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Synonyms

Stem-loop structure
Definition

Hairpin structure is a pattern that can occur in

single-stranded DNA or, more commonly, in RNA. The

structure is also known as a stem-loop structure. It occurs

when two regions of the same strand, usually comple-

mentary in nucleotide sequence when read in opposite

directions, base-pair to form a double helix that ends in an

unpaired loop. The resulting structure is a key building

block of many RNA secondary structures.
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Characteristics

Formation and Stability

The formation of a hairpin structure is dependent on

the stability of the resulting helix and loop regions. The

first prerequisite is the presence of a sequence that can

fold back on itself to form a paired double helix. The

stability of this helix is determined by its length, the

number of mismatches or bulges it contains (a small

number are tolerable, especially in a long helix), and

the base composition of the paired region. Pairings

between guanine and cytosine have three hydrogen

bonds and are more stable compared to adenine–uracil

pairings, which have only two. In RNA, guanine–

uracil pairings featuring two hydrogen bonds are as

well common and favorable. Base-stacking interac-

tions, which align the pi orbitals of the bases’ aromatic

rings in a favorable orientation, also promote helix

formation. An example of a simple hairpin structure

in RNA is shown in Fig. 1.

The stability of the loop also influences the formation

of the hairpin structure. “Loops” that are less than three

bases long are sterically impossible and do not form.

Large loops with no secondary structure of their own

(such as pseudoknot pairing) are also unstable. Optimal

loop length tends to be about 4–8 bases long. One

common loop with the sequence UUCG is known as

the “tetraloop” and is particularly stable due to the base-

stacking interactions of its component nucleotides.

Structural Contexts

Hairpin structures occur in pre-microRNA structures

and most famously in transfer RNA, which contain

three true stem-loops and one stem that meet in

a cloverleaf pattern. The anticodon that recognizes a
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codon during the translation process is located on one

of the unpaired loops in the tRNA. Two nested hairpin

structures occur in RNA pseudoknots, where the loop

of one structure forms part of the second stem.

Many ribozymes also feature hairpin structures.

The self-cleaving hammerhead ribozyme contains

three stem-loops that meet in a central unpaired region

where the cleavage site lies. The hammerhead

ribozyme’s basic secondary structure is required for

self-cleavage activity.

The mRNA hairpin structure forming at the

ribosome binding site may control an initiation of

translation.

Hairpin structures are also important in prokaryotic

rho-independent transcription termination. The hairpin

loop forms in an mRNA strand during transcription

and causes the RNA polymerase to become dissociated

from the DNA template strand. This process is known

as rho-independent or intrinsic termination, and the

sequences involved are called terminator sequences.
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Half-Life

▶Life Span, Turnover, Residence Time

▶Lymphocyte Population Kinetics
Half-life Time
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Definition

Half-life time (t1/2) of a drug in a tissue is the time

it takes to decrease by one half from its maximum

concentration. If the decay law is exponential with

exponent l, i.e., obeys first-order kinetics with rate l,
i.e., dX

dt ¼ �lX, then t1=2 ¼ ln 2
l . If the decay curve

looks like a sum of two exponential curves, then in

a phenomenological perspective it can be modeled as a

solution curve to second-order kinetics or equivalently

a chain of two first-order kinetics with exponents l and
m (l > m), and then pharmacologists define a t1/2a and

a t1/2b (t1/2a < t1/2b) measurable from the decay curve,

which are nothing but ln 2
l and ln 2

m , respectively.

A semiphysiological interpretation can be found to

such kinetics, consisting of “distribution” (i.e., fast

diffusion) followed by slow elimination (renal, or by

binding to plasma proteins). Sometimes are also

mentioned three half-life times, t1/2a, t1/2b, and t1/2g
when three consecutive episodes are clearly distin-

guishable in the decay curve.
HAM/TSP

▶Human T-Lymphotropic Virus Type-I-associated

Myelopathytropical Spastic Paraparesis
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Definition

Hartoma is a disorganized benign mass of

tissue found in the particular site at which it

develops and, therefore, considered a developmental

malformation.
H
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Hamilton’s Rule
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Definition

Due to Hamilton (1964), the rule concerns the fix-

ation by natural selection of an altruistic behavior:

an act with cost c for its actor and benefit b for its

beneficiary will evolve if and only if c < br, where

r is the ▶ relatedness of the beneficiary to the focal

individual. C and b are measured in terms of

▶ fitness. Originally supposed to underpin the pro-

cess of kin selection, it proved to be the general

rule for the evolution of cooperation, given that

many cases where cooperation emerges among

non-kin behave according to such rule; the main

reason is that relatedness as such measures a statis-

tical association between individuals rather than

a degree of kinship, even if the latter yields ipso

facto an association.
Cross-References

▶Explanation, Evolutionary
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Haplotype Map

▶HapMap
HapMap
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Synonyms

Haplotype map; International HapMap project
Definition

The shortened term HapMap (from Haplotype Map) is

generally used to refer to the International HapMap

project that aims to find genes affecting health, disease,

and responses to medications and environmental

factors. The information produced by the project is

stored in the HapMap database and made freely

available to the public (Thorisson et al. 2005).
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Definition

In a panmictic infinite population of diploid sexual

individuals with no selection, the frequencies p and

(1�p) of two alleles A and a (recessive) at one locus

would reach an equilibrium given by the Hardy-

Weinberg formula: p2 AA, 2p (1�p) Aa, (1�p)2 aa.

The infinity of the population is requested in order to

avoid the effects of genetic drift.
Cross-References

▶Explanation, Evolutionary
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Definition

The hazard ratio is a measure commonly used in

survival analysis to compare the risk of occurrence

of an event of interest (e.g., death) in two groups

(e.g., treatment group vs. control group) at a given

time. For example, the hazards ratio can be used to

describe the outcome of therapeutic trials where the

question is to what extent treatment can delay the

apparition of a disease.
The hazard ratio can be calculated using the hazard

rate which are defined as

lðtÞ ¼ limh!0þ
Prðt � T � tþ hjT � tÞ

h
(1)

The hazard rate specifies the instantaneous rate at

which failures occur for items that are surviving at time

t and gives the risk of failure per unit time.

The hazard ratio is simply equal to HR ¼ lðtjgroup 1Þ
lðtjgroup 2Þ .

If HR ¼ 1, the risk of occurrence of the event of

interest is the same in the two groups of patients. If

HR> 1 (HR< 1), the risk of occurrence of the event of

interest is higher in group 1 (in group 2, respectively).

The hazard ratio can be calculated at different

points in time. The hazard ratio differs from the

relative risk in the sense that this latter is calculated

over the whole period of follow-up and not at a given

time t.

When the hazard ratio is constant over time, the

hazards are said to be proportional. This is the assump-

tion made in proportional hazards models.

An example of proportional hazards ratio is given in

Fig. 1. It represents the disease-free survival curves of

patients with acute leukemia classified into three risk

categories (Copelan et al. 1991). These categories were

defined according to the status of the patients at the

time of transplantation as follows: acute lymphoblastic

leukemia (ALL) (38 patients), acute myelocytic

leukemia (AML) low risk (54 patients), and AML

high risk (45 patients). The three curves are parallel

to each other showing that the hazards are constant

over time and thus proportional. Patients in group

AML high risk have the greatest chance of failure.

Patients in group AML low risk have the best

prognosis.

Figure 2 displays an example of non-proportional

hazards ratio. It represents the survival curve of

gastric cancer patients receiving two different treat-

ments: chemotherapy (45 patients) and chemother-

apy plus radiotherapy (45 patients) (Stablein and

Koutrouvelis 1985). Clearly, the hazards are not

proportional. The figure shows that, at the begin-

ning, patients receiving chemotherapy have a better

prognosis than patients with chemotherapy plus

radiotherapy. But after 2.7 years, the survival func-

tions of the two groups intersect, and patients

with chemotherapy plus radiotherapy have a better

prognosis.
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Definition

Health Informatics is a broad concept that covers

all aspects of the use of information technology (IT)

in the provision and implementation of health care

(Coiera 2003). This includes the use of IT to:

• Facilitate communication at any level of a health

care system, from the communication between cli-

nicians and patients all the way to share clinical

records from multiple electronic health record sys-

tems in a large-scale study

• Implement and maintain electronic health record

management systems, ensuring appropriate privacy

and access to the data

• Implement and maintain monitoring and reporting

systems to ensure health service quality and patient

safety

• Develop decision support systems for clinicians,

clinical researchers, and translational researchers

Health Informaticians come from a range of

background including social sciences, psychology,

human-computer-interaction and ergonomics, com-

munication science and linguistics, ethnography

and information technology. As electronic health

record management systems become more preva-

lent, health informatics becomes more central to

health systems enabling better monitoring and

quality control, improve decision making, and

communication.
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Helper T Cell 1 Response

▶Th1 Response
Helper T Cell 2 Response

▶Th2 Response
Heterochromatin

Vani Brahmachari and Shruti Jain

Dr. B. R. Ambedkar Center for Biomedical Research,
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Synonyms

Closed chromatin; Compact chromatin
Definition

The heterochromatin is the compacted, tightly packed

chromatin which is inaccessible to the transcription

machinery and is intensely stained with DNA binding

dyes. Two types of heterochromatin are present in

cells: constitutive heterochromatin in the centromeres

that largely remains transcriptionally silent in all cells

and facultative heterochromatin which is transiently

silenced. Besides, being highly compacted, hetero-

chromatin is enriched in epigenetic modifications of

▶ histone and DNA associated with transcriptional

inactivity.
Cross-References
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Heterochromatin and Euchromatin
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Synonyms

Silent chromatin and active chromatin
H

Definition

Heterochromatin and euchromatin are two major

categories of chromatin higher order structure. Hetero-

chromatin has condensed chromatin structure and is

inactive for transcription, while euchromatin has loose

chromatin structure and active for transcription. Het-

erochromatin is further divided into two subcategories:

constitutive and facultative heterochromatin. Hetero-

chromatin and euchromatin are defined by specific

histone modifications. Since heterochromatin can

spread into neighboring euchromatic region and

repress gene expression, it is important to regulate

boundaries between euchromatin and heterochroma-

tin. Generally, the balance of euchromatic and hetero-

chromatic histone-modifying enzymes determines the

boundary. At particular region, sequence specific ele-

ments and their binding proteins define the boundary.

In addition, the boundary elements determine the

domain structure of genome that is important for

wide range of regulation of transcription through asso-

ciation of nuclear structure or self-association.
Characteristics

▶Chromatin forms various higher order structure

and the structure is classified into two categories;

▶ heterochromatin and ▶ euchromatin. Heterochroma-

tin has condensed chromatin structure: ▶ nucleosomes

are regularly positioned and packed tightly. In contrast,

euchromatin has loose nucleosomes structure and the

extent of the packaging of nucleosomes varies from

region to region and dynamically regulated.

Heterochromatin is further divided into two catego-

ries, constitutive and facultative heterochromatin.
Constitutive heterochromatin is observed in almost

all eukaryotic cells and localized at repeated sequences

and transposons and also localized at ▶ centromere

and telomere, where repeated sequences are enriched.

Constitutive heterochromatin is stably maintained and

suppresses transcription and recombination of the

embedded DNA sequences. Facultative heterochroma-

tin is observed in higher eukaryote and represses tran-

scription of protein coding genes during many cell

generations. Formation of facultative heterochromatin

is developmentally regulated.

The chromatin higher order structures are defined

by covalent histone modifications (▶Histone Post-

translational Modification to Nucleosome Structural

Change) (Fig. 1). Heterochromatin is generally hypo-

acetylated. Constitutive heterochromatin is defined by

methylation of lysine 9 of histone H3 and its binding

proteins, ▶ heterochromatin protein 1 family proteins.

Facultative heterochromatin is defined by methylation

of lysine 27 of histone H3 and its binding partner,

polycomb family proteins (▶ Polycomb Complexes).

In contrast, euchromatin is generally hyper-acetylated

and avoids methylation of histone H3 lysins 9 and 27

and has various states of histone modifications that

tightly correlate with the transcription activities.

Note that heterochromatin of budding yeast does not

have the methylation mark of the histones and is

defined by hypo-acetylated state and Sir proteins.

Heterochromatin is “inactive” chromatin, which

prevent DNA metabolism such as transcription and

recombination (Fig. 1). The basis of the inactiveness

has been thought the tight packaging of the nucleosome

array, which prevents access of enzymes promoting the

DNA metabolism. However, recent study suggests that

not only the condensed structure but also recruitment of

“effector” proteins to heterochromatin by heterochro-

matin proteins are responsible for repression of the

transcription (Grewal and Jia 2007). Intriguingly, an

effector that activates transcription is also recruited

to heterochromatin, suggesting that transcription in

the heterochromatin could be actively regulated

(Grewal and Jia 2007). One of the mechanisms

that regulates the recruitment of the effectors are

post-translational modifications of heterochromatin

proteins, including phosphorylation, but the precise

mechanism is not clear yet (Shimada and Murakami

2010). Hence, heterochromatin is a dynamic

chromatin structure rather than an “inactive” static

chromatin structure.
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Similarly, various combinations of histone modifica-

tions in euchromatin attract various kinds of proteins that

regulate transcription, resulting in wide range of tran-

scriptional states, from silent state to active state.

One characteristic of heterochromatin is “spreading”;

heterochromatin can autonomously spread into neigh-

boring euchromatic region, resulting in▶ position effect

variegation of neighboring genes. The exact mechanism

of spreading is not clear yet, but a simplemodel is widely

accepted that heterochromatin protein recruits histone-

modifying enzymes via protein-protein interaction,
which convert neighboring euchromatic nucleosome to

heterochromatic state (Fig. 2). To avoid the uncontrolled

silencing of the gene expression by spreading of hetero-

chromatin, the “boundaries” between euchromatin and

heterochromatin should be strictly regulated.

Heterochromatin and euchromatin are determined

by histone modification. Therefore, primary determi-

nant of the boundaries would be the competition

between the heterochromatic modifying enzymes

and the euchromatic ones. Indeed, the competitive

determination mechanism is observed at the boundary
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H

between telomeric heterochromaitn and its neighbor-

ing euchormatin in budding yeast (Kimura et al. 2002).

Since competitive determination of the boundaries

results in fluctuation of the boundaries, at certain

region of the genome, the boundary should be tightly

regulated to prevent the stochastic silencing of genes

close to heterochromatin by spreading. Some DNA

elements have been shown to have the barrier function

against heterochromatin spreading in various organ-

isms and are called boundary elements or barrier insu-

lators (Fig. 3). The boundary elements exhibit the

barrier function through their binding proteins. In bud-

ding yeast, tRNA genes, which are transcribed by RNA

polymerase III (▶RNA Polymerase), prevent the

spreading of heterochromatin (Lunyak 2008; Sun

et al. 2011). The proteins assembled onto the tRNA

(Sun et al. 2011), including RNA polymerase III and its

regulatory proteins are required for the barrier function.

In fission yeast, tRNA genes also act as the boundary

element (Scott et al. 2006). Interestingly, TFIIIC,

a tRNA specific transcription factor, act as the boundary

protein without tRNA transcription in fission yeast

(Noma et al. 2006). In higher eukaryote, several DNA

sequence specific DNA binding proteins, such as BEAF

in Drosophila and CTCF in mammals, are shown to act

as boundary proteins. These proteins are thought to

recruit specific proteins including chromatin remodeling

factors or histone-modifying enzymes, to establish the

barrier against heterochromatin spreading (Fig. 3)

(Lunyak 2008; Sun et al. 2011).
Search for the proteins that shows barrier activity

when tethered close to heterochromatin identified

▶ nuclear pore proteins (Ishii et al. 2002). This suggests

that anchoring of genomic region to nuclear structure

including nuclear envelope is one of the determinants to

establish the boundary. Supporting this idea, some of

the boundary proteins associate with nuclear structure

http://dx.doi.org/10.1007/978-1-4419-9863-7_303
http://dx.doi.org/10.1007/978-1-4419-9863-7_1575
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(Vogelmann et al. 2011). In addition, tRNA genes as

well as the boundary proteins including TFIIIC form

cluster in nucleus (Noma et al. 2006). The association

with nuclear structure or self-clustering of the

boundary elements results in the formation of chro-

matin loop, and this chromatin loop defines silent

heterochromatic domain and active euchromatic

domain of the genome. Therefore, the boundary

elements regulate not only the boundary between

heterochromatin and euchromatin but also domain

structure of chromatin in the nucleus, which might

be important for regulation of whole genome orga-

nization (Vogelmann et al. 2011) Fig. 4.
Cross-References
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Heterochromatin Protein 1

Yota Murakami

Department of Chemistry, Hokkaido University,

Sapporo, Japan

Synonyms

HP1
Definition

Heterochromatin protein 1 (HP1) is widely

conserved protein that localized at heterochromatin.

HP1 is a main component of constitutive heterochroma-

tin that localizes on repeated sequences including

centromere and telomere. HP1 contains two distinct

domains, chromo domain and chromo-shadow domain.

Chromo domain of HP1 specifically recognizes di- or tri-

methylated lysine 9 of histone H3. Chromo-shadow

domain promotes dimerization of HP1, which is thought

to be responsible for the packaging of nucleosomes in

heterochromatin. In addition, many proteins interact

with HP1 through chromo-shadow domain (Grewal and

Jia 2007). Those proteins play various roles in the

regulation of heterochromatin function (Fanti and

Pimpinelli 2008).
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▶Heterochromatin and Euchromatin
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Definition

Heuristic designates a computational procedure that

determines an optimal solution by iteratively trying to

improve a candidate solution with regard to a given

measure of quality. Heuristics make few or no assump-

tions about the problem being optimized and can search

large spaces of candidate solutions toward finding opti-

mal or near-optimal solutions at a reasonable computa-

tional cost without being able to guarantee either

feasibility or optimality, or even in many cases to state

how close to optimality a particular feasible solution is.

Heuristics implement some form of stochastic search

optimization, such as ▶ evolution programming, evolu-

tion strategy, ▶ genetic algorithms, genetic program-

ming, and differential evolution (Michalewicz 1996;

Reeves 1995; Sharda et al. 2003; Zhilinskas and

Žilinskas 2008). Other methods having a similar mean-

ing as heuristic are derivative-free, direct search, and

black-box optimization techniques.
Characteristics

Heuristic optimization algorithms are developed in all

kinds of forms variant from simple “trial and error” to

complicated algorithms as evolutionary algorithms. The

methods are easy to understand and easy to implement

and use. The mathematical formulation of the problem is

flexible. Heuristic optimization can be applied to itera-

tively solve continuous/integer problem. They are usually

appliedwhen there is no known algorithm that guarantees

for finding the optimal solution in efficient computational

cost (i.e., time or memory space) or when a “near-opti-

mal” solution is good enough in practical use.

The common advantages of heuristic optimization

algorithms are as follows:

1. Fast: They can find a “near-optimal” solution in

a short time.

2. Small: They can work in a relatively small memory

space.
The common disadvantages of heuristic optimiza-

tion algorithms are as follows:

1. Not absolute optimal solution: Heuristic algorithms

cannot guarantee to find the optimal solution.

2. Uncertainty: The time required for finding a “near-

optimal” solution can be large in an unlucky case.
Cross-References

▶Evolution Programming

▶Genetic Algorithms
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Definition

Heuristic search refers to a search strategy that

attempts to optimize a problem by iteratively improv-

ing the solution based on a given heuristic function or

a cost measure. A heuristic search method does not

always guarantee to find an optimal or the best solu-

tion, but may instead find a good or acceptable solution

within a reasonable amount of time and memory space.

Several commonly used heuristic search methods

include hill climbing methods, the best-first search,
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the A* algorithm, simulated-annealing, and genetic

algorithms (Russell and Norvig 2003). A classic

example of applying heuristic search is the traveling

salesman problem (Russell and Norvig 2003).
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Synonyms

Host factor 1
Definition

Escherichia coli Hfq is a 102 residues protein

that is first identified as a host factor of the RNA

phage Qb (Chao and Vogel 2010). Hfq orthologous

proteins are conserved among approximately half of

all sequenced Gram-positive and Gram-negative bacte-

ria (Brennan and Link 2007). Hfq protein forms

homohexameric ring and binds to poly(A) and single-

strandedAU-richRNAs at two distinct binding surfaces

(Brennan and Link 2007). In Gram-negative bacteria,

Hfq promotes base-pairing between sRNA and its target

mRNA by inducing the RNA structural changes acting

as an RNA chaperone (Jousselin et al. 2009). The

sRNA–mRNA interactions are known to regulate the

expression of several genes (Jousselin et al. 2009).
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Hierarchic Mechanisms

▶Mechanism, Multilevel
Hierarchical Agglomerative Clustering

Marie Lisandra Zepeda-Mendoza and Osbaldo

Resendis-Antonio

Center for Genomics Sciences-UNAM, Universidad
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Morelos, Mexico
Synonyms

Agglomerative hierarchical clustering; Agglomerative

hierarchical data segmentation; Bottom-up hierarchi-

cal clustering
Definition

Cluster analysis consists to classify a set of

objects (observations, individuals, cases) into sub-

sets, called clusters, such that they have similar

characteristics or properties. There are different

ways to define the similarities among objects or

variables through the use of different metrics.

Some of them are as follows:

• The single-linkage clustering, or nearest neighbor

clustering, takes into account the shortest distance

of the distances between the elements of each clus-

ter. This is one of the simplest methods.

• The complete linkage clustering, or farthest neigh-

bor clustering, takes the longest distance between

the elements of each cluster.
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• The average linkage clustering takes the mean of

the distances between the elements of each cluster.

The merged clusters are the ones with the minimum

mean distance.

There are a variety of clustering algorithms; one

of them is the agglomerative hierarchical clustering.

This clustering method helps us to represent

graphically the results through a dendogram. The

dendogram has a tree structure that consists of the

root and the leaves; the root is the cluster that has all

the observations, and the leaves are individual obser-

vations. The agglomerative hierarchical clustering

starts with the individual observations and succes-

sively fuses the clusters that are closer together

(the most similar ones).
H

Cross-References
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▶Mixed and Multi-Level Models
Hierarchical Modularity

▶Hierarchical Structure
Hierarchical Organization
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Mexico
Synonyms

Hierarchical modularity; Hierarchical organization
Definition

A hierarchical structure in a network context is

characterized by being a topological structure in

which nodes are placed in different layers; and in

these layers there can be small and highly connected

modules. The nodes in one layer collect influences

from each other and from the nodes of the superior

layer, while also being able to influence nodes of the

inferior layer.

The transcriptional regulatory network of

Escherichia coli shows a clear example of this view

of hierarchical structure. The nodes are organized in

layers where every node of one layer can receive

inputs from nodes in upper layers and can be linked

to nodes in lower layers (Resendis-Antonio et al.

2005).

In metabolic networks, the high size-independent

clustering coefficient (which is evidence for modu-

larity) and the power law degree distribution (which

supports the scale-free model that would rule out

modular topology) pose an apparent contradiction

that can be solved by proposing the existence

of metabolic hierarchical modules (Ravasz et al.

2002). This model presents a C(k)�k�1, and this

property can be used as a quantitative indicator of

hierarchy.

To better understand this model, imagine a starting

point of a small cluster of four densely connected

nodes. Next generate three replicas of the starting

module and connect them to the central node of the

first starting cluster, obtaining a large 16-node module

made of 4 smaller modules. Then generate 3 replicas of

this 16-node module and connect the peripheral nodes
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to the central node of the first starting cluster. These

steps of replication and connection can be repeated

indefinitely (Ravasz et al. 2002).
Cross-References
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▶Module Network
References

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL

(2002) Hierarchical organization of modularity in metabolic

networks. Science 297:1551

Resendis-Antonio O, Freyre-Gonzalez J, Menchaca-Mendez R,

Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C,

Collado-Vides J (2005) Modular analysis of the transcrip-

tional regulatory network of E. coli. Trends Genet 21:16
Hierarchy

Shihua Zhang

National Center for Mathematics and Interdisciplinary

Sciences, Academy of Mathematics and Systems

Science, Chinese Academy of Sciences, Beijing, China
Synonyms

Hierarchical structure
Definition

Hierarchy is defined as an arrangement of items or

simply an ordered set. In networks, hierarchy describes

the hierarchical relationship among nodes (Ravasz

et al. 2002).
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High Throughput Computing

▶Grid Computing, Parameter Estimation for Ordinary

Differential Equations
Highly Structured System

▶Complex System
High-Performance Computing

▶Large-Scale and High-Performance Computing

▶Multicore Computing
High-Performance Computing,
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Science, University of Pavia, Pavia, Italy
Synonyms

Parallel computing
Definition

High Performance Computing (HPC) refers to

technologies used for implementing systems able to

execute time expensive elaborations and to manage

a huge amount of data in a small amount of time.

HPC solutions are commonly exploited in different

scientific fields that require the solution of complex

mathematical models, like climatology, physics,

medicine, or biology. One of the most recent innova-

tions, which presents a good compromise between

hardware cost and performances, is the use of the

▶GPU for parallel computation. This technology
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supplies promising results in simulation and modeling

of biological systems and in real-time medical

analysis.
Characteristics

Parallel Computing

HPC (▶Large-Scale and High-Performance Comput-

ing) comes from the need of more and more great

computational power to elaborate complex mathemat-

ical models and to evaluate new scientific theories.

Technical and physical constraints limit the maximum

speed reachable by a single CPU, so all HPC solutions

involve the use of parallel computing resources, in

which multiple processing units cooperate to complete

a task in a time as small as possible. Not all types of

problems can be parallelized (e.g., a computation in

which each step depends on the outcomes of the

previous one) and also if the parallelization is possible,

some conditions must be satisfied to work properly.

It is crucial to redesign the program (the so-called

porting of the application) in a parallel way: the
processors must operate independently and have

a workload equally distributed between them; the

computational time has the priority, time needed for

the communications; and the synchronization between

processors and for data transfer has to be reduced to

the minimum (Culler et al. 1998). Figure 1 shows an

example of serial and parallel execution of a simple

algorithm.

Nearly all situations in which a parallel

implementation is useful can be reduced to two cases: a

general case in which different independent instructions

can be executed on different data, or a single operation

that must be executed on a large amount of data (e.g.,

meteorological analysis – each unit examines in the same

way a small portion of a geographic area) (Hord 1998).

In most cases, biological and medical simulations fall

into the latter category.

The performance of a parallel algorithm are usually

measured by two related indexes: the speedup (Eq. 1),

that is, the ratio between the execution time with one

processor and that with N processors, and the efficiency
(Eq. 2), that is, the ratio between the speedup and the

number of processors:

http://dx.doi.org/10.1007/978-1-4419-9863-7_1011
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SðNÞ ¼ Tð1Þ
TðNÞ (1)

EðNÞ ¼ SðNÞ
N

(2)

Their theoretical best values are, respectively,

S(N) ¼ N and E(N) ¼ 1, but actually these indexes

depend on the fraction of the algorithm that is

effectively parallelizable. Amdahl’s law (Eq. 3)

defines the maximum reachable speedup: P is the

parallelizable part of the code, where smaller is P

the farther the speedup from the optimal value. In the

worst case an increase of the number of processors

N generates a small (or null) enhancement of the

performance (Culler et al. 1998):

SðNÞ � 1

ð1� PÞ þ P
N

(3)

The available hardware for parallel computing is

heterogeneous: multi-core processors, distributed

computing, clusters, ▶ grid computing, FPGAs, and,

more recently, GPUs.

GPGPU

The need of realistic and detailed 3D models and

environments in very different fields, from science to
entertainment, generated a growth rate of the computing

power of GPUs incredibly high, higher than that of the

CPU (Fig. 2) – actually a GPU is a multi-core device

composed by hundreds of simple processor units.

Between 2001 and 2002, a crucial enhancement in

the architecture of the graphic cards was achieved: the

introduction of programmable modules. This evolution

gave the capability of a more complex interaction with

the GPU, and allowed to employ a series of realistic

graphic effects unreachable with the precedent models

based on fixed steps and instructions (Kirk and Hwu

2010). The high level of flexibility lets the program-

mers consider a new series of applications that are not

directly involved the graphic, but could successfully

exploit the great computational power of graphic hard-

ware (e.g., matrices calculations or convolutions). The

research field that studies the use of GPUs for parallel

computation is called GPGPU (General-Purpose com-

puting on GPU).

Even if first experiments performed promising

results and a good speedup, they were still limited by

architectural constraints and by the complexity of

a low-level programming model. The interest of scien-

tific community in this area (in optimal conditions

a GPU can increase the performances hundreds of

times with respect to a CPU) led the main developers

of graphic cards (ATI and Nvidia) to the creation of

newmodels completely programmable and enabled for

http://dx.doi.org/10.1007/978-1-4419-9863-7_1008
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parallel computing. At the end of 2006, Nvidia intro-

duced CUDA (Computer Unified Device Architecture)

the first GPU architecture designed for allowing paral-

lel computing (Kirk and Hwu 2010). Instead, for its

hardware, ATI supplied Stream technology that adopts

the standard OpenCL (Open Computing Languages)

(Munshi et al. 2011) developed by Khronos Group

(a no-profit consortium that includes up to now ATI

and Nvidia). At the moment CUDA directly supports

specific extensions for the most common programming

languages (e.g., C/C++, Fortran, or Python) and it is

the most diffused technology for GPGPU. Nvidia also

provides a particular category of graphic card, the

Tesla series, created expressly for HPC. With respect

to a traditional GPU, a Tesla card renounces at the

video output for high reliability, for a major quantity

of memory, and for the capability of a continued and

intensive use. In November 2010, three of the top five

supercomputers in the world (including the first)

employ Tesla cards.

The best performance in parallel computing with

a GPU can be achieved using it as a sort of stream

processor, which means that a GPU is most efficient if

the same operation is applied on a large amount of

independent data. Typical applications that can take

advantages of graphic acceleration involve image elab-

oration (e.g., filtering or ▶mathematical morphology

operators), video processing, wheatear forecasting,

geological modeling, fluid dynamics, medical imag-

ing, molecular modeling, and biological structure

simulations.

Application Examples

The GPU computing allows the researchers to use

desktop computers for complex computations that

up to now were a prerogative of large computer

clusters. In consequence the integration of graphic

cards in a traditional cluster can supply the com-

puting power needed to cope with more complex

classes of problems. The state of art and the prac-

tical impact of HPC with GPU in biology and

medicine can be illustrated by the following

examples.

NAMD (NanoscaleMolecular Dynamics) and VMD

(Visual Molecular Dynamics), developed by the Uni-

versity of Illinois at Urbana-Champaign (UIUC), are

two widely used tools for simulating and visualizing

biomolecular processes and interactions. The UIUC

researchers ported on TESLA the most computationally
intense parts of their tools obtaining significant

enhancements. The visualization of molecular orbitals

(MOs) generally required up to hundreds of seconds on

a CPU; with the CUDA implementation a high-quality

rendering is achievable in less than a second (Stone et al.

2009). This time reduction allowed the creation of

the first interactive animations of quantum chemis-

try simulation trajectories using real-time computa-

tion. Another example involves the analysis of

the interaction of biological molecules and ions.

The ion placement can be very computationally

demanding: large structures, such as viruses, could

need several days even using moderately sized

clusters of computers. However the independency

of data makes this problem ideal for the porting on

GPU, for example, the Coulomb-based ion place-

ment can reach a speedup of 100 times or more.

The implementation developed by UIUC reduces

the time to generate large ionized structures to

a few minutes on a single desktop computer

(Stone et al. 2007).

In modern medical imaging, one of the most

important goals is the production of highly detailed

images in a short period of time, in particular for

human scanning, to be able to give more quick

diagnosis.

Techniscan Medical Systems recently created

a new system for ultrasound scanning, the Whole

Breast Ultrasound (WBU™). However, even with

a cluster of 16 computers equipped with the latest

Xeon processors, the procedure takes too much time

to examine numerous patients in a day. A new

approach, that employs four Tesla GPUs, is able to

run Techniscan’s algorithm in less than 20 min, less

than half the time taken by the cluster (Hardwick

2009). This speedup allows radiologists to perform a

complete ultrasound scan and to see the results during

a 30-min patient visit. Also by the economic point of

view the hardware cost of a GPU solution is cheaper

than adopting a traditional cluster.
Cross-References
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Definition

Asynchronous communication is a third component

mediated communication in which sender and receiver

are not concurrently engaged in communication. The

main feature of asynchronous communication is the

transmission of data without the use of an external

signal for coordination, which results in a non-blocking

policy of the message exchange.
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Synonyms

Hill function; Hill kinetics
Definition

Several molecular interactions in cellular systems

exhibit sigmoidal response curve to variations in the

input concentrations. Such a response curve is

typically represented by Hill equation as given below.

Y ¼ InH

KnH
0:5 þ InH

� �
(1)

where Y is the output response and I is the input

concentration. Hill equation involves two parameters,

Hill Coefficient ðnHÞ and half-saturation constant (K0.5).

While Hill coefficient characterizes the sensitivity of the

response, the half-saturation constant quantifies the

threshold concentration required for 50% output

response. Hill equation is typically used to quantify

cooperativity, where the initial binding of an effecter

molecule (ligand, activator) to the receptor enhances

the binding of the forthcoming effecter molecules

(Goldbeter and Dupont 1990). This is observed in allo-

steric regulation of enzymes and of ligands binding to

their respectivemacromolecules. The equation describes

saturation of the receptor molecules as a function of the

effector concentration (Klipp et al. 2005).
Characteristics

In 1910, Archibald Vivian Hill was the first to introduce

this equation to describe equilibrium relationship

between oxygen tension and the saturation of hemoglo-

bin with oxygen. He observed a sigmoidal binding

curve of oxygen with hemoglobin, which revealed the

cooperative kinetics of O2 binding to hemoglobin.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100624
http://dx.doi.org/10.1007/978-1-4419-9863-7_100625
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To mathematically represent this phenomenon, he intro-

duced a cooperativity coefficient, which was termed as

Hill coefficient (Hill 1910, 1913).

Hill Equation is a rate law, which is used to model

biological interactions that demonstrate sigmoidal

response. The equation is used to capture the biomolec-

ular interaction that exhibit cooperativity among two

binding molecules. The bound subunit has the coopera-

tive effect on the binding of the next subunit by increas-

ing its affinity toward the binding region, which in turn

increases the rate of reactions as compared to the single

receptor-ligand reaction (Weiss 1997; Klipp et al. 2005).

Hill equation is the general formalism used to study

emergent properties, such as▶ ultrasensitivity,▶ ampli-

fication, and ▶ bistability, in biological networks.

Further, Hill equation is also used extensively in many

PK-PD models to describe the nonlinear drug-dose

response relationship (Goutelle et al. 2008).

Receptor-Ligand Binding Kinetics

Hill equation represents the physicochemical equilib-

rium between the reacting species and can be derived

based on the ▶ law of mass action. We consider

a reaction of n number of ligands binding to

a receptor which is given by
Rþ nL $ RLn (2)

Appling the law of mass action, the equilibrium

dissociation constant Kd is given by
Kd ¼ ½R�½L�n
½RLn� (3)

where [L], [R] and [RLn] are the molecular concentra-

tions of the ligand, receptor, and ligand-receptor

complex. At equilibrium condition, the total receptor

concentration is given as,
RT ¼ ½R� þ ½RLn� (4)

where, [RT] is the total receptor concentration.

The fractional saturation of the receptor (Y) is given
by the ratio of the number of bound receptors to the

total number of receptors,
Y ¼ ½RLn�
½RLn� þ ½R� (5)
Substituting [RLn] from Eqs. 3 in 5, we obtain

Y ¼ ½L�n
½L�n þ Kd

(6)

This is the Hill equation for the receptor-ligand

binding kinetics. In biomolecular reactions, for

any input function (I), the above equation can be

written in terms of (I) by replacing (L), which

gives the generalized form of Hill equation as

given in Eq. 1.

The rates of the reactions with allosteric regulation

(that exhibit cooperativity) can be represented using

Hill equation, as given below,
v ¼ VmaxY ¼ VmaxI
nH

KnH
0:5 þ InH

(7)

where v and Vmax represent the net rate and maximum

rate of reaction, respectively. The plot of the fractional

saturation Y versus I yield a typical input-output

response curve. The nature of the curve varies based

upon the Hill coefficient (Fig. 1). The Hill coefficient

of one gives a typical Michaelis-Menten hyperbolic

response while Hill coefficient greater than one yields

a sigmoidal curve with the inflection point at K0.5. The

analogy of the receptor-ligand interaction kinetics yield-

ingHill equation, can be applied to several biomolecular

reactions such as binding of transcription factor to the

promoter in a gene regulatory network, enzymatic reac-

tions in metabolic network, and phosphorylation cycles

in signaling pathways. This equation can also represent

the kinetics of repression of a biomolecular reaction

which is given by

Y ¼ KnH
0:5

KnH
0:5 þ RnH

� �
(8)

where Y is the fractional rate of expression, R is the

concentration of repressor molecule, K0.5 is half-

saturation constant, and nH is the Hill coefficient

(Alon 2007). In this case, it can be noted that the output

response Y tends to zero as the repressor concentration

increases to infinity (see Eq. 8).

Parameter Estimation for Hill Equation

Hill coefficient ðnHÞ and the half-saturation constant

(K0.5) are the two parameters used in the Hill equation.

These parameters can be obtained by linearizing the

http://dx.doi.org/10.1007/978-1-4419-9863-7_700
http://dx.doi.org/10.1007/978-1-4419-9863-7_945
http://dx.doi.org/10.1007/978-1-4419-9863-7_945
http://dx.doi.org/10.1007/978-1-4419-9863-7_526
http://dx.doi.org/10.1007/978-1-4419-9863-7_692
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Hill equation (Eq. 1). The linearized form of Hill

equation is given by:
ln
Y

1� Y

� �
¼ nH ln I � nH lnK0:5 (9)

By plotting the LHS of the equation against ln I one
can obtain the Hill coefficient (nH) as the slope of the

curve and the intercept of Y-axis can be used to
estimate the half-saturation constant (K0.5) (Covel

1970). Figure 2 shows an example to demonstrate the

graphical evaluation of these parameters.

Hill Coefficeint and Cooperativity

Hill coefficient provides the measure of cooperativity

that can be quantified based on the steepness of the

binding curve saturation (Goldbeter and Dupont 1990).

The measure of the steepness of the curve is captured
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by Hill coefficient, which depicts the variation in the

response curves from hyperbolic to sigmoidal.

The Hill coefficient is computed based on the fold

change in input stimuli required to take a response

from 10% activation to 90% activation.
H

nH ¼ log ð81Þ
log I90

I10

� � (10)

A typical Michaelis-Menten hyperbolic response has

nH ¼ 1, which requires 81-fold change in the input stim-

ulus to bring 90% of maximum response. A fractional

Hill coefficient, that is nH < 1, indicates negative

cooperativity where binding of one ligand decreases the

affinity for the binding of the other. The response gener-

ated through negative cooperativity is termed as

subsensitivity where more than 81-fold change in the

input stimulus is required to obtain 90% of maximum

activation (see Fig. 1). The response indicates positive

cooperativity when nH > 1 leading to a sigmoidal

response, which is also termed as ▶ ultrasensitivity. In

such a case, less than 81-fold change in input stimulus

is required to obtain 90%of themaximumactivation (see

Fig. 1) (Vinod and Venkatesh 2008; Koshland 1987).
Cross-References
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Definition

Histone chaperones are factors that interact with

histones and mediate nucleosome assembly, disassem-

bly, or both in an ATP-independent manner. They play

critical roles in various nuclear events. The first

identified histone chaperone, nucleoplasmin, was

isolated in 1978 by Laskey (Wolffe 1998). Since

then, many histone chaperones have been isolated

(Eitoku et al. 2008). Histone chaperones can be

categorized by the preference of histone binding,

namely, those with a preference for histones H3–H4

and those with a preference for histones H2A–H2B.

Histone chaperones are involved in histone storage,

histone transfer, histone exchange (between old and

newly synthesized histones, and between canonical

and variant histones), and nucleosome structural

change, which are required for most DNA-mediated
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reactions in eukaryotes. Several lines of evidence

have shown that histone chaperones play critical

roles in transcription, replication, and DNA repair

(Eitoku et al. 2008).
Cross-References
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Characteristics

Although histone post-translational modification

(PTM) and factors involved in nucleosome structural
change have been studied as separate research fields,

the findings of these two fields are being integrated into

a comprehensive picture as the molecular mechanisms

linking histone PTMs to nucleosome structural change

continue to be discovered.

In 1964, Murray reported methylation of histones in

the cell. This was probably the first report of histone

modification. Soon after that, the Allfrey group revealed

that histones are subjected to acetylation andmethylation

after the completion of the histone polypeptide chain,

and that there is a correlation between histone acetylation

and transcriptional activation (Allfrey et al. 1964).

Although this discovery suggested the connection

between histone post-translational modifications

(PTMs) and nuclear events, the molecular mechanism

underlying the observed correlation was at that time

unknown due to lack of a sufficient knowledge of the

chromatin template and biological signaling in the

nucleus. It took more than 40 years of effort for

researchers to begin to understand the molecular mech-

anisms connecting histone PTMs and transcription acti-

vation; for these breakthroughs to take place, substantial

advances were required in three research fields, the

structure of the chromatin template, factors involved in

nucleosome structural change, and nuclear signaling

with histone PTMs.

In 1974, Kornberg discovered the nucleosome struc-

ture (Kornberg and Lorch 1999). The nucleosome core

particle was considered to be a complex of the histone

octamer, which comprises two copies of each canonical

histone (H2A, H2B, H3, and H4), and DNA. As was

easily recognized from the tertiary structure of the nucle-

osome, the nucleosome structure inhibits enzyme reac-

tions with DNA such as transcription, replication, and

DNA repair due to tight interactions between DNA and

histone proteins. Therefore, the nucleosome structure

must be disassembled to initiate these reactions. On the

other hand, the nucleosome structure is necessary to

stably maintain genetic information in the nucleus. To

resolve the functional conflicts of the nucleosome, regu-

lation of nucleosome assembly and disassembly is

required.

Two types of factors involved in the

nucleosome structural change, histone chaperones

and ATP-dependent nucleosome-remodeling factors,

have so far been identified. Nucleoplasmin, which is

categorized as a histone chaperone, was the first factor

found to have a nucleosome structural change activity

(Wolffe 1998; Eitoku et al. 2008). Although many

http://dx.doi.org/10.1007/978-1-4419-9863-7_1412
http://dx.doi.org/10.1007/978-1-4419-9863-7_1412
http://dx.doi.org/10.1007/978-1-4419-9863-7_1490
http://dx.doi.org/10.1007/978-1-4419-9863-7_1490
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histone chaperones have been found since then, their

biological significance had remained elusive until the

functional identification of the histone chaperone

CIA/Asf1 (Eitoku et al. 2008). Genetic, biological,

and biochemical studies showed that CIA/Asf1 is

involved in various nuclear events such as transcrip-

tion, replication, and DNA repair through nucleosome

structural change.

The first-identified ATP-dependent nucleosome-

remodeling factor, the SWI/SNF complex, was isolated

as a complex that contained the gene product of swi2/

snf2. The swi2/snf2 gene was initially identified from

mutant yeast strains that showed the SWI and SNF

phenotypes. Since these phenotypes were not observed

in mutant yeast strains harboring destabilized chromatin

structures, the swi2/snf2 gene was considered to be

functionally relevant to the chromatin structure.

A purified protein complex including the swi2/snf2
gene product showed ATP-dependent nucleosome-

remodeling activity (Turner 2001; Elgin and Workman

2001). After this finding, several ATP-dependent nucle-

osome-remodeling factors such as NURF, RSC, ACF,

CHRAC, NuRD/NURD, and INO80 were isolated. Bio-

chemical and biological studies have shown that ATP-

dependent nucleosome-remodeling factors adjust the

position of nucleosomes and are involved in nuclear

events such as transcription and DNA replication

(Eberharter and Becker 2004; Elgin and Workman

2001).

The last critical advance is attributed to functional

and mechanistic studies of histone PTMs. The discov-

ery of a histone acetyltransferase and the subsequent

identification of several histone modification enzymes

accelerated studies of histone PTMs and their

functions (Allis et al. 2006). Since some transcriptional

coactivators contain a histone acetyltransferase domain/

subunit, the connection between histone PTMs and

nucleosome structural change that is required for tran-

scription activation came to be recognized. It was pro-

posed that histone PTMs themselves affect the structure

of chromatin through changing the electrostatic and/or

physical properties of nucleosomes. However, this

hypothesis seemed to be insufficient to explain all nucle-

osome structural changes required for transcriptional

activation. The situation was advanced by the structural

and functional analysis of bromodomains. These studies

revealed that bromodomains recognize acetylated

lysines on histone proteins. Following this finding,

several histone PTM recognition domains have been
identified, as summarized in Fig. 1 (Allis et al. 2006).

These findings established the notion that histone

PTMs are recognized by their corresponding recognition

domains, which are likely to function as adaptor domains

linking histone PTMs and chromatin factors, such as

ATP-dependent nucleosome-remodeling factors and his-

tone chaperones.

Indeed, ATP-dependent nucleosome-remodeling

factors contain histone PTM recognition domains.

For example, the Rsc4 subunit of RSC contains tandem

bromodomains that physically interact with acetylated

Lys14 of histone H3 (H3-K14) on the histone tail

region, suggesting a relationship between histone acet-

ylation and the activity of RSC. Genetic and biological

analyses have suggested that RSC is involved in

site-specific nucleosome remodeling in transcription

in response to histone PTMs including acetylated

H3-K14. The connection between acetylation of his-

tone proteins and nucleosome structural change seems

to be mediated by the tandem bromodomains in the

Rsc4 subunit.

In contrast with ATP-dependent nucleosome-

remodeling factors, no histone chaperones have histone

PTM recognition domains in the molecule. The

Horikoshi group, however, discovered physical and

genetic interactions between histone chaperone CIA/

Asf1 and double bromodomains in the general transcrip-

tion initiation factor TFIID (Chimura et al. 2002),

leading to the idea that histone acetylation could

regulate the function of the histone chaperone CIA/Asf1.

A molecular model that connects histone PTMs and

transcription activation through nucleosome structural

change by histone chaperone CIA/Asf1 was proposed

on the basis of two crystal structures, CIA/Asf1–H3–H4

and CIA/Asf1–double-bromodomain complexes. Struc-

ture-based biochemical, genetic and molecular biologi-

cal analyses have suggested that acetylated histones

recruit histone chaperone CIA/Asf1 via the double

bromodomain in the TFIID complex to a promoter

region, resulting in histone eviction around the promoter

site (Fig. 2) (Akai et al. 2010).

The correlation between histone PTMs and transcrip-

tion activation (through nucleosome structural change)

was discovered about 45 years ago. In the past 45 years,

structural details of chromatin, the signaling systemwith

histone PTMs, and the structural and functional relation-

ship of histone chaperones and ATP-dependent chroma-

tin-remodeling factors have been revealed. These

findings have begun to be integrated such that the



Histone Post-translational Modification to Nucleosome
Structural Change, Fig. 2 A schematic representation of the

hi-MOST model (linking the biological signaling from histone
modifications to structural change of the nucleosome).

Biochemical, genetic, and structural analyses indicate that the

double bromodomain of TFIID recruits CIA to specific promoter

regions. Recruited CIA evicts histones and promotes RNA poly-

merase II entry. BrD bromodomain, Ac acetylation

Histone Post-translational Modification to Nucleosome
Structural Change, Fig. 1 Histone PTM recognition domains.

Histone acetylation (red), methylation (cyan), and phosphoryla-
tion (yellow) recognition domains are shown in blue, green, and
orange, respectively. The names of the domains are labeled.

Histone chaperones interacting with these histone PTM recog-

nition domains are shown in red. Usually ATP-dependent

nucleosome-remodeling factors contain a histone PTM recogni-

tion domain in the complex. (The relationships are shown by

thick purple lines.) ATP-dependent nucleosome-remodeling

factors are shown in purple with labels. (Names of the subunit

containing a histone PTM recognition domain are given in

parentheses.) No recognition domains have been reported for

histone ubiquitination (green) and arginine methylation (cyan)

H 898 Histone Post-translational Modification to Nucleosome Structural Change
connection between histone PTMs and the nucleosome

structural change can be reasonably explained at the

molecular level. However, our understanding of these

molecular processes is still limited. For example, the

details of the molecular mechanism for nucleosome dis-

assembly by histone chaperones – such as H2A–H2B
and DNA dissociation from the nucleosome – remain

elusive. In addition, much is unknown about the signal-

ingmechanismwith histone PTMs. Although the histone

code hypothesis was proposed to explain the signaling

mechanism with histone PTMs (Allis et al. 2006), the

hypothesis is too simple to explain the results of several
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mutational analyses of the histone tail region. In order to

understand the whole picture of histone PTM signaling,

a macroscopic theory that considers the whole network

of histone PTM signaling is required. A combination of

experimental and theoretical approaches should lead to

a comprehensive understanding of molecular processes

between histonemodification and various nuclear events

including nucleosome structural change.
H
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Synonyms

Chromatin proteins; Nucleosome
Definition

Histones are highly basic proteins with molecular

weights ranging from 11 to 23 kDa and form the

basic unit of ▶ nucleosomes. There are four core

histones named H2A, H2B, H3, and H4; two subunits

of each interact to form the histone octamer. Histone

H1 is called the linker histone as it binds to the DNA

between two nucleosomes. The histone-DNA complex

brings about the first level of compaction of the DNA

in the nucleus. The H1, H2A, and H2B are rich in

lysine amino acid, whereas H3 and H4 are rich in

arginine. The amino-terminal tails of these proteins

extend beyond the nucleosome and, hence, are acces-

sible for covalent modification, while the octamer is

bound to DNA and participates in the interaction with

various other gene regulatory proteins.
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Definition

Histopathology is the study of microscopic structures

of diseased tissues (Crissman et al. 2004).
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Definition

Holism is the idea that whole entities are fundamental

components of reality and have an existence, which is

irreducible to the sum of their parts. Thus, all the prop-

erties of a given system cannot be determined or

explained in terms of the properties of its component

parts alone. Instead, the system as a whole is what

determines in an important way how the parts behave.

Holism in biology is the theory that emphasizes that

living entities can only be understood aswholes, because

they show global emergent properties that cannot be

attributed to specific or well-distinguishable parts. Sys-

tems are said to beholisticwhen the linear aggregation of

their parts cannot explain the functioning of the system

as a whole: “the whole is more than the sum of the parts”

as the main slogan of the sciences of complexity runs.

There are different types of holism, depending on

which kind of reductionism they are opposed to

(Gatherer 2010). For example, some authors defend

holism because they are epistemological antireduction-

ists (e.g., that some phenomena are so complex that their

behavior cannot be deduced from the knowledge of their

fundamental properties), while others go beyond the

epistemological argument and adopt ontological

antireductionism (e.g., that there exist, in certain com-

plex systems, true emergent properties, often considered

endowed with specific, “downward” causal powers)

(Andersen et al. 1996).

History

Holism in biological sciences has its roots in German

eighteenth-century biologists and philosophers, who
emphasized the impossibility to study living beings

according to the mechanistic-analytic tradition (nowa-

days sometimes called reductionism), which purports to

understand systems by dividing them into their smallest

possible or discernible elements and describing their

elemental properties alone. In the anti-mechanistic

view, known as “organicism” (the term “organicism”

refers likely to the properties of the whole organism,

whereas “holism” is a more encompassing concept,

thus applicable to any level of organization in biology),

living processes are studied in relation to the integrated

organized whole, (namely, the entire organism), rather

than to any of its parts. Both Goethe andKant (1790), for

example, considered that, contrary to what happens in

man-made machines, in a natural organism, every part

could neither be explained nor even exist, isolated from

the whole. Each part must be an organ producing the

other parts and being produced by them.

The debate between the mechanistic-reductionistic

and the organicistic-antireductionistic views traversed

the history of nineteenth- and twentieth-century biology,

taking many different forms, as, for instance, the dispute

between mechanists and vitalists in the early decades of

the past century. Yet, the modern history of holism in

biology begins with the work of researchers like

Rachevsky (1938), Bertalanffy (1952), and Elsasser

(1966), who argued for the necessity to adopt an inte-

grated approach to deal with living systems (and other

complex systems as well). British emergentists of the

early twentieth century, like Broad (1925), Morgan

(1923), and Alexander (1920), are also important refer-

ences in the modern history of holism in biology and

philosophy of biology. (Actually, it was in this context

that Smuts (1926) proposed the first modern version of

the concept of holism). The common idea of these authors

is that as the organization of systems becomes more and

more complex, it gets structured in levels, and new prop-

erties and causal interactions appear, in addition to those

of the more fundamental levels. Their emergent proper-

ties are systemic features of biological systems which

could not be predicted, despite a thorough knowledge of

the features of their parts and of the laws governing them.

The experimental success of the research program of

molecular biologyduring the second half of the twentieth

century undermined anti-reductionist arguments and

caused holistic objections to fade away. At the end of

the last century, however, the reductionist research pro-

gram faced a dead end (Morange 2003). As knowledge

on biological systems became more detailed and
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fine-grained, researchers progressively realized that com-

ponents were acting in strongly holistic ways. For exam-

ple, at the end of the last century, research in the structure

of the genome faced increasing evidences that genetic

components acted in a complex web of interactions.

Thus, as E. F. Keller has pointed out (2007), research

in biology changed from a program inscribed in DNA

analysis to a new distributed (namely, more holistic)

program in which DNA, RNA, and protein components

operate alternatively as instructions and data.

To be sure, this turn has not only been a consequence

of the internal development of biology but also of the

recent development of new scientific tools alternative to

the traditional analytic-reductionistic methods. The

combination of increasingly powerful computers along

with new modeling techniques (such as cellular autom-

ata, genetic algorithms, Boolean networks, chaos, and

dynamical systems theory) has allowed a blossom of

holism in modern science. All these deep innovations

are affecting many scientific disciplines, giving rise to

what is currently called the new “sciences of complex-

ity.” This impact is especially important in biology,

where new approaches like artificial life, synthetic biol-

ogy, and systems biology constitute its main expression.

Interestingly, it is precisely in the field of systems biol-

ogy that the idea of holism and the debate between

reductionist and emergentist views has resurfaced with

renewed force (Cornish-Bowden et al. 2005; Conti et al.

2007; Boogerd et al. 2007). (It must be admitted, how-

ever, that the blossoming of holism in systems biology is

rather a reject of reductionism than a return to the holism

of the 1930s, as emphasized by Gatherer (2010)).
Characteristics

Holistic phenomena occur even in relatively “simple”

physical or chemical systems: an ensemble of interacting

units producing a global property, or pattern of behavior,

that cannot be ascribed to any of them but only to the

whole. However, as Keller (2007) has pointed out, in

these systems, the emergent, holistic pattern lacks any

form of functional differentiation. This is not the case in

biological systems, in which the presence of holistic

properties goes together with functional diversification.

Compared to nonliving holistic systems (like ordinary

dissipative structures), biological systems involve

a much richer internal structure: They are made of parts

with different functionalities, acting in a selective and
harmonized way, coordinating themselves at different

timescales, interacting hierarchically in local networks,

which form, in turn, global networks, meta-networks, etc.

This complex organization shows that, in fact, holism

andmechanistic de-composition can be combined for the

purposes of biological explanation, as Bechtel has

recently pointed out (Bechtel 2010). In biological sys-

tems, holistic-emergent processes (which are continu-

ously taking place) produce both dissipative patterns

and more complex structures, which, in turn, are bound

to become selective functional constraints acting on the

dynamic processes that underlie those holistic processes.

Moreover, these functionally diverse constraints may

give rise (once a certain degree of variety is reached) to

new self-organizing holistic processes, which, in turn,

may be functionally reorganized. In this way, an increase

in organizational complexity can take the paradoxical

form of an apparent “simplification” of the underlying

complicatedness, giving rise to levels of organization in

which a mechanistic de-compositional strategy might be

locally applicable. Interestingly, these functional con-

straints can be described as localized mechanisms (and

therefore, to a certain degree, they are amenable to

functional de-composition) because they act as distin-

guishable parts (or collections of parts) related to partic-

ular tasks performed in the system (for example,

catalytic regulation). These two types of processes –

the holism of the global network of processes and the

local control devices/actions – are anyhow complemen-

tary: Both are required to produce and maintain the high

level of complexity that characterizes biological sys-

tems. Thus, de-composition and re-composition strate-

gies turn out to be complementary.

In sum, holism is a pervasive phenomenon in the

world of complex systems. Yet, the high degree of

complexity of biological systems relies on a specific

form of organization that combines holism and locally

differentiated functions and mechanisms. How to

understand this complex entanglement between emer-

gent holistic processes and functionally localized

structures is probably the most difficult challenge of

future research in systems biology.
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Holm’s Method

Winston Haynes

Seattle Children’s Research Institute, Seatlle,

WA, USA
Synonyms

Holm’s procedure; Holm-Bonferroni method; Sequen-

tially rejective Bonferroni test
Definition

Designed for multiple hypothesis testing, the Holm’s

method iteratively accepts and rejects hypotheses. The

Holm’s method is a close relative to the ▶Bonferroni

correction with slightly different threshold levels.

Let a be the determined significance threshold for

rejecting the null hypotheses and k be the number of

hypotheses. Begin by ordering the k hypotheses by their

respective p-values. Select the lowest p-value and com-

pare it to a/k. If the p-value is lower, then reject that

hypothesis and perform the same selection with the

remaining k�1 hypotheses and a threshold of a/(k�1).

Repeat the process until the selected p-value is not

smaller, at which time all remaining hypotheses should

be accepted.

By progressively adapting the threshold values, the

Holm’s method gains power over the ▶Bonferroni cor-

rection. Whereas in the Bonferroni correction all values

are thresholded relative to a/k, the Holm’s method uti-

lizes a/k, a/k�1,. . .,a. Therefore, the probability of

rejecting a hypothesis with the Bonferroni method is

less than or equal to the same probability for the

Holm’s method.
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Holoenzyme Recruitment Pathway

▶ PIC Assembly Pathways
Homeostasis

▶Life Span, Turnover, Residence Time

▶Lymphocyte Population Kinetics
H
Homeostatic Proliferation

▶Modeling, Cell Division and Proliferation
Homogeneous Structures

▶Cellular Automata
Homologous Recombination

Myong-Hee Sung

Laboratory of Receptor Biology and Gene Expression,

National Cancer Institute, National Institutes of

Health, Bethesda, MD, USA
Definition

Homologous recombination is a process in which two

similar or identical DNA segments are swapped,

giving rise to a newly combined sequence of DNA.
Homoplasy

▶Convergent Evolution
Hopf Bifurcation

Xiaojuan Sun

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua University of Beijing, Beijing, China
Synonyms

Poincaré-Andronov-Hopf bifurcation
Definition

Hopf bifurcation is a local bifurcation in which a steady

state of a dynamical system changes its stability, so that

the appearance or disappearance of a periodic orbit occurs.

In a dynamical system that is described by ODE

model (▶Ordinary Differential Equation (ODE))
dX

dt
¼ F ðXÞ: (1)

Let X* be a steady state such that F(X*) ¼ 0 and J

the coefficient matrix (Jacobian matrix) of the system

when it is linearized near X*:
J ¼ @ F ðXÞ
@ X X¼X�

����� : (2)

Suppose that all eigenvalues of J have negative real

parts except one conjugate nonzero purely imaginary

pair �b. A Hopf bifurcation arises when these two

imaginary eigenvalues cross the imaginary axis because

of a variation of the system parameters (Hale and Kocak

1991; Strogatz Steven 1994; Kuznetsov 2004). In the

critical situation when all eigenvalues of J have negative

real parts except one conjugate nonzero purely imaginary

pair, the system is said to have critical parameter value.
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Horizontal Genomics

Maureen A. O’Malley

Department of Philosophy, University of Sydney,

Sydney, NSW, Australia
Synonyms

Lateral genomics
Definition

Horizontal genomics is the large-scale study of the

pattern and process of gene transfer between organisms,

whether closely or distantly related. These investiga-

tions have considerable implications for whether the

evolutionary history of organisms, particularly microor-

ganisms, should be represented by a unique tree of life.
Cross-References

▶Metagenomics
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Host Adaptive Immune Response to HIV
Infection

▶ Systems Immunology, Adaptive Immune Response

to HIV Infection
Host Factor 1

▶Hfq
Host–Pathogen Interactions

Karyala Prashanthi1 and Nagasuma Chandra2

1Bioinformatics Centre, Indian Institute of Science,

Bangalore, Karnataka, India
2Department of Biochemistry, Indian Institute of

Science, Bangalore, India
Definition

The manifestation of a disease is critically dependent

upon the interactions of pathogens with their

hosts (HPIs), which are complex and dynamic in nature.

HPIs are multifaceted, with each species having to rec-

ognize, respond, and adapt to each other. Specific inter-

actions occur between macromolecules of the host and

pathogen, some beneficial to the host as in pathogen

elimination or suppression, while others are beneficial

to the pathogen, such as during initiation or progress of

an infection or even immune evasion. An understanding

of the mechanisms of such interactions is necessary for

targeted development of prevention and control mea-

sures against infectious diseases.

Upon entry into the host, pathogens interact with their

hosts for replication or obtaining nutrition. In response,

the host system attempts to either eliminate the pathogen

by triggering its innate and adaptive immune responses

or at least overcoming the exploitation of its resources by

the pathogen, by modulating availability of nutrients and

suppressing pathogenic virulence factors (Fig. 1).

The outcome that may range from pathogen clear-

ance to asymptomatic carriage or active disease is

a reflection of the properties of the microbe and the

host’s ability to respond to it.
Characteristics

Systems Perspective of HPIs

Pathogens have a formidable task of surviving and

infecting their target host cells, which they do, by

manipulating the host’s complex cellular networks.

Host cells are equipped with their own armory against

pathogens. Thus, it is no surprise that for every move

a pathogen makes to exploit the host, a counter move

has been observed in the host. Needless to say, the

reverse is also true, which means, that every move by
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Range of host-pathogen interactions Methods

Experimental methods: Epidemiological studies,
host population genetics
Computational methods: Agent-based modelling,
differential equations, epidemiological models

Experimental methods: Dynamic live microscopic
techniques, fluorescence activated cell sorting
Computational methods: Boolean or agent-based
modelling, differential equations

Experimental methods: Metabolomics using mass
and NMR spectroscopy, microarray analysis,
proteomics, siRNA analysis
Computational methods: Graph analysis, integrated
network topological / quantative analysis

Experimental methods: High throughput microarray
analysis, proteomics, siRNA analysis, metabolomics
Computational methods: Clustering and network
inference

Experimental methods: Molecular biology
techniques, X-ray crystallography, FRET
Computational methods: Docking, molecular
dynamics

Population
level

Cell-cell interaction
level

Pathway or network level

Genome wide transcriptional or protein
level

Protein-protein / ligand level

Host–Pathogen Interactions, Fig. 2 Experimental and computational methods to study host–pathogen interactions at different

levels of biological hierarchy
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the host system in response to an infection can be

countered by the pathogen as well. Thus, it becomes

a complex interplay between the two species, making it

often difficult to predict the winner. Appreciation of

the enormity of HPIs and how they influence the out-

come of an infection requires the study of the individ-

ual components as one connected system (Forst 2006).

Recent developments in “omics”-scale experimental

and computational technologies have facilitated the

study of systems biology of HPIs. Figure 2 illustrates

different levels at which HPIs are studied.

HPI in Virulence Mechanisms

Several pathogens utilize virulence factors in them to

inhibit various host functions, to achieve colonization,

immuno-evasion, or immune-suppression, through one

or more of the following: (a) adherence to host cell

involving adhesins (e.g., ManLAM in Mycobacteria)

(b) invasion through invasins (e.g., collagenase pro-

duced by Clostridium histolyticum and neuraminidase

by Vibrio cholerae and Shigella dysenteriae) that dam-

age host cells to facilitate growth and spread of the

pathogen, (c) avoidance of phagolysosome formation,

(d) autophagy, (e) preventing complement activation,

(f) nutrient acquisition through specialized receptor

systems (e.g., Tfr/Tf in Mycobacteria), (g) quorum

sensing and communication with other bacteria, and
(h) biofilm formation to protect themselves against

antibiotics and host defense mechanisms (Brogden

et al. 2007). All of these processes are complex sys-

tems in themselves involving several molecules

including toxins and extensive cross talk among

them, some of which can be readily obtained from

KEGG and other bio-systems’ databases.

Pathogenesis of cholera by V. cholerae occurs

through a series of spatio-temporally controlled events

under the control of a gene cascade termed the ToxR

regulon that encodes the virulence factors. A systems

biology study of the temporal regulation of gene expres-

sion in V. cholerae using high-resolution time series

genomic profiling (Kanjilal et al. 2010) provided insights

not only into the temporal dynamics of the ToxR regulon

but also identified potential newmembers of the process.

HPI for Adherence to or Entry into Host Cells

Pathogens must first adhere to host cells so as to colo-

nize at appropriate sites. In its simplest form, attach-

ment to the host cell requires two factors: a ligand and a

host cell surface receptor. Alteration of the host’s cellu-

lar morphology through actin polymerization or use of

specialized structures in bacteria such as pili, fimbriae,

or capsules is an example of mechanisms used by path-

ogens toward this (Pizarro-Cerdá and Cossart 2006).

This initial phase then leads to a complex host–pathogen
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molecular cross talk that enables them to reach their

appropriate intracellular niches, subversion of cellular

functions, and establishment of disease.

Endocytosis and phagocytosis are extremely

dynamic processes and involve more than 200 proteins.

Some pathogens trigger receptors that can activate these

processes, while some others secrete toxins that enter

the host cell and activate these processes. Specific sets

of interactions not only trigger specific signaling cas-

cades but also determine factors such as tissue tropism,

species specificity, and genetic specificity. Specific sig-

naling events bring about particular cellular responses

such as stimulation of innate and adaptive immunity,

growth, proliferation, survival, and apoptosis.

An example of a systems biology study of pathogen

entry is reported for Chlamydia pneumonia, which

illustrates the complexity of HPIs during entry (Wang

et al. 2010). Nine functional modules that were activated

upon exposure to the pathogen, consisting of 135 molec-

ular components, involved in cell adhesion, transcription,

endocytosis, and receptor systems, were incorporated

into a network capturing known inter-pathway cross

talks. The network was observed to be significantly resil-

ient since intervention at any single point alone was

insufficient to prevent entry. Instead manipulation of

a combination of three key proteins (a chemokine recep-

tor, an integrin receptor, and a platelet-derived growth

factor) was found to inhibit pathogen’s entry.

HPI for Nutrition

The human host provides an appealing ecosystem for

numerousmicroorganisms, with a variety of adaptations,

to harness the existing nutrient resources. Bacterial path-

ogens that colonize extracellular niches often face envi-

ronments with frequently changing physical conditions

and nutrients. However, intracellular pathogens replicat-

ing in cytoplasm or phagosomal compartments encoun-

ter a more congenial environment for growth. Several

nutrient acquisition adaptations are also known in intra-

cellular bacteria (Schaible and Kaufmann 2005).

Iron being an essential growth factor for both host

and pathogen is associated with coevolution of mutual

high affinity iron uptake and retention systems.

Mycobacteria, for example, block phagosomal matu-

ration and are present in an early phagosome and

accesses host cellular iron through the host transferrin

receptor/transferrin (Tfr/Tf) system. The host counters

this by Interferon-g activation, which downregulates

Tfr and ferritin levels.
Although most microorganisms can synthesize

organic molecules that they need, they are critically

dependent on the host for a few compounds. Due to the

abundance of these resources in the host, microorgan-

isms may have lost genes required for their biosynthe-

sis. Chlamydia, for example, is entirely dependent on

the host for supply of tryptophan, an essential nutrient.

However, the host has devised a defense strategy to

limit tryptophan through IFN-g-mediated activation of

indoleamine 2,3 dioxygenase (IDO), to catabolize

L-tryptophan to n-formylkynurenine.

HPI in Critical Host Cell Pathways

Pathogens often hijack one or more host intracellular

pathways in the host, for their survival (Bhavsar et al.

2007). Salmonella and Listeria, for example, utilize the

host cytoskeleton to enter and move within host cells.

S. flexneri, Yersinia spp, and M. tuberculosis provide
examples of inhibition of a signaling cascade (NF-kB
pathway), the latter having been activated in the host in

response to the infections through the use of Toll-like

receptors and other pattern recognition receptors.

The c-Met signaling network that is mediated by the

hepatocyte growth factor (HGF) in normal physiology

to achieve mitogenesis, motogenesis, and morphogen-

esis gets activated by theHelicobacter pylori virulence

factor CagA as well. However, with the latter, it is

highly correlated with gastric cancer. A systems level

study based on comparative logical modeling identi-

fied intervention points for CagA-induced but not

HGF-induced c-Met signaling, which were subse-

quently validated experimentally (Franke et al. 2008).

HPI for Elimination of Pathogen by Host or Immune

Evasion by Pathogens

Exposure to a pathogen leads to layers of defense

responses in the host. For each level of defense, path-

ogens have designed ways to evade them (Henderson

and Oyston 2003). For example, countering innate

immune responses can be seen in the following cases:

H. pylori counteract acidic environment in the stomach

by secreting urease which increases the pH surrounding

the bacterium. Some bacteria such as Streptococcus

pneumoniae have antiphagocytic substances in their sur-

faces to inhibit phagocytosis. Catalase and superoxide

dismutase synthesized by bacteria such as H. pylori and

Staphylococci scavenge reactive oxygen intermediates.

Examples where adaptive immunity is evaded include

cleaving and inactivation of IgA through IgA1 proteases
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by Streptococci and Neisseria spp., and over-activation

of T-cells by Staphylococci to produce toxic levels of the

pro-inflammatory cytokines, through the use of super-

antigens. There are also reports about the pathogen trig-

gering complex interactions among the host subsystems

that are detrimental to the host itself. For example, the

mechanisms of systemic vascular dysfunction in Dengue

ShockSyndromewere correlatedwith interplay of innate

immunity, inflammation, and host lipid metabolism

(Devignot et al. 2006).

Application in drug and vaccine discovery

Knowledge of the molecular mechanisms involved in

HPIs can be utilized in disease diagnosis, treatment, or

prevention, in a number of ways. For example, in

Ebola virus, substitution of a single amino acid in the

VP35 protein is sufficient to disrupt the viral inhibition

of innate immune signaling, while maintaining the

ability to replicate to wild-type levels in cell culture

(Hartman et al. 2008), which has led to exploration of

mutant varieties as vaccine candidates.

Specific host mechanisms are also being explored to

target drug therapy, by (a) preventing exploitation of

host proteins for pathogen’s replication or (b) enhanc-

ing hosts’ natural pathogen elimination mechanisms

such as production of interferons, the latter is achieved

through agonists of certain toll-like receptors such as

7-thia-8 oxoguanosine (TLR7 agonist) that is used for

HCV treatment (Tan et al. 2007).

Although systems level studies and hence applica-

tions in drug and vaccine discovery emanating from

them are not as yet commonplace, perhaps due to dif-

ficulties in comprehensive model building and experi-

mental design, the need for studying them as whole

systems has become firmly established. Some examples

from literature are already showing the power of these

approaches, with a very high potential to translate into

clinically useful applications in the coming years.
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Definition

Systems approaches are essential to understand the

complex web of host–pathogen interactions (HPIs)

that determine the outcome of an infection. Mathemat-

ical modeling helps enormously to study emergent

http://dx.doi.org/10.1007/978-1-4419-9863-7_580


Host–Pathogen Interactions, Mathematical Models 909 H

H

properties of the system, dissect the role of individual

components and their interactions, to understand

systems difficult to study experimentally and to predict

outcomes under a range of scenarios and ultimately to

identify strategies for countering the disease.

HPIs constitute typical multicomponent interacting

systems, making model-building a daunting task.

Given that both host and pathogen are entire systems

themselves, their interaction can be viewed as a system

of systems. The complexity in HPIs, as in other

biological systems, arises through feedback and feed

forward controls, bistability, as well as activatory and

inhibitory mechanisms. Evaluation of system parame-

ters is often challenging, and it is a common practice

to derive them from experimental observations.

Currently available models of HPIs span across differ-

ent levels of hierarchy in biological organizations
S
bI g

I R

Host–Pathogen Interactions, Mathematical Models,
Fig. 1 Compartmental view of the SIR model
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Fig. 2 Simulation output of SIR model. The Red curve shows

the time evolution of the susceptible population over time. Blue
and Green lines show profiles of recovered and infected
(▶Host–Pathogen Interactions, Fig. 2), the most well

studied being epidemiological level models and

molecular level models.
Characteristics

Epidemiological Models

Models in this category provide a parametric represen-

tation of evolution of the geographical and population-

wide spread of an epidemic, over a period of time,

addressing questions such as (a) which population is

more susceptible to a given disease (b) which strain of

a pathogen is more likely to spread and cause disease

and (c) which are the key parameters that control the

epidemic, hence leading to identifying strategies for

disease diagnosis and control.

The SIR model and its variants are the most

commonly used models in this category, in which,

the population is split into three compartments

(Anderson and May 1992), which are (S (t)), suscepti-

ble to disease; (I (t)), actively infected population; and

(R (t)), population recovered or not vulnerable to

disease (Fig. 1). The infectivity rate (b) and the

recovery rate (g) are both assumed to be constants.
100 120 140 160 180

S (Susceptible population)

IR model

R (Recovered population)
I (Infected population)

e (days)

populations. The population axis has been normalized between

0 and 1 representing (S,I,R) concentrations as a fraction of the

population

http://dx.doi.org/10.1007/978-1-4419-9863-7_91
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Table 1 Choice of modeling strategies

System parameter Time Modeling strategy

Continuous Continuous ODE, PDE

Continuous Discrete Difference equation

Discrete Continuous Network model, integer

H 910 Host–Pathogen Interactions, Mathematical Models
For short-period and low-fatality infections, the

model equations are summarized in (Eq. 1), and a

typical simulation output is shown in Fig. 2.

Equation 1 Differential equations representing

a simple SIR model.

programming

Discrete Discrete Agent-based modeling
dS

dt
¼ �bSI

dI

dt
¼ bSI � gI

dR

dt
¼ gI

The extent of infectivity in the population will

depend upon rates of infectivity, recoverability, and

initial susceptible population. The parameter Ro

(Basic Reproductive Ratio) is generally defined as

(Ro ¼ bS
g ), capturing the expected number of sec-

ondary infections arising from a single infected

individual. A number of case studies illustrate the

usefulness of the SIR model. Studies on the Bom-

bay plague epidemic (1905–1906), the influenza

epidemic in an English school (1978), the Eyam

plague episode in England, all show very good

correlation with predictions by their respective

SIR models (Murray 2005).

Modeling Interacting Networks of Biochemical

and Biological Species

This set of mathematical models capture interactions

in and between cells at the molecular level.

These mathematical models are used to predict the

evolution of various system parameters over time.

Each parameter in the model can either be continuous

or discrete in nature. Depending on the nature of the

parameter, different modeling strategies are employed,

as illustrated in Table 1.

Boolean Network

Although a quantitative modeling of the system

dynamics provides accurate predictions, the required

data for such modeling is often not available, making

qualitative modeling the only feasible option. Though

qualitative in nature, they are often sufficient to capture

the topology of the network and provide significant
insights into the system dynamics. Boolean logic

functions are used for describing interactions.

When the interacting components are represented in

the vector form as, �x ¼ ðx1; x2; . . . ; xnÞ 2 f0; 1gn,
the time updates defined by a set of Boolean

functions, time updates are represented as

xiðtþ 1Þ ¼ fið�xðtÞÞV i 2 f1 . . . ng, then the dynamics

of the network is represented by means of a transition

graph. A Boolean network with N variables has 2N

distinct states, each state being a set of unique

combination of system variables. Formally,

! s f0; 1gn 	 f0; 1gn shows the synchronous

transition of the states. Boolean systems too exhibit

attractor dynamics, similar to other deterministic

dynamical systems. An attractor is a distinct set of

states, occurring in the time evolution of the system.

If xs is an attractor point, then xs ¼ f ðxsÞ, where f is the
Boolean time evolution rule, which implies that once

attained, it remains in that state. Cyclic attractors on

the other hand recur in sequence, once any of its states

is visited. A given system can have multiple attractors.

Different initial states eventually converge to one or

the other attractors. The set of states which leads to

a particular attractor is collectively called the basin of

attraction for the given attractor (Albert et al. 2008).

Different variants that are explored are the use of

synchronous evolution of states, asynchronous firing

of the state transition, and compartmentalization of

biological components (Kauffman 1993).

A simplified Boolean model of phagocytosis is

shown in Fig. 3, in which a resting macrophage

M engulfs extracellular bacteria BE, and becomes

an infected macrophage MI, rendering extracellular

bacteria as intracellular bacteria BI.

The Boolean rules are as in (Eq. 2).

Equation 2 Boolean rules representing state transi-

tion of simple phagocytosis model.

MI ¼ Mand BE
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ingesting bacteria and

becoming infected.

Internalized bacteria

proliferate and burst out
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BI ¼ ðBE andMÞ or ðBE andMIÞ

The host immune response to a Bordetella infection,

studied using this approach (Thakar et al. 2007),

indicated that the dynamics were different for

the freshly infected host, reinfection of the host,

and fresh infection with antibody injections. A conva-

lescent host immune response was predicted to be

much faster than in a host with antibody transfused

treatment, correlating well with experiments using

mice (Thakar et al. 2007). In a separate study,

a 75 node host–pathogen interactome model, built

to study tuberculosis, indicated that the propensity

for bacteria to persist was the highest as compared

to those for clearance or active proliferation (Raman

et al. 2010).

Ordinary Differential Equations (ODES)

Ordinary differential equations serve as powerful tools

to build time-continuous models of any system.

By first principle, differential equations describe the

rate of change of value of a variable with respect to

time. The symbolic representation of a differential

equation is given as
dy

dx
or _y

In notation using limits, y¼ dy
lim
Dt�0

¼ lim
yðtþDtÞ�yðtÞ

Dt ,

representing the slope of the curve yðtÞ at any given

time t.
HPI models generally contain many parameters,

giving rise to coupled systems, as shown in the previ-

ous SIR model (Eq. 1). Coupled differential equations

are a system of ODEs, where each equation signifies

the time evolution of one parameter. The parameters

are dependent on each other as specified by their

respective equations. Hence, the system of equations

needs to be solved simultaneously. A simple model

from literature is described to illustrate the use of
ODEs in studying HPIs. The set of ordinary equations

representing the phagocytosis model (Fig. 3) are

given in

Equation 3, where, l is the average rate of mac-

rophage production, g is the pathogen intake probabil-

ity by a resting macrophage per contact. d represents the
death rate of a normal macrophage and d1 is the mortal-

ity rate of infected macrophages. gN and gI are the

average pathogen intake rates by normal resting

macrophage and infected macrophages respectively. N

is the average number of pathogens thrown out into the

system per macrophage burst, and � represents the

ingestion rate of phagocytosed pathogen.
Equation 3 System of differential equations

representing interactions between macrophages

and bacteria.

dM

dt
¼ l� gMBE � dM

dMI

dt
¼ gMBE � d1 MI

dBE ¼ aBE � gN MBE � gI MIBE þ d1NMI

dt

dBI

dt
¼ gN MBE þ gIMIBE � d1 NMI � �BI

Partial Differential Equations and Compartment

Models (PDEs)

Given the complexity and heterogeneity in the host

system, it is often difficult to place them into a single

differential framework. In order to address the tempo-

ral and spatial evolution together, multi-compartment

models and partial differential equation based models

are employed. In these, the entire space is subdivided

into well-mixed smaller compartments, each of which

has its own governing equations, while communication

among them is allowed through interface equations.
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Agent-Based Models

Agent-based models, also known as cellular automata,

are hybrid computational models capable of addressing

far more complex interaction patterns than any other

mathematical tool can. The basic idea is to divide the

complete system into multiple subgroups, each group

represented by an individual entity on a computational

grid. Different individuals are allowed to interact in the

computational framework, subject to a set of bounds and

predefined rules. The framework also allows introduction

of stochastic perturbations, as observed in real systems.

Taking the same example of phagocytosis, agent

interactions are defined in a two-dimensional grid

with cyclic boundary conditions. The space is initially

randomly filled with M macrophages and N bacteria.

At time t ¼ 0; none of the macrophages are infected

and all bacteria are extracellular. The maximum car-

rying capacity of each macrophage C and a probability

that any bacteria and macrophage contact ends up in

phagocytosis PN are defined. Then the contact is

defined with a distance threshold D between extracel-

lular bacteria and macrophages. The different compo-

nents which are the resting macrophage, the infected

macrophage, extracellular bacteria and intracellular

bacteria are considered as different types of agents.

Resting macrophage has an initial bacterial count of

zero. External bacteria are free to move and upon

contact with macrophages, get internalized with

a probability PN , after which they are marked as

internal bacteria. The internal bacteria have no free

mobility and move with the macrophage that ingested

it. When the internal bacterial count exceeds the

infected macrophage’s carrying capacity C, the latter

bursts out, resulting in reducing the count of macro-

phages and all the ingested internal bacteria will be

marked back as extracellular bacteria. Though the

model proposed here is highly simplified, the strategy

can be used to extend the model to simulate real

systems very closely. IMMSIM is an example of an

agent-based model tool, that has been used to simulate

humoral and cellular responses (Kohler et al. 2000).

Game Theoretic Approach

Game theory provides a mathematical framework to

address complex issues such as adaptability. For study-

ing HPIs, host and pathogen can be considered as two

players making moves based on strategies available to

them. Adaptation of each strategy incurs a cost for the

player, but geared for maximizing the respective
payoffs (Blaser and Kirschner 2007). Pure strategies

often do not exist, rendering the problem to one

of identifying strategies that maximize payoffs for

both players. An example of HPIs in Salmonella as

well as mycobacterial infections illustrates the use of

game theoretical approaches (Eswarappa 2009).

Summary

As evident from the above discussion, a system can be

addressed by different mathematical models, each at

a different level of granularity and providing insights

from a different perspective. Multi-scale modeling,

where different models can be built at different levels

and all are threaded together into an integrated frame-

work, appears to be a most plausible direction for

future pursuits (Kirschner et al. 2007).
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Definition

Host-pathogen systems describe the interactions of

a pathogen with a host. These interactions take place

on different level of details, both in time and space,

from fraction of a second to the lifetime of the host

(e.g., decades), from molecules to whole organisms

and societies (in the case of epidemiology).

Target discovery refers to the identification of drug

targets, the naturally existing cellular or molecular

structure involved in the pathology of interest that

potential drugs are meant to act on (see ▶Epigenetics,

Drug Discovery).
Characteristics

Model System

Host-pathogen systems with respect to target discovery

are predominantlymodeled by interaction networks. The

host-pathogen interactome is the most recent focus of

genomic technologies. Together with interaction infor-

mation, genome-wide studies of host-pathogen interac-

tions using mRNA and microRNA transcriptomics,

RNA interference (RNAi), proteomics, and other plat-

forms are used to obtain important insights into compo-

nents and pathways which are essential for pathogen

infection, proliferation, and persistence.

The Discovery Process, a Historical Perspective

Target identification has been approached using

a variety of genetic and biochemical methods

(Terstappen et al. 2007). Historically, pharmacologi-

cal activities were often discovered by testing plant
extracts in complex living systems and observing

changes of phenotypes. With the possibility to

isolate pharmacologically active substances that

are responsible for the observed effects at the

beginning of the nineteenth century, a key step

toward modern drug discovery was made. With

the advances in molecular biology and biochemis-

try, the approach of testing defined substances in

complex living systems was largely abandoned in

the 1990s on favor of a more reductionistic target-

based approach powered by the sequencing of the

human genome and the spawning of a new era with

the potential knowledge of all potential drug targets

readily available (Overington et al. 2006).

The failed promises of postgenomic target-base

drug discovery has recently yielded to revisit a more

systems-level approach involving the screening of test

compounds under disease conditions to determine

induced phenotypic changes (Sams-Dodd 2005). This

approach, which goes beyond individual genes and

proteins as it involves the investigation of biochemical

networks by a systems approach (Butcher 2005) is

referred to as chemical genetics. Such chemical

genetic screens typically involve the use of genetic

(gene deletion, knockdowns, overexpression) as well

as nongenetic, environmental (infection with patho-

gens) perturbations while comparing the influence of

lead molecules with and without such permutations.

The retroactive identification of pathways and biolog-

ical functions that underlie the observed phenotypic

responses, termed target deconvolution, provides

important insights into the biological mechanisms of

disease and further facilitate drug development

(Terstappen et al. 2007).

The Overall Process

Drug target/pathway deconvolution in host-pathogen

system is embedded within the modern, holistic,

drug-development pipelines including (1) assay develop-

ment, (2) screening, (3) hits and leads, and (4) target

deconvolution. It utilizes chemical genomic approaches

and analyzes the experimental results in the context of the

host-pathogen interactome. The resulting deconvoluted

drug targets and key biological processes are realized as

subnetworks of the host-pathogen interactome.

The Interactome

The host-pathogen interactome typically consists

of nodes (vertices) and edges that connect the nodes.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100370
http://dx.doi.org/10.1007/978-1-4419-9863-7_100414
http://dx.doi.org/10.1007/978-1-4419-9863-7_91
http://dx.doi.org/10.1007/978-1-4419-9863-7_844
http://dx.doi.org/10.1007/978-1-4419-9863-7_844
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More complex network representations include hyper-

graphs (Forst et al. 2006) and rule-based descriptions

(Hlavacek et al. 2006). In simple node/edge represen-

tations, genes, RNA/DNA, proteins, and chemicals are

represented as nodes, binary interactions and reactions

are described as edges (Fig. 1). Multiple interactions

between chemicals in biochemical reactions are

appropriately described by a graph generalization,

a hypergraph, where an (hyper) edge can connect

more than two nodes. Alternative representations

require appropriate ontologies that relate biological

concepts using a controlled dictionary (Karp 2000).

Examples include network representations in KEGG

Kanehisa et al. (2011) and Reactome (Matthews

et al. 2008).

Interactome information is readily available on

the Internet. The website Pathguide (http://www.

pathguide.org) provides a comprehensive list of repos-

itories and resources on protein-protein interactions,

metabolic pathways, signaling pathways, pathway

diagrams, transcription factors and gene-regulatory

networks, protein-compound interactions, genetic

interaction networks, as well as other interaction-

based resources.

Network Analysis

Genome-wide studies of host-pathogen interactions

using mRNA and microRNA (miRNA) transcriptomics,
global RNA interference (RNAi), proteomics, and other

platforms, are revealing important insights into pathways

and functional units that are essential for pathogen

infection, proliferation, and persistence as well as for

host defense.

Genomic screening data are analyzed in the context of

biochemical networks. Figure 2 describes a principle

approach to analyze host-pathogen networks for target

deconvolution. On the left side, the corresponding exper-

iments assays are developed, the experimental data col-

lected and preprocessed. Data involves qualitative

sequence tags, presence/absence of proteins, as well as

quantitative values such as gene expression, Z-scores

after RNAi screens, and drug concentrations. On the

right side, interaction information is collected and syn-

thesized into a large biochemical host-pathogen network.

The data is then analyzed in the context of biochem-

ical networks. Typical analysis protocols involve

• Network biology and graph topology

• Network clusters, complexes, and modules

• Response networks

• Pathway enrichment

Network biologywas coined by Barabasi and Oltvai
2004 and describes the graph-topological analysis of

biochemical networks (Barabasi and Oltvai 2004).

His research hypothesized that high connectivity of

proteins in protein interaction networks indicate impor-

tance with respect to biological functions. Highly

http://www.pathguide.org
http://www.pathguide.org
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connected protein knockouts tend to be lethal for the

organism as tested in the case of yeast.

Network clusters, complexes, and modules are

used to group subsets of network components (genes,

proteins, compounds) into connected subgraphs. Purpose

of this exercise is to cluster tightly connected compounds

which are thought to be functionally related (Aravind

2000).

The calculation of response networks involves of the
superposition of local, component-based data, such as

gene-expression values, with network information.

Response networks of a system refer to best-scored sub-

networks in large biochemical networks responding to

specific environmental conditions measured by the

corresponding experiment (Ideker et al. 2001; Ideker

et al. 2002; Cabusora et al. 2005).

Pathway enrichment is a multistep process. It is

based on set enrichment analysis identifying statisti-

cally significant genes that enrich a particular set.

For example, hypergeometric distributions have been
used to determine enrichment of gene-ontology nodes

by genes. By including quantitative data, such gene-

expression profiles, the Gene Set Enrichment Analysis

method (GSEA; Subramanian et al. 2005) is capable to

determine whether an a priori defined set of genes

shows statistically significant, concordant differences

between two biological states (e.g., phenotypes).

Predefined gene sets (aka Molecular Signature Data-

bases) were extracted, for example, from BioCarta,

KEGG (Kanehisa et al. 2011), and Reactome path-

ways. In a next step, together with biochemical net-

work information, enriched gene sets are used as

scaffolds to construct enriched pathways. Thus, the

network provides additional context information.

Target Deconvolution

Target deconvolution describes the retrospective iden-

tification of targets that underlie observed phenotypic

responses. In the case of host-pathogen interactions,

the phenotypic responses typically involve survival or
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death of the host, virus replication, or host defense –

with and without administered drugs. Recent studies

involve the identification of human host factors

required for influenza virus replication using genome-

wide RNAi screens. Shapiro et al. utilize yeast two-

hybrid analysis to identify physical associations

between host and viral proteins (Shapira et al. 2009).

After verification with RNAi screens, a core network

that is enriched in RNA-binding proteins, components

of WNT signaling, and viral polymerase subunits have

been identified as potentially important in influenza

infections. K€onig et al. uses multiple analysis

approaches including network context to calculate

consensus scores for the identification of target host

proteins required for WSN virus replication (K€onig
et al. 2010). Two hundred and nineteen factors were

confirmed to be required for efficient wild-type influ-

enza virus growth, including those involved in kinase-

regulated signaling, ubiquitination, and phosphatase

activity, and 181 factors assemble into a highly signif-

icant host-pathogen interaction network.

All of these studies employ human cell models.

Thus the success of their deconvoluted targets have

to be further verified in preclinical and clinical

scenarios.
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Definition

The Hough transform (HT) is a coordinate transforma-

tion introduced by Hough (Hough 1962). It is useful in

computer vision as a method for retrieving shapes

within digital images. It was first conceived for lines,

circumferences, and simple polygons (Duda and Hart

1972) and later generalized to arbitrary shapes (Ballard

1981).

HT is best explained for the case of retrieval of

lines. HT maps every meaningful point of an x–y

image space into a line of an m–c parameters space.

Meaningful features of an image for the purpose of HT

are identified by retrieving points that have high

gradient values, as these points could possibly belong

to the contour of, e.g., a straight or curved line; com-

putationally, they can be determined by edge detection

operators. Figure 1 depicts the HT of points p and q of

the image on the left into lines in the parameters space

on the right. The various points of the HT line of

a point p give the set of slope (m) and intercept (c)

values of the bundle of lines which contain the point p.
y

p

Hough Transform,
Fig. 1 The Hough transform

duality between edge points

and straight line parameters:

two points of a segment of the

image space (left) and two

lines of the parameters space

(right)
In the example of Fig. 1, applying HT to the points

in the segment [p, q] results in the mapping of the latter

segment into a bundle of lines which will intersect into

a particular point (m0, c0). This point will correspond

to the actual slope and intercept the line of the image

space which contains the segment [p, q]. Computation-

ally, the HT is performed by voting (m, c) values in

a quantized parameters space; in the example of Fig. 1,

(m0, c0) will result in a higher final vote, both indicat-

ing success in retrieving a line and providing its actual

slope and intercept.

The number of points into which one single point of

the image space is mapped can be enormously

reduced if edge detection operators not only provide

information about the location of meaningful points in

an image, but also about the approximate orientation of

the curve on which points are possibly located.

This variation is the so-called gradient method (GM).

Although the GM makes line retrieval by HT a trivial

process, it only facilitates retrieval of more complex

shapes such as polygons – for which even with the aid

of the GM, segments have to be voted.

In the generalized Hough transform (GHT),

retrieval of shapes of any nature – e.g., a wrench – is

accomplished with the aid of the GM, to help establish

relative orientations. One reference point internal to the

object to be retrieved is established, then a table

containing information about distance and orientation

of selected control points of the object – e.g., 10 points

located onpeculiar features of the object –with respect to

the reference point is built. GHT is then performed on

a given image by performing HT, in a parameters space

corresponding to the image space; HT is performed

multiple times per meaningful point – e.g., 10 times per

point of the image, in our example – supposing that it
x m

q q

c

p
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might correspond to any control point previously

established. If the object of interest is present in the

image, one point in the image space will be highly

voted; it will correspond to the reference point of the

object and will be voted once by every control point of

the object actually in the image.

The advantages of HT are efficiency, rotation- and

translation-insensitiveness, parallelizability, noise and

occlusion insensitiveness, and relative tolerance to

approximate descriptions. Among its disadvantages,

its high computational complexity, which results in

high time and memory requirements. Randomized

and deterministic HT variations help dealing with

these downsides.
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Definition

The Hough transform can be used efficiently in the

context of protein structural comparison and motif

retrieval, thereby constituting another fundamental
tool among the available heuristics that allow to esti-

mate the presence of particular structural features

within the structure of a protein.
Characteristics

Systems biology benefits enormously from automatic

methods aimed at sorting out meaningful information

and overall trends from the huge amount of data about

biological systems that has been, is being and will be

collected with modern high-throughput techniques.

Among these methods, it is widely acknowledged

that a substantial role in carrying out data mining

nowadays is played by protein structural comparison.

Known functional units such as structural motifs can

be retrieved in recently discovered proteins and simi-

larities between known and new structures can be

established. This allows inferring protein function,

explaining the role of specific sequences in biochemi-

cal pathways and biological networks, building up

phylogenetic trees and ultimately creating new data-

base annotations, which in including the results of the

completed predictions will be helpful for the structures

that will be discovered in the future.

Various approaches have been developed for pro-

tein structure comparison, based on either distance

matrices (Taylor and Orengo 1989; Holm and Sander

1993), graph theory, or geometric hashing (Nussinov

and Wolfson 1991; Comin et al. 2004). The various

available algorithms are heuristics.

It is fundamental, in this context, to be acquainted

with the notion of heuristic: An experience-based or

intuition-guided problem-solving technique, which is

generally fast at the price of suboptimality, i.e., there is

generally no theorem to fully guarantee the reliability

of the results they provide. Heuristics are employed

either when just no optimal approach is available at all

or when, despite availability of an optimal method, the

heuristic approach is way faster and yields results with

an acceptable accuracy given the inherent gain in

execution time.

The reason for the existence of multiple solutions of

the same protein structural comparison problem is that

disparate inspirations lead to diverse approaches, very

often based on very different lines of reasoning.

It turns out that the existence of multiple heuristics

for protein structure comparison is actually vital

and the reason for this is that it is very difficult to

http://dx.doi.org/10.1007/978-1-4419-9863-7_974
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establish quantitatively the distance from optimality of

suboptimal structural comparison results. Therefore,

only when such methods yield results which are in

accordance with one another, despite the fact that the

nature of the calculations can be profoundly different,

can the predictions be deemed accurate.

The purpose of this entry is to illustrate a recently

developed heuristic approach for assessing protein

structure similarity and for retrieving structural motifs,

which is inspired by a computational method imported

from the field of computer vision: the ▶Hough

transform (Mattia 2010).

In this method, protein similarity is determined by

performing a comparison between pairs of protein

structures and calculating a comparison score. Motif

retrieval is allowed for by letting one of the proteins in

the comparison be the structural motif which is to be

searched for. The comparison score is calculated in

a vote space, which generally corresponds to the coor-

dinate space in which one of the proteins is described,

by appropriately aligning couples of secondary struc-

tures of the two proteins (e.g., alpha-helices and

beta-strands), one from each of the latter, and voting

selected reference points. Either the vote of the mostly

voted point in the voting space or other functions of the

votes in the voting space can be used as the final

comparison score.

The method can be easily tuned so that voting is

performed only between secondary structures of simi-

lar type, e.g., alpha-helices with alpha-helices and

beta-strands with beta-strands. Higher information

content in the voting procedure always results in
a cleaner voting space and in a better signal-to-noise

ratio.

The principle of the method is illustrated in Fig. 1.

On the left is the xyz space of the so-called model

protein, while on the right is the x0y0z0 space of the

so-called object protein. Voting is performed in the

latter space. In order to do so, for every secondary

structure of the model protein (illustrated as a bold

arrow on the left of Fig. 1), the characteristic parame-

ters rho and theta must be computed; these correspond

to the distance of the secondary structure to a well-

defined reference point, such as the geometric center of

the protein, and the angle that the direction of the

secondary structure forms with the segment joining

the latter with the reference point. The parameters

rho and theta allow to vote reference points in the

voting space. Knowledge of only two parameters in

a 3D space results in incomplete definition of the

position of the point to vote, making voting of an entire

circumference indispensable. This circumference is

the rim of a cone centered in the object protein’s

secondary structure, as Fig. 2 illustrates. If the second-

ary structures of the object proteins have a similar

spatial arrangement as the ones of the model protein

from which the rho and theta parameters are taken

from, then, after many voting steps, i.e., when each of

the rho and theta values from all of the secondary

structures of the model protein has been used to vote

circumferences around every secondary structure of

the object protein, as many circumferences as the num-

ber of secondary structures in the model protein will all

intersect, in the voting space, in one highly voted point,

http://dx.doi.org/10.1007/978-1-4419-9863-7_1310
http://dx.doi.org/10.1007/978-1-4419-9863-7_1310
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which can be used as a score for the comparison. This

will not happen whether the two proteins have different

structures, resulting in a low score. Figure 2 illustrates

a sample voting space, in which successful comparison

results in the formation of vote peaks due to the voting

circumferences intersecting with one another.

Fundamental for the implementation of the method

is discretization. Both the geometric space where

voting is performed and the voting circumference are

discretized, the former in “voxels” (cubic volume

elements), the latter in an integer number of steps.

The entity of the discretization deeply influences

the quality of the results: A high-detail mesh produces

more reliable scores, although at the price of longer

execution times, making a compromise between

parameter settings and acceptable execution times

necessary. Overwhelming memory usage is avoided

by maintaining information of only the voxels that

contain a nonzero vote.

The most important aspect of the implementation

regards the way of dealing with the voting space after it

has been filled. Since structural similarity does not

mean structural identity, the circumferences in the

voting space will not actually overlap perfectly,

although they will come to close proximity around

one point. This results in the votes not forming the

actual peaks that are wanted in order to compute

a score. For this reason, smoothing of the vote space

by accumulation of all of the votes sufficiently near to

every point in the vote space is needed. Performing

a smoothing of the vote space by merely scrolling the

vote space and for every point summing every vote that

happens to be sufficiently close to it (thereby scanning

the vote space again for every point in it) is
computationally costly, to the point that it easily

becomes too heavy to be executed in reasonable

times for ordinary purposes. The algorithmic complex-

ity is in this case of O(N2), where N is the number of

votes in the vote space, which is in turn proportional to

the number of secondary structures in the model pro-

tein and in the object protein and to the number of steps

in which the voting circumference is divided.

The problems associated with the high computa-

tional requirements of the smoothing algorithm are

solved if a particular data structure is introduced in

the implementation, i.e., the ▶ range tree. The use of

range trees in the smoothing step allows the computa-

tional complexity to fall down to O(Nlog3N).

Balancing of the range trees guarantees that the com-

putational complexity stick to the logarithmic order

above, without worst-case scenarios.

The execution times vary strongly depending on the

size of the input, i.e., how many proteins to compare

and how many secondary structures they contain, and

the parameters settings. A typical execution time for

a one-to-one comparison is from a fraction of second to

a few seconds on a standard laptop. Noteworthy is the

change in execution times that the use of range trees

brings about: A 33-to-33 proteins comparison took

8 h to complete with the standard algorithm (without

range trees), while only 11 min with the optimized

algorithm (with range trees).

The algorithm is embarrassingly parallel. This

means that, since it requires very little communication

between independent voting steps, it is easily split into

parallel tasks, resulting in faster execution, which is

fundamental for operation in the context of database

annotation.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1309
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All in all, as it has been pointed out in the introduc-

tory paragraphs that results of structural alignment from

different methods which are in reciprocal agreement

help to confirm positive predictions, the Hough trans-

form method, which has proven successful, is therefore

a fundamental component of the suite of protein struc-

tural comparison algorithms available to date.

The method has its own peculiar advantages, too,

which are inherited directly by the algorithm it is based

upon, the ▶Hough transform. Among them, effi-

ciency, rotation- and translation-insensitiveness,

parallelizability, noise and occlusion insensitiveness,

and relative tolerance to approximate descriptions. The

method is also highly parameterized, so that it can be

adapted to specific cases in order to obtain the best

results. The main downside is its suboptimality, as is

the case with any heuristic. Other specific disadvan-

tages of the Hough transform, such as high time and

memory requirements, and of range trees, such as the

inherent difficulties in treating complex data struc-

tures, have been successfully dealt with and solved.
Cross-References
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Synonyms

HTLV; Human T-lymphotropic virus
Definition

Human T-lymphotropic viruses (HTLV) are members

of the ▶Deltaretroviridae. HTLV-1, the only known

human oncogenic retrovirus is the etiological agent of

▶ adult T-cell leukemia/lymphoma (ATL) and

▶Human T-Lymphotropic Virus Type-I-associated

Myelopathytropical Spastic Paraparesis (HAM/TSP).

HTLV-2 is associated with HAM/TSP-like illness,

whereas the pathogenicities of HTLV-3 and HTLV-4

are unknown. HTLVs share a similar proviral genomic

organization. Long terminal repeats (LTR) flank

the structural genes gag, pol, and env (Fig. 1). The pX

region encodes the regulatory protein Tax and so-called

accessory proteins Rex, p21, p12, p13, and p30. The

basic leucine zipper factor HBZ is translated from an

antisense transcribed mRNA of the 30LTR region

(Matsuoka and Jeang 2007; Higuchi and Fujii 2009).

CD4+ T-cell transformation by HTLV-1, viral per-

sistence, and immune response modulation are driven

by the highly pleiotropic oncoprotein Tax1 (Tax of

HTLV-1) in conjunction with HBZ, p12, p13, Rex1,

and p30. Env, Rex, Tax, and dendritic cells are asso-

ciated with HTLV-1 tropism for infecting CD4+

T-cells (Jones et al. 2008; Boxus and Willems 2009).
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Tax1 can interact with hundreds of cellular proteins to

transform CD4+ cells (Boxus et al. 2008). Protein

complex formation of Tax1 with cellular proteins

CREB2, ATF2, EP300, and KATB2 is essential for

Tax1-mediated viral and cellular transcription initia-

tion. Major Tax1 targets are the non-canonical NFkB
and AKT1 signaling pathways including transcription

factors AP1, SRF, and TP53 (Matsuoka and Jeang

2007). Various feedback mechanisms on viral and

cellular transcription level ensure HTLV-1 persistence

and/or immune escape from recognition by Tax1-

specific cytotoxic T-cells. For example, Tax1-

mediated T-cell immortalization is suppressed by

HBZ heterodimers with CREB2 or JUN, whereas

HBZ transcription is activated by Tax1 (Boxus and

Willems 2009; Matsuoka 2010). p30 binding to

EP300 can modulate transcription of both, viral and

cellular genes. Depending on the level of available

p30, it may either stabilize Tax1-CREB2-ATF2-

EP300-KATB2 complex or compete for EP300 and

suppress transcription initiation (Bai et al. 2010).

Upon transformation, mutations in the Tax1-coding

region, deletions and/or methylation of 50LTR pre-

vents Tax1 expression.
Characteristics

Tax-Mediated Transcriptional Changes

Tax1 leucine zipper–like region (LZR) mediates the

activation of the non-canonical NFkB pathway, which

is essential in T-cell transformation. Complex formation
of Tax1 with CHUK, IKBKG, and NFKB2 leads

to nuclear translocation of RELB and NFKB2

heterodimers which induce the expression of various

cell proliferation–promoting cytokines (IL1B, IL2,

IL6, IL9, IL13, and IL15) and their corresponding

receptors (Boxus and Willems 2009). The LZRs of

HTLV-2, -3, and -4 are more similar to each other than

to HTLV-1 LZR (Fig. 2) (Higuchi and Fujii 2009).

Accordingly, HTLV-1 but not HTLV-2 in vitro infec-

tion of IL2-dependent cell lines results over time in IL2-

independent growth (Boxus et al. 2008).

HTLV-1 complements host cell transformation

with Tax1-driven aneuploidic or improper chromo-

somal segregation effects and clastogenic or mismatch

repair–associated DNA damage (Matsuoka and Jeang

2007; Boxus andWillems 2009). The Tax1 C-terminal

PDZ domain–binding motif (PBM) has been associ-

ated not only with cell proliferation but also genomic

instability–promoting properties. Tax proteins of

HTLV-2 and -4 lack PBM (Fig. 2).
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Modulation of the cell cycle by Tax1 and HBZ in

conjunction with epigenetic changes promotes the

clonal expansion of transformed CD4+ T-cells via

mitotic proliferation. On the other hand, Tax1-specific

cytotoxic CD8+ T-cells select against clonal prolifera-

tion. Overall, the relatively low infection efficacy

of HTLV-1 and multifactorial dependence on CD4+

T-cell transformation and proliferation capacity of

abnormal cells results in latency periods of several

decades and up to 5% ATL incidence. In case of

HAM/TSP, the latency period is shorter, and patients

show a vigorous HTLV-1-specific cytotoxic CD8+

immune response accompanied by pro-inflammatory

cytokine production,which contribute to the neuropatho-

genicity (Matsuoka and Jeang 2007).

Effects of Accessory Proteins

While Tax1 is sufficient and necessary to transform

T-cells, accessory proteins are equally important for

the survival of HTLV-1 in the host cells and progression

toward ATL or HAM/TSP as outlined in excellent

reviews of p12 (Van Prooyen et al. 2010), p13 (Silic-

Benussi et al. 2010), p30 (Bai et al. 2010), and HBZ

(Matsuoka 2010) in a special issue ofMolecular Aspects
of Medicine. Some of the multifunctional accessory

proteins have Tax1 synergistic and antagonistic func-

tions to promote immune escape and modulate cell

proliferation, viral replication, and persistence.

p12

p12 protein usually localizes to the endoplasmic retic-

ulum (ER) and cis-Golgi. Yet, proteolytic cleavage of

p12 at a non-canonical ER retention signal produces

p8, which localizes to lipid rafts of the immunological

synapse and affects T-cell receptor (TCR) signaling. In

addition, interaction of p8 with linker for activation

of T-cells (LAT) decreases LAT phosphorylation.

As a result, suppressed T-cell receptor signaling

downregulates the activity of NFAT transcription fac-

tor family members which decreases cytokine produc-

tion and T-cell proliferation (Van Prooyen et al. 2010).

ER-located p12 promotes in synergy with Tax1

T-cell proliferation and viral persistence by activating

both IL2 and IL2R expression. p12 interaction with

CALR and CANX increases cytoplasmic Ca2+ levels

and dephosphorylation of NFATC1, which locates to

the nucleus to activate IL2 transcription. In turn, the

increase in IL2 activates Tax1 transcription via

CREB2 and ATF2. At the same time ER-located p12
also binds to the immature forms of the IL2Rb and gc
chains, which enhance STAT5 activation and TCR

signaling in response to IL2. To avoid immune recog-

nition of the infected proliferating T-cells, p12 binds in

the ER to HLA class I molecules which reroutes HLA

class I-trafficking to the proteasome for degradation

rather than to the cell surface (Van Prooyen et al.

2010).

p13

p13 has dual subcellular localization potential. Mainly,

p13 localizes to mitochondria where it increases reactive

oxygen species production and reduces mitochondrial

Ca2+ uptake, which influences the proliferation and

death of T-cells. Tax1-mediated ubiquitylation facili-

tates sorting of p13 to the nucleus. Subsequent heterodi-

merization with Tax1 inhibits CREBBP and EP300 co-

activator binding to Tax1 and attenuates Tax-mediated

transcription of HTLV-1 genes in a potential negative

feedback loop (Silic-Benussi et al. 2010).

Rex1 (p27)

The RNA-binding post-transcriptional regulator Rex1

(p27) controls the splicing and export of HTLV RNAs

transcribed from the pX regions, including its own

RNA. Rex1 is essential for the production and assem-

bly of viral particles which enables active infection

(Boxus and Willems 2009; Bai et al. 2010).

p30

p30 antagonizes the effects of Tax1 on both, transcrip-

tional and post-transcriptional levels. Direct interac-

tion of p30 with CREBBP and EP300 suppresses the

transcription of HTLV-1 from the 50LTR and of cellu-

lar genes that are dependent on CREBBP/EP300 acti-

vation. Another cellular target of p30 is transcription

factor SPI1 also known as PU.1. Binding of p30 to the

ETS domain of SPI1 prevents its binding to DNA and

therefore transcriptional activation of its target genes

(e.g., TLR4) including itself. Downregulation of

TLR4 expression interferes with the innate immune

response, induction of pro-inflammatory cytokines

(e.g., IL8, TNFA, CCL2, etc.) and production of

anti-inflammatory IL10 in TLR4-primed dendritic

cells (Bai et al. 2010).

Post-transcriptionally p30 interaction with the large

ribosomal subunit protein L18a and binding to Tax1

and Rex1 mRNAs were found to increase their nuclear

retention, thereby suppressing viral replication and
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possibly prolonging viral latency. On cellular level,

p30 increases via an unknown mechanism the phos-

phorylation of GSK3B kinase in macrophages, which

leads to an increase in IL10 production (Bai et al.

2010).

HBZ

HBZ gene is transcribed from the 30LTR which is not

known to undergo methylation and/or deletions.

Therefore, HBZ is expressed at all stages of infection.

Both HBZ mRNA and protein modulate cellular tar-

gets. HBZ protein forms heterodimers with CREB,

CREB2, and p300/CBP which attenuate Tax-mediated

transcription of HTLV-1 genes from the 50LTR.
A stem-loop structure of HBZ mRNA promotes the

proliferation of infected and leukemic cells, and

increases the transcription of E2F1. Possibly, the

increased cell proliferation is associated with the

induction of E2F1 target genes. In addition, HBZ

mRNA may modulate the phenotype of T-cells

(Matsuoka 2010).

HTLV and Transcription of Cellular miRNAs

HTLV-1 infection affects also the expression of small

RNAs. Ruggero and co-workers (Ruggero et al. 2010)

reviewed reports of numerous miRNAs that were

found to be up- or downregulated in infected T-cells

and ATL cells. For example, in ATL cells, miR-93 and

-130b downregulate TP53INP1, an apoptosis- and cell

cycle arrest–promoting tumor suppressor. In HTLV-

1-infected T-cell lines, Tax1 upregulates miR-146a

and miR-130b via the NF-kB pathway. Other Tax1-

modulated small RNAs include DNA-directed RNA

polymerase III–transcribed transfer RNAs (tRFs) and

miRNAs, which affect cell proliferation and cell cycle

progression.

Conclusions

In the past 5 years, HTLV-1 and -2 studies have con-

siderably contributed to the understanding of the

molecular mechanism of T-cell transformation and

viral manipulation of cellular pathways at both tran-

scription and protein levels. Potential therapeutic tools

(e.g., PI3K inhibitors, allogeneic hematopoietic stem

cell transplantation, or mutant Tax vaccination) and

diagnostic markers such as miRNAs have emerged

(Matsuoka and Jeang 2007; Ruggero et al. 2010), but

efficient therapies and diagnostic markers have yet to

be developed.
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Definition

HTML is the principal markup language of the

▶World Wide Web. It specifies the structural

semantics for text in Web documents. Its elements

indicate to Web browsers how to display content on

a Web page, including text, images, video, and

audio. It also can embed programming instructions

to the browser using JavaScript, or other scripting

languages.

A separate language, CSS (Cascading Style

Sheets), is used to specify the presentation of the

page elements, such as typefaces and styles, layout,

colors, etc.

Elements of HTML consist of tags enclosed in

angle brackets, inserted into the content, like this

example in HTML5:

<!DOCTYPE html>

<html>

<head>

<title>Definition of HTML

</title>

</head>

<body>

<p>HTML is the markup

language of the World Wide

Web.</p>

</body>

</html>

Tags plus CSS indicate to the browser how the

content should be rendered.

HTML 4.01 is the most recent fully standardized

W3C version of HTML. HTML5, with a number of

attractive new features, is currently usable in “working

draft” state. It is under parallel and coordinated devel-

opment by both the W3C (http://w3.org) and the

WHATWG (http://www.whatwg.org).
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Synonyms

Hypertext transfer protocol
Definition

HTTP is a generic stateless Internet application protocol

for distributed and collaborative▶ hypertext- and hyper-

media-based information systems. It provides the foun-

dation for data communications on theWorldWideWeb.
It is currently the dominant Internet protocol.

TheHTTPprotocol has a circumscribed set of allowed

actions to access its target, which is a distributed resource

specified by the ▶URL or Uniform Resource Locator

string. Resources are resolved, interpreted, and acted

upon according to client request, by computers running

Web server software (e.g., Apache httpd).

The actions supported by HTTP are constrained

to a relatively limited set. Programmatic Web services

that conform to this set of allowed actions

(GET, HEAD, PUT, POST, DELETE, TRACE,

OPTIONS, and CONNECT) are called “resource-ori-

ented” services and are said to conform to the REST

(representational state transfer) architectural pattern –

they are said to be “RESTful.”

Secure communications on the Web for such

purposes as financial transactions are implemented

using the▶HTTPS protocol, which encrypts the Inter-

net transport layer data transmitted by HTTP.

HTTP standards development has been a global

collaborative engineering effort, coordinated by the

World Wide Web Consortium (http://w3.org) and the

Internet Engineering Task Force (http://www.ietf.org).
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HTTP secure; Hypertext transfer protocol secure
Definition

▶HTTPS is an encrypted version of the ▶HTTP

application-layer Internet protocol for enacting secure

transactions on the ▶World Wide Web, such as in

financial transactions and for confidential corporate

and other data. HTTPS syntax is identical in all

respects to the standard HTTP protocol except that

resource requests, as well as the returned data,

are encrypted by the SSL (Secure Sockets Layer)

or TLS (Transport Layer Security) protocols using
symmetric encryption technologies such as AES

or RC4.

Before establishing a secure link, communicating

nodes must authenticate themselves – they must pre-

sent credentials that reliably establish their identities.

In HTTPS, Web browsers and services determine

whether or not to trust servers, by authenticating an

X.509 public-key cryptographic identity certificate

provided by the server. X.509 certificates are signed

by a trusted Certification Authority (e.g., Verisign,

Microsoft), or self-signed by the server’s own

organization.

The Electronic Frontier Foundation (https://www.

eff.org/) recommends encryption of Web traffic when-

ever possible. “HTTPS Everywhere” (https://www.eff.

org/https-everywhere) browser extensions are now

available to support this recommendation.
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Date hub; Party hub
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Definition

Complex networks (includingmost biological networks)

are known as scale-free networks and are characterized

by a power-law degree distribution. This means that

most nodes of the network have a lower degree, whereas

a small percentage of nodes possess a large number of

links in the network. These high-degree nodes are called

hubs. In protein-protein interaction (PPI) networks hubs

represent proteins with a large number of interactions,

called hub proteins. In ▶ gene regulatory networks

sometimes a single ▶ transcription factor can regulate

many target genes; such a▶ transcription factor is called

a regulatory hub. Functional analysis showed that hubs

were enriched in kinase and adaptor domains acting

primarily in signal transduction (▶Signal Transduction

Pathway) and ▶ transcriptional regulation, whereas

non-hubs had more DNA-binding domains and

were involved in catalytic activity. Moreover, hub

proteins were more likely to be essential than non-hub

proteins.

Based on a computational analysis of yeast microar-

ray data, Han et al. (2004) proposed two types of hubs,

i.e., party hubs and date hubs. Date hubs display low

▶ co-expression with their partners, while party hubs

have high co-expression. These two kinds of hubs were

further discussed in Batada et al. (2006) and Agarwal

et al. (2010).
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Human Clock

▶Circadian Rhythm
Human Leukocyte Antigens (HLA)

▶Major Histocompatibility Complex (MHC),

Applications
Human Proteome Organisation

Sandra Orchard

EMBL Outstation, European Bioinformatics Institute,

Hinxton, Cambridge, UK
Synonyms

HUPO
Definition

The Human Proteome Organisation (www.hupo.org) is

an international scientific organization representing

and promoting proteomics through international

cooperation and collaborations by fostering the

development of new technologies, techniques, and

training. The organization organizes an annual con-

gress and a number of initiatives, largely aimed at

identifying the proteome content of a number of

healthy and diseased tissues and cell types.
Human T-Lymphotropic Virus

▶HTLV, Cellular Transcription
Human T-Lymphotropic Virus
Type-I-associated Myelopathy/Tropical
Spastic Paraparesis

▶Human T-Lymphotropic Virus Type-I-associated

Myelopathytropical Spastic Paraparesis
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Human T-Lymphotropic Virus
Type-I-associated Myelopathytropical
Spastic Paraparesis

Christian Sch€onbach

Department of Bioscience and Bioinformatics, Kyushu

Institute of Technology, Iizuka, Fukuoka, Japan
Synonyms

Human T-lymphotropic virus type-I-associated

myelopathy/tropical spastic paraparesis; HAM/TSP
Definition

HAM/TSP is a slow-onset, chronic-progressive central

nervous system disease that develops in less than

5% of HLTV-1 infected individuals and leads to

corticospinal tract degeneration. In endemic areas,

the onset of HAM/TSP is biased toward females at

a 3:1 ratio and occurs between 40 and 50 years of age

(Culcea and Sandbrink 2009). The proviral load

and genetic background influence the disease onset

and progression. Yet, the molecular mechanisms

of onset and progression are not fully understood.

Proinflammatory mediators found in lesions are asso-

ciated with the infiltration of cytotoxic CD8+ T-cell in

the central nervous system. In addition, high proviral

load and the presence of extracellular Tax1 have been

implicated in the initiation of TNFA-mediated destruc-

tion of neuronal cells (Irish et al. 2009). The inflam-

mation of the spinal cord causes spastic paraparesis

of both legs, impaired position sense of the

feet, lower lumbar pain, hyper-reflexia of upper

extremities, and urinary incontinence (Culcea and

Sandbrink 2009). The inflammation can trigger

autoimmune conditions such as uveitis and myosi-

tis. Infections with HTLV-2 are also associated

with HAM/TSP, but symptoms were reported to

be milder and the progression slower. Ataxic

HAM is only associated with HTLV-2 (Roucoux

and Murphy 2004). Treatment of HAM/TSP with

INFA2 and IFNB1 ameliorates symptoms and slows

the progression of the disease during the course of

the therapy. Effective HAM/TSP therapies or

HTLV vaccines are not available.
Cross-References

▶HTLV, Cellular Transcription
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▶Human Proteome Organisation
Hybrid Simulation Strategies

Ruiqi Wang

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

Hybrid simulation strategies aim to combine different

approaches into one calculation scheme. The essential

idea is to partition reactions or species into two or more

groups: e.g., a group of low-copy number species and

a group of high-copy number species, and then treat

them in different ways. For reactions, a system can be

decomposed into two subsystems containing fast and

slow reactions, respectively. Fast reactions often

involve high-copy number species, e.g., in metabo-

lism. Slow reactions or reactions involving low-copy

number species can frequently be found in signal trans-

duction or gene expression systems. The two subsys-

tems are then simulated by using different methods,
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e.g., exact methods and approximate algorithms,

respectively.

In the slow/discrete subset of reactions, the fast

subset evolves due to the action of the fast reactions,

which means that, during that time, the behavior of fast

subset of reactions can be approximated by using ordi-

nary differential equations (ODEs), stochastic differ-

ential equations (SDEs), or approximate stochastic

simulation methods, independent of the slow subset.

Therefore, hybrid simulation strategies can be

roughly divided into discrete/ODE method, maximal

timestep algorithm, and discrete/Langevin method,

depending on how the high-copy number reactions

are approximated.

The discrete/ODE method begins with

a partitioning of species and combining discrete event

simulations with ODE models. This method approxi-

mates the high-copy number species with continuous

deterministic techniques. The basic idea is that an ODE

integration step will take place on the assumption

that no discrete reaction takes place. If discrete reac-

tion has occurred, the time of the event should be

identified, the discrete updating should take place,

and the continuous variables should be updated over

this shorter timestep.

The hybrid methods also use a combination of an

exact updating procedure for the low concentration spe-

cies with various approximate simulation methods, e.g.,

t-leap method, for the other species. There are various

exact/approximate simulation methods, e.g., maximal

timestep method proposed by Puchalka and Kierzek,

which combines the next reaction method with t-leap
method.

Other methods also use a combination of stochastic

simulation and numerical integration of SDEs. In these

hybrid simulation methods, slow reactions are simu-

lated based on discrete updating, while fast reactions

are updated based on Langevin approach. An auto-

matic partitioning and dynamic repartitioning of fast

and slow reactions has been proposed by Salis and

Kaznessis in 2005.

Actually, many different hybrid simulation

strategies have been proposed. They integrate

different partitioning policy and various exact/

approximate simulation techniques. Hybrid simula-

tion strategies are important because of the exis-

tence of very complex and heterogeneous models

that integrate signaling, metabolism, and gene

expression.
Cross-References

▶Langevin Equation

▶Law of Mass Action

▶Master Equation

▶ Stochastic Simulation Algorithms
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Hypergeometric Distribution

Yong Wang

Academy of Mathematics and Systems Sciences,

Chinese Academy of Sciences, Beijing, China
Synonyms

Binomial distribution without replacement
Definition

In probability theory and statistics, the hypergeometric

distribution is a discrete probability distribution

that describes the number of successes in a sequence

of a number of draws from a finite population without

replacement. So in essence the hypergeometric

distribution is the binomial distribution without

replacement.
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Suppose we have the following hypergeometric

experiment:

• N: The number of items in the population

• N2: The number of items in the population that are

classified as successes

• N1: The number of items in the sample

Then random variable X, the number of items in the

sample that are classified as successes, follows

a hypergeometric distribution:

PðX ¼ iÞ ¼
N1

i

� �
N � N1

N2 � i

� �

N
N2

� �

Here
N
N2

� �
is the number of combinations of

N things, taken N2 at a time.
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Hyperplasia

Barbara J. Davis

Section of Pathology, Tufts Cummings School

of Veterinary Medicine Biomedical Sciences,

North Grafton, MA, USA
Definition

Hyperplasia is an excessive, orderly growth in which

cells have a “normal increase in number,” maintain

uniformity and polarity, and stop growing after

cessation of the stimulus that evoked the growth.
Cross-References
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Hypertext and Hypermedia

Tim Clark

Department of Neurology, Massachusetts General

Hospital and Harvard Medical School, Boston,

MA, USA
Definition

Hypertext is a nonlinear system of digital text

organization, conceptually similar to footnotes, in

which text contains pointers, called “hyperlinks,” to

other text segments, which may be accessed by acting

(e.g., mouse clicking) on the pointers. These other text

segments may be within the same document, or not.

Hypermedia is the multi-media generalization of

hypertext. It forms the conceptual basis for naviga-

tional user experience on the ▶World Wide Web.

TedNelson coined the terms “hypertext” and “hyper-

media” and was an early advocate, developing the Xan-

adu system concept. Douglas Engelbart was one of the

first to actually explore and demonstrate hypertext and

hypermedia computer systems, resulting in his famous

online multimedia “NLS” system demonstration of

December 9, 1968, at the Stanford Research Institute.

(Engelbart received the 1990 ACM Software Systems

Award along with William K. English for NLS.) These

and other researchers were initially inspired by the vision

of Vannevar Bush in his July 1945 Atlantic Monthly

article, “As We May Think” (Nelson 1965; Engelbart

and English 1968; Conklin 1987).

Hypertext and Hypermedia are the subjects of sig-

nificant ongoing research as topics in their own right,

on which the Association for Computing Machinery

(ACM) sponsors annual conferences (http://ht2010.

org/, http://www.ht2011.org/, etc.). Many develop-

ments in distributed hypermedia that were origi-

nally omitted from the simplified initial design of

the web, such as stand-off link services, are now

being addressed and brought back into currency

on the modern Web, through ▶ semantic web

technologies.
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▶HTML
Hypertext Transfer Protocol

▶HTTP
Hypertext Transfer Protocol Secure

▶HTTPS
Hypothesis Space

Eyke H€ullermeier, Thomas Fober and

Marco Mernberger

Philipps-Universit€at Marburg, Marburg, Germany
Definition

In machine learning, the goal of a supervised learning

algorithm is to perform induction, i.e., to generalize

a (finite) set of observations (the training data) into

a general model of the domain. In this regard, the

hypothesis space is defined as the set of candidate

models considered by the algorithm.

More specifically, consider the problem of learning

a mapping (model) f 2 F ¼ YX from an input space X

to an output space Y, given a set of training

data D ¼ x1; y1ð Þ; :::; xn; ynð Þf g 
 X 	 Y. A learning
algorithm A takes D as an input and produces

a function (model, hypothesis) f 2 H 
 F as an output,

where H is the hypothesis space. This subset is

determined by the formalism used to represent models

(e.g., as logical formulas, linear functions, or

non-linear functions implemented as artificial neural

networks or ▶ decision trees). Thus, the choice of the

hypothesis space produces a representation bias,

which is part of the algorithm’s ▶ inductive bias.
Cross-References

▶Classification

▶Decision Tree

▶ Inductive Bias
Hypothesis Testing

Roger Higdon

Seattle Children’s Research Institute,

Seattle, WA, USA
Synonyms

Frequentist hypothesis testing; Parametric hypothesis

testing
Definition

Conventional statistical hypothesis testing validates

whether a hypothesis about a quantity of interest

(a parameter) is true or false based on the likelihood

that the observed data could have been generated if the

hypothesis were true.
Characteristics

Statistical hypothesis testing has a long history

(Fisher 1925 and Neyman and Pearson 1933). Hypoth-

esis testing begins with a question about a parameter or

parameters of interest that describe aspects of a popula-

tion of interest. The parameters define the probability

distribution for generating data from the population. In

order to test a hypothesis about a parameter, a sample of

http://dx.doi.org/10.1007/978-1-4419-9863-7_1569
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Hypothesis Testing, Table 1 Outcomes of a statistical

hypothesis test

Fail to reject H0 Reject H0

H0 true Correct Type I error

H0 false Type II error Correct

H 932 Hypothesis Testing
data is taken from the population and a test statistic is

calculated from the data (Lehmann and Romano 2005).

Below are a number of definitions associated with

hypothesis testing.

• Simple hypothesis – A hypothesis based on a single

parameter value (i.e., y ¼ 0)

• Composite hypothesis – A hypothesis based on

a range of parameter values (i.e., y > 0)

• Null hypothesis (H0) – A simple hypothesis associ-

ated with the theory one would like to disprove

(status quo)

• Alternate hypothesis (HA) – A hypothesis (often

composite) associated with a theory one would

like to prove

• Test statistic – A function of the data with which

decisions about the hypothesis are made

• Decision rule – Values of the test statistic that

lead to rejecting or failing to reject the null

hypothesis

• Acceptance region – The set of values for the test

statistic which we fail to reject the null hypothesis

• Rejection region – The set of values for the test

statistic which we reject the null hypothesis

• Critical value(s) – The value(s) on the border of the

acceptance and rejection regions

In a statistical hypothesis test, either H0 or HA will

be true, and either H0 will be rejected or we will fail to

reject it. This leads to the four possible outcomes of

a statistical hypothesis test shown in Table 1.

These outcomes lead to two types of errors and the

probability of those errors informs the decision rule

defined by a statistical hypothesis test. Below are the

definitions of these errors and probabilities.

• Type I error – Wrongly rejecting H0

• Type II error – Wrongly not rejecting H0

• Level of significance/size of the test (a) – The

probability of a type I error

• Power – one minus the probability of a type II error

for a given parameter value in Ha (1-b)
• p-value – smallest alpha value for which H0 is

rejected
Given the above definitions, the basic steps of

a statistical hypothesis test are as follows:

1. The first step is to describe the null and alternative

hypotheses that relate to the research objective.

This is important so that the results of the hypothe-

sis test are relevant to the research objective.

Specifically, the null hypothesis needs to be defined

in such a way that its rejection allows for the con-

clusion that research objective has been achieved.

For example, rejecting the null hypothesis that the

difference in means between a treatment and con-

trol is 0 allows for the conclusion that the treatment

had an effect.

2. The second step is to consider the statistical

assumptions being made about the sample in

doing the test. Is the data continuous or discrete?

Are the data independent? Are they paired? Col-

lected over time? Is the sample random? This will

help determine which methods to use and whether

results are valid or generalizable.

3. Determine the appropriate test statistic given the

assumptions.

4. Derive the distribution of the test statistic under the

null hypothesis based on the assumptions. In most

cases, there exists a test statistic with a known

distribution, such as the two-sample t-test, ANOVA

F-tests, chi-squared tests for independence, t-tests for

regression parameters, and so on.

5. The distribution of the test statistic and the level of

significance create acceptance and rejection regions.

6. Compute the value of the test statistic.

7. Decide to either fail to reject the null hypothesis or

reject it in favor of the alternative hypothesis.

One problem with this approach is that it leads to an

absolute reject or does not reject outcome and fails to

separate uncertain conclusions from definitive ones. It

also leads to arbitrary thresholds of significance such

as 0.05. Calculating a p-value improves upon this by

providing a quantitative scale rather than absolute

decision. P-values near 0 provide definitive statistical

proof against H0, while values near alpha imply evi-

dence against H0 but are uncertain. Finally p-values

near 1 would give no reason to believe the null hypoth-

esis was not true. Also calculating p-values is simple

since they are based on the distribution of test statistic

under the null hypothesis. All this still assumes that

people properly interpret p-values rather than use them

as another way to threshold and that they are calculated

in a valid manner (Jones and Tukey 2000).
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Another issue that is not addressed by this approach is

practical significance versus statistical significance. If the

power of a test is very high, then often statistical signif-

icance is achieved without any practical significance. If

the power of the test is low, then statistical significance

may be difficult to achieve no matter how large the

observed test statistic is. Power for a specific test versus

a specific simple alternative hypothesis is generally con-

trolled by the sample size; so it is important to choose

a large enough sample size to achieve statistical signifi-

cance for practically significant alternative hypotheses,

but not so large that it yields statistical significance for

uninteresting results thereby wasting resources.

Other issues to consider in hypothesis testing, par-

ticularly with respect to systems biology, are the

impact of multiple hypothesis testing and the validity

of results when assumptions are violated. If violating

assumptions is a concern, then use of nonparametric

hypothesis testing should be considered.

Cross-References

▶Hypothesis Testing, Parametric vs Nonparametric

▶Multiple Hypothesis Testing
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Hypothesis Testing, Bayesian vs
Frequentist

Roger Higdon

Seattle Children’s Research Institute,

Seattle, WA, USA
Definition

Bayesian hypothesis testing, similar to Bayesian

inference and in contrast to frequentist hypothesis
testing, is about comparing the prior knowledge

about research hypothesis to posterior knowledge

about the hypothesis rather than accepting or

rejecting a very specific hypothesis based on the

experimental data.
Characteristics

Just as with Bayesian inference, Bayesian hypothesis

testing is based on posterior distribution (Box and Tiao

1973):
pðyjXÞ ¼ pðXjyÞpðyÞ

A p-value-like quantity can be generated for

a one-side hypothesis like y < 0 by integrating the

posterior:

p ¼
ð0

�1
pðyjXÞ

However, for a two-sided hypothesis testing

y ¼ 0 it is not feasible since the integral for

a continuous posterior would be 0. An ad hoc

solution would be to integrate in a region around

0 that would represent a region of no practical

significant difference:
p ¼
ða

�a

pðyjXÞ

An alternative to direct integration of the

posterior is the use of Bayes factors (Kass and

Raftery 1995). The Bayes factor is the ratio of

posterior odds of the null hypothesis (y ¼ y0)
versus an alternative (y ¼ y1) to the prior odds,

where the posterior odds is the ratio of posterior

distributions for the two hypotheses and the prior

odds is likewise defined.

The Bayes factor is the analog to the frequentist

likelihood ratio test. In fact, if the prior odds is equal to

1, then they are equivalent. Large Bayes factors would

favor the null hypothesis while small Bayes factors

would favor the alternative. Bayes factors do not explic-

itly make probability statements and so tend to rely on

rules of thumb for significance. Also, they can be diffi-

cult to calculate.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1182
http://dx.doi.org/10.1007/978-1-4419-9863-7_1211
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Table 1 Statistical tests and their nonparametric analogs

Parametric test Nonparametric test

One sample T-test Sign-rank test

H 934 Hypothesis Testing, Parametric vs Nonparametric
More formal comparisons of models can be carried

out using the Bayesian Decision Theory, where cost

functions are added to the Bayesian model (Berger

1985).

Two-sample T-test Rank-sum or Mann-Whitney

test

One-way ANOVA Kruskal-Wallis test

One-way randomize complete

block ANOVA

Friedman test

Pearson correlation Spearman rank correlation or

Kendall’s tau
Cross-References

▶Bayesian Inference

▶Hypothesis Testing
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Hypothesis Testing, Parametric vs
Nonparametric

Roger Higdon

Seattle Children’s Research Institute,

Seattle, WA, USA
Synonyms

Distribution-free tests; Nonparametric tests; Rank tests
Definition

Nonparametric hypothesis testing, in contrast to

parametric hypothesis testing, does not rely on

assumptions that data come from a particular parame-

terized distribution such as a normal distribution.
Characteristics

Nonparametric or distribution-free tests are widely

used for statistical hypothesis testing, particularly

when there is doubt as to whether data can be easily
modeled by standard probability distributions

(Gibbons and Chakraborti 2003 and Wasserman

2007). Most commonly this occurs when there is

doubt about the data having a normal distribution.

The most commonly used nonparametric tests are

based upon substituting ranks for the original data.

Table 1 gives nonparametric analogs to many com-

monly used statistical hypothesis tests.

There are many other tests such as the Kolmogorov-

Smirnov test for comparing two distributions or the

Wald-Wolfowitz runs test for randomness.

An alternative to rank tests is to apply randomiza-

tion (Edgington 1995), permutation, or other

resampling approaches such as the bootstrap (Efron

1982) to conventional test statistics. These approaches

utilize the random assignment of the data to treatment

groups or explanatory variables in order to estimate

p-values. Randomization tests are based on calculating

all possible randomizations of the data without

replacement. A permutation test approximates a

randomization test by taking random permutations of

the data with replacement. Bootstrapping resamples

the original data with replacement. Randomization

tests are commonly used in systems biology due

to the doubt about parametric assumptions in

biological data. Some common examples are the

significance analysis of microarrays tests in relative

expression analysis (Tusher 2001) and gene set

enrichment tests.

Nonparametric tests offer a number of advan-

tages including protection from the violation of

distributional assumptions, increased power when

assumptions are violated, and the ability to

preserve complex correlation structures. Disadvan-

tages include decreased power when distributional

http://dx.doi.org/10.1007/978-1-4419-9863-7_1179
http://dx.doi.org/10.1007/978-1-4419-9863-7_1181
http://dx.doi.org/10.1007/978-1-4419-9863-7_100386
http://dx.doi.org/10.1007/978-1-4419-9863-7_101046
http://dx.doi.org/10.1007/978-1-4419-9863-7_101254
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assumptions can be met, requirements for large

sample sizes, and difficulty in applying tests to

complex statistical models.
Cross-References

▶Hypothesis Testing

▶Relative Expression Analysis
H
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Hypoxia

Marsha A. Moses

Department of Surgery/Harvard Medical School,

Vascular Biology Program/Children’s Hospital

Boston, Boston, MA, USA
Definition

Hypoxia refers to the reduced oxygen tension caused

by low oxygen availability or insufficient oxygen

delivery within an organism. Under hypoxic condi-

tions, the organism must exert a series of adaptive

responses to ensure cellular survival, such as changes

in metabolism, regulation of pH, increased red blood

cell production and oxygen transport, and initiation of

angiogenesis (Cassavaugh and Lounsbury 2011).

These processes are mediated by dimeric protein

complexes, the hypoxia-inducible factors, which

regulate the transcription of many genes that are crit-

ical for these cellular responses (Semenza 2009). Hyp-

oxia-induced cellular signaling is essential during
embryonic development for the formation of multiple

tissues including the central nervous system and the

vasculature. Hypoxia also occurs in diseases such

as cardiac ischemia and cancer; therefore, targeting

signaling pathways initiated by hypoxia represents

a promising therapeutic strategy for these diseases

(Cassavaugh and Lounsbury 2011).
Cross-References

▶Regulation of Tumor Angiogenesis
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Hypoxia-inducible Factor-1

Marsha A. Moses

Department of Surgery/Harvard Medical School,

Vascular Biology Program/Children’s Hospital

Boston, Boston, MA, USA
Definition

Hypoxia-inducible factor-1 (HIF-1) is a dimeric protein

complex comprises of two subunits, HIF-1a and

HIF-1b, both of which are members of the bHLH-PAS

family of transcription factors. It regulates the transcrip-

tion of many genes whose functions are critical for the

survival of cells under hypoxic conditions. Under

normoxic conditions, HIF-1a is hydroxylated by prolyl

hydroxylase domain–containing (PHD) proteins loaded

with oxygen as cofactors. The hydroxylated HIF-1a
then interacts with the von Hippel-Lindau tumor

suppressor protein (VHL), a member of the E3

ubiquitination complex, and is subjected to protein deg-

radation by the 26s proteasome. Under hypoxic condi-

tions, the activity of PHD is decreased due to low

availability of oxygen in the cells. Therefore, HIF-1a
is relieved from protein degradation, translocates

to the nucleus, and forms a dimer with HIF-1b.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1181
http://dx.doi.org/10.1007/978-1-4419-9863-7_1207
http://dx.doi.org/10.1007/978-1-4419-9863-7_1390
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There, the HIF-1 complex binds to the hypoxia response

element (HRE) within the promoters of its target genes

and activates their gene transcription (Semenza 2007).

Due to its ability to upregulate the transcription of

proangiogenic factors such as vascular endothelial

growth factor (VEGF), HIF-1 is one of the key

mediators of hypoxia-induced angiogenesis (Levy

et al. 1997).
Cross-References

▶Regulation of Tumor Angiogenesis
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Hysteresis

▶Cell Cycle Dynamics, Irreversibility
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