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Definition

A named entity is an atomic element in a text that is

assigned to a predefined class such as person, location,

date and time, disease, or protein.
Characteristics

In ▶ named entity recognition in systems biology,

named entities pertain to categories relevant to biology,

such as individual genes or gene families, cell lines,

tissues, cell compartments, species, chemical

compounds, and kinetic constants. In many cases,

membership to a particular class of entities is indicated

by certain characteristics of the terms in that class: for

example, the names of persons which start with an

initial uppercase letter, the names of many enzymes

which end with the suffix “-ase,” names of cellular

compartments which are of Latin origin and use

syllables uncommon in English (as in “nucleus,”

“cytoplasm,” etc.). Named entities often have

synonyms (such as “human” and “Homo sapiens” or

“MAPK1”and “ERK-2”) and often, homonyms exist

as well (such as “p40” designating IL9, RPSA, or

MAPK1, among others). To distinguish whether an
W. Dubitzky et al. (eds.), Encyclopedia of Systems Biology, DOI 1
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occurrence of “p40” in a text refers to a protein,

a Propranolol dosage of 40 mg, or “page 40” is the

task for ▶word sense disambiguation.
Named Entity Recognition

J€org Hakenberg

Department of Computer Science and Department of

Biomedical Informatics, Arizona State University,

Tempe, AZ, USA
Definition

Named entity recognition (NER) is a subtask to▶ infor-

mation extraction and ▶ text mining, concerned with

spotting and classifying (▶Classification) atomic ele-

ments in a text, named entities (▶Named Entity),

such as persons, locations, genes, proteins, or ▶ gene

ontology terms.
Characteristics

The goal of named entity recognition is to find all occur-

rences pertaining to a given class of entities, such as

genes, enzymes, and drugs, in a piece of text. Knowing

about the entities contained in a text facilitates indexing

and search (▶ InformationRetrieval) and summarization

of documents and passages. It is also a key step for

subsequent ▶ information extraction that focuses on

single entities as well as their associations with others

of the same or different classes, such as protein-protein

interactions or gene-disease associations.
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NER consists of two basic steps: recognizing that

a word or phrase refers to a concept of interest

(▶Automated Term Recognition) and assigning the

proper entity class. Most of the current NER methods

focus on a single class of entities (to spot just drug

names, for example), and these two steps often are

handled at the same time. Related to NER is ▶word

sense disambiguation, which deals with assigning the

proper semantic category (class) to a term in case of

ambiguities (see examples below).

The challenges for NER arise from homonyms, syn-

onyms, and acronyms: one and the same termmight refer

to multiple entities (“insulin” as a protein or a drug;

“white” as a color or a Drosophila gene), an entity can

have multiple names (“Death Receptor 5” and

“TNF-related apoptosis-inducing ligand receptor 2” as

synonyms for the “Tumor necrosis factor receptor super-

familymember 10B” gene), and acronyms/abbreviations

often overlap with abbreviations referring to other

entities (see example on “ACE” below). Tamames and

Valencia (2006) discuss nomenclature guidelines and

usage of gene names over time in more detail.

Methods

The basic idea behind most methods for named entity

recognition is to spot terms based on characteristics that

are particular to names from a given entity class, and

then expand “seed” terms to larger phrases when possi-

ble. Such characteristics can be inherent to a single

word: Examples are the suffix “-ase” hinting on an

enzyme; the word “white” being marked as a noun

rather than an adjective in one particular sentence (see

“▶Part-of-Speech Tagging”); or capitalization which

usually indicates a proper noun as in “Death Receptor

5.” In addition, the surrounding words in a sentence or

a larger passage often contain similar hints: If a sentence

mentions “peptidase activity,” the acronym “ACE”

is more likely to refer to “Angiotensin-converting

enzyme” than to “affinity capillary electrophoresis,”

thus NER can assign the class “protein.”

The most successful NER methods that yield high

recall and precision employ supervised machine learn-

ing (▶Learning, Supervised) techniques that draw all

such characteristic properties (also called features) from

a pre-annotated set of examples, usually a set of sentences

in which all occurrences of one or more entity class are

marked as such, so that the learner encounters positive

and negative examples for a class. Recently, efforts are

under way to create such datasets (called corpora)
by automatic means instead of manual curation, also

see “▶Automated Corpus Generation (CALBC)”.

There exist several community challenges in the

spirit of CASP (Moult et al. 1995) that include tasks on

NER, the most prominent in the biomedical text mining

domain being BioCreative (Smith et al. 2008). Individ-

ual systems tested on BioCreative NER tasks to recog-

nize gene names achieved an f-score of above 87% and a

theoretical joint system could reach more than 90%.

Current, openly available systems include BANNER

(Leaman and Gonzalez 2008) and ABNER (Settles

2004). Tools that recognize gene names and map them

to identifiers (▶Named Entity Recognition and

Normalization of Species, LINNAEUS) are GNAT

(Hakenberg et al. 2011) and GeneTUKit (Huang et al.

2011), for example.
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Definition

Species named entity recognition and normalization

(here referred to as species NER) is the problem

of finding mentions of species in unstructured text

(▶Named Entity Recognition) and linking (normaliz-

ing) these mentions to appropriate database identifiers.

LINNAEUS (Gerner et al. 2010) is an application that

has been developed to perform species NER, and

serves as an example of how the problems involved

with species NER can be solved.
N

Characteristics

Introduction

Knowledge of what species are mentioned in a docu-

ment is useful in a range of situations. It can aid in

▶ information retrieval, that is, in the discovery of rel-

evant research articles by providing document search

systems with a method for filtering article search results

based on the species discussed in them. Species NER

can also help in a range of other ▶ text mining applica-

tions: for example, to accurately identify gene or ana-

tomical location names, identities of which cannot be

fully determined without knowing what species they

belong to (for an example of a typical text-mining

problem where species NER functionality is crucial,

see ▶Gene Normalization with GNAT).

Although species names are well-defined, species

NER is not trivial: many documents mention several

species, some use various non-standardized synonyms,

whereas some assume that – given the context – it is

obvious what species is referred to. For example, many

documents use “C. elegans” to refer to Caenorhabditis

elegans only, although this acronym could be used for

41 different species. The aim of a species named entity

recognition and normalization system is to identify
every mention of species in a given document and

link it to a database entry that describes the correct

species. Various species taxonomies and databases can

be used for normalization, for example, the NCBI

taxonomy (http://www.ncbi.nlm.nih.gov/Taxonomy/).

Any software tool aiming to perform species NER

with high accuracy need to overcome several chal-

lenges including

• Ambiguous species names, acronyms, and abbrevi-

ations (e.g., “yeast” and “C. elegans”)

• Misspellings (complex and less frequent scientific

names can often be misspelled)

• Different lexical variations of a species name

that authors may use (e.g., “fruit fly,” “Fruit flies,”

“D. melanogaster”)
There are various approaches that can be used to

identify species mentions in text. They typically follow

three steps: build an extensive dictionary of species

names of interest with the corresponding links to the

taxonomies; apply the dictionary to text to identify

candidate species mentions; and finally determine cor-

rect mappings through disambiguation. There are also

computational challenges in regard to achieving effi-

cient runtimes when applying such software, given the

number of potential species (the NCBI taxonomy, for

example, contains names and synonyms for half

a million species) to very large document sets such as

MEDLINE (containing about ten million scientific

abstracts, with a total of about 27 million species

mentions).

Generating a Dictionary of Species Names

In order to locate species names and link them to

database identifiers, existing taxonomies and ontol-

ogies (▶Ontology; ▶Ontology Lookup Service for

Controlled Vocabularies and Data Annotation) are

required. These resources contain names and syno-

nyms for various species. The resource that is most

commonly used for species identifiers in the biomedi-

cal domain is the NCBI taxonomy (also used by LIN-

NAEUS). Other alternatives exist that may be more

suitable for other domains, such as uBio (www.ubio.

org; which may be more suitable for bio-diversity-

focused species NER).

Existing taxonomies and ontologies typically list

the scientific name (e.g., “Homo sapiens”) and com-

mon synonyms (e.g., human, man) for species. Still,

authors will often use other variations of these terms,

such as “H. sapiens,” “Human,” or “humans.” In order

http://dx.doi.org/10.1007/978-1-4419-9863-7_155
http://dx.doi.org/10.1007/978-1-4419-9863-7_153
http://dx.doi.org/10.1007/978-1-4419-9863-7_101479
http://dx.doi.org/10.1007/978-1-4419-9863-7_147
http://www.ncbi.nlm.nih.gov/Taxonomy/
http://dx.doi.org/10.1007/978-1-4419-9863-7_488
http://dx.doi.org/10.1007/978-1-4419-9863-7_1105
http://dx.doi.org/10.1007/978-1-4419-9863-7_1105
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to detect these variations, the species terms need to

be expanded to cover most common lexical variations

of the original terms. This is typically done using

a manually constructed set of rules automatically

applied to the whole taxonomy. In addition, manual

modifications may still be necessary after generating

the dictionary by expanding the terms in order to keep

the number of false negatives and positives (▶ False

Positive Rate) to a minimum. To reduce the number of

false negatives, some terms may need to be added to

the dictionary. For example, although “patient” strictly

is not the name of a species, for many biomedical text-

mining applications, linking the term “patient” to

human would make a large difference. Another exam-

ple, this time where it may be difficult to generate the

plural version of a term, is “mice” (“mouse” is often

included as a term in ontologies, while “mice” typi-

cally is not). Depending on the taxonomy used, it may

also be necessary to manually remove some terms in

order to avoid false positives. For the NCBI taxonomy,

two extreme examples are the terms “name” and

“spot” that are listed as synonyms forDioscorea trifida

and Leiostomus xanthurus, respectively.

Applying the Dictionary to Research Articles

A typical second step is the identification of strings in

text that match dictionary entries (candidate men-

tions). When applying the dictionary of expanded

terms to a large number of research documents, the

choice of algorithm for matching will have a large

impact on the amount of time and computer memory

required. For LINNAEUS and a dictionary extracted

from the NCBI taxonomy, this was solved by first

generating dictionary regular expressions, which in

turn are used to generate a list of all possible variations

of the regular expressions. This list is matched against

the text using a custom search algorithm, but alterna-

tives that use regular expressions in other ways are also

available (Møller 2008).

Determining the Correct Species Identifier for

Species Mentions

By the nature of using a dictionary for finding the

species mentions, all located mentions will also be asso-

ciated with the species identifiers associated to the rec-

ognized term. However, a significant portion of

mentions can be ambiguously matched to several iden-

tifiers (11% of all mentions in MEDLINE) and need to

be disambiguated (▶Word Sense Disambiguation).
These include terms such as “C. elegans” (matching

41 different species) or “CMV” (matching both

cytomegalovirus and cucumber mosaic virus). The dis-

ambiguation methods used by LINNAEUS include

searching for explicit mentions of candidate species

elsewhere in the document (e.g., an explicit mention of

“Caenorhabditis elegans” earlier or later in the docu-

ment) and – in the case of overlapping mentions – only

retaining the mentions of longest length. Also used are

“background frequencies” of explicit mentions of spe-

cies in MEDLINE. More precisely, for each species

name we can calculate how many times it non-

ambiguously appears in MEDLINE, and then use these

to filter out extremely rare interpretations of particularly

ambiguous species acronyms or synonyms. Using these

background frequencies, mentions such as for example

“C. elegans” can be disambiguated, with high accuracy,

to Caenorhabditis elegans (since this species is men-

tioned almost 250 times more often than the second

most frequently mentioned species alternative,

Cunninghamella elegans).

Evaluating the Accuracy of Species NER Systems

A key part in the development of text-mining software

in general is to perform an evaluation of its accuracy in

order to estimate the quality of the data generated by

the tool. This is typically performed by applying the

tool to a set of documents, called corpus (▶Named

Entity Recognition; ▶Text mining), for which one or

more human annotators have determined what the

correct output should be. The output generated by the

tool can then be compared against the manual annota-

tions, enabling the computation of precision and recall

accuracy levels.

The only currently freely available corpus manually

annotated for species mentions is a corpus constructed

as part of the LINNAEUS project. This corpus consists

of 100 open access full-text documents and annota-

tions for all mentioned species, linked to NCBI taxon-

omy identifiers. In total, the corpus contains 4,259

references to 233 different species.

LINNAEUS

LINNAEUS is a software package that has been devel-

oped in order to enable accurate and fast species NER

of biomedical articles. It can process documents in

a number of input formats (MEDLINE XML, PubMed

Central XML, BioMed Central XML, or plain-text

files) and provides the input text annotated with

http://dx.doi.org/10.1007/978-1-4419-9863-7_224
http://dx.doi.org/10.1007/978-1-4419-9863-7_224
http://dx.doi.org/10.1007/978-1-4419-9863-7_184
http://dx.doi.org/10.1007/978-1-4419-9863-7_155
http://dx.doi.org/10.1007/978-1-4419-9863-7_155
http://dx.doi.org/10.1007/978-1-4419-9863-7_101479
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disambiguated species mentions as output (for an

example, see Fig. 1).

The general processing workflow of LINNAEUS is

given in Fig. 2. The NCBI taxonomy and manual addi-

tions are combined to construct a dictionary, which is

applied to a set of documents. Disambiguation is

performed using the rules mentioned above. Additional

rule-based algorithms are used to detect author-declared

acronyms, remove common false positives, and assign
BACKGROUND: Mutations in the gene encoding the E3 ubiquitin
ligase parkin (PARK2) are responsible for the majority of autosomal
recessive parkinsonism. Similarly to other knockout mouse models
of PD-associated genes, parkin knockout mice do not show a
substantial neuropathological or behavioral phenotype, while loss
of parkin in Drosophila melanogaster leads to a severe phenotype,
including reduced lifespan, apoptotic flight muscle degeneration
and male sterility. In order to study the function of parkin in
more detail and to address possible differences in its role in
different species, we chose Danio rerio as a different vertebrate
model system.

Named Entity Recognition and Normalization of Species,
LINNAEUS, Fig. 1 An example of a portion of an abstract

marked up for species names (that are hyperlinked to the NCBI

taxonomy). Output is also generated in a table format for further

software processing

NCBI
dictionary

Manually
added

synonyms

Generate
dictionary regular

expressions

Dictionary
postprocessing

Ac
de

DisambiguationTaggingDocuments

a

b

Dictionary

Named Entity Recognition and Normalization of Speci
(a) Generating a species dictionary. (b) Locating and identifying s
identity probabilities (using background mention fre-

quencies) to mentions that still are ambiguous.

Compared against the manually annotated

corpus described in the previous section, LINNAEUS

achieves an accuracy of 94% recall and 97% precision.

It is capable of processing text documents at a fast rate:

consuming about 2 GB memory and running on a

2.66 GHz CPU, LINNAEUS can process documents

at a rate of about 1,100 MEDLINE abstracts or about

70 PubMed Central full-text documents per second.

Additionally, the user can instruct LINNAEUS to

utilize multiple threads, which would lead to faster

processing on multicore CPUs.

LINNAEUS is available for download as a

stand-alone application and as a web service at http://

linnaeus.sourceforge.net.

Related Software

There are several tools available for species NER.

Whatizit organisms (Rebholz-Schuhmann et al. 2007)

is a species NER and normalization web service hosted

by the European Bioinformatics Institute (EBI). Simi-

lar to LINNAEUS,Whatizit organisms is also based on

the NCBI taxonomy. Taxongrab (Koning et al. 2006) is

able to recognize a wide variety of scientific species

names using a set of rules, and is not limited to any
Dictionary

Stop terms

Acronym
background
frequencies

Species
background
frequencies

Annotations

Assign
frequency

probabilities

Filter common
English words

ronym
tection

es, LINNAEUS, Fig. 2 LINNAEUS processing workflow.

pecies names in text using the constructed dictionary

N

http://linnaeus.sourceforge.net
http://linnaeus.sourceforge.net
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specific taxonomy. It, however, does not provide nor-

malization of species mentions (linking to database

identifiers) or recognition of common species names.
Cross-References

▶Named Entity

▶Named Entity Recognition

▶Ontology Lookup Service for Controlled

Vocabularies and Data Annotation

▶Ontology

▶Text Mining

▶Word Sense Disambiguation
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Definition

The NCI Thesaurus is a comprehensive collection

of terms relating to cancer biology, clinical oncol-

ogy, and cancer epidemiology. The NCI Thesaurus

was conceived in the 1990s as a compendium of

everything that the NCI cared about in its research

portfolio.
Cross-References
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National Center for Biomedical Ontology

Mark A. Musen

Stanford Center for Biomedical Informatics Research,

Stanford University, Stanford, CA, USA
Definition

One of the eight National Centers for Biomedical

Computing established under the original NIH

Roadmap in the 2000s, the NCBO is centered at

Stanford University with collaborators at the Mayo

Clinic (Rochester, MN), the University at Buffalo,

and the University of Victoria (Canada), among other

institutions. The NCBO maintains a comprehensive

repository of biomedical terminologies, ontologies,

and models; develops software tools to assist biomed-

ical investigators in the use of ontologies; and collab-

orates with a wide range of investigators on the use

of semantic technology in biomedicine. See http://

bioontology.org.
Cross-References
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Infection
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Center for Pulmonary and Infectious Disease Control,
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Synonyms

Killer cells; M. tb infection; NK cells, M. tb infection
Definition

Natural killer cells are lymphocytes that comprise an

important arm of the ▶ innate immunity. They are
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named natural killer cells because of their ability to

lyse certain tumor cells without prior sensitization.

This ability makes them different from B and

T lymphocytes. Natural killer cells mediate protection

against viruses, bacteria, and parasites by lysing

infected cells and by secreting ▶ cytokines that aug-

ment the adaptive immune response.
Enhance phago-
Iysosomal fusion

Regulate CD8+ T-cell
effector function

Natural Killer Cells, Mycobacterial Infection,
Fig.1 Differential functional facets of NK cell in mycobacterial

infection

N

Characteristics

Natural killer cells are the third main lymphocyte

population. They share same progenitors which gener-

ate B and T lymphocytes but they do not express any of

the T or B lymphocyte markers. NK cells are charac-

terized phenotypically by the expression of CD56 and

lack of expression of CD3.

Monoclonal antibodies specific for NK-cell markers

led to the discovery of two distinct populations of human

NK cells based upon the cell-surface expression of CD56,

CD56bright, or CD56dim (Robertson and Ritz 1990; Lanier

et al. 1986). CD56 is an isoform of the human neural-cell

adhesion molecule and a glycoprotein expressed by vari-

ous cells like neurons, glia, skeletal muscle, and natural

killer cells. CD56 plays an important role in cell–cell

adhesion, synaptic plasticity, and memory. CD56dim

human NK cells constitute a major population (around

90%) of NK cells and express high levels of Fcg receptor
III (FcgRIII, CD16), whereas less than 10% of NK cells

are CD56brightCD16dim or CD56brightCD16� (Cooper

et al. 2001a). Both these subsets uniformly express NK

group 2, member D (NKG2D), CD161, NK-cell protein

46 (NKp46), and CD122 but differ in the expression of

various other NK receptors (Freud et al. 2006). CD56bright

NK cells express no or very low expression of KIRs

(killer-cell immunoglobulin-like receptors) and ILT-2

(an inhibitory receptor) but high-level expression of

CD94 and NKG2A inhibitory receptors compared to

CD56dim NK cells (Andre et al. 2000; Voss et al. 1998;

Colonna et al. 1997). These two subsets also differ in the

expression of various cytokines and chemokine receptors

like c-kit, IL-1R1, CCR7, CXCR1, and CX3CR1 (Matos

et al. 1993; Cooper et al. 2001b; Campbell et al. 2001),

and adhesion molecules like CD2, CD62L, CD44,

and CD49 (Lanier et al. 1986; Frey et al. 1998; Sedlmayr

et al. 1996).

NK-cell subsets also differ in their functional

responses. CD56dim NK cells have been found

to be more cytotoxic than CD56bright NK cells
(Nagler et al. 1989). On the other hand, CD56bright

NK cells produce high levels of immunoregulatory

cytokines like interferon- g (IFN-g), tumor necrosis

factor b (TNF-b), IL-10, IL-13 and granulocyte–

macrophage colony-stimulating factor (GM-CSF) com-

pared to CD56dim NK cells (Cooper et al. 2001c).

Role in Mycobacterial Infection

Tuberculosis is a leading cause of death from infectious

diseases worldwide, claiming an estimated 1.3 million

lives annually. Multidrug-resistant tuberculosis con-

tinues to spread in many parts of the world, requiring

therapy with potentially toxic agents for a long time,

compared to that for drug-susceptible tuberculosis.

Development of various strategies which augments

innate immunity against ▶Mycobacterium tuberculosis

constitutes an important component to fight against

both drug-resistant and drug-susceptible tuberculosis

(Dhiman et al. 2009).

Natural killer cells, an important part of innate

immune defense, have been found to play an essential

role in immune defenses against cancer and infectious

diseases in various experimental settings. NK cells kill

autologous infected cells without prior sensitization

through perforin or Fas/Fas ligand pathway and by

secretion of various cytokines, thus playing a central

role in innate immunity against microbial pathogens

(Vankayalapati and Barnes 2009).

It has been shown that NK cells exert antimyco-

bacterial activity using various mechanisms (Fig. 1).

First, they kill mycobacteria in vitro by inducing

apoptosis in infected monocytes mediated by NKp46

recognition of vimentin and NKG2D recognition of

its ligand ULBP-1 (Vankayalapati et al. 2002;

http://dx.doi.org/10.1007/978-1-4419-9863-7_950
http://dx.doi.org/10.1007/978-1-4419-9863-7_947
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Vankayalapati et al. 2005; Garg et al. 2006). Mycobac-

terial ▶ infection leads to increase in vimentin and

ULBP-1 expression on infected macrophages and NK

cells lyse these cells via ligation ofNKp46with vimentin

and NKG2D with ULBP-1. Secondly, they shape the

adaptive immune response by regulating CD8+ T-cell

effector function against mononuclear phagocytes

infected with M. tuberculosis (Vankayalapati et al.

2004). NK cell–depleted peripheral blood mononuclear

cells of healthy tuberculin reactors show reduction in

frequency of M. tuberculosis–responsive CD8+IFN-g+

cells. These CD8+ cells also show decreased capacity

to lyse infected monocytes. Thirdly, they lyse regu-

latory T cells (Roy et al. 2008) which are expanded

T cells that express a regulatory phenotype (CD25 +

FoxP3+). It has been shown recently that regulatory

T cells prevent efficient clearance of ▶ infection in

infected mice by proliferating and accumulating at

sites of infection (Kursar et al. 2007; Scott-Browne

et al. 2007). T-regs have also been shown to inhibit

IFN-g production by BCG stimulated CD4 + CD25-

cells, thus clearly showing that they inhibit an effective

immune response (Li et al. 2007; Garg et al. 2008).

Fourthly, they also secrete IL-22, member of a group of

cytokines called the IL-10 superfamily. IL-22 has been

shown to restrict mycobacterial growth by enhancing

phagolysosomal fusion (Dhiman et al. 2009).
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Synonyms

Biomedical natural language processing (BioNLP);

Computational linguistics; Information extraction;

Natural language understanding; Text mining; Text

processing
Definition

Natural language processing is the analysis of linguistic

data, most commonly in the form of textual data such as
documents or publications, using computational

methods. The goal of natural language processing

is generally to build a representation of the text that

adds structure to the unstructured natural language,

by taking advantage of insights from linguistics.

This structure can be syntactic in nature, capturing the

grammatical relationships among constituents of the

text, or more semantic, capturing the meaning conveyed

by the text.

Natural language processing is used in systems

biology to develop applications that integrate informa-

tion extracted from the literature with other sources of

biological data (see ▶Applied Text Mining).
Characteristics

The typical natural language processing system consists

of a pipeline of components thatmanipulate an input text

in increasingly sophisticated ways. Generally, the aim of

each component is to add structure to the text that can be

used to facilitate downstream processing. The compo-

nents early on in the pipeline handle tasks that are close

to the surface strings of the text, while later components

aim to analyze concepts and relationships. Various

methods may be used to accomplish component tasks,

ranging from rule-based methods, such as regular

expressions and finite state automata, to statistical and

machine learning models.

In Fig. 1, we can see an example of the processing of

a single sentence from a biomedical text. Each level

will be discussed in more detail below.

Tokenization and Sentence Demarcation

Natural language processing is strongly word based

in that words are generally considered to carry the

meaning of a text. It is therefore important as a

preprocessing step to any further analysis to delimit

the individual word tokens that make up a text. This is

seen at the “Word” level in Fig. 1. This process is

referred to as tokenization. While a simple approach

is to split the text on any whitespace or punctuation,

some care must be taken in biomedical texts to appro-

priately handle punctuation that has special meaning

in certain contexts, such as a single quote in the repre-

sentation of a DNA strand (50-GCRTGNCCAT-30),
the characters in some chemical names (tricyclo

(3.3.1.13,7)decanone), hyphens which can indicate

charge (Cl-), constitute part of a gene or cell name

http://dx.doi.org/10.1007/978-1-4419-9863-7_100124
http://dx.doi.org/10.1007/978-1-4419-9863-7_100251
http://dx.doi.org/10.1007/978-1-4419-9863-7_150
http://dx.doi.org/10.1007/978-1-4419-9863-7_100988
http://dx.doi.org/10.1007/978-1-4419-9863-7_101479
http://dx.doi.org/10.1007/978-1-4419-9863-7_101481
http://dx.doi.org/10.1007/978-1-4419-9863-7_101481
http://dx.doi.org/10.1007/978-1-4419-9863-7_133
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(hsp-60, t-cell), or a knocked out gene (lush- flies),

etc. Thus, tokenization tools sensitive to the biomedi-

cal context are required.

As a precursor to syntactic analysis, it is also

important to delimit individual sentences within a text.

This is because the sentence is generally the grammatical

unit of a text. Similarly to tokenization, sentence splitting

generally involves taking advantage of a basic heuristic:

look for normal sentence-final punctuation (period or

question mark) followed by a capital letter. However,

again complications can be introduced in the context of
names containing initials (e.g., H.G. Wells or Dr.

Bronner’s soap) where the heuristic would incorrectly

split a sentence into multiple pieces. Similarly, domain-

specific conventions that sometimes require a sentence-

initial, lowercase letter can cause problems for sentence

demarcation, such as in the following example:

The process of activation involves [. . .] phosphorylation
of tyrosine kinases. p21(ras), a guanine nucleotide

binding factor, mediates T-cell signal transduction . . .
(from PMID 8887687, with thanks to Bob Carpenter

for finding it)
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Syntactic and Morphological Analysis

Syntactic information about the text can be important to

assist in resolving ambiguities and in establishing the

appropriate relations among the words in a text. At the

most basic level, determining whether a word is a noun

or a verb (or some other part of speech) can be useful.

This is accomplished through tools that perform▶ part-

of-speech tagging. Then, identification of phrases in the

text can be important, such as recognizing that

a sequence of words forms a single conceptual unit

(e.g., breast cancer (▶Data Integration, Breast Cancer

Database) and NF kappa beta inhibitor). A commonly

used strategy for this is shallow ▶ parsing, which

involves identifying coarse phrasal structures, such as

noun phrases, without identifying the specific grammat-

ical relationships among them. In contrast, deep▶ pars-

ing determines the full set of grammatical relations

among words in a sentence, producing a complete

parse tree to represent these relations.
The surface forms of words will vary depending on

their syntactic usage in a sentence, for instance, a noun

appearing in plural form or a verb appearing in various

tenses (regulated, regulating, regulates). Often, it is

desirable to normalize such variation to a base form of

the word in order to appropriately associate different

occurrences of the same term. This is called morpho-

logical normalization and is often accomplished in

practical NLP applications through stemming tools

which strip off inflected word endings. The Porter

algorithm, based on suffix stripping, is a popularly

used strategy for stemming (Porter 1980).

Information Extraction

Information extraction in general refers to the extrac-

tion of specific types of information from text and

normally formalized in a structured representation,

such as an event template or a concept from an exter-

nally defined ontology. It can refer to the association of

particular strings of a text to a category of interest, for

instance, identifying protein names in a publication.

Named Entity Recognition

In the upper levels of Fig. 1, we see annotations of

ontology terms and gene/protein terms. Many of such

terms correspond to ▶ named entities, i.e., to objects

that are generally referred to by name. This is in con-

trast to terms that correspond to processes or events,

which normally require identification of higher-order

relations. Examples of named entities in the biological
domain that are often targeted for extraction are genes,

diseases, chemicals, or experimental methods.

Various methods exist for performing named entity

recognition. The most basic approach is to compile

a dictionary of the relevant names for a specific cate-

gory of entities, and to perform a string match into the

dictionary. Empirical methods based on supervised

machine learning will often use a dictionary match as

one feature of a model that also considers surrounding

words, syntax, and other textual evidence to identify

likely instances of terms from a particular category.

Relation and Event Extraction

Beyond extraction of entities, many applications

require extraction of relations among those entities.

One popular example, addressed in several shared

tasks such as BioCreative (Hirschman et al. 2005;

Krallinger et al. 2008; Leitner et al. 2010) and

BioNLP009 (Kim et al. 2009), is identification of

protein–protein interactions from text. This first

requires the recognition of the proteins as entities and

then identification of an interaction relation among at

least two of the recognized proteins. In the sentence in

Fig. 1, for instance, we can identify an activation

relationship between Bcl-2 and p53, i.e., one of the

key pieces of information in the sentence can be sum-

marized as Bcl-2 activates p53. Strategies for relation
extraction again vary from high-precision linguistic-

based methods (Cohen et al. 2011) to high-recall

supervised learning methods (Dai et al. 2010),

and hybrid methods that achieve more balanced

performance (Hakenberg et al. 2010).

Co-reference Resolution

Co-reference resolution refers to identifying multi-

ple occurrences in the text of the same entity or

event. It includes resolving pronouns such as “it” to

their references, as well as other kinds of references

such as definite noun phrases (a noun phrase that

starts with “the,” e.g., “the protein”). Note that

these references can include references to events

previously mentioned, e.g., “the process” or “this

interaction.”

Implementation Aspects

Natural language processing systems are implemented

in the form of software. Such systems tend to have

modular architectures where components such as those

outlined above are run serially in a “pipeline.”

http://dx.doi.org/10.1007/978-1-4419-9863-7_162
http://dx.doi.org/10.1007/978-1-4419-9863-7_162
http://dx.doi.org/10.1007/978-1-4419-9863-7_987
http://dx.doi.org/10.1007/978-1-4419-9863-7_987
http://dx.doi.org/10.1007/978-1-4419-9863-7_101109
http://dx.doi.org/10.1007/978-1-4419-9863-7_101109
http://dx.doi.org/10.1007/978-1-4419-9863-7_101109
http://dx.doi.org/10.1007/978-1-4419-9863-7_154
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Document Format Issues

Before any more sophisticated linguistic processing can

be performed, documents must be converted into

a format that is easy for computational tools to work

with. Since source documents can be available in various

formats, including HTML, XML, Microsoft Word, and

PDF, in addition to plain text, NLP systems must clearly

specify the kinds of input documents they can handle. In

general, documents must be converted to a simpler plain

text representation without the structure and formatting

information available in other formats. There are tools

available to assist with these conversions, but they can

vary in quality and effectiveness.

In addition, NLP systems must be sensitive to the

character encoding of a given document. Documents

can be encoded in numerous formats, including UTF-8

and ISO-8859-1. Some characters, in particular special

two-byte UNICODE characters such as Greek letters,

will not be correctly interpreted if the correct encoding

is not utilized when loading the document. Since such

characters can bemeaningful in biomedical texts, (e.g.,

in the name of the TGF-b gene), this is an issue that

cannot be overlooked.

For most applications, it is preferable to retain as

much of the original document structure as possible.

Certain formatting information can have semantic

import. For instance, italics are sometimes used to high-

light a gene name in a document. In addition, sensitivity

to the sections of a document can provide a system with

an advantage in solving certain problems, such as for

detecting new experimental protein interactions

described in the text – one would not expect these to

be mentioned in a background or methods section. Doc-

ument sections are generally most reliably identified by

taking advantage of the previously demarcated structure

of the document, but sophisticated algorithms to per-

form document zoning might need to be employed if

such demarcations are unavailable.

Unstructured Information Management Architecture

The Unstructured Information Management Architec-

ture, or UIMA, is a commonly used architecture for

computational systems that aim to perform Natural

Language Processing (Ferrucci et al. 2009). It provides

a common representation for a document and its

meta-data, which can be shared across components.

It is the foundation of several repositories of tools

supporting biomedical text mining, such as bionlp.org

and u-compare.org.
Cross-References

▶Applied Text Mining
References

Cohen KB, Verspoor K, Johnson H, Roeder C, Ogren P,

Baumgartner W Jr., White E, Tipney H, Hunter L (2011)

High-precision biological event extraction: Effects of system

and data. Comput Intell 27(4)

Dai H-J, Lai P-T, Tsai RT-H (2010) Multistage gene normaliza-

tion and svm-based ranking for protein interactor extraction

in full-text articles. IEEE/ACM Trans Comput Biol Bioin-

formatics 7(3):412–420

Ferrucci D, Lally A, Verspoor K (eds) (2009) Unstructured

information management architecture (UIMA) Version 1.0.

OASIS Standard, 2 Mar 2009

Hakenberg J, Leaman R, Ha Vo N, Jonnalagadda S, Sullivan R,

Miller C, Tari L, Baral C, Gonzalez G (2010) Efficient extrac-

tion of protein–protein interactions from full-text articles.

IEEE/ACM Trans Comput Biol Bioinformatics 7(3):481–494

Hirschman L, Yeh A, Blaschke C, Valencia A (2005) Overview

of biocreative: critical assessment of information extraction

for biology. BMC Bioinformatics 6(Suppl 1):S1

Hunter L, Bretonnel Cohen K (2006) Biomedical language

processing: what’s beyond PubMed? Mol Cell 21:589–594

Kim J-D, Ohta T, Pyysalo S, Kano Y, Tsujii J (2009) Overview

of BioNLP’09 shared task on event extraction. In: Proceed-

ings of the Workshop on BioNLP: Shared Task, Association

for Computational Linguistics, Boulder, Colorado, pp 1–9

Krallinger M, Morgan A, Smith L, Leitner F, Tanabe L, Wilbur J,

Hirschman L, Valencia A (2008) Evaluation of text-mining

systems for biology: overview of the second BioCreative com-

munity challenge. Genome Biol 9(Suppl 2):S1

Leitner F, Chatr-aryamontri A, Mardis SA, Ceol A, Krallinger M,

Licata L, Hirschman L, Cesareni G, Valencia A (2010) The

FEBS letters/BioCreative II.5 experiment: making biological

information accessible. Nat Biotechnol 28:897–899

Nakov P, Schwartz A, Wolf B, Hearst M (2005) Supporting

annotation layers for natural language processing. In: ACL

2005 Poster/Demo Track, Ann Arbor

Porter MF (1980) An algorithm for suffix stripping. Program

14(3):130–137
Natural Language Understanding

▶Natural Language Processing
Natural Product Databases

▶Natural Product Resources

http://dx.doi.org/10.1007/978-1-4419-9863-7_133
http://dx.doi.org/10.1007/978-1-4419-9863-7_158
http://dx.doi.org/10.1007/978-1-4419-9863-7_1051


Natural Product Resources 1499 N
Natural Product Resources

Riza Theresa Batista-Navarro

National Centre for Text Mining, Manchester

Interdisciplinary Biocentre, Manchester, UK
Synonyms

Natural product databases
Definition

Natural product resources are databases which store

information on natural products. These are information

tools which facilitate the screening of natural com-

pounds during the drug discovery process.
N

Characteristics

Content of Natural Product Resources

Containing thousands of natural compounds, natural

product databases contain the following types of infor-

mation for each compound:

1. Descriptive data which includes systematic and com-

mon names, synonyms, chemical structure, compound

type, molecular formula, and CAS registry numbers.

2. Physicochemical data which includes, among

others, a compound’s boiling point, melting point,

molecular weight, and optical rotation.

3. Spectroscopic data which includes measurements in

the following spectra: infrared (IR), mass, nuclear

magnetic resonance (NMR), and ultraviolet (UV).

4. Origin data which consists of taxonomic informa-

tion on source organisms.

5. Biological data which consists of information on

biological activity and toxicity.

6. Bibliographic data which consists of citations of

primary or secondary literature from which the

compound information was abstracted.

The inclusion of information on biological activities

is a feature of natural product databases that makes them

different from general chemical compound databases.

Typically, biological activity information includes

details such as the drug targets against which the com-

pound was reportedly active, and the measured activity.
Each database is supported by an interface which

allows its users to search for compounds by either

entering any or a combination of the details above, or

by drawing a chemical structure or substructure.

Significance of Natural Product Resources

Due to the large number of compounds which have

already been published, natural product chemists face

a challenge when screening compounds for novel, phar-

maceutically relevant chemical structures. Structure elu-

cidation, the process of determining the structure of

chemical substances such as natural products, becomes

more efficient when already known compounds are rap-

idly characterized or dereplicated (Corley and Durley

1994).

Dereplication involves the comparison of one’s pre-

liminary findings on a compound against published

information to accomplish any of two tasks: to deter-

mine if the compound in question has already been

reported, or to use a partial structure to arrive at

a complete chemical structure (Dinan 2005). Natural

product resources facilitate these tasks by enabling

chemists to access, search, and analyze published and

curated information in a systematic manner.

Available Natural Product Resources

Natural product resources can be categorized into two

according to their availability: public and commercial.

Public databases are accessible to anyone who has

access to the Internet. Most of them contain small mole-

cules in general and are not limited to natural compounds

only. Under this category are the following databases:

1. ChemBank.Created by theNational Cancer Institute’s
Initiative for Chemical Genetics (ICG), ChemBank

contains information on small molecules and biologi-

cal assays. It is dedicated to the storage, organization,

analysis, and visualization of raw screening data

(Seiler et al. 2008). As of version 2.0, ChemBank

houses data on more than 1.2 million unique small

molecules and 2,500 biological assays.

2. ChemBL Database. Provided by the European

Bioinformatics Institute’s European Molecular Biol-

ogy Laboratory (EMBL-EBI), theChemBLDatabase

(ChemBLdb) stores information on bioactive drug-

like small molecules including biological activities

and assay data, all abstracted from the primary liter-

ature (Warr 2009). As of version 0.9, ChemBLdb

contains more than 650,000 unique compounds with

more than three million biological activity records.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100989
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3. PubChem. Hosted by the US National Institutes of

Health (NIH), PubChem consists of three component

databases: PubChem Substance, PubChem Com-

pound and PubChem BioAssay. PubChem Substance

contains information on chemical samples or sub-

stances submitted by contributors. PubChem Com-

pound contains chemical structures derived from the

substances while PubChem BioAssay stores the

results of biological activity testing on them.

PubChem currently contains 81 million substance

records, 32 million unique chemical structures, and

more than 500,000 biological assay records. It is an

open repository where any organization can become

a contributor and deposit data (Wang et al. 2010).

4. SuperNatural. Developed at the Berlin Center of

Genome-Based Bioinformatics, SuperNatural con-
tains 3D structures, conformers and supplier infor-

mation on natural compounds, as well as their

analogues and derivatives. It also contains data on

the biological activity of compounds against several

tumor cell lines. As of version 3.0.2, SuperNatural

contains data for around 50,000 natural compounds

(Dunkel et al. 2006).

Commercial databases are only accessible upon pay-

ment of a fee. They usually come in the form of electronic

media (e.g., CD or DVD) although some are web-based.

A few of the commercially available databases are:

1. AntiBase. Developed at the University of

G€ottingen, AntiBase contains information on

natural compounds, abstracted from primary and

secondary literature. A unique feature of AntiBase is

the inclusion of predicted Carbon-13 NMR (13 C-

NMR) spectra, calculated by Wiley’s spectrum pre-

diction system SpecInfo. 13 C-NMR spectra data

helps chemists determine the structure of unknown

organic molecules. Available in CD form, the 2011

version of AntiBase contains information on more

than 38,000 natural compounds (Laatsch 2011).

2. Dictionary of Natural Products. Chapman and

Hall’s Dictionary of Natural Products (DNP) is a

database produced through the compilation of nat-

ural product information from the well-known Dic-

tionary of Organic Compounds. The compounds are

organized such that the users can easily view under

one entry the compounds which are biosyntheti-

cally and structurally related. Also, each compound

is indexed using a controlled vocabulary of more

than 1,000 headings to allow faster searching.

Available in DVD form, the current version of
DNP contains more than 230,000 compounds

(Buckingham 2010).

3. MarinLit. Developed at the University of Canterbury,

MarinLit is a database of natural products focusing on

compounds from the marine environment. Aside from

comprehensive bibliographic information, it includes

detailed taxonomic data, allowing the user to explore

relationships among source organisms at various taxo-

nomic levels. Available as a stand-alone application,

MarinLit currently contains information on more than

22,000 marine natural products (Blunt 2011).

4. NAPRALERT. Developed at the University of Illi-

nois at Chicago, NAPRALERT is a database of nat-

ural products, formed by abstracting primary and

secondary literature (Graham and Farnsworth

2010). It includes information on a compound’s

uses in traditional medicine, aside from the biolog-

ical activities established in assays. It currently

contains data from more than 200,000 scientific

papers and reviews. However, due to financial con-

straints, only 15% of the literature has been

included from 2004 to present. A user is required

to pay a fee in order to retrieve results from the

database using the online interface.
Cross-References
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Synonyms

Entrez genome project; Genome project; NCBI

genome project resource
Definition

The NCBI BioProject database provides a set of com-

plete and in-progress large-scale sequencing, assembly,
annotation, and mapping projects originating from

a single organization or a consortium. The BioProject

database is designed for complex collaborations looking

at various aspects of cellular organisms and generating

different types of records, including genome sequences

and assemblies, metagenomes (▶Metagenomics),

transcriptome sequences and expression, and epigenetic

records.
Characteristics

The NCBI BioProject operates as a web portal for

large-scale genome sequencing and other biomedical

projects across several taxonomies (▶TaxonRank) as

well as for projects focusing on a particular locus

(Sayers et al. 2011; Pruitt et al. 2011). BioProject

offers a synoptic table containing an overview of all

the organisms covered by the projects and their com-

pletion status. The status can be either complete or in

progress. Data relative to an organism can be retrieved

from the main page of the website using a direct query.

Each project has a dedicated webpage and the user can

cross-reference the information with other databases at

NCBI such as Refseq or Genbank.

BioProject Page

A BioProject has a dedicated webpage, which contains

information about the genome lineage, the project sta-

tus, external resources, and the genomic records linked

to other databases in NCBI. These records contain

information about the nucleotide sequences, the num-

ber of genes, the number of proteins and their struc-

tures, if available. It also contains links to related

literature. The data can be viewed using the standard

tools available from NCBI. A summary of the experi-

mental methods used in the project is also indicated

under the attributes list.

Umbrella Project

It is possible to group related projects that belong

to a single collaborative effort, but which are different

in terms of the methodology, sample material, or

result type, into umbrella projects. Umbrella projects of

a BioProject are always indicated in the BioProject page.

Organism Overview

Organism overview is a special type of umbrella

project. Unlike the conventional umbrella projects,

http://dx.doi.org/10.1007/978-1-4419-9863-7_1561
http://dx.doi.org/10.1007/978-1-4419-9863-7_1561
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which are established on the basis of an organizational

link, organism overviews group projects that are

derived from the same organism.
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Synonyms

Virus reference genomes
Definition

TheNCBI viral genomes resource (http://www.ncbi.nlm.

nih.gov/genomes/GenomesHome.cgi?taxid¼10239) is
a comprehensive online portal that provides access to

more than 3,800 sequences for more than 2,600 curated

viral genomes. The resource also contains the genomes

of subviral agents known as viroids. Individual genomes

can be accessed using Entrez, the text-based search and

retrieval system of NCBI; or from a list of viruses, viral

groups, or host organisms. Virus species are represented

by a reference genome sequence. In the event that

a species has more than one strain, variant or

isolate, the reference sequence is chosen on the basis of

how well characterized it is, as well as its practical

importance (Bao et al. 2004). All information in the

viral genomes resource is fully integrated with other

NCBI databases.

The resource is primarily used in the taxonomic

classification of viruses, and as a source for sequences

used as standards for developing annotation tools

(Brister et al. 2010). More recently, it has been used

in constructing virus-host interaction networks and in

the development of tools for this purpose (Kozhenkov

et al. 2011; Huang et al. 2009), mapping taxonomy

standards between the NCBI and the International

Committee on the Taxonomy of Viruses (ICTV) (Val-

divia-Granda and Larson 2009), and as a source of

reference sequences in viral metagenomics studies

(▶Metagenomics, Andrews-Pfannkoch et al. 2010;

Marhaver et al. 2008; Dinsdale et al. 2008).
Characteristics

Content

Candidate viral genome sequences are selected auto-

matically from GenBank based on sequence topology,

user description, and sequence length with respect

to known sequences in a virus genus. Candidate

sequences are verified by NCBI curators and external

scientific advisors. Sequences are taxonomically

classified based on user-specified information, which

are generally standardized to conform with ICTV

reports.

Tools

Pairwise Sequence Comparison (PASC)

The PASC interface primarily permits the comparison

of an external sequence, such as a new viral genome,

with genomes in a selected virus family, for which the

percentages of identity have been generated from the

pairwise global alignments of complete genome

http://dx.doi.org/10.1007/978-1-4419-9863-7_74
http://dx.doi.org/10.1007/978-1-4419-9863-7_679
http://www.ncbi.nlm.nih.gov/books/NBK54015/
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http://dx.doi.org/10.1007/978-1-4419-9863-7_101624
http://www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid=10239
http://www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi?taxid=10239
http://dx.doi.org/10.1007/978-1-4419-9863-7_74
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sequences (Bao et al. 2004). PASC yields the closest

matches, whose positions can be visualized with

respect to the identity distribution chart. Apart from

placing newly sequenced viruses in a taxonomy group,

the identity distributions in PASC can be used for

defining taxonomic demarcations and identifying

questionable classifications (Fig. 1).

Viral COG: Clusters of Related Viral Proteins (VOG)

The VOG tool was developed for the phylogenetic and

functional classification of proteins associated with

viral genomes. VOG clusters were generated based

on the pairwise alignment of proteins from complete

reference viral genome sequences. The VOG link is

currently available in the viral genomes resources page

(as “Protein Clusters”) but updates have been

discontinued in 2005. The contents of VOG have

been assimilated under Entrez Protein Clusters

(http://www.ncbi.nlm.nih.gov/sites/entrez). For each

protein cluster, it is possible to view the detailed align-

ment of sequences, a phylogenetic tree of the proteins,

and the cluster patterns, which show the functions

associated with the proteins in a cluster.
Related NCBI Resources

Virus-Specific Resources

• The NCBI viral genome database contains links to

virus-specific resources. Currently, resources for

influenza, retrovirus genomes, and SARS Corona-

virus are available. These sites also automate

searches for virus-specific information, including

literature, across all NCBI databases. Disease-

related links are also provided.

• The virus variation resources (VVR) is another set of

virus-specific extended resources (http://www.ncbi.

nlm.nih.gov/genomes/VirusVariation/index.html),

which was extended from the influenza virus

sequence database. This resource serves as an alter-

native interface for retrieving virus sequences based

on fields not available in the virus genome resources

page, such as genotype, disease severity, collection

year, and region of acquisition. The virus variation

site also hosts pre-calculated alignment and phyloge-

netic tools, which permit a more efficient processing

of queries (Resch et al. 2009). This resource is cur-

rently available for influenza and dengue, and will

also be available for the West Nile virus.

http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.ncbi.nlm.nih.gov/genomes/VirusVariation/index.html
http://www.ncbi.nlm.nih.gov/genomes/VirusVariation/index.html
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External Resource Links

The NCBI viral genomes resource has links to external

resources including independently maintained data-

bases for dsRNA viruses, HIV, and plant viruses,

among others. Selected viral genomes are included in

the NCBI BioProject resources (▶NCBI BioProject

Genome Resources).
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Negative Autoregulation

Jinzhi Lei

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua University of Beijing, Beijing, China
Definition

Negative autoregulation (NAR) occurs when a

transcription represses the transcription of its own

gene. This network motif occurs in about half of

the repressors in Escherichia coli (Shen-Orr et al.

2002), and in many eukaryotic repressors.

NAR has been shown to display two important

functions (Alon 2006, 2007). The first function is

response acceleration. NAR was shown to speed up

the response to signals. The second function is to

increase the stability of the autoregulated gene product

concentration and the robustness against stochastic

noise; thus it can reduce the cell-to-cell variations in

protein levels.
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Positive Negative

Actual Positive TP FN

Negative FP TN
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Negative Feedback

Jinzhi Lei

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua University of Beijing, Beijing, China
Definition

Negative feedback is the diminution or counteraction

of an effect by its own influence on the process giving

rise to it. It occurs when the output of a system acts to

oppose changes to the input to the system.

Many biological systems exhibit negative feedback.

For example, in hormone secretion, a high level of

a particular hormone in the blood may inhibit further

secretion of that hormone to maintain the stability of

hormone concentration (Chiras 2008).

In gene regulatory networks, negative autoregulation

is the simplest motif of negative feedback.
N
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Jordanstown, UK
Definition

In machine learning, the negative predictive value is

defined as the proportion of predicted negatives which

are real negatives. It reflects the probability that

a predicted negative is a true negative.

Let TP be true positives (samples correctly classi-

fied as positive), FN be false negatives (samples incor-

rectly classified as negative), FP be false positives

(samples incorrectly classified as positive), and TN

be true negatives (samples correctly classified as
negative). The relationship between these prediction

outcomes can then be summarized using a confusion

matrix (Kohavi and Provost 1998) as illustrated in

Table 1.

The negative predictive value can then be computed

using the following equation (Eq. 1)
negative predictive value¼ TN

TN þ FNð Þ (1)

In medical research, the negative predictive value

can be used to assess the usefulness of a diagnostic test.

However, the negative predictive values depend on

the prevalence of disease that is being examined.

The significance of its values should be interpreted

with caution (Altman and Bland 1994).

As an illustration, suppose that a total of 200 people

are tested for a disease. If the prevalence is 15%, 30

people actually have the disease. For a given diagnostic

test with sensitivity equal to 67% and specificity 53%,

the values of TP, FP, TN, and FN are 20, 80, 90, and 10

respectively. Thus, the negative predictive value is 90%.

However, if the prevalence is set to 30%, the negative

predictive value will decrease to 74% for the same test

with the same sensitivity and specificity values.
Cross-References
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Neoplasia

Barbara Davis

Section of Pathology, Tufts Cummings School

of Veterinary Medicine Biomedical Sciences,

North Grafton, MA, USA
An excessive, disorderly dysregulated abnormal “new

growth” that exceeds and is uncoordinated with the

mass of normal tissues, and persists in an excessive

manner after the cessation of any stimuli that evoked

the change.
Cross-References
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Neoplasms

Carlos Sonnenschein and Ana M. Soto

Department of Anatomy and Cellular Biology, Tufts

University School of Medicine, Boston, MA, USA
Synonyms

Cancer; Tumor
Definition

“A neoplasm is an abnormal mass of tissue, the growth

of which exceeds and is uncoordinated with that of the

normal tissues, and persists in the same excessive man-

ner after cessation of the stimulus which evoked the

change” (Willis 1967). The hallmark of neoplasms is

altered tissue organization and excessive accrual of cells.
Characteristics

Much has been written about how to define cancer.

Entire single- and multiple-author books and reviews

have been dedicated to this complex subject (1, 2).
The difficulty stems from the lack of uniformity

in discriminating whether cancer is a cell-based

disease or a tissue-based disease. An additional

difficulty is provided by the fact that all comprehensive

definitions incorporate features that also manifest in

normalcy, for example, excessive proliferation

(observed in organ regeneration, ▶ hyperplasia) or

local invasion (embryonic implantation, mammary

gland development). Triolo (1965) summarized two

tendencies prevailing during the nineteenth century:

There were the concept of tissue structure based on

the cell and the concept of disease based on the lesion.

This dual appreciation has dominated the discussion

and generated misunderstandings up to the present.

Of note, as technology developed along the last and

current centuries, questions about the nature of cancer

became more precise.

During the last decades, two tendencies have been

noticed: (a) an organizational one that incorporates

elements of embryonic fields, epidemiology, immu-

nology, differentiation, wound repair, and organismal

organization and (b) a mechanistic tendency based on

biochemistry, genetics, and finally molecular biology.

This tendency, which is based on hypotheses about

molecular mechanisms, is subject to constant change

as new technologies enter the experimental laboratory.

Regardless of impressive technological advances

in molecular biology, light microscopy originally

incorporated during the nineteenth century for the

diagnosis of cancers has remained as the gold standard.

Today, as in the nineteenth century, tumors are

diagnosed by pathologists using light microscopes;

they ultimately identify tumors by describing their

tissue architectural characteristics which provide

the oncologist not only a rather precise idea about

the origin of the tumor but also a prognosis for the

patient.

Core definitions about cancer usually fall short

of what a neoplasm is. For example, the classical

definition by Willis has been criticized by many,

and the corrections introduced by others have also

been criticized in turn. Additional concepts are neces-

sary to provide a sense of the dynamic, hierarchical,

and interactive properties of biological organization

that may be affected by defective controls (Rowlatt

1995). Until the scientific community reaches a con-

sensus definition, we suggest the following definition:

The hallmark of neoplasms is altered tissue organiza-

tion and excessive accrual of cells.
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Causes and Explanations of Cancer

A common misperception has been to link the causes of

cancers with explanations of the emergence of cancers in

humans. By now, the overwhelming majority of the

causes of cancers are known. For instance, viral infec-

tions (hepatitis, HPV, herpes, etc.) have been linked with

the eventual appearance of cancers in different tissues or

organs where those infections have taken place. Radia-

tion (X-, a-, g-rays) is also known as a cause of cancers.
It is equally acknowledged that exposure to environmen-
tal pollutants (tobacco, DDT, BPA, BP, asbestos,

hormones, etc.) and inflammations by a diversity of

agents (Leishmania, Schistosoma, Helicobacter pylori,
EBV, etc.) results in the appearance of tumors in exposed

populations. However, this wide variety of causes does

not explain how they eventually end up forming tumors

in affected individuals.

Explanations are proposed by theories of

carcinogenesis and metastases. For almost a century,

the cell-centered somatic mutation theory (SMT)

has been the prevalent theory. The tissue organization

field theory (TOFT) postulates, instead, the alternative

view that neoplasms are a result of faulty histogenesis.

Reports about the plausibility of explaining carcinogen-

esis by experimentally testing the SMT and the TOFT

have been published (Maffini et al. 2004, 2005; Bizzarri

et al. 2008; Soto and Sonnenschein 2011; Vaux 2011).
Cross-References
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Definition

Neovascularization is the process of new blood vessel

formation. It is essential during normal processes such

as embryonic development and reproduction as well as

during pathological processes such as tumor growth

and progression, tissue repair during wound healing,

and certain ocular diseases.
Characteristics

Structure of the Vasculature

In a healthy adult, every part of the body is nourished

by blood vessels which carry oxygen, nutrients, growth

factors, and cells, and provide normal gas exchange.

The vessels are lined by a monolayer of endothelial

cells. These cells are in tight association with mural

cells (pericytes or smooth muscle cells), together with

which they generate a layer of ▶ basement membrane

which provides a stable and functional unit. The adult

vasculature is quiescent and the endothelial cells rarely

divide. This quiescent state is achieved by a fine

balance between levels of proangiogenic factors and

angiogenesis inhibitors. Under such physiological

insults as metabolic stress, low oxygen or pH, mechan-

ical stress, immune and inflammatory challenges, and

genetic mutations, the quiescent vasculature can be

activated and can initiate the process of neovascu-

larization. In contrast to the normal vasculature,

tumor capillaries are structurally and functionally

abnormal. They are often leaky with uneven diameters

and excessive branching. Endothelial cells lining the

capillaries can be irregular in shape and in weak
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association with pericytes. As a result, blood flow in

the tumor can be chaotic, which can contribute to

a hypoxic and acidic environment within the tumor.

Modes of Neovascularization

The most well-studied mode of neovascularization is

sprouting from preexisting vessels, a process also

known as angiogenesis (Folkman 1971). When chal-

lenged by angiogenic mitogens such as vascular endo-

thelial growth factor (VEGF) and fibroblast growth

factors (FGFs), the basement membrane of the parent

vessel is degraded by matrix metalloproteinases

(MMPs), a multi-gene family of metal-dependent

enzymes whose activity is the rate-limiting step in

▶ extracellular matrix degradation. This process is

regulated by the activity of their cognate inhibitors,

the tissue inhibitors of metalloproteinases (TIMPs).

Following degradation of the basement membrane,

cell junctions of activated endothelial cells are loos-

ened to facilitate the subsequent steps. These cells are

equipped with tyrosine kinase receptors such as

VEGFRs, which are able to initiate a migratory or

proliferative phenotype upon binding of their

corresponding ligands. Within the endothelial cell

monolayer, cells that lead the way in the branching

vessel, called tip cells, are responsible for sensing the

angiogenic signals in the microenvironment with their

filopodia and directing the sprout. Cells adjacent to tip

cells assume a stalk cell fate, elongating the sprout by

proliferation. After fusing with neighboring sprouts,

junctions between endothelial cells are restored and

basement membrane is redeposited by the cells.

A pericyte coat soon covers the nascent vessel, which

is perfused and becomes functional. In addition to

MMPs and TIMPs, this multistep process is tightly

regulated by VEGF and Notch signaling pathways

and numerous angiogenic regulators including

FGFs, platelet-derived growth factors (PDGFs), and

angiopoietins (ANGs) (Harper and Moses 2006; Roy

et al. 2006).

In addition to sprouting angiogenesis, several other

modes of neovascularization have been identified.

Vasculogenesis refers to de novo formation of blood

vessels. In this process, bone marrow–derived endo-

thelial progenitor cells are recruited to angiogenic

sites, incorporate into nascent vessels, and differentiate

into mature endothelial cells. Vasculogenesis was first

thought to occur only during embryonic development

but was later found to play an important role during
tumor vascularization as well. Intussusception,

another mode of neovascularization, is a process that

is faster and more energy efficient than angiogenesis

and vasculogenesis in forming new blood vessels.

During this process, endothelial cells are remodeled

to become larger and thinner, and subsequently form

an interstitial pillar and cause the splitting of a mother

vessel into two daughter vessels (Carmeliet and Jain

2011).

Neovascularization in Health and Disease

Neovascularization is an indispensable process

during embryonic development. It is required for

the establishment of the circulation system and for

organ formation. In adults, neovascularization is

restricted temporally to certain physiological situa-

tions such as specific stages of the female reproductive

cycle (▶ corpus luteum formation and endometrial

remodeling during the menstrual cycle) and placenta

formation during pregnancy. Insufficient or

dysregulated neovascularization is associated with, or

can directly lead to, many pathological conditions,

including cerebral ischemia, diabetic retinopathy, pre-

eclampsia, moyamoya, wound healing, and cancer.

Due to the limitation of oxygen diffusion in a tissue,

most solid tumors need to recruit their own vasculature

in order to reach a size larger than 1–2 mm in diameter

(Folkman 1971). Once vascularized, the blood vessels

within the tumor carry oxygen and nutrient supply

and remove metabolic waste. In addition, they also

function as a conduit through which tumor cells enter

the circulation, travel to other sites of the body, extrav-

asate, and form distant metastases. In addition to facil-

itating tumor growth, the tumor vasculature is also

necessary for the successful delivery of therapeutic

reagents (Carmeliet and Jain 2000; Nyberg et al. 2008).

Models for Studying Neovascularization

Several models to study neovascularization have been

developed over the last few decades. In vitro assays

became available after the first successful culture of

primary endothelial cells by Folkman and colleagues

(Folkman et al. 1979). These assays are based on the

activities of endothelial cells during neovascularization:

their ability to proliferate, migrate, invade, and form

tube-like structures upon their stimulation by angiogenic

mitogens. Proliferation assays measure the growth of

endothelial cells in culture over a certain period of

time. Migration assays quantify the endothelial cell

http://dx.doi.org/10.1007/978-1-4419-9863-7_1394
http://dx.doi.org/10.1007/978-1-4419-9863-7_1538


Neovascularization,
Fig. 1 CAM assays showing

the inhibition of angiogenesis

by cartilage-derived inhibitor

(CDI) (Moses et al. 1990).

(a) Normal vasculature of

control CAMs implanted with

empty methylcellulose disks.

(b) Large avascular zones of
CAMs implanted with CDI-

containing disks

Neovascularization,
Fig. 2 Cornea pocket assays

showing the inhibition of

bFGF-induced angiogenesis

by systemic administration of

the anti-angiogenic factor

Troponin I (Moses et al. 1999).

(a) Angiogenesis induced by

bFGF in control corneas. (b)
Significant inhibition of

bFGF-induced angiogenesis in

Troponin I-treated corneas
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movement in response to proangiogenic factors or angio-

genic inhibitors. Invasion assays measure the ability of

endothelial cells to invade through biologically relevant

matrices. In tube formation assays, endothelial cells are

cultured in a three-dimensional matrix such as Matrigel

and the tube-like structures are evaluated bymicroscopy.

In contrast, the in vivo assays of neovascularization

assess the angiogenic or anti-angiogenic potential of

cells, proteins, or reagents in a living system. The

chicken ▶ chorioallantoic membrane (CAM) assays

(Fig. 1) and ▶ corneal pocket assays (Fig. 2) measure

the effect of test materials on the vasculature of fertilized

chicken embryos and on the avascular animal corneas,

respectively. In Matrigel plug assays, cells, tissues, or

other test materials are combined with liquid Matrigel

which is composed of basement membrane proteins and

are injected subcutaneously into animals.At the endpoint

of the assay, vascularization of the Matrigel plug can be

visualized by immunohistochemistry following removal

of the plug, fixation, and sectioning.

Recently, additional in vivo models such as the

zebrafish system have been utilized to study neovascu-

larization. Due to the optical clarity of zebrafish
embryos, the availability of transgenic lines that help

in visualizing the vasculature, and the time- and cost-

efficient screening of mutant fish, this model repre-

sents a very promising new in vivo model to help us

better understand the process of neovascularization

(Figg and Folkman 2008).
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▶Mixed and Multi-Level Models
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Synonyms

Global network alignment; Local network alignment;

Network comparison; Network querying
Definition

Network alignment problem is to find a common or

approximative subgraph (i.e., a set of conserved edges)

across the input networks (Sharan and Ideker 2006).

Corresponding to these conserved edges, there exists

a mapping between the nodes of the input networks

with or without gaps.
The network alignment problem can be formulated in

various ways, depending on the kind of input (pairwise

vs. multiple alignments) and the scope of node mapping

desired (local and global) (Berg and Laig 2004; Berg and

L€assig 2006; Flannick et al. 2006; Kelley et al. 2003;

Koyut€urk et al. 2005; Li et al. 2007; Sharan et al. 2005;

Singh et al. 2008; Zaslavskiy et al. 2009).
Cross-References

▶Comparative Analysis of Molecular Networks

▶Global Network Alignment

▶Link Score, Graph Alignment

▶Local Network Alignment

▶Multiple Network Alignment

▶Network Querying

▶Networks Comparison

▶Node Score, Graph Alignment

▶ Parameter Estimation, Graph Alignment
References

Berg J, Laig M (2004) Local graph alignment and motif

search in biological networks. Proc Natl Acad Sci USA

101:14689–14694

Berg J, L€assig M (2006) Cross-species analysis of biological

networks by Bayesian alignment. Proc Natl Acad Sci USA

103:10967–10972

Flannick J et al (2006) Graemlin: general and robust alignment

of multiple large interaction networks. Genome Res

16(9):1169–1181

Kelley BP et al (2003) Conserved pathways within bacteria and

yeast as revealed by global protein network alignment. Proc

Natl Acad Sci USA 100:11394–11399

Koyut€urk M, Grama A, Szpankowski W (2005) Pairwise local

alignment of protein interaction network guided bymodels of

evolution. RECOM LNBI 3500:48–65

Li Z, Zhang S, Wang Y, Zhang X, Chen L (2007) Alignment

of molecular networks by integer quadratic programming.

Bioinformatics 24(4):594–596

Sharan R, Ideker T (2006) Modeling cellular machinery through

biological network comparision. Nat Biotechnol 24:427–433

Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P,

Sittler T, Karp RM, Ideker T (2005) Conserved patterns of

protein interaction in multiple species. Proc Natl Acad Sci

USA 102:1974–1979

Singh R, Xu J, Berger B (2008) Global alignment of

multiple protein interaction networks with application to

functional orthology detection. Proc Natl Acad Sci USA

105(35):12763–12768

Zaslavskiy M, Bach F, Vert JP (2009) Global alignment of

protein-protein interaction networks by graph matching

methods. Bioinformatics 25(12):i259–i267

http://dx.doi.org/10.1007/978-1-4419-9863-7_1196
http://dx.doi.org/10.1007/978-1-4419-9863-7_485
http://dx.doi.org/10.1007/978-1-4419-9863-7_486
http://dx.doi.org/10.1007/978-1-4419-9863-7_101011
http://dx.doi.org/10.1007/978-1-4419-9863-7_483
http://dx.doi.org/10.1007/978-1-4419-9863-7_480
http://dx.doi.org/10.1007/978-1-4419-9863-7_485
http://dx.doi.org/10.1007/978-1-4419-9863-7_997
http://dx.doi.org/10.1007/978-1-4419-9863-7_486
http://dx.doi.org/10.1007/978-1-4419-9863-7_484
http://dx.doi.org/10.1007/978-1-4419-9863-7_483
http://dx.doi.org/10.1007/978-1-4419-9863-7_481
http://dx.doi.org/10.1007/978-1-4419-9863-7_996
http://dx.doi.org/10.1007/978-1-4419-9863-7_994


Network Comparison 1511 N
Network Alignment, Protein Interaction
Networks

▶Graph Alignment, Protein Interaction Networks
Network Analysis

▶Graph Mining
Network Building Blocks

▶Canonical Network Motifs
N

Network Clustering
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Synonyms

Graph clustering; Graph partitioning; Network

partitioning
Definition

Network clustering (or graph clustering) refers to

both a computational problem to extract densely

connected but relatively isolated subnetworks from

a network and a set of algorithms and methods to

solve this problem.

Due to its application-oriented nature in molecular

network analysis, the definition and requirement of the

output clusters may vary for specific problems and
applications. Some methods seek to find only the

densely connected subnetworks based on a density

criterion while ignoring the rest of the network that

are relatively loosely connected, and the output clus-

ters or communities may consist of only a portion of

the original network. Other methods output a partition

of the whole network, that is, every node in the net-

work must exist in one cluster, possibly by removing

a number of edges in the network based on certain

measures. In addition, some algorithms allow the out-

put clusters to overlap with each other, that is, a node

may be included in two or more clusters, while others

do not. The quality of the output clusters can often be

measured by quantitative scores, such as the modular-

ity score (Newman 2004; Zhang et al. 2010).

The ultimate assessment of the quality of the output

clusters is whether the grouping of the nodes in the

clusters are biologically meaningful, for example,

whether nodes in a cluster from a protein-protein

interaction network correspond to a known (or

partially known) protein complex or genes/proteins in

a signaling pathway.
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Network Component Analysis, Fig. 1 An example of

completely identifiable network in network component analysis.

It is a bipartite network. The expression levels of the genes in

output layer and a partial knowledge of the regulatory strengths

are available, and NCA seeks to identify the intensities of the

regulatory factors and reconstruct the underlying network

topology. The initial F satisfies the assumptions of NCA. “–”

can be arbitrarily replaced by random nonzero values and finally

be identified by NCA
Definition

Network component analysis (NCA) tries to model

gene regulatory network as a bipartite graph whose

vertices can be divided into two parts: the regulatory

factors and the genes regulated by the factors (indeed,

genes interact with each other indirectly through their

products such as RNA or proteins).

The expression data of the genes are available by

experiments and can be formulated as a matrix X of

size n � m in which the ith row represents the ith
gene’s expression level across the m time points

(or different conditions, or samples). To find the inten-

sities of the regulatory factors and the regulatory

strengths, NCA factorizes X into two low-rank matri-

ces F andG such that X� FGT, where F is of size n� r

and G is of size m� r, and r� n.m. The jth column of

G is the intensities of the jth regulatory factor, and the

ith row of F denotes the sensitivities of the ith gene to

the regulatory factors. For example, Fij ¼ 0 means that

the jth TF does not regulate the ith gene. Different

from the traditional matrix factorization models such

as principal component analysis (PCA) and indepen-

dent component analysis (ICA), NCA does not have

any statistical constraints on F and G which may not

necessarily find biological meaningful components.

It takes advantage of partial connectivity information

as prior knowledge which is available by experiments

and can result in a unique decomposition without

considering the scale problem (Liao et al. 2003) if the

following three assumptions are satisfied:

• F should have full column rank, which means the

regulatory mode of each factor cannot be formulated

as a linear combination of the other regulatorymodes.

• Each regulatory factor can regulate at most

n � (r � 1) genes, which means the graph should

be sufficiently sparse.

• G should have full column rank, which means the

intensities of each regulatory factor cannot be for-

mulated as a linear combination of the other

intensities.
In other words, once the above three assumptions

are satisfied, the network is identifiable. Figure 1 gives

an example of completely identifiable network.
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A biological network refers to the representation of

relationships among various types of biological
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entities. Each node in the network refers to a biological

entity and a pair of related entities is connected with an

edge in the network. An example of a biological net-

work is a protein–protein interaction network, in which

the nodes are the proteins and a pair of proteins

connected with an edge corresponds to an interaction

between the protein pair. NetSynthesis is a method to

build such kind of biological networks by means of

text-mining queries over Medline abstracts.
N

Characteristics

While interaction data from manually curated data-

bases are highly useful as a concise resource for biol-

ogists, the level of detail about the interactions is

a priori defined by the databases. The interactions are

often restricted to specific kinds of information so that

information one might be interested, such as the struc-

ture or strength of the interactions, might not be cap-

tured in the databases. Biologists who use these

interactions have to be aware of the limitations of the

data, which can be unclear if the biologists are not

familiar with the curation protocol for the particular

database. In other words, biologists can only use the

interaction data in a passive manner as they are not

engaged in the curation process of the interactions.

Biologists can perform filtering or visualization on

the interactions provided by the databases as users,

but not how the interactions are collected. Such passive

use of interactions limits the applicability of the inter-

action data into research. This presents a single view of

the knowledge to the biologists, and it may not be

suitable to researchers’ specific needs.

NetSynthesis (Tari et al. 2009) is a method

that enables users to create biological networks to issue

their own keyword-like queries over Medline abstracts.

The core idea behind NetSynthesis is through the query-

ing of a specialized database of Medline abstracts. This

specialized database differs from traditional indices for

document retrieval in the sense that both syntactic and

semantic informationof sentences andwords. The search

mechanism of NetSynthesis utilizes both syntactic struc-

tures of sentences and semantic information such as

biological entities that include proteins, drugs, and dis-

eases. With this approach, users can specify precisely

what kind of information, such as entity types, they want

in the resulting networks. By using simple-to-use queries

to the specialized database of Medline abstracts, these
networks convey the information needed by the users,

such as strength of the interactions, and such information

might be missing in the networks that are synthesized

from curated data. In addition, users do not have to

depend on the time-consuming curation process and

synthesize biological networks from curated data that

do not include the latest findings. Such approach is

capable of synthesizing biological networks with high

precision and even finds relations that have yet to be

curated in public databases.

Suppose a user is interested in constructing a network

of gene–drug relations, in which the drugs are metabo-

lized by enzymes. The following query can be used:

<DRUG> _ metabolized by<GENE>

The symbols <DRUG> and <GENE> infer that the

sequences of words have to be a drug name and a gene/

protein name in the matching sentences. Unlike key-

word queries, ordering of the keywords is taken into

consideration in our PTQLLITE query language. In the

rest of the section, we describe the parse tree database

as well as the PTQLLITE query language.

Parse Tree Database

The essential component of NetSynthesis is parse trees

of Medline abstracts; parse trees are syntactic struc-

tures that represent the grammatical structures of

sentences. Parse trees include constituent trees and

linkages, in which constituent trees are hierarchical

syntactic structures of sentences and linkages are com-

posed of links that represent syntactic dependencies

between pairs of words. Fig. 1 shows an example of

a linkage of a sentence that is produced by the Link

Grammar parser (Grinberg et al. 1995). These parse

trees are generated automatically by the Link Gram-

mar parser. Such parse trees are ideal to be used for

expressing linguistic patterns, which are commonly

utilized in automated extraction systems. To store the

parse trees, a database is needed to capture the hierar-

chical representation of abstracts, which include the

sections of the abstracts such as title or body of the

abstracts, parse trees, and the semantic information of

words. Semantic information includes the entity type

of a sequence of words, such as whether it is a gene/

protein name, a drug name, or a disease name. (Gene,

protein, and enzyme names are indistinguishable by

current automated entity recognizers, and sometimes

even by human readers. From here on, we use “gene”

to refer to genes/proteins/enzymes.) To cope with the
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Network Construction, NetSynthesis, Fig. 1 Linkage of the sentence “Chlorzoxazone is metabolized to 6-OHchlorzoxazone by

the ethanol-inducible CYP2E1”

Network Construction, NetSynthesis, Table 1 Sample

sentences of drug–enzyme relations that are extracted by our

approach using the PTQLLITE query “[DRUG] _ substrates
of [GENE] | [DRUG] _ metabolized by [GENE]”

Gene/drug Support evidence

CYP2C9/Lovastatin;

CYP2C9/Simvastatin;

CYP2C9/Atorvastatin

Lovastatin, simvastatin, and

atorvastatin are substrates of

CYP3A4, whereas fluvastatin is
metabolized by CYP2C9.
(PMID:11029845)

CYP1A2/Propafenone Propafenone is mainly

metabolized by CYP2D6
(PMID:10917404)
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high variation of gene names, an entity recognition

system based on a statistical machine learning tech-

nique named BANNER (Leaman and Gonzalez 2008)

is utilized to identify gene names in text. Lists of drug

and disease names from Medical Subject Headings

(MeSH) (http://www.nlm.nih.gov/mesh/), DrugBank

(http://www.drugbank.ca/), and PharmGKB are

employed to recognize drug and disease names. We

called the database as the parse tree database, and the

database is implemented using a relational SQL data-

base. Since standard SQL queries are not ideal for

expressing queries that involve linguistic patterns, we

develop a query language called parse tree query lan-

guage (PTQL) that are used to express linguistic pat-

terns and query parse trees. The details of the PTQL

query language and its implementation can be found in

Tari et al. (2010). Similar to standard database query

languages such as SQL, PTQL is designed to be used

by developers and people who are familiar with

linguistics.

PTQLLITE Queries

To facilitate the synthesis of biomolecular networks

through querying of parse trees of sentences in

Medline abstracts by biologists, a simpler query lan-

guage called PTQLLITE is used as the input of

NetSynthesis. While PTQLLITE queries are not as

expressive as PTQL queries, the syntax is close to

keyword-based queries used in search engines so that

they are easy to use. The sample queries shown in the

beginning of this section are PTQLLITE queries. The

following query is used to illustrate PTQLLITE queries:

<DRUG> _ metabolized by <GENE>

The symbols <DRUG> and <GENE> infer that the

sequences of words have to be a drug name and a gene/

protein name in the matching sentences. The order
of the tokens in the query matters, so that the above

query specifies that the grammatical structures of

the matching sentences include a syntactic dependency

between the words “metabolized” and “by.” Similarly,

“by” has to be syntactically dependent on <GENE>.

The operator _ is a wildcard operator that <DRUG>

and “metabolized” may not have any syntactic depen-

dency between them in the matching sentences.

This query can retrieve support evidences such as

“Diclofenac is widely used in the treatment of rheu-

matic diseases and is mainlymetabolized in the liver by
CYP2C9”(PMID: 8793607). The grammatical structure

of the sentence reveals that there are syntactic dependen-

cies between “metabolized” and “by,” as well as “by” and
“CYP2C9.” Table 1 shows sample sentences that are

retrieved by the above query, and the resulting network

of 33 nodes (10 genes and 23 drugs) with 27 edges is

generated from a collection of 13015 Medline abstracts,

as shown in Fig. 2. Such kind of drug–enzyme metabolic

networks can be used to study how drug metabolism

influences the effects of drug chemicals, and genetic

variations can affect the effectiveness of drug metabo-

lism. This also allows the discovery of potential relations

to draw new hypotheses. For instance, the drugs omep-

razole are metabolized by CYP3A4 and CYP2C19, and

http://www.nlm.nih.gov/mesh/
http://www.drugbank.ca/
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Network Construction, NetSynthesis, Fig. 2 A gene–drug network in which each edge represents a drug metabolized by an

enzyme. Each edge is supported by at least two support evidences
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users might want to study a potential relation between

CYP3A4 and CYP2C19.

By allowing users to perform their own queries, users

can specify their own criteria in their target interactions.

Oneway of specifying the strength of the interaction is to

include the word extensively in the query as follows:

<DRUG> _ extensively metabolized by

<GENE>

Here we are interested in drug–enzyme

metabolic relations in which the strength of the interac-

tions is described as “extensive.” The support evidence

“Tacrine is extensively metabolized by CYP1A2.”

(PMID:9209244) is an example retrieved by the query.

There are caseswhen negative relations are reported in the

literature. Our current system simply disregards sentences

with words that indicate negation, such as “not,” “no,” so

that sentences such as “Hesperetinwas notmetabolizedby

human CYP1A2” (PMID:10781868) are not retrieved as

support evidences.
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Synonyms

Network measures
Definition

Real systems, from metabolic pathways to airline

routes, can be represented by graphs composed of

a set of nodes and a set of edges that represent interac-

tions between nodes. The structure of a graph can be

represented using an adjacency matrix aij whose

entries are 1 if vertices i and j are connected, and

0 otherwise. The information contained in the adja-

cency matrix is used to analyze the network. Network

metrics refer to a variety of mathematical measures

that use the adjacency matrix to capture specific prop-

erties of the network topology. There are many mea-

sures that involve both local and global properties of

the network (Albert and Barabasi 2002; Newman

2010). Many concepts behind these metrics were first

introduced in earlier studies of social network analysis

(Wasserman and Faust 1994).
Characteristics

Node Degree, Distance, and Clustering Degree

The simplest metric to quantify the importance of

a node in a network is the node degree k that indicates

the number of edges connected to it. Highly connected

nodes are called▶ hub nodes. The analysis of the prob-

ability to find hubs in a network led to the concept of

scale-free networks, whose structural features signifi-

cantly deviate from random networks. The distance lij
between two nodes i and j is defined as the shortest

number of edges to travel from node i to node j. It is
often useful to define the mean path length which repre-

sents the average over the shortest paths between all node

pairs. The diameter of a network is the largest distance

between any two nodes. The clustering degree Ci, in
contrast, measures the proportion of the number of

edges between the neighbors of node i and the maximum

number of edges that could exist between the neighbors

of node i by using the following expression:
Ci ¼ 2ni
kiðki � 1Þ

where ni indicates the number of edges connecting the

ki neighbors of node i (or equivalently the number of

triangles that pass through node i). The total number of

triangles that can be constructed through node i is

described by kiðki � 1Þ=2.
Networks that combine highly clustering values

with a small average shortest path are known as

small-world networks.

Centrality Measures

While the clustering degree is a property that indicates

local order and involves only the neighbors of a given

node, centrality measures are computed using the

information from the complete network.

The closeness centrality CCi computes the inverse

of the distance from a given node i to all other nodes.

This distance is defined as the shortest distance lij
between a pair of nodes i and j. Although several

normalizations have been proposed, we can write the

closeness centrality as follows:
CCi ¼ nP
j

lij

A node is classified as a highly central node if its

closeness centrality is high; information from a highly

central node can quickly reach distant nodes in the

network.

The betweenness centrality BCi measures the num-

ber of times a node is contained on all possible shortest

paths between other pairs of nodes. Nodes with a high

betweenness centrality lie on the geodesic paths between

many distant pairs of nodes and are able to bridge them

together. A targeted removal of nodeswith high between-

ness leads to a fast network fragmentation. The expres-

sion for the betweenness centrality reads as follows:
BCi ¼ 1

nðn� 1Þ
X
s6¼t 6¼i

lstðiÞ
lst

http://dx.doi.org/10.1007/978-1-4419-9863-7_101014
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where lst(i) indicates the number of shortest paths that

lie on node I from s to t.
Cross-References
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Synonyms

Flux balance analysis; Modeling in compartment

models
Definition

Network modeling of biochemical transport

phenomena is referred to approaches intended to

model biochemical systems taking into account the

metabolic flux from reaction nature and its variation

in concentration based on constitutive equations,

mass, and energy balances. Reaction rates are usually

determined utilizing optimization algorithms restricted

by mass and energy balances in an algorithm coined

flux balance analysis (FBA). Nevertheless, regular
FBA deals with homogeneous systems; as the metab-

olites concentration is not a function of position, it is

necessary to utilize constitutive equations such as

Fourier’s and Fick’s law, capable of establishing

a relation between energy and mass gradients with

temperature and concentrations, respectively. These

equations are merged with energy and mass balances

to determine the temperature and the concentration

in any part of the control volume.
Characteristics

The big outburst of genomic information during the

last decade has led to the development of techniques,

approaches, and tools that facilitate or aim to interpret

the gene function in nature (Stephanopoulos et al.

1998) Nowadays, systems biology which conceives

the interaction of biochemical entities (DNA, RNA,

and proteins) in a more holistic tactic has fostered the

understanding regarding the underpinnings of those

interactions and functions of these entities. Mass and

energy conservation are the center of the standard

methods for modeling biochemical networks which

are mostly classified in mass action, stochastic, and

optimization based. Nevertheless, the appearing of

numerous kinetic constants impedes the development

of a model capable of describing the evolution of

metabolic flows in a deterministic manner as the

number of degrees of freedom is excessive. Then an

optimization approach could be utilized to quantify

metabolic flows in a biological system. Once the

objective function is defined, the equality and

inequality restrictions are derived from mass balance

and substrate availability, respectively, so we end up

having a linear programming problem named flux

balance analysis (FBA) (Kim et al. 2008). The

optimization problem with m components and n

stoichiometric equation can be formulated as follows:
Maximize ucellular objective (1)

Subject to :
Xm
j¼1

Sijuj ¼ 0 8 i 2 f1 . . . ng

a � uj � b 8 2 f1 . . .mg
(2)

where a and b are upper and lower bounds, uj
represents the fluxes, and Sij the stoichiometric values.

http://dx.doi.org/10.1007/978-1-4419-9863-7_575
http://dx.doi.org/10.1007/978-1-4419-9863-7_576
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Biochemical Transport
Phenomena,
Fig. 1 Phenazine mass

fraction distribution in an air

cathode microbial fuel cell

model for Pseudomonas
aeruginosa based on a flux

balance analysis and a mass

transport 2D model in

Comsol® Multiphysics
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The fundamental Eq. 2 is easily derived assuming

that the cell behaves like a homogeneous reactor

regarding the concentration, as it does not consider

space variation of the metabolites concentration. Nev-

ertheless, biochemical systems, either biological based

such as cells or engineering based such as bioreactors,

require the establishment of mathematical equation

that relates the concentration gradient with the metab-

olite flow that in near equilibrium is named Fick’s law

and can be described for binary systems using the

following equation:
JA ¼ �C � DAB � dXa

dz
(3)

where JA is the metabolic flux, DAB is the diffusivity

coefficient, and dXa

dz is the molar fraction gradient with

respect to z. Nevertheless, multicomponent diffusion,

as is the general case in biochemical systems, demands

the use of the Maxwell-Stefan’s equation:
=xa ¼ �
XN

b¼1

xaxb
Dab

va � vb
� �

(4)

where va describes the velocity for component a.
Microbial fuel cells are examples where it is

necessary to incorporate the constitutive equations

for mass transport in addition to FBA. Figure 1
displays the concentration distribution of phenazine,

the electron shuttle in Pseudomonas aeruginosa in

an air cathode microbial fuel cell model developed

by our groups (Mejı́a et al. 2012). Concentration pro-

files allow determining if there exist axial dispersion,

influence of diffusivity coefficients, and influence of

metabolites flow in the distribution of the compound in

charge of transporting electrons.
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Definition

Network motifs are patterns of interconnections occur-

ring in complex networks at numbers that are signifi-

cantly higher than those in randomized networks.

The present of network motifs in gene regulatory

networks was first discovered in transcriptional regu-

lation networks of the bacteria Escherichia coli (Shen-
Orr et al. 2002), and then in a large set of natural

networks (Milo et al. 2002).
N

Characteristics

Network Motifs in Gene Regulatory Networks

In ▶ gene regulatory networks, network motifs are

patterns of genes regulating each other’s transcription

rate. When analyzing transcription networks, it is

seen that the same network motifs appear frequently

in diverse organisms from bacteria to human. In

Escherichia coli, for example, much of the transcrip-

tional interactions are composed of repeated appear-

ances of three highly significant motifs:▶ feed-foward

loop, single-input module (SIM), and dense overlapping

regulons (DOR) (Shen-Orr et al. 2002). Each network

motif has a specific function in determining gene expres-

sion, such as generating temporal expression programs

and governing the responses to fluctuating external

signals.

The leading hypothesis for the repeated appear-

ances of motifs is that the network motifs were

independently selected by the evolution of gene

regulation in a converging manner (Babu et al.

2004; Conant and Wagner 2003). Furthermore,

both experiments and computational studies on the

dynamics generated by network motifs indicate that

they have characteristic dynamical functions (Dekel

and Alon 2005; Alon 2007; Ma et al. 2009). This

suggests that network motifs serve as building blocks

in gene regulatory networks that are beneficial to the

organism.
There are two types of transcription network:

sensory networks that respond to signals such as

stresses and nutrients, and developmental networks

that guide differentiation events. Network motifs of

sensory networks are common to both types of

networks, while some motifs are specific for develop-

mental networks.

Network Motifs in Sensory Networks

Network motifs in sensory networks include simple

regulation and auto-regulation, ▶ feed-forward loop,

single-input modules (SIM), and dense overlapping

regulons (DOR) (Alon 2006, 2007). The four motif

families seem to cover most of the known interactions

in the transcription networks of Escherichia coli and
yeast.

Simple regulation is a basic transcription interac-

tion in which transcription factor Y regulates gene

X with no additional interactions (Fig. 1a). The

transcription factor Y is usually activated by a signal.

The signal can be an inducer molecule that directly

binds Y, or a modification of Y by a signal-transduction

cascade, and so on. When transcription begins, the

concentration of gene product X rises and converges

to a steady-state level. When production stops, the

concentration of the gene product decays exponen-

tially. In both cases, the response time is equal to

half-life of the gene product. The faster the degradation

rate, the shorter the response time (Alon 2007).

There are two types of auto-regulations, ▶ negative

autoregulation (NAR) in which a transcription factor

represses the transcription of its own gene (Fig. 1b),

and ▶ positive autoregulation (PAR) in which

a transcription factor enhances its own rate of produc-

tion (Fig. 1c). Usually, NAR accelerates the response

time relative to a simple regulation system that has the

same steady-state expression level, while PAR slows

down the response time. In additional to speeding up

response, NAR can reduce cell-cell variation in protein

levels, while PAR tends to increase the cell-cell vari-

ability (Alon 2007).

▶ Feed-forward loop (FFL) is a family of network

motifs. Themotif consists of three genes: a regulator X,

which regulates Y, and Z, which is regulated by both X

and Y. Because each of the three regulatory interac-

tions in the FFL can be either activation or repression,

there are eight possible structural types. Two of them

are far more common than others in transcription net-

works (Alon 2006, 2007).
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Network Motif,
Fig. 1 Network motifs in

gene regulatory networks.

(a) Simple regulation.

(b) Negative auto-regulation.
(c) Positive auto-regulation.
(d) Coherent type-1 FFL with

an AND input function at the

Z promoter. (e) The incoherent
type-1 FFL with an AND input

function at the Z promoter.

(f) The single-input module

(SIM) network motifs. (g) The
dense overlapping regulon

(DOR) network motif
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The most common form, called ▶ coherent type-1

FFL (C1-FFL) (Fig. 1d), is a sign-sensitive delay ele-

ment that can protect against unwanted responses to

fluctuating inputs. Thus, it can function as a persistence

detector, filtering away brief fluctuations from the

input signal (Alon 2006).

The second common FFL type, the ▶ incoherent

type-1 FFL (I1-FFL) (Fig. 1e), can act as a pulse gen-

erator and a response accelerator. This acceleration can

be used in conjunction with the other mechanisms of

acceleration, such as increased degradation and nega-

tive auto-regulation (Alon 2006).

The FFLs in transcription networks tend to combine

to form multi-output FFLs, in which X and Y regulate

multiple output genes Zi, (i ¼ 1, 2,� � �, n). In these

configurations, each of the output genes benefits from

the dynamical functions that are described above. In

addition, the multi-output FFL can generate temporal

orders of gene activation and inactivation by means of

a hierarchy of regulation thresholds for the different

promoters (Alon 2007).

The single-input module (SIM) network motif is

a simple pattern in which one regulator regulates

a group of target genes (Fig. 1f). The SIM has an

interesting dynamical function: It can generate tempo-

ral programs of expression, in which genes are turned

on one by one in a definite order. This kind of strategy
can prevent protein production before it is needed

(Alon 2006, 2007).

The DOR network motif is a dense array of regula-

tors that combinatorially control output genes (Fig. 1g).

The DORs can carry out decision-making calculations,

based on the input functions of each gene (Alon 2006,

2007).

Network Motifs in Developmental Networks

Developmental transcription networks transduce sig-

nals into cell-fate decisions. These networks have dif-

ferent constraints: They usually function on the

timescale of one of several cell generations, and often

need to make reversible decisions that last even after

the input signal has vanished (Alon 2007).

Developmental transcription networks use all the

network motifs as in sensory transcriptional network.

In addition, as a result of their specific requirements,

developmental networks use other network motifs that

are not commonly found in sensory networks.

Developmental transcription networks often use

▶ positive feedback loops making up of two transcrip-

tion factors that regulate each other. There are two

kinds of positive feedback loops, a double-positive

loop and a double-negative loop. The positive

feedback loop can display two steady states: In

double-positive loop, either both activators are ON or

http://dx.doi.org/10.1007/978-1-4419-9863-7_553
http://dx.doi.org/10.1007/978-1-4419-9863-7_553
http://dx.doi.org/10.1007/978-1-4419-9863-7_554
http://dx.doi.org/10.1007/978-1-4419-9863-7_554
http://dx.doi.org/10.1007/978-1-4419-9863-7_528


Network Motifs of Gene Regulatory Networks 1521 N

N

are OFF; in double-negative loop, one of the repressor

is ON, and the other is OFF. In this sense, this network

motif can provide memory of an input signal even after

the signal is gone. The double-negative feedback loop

is often used as a ▶ toggle switch between two differ-

ent fates (Alon 2007).

In additional to feedback loops, developmental

transcription networks tend to have much longer

cascades than sensory transcription networks. These

cascades pass information on a slow timescale that

can be on the order of one cell generation at each

cascade step, an appropriate pace for many develop-

mental processes. Development often uses repressor

cascades, the timing properties of which can often be

more robust to noise in protein production rates than

those of activator cascades (Alon 2007).

Network Motifs in Other Biological Networks

In addition to transcription networks, there are

composite network motifs that include different types

of interactions. One of the most common composite

motifs is a negative feedback loop between two

proteins, in which one arm is a transcriptional interac-

tion, and the other aim is a protein-protein interaction.

The separation of timescales between the slow

transcription arm and the faster protein-protein inter-

action arm might help to stabilize the dynamics of

composite loop. Networks of protein modification

and synaptic connection between neurons also seem

to exhibit network motifs including FFLs connections

(Alon 2007).

Detection of Network Motifs

To detect network motifs, one can start with real net-

works where the interactions between nodes are

represented by directed edges. Each network is

scanned for all possible n-node subgraphs, and the

number of occurrences of each subgraph is recorded.

The occurrence numbers are compared with those in

random networks with the same size and connectivity

properties. Network motifs are patterns that occur

more often in the real networks than in random net-

works (Milo et al. 2002).

Open-source software that can detect network motifs

from an input network is available (Kashtan et al. 2004).

The software accepts network data in the form of a list

that details the interactions occurring between different

nodes, and outputs the recurring network motifs and

depicts these motifs within the network.
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Synonyms

Building blocks of gene regulatory network
Definition

In the gene regulatory network of Escherichia coli and

yeast, network motifs refer to those regulatory

interacting patterns that occur in original networks at

http://dx.doi.org/10.1007/978-1-4419-9863-7_101513
http://dx.doi.org/10.1007/978-1-4419-9863-7_460
http://dx.doi.org/10.1007/978-1-4419-9863-7_590
http://dx.doi.org/10.1007/978-1-4419-9863-7_100140
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numbers that are significantly higher than those in

randomized networks (Milo et al. 2002; Shen-Orr

et al. 2002; Alon 2007). These network motifs are

responsible for diverse functions and behaviors of

E. coli and yeast. They comprise ▶ feed forward loop

(FFL),▶ single-input module motif, SIM, and▶ dense

overlapping regulons (DOR).
Characteristics

Network Motif Structure

A network motif of a regulatory network is composed

of nodes and regulations that connect the nodes. It

defines the interacting patterns that are preferred by

the gene regulatory network. Many genes in the regu-

latory network are organized by the preferred regula-

tory patterns. For example, a network motif may

be A ! B ! C, and the interacting pattern can be

employed by the genes in the regulatory network,

crp ! araC ! araBAD:

Detection of Network Motifs

Generation of randomized networks is a key step to

detect network motifs.

1. For regulatory networks, the generated randomized

networks should have the same incoming and out-

going degree per node as the original network. Two

different algorithms with identical results were

given to generate randomized networks.

Algorithm A. A Markov-chain algorithm, based

on starting with the real network and

repeatedly swapping randomly chose pairs of connec-

tions (X1 ! Y1;X2 ! Y2 is replaced by

X1 ! Y2;X2 ! Y1), is employed until the network

is well randomized. Switching is prohibited if either of

the connections X1 ! Y2;X2 ! Y1already exists.

AlgorithmB. Connectivity matrix was used to a direct

construction algorithm. Each network was

presented as a connectivity matrix M; such that

Mij ¼ 1 if there is a connection directed from node

i to node j, and 0 otherwise. The goal is to create a

randomized connectivity matrix Mrand; which

has the same number of nonzero elements in

each row and column as the corresponding

row and column of the real connectivity

matrix: Rj ¼
P

j Mrand;ij; Ci ¼
P

i Mrand;ij

¼ P
i Mrand;ij. To generate the randomized net-

works, they start with an empty matrix Mrand.
They then repeatedly choose a row n according to

the weights pi ¼ Ri=
P

Ri and a column m
according to the weights qj ¼ Rj=

P
Rj

in a randomized manner. If Mrand;mn ¼ 0; they

set Mrand;mn ¼ 1. They then set Rm ¼ Rm � 1

and Cn ¼ Cn � 1. If the entry ðm; nÞ. This process
is repeated until all Ri ¼ 0 and Cj ¼ 0.

2. Each of the randomized networks has the

same ðn� 1Þ-node subgraph count as the real net-

work, as a null hypothesis for detecting n-node

motifs. This is done to avoid assigning high signif-

icance to a structure only because of the fact that it

includes a highly significant substructure. To ensure

the null hypothesis as a basis for detecting three-

node motifs, algorithm A in (1) can preserve the

numbers of the in- and outdoing edges for each

node, as well as the number of edges and single

edges separately. For a random null hypothesis net-

work for assigning significance to the four-node

subgraphs, they generate randomized networks

that have the same three-node subgraph counts as

the real network.

Another step is to count all connected

n-node subgraphs in a connectivity matrix M. The

algorithm loops through all rows I. For each

nonzero element (I, j), it loops through all connected

elements Mik ¼ 1;Mki ¼ 1;Mjk ¼ 1; and Mkj ¼ 1.

This is recursively repeated with elements

ði; kÞ; ðk; iÞ; ðj; kÞ; and ðk; jÞ until n-node subgraph is

obtained. This process is repeated for each of the ran-

domized networks. The number of appearances of each

type of subgraph in the random ensemble is recorded, to

assess its statistical significance.

Last step is to find the network motifs that meet the

following criteria:

1. The probability that it appears in a randomized

network an equal or greater number of times than

in the real network is smaller than P ¼ 0.01. In the

present study, P was estimated (or bounded) by

using 1000 randomized networks.

2. The number of times it appears in the real network

with distinct sets of nodes is at least U ¼ 4.

3. The number of appearances in the real network

is significantly larger than in the randomized

networks: Nreal – Nrand > 0.1Nrand. This is done to

avoid detecting as motifs some common subgraphs

that have only a slight difference between Nrand and

Nreal but have a narrow distribution in the random-

ized networks.

http://dx.doi.org/10.1007/978-1-4419-9863-7_463
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Software for Network Motif Detection

Mfinder: http://www.weizmann.ac.il/mcb/UriAlon/

FANMOD: http://theinf1.informatik.uni-jena.de/	
wernicke/motifs/index.html (Fast)

MAVisto: http://mavisto.ipk-gatersleben.de/
Cross-References

▶Dense Overlapping Regulons

▶ Feed Forward Loop

▶ Single-Input Module
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Network Partitioning

▶Network Clustering
Network Querying

Shihua Zhang

National Center for Mathematics and Interdisciplinary

Sciences, Academy of Mathematics and Systems

Sciences, Chinese Academy of Sciences,

Beijing, China
Synonyms

Network alignment
Definition

Network querying is a special type of network align-

ment problem (Sharan and Ideker 2006; Zhang et al.

2008). It is to map molecules (such as proteins or genes)
of one network of interest (e.g., a complex, a pathway,

a functional module, or a general molecular network) to

another network or network database for uncovering

conserved (sub) networks (Ferro et al. 2007; Pinter

et al. 2005; Shlomi et al. 2006).
Cross-References

▶Comparative Analysis of Molecular Networks

▶Multiple Network Alignment

▶Network Alignment

▶Networks Comparison
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Network Targeting

▶ Pathway Targeting, Antimycobacterial Drug Design
Network Topology Motif

Guangxu Jin

Systems Medicine and Bioengineering,

Bioengineering and Bioinformatics Program, The

Methodist Hospital Research Institute, Weill Medical

College, Cornell University, Houston, TX, USA
Synonyms

Network interacting pattern; Network motif
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Definition

In complex network, network motifs are those patterns

of interconnections occurring in original networks at

numbers that are significantly higher than those in

randomized networks (Alon 2007 and Milo et al.

2002). The interacting patterns are helpful to understand

how the nodes in the network interact and how the

network is constructed by the subgraphs of the

interacting nodes. The subgraphs of network motifs are,

thereby, considered as the simple building blocks of

complex network. They are widely identified in tran-

scription networks, neuron synaptic connection net-

works, ecological food webs, electronic circuits, and

the World Wide Web.
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Network Visualization and Exchange

▶ SBGN
Network-based Biomarkers

Sanjeev Kumar1 and Shipra Agrawal2

1BioCOS Life Sciences Private Limited, Bangalore,

Karnataka, India
2BioCOS Life Sciences Pvt. Limited, Institute of

Bioinformatics and Applied Biotechnology,

Bangalore, Karnataka, India
Definition

The complex phenotypes observed during the develop-

ment of a disease are rarely due to single proteins.Hence,

recently, it has been shown that protein networks are

a source for identifying powerful biomarkers. These

biomarker networks in many cases are more useful in

predictions rather than the any individual gene.
Transcriptional modules rich in biomarkers can be

generated by measuring coordinately expressed gene

expression profiles in biofluids. These “biomarker

modules” can further be used to predict new biomarker

networks in an iterative manner. Such biomarkers

based on networks could also be abstracted from the

integrative network models of the cellular networks,

which are constructed from high throughput proteo-

mics and genomics datasets.

The protein network biomarkers could be identified

for the followings:

• Stratification of disease progression from one stage

to another: For example, the protein networks

obtained from expression profile and/or interaction

data from a patient or diseased tissue could be

mapped onto a network, which is derived from the

expression profile or protein interaction data from

healthy individuals and tissues.

• Tissue differentiation: Network biomarkers can help

in identifying the process of tissue differentiation.

• Improved interpretation of genome-wide associa-

tion studies (GWAS): Finally, protein networks

may be the key in mining GWAS data to understand

the complex diseases, which have multiple genetic

loci to play the causal role. The researchers have

recently used protein networks to translate GWAS

into maps of functional interactions between pro-

tein complexes and pathways.

In near future, these concepts are going to be useful

in medicine. It is proposed that such networks might be

crucial multi-node drug targets for multiple diseases.

Further, the new clinical trials with combination drugs

should be encouraged to discover the effect toward

the disease treatment (Erler and Linding 2010;

Azuaje 2010).

Advantages

In case of a complex biological phenomena and diseases,

it is very difficult to detect and quantitatively analyze the

biomarkers specific to tissue and corresponding diseases

by the conventional biomarker discovery approaches,

which mostly identify the growth and progression of

a single protein molecule. In such cases, network biol-

ogy–basedmethods enable us to understand the complex

disease mechanism at the system level and facilitate

identification of network-based biomarkers.

All the proteins involved therein signify

corresponding cellular state and biological functions,

which could also be modeled computationally to

http://dx.doi.org/10.1007/978-1-4419-9863-7_1096
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observe the dynamics and alteration in biological func-

tions. Such markers are robust, predictive, and quanti-

tative markers or signatures for complex diseases.
References
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Network-based Pathway Analysis

▶Metabolic Pathway Analysis
N

Networks Comparison

Shihua Zhang1 and Zhenping Li2

1National Center for Mathematics and

Interdisciplinary Sciences, Academy of Mathematics

and Systems Sciences, Chinese Academy of Sciences,

Beijing, China
2School of Information, Beijing Wuzi University,

Beijing, China
Synonyms

Network alignment; Network querying
Definition

Network comparison problem is to compare cellular

networks by employing the network topological

characteristics as well as biological information of mol-

ecules to uncover the similarity or dissimilarity infor-

mation among networks (Przulj 2006; Rito et al. 2010;

Sharan and Ideker 2006). This problem can be analo-

gous to biological sequence comparison and structure

comparison. It can be topologically coarse-level com-

parison such as the comparative analysis of degree

distribution, clustering coefficient, diameter, and rela-

tive graphlet frequency distribution (Przulj 2006), or

can be the discovery of conserved subgraphs among
networks. The latter is known as network alignment

problem in bioinformatics field (Sharan and Ideker

2006).
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Neurodegenerative Diseases

▶Disease System, Parkinson’s Disease
Niche-defining

Maureen A. O’Malley

Department of Philosophy, University of Sydney,

Sydney, NSW, Australia
Definition

In discussions of metagenomics, “niche-defining” refers

to the approachwherebymetagenomically detected genes

and pathways are used to infer biogeochemical conditions

and how relevant organisms have adapted to them.
Cross-References

▶Metagenomics
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Nitrogen Fixation, Modeling

▶Metabolism Nitrogen Fixation
NK Cells, M. Tb Infection

▶Natural Killer Cells, Mycobacterial Infection
N-K Model

▶Boolean Networks
NLP Problem

▶Optimization Algorithms for Metabolites

Production
Node Score

▶Node Score, Graph Alignment
Node Score, Graph Alignment

Michal Kolář

Institute of Molecular Genetics, Academy of

Sciences of the Czech Republic, Prague,

Czech Republic
Synonyms

Network alignment; Node score
Definition

A node score of a graph alignment (▶Graph

Alignment, Protein Interaction Networks) A evaluates
the alignment quality with respect to the similarity

of the nodes of the aligned networks (▶ Protein-

Protein Interaction Networks) G1(V1, E1) and

G2(V2, E2). Together with the link score (▶Link

Score, Graph Alignment) it forms the scoring func-

tion of the graph alignment (▶ Scoring Function,

Graph Alignment).

For a pair-wise graph alignment (▶Graph

Alignment, Protein Interaction Networks) A of the

networks G1 and G2, the node score Sn rewards pairs

of aligned nodes i, j ¼ A(i) with a high node similarity

Rij (e.g., level of homology, a BLAST bit score)

and penalizes similarity between pairs of vertices not

respected by the graph alignment:
Sn ¼
X
i 2 VA

1

s1ðRijÞþ
X

j02 VA
2
n j
wij0 s2ðRij0 Þþ

X
i02 VA

1
ni
wi0j s2ðRi0jÞ

2
4

3
5

(1)

The sums run over the aligned nodes only, that is,

for a global alignment over all nodes, for a local

alignment over subsets of all nodes in VA
1 
 V1 and

VA
2 
 V2. The factor wij, which takes the value of 1,

when only one of i and j is aligned, and 0.5 when both

the nodes are aligned to different partners, prevents

over-counting of the node score contributions (Kolář

et al. 2008). The functions s1 and s2 parameterize the

node score and must be set in advance or inferred from

the dataset (▶ Parameter Estimation, Graph Align-

ment). In general, we expect s1 to be an increasing

function of the protein similarity measure R, so

that it rewards alignment of more alike proteins,

and s2 to be a decreasing function of the protein

similarity R.
For a multiple graph alignment (▶Graph

Alignment, Protein Interaction Networks), the equiva-

lence classes (▶Graph Alignment, Protein Interaction

Networks) are considered instead of the pairs of

aligned proteins. The similarity of the proteins within

each equivalence class is estimated by inferring

a phylogenetic tree relating the species in the

alignment (▶ Parameter Estimation, Graph Align-

ment) and by calculating a weighted sum of pair-wise

protein similarities (e.g., BLAST bit scores) (Flannick

et al. 2006). The weights of the sum are inferred from

the phylogenetic tree relating the species in the align-

ment (Weighted Sum-of-Pairs Scoring, Altschul et al.

1989).
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Cross-References

▶Graph Alignment, Protein Interaction Networks

▶Link Score, Graph Alignment

▶ Parameter Estimation, Graph Alignment

▶ Protein-Protein Interaction Networks

▶ Scoring Function, Graph Alignment
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Noise in Metabolic Networks

▶ Stochastic Effects in Metabolic Networks
Noise in Metabolic Pathways

▶ Stochastic Effects in Metabolic Networks
Noise, Intrinsic and Extrinsic

Ruiqi Wang

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

Gene expression is a stochastic process. The origin of

stochasticity in a cell can be attributed to random

transitions among the discrete chemical states. The
noise may come in two ways. First, the inherent

stochasticity in biochemical processes such as binding,

transcription, and translation generates the intrinsic

noise. Second, variations in the amounts or states of

cellular components or the external environment gen-

erate the extrinsic noise. Such noises are believed to

play especially important roles when species are pre-

sent at low copy numbers.

The two kinds of noise can be distinguished by

comparing the variation in expression of genes, for

example, two genes, cyan and yellow fluorescent

proteins, within single cells with the variation in

expression of these two between different cells.

If there is little intrinsic noise, then the two

levels of protein expression vary in concert,

while if intrinsic noise is high, they vary essen-

tially independently.
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Non-canonical Pathway of MicroRNA
Biogenesis

▶MicroRNA Biogenesis, Regulation
Non-classical Computation

▶Unconventional Computation
Non-coding Intergenic Sequences

▶Genomic Databases
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Yan Zhang

Key Laboratory of Systems Biology, Shanghai
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Synonyms

Non-protein-coding RNA
Definition

A non-coding RNA (ncRNA) is a functional RNA

molecule that is not translated into a protein. Non-

coding RNA genes include highly abundant and func-

tionally important RNAs such as transfer RNA (tRNA)

and ribosomal RNA (rRNA), as well as RNAs such as

snoRNAs, microRNAs, siRNAs, and piRNAs and the

long ncRNAs that include examples such as Xist and

HOTAIR.
Characteristics

Biological Roles of ncRNA

Non-coding RNAs belong to several groups and are

involved in many cellular processes. These range from

ncRNAs of central importance that are conserved

across all or most cellular life through to more transient

ncRNAs specific to one or a few closely related spe-

cies. The more conserved ncRNAs are thought to be

molecular fossils or relics from LUCA and the RNA

world.

NcRNAs in Translation

Many of the conserved, essential, and abundant

ncRNAs are involved in translation. Ribonucleopro-

tein (RNP) particles called ribosomes are the “facto-

ries” where translation takes place in the cell. The

ribosome consists of more than 60% ribosomal RNA;

these are made up of three ncRNAs in prokaryotes and

four ncRNAs in eukaryotes. Ribosomal RNAs catalyze

the translation of nucleotide sequences to protein.

Another set of ncRNAs, Transfer RNAs, form an

“adaptor molecule” between mRNA and protein. The
H/ACA box and C/D box snoRNAs are ncRNAs found

in archaea and eukaryotes, RNase MRP is restricted to

eukaryotes, and both groups of ncRNA are involved in

the maturation of rRNA. The snoRNAs guide covalent

modifications of rRNA, tRNA, and snRNAs, and

RNase MRP cleaves the internal transcribed spacer 1

between 18S and 5.8S rRNAs. The ubiquitous ncRNA,

RNase P, is an evolutionary relative of RNase MRP.

RNase P matures tRNA sequences by generating

mature 50-ends of tRNAs through cleaving the

50-leader elements of precursor-tRNAs. Another

ubiquitous RNP called SRP recognizes and transports

specific nascent proteins to the endoplasmic reticulum

in eukaryotes and the plasma membrane in prokary-

otes. In bacteria, Transfer-messenger RNA (tmRNA)

is an RNP involved in rescuing stalled ribosomes,

tagging incomplete polypeptides and promoting the

degradation of aberrant mRNA.

NcRNAs in RNA Splicing

In eukaryotes, the spliceosome performs the splicing

reactions essential for removing intron sequences, and

this process is required for the formation of mature

mRNA. The spliceosome is another RNP often also

known as the snRNP or tri-snRNP. There are two

different forms of the spliceosome, the major

and minor forms. The ncRNA components of the

major spliceosome are U1, U2, U4, U5, and U6. The

ncRNA components of the minor spliceosome are

U11, U12, U5, U4atac, and U6atac.

Another group of introns can catalyze their own

removal from host transcripts; these are called self-

splicing RNAs. There are two main groups of self-

splicing RNAs, these are the group I catalytic intron

and group II catalytic intron. These ncRNAs catalyze

their own excision from mRNA, tRNA, and rRNA

precursors in a wide range of organisms.

In mammals, it has been found that snoRNAs can

also regulate the alternative splicing of mRNA, for

example snoRNA HBII-52 regulates the splicing of

serotonin receptor 2C.

NcRNAs in Gene Regulation

The expression of many thousands of genes is regu-

lated by ncRNAs. This regulation can occur in trans or

in cis.

In higher eukaryotes, microRNAs regulate gene

expression. A single miRNA can reduce the expression

levels of hundreds of genes. The mechanism by which

http://dx.doi.org/10.1007/978-1-4419-9863-7_101047
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mature miRNA molecules act is through partial com-

plementary to one or more messenger RNA (mRNA)

molecules, generally in 30 UTRs. The main function of

miRNAs is to downregulate gene expression.

A number of ncRNAs are embedded in the 50 UTRs
of protein coding genes and influence their expression

in various ways. For example, a riboswitch can directly

bind a small target molecule, and the binding of the

target affects the gene’s activity.

NcRNAs and Genome Defense

Piwi-interacting RNAs (piRNAs) are expressed in

mammalian testes and somatic cells; they form RNA-

protein complexes with Piwi proteins. These piRNA

complexes (piRCs) have been linked to transcriptional

gene silencing of retrotransposons and other genetic

elements in germ line cells, particularly those in

spermatogenesis.

Clustered Regularly Interspaced Short Palindromic

Repeats (CRISPR) are repeats found in the DNA of

many bacteria and archaea. The repeats are separated

by spacers of similar length. It has been demonstrated

that these spacers can be derived from phage and

subsequently help protect the cell from infection.

NcRNAs and Chromosome Structure

Telomerase is an RNP enzyme that adds specific DNA

sequence repeats (“TTAGGG” in vertebrates) to

telomeric regions, which are found at the ends of

eukaryotic chromosomes. The telomeres contain con-

densed DNA material, giving stability to the chromo-

somes. The enzyme is a reverse transcriptase that

carries Telomerase RNA, which is used as a template

when it elongates telomeres, which are shortened after

each replication cycle.

X-inactive-specific transcript (Xist) is a long

ncRNA gene on the X chromosome of the placental

mammals, which acts as major effector of the

X chromosome inactivation process forming Barr bod-

ies. An antisense RNA, Tsix, is a negative regulator of

Xist. X chromosomes lacking Tsix expression (and

thus having high levels of Xist transcription) are

inactivated more frequently than normal chromo-

somes. In drosophilids, which also use an XY

sex-determination system, the roX (RNA on the X)

RNAs are involved in dosage compensation. Both

Xist and roX operate by epigenetic regulation of tran-

scription through the recruitment of histone-modifying

enzymes.
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Synonyms

MiRNA databases; NcRNA databases; Non-protein-

coding RNA databases; PiRNA databases; ScaRNA

databases; SnoRNA databases; SRNA databases;

TRNA databases
Definition

These are databases that provide information on

▶ non-coding RNA (ncRNA), including nomenclature,

sequence data, genomic maps, and functional annotation

(e.g., targets).
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Database URLa Focus Taxonomy Comments

Sequence
databasesb

NCODE noncode.org General General Manual curation; tackles the nonuniform

classification system of ncRNAs

RNAdb research.imb.uq.edu.au/

rnadb/

General Mammals Sequence annotations; expression data; some

limited literature curation; focus on regulatory

ncRNAs

lncRNAdb lncrnadb.org lncRNA Eukaryotes lncRNAs with demonstrated biological function;

manual curation

miRBase mirbase.org miRNA General Primary online repository for miRNA sequence data

and annotation; stable accessions; target prediction

PMRD bioinformatics.cau.edu.cn/

PMRD/

miRNA Plants Integrates data from public databases with in-house

data; some limited literature curation; expression

profiles

piRNABank pirnabank.ibab.ac.in piRNA human,

mouse, rat

Some literature curation; handles redundancy and

repetition; cluster information (important for

piRNAs)

Plant snoRNA-DB bioinf.scri.sari.ac.uk/cgi-

bin/plant_snorna/home

snoRNA Plants Sequence; expression data; modification sites in

targets

sno/scaRNAbase bioinfo.fudan.edu.cn/

snoRNAbase.nsf

snoRNA,

scaRNA

General Expert curation

snoRNA-LBME-db www-snorna.biotoul.fr snoRNA,

scaRNA

Human Extensive manual curation; most entries are

experimentally verified in humans or close

vertebrates; identifies modified nucleotides in target

RNAs

tRNADB-CE trna.nagahama-i-bio.ac.jp tRNA General Computational prediction; partial manual curation;

expert comments; includes results from

metagenomics data

Vir-MirDB alk.ibms.sinica.edu.tw miRNA Viruses Computational prediction of miRNA sequences and

host targets

Target databases

NPInter www.bioinfo.org.cn/

NPInter/

General Several ncRNA interactions with proteins, mRNA, and

genomic DNA; strict manual curation

(counterchecked); requires experimental evidence

miRSel services.bio.ifi.lmu.de/

mirsel/

miRNA Human,

mouse, rat

Automated extraction of miRNA and target genes

from literature; partial manual curation

TarBase diana.cslab.ece.ntua.gr/

tarbase/

miRNA General Curated collection of experimentally supported

miRNA targets; info on differential expression in

specific tissues

MicroCosm www.ebi.ac.uk/enright-srv/

microcosm/

miRNA General Computational prediction

Others

miR2Disease mir2disease.org miRNA Human Manually curated associations between microRNA

deregulation and diseases

Rfam rfam.sanger.ac.uk General General Grouping into RNA families

aCompiled Nov 17, 2011.
bAlthough classified as sequence databases, some of the following also provide more specialized information, such as functional targets.

N 1530 Non-coding RNA Databases
Characteristics

From being regarded in the past as mere carriers of

information in the process of gene expression, RNAs
are now recognized to serve diverse and important non-

messenger functions in biological systems. For example,

ncRNAs have been shown to be directly involved in

translation, splicing, regulation, genome defense, and
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the cell cycle (see ▶Cell Cycle Regulation,

microRNAs). Indeed, with respect to the control of

gene expression, numerous studies have even demon-

strated that they play roles that are just as important as

those played by protein transcription factors (Szymanski

et al. 2007). This growing appreciation for the impor-

tance of ncRNAs has spurred the development of several

dedicated databases (see Table 1 for a partial list).

Sequence Databases

Two examples of databases that collect ncRNAs

are NONCODE (He et al. 2008) and ncRNAdb

(Szymanski et al. 2007). Both derive their data primarily

from GenBank, although ncRNAdb supplements this

with sequences from the H-Invitational (Yamasaki

et al. 2009) and FANTOM3 (Maeda et al. 2006)

databases, and NONCODE with literature curation. All

the entries in NONCODE are manually curated; more

than 80% are from experiments. In addition, the data-

base classifies ncRNAs based on the cellular process in

which they take part (e.g., DNA imprinting, RNA

editing, etc.) and annotates the molecular mechanism

through which they exert their function (sequence base

pairing, catalysis, etc.).

In contrast to NONCODE and ncRNAdb,

which provide information on ncRNAs in general,

some databases focus on either a particular class of

ncRNAs (see ▶Non-coding RNA, Classification) or on

a taxonomic group. One example of the former is

miRBase (Kozomora and Griffiths-Jones 2011), which

is currently the primary online repository for ▶miRNA

sequence data and annotation. Entries in miRBase are

either experimentally verified or predicted homologs of

miRNAs verified in a related organism. Computational

target prediction for themiRNAs (see▶MiRNATarget)

is provided by its companion resource, MicroCosm

(formerly miRBase Targets). In addition to providing

data, miRBase also acts as an independent arbiter of

miRNA gene nomenclature. Other databases that spe-

cialize in specific classes of ncRNA include piRNABank

(Lakshmi and Agrawal 2008), snoRNA-LBME-db

(Lestrade and Weber 2006), and tRNADB-CE (Abe

et al. 2011), which focus on piwi-interacting RNA

(piRNA), small nucleolar RNA (snoRNA), and transfer

RNA (tRNA), respectively.

Target Databases

As with proteins, ncRNAs are controlled and exert

their functions via interactions with other biological
molecules. For example, ncRNAs have been shown to

(1) regulate the expression of genes via binding

to mRNAs, (2) act as factors affecting a protein’s

function, and (3) be regulated by proteins. Several

resources specialize in compiling these interactions.

For instance, a class of databases, which includes

NPInter, TarBase, miRTarBase, and miRecords, works

bymanually curating the biomedical literature. Although

the interactions contained in these databases, by virtue of

the manner in which they were collected, have some

form of experimental support, it has been noted that

a considerable fraction of the data was derived only

from large-scale experiments, where detailed validation

of individual pairs was not performed. As a case in point,

75% and 58% of the miRNA-target pairs in human

reported by TarBase and miRecords, respectively, orig-

inate from the supplementary materials of just two pub-

lications (Naeem et al. 2010). Other examples of

databases that provide ncRNA target information are

miRSel (Naeem et al. 2010),which employs textmining,

and PITA and MicroCosm, which use computational

prediction (see▶MicroRNA Target Prediction).
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Synonyms

Non-coding RNA annotation
Definition

The subject of non-coding RNA classification deals

with assigning an unknown sequence to a family or

class of RNAs. RNA classification methods can be

used in automated categorization of single RNA

molecules or in genome-wide annotation screens.
Characteristics

Overview

At the most general level, there are two types of RNA

transcripts: messenger RNAs (mRNAs), also referred to

as protein-coding RNAs, and non-protein-coding RNAs

(ncRNAs). Functional ncRNAs are generally classified

by their membership of an▶RNA family or an▶RNA

class. RNA familymembership is predominantly defined

by sequence homology, while RNA class membership is

defined via functional and/or structural similarities. On

the other hand, a structured RNA can also be classified

according to whether it is a transcript, that is, whether it

has an independent promoter and transcription termina-

tor, or whether it is a structural motif and part of an

mRNA. Many methods applied to non-coding RNA

classification are also used for non-coding RNA predic-

tion (▶Non-coding RNA, Prediction) (Bompf€unewerer

et al. 2007; Soldà et al. 2009).

RNA Transcript Classification

The discrimination of coding from non-coding RNAs

is an important analytical task, in particular during the

annotation of newly sequenced genomes. RNAcode is

a program that detects and classifies coding regions in

multiple sequence alignments based on a statistical

model (Washietl et al. 2011). It is similar in spirit to

the program QRNA of Rivas and Eddy (2001). Using

explicit models for structural ncRNAs and protein

coding RNAs, RNAcode reduces the number of

falsely predicted and classified ncRNAs.

Assignment to Defined RNA Families

Assignment via Similarity Search

Members of an RNA family are homologous and, there-

fore, the sequences of the members of a transcript family

are often recognizably similar. Approaches that classify

a non-coding RNA on the basis of sequence homology

either use alignment methods against a database of

known non-coding RNAs or methods that are specific

for a particular RNA family.

Themost common and also most general approach to

the characterization of homologous ncRNAs is to com-

pute a pairwise local alignment of a target RNA

sequence with a known RNA sequence. When aligning

a given RNA sequence against annotated sequences in

a large database, for example, Rfam, fRNAdb, RNAdb,

NONCODE, and others (▶Non-coding RNA Data-

bases), a fast alignment method is needed. The best
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known algorithm that allows for sensitive alignments is

blast, a very fast heuristic of the Smith-Waterman

algorithm.

Classification of an RNA sequence using blast or

other sequence alignment methods is recommended

for highly similar sequences. Members of the same

RNA family may, however, share rather short regions

of high-sequence similarity interrupted by regions with

only structural similarity. Methods that allow one to

search for short and quite similar sequence regions

interrupted by regions of low conservation, which can

vary in length, are more appropriate and yield better

results than blast and similar methods. An example

is fragrep, which is also one of the methods of

choice for ncRNA class annotation.

Assignment via Structure Comparison

Since primary sequences within RNA families can

also be poorly conserved, it is mostly impossible to

determine membership of an RNA family purely on

the basis of primary sequence homology. On the other

hand, structural conservation is indirectly hidden in

sequence alignments of members of an RNA family.

The best indicators are base pairs. Double mutations

preserving a base pair are known as compensatory

mutations and the process of detecting them is

called covariation analysis. Covariation analysis is

a specific type of stochastic context-free grammars.

Using covariation analysis, covariance models (CMs)

are built from multiple sequence alignments of

homologous non-coding RNA sequences and their

consensus structure. Thus, a CM defines a consensus

RNA structure which these sequences have in com-

mon. Each CM represents an RNA family (see Meyer

2007 for a practical guide). A database that is built on

covariance models is Rfam (▶Non-coding RNA

Databases). Currently, Rfam stores covariance models

for more than 2,000 RNA families, including non-

coding RNA genes and structured cis-regulatory

elements.

For the classification of an RNA sequence

CMsearch is the most commonly used program.

CMsearch is part of the toolkit Infernal that

constructs CMs and finds new members of a family.

A very convenient way of classifying an RNA

sequence for a matching Rfam family is to use the

Web interface of the database.

There also exist specialized methods that classify

a sequence as a member of a specific RNA family. The
most prominent methods include tRNAscan-SE to

classify tRNAs, BRUCE to classify tmRNAs, and

SRPscan to classify SRP RNAs.

Assignment to Defined RNA Classes

Determining the class membership of a given RNA

sequence is a much harder problem than determining

family membership, because members of an RNA

class mostly share only structural properties and rarely

sequence similarity.

snoRNAs are a class of RNAs whose canonical role is

involvement in rRNA maturation. There are two major

classes of snoRNAs that are determined by the formation

of a local snoRNA-rRNA duplex: the C/D box snoRNAs

direct 2-O-methylation of the ribose, while the H/ACA

box snoRNAsguide the conversion of uridine nucleotides

to pseudouridine. Members of each family are character-

ized by the presence of conserved sequence motifs in the

snoRNA and short sequence tracts complementary to the

cognate RNA target, also termed antisense elements.

Several specific snoRNA classification programs have

been developed (e.g., snoScan, snoGPS, fisher,

and snoReport). They all have in common that they

exploit structural features of snoRNAs.

Another important class of very small ncRNAs is

the class of microRNAs (miRNAs). These are involved

in the regulation of translation and degradation of

mRNAs. Similar to the case of snoRNAs, the classifi-

cation of miRNAs can be based either on their target or

on their typical hairpin structure. For a detailed

description the reader is referred to the entry on

▶MicroRNA Gene Prediction.

Machine-Learning Methods

In order to classify whether a given primary sequence,

or even alignment of several sequences containing

a conserved structured RNA, belongs to a specific

class of RNAs is a typical task for machine learning.

Once a model is designed, it can be trained to distin-

guish either protein-coding from non-protein-coding

RNAs or to classify a specific gene family from sam-

ples of existing genes.

Machine-learning methods applied to this task often

use support vector machines (SVM). An SVM-based

ncRNA classification approach needs a kernel function

that computes similarity between two RNA molecules

and takes the secondary structure into account.

An example for an SVM-based classification

method is snoReport. The SVM is trained to
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recognize the two major classes of snoRNAs, box C/D,

and box H/ACA, in multiple sequence alignments. The

classification of the multiple alignment is based solely

on information about conserved sequence boxes and

secondary structure constraints. In comparison with

other snoRNA classification methods snoReport

does not require any target information.

GraPPLE is an algorithm and aWeb-based tool for

classifying ncRNA sequences as functional as well as

into Rfam families (Childs et al. 2009). GraPPLE uses

graph properties derived from the consensus secondary

structure of an RNA family, for which an SVM was

trained. The SVM is then used to classify an unknown

ncRNA.

RNA Motifs

RNA structural motifs play essential roles in RNA

folding and interaction with other molecules, such as

proteins or mRNAs.

Motifs can be classified into three broad classes

based only on sequence, structure or a combination of

sequence, and structure.

A prominent database resource for the structure-

based classification is SCOR, focusing on internal

and hairpin loops.

Many cis-regulatory motifs, such as riboswitches,

are located in the 50 or 30 UTRs of mRNA sequences.

Transterm is a database that provides access to mRNA

sequences and associated cis-regulatory elements.

Transterm allows, for example, users to search an

RNA sequence for known regulatory elements.

Limitations

Generally, most transcripts are either clearly protein-

coding or non-coding RNAs, and therefore also mostly

easily distinguishable. However, the group of long

non-coding RNAs, that is, those ncRNAs that are

more than 200 nucleotides long, imposes limitations

on currently available methods. For example, members

of this class of non-coding RNAs often have neither

a pronounced secondary structure nor an open-reading

frame and have limited conserved sequence homology

with sequences in other species.
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Non-coding RNA prediction refers to computational
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de novo prediction

Non-coding RNA, Prediction, Fig. 1 Overview of the three

approaches to ncRNA prediction and examples of relevant pro-

grams. 1. De novo prediction, for which a subgroup of programs

(*) is available that specifically predict ncRNA transcripts.

2. Searching for members of a specific family. 3. Searching for

members of a specific class. These programs are usually special-

ized for single classes of ncRNAs
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DNA/RNA sequence data, which may be transcribed

as independent genes (ncRNA genes) or which are part

of other transcripts (ncRNA elements). Methods can be

applied to the detection of non-coding RNA elements

in general, to the detection of specific RNA families, or

to the detection of certain classes of ncRNAs.
N

Characteristics

Overview

There are three conceptually different approaches to

the computational detection of ncRNAs in DNA/RNA

sequence data (Bompf€unewerer et al. 2007; Meyer

2007; Soldà et al. 2009) (see also Fig. 1).

1. The first approach concerns the de novo detection of

ncRNAs. In this case, no specific features like

distinct sequences or structural patterns of the ele-

ments of interest are known in advance. Most

methods of this kind are based on comparative

sequence analysis. They depend on the detection

of conserved sequences and structures (▶RNA

Secondary Structure) in homologous sequences. In

order to detect transcribed ncRNA genes these

comparative methods are often combined with

the prediction of transcriptional signals such as

promoter and transcription terminator signals.

2. If the goal is to search for members of a certain RNA

family and representatives of this family are known, it

is possible to train a probabilistic model by using
sequence and structure information as input. Further

members of the same family can be detected by

scanning sequence data using this model.

3. Finally, there are methods available that are designed

to detect ncRNAs that belong to a certain class

(▶Non-coding RNA, Classification). Members of

a class share common structural and/or functional

features in the absence of strong sequence conserva-

tion. An example is the class of▶miRNA. Different

miRNA genes differ significantly in their primary

sequence, but all pre-miRNAs share several structural

properties, which makes their computational predic-

tion feasible.

Methods that are used for the prediction of

ncRNAs can also be applied to their classification

(▶Non-coding RNA, Classification).

De Novo Prediction of Non-coding RNAs

Methods Based on Comparative Sequence Analysis

If the aim is the prediction of ncRNAs without the

restriction to a certain RNA family or class, methods

based on comparative sequence analysis can be

applied. These methods do not rely on specific proper-

ties of the sequence or structure of the RNAs but search

for conserved sequences and structures in general. All

of these methods require a prior specification of

homologous sequences, which are either aligned by

the method itself or have to be aligned before the

method is applied (e.g., using ClustalW). There are

various ways in which the necessary homologous

http://dx.doi.org/10.1007/978-1-4419-9863-7_319
http://dx.doi.org/10.1007/978-1-4419-9863-7_319
http://dx.doi.org/10.1007/978-1-4419-9863-7_1118
http://dx.doi.org/10.1007/978-1-4419-9863-7_322
http://dx.doi.org/10.1007/978-1-4419-9863-7_1118
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sequences can be found. As the target of an ncRNA

search is often a complete genome or chromosome,

a whole-genome alignment with one or more related

organisms can be generated, which then serves as input

for the ncRNA prediction methods. If the search for

ncRNAs is limited to specific regions of an organism’s

genome, homologous sequences can be searched in

DNA sequence databases, using, for example, the fast

local alignment search tool BLAST.

Based on these principles several computer

programs are available that predict ncRNAs using

a comparative approach. RNAz, for example, takes

a multiple sequence alignment (MSA) as input and

classifies it as containing a conserved ncRNA or not.

If the input alignment length is large, it is sliced by

a sliding window. RNAz uses an SVM to classify each

input alignment. Basically two properties of the align-

ment are used as input for the classification. First, the

so-called z-score:
z ¼ m� m
s

; (1)

wherem is the average minimum free energy (MFE) of

the structures of the sequences in the alignment and

m and s are mean and standard deviation of the MFE

values of a set of random sequences of similar length

and base composition. The z-score of the alignment

represents the stability of its structure compared to

what is expected from a random sequence with similar

properties. Here, the rationale is that functional RNAs

have a more stable structure than other elements.

The assumption that functional RNAs tend to have

a more conserved structure compared with other

sequences leads to the second measure, the structure

conservation index (SCI):
SCI ¼ EA

�E
; (2)

where EA is the MFE of the consensus structure of the

alignment as calculated by RNAalifold and �E

denotes the average MFE of the single sequences.

The SCI is a measure of effective structural conserva-

tion. If the single sequences fold into a similar struc-

ture, their MFE values are close to the MFE value of

the consensus structure, which results in an SCI close

to 1. If the single sequences fold into dissimilar struc-

tures, the SCI is close to 0. The classifier SVM returns
a value for the probability that the input alignment

contains a structured RNA.

The program EvoFold is based on a comparative

probabilistic model. It uses phylogenetic stochastic con-

text-free grammars (phylo-SCFG) to distinguish func-

tional RNA sequences from others. Again, a multiple

sequence alignment is taken as input to determine

whether the substitution patterns of the alignment col-

umns fit a functional RNA model or a background

model, which is also represented by a phylo-SCFG. In

addition, EvoFold takes a phylogenetic tree as input

providing information about the evolutionary distances

between the organisms on which the alignment is based.

Therefore, substitution patterns in the alignment can be

weighted with respect to the phylogenetic information.

The program QRNA also makes use of SCFGs, but it

does not take phylogenetic information into account.

Also, the SCFG is only used for the RNA model. For

the two background models (protein-coding, other)

hidden Markov models (HMM, ▶Markov Chain) are

used. QRNA takes two aligned sequences as input and

assigns the alignment to one of the three models.

An example of a program that takes unaligned

sequences as input is LocARNA. LocARNA performs

a sequence and structure alignment simultaneously and

provides a base-by-base conservation profile for struc-

ture and sequence, which allows a precise prediction of

structured RNAs that are potentially contained in the

alignment.

The program CMfinder also takes unaligned

sequences as input and produces an SCFG-based covari-

ancemodel (CM) describing the structuralmotifs that are

found therein. The advantage is that the sequences do not

have to be completely homologous unless they do not

share a common structural motif. The resulting CM can

be used to scan genomic sequences for the discovered

motifs.

Methods Based on Transcriptional Feature Detection

In order to predict transcribed ncRNAs several methods,

applied mostly to prokaryotic genome sequences, make

use of the prediction of transcriptional features like pro-

moter regions and transcription terminator signals. These

approaches are then combined with methods based on

comparative sequence analysis to detect conserved struc-

tures within the predicted transcripts.

SIPHT (Livny et al. 2008) is a web-interface-based

program, which combines various methods for finding

sequences homologous to regions in the target genome,

http://dx.doi.org/10.1007/978-1-4419-9863-7_443
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predicting transcriptional features, and detecting structural

conservation. In a first step, the intergenic regions of the

selected bacterial target genome are compared with other

bacterial genomes using BLAST. In homologous

sequences transcription factor binding sites (TFBS,

▶Transcription) are searched using position-specific

weight matrices. In addition, different methods for the

prediction of termination signals are applied. The pro-

gram QRNA is used for the determination of structural

conservation.

The program nocoRNAc (Herbig and Nieselt

2011) uses a slightly different approach. Starting from

regions of structural conservation detected by RNAz in

a whole-genome alignment of related eubacterial organ-

isms, nocoRNAc uses a specific model for the calcula-

tion of DNA duplex stability to predict promoter regions

independent of known transcription factor binding site

patterns. This is combined with a method for transcrip-

tion terminator prediction to distinguish transcribed

ncRNAs from other structured RNA elements.

Searching for Members of an RNA Family

In the case that there are known representatives of the

RNA family for which instances are sought in a target

genome, it is possible to build a specific model for this

family, which can then be used for searching.

A database for such RNA family models is

Rfam (▶Non-coding RNA Databases). This database

also offers the Infernal package, which contains

software for training new models (CMbuild) or using

existing family models for searching (CMsearch). The

entries in the database consist basically of the trainedCM

(the SCFG-based covariance model of the RNA family)

and the alignment and consensus structure of the repre-

sentatives on which the model is based. The program

CMsearch takes such a model and a target sequence as

input and returns positions ofmatching regions aswell as

the respective scores as output.When properly calibrated

models are used an e-value is calculated for each hit. An

advantage of CMsearch is that it can use prefiltering

approaches to limit the search space. It can derive an

alignment-HMM (HMMER) from theMSA, which can be

used for prefiltering or it can use the local alignment

search tool BLAST for this purpose. These filtering steps

only take the sequence information into consideration.

The complete model, including structure information, is

only applied to target regions that have not been filtered

out. This approach results in a significant speedup of the

search procedure.
Another program that can be used to search for

instances of RNA families in complete genomes is

Erpin. Erpin is not based on CMs but can still use

the alignment and structure information in Rfam entries.

It constructs position-specific weight matrices (PSWM)

for helices and single-stranded regions found in the con-

sensus structure of the family and calculates the entries

of the matrix on the basis of the alignment. These

PSWMs are then matched with the target sequences.

The advantage of Erpin is that it takes a descriptor

file for each RNA family as input. This input can be

calculated automatically from an Rfam entry, for exam-

ple, but it can also be changed manually, which is not

feasible for CMs.

Searching for Members of an RNA Class

There are several methods which are designed to

search for members of a specific class of ncRNAs.

tRNAscan-SE, for example, is a program for

searching tRNAs, which can also be considered as an

ncRNA family. It can be used via a web interface but is

also available as a standalone program. tRNAscan-SE

offers a general tRNA model but also more specific

models for bacteria, eukaryotes, etc.

Programs for the detection of snoRNAs focus on the

localization of the sequence motifs in C/D box

snoRNAs and H/ACA box snoRNAs and on the gen-

eral secondary structure properties of this class. Also,

the partial sequence complementarity to targeted

snRNAs and rRNAs is considered in some applica-

tions. The program snoScanmakes use of such target

information for predicting C/D box snoRNAs and the

program snoGPS specifically predicts H/ACA box

snoRNAs. The program snoReport, however, does

not need such target information. It predicts C/D box

and H/ACA box snoRNAs in single sequences.

The program snoSeeker combines CDseeker

and ACAseeker to search for C/D box and H/ACA

box snoRNAs, respectively, and is able to take

whole-genome alignments and deep sequencing data

as input.

For the prediction of miRNA genes several methods

have been developed, which take the specific sequence

and structure properties of this class of RNAs into

account (▶MicroRNA Gene Prediction).

Limitations

Most of the methods in the field of ncRNA prediction

are based more or less on the detection of sequence

http://dx.doi.org/10.1007/978-1-4419-9863-7_304
http://dx.doi.org/10.1007/978-1-4419-9863-7_1042
http://dx.doi.org/10.1007/978-1-4419-9863-7_100880
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and structure conservation. This leads to certain

limitations:

1. There are ncRNAs that do not exhibit a pronounced

secondary structure. Such elements cannot be found

by structure-based methods.

2. Many ncRNAs exhibit low sequence conservation,

so that homologous sequences for comparative

analysis are difficult to find.

3. Some ncRNAs are found only in one species, which

limits the applicability of all comparative approaches

in general.
Cross-References
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Non-contextual Conditions

▶ Intrinsicality
Nondeterministic Polynomial-Time Hard

▶NP-hard
Non-empirical Values

Martin Carrier

Department of Philosophy, Bielefeld University,

Bielefeld, Germany
Definition

Nonempirical values serve to delineate specific distinc-

tions of scientific knowledge beyond empirical adequacy.

Such values express requirements of significance and

confirmation. The former are influential on the choice

of problems and the pursuit of theories, the latter contrib-

ute to assessing the bearing of evidence on theory.

Nonempirical values maybe epistemic (i.e., truth related)

or non-epistemic (i.e., pragmatic, ethical, or utilitarian).

Background

The background of the claim that nonempirical values

contribute to shaping the system of scientific knowledge

is constituted by the Duhem–Quine underdetermination

thesis (underdetermination). This thesis says that the

agreement of the empirical consequences of a theory

with the available observations is not a sufficient reason

for accepting the theory. In other words, logic and expe-

rience leave room for conceptually incompatible but

empirically equivalent explanatory alternatives. Con-

sider the example of explaining a bunch of phenomena

by a plethora of hypotheses, using, say, one hypothesis

for each phenomenon, in contrast to accounting for the

same class of phenomena by one overarching principle.

Both approaches come out empirically equivalent, yet

the scientific community would unanimously pick the

latter. This trivial case reveals that the choice of hypoth-

eses in science is governed by values transcending

empirical adequacy.
Characteristics

Nonempirical values serve two chief purposes in

science: they contribute to establishing the significance

http://dx.doi.org/10.1007/978-1-4419-9863-7_443
http://dx.doi.org/10.1007/978-1-4419-9863-7_322
http://dx.doi.org/10.1007/978-1-4419-9863-7_100880
http://dx.doi.org/10.1007/978-1-4419-9863-7_328
http://dx.doi.org/10.1007/978-1-4419-9863-7_1118
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and the confirmation of knowledge claims. Nonempirical

values may be epistemic or non-epistemic. Epistemic

values are supposed to characterize the merit inherent in

certain kinds of knowledge, while non-epistemic values

express the usefulness of kinds of knowledge for

accomplishing certain practical ends. Epistemic values

distinguish knowledge intrinsically worth knowing,

while non-epistemic values determine the appropriate-

ness of knowledge for instrumental use. Truth is among

the pivotal epistemic values of science, but is of limited

suitability for directing scientific research. First, science

does not strive for truth simpliciter, but for relevant or

significant truth. Second, truth is difficult to recognize,

and thus more easily accessible indicators need to be

employed. Epistemic values offer guidance in both

respects. They provide measures of epistemic signifi-

cance and standards of credibility that hypotheses need

to satisfy in order to pass as acceptable.

Significance Relations

Epistemic values delineate the goals attributed to science

as a knowledge-seeking enterprise. For instance, scien-

tists strive for knowledge that is valid in a wide domain;

they appreciate universal principles. At the same time,

they rate highly precision and correspondingly hold

quantitative relations in esteem. Further, scientists search

for understanding which is often expounded in terms of

the coherence of the views entertained. Knowledge may

encompass isolated pieces of information, but under-

standing demands relations of fit or mutual support

among the knowledge elements.

In science, such requirements are typically made

more concrete by highlighting causality and unifica-

tion. That is, relations of cause and effect and of being

of the same kind are often taken to be relevant.

Speaking more generally, the epistemic significance

of a proposition is influenced by its logical content,

i.e., by the set of propositions whose validity depends

on the truth value of the proposition in question. This is

why establishing logically isolated propositions (such

as ascertaining the number of leaves of a given tree at

a certain time) is considered pointless. By contrast,

examining more fundamental or more universal claims

is supposed to possess epistemic value. The critical

feature is the set of propositions whose acceptability

hinges on the truth value of the assumption at issue.

Epistemic significance serves as a nontriviality condi-

tion of knowledge claims and establishes relevance

relations.
Epistemic significance affects the choice of prob-

lems and thus contributes to setting up the research

agenda. Non-epistemic values are also influential in

shaping lines of research. Such values may be prag-

matic (such as simplicity in the sense of easy handling

of a theory), ethical (such as not to conduct experi-

ments that involve a violation of human rights), utili-

tarian (taking the technological usefulness of a theory

or the prospect of economic benefit tied to it as reasons

for working on it), or social (in that knowledge that can

be used to the detriment of social groups is required not

to be gained (Kitcher 2001)).

Confirmation Relations

Epistemic values are employed in assessing how well

a hypothesis is confirmed by the available evidence.

Hypotheses need to exhibit certain virtues over and

above fitting the phenomena in order to be included in

the system of knowledge. For instance, Karl Popper

demanded of any confirmed hypothesis that it withstand

severe attempts to refute it. It is not enough that the

hypothesis agrees with the data. Such an agreement

only counts as confirmation if tests that can be expected

to reveal mistakes did not produce anomalies or coun-

terinstances. Only when a hypothesis was likely to fail

but bears critical scrutiny does the resulting agreement

with the observations count as empirical backing. In the

same vein, Popper emphasized the importance of predic-

tive success. In contrast to the mere derivation of data

from a theory, it is the successful anticipation of novel

phenomena, unobserved and unexpected before, that is

rightly regarded as support of the theory (Popper 1963).

In empirical respect, the explanation of a known fact and

the successful prediction of a new fact do not

make a difference. Regarding confirmation, appeal to

nonempirical values amounts to favoring certain forms

of agreement with the observations over other forms.

The assertion that values play a role in testing and

confirming theories was prominently defended by

Thomas Kuhn (1977). Kuhn claimed that theories are

assessed in light of virtues such as accuracy, broad

scope, or fruitfulness. Ernan McMullin (1983) coined

the term “epistemic values,” which was intended to

express that the implementation of such values can be

presumed to promote the truth-like character of the

theory in question. A variety of lists of epistemic

values have been proposed (e.g., Longino 1995) that

all suffer from their lack of stringency: Items can be

abandoned or replaced by others without creating



N 1540 Non-empirical Values
inconsistencies. An alternative approach to judging

scientific theories is to devise more systematic

methodological theories that identify such features

of excellence from a unified point of view. An example

is Bayesianism, which invokes Bayes’ rule to

evaluate the probability (or “rational credibility”) of

a hypothesis in light of the evidence. Bayesianism

claims to give a coherent account of methodological

excellence and thus to provide a rationale as to why

these features in contrast to others are to be preferred.

Bayesianism also includes epistemic values: high

hypothesis probability is an epistemic value, and the

features that promote it, namely, high prior probability

(Bayesian method) and the increase of the likelihood of

the evidence by the adoption of a hypothesis, qualify as

epistemic values as well. Such values feature cognitive

or explanatory achievements rather than social interests

or ethical concerns. They can be linked up with the

notion of science as a knowledge-seeking enterprise.

After all, a theory that takes account of a wide realm

of phenomena in a unified and precise fashion and

coheres well with other accepted beliefs is what we

take scientific knowledge to be all about (Carrier 2008).

Social epistemology focuses on the procedures

within the scientific community that govern the assess-

ment of theories. An early example is Robert Merton’s

“ethos” of scientists. Values like “universalism,” i.e.,

reliance on impersonal, preestablished criteria of eval-

uation, or “organized skepticism,” are demanded to

guide the behavior of scientists (Merton 1942). Such

values are social in that they are supposed to be inher-

ent to the scientific community, but they also have an

epistemic bearing in that their adoption is assumed to

promote the quest for truth or understanding. Giving

up universalism by excluding social groups from

research or abandoning skeptical scrutiny favors the

acceptance of ill-supported claims or the premature

rejection of possibly true ones.

Epistemic values are invoked for resolving the

Duhem–Quine underdetermination by narrowing the

spectrum of theoretical alternatives worthy of scien-

tific examination and pursuit. However, the multiplic-

ity of epistemic values may create tensions among

them with the result that they fail to support a clear-

cut ranking among theoretical competitors. Such

values tend to conflict with one another when applied

to particular cases and they are too imprecise to guide

theory choice unambiguously. As a result, one of the

competing theories may appear superior according to
some such standards and inferior according to others.

This uncertainty of judgment is known as Kuhn-

underdetermination or methodological incommensu-

rability. For instance, as judged in the 1910s, clas-

sical electron theory had a larger domain of

application than special relativity but the latter

excelled in explanatory power in that a few princi-

ples covered a wide range of phenomena. Epistemic

values often do not provide a basis for unambigu-

ously rating one rival account over the other (Kuhn

1977; Carrier 2008).

Non-epistemic Values

The practical relevance of science suggests the impor-

tance of non-epistemic values (Carrier 2010). Richard

Rudner (1953) argued that non-epistemic consider-

ations should play an essential role in judging hypoth-

eses. Any hypothesis appraisal is fallible andmay thus

always produce false positives or false negatives

(Error of type I and type II). A high threshold level

of acceptance reduces the risk of false positives, but

increases the odds of false negatives. Rudner’s sug-

gestion is that weighing the non-epistemic conse-

quences of these potential errors should bear on the

threshold of acceptance. However, it was pointed out

in the subsequent debate that accepting a hypothesis is

not tantamount to acting on the basis of this hypoth-

esis. The practical impact of research, upon which

Rudner’s argument draws, only emerges by the deci-

sion to take certain action by relying on the relevant

beliefs. Yet in general, the same set of beliefs leaves

room for a variety of actions with different practical

aftermath.

The more general point is that the assessment of

hypotheses requires balancing the risks of false posi-

tives and false negatives. Heather Douglas (2000)

emphasized that many factors in the design of a study

affect its sensitivity in detecting false positives or false

negatives, respectively. It is not solely the choice of

a threshold of acceptance, but a lot of decisions about

procedures used for providing relevant materials or

classifying results that affect how suitable tests are for

detecting mistakes of either kind. Adjusting sensitivity

such that certain errors are more probably revealed than

others affects the bearing of the data on the assessment

of the hypothesis. Since large parts of research today

have serious practical ramifications, Rudner’s basic

claim that finding the appropriate balance between

false positives and false negatives demands the appeal
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to non-epistemic values is taken seriously in many quar-

ters. This amounts to granting non-epistemic values

some influence in the context of justification.
Cross-References
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Synonyms

ODE modeling of miRNA regulation
Definition

MicroRNAs are small regulatory RNAs of 	22nt

length that bind to specific messenger RNAs regulating

their activity and stability and, therefore, the availabil-

ity of the translated protein. Together with▶ transcrip-

tion factors or other proteins, messenger RNAs and

small molecules, miRNAs are embedded in regulatory

networks that are rich in nonlinear dynamical mecha-

nisms. Mathematical models in ordinary differential

equations (a.k.a. kinetic models) are useful tools to

investigate the role of microRNAs in the organization

and functioning of those networks.
Characteristics

miRNAs are kinds of non-coding RNAs which can

regulate the activity and stability of the target mRNAs

through base-pair matching. When a miRNA binds

to a target messenger RNA target, it can induce

deadenylation of the target which is typically followed

by degradation of the mRNA (▶Target Cleavage), or it

can repress protein synthesis of the target by blocking

translation initiation or elongation, or by causing early

translation termination (▶MicroRNA Target Regula-

tion). Rarely observed in animals but common in plants,

miRNAs can direct argonaute-catalyzed cleavage of the

target mRNA when the ▶ target site exhibits extensive

sequence complementarity (target cleavage).

MicroRNAs are embedded in regulatory networks

rich in complex nonlinear dynamical mechanisms that

are conducted by positive and negative feedback loops
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mRNA

TFg

TFmiR

Prot

miR

mRNA

Synthesis Degradation

miR

Nonlinear Dynamics, miRNA Circuits, Fig. 1 Schematic rep-

resentation of a microRNA regulation network. RNA species

appear as parallelograms, proteins appear as rectangles. Leg-
end: mRNA messenger RNA, miR micro RNA, Prot transcribed
protein, TFg Transcription factor promoting gene expression,

TFmiR Transcription factor promoting miRNA expression. The

gray box represents the complex integrated by miR and the

targeted mRNA
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and all kinds of transcriptional and post-transcriptional

regulation. These mechanisms modulate networks in

a time-dependent manner. In order to understand the

organization and functioning of these networks, they

can be represented mathematically using models in

ordinary differential equations. These models reflect

rates of changes of molecular quantities over time,

their activation status, compartmentalization, and inter-

action with other partners. A simplified kinetic model in

ordinary differential equations for themiRNA regulation

of a target gene has the following structure:

d

dt
mRNA ¼ ksyn mRNA � TFg

�mRNA � ðkdeg mRNA þ kass miR � miRÞ

d

dt
½mRNA miRj � ¼ kass miR � mRNA � miR

�kdeg CpX � ½mRNA miRj �

d

dt
miR ¼ ksyn miR � TFmiR � miR � kdeg miR

�kass miR � mRNA � miR

d

dt
Prot ¼ ksyn prot � mRNA � kdeg prot � Prot

þ
X
j

�Zj Prot;P
� �

The model accounts for the evolution on time of the

gene expression levels, mRNA, protein product con-

centration, Prot, the free cytosolic fraction of the

targeting miRNA, miR, and complexes integrating

mRNA and miRNA molecules, [mRNA│miR] (Fig. 1).
The following processes are modeled:

For the messenger RNA (mRNA): (1) basal synthesis

(modulated by the kinetic constant ksyn_mRNA),
mediated by transcription factors promoting gene

expression (TFg); (2) basal degradation (kdeg_mRNA);

and (3) association with the miRNA into the com-

plex [mRNA│miR] (kass_miR).
For the miRNA (miR): (1) basal synthesis (ksyn_miR),

mediated by its transcription factor (TFmiR); (2) basal

degradation (kdeg_miR); and (3) association with the

mRNA into the complex [mRNA│miR] (kass_miR).
For the complex ([mRNA│miR]): (1) association of

microRNA and messenger RNA that forms

a complex (kass_miR); and (2) degradation/inactivation

(kdeg_CpX) of the complex.
For the protein levels (Prot): (1) mRNA-mediated

synthesis of protein (ksyn_prot); and (2) basal degra-

dation (kdeg_prot). In addition, the protein may

undergo further regulatory processes induced by

other proteins (P), which are not considered here

in detail. In this simple model, the total measurable

amounts for the two RNA types are defined by the

equations:
mRNATOTAL ¼ mRNAþ ½mRNA miRj �
miRTOTAL ¼ miRþ ½mp21 miRij �

Upon activation of miRNA expression, levels of

translationally active messenger RNA are reduced,

which in turn downregulates protein synthesis and

provokes a delayed reduction of protein levels

(Fig. 2). Since miRNAs have a rather long half-life,

the repression exerted by them can last long after

TFmiR signal termination.

The extent of themiRNA post-transcriptional repres-

sion is tightly controlled by the efficiency of some of the

molecular events described here, especially the mRNA

andmiRNA basal turnover and the association ofmiRNA
and messenger RNA. The model here described permits

to discriminate between microRNA-mediated mRNA

deadenylation or cleavage (Fig. 3 left) and miRNAs-
induced inhibition via translation repression (Fig. 3

right). As can be seen, differences between both
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Nonlinear Dynamics, miRNA Circuits, Fig. 2 Simulation of
transient miRNA-mediated post-transcriptional regulation. In
the initial configuration of the system, mRNA and protein are at

basal levels, while mRNA is not expressed: mRNA(0) ¼ 1;

Prot(0) ¼ 1; miR(0) ¼ 0. At t ¼ 24 h, miRNA expression is

promoted by a pulse-like TFmiR activation. The dynamics of the

system afterward is simulated. Since miRNAs have a rather long
half-life, the repression exerted by them can last long after TFmiR

signal termination. Model parameters used, representative of

that kind of systems: kass_miR ¼ 0.25; kdeg_CpX ¼ 0.0289;

kdeg_Prot ¼ 1.3863; kdeg_mRNA ¼ 0.0289; kdeg_miR ¼ 0.0289;

ksyn_mRNA ¼ 0.0289; ksyn_miR ¼ 0.28910; ksyn_Prot ¼ 1.3863
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Left: miRNA-mediated mRNA
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or cleavage. Right: mRNA-
mediated translational

repression. Initial conditions

and parameters are identical to

those in Fig 2. The exception is

kdeg_CpX for miRNA-mediated

mRNA deadenylation

(kdeg_CpX ¼ 0.289)
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mechanisms pertain to the expression level of

translationally active messenger RNA.

The model can be further modified to account for

additional regulatory properties in miRNA regulation.

For example, Khanin and Vinciotti (2008) proposed to

consider saturation in the target regulation process by

using a Michaelis-Menten equation for the rate of

association between mRNA and miRNA:
kass miR � mRNA � miR ) kass miR � mRNA � miR

kst þ miR

In case of multiple binding sites to which the same

miRNA can bind to, the same authors proposed to

transform the equation including a Hill coefficient

(▶Hill Equation) to account for cooperativity in the

post-transcriptional regulation:

kass miR � mRNA � miR ) kass miR � mRNA � miRh

khst þ miRh
Design Principles in miRNA Regulation

Several studies have used kinetic models to investigate

basic properties and design principles of miRNA regula-

tion. One of the earliest mathematical models that has

focused on miRNA gene silencing was constructed by

Levine and coauthors (2007). They developed a simple

quantitative model for microRNA-mediated silencing

and used it to investigate how distinctive responses in

the mRNA and protein expression levels of the target

gene are affected by parameters settings, which are

thought as target gene specific. Interestingly, they also

proposed that global effectors, related to different cellu-

lar conditions, distinctively affect different miRNA tar-

gets. Xie and coauthors (2007) developed a kinetic

model including delayed negative feedback to investi-

gate the effect of miRNAs on the oscillatory pattern of

gene expression, which are caused by the feedback loop

structure. Xu and colleagues (2009) combined theoreti-

cal analysis and numerical simulations to analyze the

effect of microRNA regulatory motifs on the system’s

robustness to external and stochastic perturbations.

Another model accounting for miRNA repression at

the initial protein translation processes was set up by

Nissan and Parker (2008). Zinovyev and coauthors

(2010) applied an asymptotic analysis to the same

model to investigate whether dynamical data allow

for distinguishing between different mechanisms of
microRNA regulation. Wang and colleagues (2010)

derived a quantitative model of generic miRNA pathway,

which was implemented deterministically and stochasti-

cally, and used it to identify the critical processes in the

miRNA pathway via sensitivity analysis. In addition, they

verified that a microRNA regulation pathway with that

structure induces noise reduction and exhibits robustness.

Whichard and coauthors (2011) derived amodel and used

it to investigate which biochemical events in the miRNA-
mediated post-transcriptional regulation are more promi-

nent for the modulation of gene expression. Using sensi-

tivity analysis, they found that miRNA synthesis acts to

fine-tune protein concentration. In addition, their model

shows thatmiRNAs can exert potent target repression even

in low copy number. Nikolov and coworkers (2011)

showed how to combine bioinformatics algorithms for

microRNA target prediction, database knowledge, and

kinetic modeling to investigate in detail the dynamics

and function of regulatory networks embedding miRNAs,

their targets, and transcription factors.

Modeling miRNA Regulation in Biomedicine

In recent years, some works have shown how to employ

kinetic modeling to investigate the regulation ofmiRNA-
regulated networks with biomedical interest. Aguda and

coauthors (2008) derived a kinetic model describing the

feedback loop system integrated by the▶miRNA cluster

miR-17-92, E2F and Myc. E2F and Myc are two tran-

scription factors involved in the regulation of cell prolif-

eration and apoptosis, which can shift their roles from

being oncogenic to tumor suppressor depending on their

expression levels. They found that the miRNA cluster

plays a critical role in regulating the ▶ bistability

(off–on switch-like behavior) exhibited by the system.

Vohradsky and colleagues (2010) built a model of

miRNA regulation using microarray data of HepG2

cells transfected with miRNA-124a. They identified the

genes in those cells repressed by miRNA-124a and com-

puted the model parameter values for all the mRNAs
affected by miRNA-mediated regulation. Based on their

model, they identified a digital switch-likemechanism of

microRNA regulation.
Cross-References
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Nonlinear Model

Maria Rodriguez-Fernandez and Francis J. Doyle III

Department of Chemical Engineering, Institute for

Collaborative Biotechnologies, University of

California, Santa Barbara, CA, USA
Definition

A nonlinear model is a mathematical model which is

not linear, that is, a model structure whose outputs do
not satisfy the superposition principle with respect to

its inputs, or whose outputs are not directly propor-

tional to its inputs.

Control engineers usually speak of nonlinear models

referring to nonlinearity in the inputs (non-LI). However,

when statisticians speak of nonlinear models, they usu-

ally refer to nonlinearity in the parameters. Analogously

to the definition of non-LI, a model structure is said to be

nonlinear in its parameters (non-LP) if its outputs do not

satisfy the superposition principle with respect to its

parameters (Walter and Pronzato 1997).
Cross-References

▶Optimal Experiment Design
References

Walter E, Pronzato L (1997) Identification of parametric models

from experimental data. Springer, Berlin
Nonlinear Optimization

▶Mathematics, Nonlinear Programming

▶Nonlinear Programming
Nonlinear Programming
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Department of Chemical Engineering, Institute for
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Synonyms

Nonlinear optimization
Definition

Nonlinear programming (NLP) deals with the problem

of optimizing an objective function in the presence of
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a system of equality and inequality constraints over

a set of unknown real variables, where the objective

function or some of the constraints are nonlinear

(Banga 2008).

A general nonlinear programming problem has the

form (Horst et al. 2000):
Minimize or maximize f ðxÞ
subject to giðxÞ � 0 for i ¼ 1; . . .m

hiðxÞ ¼ 0 for i ¼ 1; . . . l

x 2 X

where f ; g1; . . . ; gm; h1; . . . ; hl are functions defined

on n, X (feasible or admissible domain) is a subset of

n, and x is a vector of n components x1; . . . ; xn that

satisfy the restrictions and meanwhile minimize

or maximize the so-called objective function or cost

function f .
Cross-References
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Nonparametric Tests

▶Hypothesis Testing, Parametric vs Nonparametric
Non-Protein-Coding RNA

▶Non-coding RNA
Non-Protein-Coding RNA Databases

▶Non-coding RNA Databases
Nonstandard Computation

▶Unconventional Computation
Non-Synthetic Reactions

▶ Phase I Enzymes
NoSQL Databases

▶ Schemaless Databases
NP-hard

Lin Wang

School of Computer Science and Information

Engineering, Tianjin University of Science and

Technology, Tianjin, China

Synonyms

Nondeterministic polynomial-time hard

Definition

The class of NP-hard problems is the subset of decision

problems P such that for all Q2NP (nondeterministic

polynomial), Q is polynomially reducible to P.
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Nuclear Pore

Yota Murakami

Department of Chemistry, Hokkaido University,
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Definition

Nuclear pore is a huge protein complex that is

embedded in nuclear membrane and makes a “hole”
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for active transport of proteins and RNAs between

nucleus and cytosol.
Cross-References

▶Heterochromatin and Euchromatin
Nucleosome

▶Histones
Nucleosome Acting Factors

Masayuki Seki

Graduate School of Pharmaceutical Sciences,

Tohoku University, Sendai, Miyagi, Japan
Synonyms

Factors modulating nucleosome structure
10 nm fiber

“beads on a string”

H2A-H2B dimer x 2

(H3-H4)2 tetramer

DNA (146 bp)

Linker DNA (20 ~ 60 bp)

Nucleosome Acting Factors, Fig. 1 The basic unit of chro-

matin: (Upper panel) Arrays of nucleosomes. A 10-nm fiber is

equivalent to an array of nucleosomes along the DNA strand,

much like beads on a string. Nucleosomes, whose diameter is
Definition

Nucleosome ▶Nucleosome Structure acting factors

indicate three classes of chromatin factors (▶ATP-

dependent Nucleosome-Remodeling Factors, and

▶Histone Chaperones). The basic repeated unit of

eukaryotic chromatin within the nucleus is an array of

nucleosomes (Fig. 1). Nucleosomes comprise a core

histone octamer (two histone H2A-H2B dimers and

a histone (H3-H4)2 tetramer) surrounded by approxi-

mately 146 bp of DNA (Fig. 1). The nucleosome struc-

ture negatively regulates a variety of DNA-mediated

reactions including transcription, DNA replication,

and DNA repair. It is required for executing these

reactions to alter nucleosome structure and dynamics

by nucleosome acting factors.

Characteristics

Histone Modification Enzymes and Effectors

A number of post-translational covalent modifications

of histones (▶Histone Post-translational Modification

to Nucleosome Structural Change) (e.g., acetylation

[ac], methylation [me], phosphorylation [ph],
10 nm

Nucleosome

about 10 nm, are separated by approximately 20–60 base pairs of

linker DNA. (Lower panel) Composition and structure of nucle-

osome. Histones H2A, H2B, H3, and H4 are colored in yellow,
red, blue, and green, respectively

N
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Nucleosome Acting
Factors, Fig. 2 Post-

translational covalent

modifications of histones

(histone PTMs): (Upper
panel) A variety of histone

PTMs are found in the

intrinsically disordered

histone tails and (Middle
panel)the structured
nucleosome core. (Lower
panel) Representative histone
modification enzymes and de-

modification enzymes. Among

a variety of histone PTMs,

acetylation [ac], methylation

[me], phosphorylation [ph],

and ubiquitination [ub] related

enzymes are listed
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ubiquitination [ub], SUMOylation [su], ADP-ribosylation

[ar], citrullination [cit], and biotinylation [bio]) have been

identified. The nucleosome contains intrinsically
disordered histone tails and a structured nucleosome

core. The majority of▶histone Posttranslational Modifi-

cations (PTMs) occur not only on these intrinsically

http://dx.doi.org/10.1007/978-1-4419-9863-7_1412
http://dx.doi.org/10.1007/978-1-4419-9863-7_1412
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Nucleosome Acting Factors, Fig. 3 Representative effectors:

(Upper panel) Acetylated histone lysine residues, which are

modified by histone acetyltransferase (HAT) and de-modified

by histone deacetylase (HDAC), recruit bromodomain-

containing effectors to the chromatin. (Lower panel) Among

a variety of histone PTMs, effectors for acetylation [ac], meth-

ylation [me], and phosphorylation [ph] are indicated. Mono-, di-,

and tri-methylation are represented as me1, 2, and 3, respectively
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disordered histone tails but also on the structured

nucleosome core (Fig. 2). Each histone PTM is modified

or de-modified by histone PTM-related enzymes.

A representative list of modification enzymes and

de-modification enzymes of histone PTMs is shown in

Fig. 2. It is noteworthy that relationships between histone

PTMs have emerged to be the subject of study within the

field of Systems Biology (Hayashi et al. 2009).

Histone PTMs play a pivotal role in regulating the

structure and function of chromatin. So-called effectors

recognize each histone PTM and mediate subsequent
reactions on chromatin, such as recruitment of

a chromatin factor and/ormodification of another histone

residue, during DNA-mediated reactions (Fig. 3).

Single genome is converted into hundreds of

▶ epigenomes (Epi ¼ outside), whose chromatin

changes in the genome are heritable by mechanisms

other than changes in DNA sequence, such as ▶DNA

methylation, histone variants, and a variety of histone

PTMs (Allis et al. 2006). The pattern of histone PTMs

within an individual cell dictates the phenotype of that

cell. Recently, techniques such as ChIP-seq (ChIP-

sequencing) (▶RIP-Chip and RIP-Seq) enable the

genome-wide analyses of the epigenome (Park 2009).

ChIP-seq is used to identify the genome sites to which

a protein of interest localizes. The technique combines

chromatin immunoprecipitation (ChIP) with mas-

sively parallel DNA sequencing to identify DNA-

associated proteins, leading to precise mapping of the

global binding sites for a protein. ChIP-seq using an

antibody against the histone PTM of interest can iden-

tify the pattern of histone PTMs along the whole

genome. ChIP-seq has led to a rapid increase in the

amount of information pertaining to the pattern of

histone PTMs in individual cells during development,

cell differentiation, the maintenance of embryonic

stem cell status, and numerous diseases (including

cancers). Elucidating massive information about the

▶ epigenome from the Systems Biology point of

view is an emerging and challenging research area

(Dodd et al. 2007).

ATP-Dependent Nucleosome Remodeling

Complexes

Nucleosomes are regularly spaced along a 10-nmfiber of

chromatin; an arrangement akin to beads (Nucleosomes)

on a string (DNA) (Fig. 1). Sliding of the nucleosomes

along the DNA (Nucleosome remodeling) is necessary

for the proper spacing of these “beads” (Fig. 4). Nucle-

osome remodeling complex slides or evicts nucleosome

to allow other factors required for a variety of DNA-

mediated reactions access the chromatin (Fig. 4). Nucle-

osome remodeling is catalyzed by ▶ATP-dependent

nucleosome remodeling complexes, which comprise

a catalytic ATPase subunit and multiple non-ATPase

subunits. Several distinct families of ATP-dependent

nucleosome remodeling complexes have been identified

and are listed in Fig. 4. ATP-dependent nucleosome

remodeling complexes can be recruited onto chromatin

via their subunits, which recognize histone PTMs and/or

http://dx.doi.org/10.1007/978-1-4419-9863-7_100457
http://dx.doi.org/10.1007/978-1-4419-9863-7_351
http://dx.doi.org/10.1007/978-1-4419-9863-7_351
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Nucleosome Acting Factors, Fig. 4 The actions of ATP-

dependent nucleosome remodeling complexes: Representative

budding yeast ATP-dependent nucleosome remodeling com-

plexes are shown (lower right panel). (a, b) The ATP-dependent
nucleosome remodeling complexes slide or evict nucleosomes.

(c) In some case, histone variants are incorporated into the

nucleosome instead of canonical histones by ATP-dependent

nucleosome remodeling complexes. The four core histones,

H2A, H2B, H3, and H4, are referred to as “canonical histones.”

However, there are variants of histones (histone variants) that are

different from these core histones in terms of amino-acid

sequence
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other chromatin-bound factors. The ATP-dependent

nucleosome remodeling complexes then destabilize the

histone-DNA interaction, slide the nucleosomes along

theDNAusing energy derived fromATPhydrolysis, and

thereby facilitate a variety of DNA-mediated reactions

on the chromatin. Furthermore, the ATP-dependent

nucleosome remodeling complex such as Swr1 complex

replaces a canonical histone with its histone variant

(Fig. 4).

All ATP-dependent nucleosome remodeling com-

plexes show similar biochemical properties, i.e., they

remodel nucleosomes in vitro; however, the in vivo

function of each individual ATP-dependent nucleo-

some remodeling complex is nonredundant (Clapier
and Cairns 2009). In mammals, a defect in any of

the ATP-dependent nucleosome remodeling com-

plexes leads to severe effects during early embryonic

development. Furthermore, a single copy of the genes

encoding these ATPases or their subunits in mammals

is often incapable of providing sufficient protein pro-

duction so as to assure normal function in vivo.

Histone Chaperones

Nucleosome assembly and disassembly are essential

steps for the successful execution of many DNA-

mediated reactions on chromatin. ▶Histone chaper-

ones are histone-binding proteins that facilitate nucle-

osome assembly and disassembly in vitro without

http://dx.doi.org/10.1007/978-1-4419-9863-7_1491
http://dx.doi.org/10.1007/978-1-4419-9863-7_1491


Nucleosome Acting Factors, Fig. 5 Histone chaperones and

their histone-binding preferences: Representative histone chap-

erones, their histone-binding preferences, and their structures are

indicated. Histones H2A, H2B, H3, and H4 are colored in

yellow, red, blue, and green, respectively
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using energy derived from ATP hydrolysis

(Avvakumov et al. 2011). Under physiological condi-

tions, histones and DNA do not easily self-assemble

into nucleosomes because the positively charged his-

tones nonspecifically aggregate with the negatively

charged DNA. Histone chaperones assemble histones

and DNA into the nucleosome by preventing the

nonspecific interactions between histones and DNA

and promoting the specific ones. Histone chaperones

also reversibly facilitate the disassembly of the nucle-

osome into its individual components (Fig. 5). There

are numerous types of histone chaperones, which are
categorized by their primary and three-dimensional

structures. Representative histone chaperones and

their specific histone-binding preferences are shown

in Fig. 5. Since the assembly and disassembly of

nucleosomes occurs in a stepwise fashion (Fig. 5),

each histone chaperone regulates a particular assembly

and disassembly process depending on its histone-

binding preference. For instance, histone chaperone

CIA/Asf1 splits the histone (H3-H4)2 tetramer into

two histone H3-H4 dimers.

Histone chaperones interact not only with canonical

histones but also with other chromatin factors.
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The chromatin factors with which histone chaperones

interact specify the location within the chromatin at

which nucleosome assembly and disassembly take

place during DNA-mediated reactions. Furthermore,

some of histone chaperones interact with histone var-

iants (Fig. 5) and linker histones. Linker histones

(basic proteins within eukaryotic cell nuclei are not

components of the Nucleosome) interact with the

spacer (linker) DNA (Fig. 1) between adjacent nucle-

osomes. It is noteworthy that histone chaperones

are also involved in a variety of histone-related

activities in addition to nucleosome assembly and

disassembly, histone variant exchange, and linker

histone deposition such as regulation of histone

PTMs, nucleosome sliding, histone shuttling, and

histone storage.
Cross-References
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Synonyms

Nucleosome core particle
Definition

In eukaryotes, genomic DNA is packaged into “chro-

matin,” for its accommodation within the nucleus. The

core histones H2A, H2B, H3, and H4 are the major

protein components of chromatin. The fundamental

repeating unit of chromatin is the “nucleosome core

particle,” consisting of 146 base pairs of DNAwrapped

in 1.65 left-handed superhelical turns around the his-

tone octamer (Fig. 1) (Luger et al. 1997). The histone

octamer is composed of two of each histone, H2A,

H2B, H3, and H4, as two H2A/H2B dimers and one

H3/H4 tetramer. The nucleosome core particles are

connected by short linker DNA segments (roughly

20–50 base pairs), which do not directly bind to the

histone octamer surface, and form the nucleosome

array. The nucleosome and the nucleosome core parti-

cle are distinguished by the inclusion of the linker

DNAs. Linker histones, such as histones H1 and H5,

bind to the linker DNA within chromatin, and the

mononucleosome containing one linker histone is

defined as the “chromatosome” (Simpson 1978). The

nucleosome array is folded into higher-ordered chro-

matin structures. These higher-ordered structures are

dictated by the post-translational modifications of core

histones and the specific incorporation of histone var-

iants, and function to carry epigenetic information.
Characteristics

Core Histones

The four core histones, H2A, H2B, H3, and H4, share

a common structural motif, consisting of N- and/or

C-terminal tails and the histone-fold domain (Fig. 2)

(Arents and Moudrianakis 1995).
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Nucleosome Structure, Fig. 2 Structures of the four core

histones, H2A, H2B, H3, and H4, in the nucleosome core particle

Nucleosome Structure, Fig. 1 Structure of the nucleosome

core particle containing human histones H2A, H2B, H3.1, and

H4 (Tachiwana et al. 2010) RCSB ID code 3AFA
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Thehistone tails project from the nucleosome surface,

and flutter around the nucleosome core particle in the

solvent. The flexible histone tails may be the targets for

trans-acting factors, such as histone modification
enzymes, including histone acetyltransferase, histone

methyltransferase, and histone kinase, and are

actually enriched with amino acid residues targeted for

post-translational modifications. The histone tails may

also function as sites for inter-nucleosome interactions

for higher-ordered chromatin formation.

The histone-fold domains consist of a long central

a-helix (a2) bordered by two short a-helices (a1 and

a3). The loop 1 (L1) and loop 2 (L2) regions connect

a1-a2 and a2-a3, respectively. In the histone octamer,

H2A and H2B form a heterodimer, and the histone-

fold domains interact in a handshake-like manner. The

H3/H4 heterotetramer is composed of two H3/H4

heterodimers, in which the histone-fold domain of H3

interacts with that of H4, in a similar manner to the

H2A/H2B heterodimer. The C-terminal a3 loop of

histone H3 directly interacts with the other histone

H3 molecule in the H3/H4 heterotetramer.

Nucleosome Core Particle

In the nucleosome core particle, 146 base pairs of DNA

are left-handedly wrapped 1.65-times around the his-

tone octamer, and form a disk-like structure with

dimensions of 6 nm in height and 11 nm in diameter

(Fig. 1). The DNA is bound to the lateral surface of the

histone octamer. In the nucleosome core particle, the

L2 regions of two histone H3 molecules bind to the

backbone phosphates of the central region (nucleoso-

mal dyad) of the 146 base pair DNA. The DNA seg-

ments at the entrance and exit of the nucleosome bind

to the histone H3 aN-helix. The aN-helix of histone

H3 is located outside the histone-fold domain, and just

precedes the N-terminal region of the histone-fold aı-
helix. The histone-DNA interactions are intermittently

formed within the entire region of the nucleosome core

particle. The backbone phosphates of the DNA bind to

the histone octamer surface without sequence specific-

ity, and the DNA is bent to fit the lateral surface of the

histone octamer.

Nucleosome Assembly

The nucleosome is considered to be assembled in

a stepwise manner. Two H3/H4 heterodimers first bind

to theDNA, and the newly formedH3/H4 heterotetramer

wraps the DNA around it. This subnucleosome structure

is called the “tetrasome.” Two H2A/H2B dimers then

bind to the tetrasome, thus forming the mature nucleo-

some (Fig. 3). This sequential assembly of the nucleo-

some may be promoted by the actions of numerous



Nucleosome Structure, Fig. 3 Stepwise assembly of the

nucleosome
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histone chaperones in the nucleus. In the nucleosome, the

H2A/H2B dimers interact with the loop regions of two

histone H2A molecules, and the H3/H4 dimers form

a bundle of four helices, containing the C-terminal por-

tions of the a2 and a3 helices of histone H3 at the dimer

interface. At the H3-H30 interface, van der Waals con-

tacts and a hydrogen bond are formed between two

histone H3 molecules. Since the H2A/H2B dimers are

relatively mobile in the nucleus, the H2A-H2A0 interac-
tion in the nucleosomemay not be strong. In contrast, the

H3/H4 tetramers are stably incorporated into chromatin,

and their mobility in the nucleus is extremely slow.
A nucleosome lacking one H2A/H2B dimer may be

formed for the promotion of transcription and/or

replication.

Histone Variants

Except for histone H4, nonallelic isoforms of histones

H2A, H2B, and H3 exist in higher eukaryotes (Frank-

lin and Zweidler 1977). These histone isoforms are

called “histone variants.”

Five human histone H2A variants have been identi-

fied: H2A, H2A.X, H2A.Z, H2A.Bbd, and macroH2A.

H2A.Z and macroH2A also have sub-isoforms, such as

H2A.Z-1, H2A.Z-2, macroH2A1.1, macroH2A1.2, and

macroH2A2. H2A, H2A.X, and H2A.Z share similar

structural features to those in other histones. In contrast,

macroH2A contains a nonhistone-fold domain, called

the macrodomain, at its C-terminus. H2A.Bbd lacks the

C-terminal region, as compared to the canonical H2A

(129 amino acid residues), and is composed of 114

amino acid residues. H2A.Z is found within the func-

tional regions of chromosomes, and exhibits multiple

functions. H2A.X is recruited to DNA double strand

break sites, suggesting that it functions in the repair

processes of these lesions. H2A.Bbd is thought to exist

in transcriptionally active regions (euchromatin) of chro-

mosomes. In contrast, macroH2A predominantly exists

in transcriptionally inactive regions (heterochromatin) of

chromosomes.

Three histone H2B variants, spH2B, hTSH2B, and

H2BFWT, have been identified in humans. These H2B

variants are highly expressed in testes, but not in

somatic cells. Therefore, they may function during

spermatogenesis and/or oogenesis.

Eight histone H3 variants, H3.1, H3.2, H3.3, H3T,

H3.5, H3.X, H3.Y, and CENP-A, have been identified in

humans. Among them, H3.1, H3.2, and H3.3 are abun-

dantly produced, and commonly exist in all types of

tissues and cells. H3.1 and H3.2, which are expressed

during S phase, are incorporated into the chromatin in

a replication-dependent manner. In contrast, H3.3 is

constitutively expressed in a replication-independent

manner. H3.3 functions as a replacement for histone

H3, and seems to be predominantly incorporated into

transcriptionally active chromatin regions and the telo-

meres of chromosomes. H3T and H3.5 are highly

expressed in testes, but not in somatic cells. H3.X and

H3.Y are novel histone variants that may be involved in

the regulation of cellular responses to outside stimuli.

CENP-A, a centromere-specific H3 variant, is an



Nucleosome Structure,
Fig. 4 Structure of the human

CENP-A nucleosome
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essential component of active centromeres. CENP-A is

a strong candidate for an epigenetic marker of kineto-

chore formation sites.

Nucleosome Structures with Frog, Fly, Yeast, and

Human Histones

The crystal structures of nucleosomes have been deter-

mined with histones from frog, fly, yeast, and human.

The frog Xenopus laevis and Drosophila melanogaster
haveH3.2 as the canonical replication-dependent histone

H3. The yeast Saccharomyces cerevisiae has the H3.3-

type histone H3 and the H2A.X-type histone H2A as the

canonical core histones. The crystal structures of the

frog, fly, yeast, and human nucleosomes revealed that

the DNA-binding path of the human nucleosome differs

from those of the frog and yeast nucleosomes (Luger

et al. 1997; White et al. 2001; Tsunaka et al. 2005;

Clapier et al. 2008). Since no obvious structural varia-

tions are apparent among the human H3.1, H3.2, and

H3.3 nucleosome structures (Tachiwana et al. 2011a),

the difference in the DNA-binding path may not be due

to the distinct histone variants.

Nucleosome Structures Containing Histone

Variants

The structures of nucleosomes containing histoneH2A.Z

or histone H3T have been reported, thus revealing their

specific physical features (Suto et al. 2000; Tachiwana

et al. 2010). A biochemical study showed that the human

nucleosome containing histone H3T is extremely unsta-

ble, as compared to the canonicalH3.1 nucleosome. This

instability of theH3Tnucleosomemay play an important
role during spermatogenesis. The centromere-specific

nucleosome containing CENP-A has been determined

(Tachiwana et al. 2011b). In the CENP-A nucleosome,

only 121 base pairs of DNA are wrapped around the

histone octamer, and 13 base pairs are detached from

the histone surface at the entrance and exit of the nucle-

osome (Fig. 4). In the CENP-A nucleosome, the L1

region of the histone-fold domain is longer, by two

amino acid residues, as compared to the H3 L1 region,

and the L1 loop protrudes from the CENP-A nucleo-

some. The tip of the CENP-A L1 loop is exposed to the

solvent, and CENP-A deletion mutants in the L1 loop

have reduced stability at the centromeres of human cells

(Tachiwana et al. 2011b).
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Synonyms

Chromatin
Definition

The basic unit of ▶ genome is the nucleosome. It is

made of two subunits each of the four core histones
H2A, H2B, H3, and H4 forming an octamer on which

two full turns of DNA (146 bp) is wrapped, and another

	50 bp of DNA complexed with histone H1 serves as

a linker DNA connecting each nucleosome to the

other forming the “beaded DNA” structure or the

▶ chromatin. The length of the linker DNA varies

between cells. The H2A-H2B and H3-H4 heterodimers

form the octamer which associate, and, hence,

approximately 200 base pairs of DNA are wrapped

on the surface of one nucleosome unit (Fig. 1

▶Epigenetics).
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