly to

experiments.
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Threshold

It is common in biological systems for a threshold

concentration of some chemical signal to be there in

order for certain behavior to be triggered. Thresholds

can often be understood in terms of the phenomenon of

excitability, which in itself is a property of a dynamical

system with two timescales, where a transient pushes

the system beyond the region where a large excitation

occurs. In systems that reach steady state though, the

variation of a parameter can cause a global bifurcation

that makes the large excitation occur.

Examples:
• Control of calcium oscillations, see for example

(Sneed and Keener 2008)

• ▶Cell cycle model analysis, bifurcation theory,

which is a canonical example of the practical appli-

cability of bifurcation theory in explaining how

biological decisions occur as emergent bifurcation

events upon integrating the various environmental

and internal parameters

Oscillation

Periodic oscillations are important in biology,

appearing in diverse areas such as ▶Circadian

rhythms, metabolic networks and their evolution,

heart beats, cell signaling, etc. Oscillations can be

described by simple harmonic motion, governed by

second-order linear ODEs, but such descriptions suffer

from several serious limitations. First, they are not

robust, as a small amount of damping destroys the

oscillation. Second, ▶ oscillation amplitude and

phase depends on the initial condition. Finally, the

frequency is typically not adaptable. In contrast, stable

limit cycles of nonlinear models are robust, because

following a small ▶ perturbation away from the cycle,

the system will return to the cycle by itself. Also, if the

dynamics changes a little, a limit cycle will still exist,

close to the original one.

The canonical way to generate oscillation from

a system that is otherwise at rest is via a ▶Hopf

bifurcation. These oscillatory instabilities can occur

in two ways (see Fig. 1c), either as a ▶ supercritical

bifurcation in which a stable limit cycle is created at

small amplitude, or as a ▶ subcritical bifurcation,

often accompanied by bistability which would

cause the jump to a fully formed large-amplitude

attractor.
Examples:

• The ▶Goodwin oscillator is a simplified model of

circadian rhythms based on a negative ▶ feedback

loop.

• The ▶ repressilator and oscillating network is

a simple ▶ network motif constructed by ▶model-

ing and simulation: synthetic models and methods.

It models a▶ gene regulatory network composed of

three genes which mutually repress each other in

sequence according to a ring structure.

• Spatiotemporal regulation of extracellular signal-

regulated kinase has been shown to result in rapid

and sustained nuclear-cytoplasmic oscillations

(Shankaran et al. 2009).

Bistability and Multi-stability

Bistability refers to the existence of two distinct

attractors to which the system may evolve given

different initial states or perturbations. A typical bifur-

cation scenario in which bistability occurs is via a pair of

▶ saddle-node bifurcations that are connected in an

S-shaped fold, see Fig. 1a. Such folded structures are

often seen as part of the the unfolding of a codimension-

two cusp bifurcation point (see Fig. 2a, b) which is one

of the elementary catastrophes of singularity theory.

Bistability also often accompanies subcritical

bifurcations, where an extra fold causes the unstable

bifurcating branch to turn around, become stable, and

coexist with the primary branch, again see Fig. 1.

Multi-stability refers the situation when there are

more than two competing attractors, each with distinct

basins of attraction, which can occur via a sequence of

bifurcations, or directly via a global bifurcation, such as

that caused by a Shilnikov-type homoclinic bifurcation.

Examples:

• The Toggle switch (Gardner et al. 2000) is

a synthetic biology construct that matches what is

believed to be a common ▶ network motif in sys-

tems biology. It is composed of two genes that

mutually repress each other, which causes

bistability between steady states in which either

one gene or the other is expressed at high levels.

• Multi-stability is also seen in unusual cell-division

phenotypes in ▶ cell cycle model analysis, bifurca-

tion theory and in recent systems biology models of

tumors as competing attracting states in cancer

dynamics (Huang et al. 2009).
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Fig. 2 Examples of two-parameter bifurcation diagrams indi-

cating parameter regions in which qualitatively distinct behavior

is observed. (a) A cusp bifurcation point linking two curves of

saddle-node bifurcations. (b) A representation of the cusp in

3D showing a norm of the solution state on the vertical axis.

(c) Codimension-two bifurcations in a simple model for plateau

bursting in excitable systems that arises in the unfolding of

a certain degenerate codimension-three bifurcation point; see

(Golubitsky et al. 2001). Here CP represents a cusp bifurcation

point, TB a Takens-Bogdanov point (where Hopf and

saddle-node combine), DH a degenarate Hopf bifurcation

(a transition between super and subcritical cases), SNIPER rep-

resents a Saddle Node of Infinite PERiod bifurcation point

(a kind of global bifurcation), SN a saddle node of equilibria,

SNP a saddle node of periodic orbits, HB a Hopf bifurcation, and

HC a homoclinic bifurcation. (d) Two-parameter bifurcation

diagram of an open-cell model for calcium oscillations (Sneed

and Keener 2008). The lines (for three different values of

a parameter d) represent Hopf bifurcation curves in the param-

eter plane and separate regions in which oscillations do and do

not exist
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Synchronization and Emergence of Behavior

Many biological systems composed of near identical

cells, components, or organisms are known to undergo

common collective dynamics. The simplest such state

is that of synchronization, where each state oscillates,

typically periodically perfectly in time with the others.

This is an example of a symmetric state of a dynamical

system and the onset or loss of synchronicity can be

understood as a form of symmetry breaking bifurca-

tion. Other collective states include spatially localized

patterns of either steady state or dynamic behavior. For

more on the bifurcation theory of pattern formation

systems, see (Hoyle 2006).

Example:

• Collective oscillations in proliferating bacterial

population (Danino et al. 2010).
Experimental Bifurcation Theory

Recently, the possibility of performing bifurcation

analysis directly in▶ feedback controlled experiments

has raised (Sieber et al. 2008). This poses the possibil-

ity of direct intervention in vitro or in vivo in order to

analyze, or indeed to influence and control bifurcations

to desirable or undesirable states as an external or

internal parameter is varied. Such technology is likely

to have a significant impact on synthetic biology and

personalized medicine.
Cross-References

▶Attractor

▶Bifurcation

▶Bifurcation, Supercritical and Subcritical
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▶Cell Cycle Model Analysis, Bifurcation Theory

▶Circadian Rhythm

▶Continuous Model

▶Differential-Difference Equations

▶Dynamical Systems Theory, Asymptotics and

Singular Perturbations

▶Dynamical Systems Theory, Delay Differential

Equations

▶ Feedback Regulation

▶Gene Regulatory Networks

▶Goodwin Oscillator

▶Hopf Bifurcation

▶Law of Mass Action

▶Limit Cycle

▶Metabolic Networks, Evolution

▶Network Motif

▶ Partial Differntial Equations, Numerical Methods

and Simulations

▶Optimization and Parameter Estimation, Genetic

Algorithms

▶Ordinary Differential Equation (ODE)

▶Oscillation Amplitude

▶ Partial Differential Equation (PDE), Models

▶ Periodic Oscillation

▶ Perturbation

▶Reaction-Diffusion-Advection Equation

▶Repressilator and Oscillating Network

▶ Saddle-Node Bifurcation

▶ Stability

▶ Stability, States and Regions

▶ Steady State
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Synonyms

Differential equations with deviating arguments;

Differential-difference equations; Functional differen-

tial equations; Time delay
Definition

Delay differential equations (DDE) are equations

whose solution depends on not just a single initial

condition at time, t ¼ t0, but also on the past history

of the system. DDEs can be classified as retarded or
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Topic Problem formulation Approach Applications

Nonlinear ẏ(t) ¼ f(y(t), y(t � t), u(t)) Perturbation method with Lambert

function

HIV, chatter

Multiple delays _yðtÞ þPN
i¼1 Aiyðt� tiÞ þ ByðtÞ ¼ uðtÞ Superposition or modified Lambert

function

HIV, multiple regenerative effect

in chatter

Time-varying ẏ(t) + A(t)y(t � t) + B(t)y(t) ¼ u(t) Floquet theory, Wronskian matrix

with Lambert function

Milling chatter
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neutral and continuous or discrete. In general,

a discrete delay differential equation can be written as

dny

dtn
¼ f ðt; a0ðtÞyðtÞ; a1ðtÞy0ðtÞ; . . .aðtÞn�1y

n�1ðtÞ;
b0ðtÞyðt� tÞ . . .bn�1ðtÞyn�1ðt� tÞÞ

(1)

where t represents a point of time in the past history

of the equation. Note, when bi ¼ 0 for all i that the

system is just an ordinary differential equation. How-

ever, when bi¼ 0 for i> 0 then the system is defined as

a retarded differential equation. If bi 6¼ 0 for any i> 0 the

system is defined to be of neutral type. Equation 1 is an

example of a DDE with only one time delay, t ¼ t but
there can be multiple time delays, t1, t2,. . ., tn, in the

system. Most DDEs in physics, engineering, and biol-

ogy are of the discrete typewith one time delay. Another

representation for a DDE is defined as a continuous

delay differential equation.
dy

dt
¼ f t; yðtÞ;

Z 1

0

yðt� tÞgðtÞdt
� �

(2)

Note that when one considers the distribution

function g(t) to be a gamma distribution (more

precisely an Erlang distribution), the system can

reduce to the discrete delay type.
Characteristics

Delays are inherent in many physical, biological,

economic, and engineering systems. The first appear-

ance of DDEs was in a paper by Kondorse in 1777 but

their use did not become popular until the early 1940s

and 1950s when Nyquist, Chebotarev, and Pontryagin

pioneered work investigating the stability of DDEs

(Pontryagin 1955; Krall 1965). More recently, the

advances into the theory, solution, and application of
DDEs has been led by Bellman, Cooke, Hale, Kuang,

and Stepan (Bellman and Cooke 1963; Stepan 1989;

Hale 1977; Corless et al. 1996). Time delays can be

used to represent self-oscillating systems, economic

futures, and in engineering, pure delays are often

used to ideally represent the effects of transmission,

transportation, and inertial phenomena. They are also

quite popular in biology, where they can be used to

model gestation, maturation, transcription, and

numerous cell-cycle phenomena. Delay differential

equations constitute basic mathematical models for

such real phenomena. However, there is a principal

difficulty in studying DDEs hidden in their special

transcendental character which leads to an infinite

spectrum of frequencies. In other words, all DDEs

will result in an infinite number of eigenvalues.

Hence, they are often solved using numerical methods,

asymptotic solutions, approximations (e.g., Padé)

and graphical approaches or through the study of

bifurcation of their characteristic equations to

determine their stability.

Characteristic Equation (zeros of the transcenden-
tal equation) The characteristic equation for a discrete

time delay equation at steady state, with a single delay

(( Eq. 1), with bi ¼ 0 for i > 1) can be written as

P1ðlÞ þ P2ðlÞe�lt ¼ 0 (3)

where P1 and P2 are functions of the eigenvalues, l of

the equation. P1 + P2 ¼ 0 represent the characteristic

equation for the system when t ¼ 0. For the equation

given by Eq. 2, the characteristic equation looks like
P1ðlÞ þ P2ðlÞFðlÞ ¼ 0 (4)

where the Pi are the same as in Eq. 3 but instead of the

explicit exponential term, elt, we find, F(l) to be the

Laplace transform of the delay kernel, defined as

FðlÞ ¼ R1
0

gðtÞe�lt
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The basic idea behind studying the characteristic

equation is to determine conditions on the parameters

and the time delay, t, that causes a bifurcation in

stability of the system. One starts by looking at

the conditions for stability when t ¼ 0 (all roots of

characteristic equation lie in the left half plane) and

then consider t > 0 to find when the roots of the

characteristic equation cross the imaginary axis

(El’sgol’ts and Norkin 1973). As t varies, these roots
change. Of interest is any critical values of t at which
a root of this equation transitions from having negative

to having positive real parts. If this is to occur,

there must be a boundary case, a critical value of t,
such that the characteristic equation has a purely

imaginary root.

Early stability methods developed and presented in

the classic papers of Pontryagin (1955) and Nyquist

(Krall 1965) have been used for many years to study

bifurcations in transcendental equations. However,

these methods rely heavily on the principal of the argu-

ment for determining where the poles of the

transcendental equations are located. In other words,

they use geometric principles to determine the number

of roots of these equations. The monograph by

Chebotarev and Meiman (1949) shows how to extend

the Routh-Hurwitz criteria for polynomials to quasi-

polynomials. However, it has been noted that the

application of the Chebotarev criterion as an analytical

tool is not effective practically. Recent results using

Sturm sequences (Forde and Nelson 2000) relax the

need for the application of the argument principle and

provides an analytical criterion that is practical to use.

The Sturm sequence provides an algorithm for

determining stability of low degree, i.e., less than degree

4, polynomials and is explained by the following.

Given a system of differential equations
dy
dt ¼ f ðyðtÞ; yðt� tÞÞ with a discrete delay t, and

a stable steady state, ys , for t ¼ 0, will lead to
XN
i¼1

ail
i þ e�lt

XM
i¼1

bil
i ¼ 0

as the characteristic equation of the system about ys.

Then there exists a t∗ > 0 for which ys undergoes
a nondegenerate change of stability if and only if the

equation

1. S(m) ¼ 0 (defined by substituting l ¼ m + in into

the characteristic equation, separating the real and
imaginary parts and squaring both sides. Then

allowing m ¼ n2 and defining the resulting equation

as S(m)) has a positive real root m∗¼ (n∗)2, such that
2. S0(m∗) 6¼ 0

Example

l2 þ alþ bþ ðclþ dÞe�lt ¼ 0: (5)

A steady state with this characteristic is stable for t¼ 0

if all of the roots of
l2 þ ðaþ cÞlþ ðbþ dÞ ¼ 0

have negative real part. By the Routh-Hurwitz condi-

tions, this occurs if and only if a + c> 0 and b + d> 0.

Letting l ¼ in we arrive at the following form of

equation
SðmÞ ¼ m2 þ ða2 � c2 � 2bÞmþ ðb2 � d2Þ ¼ 0: (6)

Let A 	 a2 � c2 � 2b and B 	 b2 � d2. Equation 6

has a positive real root in two circumstances. Clearly,

since the lead coefficient is positive, if B< 0 then there

is a positive real root. If B > 0, the roots of Eq. 6 are
�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B

p

2
;

and there is a simple positive root if and only if A < 0.

Thus one can conclude

Proposition 1. A steady state with characteristic
(Eq. 5) is stable in the absence of delay, and becomes

unstable with increasing delay if and only if
1. a + c > 0 and b + d > 0

2. Either b2 < d2, or b2 > d2 and a2 < c2 + 2b.

Analytical Solutions

Finding analytical solutions for DDEs is difficult and

most of the theory to date focuses on computation

methods for solutions or methods for determining sta-

bility via computation or analytics. However, a group

at the University of Michigan (Asl and Ulsoy 2003; Yi

et al. 2007) recently developed an analytic approach,

based on the matrix Lambert function, for the complete

solution of a system of linear constant coefficient

DDEs. This method can be applied to study eigenvalue
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assignment, pole placement, controllability and

observability, and time-varying coefficients. The

method has been validated in engineering problems

where delay is significant, e.g., regenerative chatter in

a machining operation on a lathe and a biological

problem, e.g., control of drug therapies. The matrix

Lambert function-based solution approach for DDEs is

analogous to the use of the matrix exponential for the

free and forced solution of linear constant coefficient

ordinary differential equations. Systems with multiple

time delays and nonlinearities arise quite naturally in

engineering and biology and yet little attention has

been paid to their analyses. To explain, look at

a second-order linear system of DDEs with state

space given by~x.
xðtÞ þ AxðtÞ þ Adxðt� tÞ ¼ 0: (7)

A andAd are the linearized coefficient matrices and

are functions of the dynamical system. The analytical

method to solve scalar DDEs, and systems of DDEs

using the matrix Lambert W function was introduced

by Asl and Ulsoy (2003) and extended by Yi (2007) to

obtain the solution of general systems of DDEs in

matrix-vector form. First assume a solution form for

Eq. 7 as
xðtÞ ¼ eStx0; (8)

where S is n � n matrix. In the usual case, the

characteristic equation for Eq. 7 is obtained from

the equation by looking for nontrivial solution of the

form estC where s is a scalar variable and C is con-

stant (Hale 1977). However, such an approach can

neither lead to any interesting result nor help in deriv-

ing a solution to systems of DDEs in Eq. 7. Alterna-

tively, one could assume the form of Eq. 8 to derive

the solution to systems of DDEs in Eq. 7 using the

matrix Lambert W function. Substituting into Eq. 7

yields
SeStx0 þ AeStx0 þ Ade
Sðt�TÞx0 ¼ 0; (9)

and using the property of the exponential

eSðt�TÞ ¼ eSð�TþtÞ ¼ eSð�TÞeSt (10)
one can rewrite as

SeStx0þAeStx0þAde
�STeStx0 ¼ðSþAþAde

�STÞeStx0 ¼ 0:

(11)

Because the matrix S is an inherent characteristic of

a system and independent of initial condition, we can

conclude that for Eq. 11 to be satisfied for any arbitrary

initial condition, x0, and every time, t, we must have

Sþ Aþ Ade
�ST ¼ 0: (12)

In the special case that Ad ¼ 0, the delay term in

Eq. 7 disappears, Eq. 7 becomes ODE, and Eq. 12 is
Sþ A ¼ 0 , S ¼ �A: (13)

Then, substitution into Eq. 8 yields
xðtÞ ¼ e�Atx0 (14)

This is the typical solution to ODE in terms of the

matrix exponential. Multiply TeST eAT on both sides of

Eq. 12 and rearrange to obtain

TðSþ AÞeSTeAT ¼ �AdTe
AT : (15)

In the general case, when the matrices A and Ad do

not commute, neither do S and A; thus
TðSþ AÞeSTeAT 6¼ TðSþ AÞeðSþAÞT : (16)

Consequently, to adjust the inequality in Eq. 16 and

to take advantage of the property of the matrix Lambert

W function defined by

WðHÞeWðHÞ ¼ H; (17)

we introduce an unknown matrix Q so that satisfies,
TðSþ AÞeðSþAÞT ¼ �AdTQ: (18)

Comparing Eqs. 17 and 18 we note that
ðSþ AÞT ¼ Wð�AdTQÞ: (19)
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Then from Eq. 19, solving for S gives
S ¼ 1

T
Wð�AdTQÞ � A: (20)

Substituting Eq. 20 into Eq. 15 yields the following

condition, which can be used to solve for the unknown

matrix Q:

D

Wð�AdTQÞeWð�AdTQÞ�AT ¼ �AdT: (21)

To date, many examples have been studied and

Eq. 21 always has a unique solution Qk for each

branch, k. However, a proof of this result is needed.

The solution is obtained numerically, for a variety of

initial conditions, using the “fsolve” function in

Matlab. The matrix Lambert W function defined in

Eq. 17 contains an infinite number of branches

(Corless et al. 1996). Corresponding to each branch,

k (¼ � 1,. . ., �1, 0, 1,. . ., 1), of the Lambert

W function, forHk¼�AdTQk, we compute the eigen-

values l̂ki, i ¼ 1, 2, of Hk and the corresponding

eigenvector matrix Vk. Hence, the matrix Lambert

W function is
WkðHkÞ ¼ Vk
Wkðl̂k1Þ 0

0 Wkðl̂k2Þ

	 

V�1

k : (22)

Finally, Sk is computed corresponding to Wk from

Eq. 20 and summated to be the solution to the systems

of DDEs Eq. 7 as
xðtÞ ¼
X1
k¼�1

eSktCk (23)

where the Ck is a 2 � 1 coefficient matrix computed

from a given preshape function x(t) ¼ g(t), which

is initial state of DDEs Eq. 7, for t 2 [�T, 0]

(Yi et al. 2007).

Each branch of the Lambert W function can be

computed analytically as shown in Corless et al.

1996), and one of the merits of the matrix Lambert

W function approach is that one can compute all of the

branches of the function using commands already
embedded in the various commercial software pack-

ages, such as Matlab, Maple, and Mathematica.

The following table provides an overview of where

the current state of studying DDEs is.
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Dysplasia

Barbara J. Davis

Section of Pathology, Tufts Cummings School of

Veterinary Medicine Biomedical Sciences,

North Grafton, MA, USA
Definition

Dysplasia is an excessive, disorderly grown tissue in

which cells “abnormally increase in number,” lose
uniformity and polarity, and may either stop prolifer-

ating after cessation of the stimulus that evoked the

growth or progress to neoplasia.
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