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Definition

AB cell epitope is the region of the antigen recognized

by soluble or membrane-bound antibodies. B cell

epitopes are classified as either linear or discontinuous

epitopes.
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B Cell Epitope Prediction

Yasser EL-Manzalawy and Vasant Honavar

Center for Computational Intelligence, Learning, and

Discovery, Computer Science, Iowa State University,

Ames, IA, USA
Synonyms

Antigen–antibody binding site prediction; Antigen–

antibody interface residue prediction; Computational

methods for mapping B cell epitopes
Definition

B cell epitopes, also known as antigenic determinants,

are restricted parts of molecules that are recognized by

immunoglobulin molecules (antibodies) either in their

free form or as membrane-bound B cell receptors.

B cell epitopes typically belong to one of two classes:

linear (continuous or sequential) epitopes or confor-

mational (discontinuous) epitopes. Linear epitopes are

short peptides that correspond to a contiguous amino

acid sequence fragment of a protein. Linear epitopes

are usually identified using assays such as PEPSCAN.

Consequently, current experimental methods offer
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B Cell Epitope Prediction, Fig. 1 Residue-based (left)
and peptide-based (right) linear B cell epitope predictions. In

the case of residue-based predictions, each predicted epitope

residue is denoted with the letter “E.” In the case of peptide-

based predictions, the predicted epitopes are encoded with

a string of “E”s
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little direct evidence indicating that each residue in the

epitope does in fact make contact with one or more

residues in the paratope (the part in the antibody that

binds to the antigen). The second class of B cell

epitopes is called conformational (discontinuous)

B cell epitopes that represent the vast majority of B cell

epitopes found in proteins. These epitopes are com-

posed of amino acids that, although not contiguous in

the primary sequence, are brought into close proximity

within the folded three-dimensional protein structure.
Characteristics

Predicting B Cell Epitopes

Identification of B cell epitopes is often a necessary

first step in developing safe and effective vaccines.

Characterization of sequence and structural features

of B cell epitopes is important from the standpoint of

understanding of pathogenicity and the adaptive

immune response. Several experimental techniques

are currently available for mapping B cell epitopes.

However, with rapid increase in the number of fully or

partially sequenced pathogen genomes and prohibitive

cost and effort required for experimental identification

of epitopes, there is an urgent need for cost-effective

computational methods for reliable genome-wide

identification of B cell epitopes.

B cell epitope predictors can be categorized based

on the type of the B cell epitope predicted into linear

and conformational B cell epitope predictors. Linear B

cell epitope predictors accept as input a suitable repre-

sentation of the amino acid sequence of a target antigen
and output the predicted epitope(s). Some predictors,

called peptide-based predictors, require the user to

specify the length of the epitope as an input parameter.

Peptide-based predictors are trained to classify amino

acid fragments into epitopes and other non-epitopes.

Residue-based predictors, on the other hand, are trained

to score each residue in the query sequence; the higher

the score, the more likely it is that the corresponding

residue belongs to an epitope. Figure 1 illustrates pep-

tide-based and residue-based B cell epitope prediction.

In contrast to peptide-based predictors that can only

identify epitopes of specified length or antigenic

regions, residue-based predictors can be used to infer

antigenic regions of unknown length or even conforma-

tional B cell epitopes. Conformational B cell epitope

predictors take as input an antigen structure (actual or

predicted PDB coordinate file) or antigen sequence, and

extract some sequence- and/or structure-based feature

representation of each residue in the input query anti-

gen. The output of the predictor is a per residue scores

assigned to each residue in the query antigen.

Predicting Linear B Cell Epitopes

Although a vast majority of B cell epitopes are

believed to be conformational epitopes (Walter

1986), most of the existing experimental B cell-epitope

mapping techniques and, perhaps consequently, most

of the existing computational methods for B cell epi-

tope prediction deal with linear B cell epitopes. Several

computational-based methods for predicting linear

B cell epitopes have been proposed in literature

(EL-Manzalawy and Honavar 2010). B cell epitopes

predicted using such methods can be easily
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synthesized and tested for their antibody-binding prop-

erties. Existing computational methods for predicting

linear B cell epitopes fall into two major categories:

(1) propensity scale–based methods; (2) machine

learning–based methods.

Propensity Scale–Based Methods

Propensity scale–based methods (e.g., Parker and Guo

1986; Pellequer et al. 1993) rely on the observed cor-

relations between specific physicochemical properties

(e.g., hydorophilicity, flexibility, or solvent accessibil-

ity) of amino acids and the antigenic determinants in

protein sequences to identify the location(s) of the

linear B cell epitope(s) in the query protein sequence.

The main idea is to assign a score to each amino acid in

a query protein sequence. These propensity scores

measure the tendency of an amino acid to be part of

a B cell epitope (as compared to the background). The

score for each target amino acid residue in a query

sequence is computed as the average of the propensity

values of the amino acids in a sliding window centered

at the target residue. The propensity scores are then

used as a basis of predicting whether a given amino

acid sequence residue is likely to be part of a linear

B cell epitope. Figure 2 shows the analysis of receptor-

binding domain (RBD) of Severe Acute Respiratory

Syndrome coronavirus (SARS-CoV) spike protein

using Parker’s hydrophilic scale.

Recently, Blythe and Flower (Blythe and Flower

2005) evaluated 484 amino acid propensity scales on

a data set of 50 proteins and concluded that the best

achievable performance is only marginally better than

random guessing. This result underscores the need for

more sophisticated methods (e.g., those that use state-

of-the-art machine learning algorithms together with

appropriate data representations) for constructing

improved linear B cell epitope predictors.

Machine Learning–based Methods

Machine learning currently offers one of the most cost-

effective and hence widely used approaches to devel-

oping predictive models from data in bioinformatics

applications (Baldi and Brunak 2001). Several

machine learning–based linear B cell epitope predic-

tors have been developed using Support Vector

Machine, Artificial Neural Network, Decision Tree,

k-Nearest Neighbor, and Ensemble classifiers. Such

classifiers can be trained using examples that are

amino acid peptide sequences with the corresponding
binary labels (epitopes vs. non-epitopes) to obtain

peptide-based B cell epitope predictors. Alternatively,

they can be trained using examples that are fixed length

amino acid sequence windows whose binary labels

indicate whether or not the residue at the center of

each sequence window is an epitope residue to obtain

residue-based B cell epitope predictors. In either case,

a variety of amino acid residue–based and amino acid

sequence–based features for encoding the input to the

classifiers (EL-Manzalawy and Honavar 2010) have

been utilized. Despite recent advances in machine

learning–based linear B cell epitope predictors, there

is much room for improvement in the performance of

the state-of-the-art in computational prediction of lin-

ear B cell epitopes (Greenbaum et al. 2007). This is due

at least in part to the limited amount of experimentally

characterized epitope data (and in particular, lack of

reliable negative, i.e., non-epitope data). Conse-

quently, the development of more reliable linear

B cell epitope predictors remains a major challenge

in computational immunology.

Predicting Conformational B Cell Epitopes

Several experimental techniques can be used for iden-

tifying conformational B cell epitopes. The most accu-

rate method relies on the determination of the structure

of antigen–antibody complexes using X-ray crystal-

lography (Fleury et al. 2000). Progress of computa-

tional methods for conformational B cell epitope

prediction has been hindered at least in part by the

limited number of solved antigen–antibody com-

plexes. As noted earlier, propensity scale–based

methods can be used to predict both linear and confor-

mational B cell epitopes using only amino acid

sequence information of antigens. Two recently devel-

oped methods for predicting conformational B cell

epitopes, DiscoTope and PEPITO, improve the accu-

racy of propensity scale–based methods by incorporat-

ing information derived from the structure of the

antigens, e.g., solvent accessibility of residues. The

task of predicting conformational B cell epitopes can

be reduced to identifying protein–protein interface res-

idues on the surface of a target protein (antigen). This

opens up the possibility of adapting the state-of-the-art

sequence and/or structure-based protein–protein inter-

face residue prediction methods for developing con-

formational B cell epitope predictors. A recent study

(Ponomarenko and Bourne 2007) compared the per-

formance of six publicly available protein–protein



B Cell Epitope Prediction, Fig. 2 Analysis of RBD domain of

SARS-CoV Spike protein using Parker’s hydrophilic scale.

A sliding window of seven amino acids is used to assign

a propensity score to the residue in the center of the window.

The score is the sum of the epitope propensity of each amino acid

in the window. The higher the score, the more likely it is that the

corresponding residue is an epitope residue. Positive peaks along

the sequence in the plot of the residue scores indicate the pres-

ence of an epitope in that region of the sequence
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interface residue prediction tools on the conforma-

tional B cell epitope prediction task. The reported

performance of such methods (with an average area

under curve (AUC) no greater than 0.7) underscores

the need for developing protein–protein interface pre-

dictors that are customized for the conformational B

cell epitope prediction task.

A recently developed approach for identifying B cell

epitopes uses a combination of both experimental and

computational techniques. In this approach, a phage-

display library of random peptides is scanned against

an antibody of interest to obtain a panel of peptides
(named mimotopes) that bind to the antibody with

high affinity. It is assumed that this panel of mimotopes

mimics the physicochemical properties and spatial

organization of the genuine epitopes. Because the pre-

cise identification of the epitope mimicked by the set of

mimotopes is not straightforward since the epitope is

often discontinuous (conformational) and the epitope

and mimotopes do not necessarily share a high degree

of sequence similarity, several computational methods

have been proposed for localizing the panel of affinity-

selected peptides on the surface of a target antigen (e.g.,

Bublil et al. 2007).
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Synonyms

Antibody-dependant immune response; Antibody-

mediated immunity; B cell-mediated immunity
Definition

B cell-mediated immune response is defined as the

immune response cascade triggered by the binding of

antibodies (produced by the B cells) to the antigens

and subsequent identification by the cell surface recep-

tors of macrophages, neutrophils, or other cells of

the B cell-mediated immunity to destroy the antigens.

It is a type of adaptive immunity in vertebrates

(Alberts et al. 2002).
Cross-References
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Synonyms

B lymphocyte
Definition

B cells are a type of lymphocytes produced in the bone

marrow of mammals, which later migrate to spleen and

lymph nodes. B cells mainly differentiate into memory

B cell and plasma cells. The plasma cells produce

antibodies, thereby eliciting strong humoral immune

response against antigens.
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▶B Cells
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the Sidechain)

▶ Protein Structure Metapredictors
Bacterial Artificial Chromosome (BAC)

Myong-Hee Sung

Laboratory of Receptor Biology and Gene Expression,

National Cancer Institute, National Institutes of

Health, Bethesda, MD, USA
Definition

A bacterial artificial chromosome is a DNA construct

used for cloning a relatively large piece of DNA

(100�700 kb), usually by transforming E. coli.
Bacterial Cell Cycle

▶Cell Cycle, Prokaryotes
Bacterial Transcription

▶Transcription in Bacteria
Bacterial Transcriptional Cascade

▶ Sigma Cascade
Bagged Predictors

▶Bagging
Bagging

Celine Vens

Department of Computer Science, Katholieke

Universiteit Leuven, Leuven, Belgium
Synonyms

Bagged predictors; Bootstrap aggregating
Definition

Bagging is an▶ ensemble learning method. Each mem-

ber of the ensemble is trained on a different▶ bootstrap

replicate of the training set. The outcomes of the indi-

vidual learning models are aggregated to obtain the

outcome of the ensemble. Bagging often uses ▶ deci-

sion tree learners to create the individual models, but it

can be used with any unstable learning method.
Characteristics

Constructing Bagged Predictors

Bagging proceeds by applying the same learning algo-

rithm to different bootstrap samples of the training set

(Breiman 1996a). Given a training set D,M new train-

ing sets Dk are generated, by uniformly sampling

examples from D, with replacement. Usually, the sam-

pling procedure is terminated when each training set

contains an equal amount of training examples as the
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original set D. Thus, each example may appear zero,

one, or multiple times in each of the bootstrap samples.

Algorithm 1 shows the pseudo-code to construct

a bagged ensemble.

Algorithm 1 Pseudo-code for constructing an ensemble using

bagging. D denotes the training set,M is the number of models in

the ensemble.

1: for k (1 to M do

2: Dk ( Bootstrap(D)
3: hk ( Learning Algorithm (Dk)

4: end for

5: return Uhk

The outputs of the base classifiers are aggregated

(hence the name bagging, which is an acronym for

bootstrap aggregating) to form the output of the bag-

ging ensemble. Bagging is most popular in the context

of ▶ supervised learning, in which case the output

corresponds to a prediction of the target attribute. For

▶ classification tasks, the ▶majority vote of the base

classifiers’ predictions is taken; for ▶ regression, the

average is taken.

The number of models, M, is a parameter to be

chosen by the user. Different values have been

reported in the literature. Breiman (1996a) uses

50 models for classification tasks, and 25 models for

regression.

Bagging improves the predictive performance of

the base predictors if the base predictor is unstable.

This means that small changes in the training set can

yield large changes in the predictive model. ▶Deci-

sion trees and artificial neural networks are examples

of unstable predictors. Nearest neighbor methods, for

instance, are not. In terms of the bias-variance trade-

off, bagging is known to reduce variance, while

slightly increasing bias.

Out-Of-Bag Error Estimates

An advantage of using bagging is that out-of-bag error

estimates (Breiman 1996b) can be used to estimate the

generalization error of the ensemble, which removes

the need for a set aside test set. If the ensemble com-

prises decision trees, then the out-of-bag error estima-

tion proceeds as follows: for every example in the

training set, a prediction is made, but only those trees

for which the example was not in the bootstrap sample

are used. The error rate of this resulting out-of-bag

classifier is called the out-of-bag error estimate.
In each resampled training set, about one third of the

instances are left out (actually 1/e in the limit). As

a result, out-of-bag estimates are based on combining

only about one third of the total number of classifiers in

the ensemble. This means that they might overestimate

the error rate, certainly when a small number of trees

are used in the ensemble.

Applications in Systems Biology

Dudoit and Fridlyand (2003) propose a bagging pro-

cedure to improve the clustering of gene expression

data from cancer microarray studies. Schietgat et al.

(2010) use bagging of ▶ decision trees to predict the

functions of genes.

Implementations

Most data mining tools (e.g., Weka [Weka, Machine

Learning Tool]) include an implementation of the

bagging procedure.
Cross-References

▶Bootstrapping

▶Classification

▶Decision Tree

▶Ensemble

▶Learning, Supervised

▶Regression
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▶General Transcription Factors
Basement Membrane

Marsha A. Moses

Department of Surgery/Harvard Medical School,

Vascular Biology Program/Children’s Hospital

Boston, Boston, MA, USA
Definition

The basement membrane is a thin layer of extracellular

components that lies underneath the epithelium of

many organs, as well as the basal surface of the endo-

thelium of the entire vasculature. Its main components

include, but not limited to, laminin, fibronectin,

entactin, proteoglycans, and collagen IV (Yurchenco

and Patton 2009). The function of the basement mem-

brane is to provide structural support for organs and for

the vascular architecture. Degradation of the basement

membrane by matrix metalloproteinases serves as

a key step during tumor angiogenesis by facilitating

endothelial cell sprouting and pericyte detachment

(Jakobsson and Claesson-Welsh 2008).
Cross-References
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▶Neovascularization
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▶Bile Acid and Xenobiotic System
Bayes Rule

Katsuhisa Horimoto

Computational Biology Research Center, National

Institute of Advanced Industrial Science and

Technology, Koto-ku, Tokyo, Japan
Synonyms

Bayesian network model; Conditional independence
Definition

In probability theory, the definition of the conditional

probability of A given B, P(A|B), is
PðAjBÞ ¼ PðA; BÞ
PðBÞ

where P(A) and P(B) are the probabilities of A and B,

respectively. Also, P(B|A) is, by symmetry,
PðBjAÞ ¼ PðA; BÞ
PðAÞ

Then Bayes rule is expressed as follows:
PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ

In the situation where P(A|B) is difficult to compute

directly but we have direct information about P(B|A),

Bayes rule enables us to compute P(A|B) in terms of P

(B|A). If the denominator P(B) in the above equation is

a normalizing constant which can be computed by

marginalization, then
PðBÞ ¼
X
i

PðBjAiÞ ¼
X
i

PðBjAiÞPðAiÞ

Thus, Bayes rule is also written as
PðAjBÞ ¼ PðBjAÞPðAÞP
i PðBjAiÞPðAiÞ
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▶Correlation Relationship
Bayesian

▶Bayesian Decision Analysis
Bayesian Decision Analysis

Malcolm Farrow

School of Mathematics & Statistics, Newcastle

University, Newcastle upon Tyne, UK
Synonyms

Bayesian; Decision theory
Definition

Bayesian decision analysis (Smith 2010) is concerned

with making choices when the outcomes cannot be

predicted with certainty. Probabilities are assigned to

the various possible outcomes and so to values of the

reward or payoff, under each possible choice. We

choose between probability distributions of rewards.

This is done by making the choice which maximizes

the expected utility (▶ utility function), that is, by

choosing the alternative which gives the probability

distribution of rewards with the greatest expectation of

utility, where utility is a function of the reward. For

example, suppose that a person’s utility for small

financial rewards is an increasing linear function of

the monetary value. Suppose that this person is given

the choice between alternatives A and B with reward

distributions as follows:

A: $1 with probability 0.6 or $2 with probability 0.4

B: $0 with probability 0.2 or $2 with probability 0.8

The optimal choice is then B, with expectation $1.6,

while A has expectation $1.4.

See also ▶Utility Function.
Cross-References

▶Bayesian Inference

▶Optimal Experiment Design
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Bayesian Inference

Roger Higdon

Seattle Children’s Research Institute, Seattle,

WA, USA
Synonyms

Bayesian statistics
Definition

The principle of Bayesian inference is about assigning

probability to “the state of knowledge” of parameters

(y) related to an experiment. To do so Bayesian infer-

ence assigns probability distribution to all unknown

quantities in a statistical problem, parameters (y) as
well as the data (X). This is in contrast to frequentist

interference (▶Frequentist Approach) where parame-

ters are fixed unknown quantities that define the fre-

quency of the data.
Characteristics

The term “Bayesian” refers to Thomas Bayes

(1702–1761), who proved a special case of what is

now called Bayes’ theorem (Bayes 1763). However,

it was Pierre-Simon Laplace (1749–1827) who intro-

duced a general version of the theorem and used it to

approach problems in celestial mechanics, medical

statistics, reliability, and jurisprudence.

Bayesian inference provides a standardized

approach for analyzing statistical problems
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(Berger 1985). It is based on the posterior distribution,

p(y|X), the distribution of parameters given in the

data. The posterior can be represented as a constant

times product of the prior distribution and the

likelihood
pðyjXÞ ¼ k pðXjyÞpðyÞ

The likelihood is the joint distribution of the data as

a function of y. The prior distribution represents the

state of knowledge about the experimental parameters

before generating the data.

The ability to incorporate prior information is what

gives Bayesian inference its power and makes it con-

troversial. The prior distribution is a vehicle by which

previous knowledge can be used to guide the statistical

inference. One must be judicious in how the prior is

specified since a very strong prior distribution can

overwhelm the evidence given by the data. One can

use an uninformative or reference prior if there is no

strong initial belief about the parameters. In this case,

Bayesian inference gives very similar results to

maximum likelihood inference.

A simple example illustrating Bayesian inference is

batting averages in the sport of baseball. Suppose,

a player is observed to get six hits (successes) in ten

at bats (trials) over the course of two games, the usual

frequentist estimate of the player’s batting average is

.600. This is a very unrealistic estimate since through-

out the history of the sport, only a few players have

ever batted even .400. If one puts a prior distribution on

the batting average p, where p is distributed beta

(47,127), thus giving p a mean of .270 and standard

deviation of .3 (this corresponds roughly to the typical

distribution of batting averages for baseball players).

So this implies that the posterior distribution is as

follows.

pðyjXÞ / p6ð1� pÞ4p47ð1� pÞ127 ¼ p53ð1� pÞ131

A Bayesian estimate of the player’s batting average

can be found by taking the mean of the posterior

distribution, which in this case is .288, a far different

and likely more realistic estimate of the player’s

batting average than the frequentist estimate.

The use of the beta distribution (the conjugate prior

for the binomial distribution) in the previous example

makes calculations based on the posterior distribution

quite easy. However, most Bayesian inference
problems involve complex integration of the posterior

distribution in order generate means or quantities such

as highest posterior density regions (the Bayesian

analog to the confidence interval). These calculations

typically involve complex numerical approaches

such as Markov Chain Monte Carlo (MCMC)

(Brooks 1998).

A compromise between Bayesian and frequentist

approaches are empirical Bayes methods (Carlin and

Louis 2000). In empirical Bayes methods, the Bayes-

ian distributional framework is used; however, instead

of specifying the parameters in the prior distribution,

the parameters are estimated from the data themselves.

Empirical Bayes methods are quite commonly used in

the analysis of microarrays and other high-throughput

experimental data.

There are Bayesian analogs to most classical statis-

tical approaches such as t-tests, linear regression, or

chi-squared tests. Bayesian methods have become very

popular in systems biology and bioinformatics because

they offer a more standardized way of handling com-

plex and noisy data. No specialized approaches are

needed if models are not fully specified or if data are

missing; this is not the case using traditional

frequentist methods. Examples of Bayesian methods

in systems biology are sequence alignment (Durbin

et al. 1998), motif finding (Zhou and Liu 2004), struc-

ture prediction (Schmidler et al. 2000), microarray

analysis (Gottardo et al. 2003), and Bayesian networks

(Jansen et al. 2003).
Cross-References
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▶ Frequentist Approach
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Bayesian Information Criterion (BIC)

Xing-Ming Zhao

Institute of System Biology, Shanghai University,

Shanghai, China
Synonyms

Schwarz criterion; Schwarz information criterion (SIC)
Definition

In statistics, the Bayesian information criterion (BIC)

(Schwarz 1978) is a model selection criterion. It is a

selection criterion for choosing between different

models with different numbers of parameters.

The BIC is an asymptotic result derived under the

assumption that the data distribution belongs to the

exponential family.

Suppose that:

1. x ¼ the observed data.

2. n ¼ the number of data points in x, or equivalently,

the sample size.

3. k ¼ the number of free parameters to be estimated.

4. pðxjkÞ ¼ the probability of the observed data given

the number of parameters.

5. L ¼ the maximized value of the likelihood function

for the estimated model.

The formula for the BIC is:

� 2 ln pðxjkÞ � BIC ¼ �2 ln Lþ k lnðnÞ
Given any two estimated models, the model with

the lower BIC value is the one to be preferred.
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Lin Wang

School of Computer Science and Information

Engineering, Tianjin University of Science and

Technology, Tianjin, China
Synonyms

Bayesian inference; Bayesian network model
Definition

Bayesian method refers to a probability method to con-

struct a knowledge structure used to support decision

making, such as classification (▶Classification;

▶ Identification of Gene Regulatory Networks,

Machine Learning) and regression (▶Regression

Analysis) tasks, processes, or analyses. Bayesian

methods are valuablewhenever there is a need to extract

information from data that are uncertain or subject to

any kind of error or noise (including measurement error

and experiment error, as well as noise or random vari-

ation intrinsic to the process of interest).
Characteristics

Traditional statistical techniques struggle to cope

with complex nonlinear models that are only

partially observed. Due to the fact that the Bayesian

statistical paradigm is fully probabilistic, there is no

fundamental distinction between any of the unknowns

in a statistical model – parameters, hidden variables,

and observations are all treated together in a consistent

manner – and it is from this that the power of the

methodology is derived. Provided that you can write

down a statistical model relating the quantities you are

interested in to the data you can observe (possibly

via many unobserved intermediary variables), then
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you can carry out Bayesian method to extract

the information in the data to give fully probabilistic

information on all unobserved model variables.

Mathematical Formulation

In the Bayesian inference, we specify a sampling

model PðZjyÞ (density or probability mass function)

for our data given the parameters, and a prior distribu-

tion for the parameters PðyÞ reflecting our knowledge

about y before we see the data. We then compute the

posterior distribution
PðyjZÞ ¼ PðZjyÞPðyÞ
PðZÞ ¼ PðZjyÞPðyÞÐ

PðZjyÞPðyÞdy ; (1)

The example shown in following illustrates

the calculation of posterior probability for a hidden

variable. Suppose there are two light bulb factories.

Factory #1 has 40 qualified products and 10 unquali-

fied products, while factory #2 has 30 qualified prod-

ucts and 20 unqualified products. One person chooses

a factory at random, and then picks a light bulb at

random. It is assumed that the two factories are treated

equally, likewise for the light bulbs. The light bulb

turns out to be an unqualified one. How probable is it

that the light bulb is out of factory #1?

Intuitively, it seems clear that the answer should be

less than a half, since there are less unqualified light

bulbs in factory #1. The precise answer is given by

Bayesian approach. Let H1 correspond to factory #1,

and H2 to factory #2. It is given that the bowls

are identical from the person’s point of view,

thus PðH1Þ ¼ PðH2Þ, and the two must add up to 1,

so both are equal to 0.5. The event E is the observation

of an unqualified light bulb. From the products of the

factories, we know that PðEjH1Þ ¼ 10
50
¼ 0:2 and

PðEjH2Þ ¼ 20
50
¼ 0:4. Bayesian formula then yields
PðH1jEÞ ¼ PðEjH1ÞPðH1Þ
PðEjH1ÞPðH1Þ þ PðEjH2ÞPðH2Þ

¼ 0:2� 0:5

0:2� 0:5þ 0:4� 0:5
;

¼ 0:33

(2)

Before we observed the unqualified light bulb, the

probability we assigned for the person having chosen
factory #1 was the prior probability, PðH1Þ, which
was 0.5. After observing the unqualified light

bulb, we must revise the probability to PðH1jEÞ;
which is 0.33.

Practical Application of Bayesian Methods

The main limiting factor in applying Bayesian

methods is computational. For nontrivial problems,

analytic approaches to Bayesian inference are not

possible, and their numerical solution is often

challenging due to the need to solve high-dimensional

integration problems (which in the discrete case

translate to combinatorial summation problems).

Advances in the speed of commodity computing

hardware in recent decades have been paralleled by

developments in computationally intensive algorithms

for Bayesian inference. Arguably, the most important

advance has been the development of a range of

techniques based on ▶Markov Chain Monte Carlo

(MCMC). The ideas originate from statistical physics,

but are now widely used for Bayesian inference.

Although by no means a panacea, carefully crafted

MCMC algorithms executed on fast computers are

able to solve a phenomenal range of problems that

would have been considered completely intractable

only a few years ago. In the high-dimensional context,

it is often necessary to decompose the full problem

according to the underlying conditional independence

structure of the model, and it is in this context that

graphical model (also known as ▶Bayesian Network

Model) is particularly useful.

Gibbs sampler is just one of MCMC procedures for

sampling from posterior distributions. It uses condi-

tional sampling of each parameter given the rest, and

is useful when the structure of the problem makes

this sampling easy to carry out. Specifically,

a Markov chain is constructed with ▶ equilibrium

probability distribution PðyjZÞ. Each iteration of the

sampler involves cycling through each component of

the K-dimensional vector y in order and sampling

from Pðyijy�i; ZÞ; i ¼ 1; � � � ;K; where y�i denotes

the vector of all components of y except yi. Knowledge
of the ▶Bayesian network for the model can simplify

the computation of these so-called full-conditional

distributions. In many cases, the full-conditionals

will be straightforward to sample directly, but in

others, a Metropolis-Hastings method will be

required. Here, a proposed new value is simulated
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from a largely arbitrary proposal distribution,

qðy�i jyiÞ and accepted with a probability.

Bayesian Algorithms and Tools

There is a large variety of Bayesian algorithms and

tools; open source tools widely used in computational

biology include Matlab (Matlab, Machine Learning

Tool and Matlab, Data Analysis Tool).
Cross-References
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Synonyms

Bayes rule; Causal relationship; Conditional

independency
Definition

A Bayesian network model is a probabilistic graphical

model of a set of variables for considering their condi-

tional independencies in a directed acyclic graph

(DAG).
Characteristics

Probabilistic Graphical Model

LetX¼ (X1, X2,...,Xn) be a set of random variables, and

let xi be a value of Xi, the i-th component of X. Let

y ¼ ðxiÞXi2Y be a value of Y � X. Then, a probabilistic

graphical model forX is a graphical factorization of the

joint generalized probability density function,

f(X ¼ x). The representation of this model is given by

two concepts: a structure and a set of local generalized

probability densities (Pearl 2000).

The structure S for X is a directed acyclic graph

(DAG) that describes a set of conditional indepen-

dencies (Dawid 1979) about the variables on X: PaSi
represents the set of parents (variables from which an

arrow is coming out in S) of the variable Xi in the

probabilistic graphical model whose structure is

given by S. The structure S for X assumes that Xi and

its non-descendants are independent given PaSi ,

i ¼ 2,..., n. Therefore, the factorization can be written

as follows:
f ðxÞ ¼ f ðx1; x2; . . . : xnÞ ¼
Yn
i¼1

f xijpaSi
� �

(1)

A representation of the models of the characteristics

described in Eq. 1 assumes that the local generalized

probability densities depend on a finite set of parame-

ters uS 2 QS, and as a result, Eq. 1 can be rewritten as

follows:
f ðxjySÞ ¼
Yn
i¼1

f xijpaSi ; yi
� �

(2)

where yS ¼ (y1, y2,..., yn).

Bayesian Network Model

Bayesian network model is the probabilistic graphical

model in the particular case of every variable Xi 2 X
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Fig. 1 Structure and resulting

factorization for a Gaussian

network with four variables
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being discrete. If the variable Xi has ri possible values,

x1i ; :::; xrii , the local distribution, g xijpaj;Si ; yi
� �

is an

unrestricted discrete distribution:
g xki pa
j;S
i ; yi

���� �
¼ yxki pajij (3)

where pa1;Si ; :::; paqi;Si denotes the values of PaSi , that is,
the set of parents of the variable Xi in the structure S; qi
is the number of different possible instantiations of the

parent variables of Xi. The local parameters are given

by yi ¼ ðyijkÞk¼1
riÞj¼1

qi
� �

. In other words, the param-

eter yijk represents the conditional probability that var-
iable Xi takes its k-th value, knowing that its parent

variables have taken their j-th combination of values.

We assume that every yijk is greater than zero.

Gaussian Network Model

Here, one example of Bayesian network model is illus-

trated, which assumes the joint density function to be

a multivariate Gaussian density, Gaussian network

model (Whittaker 1990).

An individual x ¼ (x1, x2,..., xn) consists of

a continuous value in ℜn. The local density function

for the i-th variable Xi can be computed as the linear

regression model
f xi pa
S
i ; yi

��� � ¼ N xi; mi þ
X
xj2pai

bjiðxj � mjÞ; ni
 !

(4)
where N xi; mi; s2i
� �

is a univariate normal

distribution with mean mi and variance vi ¼ s2i for

the i-th variable.

Taking this definition into account, an edge missing

from Xj to Xi implies bji ¼ 0 in the former linear-

regression model. The local parameters are given by

ui ¼ (mi, bi, vi), where bi ¼ (b1i, b2i,..., bi�1i)
T is

a column vector. A probabilistic graphical model

built from these local density functions is known as

a Gaussian network (Shachter and Kenley 1989).

The components of the local parameters are

as follows: mi is the unconditional mean of Xi, vi is

the conditional variance of Xi given Pai, and bji
is a linear coefficient that measures the strength of

the relationship between Xj and Xi. Figure 1 is an

example of a Gaussian network in a four-dimensional

space.

For investigating how Gaussian networks and

multivariate normal densities are related, the joint

density function of the continuous n-dimensional

variable X is by definition a multivariate normal dis-

tribution iff
f ðxÞ ¼ Nðx; m; SÞ
¼ ð2pÞ�n

2jSj�1
2e�

1
2
ðx�mÞTS�1ðx�mÞ (5)

where m is the vector of means, S is covariance matrix

n � n, and |S| denotes the determinant of S. The
inverse of this matrix, W ¼ S�1, in which elements

are denoted by wij, is known as the precision matrix.
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This density can also be written as a product of n
conditional densities using the chain rule, namely,

f ðxÞ ¼
Yn
i¼1

f xijx1; x2; . . . :xi�1ð Þ

¼
Yn
i¼1

N xi; mi þ
Xi�1

j¼1

bjiðxj � mjÞ; ni

 !
(6)

where mi is the unconditional mean of Xi, vi is the

variance of Xi given X1, X2,..., Xi�1, and bji is a linear
coefficient reflecting the strength of the relationship

between variables Xj and Xi. This notation allows us to

represent a multivariate normal distribution as

a Gaussian network, where for any bji 6¼ 0 with j < i

this network will contain an edge from Xj to Xi.

Applications of Biological Network

The application of Bayesian network model to the

biological network is first found in Friedman et al.

(2000). One of the important research themes for apply-

ing Bayesian network model to biological network is to

develop algorithm for obtaining accurate network struc-

ture in reasonable computational time, which is called

“structure learning.” Currently, approaches for structure

learning are roughly divided into two categories. One is

“score-based method,” which provides a structure by

maximizing some scoring function with respect to the

posterior probability of the structure, such as Bayesian

Dirichlet equivalent (BDe) and Bayesian information

criterion (BIC), by using several maximization

methods, such as greedy, K2, and Markov chain

Monte Carlo. The other is “constraint-based method,”

which provides a structure by checking conditional

independency among nodes in the graph, such as SGS/

PC-algorithm and CI-algorithm. The score-based

methods try to get an optimal structure in terms of

likelihood (i.e., goodness of fit of the model). On the

other hand, the constraint-based method focuses on

consistency of conditional independencies in the graph

(local Markov property).

According to improvement of measurement tech-

nology like DNA microarray, Bayesian networks have

become quite a popular approach for genetic network

inference. Nevertheless, although a lot of successful

applications of Bayesian networks under various bio-

logical settings can be enumerated, Bayesian networks

still have several limitations. One is that Bayesian

networks accept only acyclic graphs, that is, they
cannot represent feedback loops in the networks. It is

well known that cyclic machinery is a common mech-

anism in various biological functions. Another is

a more serious problem: Arbitral structure learning in

Bayesian network is an NP-hard problem, which

means that we are allowed to use only heuristic strat-

egies for finding approximate solutions. But yet,

Bayesian network is of certain worth in terms of its

handiness and ease of interpretation.
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BCR Receptor Diversity

▶ Immune Repertoire Diversity
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Belief Elicitation

▶ Prior Elicitation
Bench-to-Bedside Research

▶Translational Research
Benign

Barbara J. Davis

Section of Pathology, Tufts Cummings School of

Veterinary Medicine Biomedical Sciences,

North Grafton, MA, USA
Definition

Localized disorganized tissue mass that does not spread

and is amenable to local excision. The tissue character-

istics are more similar to the tissue it is derived from.
Cross-References

▶Cancer Pathology
Benjamini–Hochberg Method

Winston Haynes

Seattle Children’s Research Institute, Seattle,

WA, USA
Definition

The Benjamini–Hochberg method controls the

False Discovery Rate (FDR) using sequential

modified ▶Bonferroni correction for ▶multiple
hypothesis testing. While the ▶Bonferroni correction

relies on the Family Wise Error Rate (FWER),

Benjamini and Hochberg introduced the idea of a

FDR to control for multiple hypotheses testing. In the

statistical context, discovery refers to the rejection of

a hypothesis. Therefore, a false discovery is an

incorrect rejection of a hypothesis and the FDR is

the likelihood such a rejection occurs. Controlling

the FDR instead of the FWER is less stringent and

increases the method’s power. As a result, more

hypotheses may be rejected and more discoveries

may be made.

In the Benjamini–Hochberg method, hypotheses

are first ordered and then rejected or accepted based

on their p-values. A p-value is a data point for each

hypothesis describing the likelihood of an observation

based on a ▶ probability distribution. The Benjamini–

Hochberg method begins by ordering the m hypothesis

by ascending p-values, where Pi is the p-value at the ith

position with the associated hypothesis Hi. Let k be the

largest i for which:
Pi 	 i

m
q

Reject hypotheses i ¼ 1, 2, 3,..., k. The Benjamini–

Hochberg method has been proven to control the FDR

for all tests at a level of q.
References

Benjamini Y, Hochberg Y (1995) Controlling the false discovery

rate: a practical and powerful approach to multiple hypothe-

sis testing. J R Stat Soc B 57:289–300
Beta Workbench

▶BlenX
BetaWB

▶BlenX

http://dx.doi.org/10.1007/978-1-4419-9863-7_1457
http://dx.doi.org/10.1007/978-1-4419-9863-7_253
http://dx.doi.org/10.1007/978-1-4419-9863-7_1391
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Bias

Olga Vitek

Department of Statistics, Department of Computer

Science, Purdue University, West Lafayette, IN, USA
Definition

Bias is a property of experimental design defined as

a systematic error in data-derived conclusions regard-

ing the unknowns.
Cross-References

▶Designing Experiments for Sound Statistical

Inference
Bifan

▶Canonical Network Motifs
Bifurcation

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou, Guangdong,

China
Definition

Bifurcationmeans the splitting of a main body into two

parts. Bifurcation theory is the mathematical study of

changes in the qualitative or topological structure of

a given family, such as the integral curves of a family

of vector fields, and the solutions of a family of differ-

ential equations. Most commonly applied to the

mathematical study of dynamical systems, a bifurca-
tion occurs when a small smooth change made to

the parameter values (the bifurcation parameters)
of a system causes a sudden “qualitative” or topolog-

ical change in its behavior. Bifurcations can occur

in both continuous systems (described by ▶ODEs,

DDEs, or PDEs) and discrete systems (described

by maps).
Characteristics

Bifurcation Diagram

In mathematics, particularly in dynamical systems,

a bifurcation diagram shows the possible long-term

values (equilibria/fixed points or periodic orbits) of

a system as a function of a bifurcation parameter in

the system. It is usual to represent stable solutions with

a solid line and unstable solutions with a dotted line.

An example is the bifurcation diagram of the logis-

tic map:
xnþ1 ¼ rxn 1� xnð Þ (1)

The bifurcation parameter r is shown on the hori-

zontal axis of the plot and the vertical axis shows the

possible long-term population values of the logistic

function. Only the stable solutions are shown here;

there are many other unstable solutions which are not

shown in this diagram.

The bifurcation diagram nicely shows the forking of

the possible periods of stable orbits from 1–2 to 4–8,

etc. Each of these bifurcation points is a period-

doubling bifurcation. The ratio of the lengths of

successive intervals between values of r for which

bifurcation occurs converges to the first Feigenbaum

constant (Fig. 1).

Bifurcation Types

It is useful to divide bifurcations into two principal

classes:

Local bifurcations, which can be analyzed entirely

through changes in the local stability properties of

▶ equilibria, periodic orbits, or other invariant sets

as parameters cross through critical thresholds.

Global bifurcations, which often occur when larger

invariant sets of the system “collide” with each

other, or with equilibria of the system. They cannot

be detected purely by a stability analysis of the

equilibria (fixed points).

http://dx.doi.org/10.1007/978-1-4419-9863-7_1230
http://dx.doi.org/10.1007/978-1-4419-9863-7_1230
http://dx.doi.org/10.1007/978-1-4419-9863-7_5
http://dx.doi.org/10.1007/978-1-4419-9863-7_101064
http://dx.doi.org/10.1007/978-1-4419-9863-7_100459
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Local Bifurcations

A local bifurcation occurs when a parameter change

causes the stability of an equilibrium (or fixed point) to

change. In continuous systems, this corresponds to the

real part of an eigenvalue of an equilibrium passing

through zero. In discrete systems (those described by

maps rather than ODEs), this corresponds to a fixed

point having a ▶ Floquet multiplier with modulus

equal to one. In both cases, the equilibrium is

nonhyperbolic at the bifurcation point. The topological
changes in the phase portrait of the system can be

confined to arbitrarily small neighborhoods of the

bifurcating fixed points by moving the bifurcation

parameter close to the bifurcation point (hence

“local”).

More technically, consider the continuous dynami-

cal system described by the ODE:
_x ¼ f x; lð Þ; f : Rn � R ! R (2)

A local bifurcation occurs at x0; l0ð Þ if the▶ Jacobian

matrix Df x0; l0ð Þ has an ▶ eigenvalue with zero real

part. If the eigenvalue is equal to zero, the bifurcation

is a steady state bifurcation, but if the eigenvalue is

nonzero but purely imaginary, this is a ▶Hopf

bifurcation.

For discrete dynamical systems, consider the

system:
xnþ1 ¼ f xn; lð Þ (3)

Then a local bifurcation occurs at x0; l0ð Þ if the

matrix Df x0; l0ð Þ has an eigenvalue with modulus

equal to one. If the eigenvalue is equal to one, the
bifurcation is either a saddle-node (often called fold

bifurcation in maps), transcritical, or pitchfork bifurca-

tion. If the eigenvalue is equal to � 1, it is a period-

doubling (or flip) bifurcation, and otherwise, it is a Hopf

bifurcation.

Examples of local bifurcations include:

1. ▶ Saddle-node (fold) bifurcation

2. Transcritical bifurcation

3. Pitchfork bifurcation

4. Period-doubling (flip) bifurcation

5. ▶Hopf bifurcation

6. Neimark (secondary Hopf) bifurcation

Saddle-Node Bifurcation In the mathematical area

of▶ bifurcation theory a saddle-node bifurcation, tan-
gential bifurcation, or fold bifurcation is a local bifur-

cation in which two fixed points (or equilibria)

of a dynamical system collide and annihilate each

other. The term “saddle-node bifurcation” is most

often used in reference to continuous dynamical sys-

tems. In discrete dynamical systems, the same bifurca-

tion is often instead called a fold bifurcation. Another

name is blue skies bifurcation in reference to the sud-

den creation of two fixed points.

If the phase space is one dimensional, one of the

equilibrium points is unstable (the saddle), while the

other is stable (the node).

The normal form of a saddle-node bifurcation is:
_x ¼ r þ x2 (4)

Here x is the state variable and r is the bifurcation

parameter.

If r < 0 there are two equilibrium points, a stable

equilibrium point at � ffiffiffiffiffiffi�r
p

and an unstable one at

þ ffiffiffiffiffiffi�r
p

. At r ¼ 0 (the bifurcation point) there is

exactly one equilibrium point. At this point the fixed

point is no longer hyperbolic. In this case the fixed

point is called a saddle-node fixed point. If r > 0, then

there are no equilibrium points.

A saddle-node bifurcation occurs in the consumer

equation if the consumption term is changed from px

to p, that is the consumption rate is constant and not in

proportion to resource x.

Saddle-node bifurcations may be associated with

hysteresis loops and catastrophes.

Transcritical Bifurcation In ▶ bifurcation theory,

a field within mathematics, a transcritical bifurcation

http://dx.doi.org/10.1007/978-1-4419-9863-7_499
http://dx.doi.org/10.1007/978-1-4419-9863-7_1367
http://dx.doi.org/10.1007/978-1-4419-9863-7_1367
http://dx.doi.org/10.1007/978-1-4419-9863-7_505
http://dx.doi.org/10.1007/978-1-4419-9863-7_531
http://dx.doi.org/10.1007/978-1-4419-9863-7_531
http://dx.doi.org/10.1007/978-1-4419-9863-7_501
http://dx.doi.org/10.1007/978-1-4419-9863-7_531
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_28
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is a particular kind of local bifurcation, meaning that it

is characterized by an equilibrium having an eigen-

value whose real part passes through zero.

Both before and after the bifurcation, there is one

unstable and one stable fixed point. However, their

stability is exchanged when they collide. So the unsta-

ble fixed point becomes stable and vice versa.

The normal form of a transcritical bifurcation is:

_x ¼ rx� x2 (5)

This equation is similar to logistic equation but in

this case we allow r and x to be positive or negative

(while in the logistic equation x and rmust be nonneg-

ative). The two fixed points are at x ¼ 0 and x ¼ r.

When the parameter r is negative, the fixed point

at x ¼ 0 is stable and the fixed point x ¼ r is unstable.

But for r > 0, the point at x ¼ 0 is unstable and the

point at x ¼ r is stable. So the bifurcation occurs at

r ¼ 0.

A typical example (in real life) could be the

consumer-producer problem where the consumption is

proportional to the (quantity of) resource.

For example:
_x ¼ rx 1� xð Þ � px (6)

where rx 1� xð Þ is the logistic equation of resource

growth; and px is the consumption, proportional to

the resource x.

Pitchfork Bifurcation In▶ bifurcation theory, a field

within mathematics, a pitchfork bifurcation is

a particular type of local bifurcation. Pitchfork bifur-

cations, like ▶Hopf bifurcations, have two types –

supercritical or subcritical.

In flows, that is, continuous dynamical systems

described by ▶ODEs, pitchfork bifurcations occur

generically in systems with symmetry.

An ODE:
_x ¼ f x; rð Þ (7)

described by a one parameter function f x; rð Þwith r 2 R

satisfying:� f x; rð Þ ¼ f �x; rð Þ ( f is an odd function

with regard to x), @f
@x 0; r0ð Þ ¼ 0, @f 2

@x2 0; r0ð Þ ¼ 0,
@f 3

@x3 0; r0ð Þ 6¼ 0, @f
@r 0; r0ð Þ ¼ 0, @f 2

@x@r 0; r0ð Þ 6¼ 0 has

a pitchfork bifurcation at x; rð Þ ¼ 0; r0ð Þ. The form
of the pitchfork is given by the sign of the third

derivative:

@f 3

@x3
0; r0ð Þ < 0 supercritical

> 0 subcritical

�
(8)
Period-Doubling Bifurcation In mathematics,

a period-doubling bifurcation in a discrete dynamical

system is a bifurcation in which the system switches to

a new behavior with twice the period of the original

system. Period-doubling bifurcations can also occur in

continuous dynamical systems, namely, when a new

▶ limit cycle emerges from an existing limit cycle, and

the period of the new limit cycle is twice that of the old

one (Fig. 2).

Supercritical/Subcritical Hopf Bifurcations The

limit cycle is orbitally stable if a certain quantity called

the first Lyapunov coefficient is negative, and the bifur-

cation is supercritical. Otherwise it is unstable and the

bifurcation is subcritical.

The normal form of a Hopf bifurcation is:
_z ¼ z lþ b zj j2
� �

(9)

where z, b are both complex and l is a parameter. Write

b ¼ aþ ib. The number a is called the first Lyapunov

coefficient.

If a is negative, then there is a stable limit cycle for

l > 0:

zðtÞ ¼ reiot (10)

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
�l a=

p
and o ¼ br2 (11)

The bifurcation is then called supercritical.

If a is positive then there is an unstable limit cycle

for l < 0. The bifurcation is called subcritical.

Global Bifurcation

Global bifurcations occur when “larger” invariant sets,

such as periodic orbits, collide with equilibria.

This causes changes in the topology of the trajectories

in the phase space which cannot be confined to a small

neighborhood, as is the case with local bifurcations.

http://dx.doi.org/10.1007/978-1-4419-9863-7_28
http://dx.doi.org/10.1007/978-1-4419-9863-7_531
http://dx.doi.org/10.1007/978-1-4419-9863-7_101064
http://dx.doi.org/10.1007/978-1-4419-9863-7_533
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In fact, the changes in topology extend out to an arbi-

trarily large distance (hence “global”).

Examples of global bifurcations include:

1. Homoclinic bifurcation in which a ▶ limit cycle

collides with a saddle point (▶Saddle-Node

Bifurcation)

2. Heteroclinic bifurcation in which a limit cycle col-

lides with two or more saddle points

3. Infinite-period bifurcation in which a stable node and

saddle point simultaneously occur on a limit cycle

4. Blue sky catastrophe in which a limit cycle collides

with a nonhyperbolic cycle

Global bifurcations can also involve more compli-

cated sets such as chaotic attractors.

Homoclinic Bifurcation In mathematics,

a homoclinic bifurcation is a global bifurcation which

often occurs when a periodic orbit collides with

a saddle point.

The image below shows a phase portrait before, at,

and after a homoclinic bifurcation in 2D. The periodic

orbit grows until it collides with the saddle point. At

the bifurcation point the period of the periodic orbit has

grown to infinity and it has become a homoclinic orbit.

After the bifurcation there is no longer a periodic orbit

(Fig. 3).
Heteroclinic Bifurcation In mathematics, particu-

larly dynamical systems, a heteroclinic bifurcation is

a global bifurcation involving a heteroclinic cycle.

Heteroclinic bifurcations come in two types: resonance

bifurcations and transverse bifurcations. Both types of

bifurcations will result in the change of stability of the

heteroclinic cycle.

At a resonance bifurcation, the stability of the cycle

changes when an algebraic condition on the eigen-

values of the equilibria in the cycle is satisfied. This

is usually accompanied by the birth or death of a

periodic orbit.

A transverse bifurcation of a heteroclinic cycle is

caused when the real part of a transverse eigenvalue of

one of the equilibria in the cycle passes through zero.

This will also cause a change in stability of the

heteroclinic cycle.

Global Bifurcation In mathematics, an infinite-

period bifurcation is a global bifurcation that can

occur when two fixed points emerge on a limit cycle.

As the limit of a parameter approaches a certain critical

value, the speed of the oscillation slows down and the

period approaches infinity. The infinite-period bifurca-

tion occurs at this critical value. Beyond the critical

value, the two fixed points emerge continuously from

http://dx.doi.org/10.1007/978-1-4419-9863-7_533
http://dx.doi.org/10.1007/978-1-4419-9863-7_501
http://dx.doi.org/10.1007/978-1-4419-9863-7_501


Bifurcation, Fig. 3 A homoclinic bifurcation occurs when

a periodic orbit collides with a saddle point. Left panel: For
small parameter values, there is a saddle point at the origin and

a limit cycle in the first quadrant. Middle panel: As the

bifurcation parameter increases, the limit cycle grows until it

exactly intersects the saddle point, yielding an orbit of infinite

duration. Right panel: When the bifurcation parameter increases

further, the limit cycle disappears completely
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each other on the limit cycle to disrupt the oscillation

and form two saddle points.

Blue Sky Catastrophe The blue sky catastrophe is

a type of ▶ bifurcation of a periodic orbit. In other

words, it describes a sort of behavior that stable solu-

tions of a set of differential equations can undergo as

the equations are gradually changed. This type of

bifurcation is characterized by both the period and

the length of the orbit approaching infinity as the

control parameter approaches a finite bifurcation

value, but with the orbit still remaining within

a bounded part of the phase space, and without loss

of ▶ stability before the bifurcation point. In other

words, the orbit vanishes into the blue sky.

The bifurcation has found application in, among

other places, slow-fast models of computational neu-

roscience. The possibility of the phenomenon was

raised by David Ruelle and Floris Takens in 1971,

and explored by R.L. Devaney and others in the fol-

lowing decade. A more compelling analysis was not

performed until the 1990s.

This bifurcation has also been found in the context

of fluid dynamics, namely, in double-diffusive convec-

tion of a small Prandtl number fluid. Double-diffusive

convection occurs when convection of the fluid is

driven by both thermal and concentration gradients,

and the temperature and concentration diffusivities

take different values. The bifurcation is found in an

orbit that is born in a global saddle-loop bifurcation,

becomes chaotic in a period-doubling cascade, and

disappears in the blue sky catastrophe.
Symmetry Breaking in Bifurcation Sets

In a dynamical system such as:
€xþ f x; mð Þ þ egðxÞ ¼ 0 (12)

which is structurally stable when m 6¼ 0, if

a bifurcation diagram is plotted, treating m as the bifur-

cation parameter, but for different values of e, the case
e ¼ 0 is the symmetric pitchfork bifurcation. When

e 6¼ 0, we say we have a pitchfork with broken sym-

metry. This is illustrated in Fig. 4.

Codimension of a Bifurcation

The codimension of a bifurcation is the number of

parameters which must be varied for the bifurcation

to occur. This corresponds to the codimension of the

parameter set for which the bifurcation occurs within

the full space of parameters. Saddle-node bifurcations

are the only generic local bifurcations which are really

codimension-one (the others all having higher

codimension). However, often transcritical and pitch-

fork bifurcations are also often thought of as

codimension-one, because the normal forms can be

written with only one parameter.

An example of a well-studied codimension-two

bifurcation is the Bogdanov–Takens bifurcation.

Catastrophe Theory

In mathematics, catastrophe theory is a branch of

bifurcation theory in the study of dynamical systems

(▶Dynamical Systems Theory, Bifurcation Analysis);

http://dx.doi.org/10.1007/978-1-4419-9863-7_500
http://dx.doi.org/10.1007/978-1-4419-9863-7_494
http://dx.doi.org/10.1007/978-1-4419-9863-7_270
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it is also a particular special case of more general

singularity theory in geometry.

Bifurcation theory studies and classifies phenomena

characterized by sudden shifts in behavior arising from

small changes in circumstances, analyzing how the

qualitative nature of equation solutions depends on

the parameters that appear in the equation. This may

lead to sudden and dramatic changes, for example, the

unpredictable timing and magnitude of a landslide.

Catastrophe theory, which originated with the work

of the French mathematician René Thom in the 1960s,

and became very popular due to the efforts of Christo-

pher Zeeman in the 1970s, considers the special case

where the long-run stable equilibrium can be identified

with the minimum of a smooth, well-defined potential

function (▶Lyapunov Stability).

Small changes in certain parameters of a nonlinear

system can cause equilibria to appear or disappear, or

to change from attracting to repelling and vice versa,

leading to large and sudden changes of the behavior of

the system. However, examined in a larger parameter

space, catastrophe theory reveals that such bifurcation

points tend to occur as part of well-defined qualitative

geometrical structures.

Catastrophe theory analyses degenerate critical
points of the potential function – points where not

just the first derivative but one or more higher deriva-

tives of the potential function are also zero. These are
called the germs of the catastrophe geometries.

The degeneracy of these critical points can be unfolded

by expanding the potential function as a Taylor series

in small perturbations of the parameters.

When the degenerate points are not merely acciden-

tal, but are structurally stable, the degenerate points exist

as organizing centers for particular geometric structures

of lower degeneracy, with critical features in the param-

eter space around them. If the potential function depends

on two or fewer active variables, and four (respectively,

five) or fewer active parameters, then there are only

seven (respectively, eleven) generic structures for these

bifurcation geometries, with corresponding standard

forms into which the Taylor series around the catastro-

phe germs can be transformed by diffeomorphism (a

smooth transformation whose inverse is also smooth).

These seven fundamental types are now presented, with

the names that Thom gave them.

Fold Catastrophe

The potential function of one active variable is:

V ¼ x3 þ ax (13)

At negative values of a, the potential has two

extrema – one stable and one unstable. If the parameter

a is slowly increased, the system can follow the stable

minimum point. But at a ¼ 0 the stable and unstable

http://dx.doi.org/10.1007/978-1-4419-9863-7_532
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Bifurcation, Fig. 5 Stable and unstable pair of extrema disap-

pear at a fold bifurcation
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extrema meet, and annihilate. This is the bifurcation

point. At a > 0 there is no longer a stable solution. If

a physical system is followed through a fold bifurca-

tion, one therefore finds that as a reaches 0, the stability

of the a < 0 solution is suddenly lost, and the system

will make a sudden transition to a new, very different

behavior. This bifurcation value of the parameter a is

sometimes called the tipping point (Fig. 5).

Cusp Catastrophe

The potential function of one active variable is:

V ¼ x4 þ ax2 þ bx (14)

The cusp geometry is very common, when one

explores what happens to a fold bifurcation if

a second parameter, b, is added to the control space.

Varying the parameters, one finds that there is now

a curve (blue) of points in (a, b) space where stability is

lost, where the stable solution will suddenly jump to an

alternate outcome.

But in a cusp geometry the bifurcation curve loops

back on itself, giving a second branch where this alter-

nate solution itself loses stability, and will make a jump

back to the original solution set. By repeatedly increas-

ing b and then decreasing it, one can therefore observe
hysteresis loops, as the system alternately follows one

solution, jumps to the other, follows the other back,

then jumps back to the first.

However, this is only possible in the region of

parameter space a< 0. As a is increased, the hysteresis

loops become smaller and smaller, until above a ¼ 0

they disappear altogether (the cusp catastrophe), and

there is only one stable solution.
One can also consider what happens if one holds b
constant and varies a. In the symmetrical case b ¼ 0,

one observes a pitchfork bifurcation as a is reduced,

with one stable solution suddenly splitting into two

stable solutions and one unstable solution as the phys-

ical system passes to a< 0 through the cusp point (0, 0)

(an example of spontaneous symmetry breaking).

Away from the cusp point, there is no sudden change

in a physical solution being followed: when passing

through the curve of fold bifurcations, all that happens

is an alternate second solution becomes available.

A famous suggestion is that the cusp catastrophe

can be used to model the behavior of a stressed dog,

which may respond by becoming cowed or becoming

angry. The suggestion is that at moderate stress (a> 0),

the dog will exhibit a smooth transition of response

from cowed to angry, depending on how it is provoked.

But higher stress levels correspond to moving to the

region (a < 0). Then, if the dog starts cowed, it will

remain cowed as it is irritated more and more, until it

reaches the “fold” point, when it will suddenly, dis-

continuously snap through to angry mode. Once in

“angry” mode, it will remain angry, even if the direct

irritation parameter is considerably reduced.

Another application example is for the outer sphere

electron transfer frequently encountered in chemical

and biological systems (Xu 1990).

Fold bifurcations and the cusp geometry are by far

the most important practical consequences of catastro-

phe theory. They are patterns which reoccur again and

again in physics, engineering, and mathematical

modeling. They are the only way we currently have

of detecting black holes and the dark matter of the

universe, via the phenomenon of gravitational lensing

producing multiple images of distant quasars.

The remaining simple catastrophe geometries are

very specialized in comparison, and presented here

only for curiosity value (Fig. 6).

Swallowtail Catastrophe

The potential function of one active variable is:

V ¼ x5 þ ax3 þ bx2 þ cx (15)

The control parameter space is three dimensional.

The bifurcation set in parameter space is made up of

three surfaces of fold bifurcations, which meet in two

lines of cusp bifurcations, which in turn meet at

a single swallowtail bifurcation point.
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Bifurcation, Fig. 6 (Left)
Cusp shape in parameter space

(a,b) near the catastrophe
point, showing the locus of

fold bifurcations separating

the region with two stable

solutions from the region with

one; (right) pitchfork
bifurcation at a ¼ 0 on the

surface b ¼ 0
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As the parameters go through the surface of fold

bifurcations, one minimum and one maximum of the

potential function disappear. At the cusp bifurcations,

two minima and one maximum are replaced by one

minimum; beyond them the fold bifurcations disappear.

At the swallowtail point, two minima and two maxima

allmeet at a single value of x. For values of a> 0, beyond
the swallowtail, there is either one maximum-minimum

pair, or none at all, depending on the values of b and c.

Two of the surfaces of fold bifurcations, and the two lines

of cusp bifurcations where they meet for a< 0, therefore

disappear at the swallowtail point, to be replaced with

only a single surface of fold bifurcations remaining.

Salvador Dalı́’s last painting, The Swallow’s Tail, was

based on this catastrophe.

Butterfly Catastrophe

The potential function of one active variable is:
V ¼ x6 þ ax4 þ bx3 þ cx2 þ dx (16)

Depending on the parameter values, the potential

function may have three, two, or one different local

minima, separated by the loci of fold bifurcations. At

the butterfly point, the different three surfaces of fold

bifurcations, the two surfaces of cusp bifurcations, and

the lines of swallowtail bifurcations all meet up and

disappear, leaving a single cusp structure remaining

when a > 0.
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In bifurcation theory, a field within mathematics,

a pitchfork bifurcation is a particular type of local
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bifurcation. Pitchfork bifurcations, like Hopf bifurca-

tions, have two types – supercritical and subcritical.

In flows, that is, continuous dynamical systems

described by ODE, pitchfork bifurcations occur gener-

ically in systems with symmetry.

An ODE

dx

dt
¼ f x; rð Þ

described by a one parameter function f x; rð Þ
with r 2 R satisfying:� f x; rð Þ ¼ f �x; rð Þ ( f is an

odd function with regard to x), @f
@x 0; r0ð Þ ¼ 0,

@f 2

@x2 0; r0ð Þ ¼ 0, @f 3

@x3 0; r0ð Þ 6¼ 0, @f
@r 0; r0ð Þ ¼ 0,

@f 2

@x@r 0; r0ð Þ 6¼ 0 has a pitchfork bifurcation at

x; rð Þ ¼ 0; r0ð Þ. The form of the pitchfork is given by

the sign of the third derivative:

@f 3

@x3
0; r0ð Þ < 0 supercritical

> 0 subcritical

�

Bigraph

▶Bipartite Graph
Bile Acid and Xenobiotic System
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Synonyms

BAXS; Bile acid system

Definition

The bile acid and xenobiotic system (BAXS) defines

an intricate physiological network of chemoprotective
and transporter-related functions that ensure the detox-

ification and removal from the body of harmful xeno-

biotic and endobiotic compounds while ensuring that

primary bile acids (essential for the emulsification and

absorption of dietary fats and fat-soluble vitamins) are

not eliminated and can be reused. Xenobiotics are

chemical compounds which are foreign to the living

organism. They are not naturally found or expected to

be present in the organism as they are neither produced

by it nor are they part of the organism’s natural diet.

The process of xenobiotic metabolism ensures they are

broken down and either put to good use or detoxified

and removed from the organism. Examples of xenobi-

otics are drugs, pesticides, and carcinogens. Endobi-

otics are chemicals produced by an organism, such as

steroid hormones or bile acids. They are produced to

carry out a variety of functions, e.g., acting as

a signaling molecule or facilitate absorption of dietary

fats; however, their concentrations need to be strictly

regulated as they can become toxic. The overall

▶metabolic flux of the BAXS is primarily achieved

through the activities of nuclear receptors, which have

the ability to directly bind to DNA and regulate▶ gene

expression. Nuclear receptors can be thought of as

metabolic sensors of exogenous and endogenous

toxins. Detailed knowledge of the factors that govern

the activity of nuclear receptors is required to under-

stand a range of physiological processes, such as drug-

drug interactions, intracrine hormone metabolism,

▶ xenobiotic clearance, and cholesterol homeostasis

and lipid homeostasis.
Characteristics

A System View

▶Bile acids represent essential but also toxic biolog-

ical reagents whose concentrations within the body

require critical maintenance. Many of the genetic fac-

tors that dictate bile acid concentration also govern the

detoxification and removal from the body of many

drugs and foreign compounds. These overlapping bio-

logical processes define a network or system termed

the bile acid and xenobiotic system which involves the

coordinated activities of many genes in different

tissues.

Bile acids are necessary for the emulsification and

absorption of dietary fats and the regulation of choles-

terol homeostasis. They are synthesized in the liver
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http://dx.doi.org/10.1007/978-1-4419-9863-7_100108
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from the catabolism of cholesterol forming the primary

bile acids, cholic and chenodeoxycholic acids. Bacte-

rial flora dehydroxylates a portion of the primary bile

acids in the intestinal lumen, resulting in secondary

bile acids, deoxycholic and lithocholic acids. These

four bile acids possess detergent-like properties neces-

sary for the absorption of dietary lipids and fat-soluble

vitamins. When present at high concentrations, they

can become toxic; therefore, ▶ bile acid concentra-

tions need to be appropriately regulated and recycled

(Lefebvre et al. 2009).

Similarly, the BAXS detects any accumulation of

xenobiotic and endobiotic compounds and facilitates

their detoxification and removal from the body. This

is accomplished through a complex network of sensors

in the form of nuclear receptors that function as

ligand-activated transcription factors (Kliewer and

Willson 2002). The process of enterohepatic circula-

tion (as depicted in Fig. 1) ensures 95% of bile acids

are recycled.

The BAXS involves the coordinated activities of

a number of genes across multiple temporal and spatial

scales. Basic BAXS processes and their time scales

include the binding of ▶ ligands to nuclear receptors

(seconds), ▶ gene expression and ▶ gene regulation

(hours), ▶ transporter protein activity (minutes), and

metabolic enzyme activity (seconds). Spatially,

BAXS components range from the dimension of mol-

ecules (e.g., nuclear receptors) to organs (e.g., liver).
Given the multi-scale nature of the BAXS, it is difficult

to assess the exact role of individual receptors and their

activating/deactivating ▶ ligands with respect to the

overall BAXS flux and its variation throughout

a number of participating organs. A comprehensive

description of the interacting components that govern

BAXS ▶ gene expression would enable the identifica-

tion of regulatory “nodes” as targets for treatment

regimes, facilitate a deeper understanding of the com-

ponents impacting drug-drug interactions, and provide

a framework for the design of large-scale, integrated

prediction studies.

Nuclear Receptors

Nuclear receptors are a superfamily of proteins which

can bind directly to DNA and upregulate or

downregulate the transcription of a gene. Within the

BAXS, nuclear receptors act like a network of sensors

detecting compounds such as hormones or xenobiotics.

These compounds, referred to as ligands, bind to the

nuclear receptors and can either activate them, leading

to increased transcription, or deactivate them, leading

to repression of gene transcription. A bound nuclear

receptor may also dimerize with another nuclear recep-

tor to form a complex which then binds to response

elements located in the promoter region of the gene.

This activates the gene and transcription is increased

considerably. Nuclear receptors can also repress gene

expression through competitive inhibition, whereby

http://dx.doi.org/10.1007/978-1-4419-9863-7_100108
http://dx.doi.org/10.1007/978-1-4419-9863-7_1247
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
http://dx.doi.org/10.1007/978-1-4419-9863-7_338
http://dx.doi.org/10.1007/978-1-4419-9863-7_101564
http://dx.doi.org/10.1007/978-1-4419-9863-7_1247
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
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the nuclear receptor competes with other receptors for

the ligands they bind, or by binding to the promoter

region of the gene, thus reducing the efficacy of acti-

vation and therefore gene transcription. Nuclear recep-

tors are classified as ▶ transcription factors and their

combined inhibitory and activating effects regulate

gene expression. This is vital in controlling develop-

ment, metabolism and maintaining adult homeostasis

(▶Homeostasis).

Nuclear receptors serve to detect fluctuations in

concentration of many compounds and initiate a

physiological response by regulating the BAXS.

▶Transcriptional regulation by nuclear receptors

involves both activating and repressive effects upon

specific groups of genes. Figure 2 illustrates the overlap

present between nuclear receptors and the genes they

target and also the ligands that bind to and activate them.

It is these factors that contribute to the phenomenon

of drug-drug interactions, e.g., between St. John’s wort

and Cyclosporine (Barone et al. 2000), or St. John’s

wort and an oral contraceptive (Hall et al. 2003).

Positive feed-forward and negative feedback loops can

also occur, e.g., within the cholesterol ▶metabolic

pathway (Eloranta and Kullak-Ublick 2005).
The BAXS main process revolves around the circu-

lation and critical maintenance of bile acid concentra-

tion and the detection and removal of harmful

compounds. This process is composed of multiple sub-

processes (e.g., transactivation, interactions with

co-activators or corepressors, heterodimerization)

operating on different time and space scales.

In the BAXS, the initial stimuli leading to

a physiological response would be the binding of

a ligand by a nuclear receptor. Subsequently, the

bound nuclear receptor binds to response elements in

the target genes, leading to increased ▶ gene expres-

sion and the cascading effects that would ensue. Fur-

ther processes include conjugation and transporter

functions (Stieger and Meier 1998).

Examples of nuclear receptors within the BAXS

include the pregnane X receptor (PXR), farnesoid

X receptor (FXR), constitutive androstane receptor

(CAR), retinoid X receptor (RXR), and vitamin

D receptor (VDR). A ligand can be either endogenous,

e.g., a hormone or bile acid, or exogenous such as

a drug, e.g., Rifampicin, St. John’s wort, Dexametha-

sone. A ligand binds to the nuclear receptor which may

also bind to another receptor of the same type to form

http://dx.doi.org/10.1007/978-1-4419-9863-7_302
http://dx.doi.org/10.1007/978-1-4419-9863-7_100632
http://dx.doi.org/10.1007/978-1-4419-9863-7_815
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a homodimer (homodimerization) or with other

nuclear receptor complexes to form a heterodimer

(heterodimerization). The overall complex then binds

to the▶ promoter or▶ enhancer of a specific gene and

this either upregulates or downregulates expression of

that gene depending on the complex formed.

BAXS Process and Example

The example in Fig. 3 shows the effects of Ritonavir

(an antiretroviral drug from the protease inhibitor class

used to treat HIV infection and AIDS) on the metabo-

lism of Hyperforin (a phytochemical produced by

some of the members of the plant, e.g., Hypericum

perforatum which is commonly known as St John’s

wort) in the liver and the overlap of this process with

FXR-mediated primary and secondary bile acid metab-

olism. Both Ritonavir and Hyperforin are activating

ligands for PXR (Chang 2009; Willson and Kliewer

2002). CYP3A4 is a member of the cytochrome P450

superfamily of enzymes and one of the most important

involved in xenobiotic metabolism. Multidrug resis-

tance protein 1 (MDR1) is a member of the ATP-

binding cassette (ABC) transporter superfamily of

membrane-associated proteins responsible for

transporting a wide variety of substrates from the cell

(Koudriakova et al. 1998). Once PXR is activated
through ligand binding, expression of CYP3A4 and

MDR1 are considerably increased, resulting in the

metabolism of Hyperforin and its transport from

the cell into the intestinal lumen (Lin et al. 2009). In

the absence of receptor binding, Ritonavir inhibits

transcription of CYP3A4 and MDR1. In theory, this

could lead to accumulated levels of Hyperforin in the

liver as unbound Ritonavir inhibits the metabolism

mechanism.

FXR is activated by primary and secondary bile

acids, chenodeoxycholic acid (CDCA) and lithocholic

acid (LCA). It upregulates transcription of CYP3A4,

multidrug-resistant protein 2 (MRP2) and bile salt

efflux pump (BSEP), both members of the ATP-

binding cassette (ABC) transporter superfamily of

membrane-associated proteins responsible for

transporting bile acids into the bile duct. In both pro-

cesses, an overlap occurs at CYP3A4. A patient taking

Hyperforin will have increased expression of CYP3A4

which may lead to a deficiency in ▶ bile acid concen-

tration as this gene metabolizes bile acids. Similarly,

a patient with high bile acid concentrations may reduce

the efficacy of Hyperforin (if taken) as transcription of

CYP3A4 is increased. If Ritonavir is added, then bile

acids and Hyperforin could accumulate to toxic levels

in the liver.

http://dx.doi.org/10.1007/978-1-4419-9863-7_301
http://dx.doi.org/10.1007/978-1-4419-9863-7_308
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Definition

Binding affinity is a measure of the tendency or

strength of interactions between molecules. The mol-

ecules that can bind together include proteins, DNA,

antibodies, enzymes, and some other organic mole-

cules such as drugs. The result of molecular binding

is formation of a molecular complex such as protein-

protein, protein-DNA, and protein-drug complex.

Binding affinity can be quantified and detected by

some physical techniques (Karney et al. 2005). For

example,

Lþ P � LP (1)

where L is a ligand, P is a protein, LP is the ligand-

protein complex.

The concentration of the ligand-protein complex is

given by the dissociation constant:

Kd ¼ L½ 
 P½ 

LP½ 
 (1)

The binding affinity is defined as:
pKd ¼ �log10

kd
NA

1 kmolm�3

 !
(2)

where NA is the Avogadro constant.
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Synonyms

Metabolic engineering
Definition

Mathematical models can be used to predict the

effect of costly complex interventions over biochemi-

cal systemswith technological or biomedical purposes.

Toward this end, mathematical modeling can be

combined with mathematical optimization techniques

giving support to microbiologists and biomedical

researchers in the biotechnological improvement

of microorganisms with industrial applications

(“what is the minimum set of enzymes that should

be modified in order to maximize the production of

a desired end product?”) or in the design of new

therapeutic approaches (“what is the minimum set of

interactions in a biochemical network that must

be inhibited by specific drugs to subvert a given

pathological condition?”) (Torres and Voit 2002;

Vera et al. 2007).

The underlying idea is that a well-characterized and

calibrated mathematical model, in ordinary differential

equations, has predictive abilities that can be used

to obtain optimal configurations of the biochemical

system regarding a biotechnological (or biomedical)

problem. This idea has been exploded by a number of

groups in the past decade (Voit 1992; Torres et al.

1997; Hatzimanikatis et al. 1998). In a nutshell, simu-

lations with the mathematical model are used to predict

the behavior of the biochemical system. An optimiza-

tion program, according to the biotechnological

problem under investigation, is established including

the following: (1) one or more objectives are
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established, describing in mathematical terms the

properties of the system that are to be improved;

(2) a set of constrains is established, accounting

for physiological or technological limitations; and

(3) a set of potential interventions on the system is

established, which may include modulation of the sys-

tem inputs, overexpression, or repression of enzymes,

but also inhibition of given biochemical processes.

Based on this program, optimization algorithms are

used to estimate new configurations of the system

that optimized the established objectives via the choice

of the appropriate interventions, which should be

experimentally tested.

In many cases, the methodology here discussed

involves highly nonlinear optimization problems,

difficult to solve in an efficient manner. Some of

these difficulties are circumvented for steady-state

optimization when canonical models like S-systems

and power models are used. To illustrate the charac-

teristics of this methodology and some of the advan-

tages associated to the use of canonical models, we will

focus here on the so-called indirect optimization

method with S-systems models.
Characteristics

Linear Programming and the IOM Method

The Indirect Optimization Method (IOM) is based on

the fact that although S-system models are nonlinear,

their steady-state equations are linear when the vari-

ables are expressed in logarithmic coordinates. Since

a function and its logarithm assume their maxima for

the same argument, yields or fluxes can thus be opti-

mized with linear programs expressed in terms of the

logarithms of the original variables. Also, typical

constraints that the optimized system has to satisfy

reduce to linear equations in a logarithmic coordinate

system. Thus, transporting the steady-state system

and the constraints into a logarithmic space reduces

the nonlinear optimization problem to a problem of

straightforward linear programming (Voit 1992; Vera

et al. 2003). The method is a procedure that system-

atizes the steps to follow for optimum results. Figure 1

illustrates the stages of the method in an outline for

the most general case.

Step 1: Getting the model. The first step is the

development of a model system. This can be

modeled directly on the S-system formalism or in
the form of kinetic model or GMA, and then

transferred to S-system.

Step 2: Analysis of quality of the model. The S-system

modeling formalism provides us with tools to

analyze its stability, robustness, and dynamic

response. It is important to ensure the validity

of the model, i.e., that it properly describes

the known behavior of the system. Otherwise, it

is necessary to refine the model prior to its

optimization.

Step 3: Construction and resolution program optimi-

zation. This is the core of the procedure. All infor-

mation gathered on the system and the limitations of

biological or technological constraints on the

solutions are converted into the mathematical

equations that make up the program optimization.

After ensuring the validity of the model and

the adequacy of the components of the program

optimization, the stated objectives and the condi-

tions imposed on the system are moved into loga-

rithmic space. In the logarithmic space, the

optimization problem becomes a linear program

and once the optimal solution is obtained it is trans-

ferred to the area of the original variables. In addi-

tion to the above, the optimized system must be at

a steady state and fulfill some constraints. These

constraints, as well as the objective functions, are

readily translated into linear functions and inequal-

ities, and the optimization task becomes a linear

program.

In the more general case (multiobjective optimiza-

tion), after this point we can choose among three

possible options (Vera et al. 2003, 2010): (1) pure

multicriteria problem, which is the formulation of

a multiple objective linear program, a direct exten-

sion of the linear programming case; (2) weighted

sum approach, where we assign a weight to each

objective or function to be optimized (usually these

weights are chosen between zero and one, such that

they sum up to one); and (3) goal programming,

where a goal level of achievement is established

for each objective. These goal levels are soft

constraints that are included in the definitions

of the objective functions. Available software

packages can produce the efficient solution set

for multiobjective linear programming tasks such

as ADBASE or the Matlab optimization toolbox

for the goal programming and weighted sum

approach.
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Step 4: Analysis and refinement of the solution. Here
the system’s properties at the optimal state (stabil-

ity, robustness, and dynamics) are evaluated. If the

optimal solution is sound, it is chosen as a solution;

otherwise the imposed restrictions or the objective

function are refined and the optimization process

repeated until a satisfactory solution is reached. In

the case where an S-system model was built from

a previous kinetic model, the S-system solution

must be transferred to the original model. In the

following we will illustrate the application of this

approach to two case studies.
Case Study 1. The Monoobjective Version of the

IOM: Optimization of the L-(�)-Carnitine

Biosynthesis by Escherichia Coli

L-(�)-carnitine is a chiral compound widely distrib-

uted in nature and with a wide range of medical appli-

cations. A great deal of the L-carnitine is produced by

chemical synthesis, with the disadvantage of produc-

ing a racemic mixture that is necessary to separate in

a costly process.

Figure 2 shows the experimental set up for the

biotransformation of crotonobetaine into L-carnitine

by an overproducing E. coli strain in a cell recycle
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Fig. 2 Experimental set up

for the biotransformation of

crotonobetaine into

L-(�)-carnitine by E. coli
strains
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bioreactor. The model includes the metabolic transfor-

mation of crotonobetaine into g-butyrobetaine,
through the activity of a previously described

crotonobetaine reductase. In the optimization proce-

dure the dependent variables are X1 to X4, while X5 to

X9 are the parameters. The original model set up was

translated to the S-system representation yielding the

following S-system representation (Alvarez-Vasquez

et al. 2002):
dX1

dt
¼ X5X6 � 1:0213 X0:9162

1 X0:5675
4 X0:4324

5 X0:5675
8

dX2

dt
¼ 0:2438 X0:3538

3 X0:9394
4 X0:0605

5 X0:0605
7 X0:9292

9

� 0:464 X0:1424
2 X0:9643

4 X0:0356
5 X0:9537

9

dX3

dt
¼ 0:3844 X0:1106

2 X4X
0:989
9

� 0:2058 X0:3926
3 X0:9742

4 X0:0257
5 X0:9636

9

dX4

dt
¼ 0:0053 X0:8524

1 X4X8 � 0:08 X4:

Subsequently the (mono)objective function is

defined, namely, the net rate of L-carnitine biosynthe-

sis, expressed as Vc ¼ X3·X5. In logarithmic

coordinates this function becomes Y3 + Y5, where

Yi is ln(Xi). The steady-state condition, once linearized

in logarithmic coordinates, obtained was:
0:0211 ¼� 0:9162 Y1 � 0:5675 Y4 þ 0:5676 Y5

þ Y6 � 0:5675 Y8

0:6433 ¼� 0:1424 Y2 þ 0:3538 Y3 � 0:0249 Y4

þ 0:0249 Y5 þ 0:0605 Y7 � 0:0245 Y9

�0:6246 ¼ 0:1106 Y2 � 0:3926 Y3 þ 0:0257 Y4

� 0:0257 Y5 þ 0:0254 Y9

2:706 ¼ 0:8524 Y1 þ Y8

where Yi is ln(Xi) for i ¼ 1,. . ., 9. At this point it is

important to define the extent to which changes in the

variables and parameters are allowed. Generally this

variation range will be between 0.5 and 1.5 times the

baseline values. An exception here is X4, the biomass,

which can be allowed to increase up to two times the

baseline. Accordingly:
3:0746	 Y1 	 4:1732; 2:6909	 Y2 	 3:7895;
2:3277	 Y3 	 3:4263; 1:8068	 Y4 	 3:1931;

�0:6931	 Y5 	 0:4054; 3:9120	 Y6 	 5:0106;
3:2188	 Y7 	 4:3174; �1:1988	 Y8 	�0:1002;
4:1214	 Y9 	 6:424:

With the defined linear program two optimization

tasks were carried out: with one or two decision

(independent) variables. The obtained optimal profiles

were translated from the S-system to the original

model (K-M) and then implemented in the bioreactor.

Table 1 shows the experimental results obtained which

are in good agreement with the theoretical predictions.



Biochemical Systems Optimization Through Mathematical Programming, Table 1 Comparison between predicted (K-M)

and actual experimental values (Exp.) of L-(�)-carnitine production rate by E. coli in a cell recycle crotonobetaine biotransformation

system. The optimized parameter profiles for changes in one (1; dilution rate, X5) and two parameters (2; dilution rate and

crotonobetaine concentration in the input, X7) are shown. Results are given as the values divided by the basal

Variables Basal

1 2

K-M Exp. K-M Exp.

Dependent

Glycerol, X1 43.28 mM 1 0.96 1 0.95

Crotonobetaine, X2 29.49 mM 1 0.97 1.49 1.77

Carnitine, X3 20.51 mM 1 1.01 1.11 1.13

Biomass, X4 12.18 g/L 1.5 1.53 1.5 1.53

Independent

Dilution rate, X5 1 L/h�1 1.5 1.5

Crotonobetaine input, X7 50 mM 1 1.33

Production rate, Vc 21.1 mM/h�1 1.5 1.54 1.65 1.74
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In both cases assayed, the experimental steady state

was the same as that predicted by the model and the

increase in the rate of L-(�)-carnitine production was

almost coincident with the predicted increase.
Case Study 2. The Multiobjective Version of the

IOM: Application to the Ethanol Production by

Saccharomyces Cerevisiae

We have used a mathematical model of the ethanol

production by Saccharomyces cerevisiae presented by
Schlosser et al. (1994) as a case study to apply the

multiobjective version of the IOM procedure.

As it can be seen in Fig. 3, glucose is converted in

ethanol, polysaccharides, and glycerol. The model

refers to the ethanol production under anaerobic, no

growing conditions, with glucose as the sole carbon

source and absence of nitrogen. The preliminary model

by Schlosser et al. (1994) was converted into an

S-system model in Vera et al. (2003) with the

following structure:
dX1

dt
¼ 1:0006 X�0:0492

2 X6

� 1:6497 X0:5582
1 X0:0465

5 X7

dX2

dt
¼ 1:6497 X0:5582

1 X0:0465
5 X7

� 0:5793 X0:5097
2 X�0:2218

5 X0:8322
8 X0:1678

11

dX3

dt
¼ 0:4536 X0:4407

2 X�0:2665
5 X8

� 0:2456 X0:4506
3 X0:0441

4 X0:092
5 X0:8547

9 X0:1453
12
dX4

dt
¼ 0:2365 X0:5285

3 X0:0994
5 X9

� 2:0892 X�0:0075
3 X0:304

4 X0:0484
5 X10

dX5

dt
¼ 1:406 X0:2605

3 X0:152
4 X0:0739

5 X0:5
9 X0:5

10

� 2:9437 X0:1962
1 X0:1791

2 X0:2354
5 X0:3514

7 X0:2925
8

X0:0589
11 X0:297

13 :

Three biotechnologically relevant optimization

objectives are considered (Vera et al. 2003):

(1) the maximization of the ethanol production, Fprod;

(2) the minimization of the total internal metabolite

concentrations, Fint; and (3) the minimization of the

total enzyme activities, Fenz. The first objective

relates to the enhancement of productivity, measured

in terms of ethanol production. The other two objec-

tives refer to the minimization of the amount of glu-

cose transformed into other products different from

ethanol and to the cell viability by reducing the osmo-

larity stress (objective 2) and the metabolic burden

(objective 3).

Being Y ¼ ln(X), they are defined as:

min ZðYÞ ; ZðYÞ ¼ �FprodðYÞ; FintðYÞ; FenzðYÞ
� �

The maximization objective becomes a minimiza-

tion objective by changing the sign of the objective

function. These objective functions take the following

form in the logarithmic transformed space:
FprodðYÞ ¼ �0:0075 Y3 þ 0:304 Y4 þ 0:0483 Y5 þ Y10;
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Biochemical Systems Optimization Through
Mathematical Programming, Fig. 3 Glucose fermentation

pathway to ethanol, glycerol, and polysaccharides in Saccharo-
myces cerevisiae. Five dependent concentrations and

eight fluxes are involved: Intracellular Glucose (X1); Glucose-

6-phosphate (X2); Fructose-1,6-bisphosphate (X3); Phosphoenol-

pyruvate (X4); ATP (X5); Polysaccharides; Glycerol; Ethanol

(X16), and ADP. Enzymes/pathway steps: Vin, Glucose uptake

(X6); VHK, Hexokinase (X7); VPFK, Phosphofructokinase

(X8); VGAPD, Glyceraldehyde 3-phosphate dehydrogenase (X9);

VPK, Pyruvate kinase (X10); VPOL, Total disaccharide and

polysaccharide storage (X11); VGOL, Glycerol production

(X12); VATPase (X13), Generalized rate for all ATP-utilizing

process, with the exception of VHK, VPFK, and VPOL
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FintðYÞ ¼
X5
i¼1

Yi and FenzðYÞ ¼
X13
i¼6

Yi:

In the optimization program three types of con-

straints are considered (Vera et al. 2003): (a) those

that guarantee that solutions correspond to a steady-

state solution of the system; (b) those setting the phys-

iologically feasible lower and upper boundaries for the

model variables; and (c) additional constraints related

to special features of the considered biosystem. The

constraints that set up the boundaries for the model

variables (metabolite or enzyme concentrations)
configure the properties of the solutions; their values

are dictated by the experience and are formulated for

each variable. Experience dictates (Alvarez-Vasquez

et al. 2000) that a reasonable lower boundary is the

50% of the original basal steady-state value and five

times this basal value for most of the variables

0:5X0
i < Xi < 5X0

i

� �
for the upper boundary. The

exception to this rule were the ATPase activity

X5 < 1:5X0
5

� �
, limited by additional physiological

constrains, and the side-products polysaccharides and

glycerol, which were maintained at their basal values

X11 ¼ X0
11;X13 ¼ X0

13

� �
. A constrain, limiting the

value of the flux ratio through the enzymes X9 and

X10 in order to prevent dynamical instability in the

solutions (X9/X10 	 1.75) was introduced. A last con-

straint to ensure that any computed solution doubles at

least the ethanol production in the original unmodified

microorganism, VPKðXÞ � 2 VPKðX0Þ, was also

imposed.

After computing the multiobjective program by

using ADBASE, 22 efficient solutions were obtained.

Only the efficient vertexes of the problem were consid-

ered. The analysis of the solutions showed that solutions

with a high ethanol production are only possible when

the maximum of ATP (X5¼ 1.5) and ATPase (X13¼ 5)

are provided to the system. This indicates the extreme

importance of the ATP turnover to increase productiv-

ity. To facilitate the analysis and classification of the

generated solutions, some auxiliary biologically rele-

vant parameters were defined as follows:
sðXÞ ¼
P5
i¼1

Xi

P5
i¼1

X0
i

; yðXÞ ¼
P13
i¼6

Xi

P13
i¼6

X0
i

; rðXÞ ¼ VPKðXÞ
VPKðX0Þ :

s is the ratio between the total intermediate concen-

tration of the current solution and the one in the orig-

inal basal solution of the system; y is the ratio between
the total enzyme activities at the optimum solution and

the ones at the basal steady state, while r describes the

same ratio for the ethanol production of the system. In

order to support the biotechnologists making the

proper decision, additional criterions were introduced.

We ruled out all solutions with the lowest admissible

ethanol production (rmin ¼ 2:0) and ranked the

remaining ones according with their parametric

distance to the so-called utopian point, a fictitious
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Fig. 4 Efficient solutions for

the multicriteria optimization

of ethanol production by

S. cerevisiae. (●): Set I,

solutions with the largest

D(X,Xutp) value. (♦): Set II,
solutions closer to the utopian

point (star). (■) Set III,

solutions with intermediate

values of D(X,Xutp).

(X) represents the anti-ideal

point
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solution constructed with the optimal values of ethanol

production (rutp), total intermediate concentration

(sutp), and total enzyme concentration (yutp) from the

computation of separated monoobjective programs:

rutp ¼ 4:986 sutp ¼ 0:5 yutp ¼ 1:0

In a similar way, we defined the anti-utopian solu-

tion, extracting the worst value from every column in

the payment matrix for the separated monoobjective

programs (Vera et al. 2003):

rfun ¼ 2:0 sfun ¼ 4:76 yfun ¼ 3:30

With this information we defined a weighted para-

metric distance from every solution to the utopian

point, which is described by the following equation:
D X;Xutpð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

rutp�rðXÞ
rutp�rfun

	 
2

þ sutp�sðXÞ
sutp�sfun

	 
2

þ yutp� yðXÞ
yutp� yfun

	 
2
" #vuut

Figure 4 shows the solutions grouped in three sets

according with their D(X,Xutp) value. Set I corresponds

to those solutions with the largest D(X,Xutp) value. This

group is characterized by a high productivity (r), but
also by high total intermediate concentration (s), an
undesirable property. Set II includes the closer solu-

tions to the utopian point D(X,Xutp), characterized by
high productivity and enzyme levels but low metabo-

lite concentrations (0.8–1.85). Finally, Set III repre-

sents those with intermediate values of D(X,Xutp), high

productivity and enzyme levels but medium values of

total metabolites concentration. When the parametric

distance is considered the criterion to choose the best

solution two solutions were found (five-pointed star in

Fig. 4: Table 2).

These solutions represent opposite alternatives

from a biotechnological perspective. Solution

I prefers the increase in the ethanol production at the

price of high cell resources consumption, while solu-

tion II establishes a biotechnological compromise

between satisfactory increasing in the ethanol produc-

tion and non-excessive cell resources consumption.

It should be noted that the heuristic nature of the last

step in the IOM method may provoke a loss of

efficiency in the solutions when the behavior of the

original model departs from their S-system expansion.

This may result in the violation of some of the restric-

tions imposed. However, experience shows that these

violations are often negligible and the steady-state

solutions usually stay in the vicinity of the real efficient

solution. Moreover, the method incorporates tools to

estimate solutions closer to the optimum in the

nonlinear domain. This latter step consumes consider-

able computational effort, but even more important,

the solution obtained ceases to be optimal. The practi-

cal application of the method indicates however that in

most cases it remains a high-quality solution.



Biochemical Systems Optimization Through
Mathematical Programming, Table 2 Best two efficient

solutions for the multicriteria optimization of ethanol production

by S. cerevisiae

Sol r s y D(X,Xutp)

I 4.987 1.812 3.301 0.604

II 2.791 0.596 2.798 0.613
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Case Study 3. Combining Mathematical Modeling

and Optimization to Detect Potential Drug Targets

in Human Diseases

The methodology discussed here can be used to detect

potential drug targets in diseases that are originated by

dysfunctions of biochemical networks. The strategy is

to point out one or more enzymes in the biochemical

network, whose modulation via specific drugs permits

to redirect some biochemical fluxes in the network. In

this manner, the critical fluxes and metabolites for the

system are restored to values similar to the ones found

in healthy subjects (Vera et al. 2007). The method

requires the derivation of a mathematical model

describing the dynamics of the metabolic network

under analysis. It is also necessary to retrieve biomed-

ical knowledge required to select the critical fluxes and

metabolites unbalanced in the disease condition, as

well as their values in healthy subjects. Model optimi-

zation is used to determine which biochemical

processes in the network must be modulated, via

drug-mediated inhibition or activation, in order to

move the system from the current values of critical

metabolites and fluxes toward the healthy ones. The

simulation-derived therapeutic treatments may

consider the modulation of one reaction in the network

at a time, but also suggest strategies to develop multi-

factorial treatments. The optimization program

suggested contains at least the following elements.

Objective. An objective function, which translated

in mathematical terms the minimization of the distance

between the values of the critical metabolites and

fluxes in the current systems state with respect to

those in the desired health state:
Min
Xl
j¼1

lj
Xj � XHS

j

XHS
j

�����
�����þ
XP
i¼1

li
Ji � JHSi

JHSi

����
����

" #

where Xj and XHS
j denote the current and the health

values of the metabolites and Ji and JHSi are the
corresponding values for the fluxes, respectively. The

values assigned to the weights lj and ll are propor-

tional to the relative importance of each key metabolite

and flux. Every term in the equation is scaled by its

value in the healthy condition such that all contribu-

tions have comparable weights.

Dysfunction description. A mathematical model

description of the functional origin of the disease,

which is obtained by imposing a characteristic value

to the enzyme activities whose deregulation originates

the pathology:
Xj ¼ XPS
j

Physiological constrains. Some additional equa-

tions grating that the biochemical network configura-

tion obtained is physiologically acceptable. These

equations can be steady-state conditions and upper

and lower bounds in the concentrations of the metab-

olites, respectively:
dXi

dt
¼ 0; i ¼ 1; . . . ; n:

XLB
i 	 Xi 	 XUB

i

The solutions generated by the method are sets of

computationally predicted values for metabolites and

substrates, as well as the required modulation level of

the targeted enzyme. The selected solutions are those

for which the computed values of critical metabolites

and fluxes are sufficiently close to the ones in the

healthy condition without compromising the values

of other metabolites. In Vera et al. (2007) this meth-

odology was used to identify potential enzyme drug

targets for hyperuricemia, a disease associated with

a defect in phosphoribosyl pyrophosphate synthetase,

an enzyme that regulates the de novo metabolic syn-

thesis of purines. The final pathological effect of this

deregulation is an abnormal level of uric acid, which

triggers arthritic pain and nephropathy. We used

a power-law mathematical model of purine metabo-

lism (Curto et al. 1997) and defined a mathematical

optimization program with the structure described

above. We defined as critical metabolite the uric acid

and computed solutions of the optimization program

consisting in the inhibition of enzymes and the

potential application of a diet with low levels of purine
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Fig. 5 Sketch of the

mathematical model for purine

metabolism used in our

analysis (see Vera et al. 2007

for complete description). In

red we highlight the metabolic

fluxes whose inhibition in

combination with a diet low in

purine precursors reduces in

our simulations the levels of

uric acid. Precisely, those

solutions propose the

drug-mediated inhibition

of one of the following

enzymes: Adenine

phosphoribosyltransferase

(Vden), AMP deaminase

(Vampd), RNases to AMP and

GMP (Vrgna, Vrnaa), 5
0

(30)-Nucleotidase (Vdgnuc),

Guanine hydrolase (Vgua), or

xanthine oxidase (Vxd, Vhxd).
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precursors, as well as combinatorial treatments

consisting in the parallel inhibition of two enzymes.

With the method we detected up to six potential single

enzyme targets, including an analogous of the conven-

tional clinical treatment using the drug allopurinol, but

also two other totally unexpected potential drug

targets. When considering potential multifactorial

treatments, numerous possible solutions were detected

(Fig. 5).
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Definition

BST is a fully dynamic modeling framework, based on

ordinary differential equations, in which all processes

are represented with products of power-law functions.

This representation leads directly to specific rules

and guidelines for the design, diagnostics, analysis, and

application of models in various fields of biology.

BST permits several variants, among whichGeneralized

Mass Action (GMA) systems (▶Generalized Mass

Action System) and S-systems (▶S-System) are most

important. Models within BST are called canonical

(▶Canonical Model) in reference to their strict structure

and strong modeling guidelines.
Cross-References
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BioCreative II.5 and the FEBS Letters
Experiment on Structured Digital
Abstracts
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Alfonso

Structural Biology and BioComputing Programme,

Spanish National Cancer Research Centre (CNIO),

Madrid, Spain
Definition

BioCreative is a community challenge to evaluate

applied systems in biomedical text-mining. In the

context of the third installment of this challenge,

BioCreative II.5, the feasibility of using automated text-

mining systems for protein–protein interaction (PPI)

database curation was evaluated. In parallel, FEBS Let-

ters asked manuscript authors to annotate their manu-

scripts with protein interaction information. The author

information then was further utilized byMINT PPI cura-

tors to compare the impact of basing their work on the

author data against their performance when starting from

scratch. The BioCreative organizers evaluated the per-

formance of the curators, authors, and automated systems

individually. Then, curator annotations based on author

data, as well as combined annotations from all text

mining systems, and combining author and automated

systems’ data was compared to those individual results.

Finally, the annotation overlap between curators,

authors, and the best performing automated system

was measured to establish to what extent each of the

three sources would be complementary to the others.
Introduction

The Structured Digital Abstract (SDA) initiative (Ceol

et al. 2008) is an ongoing effort by FEBS Journal and

FEBS Letters to add annotations describing protein–

protein interactions (PPIs) that are reported with exper-

imental verification to publications. BioCreative

(Blaschke et al. 2003; Krallinger et al. 2008) is

a community evaluation of text-mining systems

where the BioCreative organizers ask participants to

perform biologically relevant tasks and then evaluate

the submitted results on a blind test set. In the context

http://dx.doi.org/10.1007/978-1-4419-9863-7_1242
http://dx.doi.org/10.1007/978-1-4419-9863-7_1242
http://dx.doi.org/10.1007/978-1-4419-9863-7_386
http://dx.doi.org/10.1007/978-1-4419-9863-7_1336
http://dx.doi.org/10.1007/978-1-4419-9863-7_1158
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of BioCreative II.5, the third installment of this chal-

lenge, the organizers asked participants to automati-

cally generate parts of the SDAs from FEBS Letters

publications (Leitner 2010a). In total, 15 research

groups worldwide followed this call and participated

in BioCreative II.5. The aim was to provide

a quantitative insight on how well automated systems

can reproduce human annotations. Additionally, anno-

tations were provided by the authors of the papers

themselves as well as by expert bio-curators

of the MINT PPI database (Ceol et al. 2010;

Chatr-aryamontri et al. 2007) in the context of the

associated FEBS Letters experiment. All these results

were evaluated then by the BioCreative organizers

(Leitner 2010b). Together with the author and curator

annotations it was possible to compare the results of

the automated systems to the manual annotations.

The SDA initiative and BioCreative II.5 are the first

quantitative approach to directly compare the impact

of generating annotations for scientific manuscripts

by various plausible approaches, namely, database

curators (Howe et al. 2008), manuscript authors, and

automated text-mining systems. At current funding

levels, PPI databases can only keep up with a fraction

of the data that is published by the biosciences.

This leaves the larger part of generated scientific data

“dormant” in written text: This data is neither trivial

to retrieve or locate by researchers looking for a partic-

ular information, nor is this format accessible for large-

scale datamanipulation as would be required by Systems

Biology or other data mining approaches in Computa-

tional Biology. Therefore, BioCreative II.5 intended to

investigate the feasibility of pursuing new avenues to

increase the coverage of data deposited in structured

repositories as a result of scientific publications, using

PPIs as the exemplary data in this setting. For example,

in the realm of PPIs, the united consortium of all major

PPI databases, IMEx, only manages to cover an esti-

mated 10–20% of the existing interactions, limiting the

reconstruction of interactive graphs for protein interac-

tion maps to a fraction of the existing data and making it

difficult for biologists to determine all known, proven

interaction partners with their proteins of interest.
Methods

The most crucial part of this effort was to produce

a high-quality dataset with near-perfect annotations
that could be used as common basis for the evaluation,

a so-called gold standard. To this end, article

annotations that had initially been made by authors

were refined by three independent MINT database

bio-curators, who continued refining the results until

they reached a consensus annotation for those articles

that matches the MIMIx standard for annotating

PPIs (Orchard et al. 2007). In a second round

of pruning – after the BioCreative participants had

submitted their results – the BioCreative organizers

reevaluated the annotations with the results of the

automated systems and identified potentially errone-

ous annotations by examining results where the auto-

mated systems unanimously reported annotations that

were inconsistent with the curator data; Requesting

the bio-curators counsel on the found inconsistencies

and making corrections where necessary, this third

step produced the final “gold standard” annotations

for the evaluation.

The applied performance measures are intended to

reflect (a) the overall quality of the annotations made

by any of the sources (i.e., systems, authors, and

curators) and (b) the performance of the automated

systems when ranking their results by a probability

score scheme, so-called “confidence values”

(i.e., probability values in the (0,1] range) that partic-

ipants were asked to report together with their annota-

tions. This latter evaluation method was used as

the primary evaluation target, as it measures the

systems’ ability to produce result lists that can be

used by human annotators as initial dataset to

base their own annotation effort on. Therefore, two

statistical measures were used:

(a) The harmonic F-measure (aka. F1-score) for the

overall quality of the result sets (both human and

system annotations)

(b) The area under the interpolated precision/recall

curve (aka. AUC iP/R) for the quality of automated

results given the ranking

The competition itself was carried out online using

an extended version of the BioCreative Meta-Server

(BCMS), a special framework that interacts via web

services with the automated systems provided by the

challenge’ participants (Leitner et al. 2008) (also see

the entry▶BioCreative Meta-Server and Text-Mining

Interoperability Standard in this encyclopedia).

Contrary to the initial version, the extended BCMS

allows participants to take direct control of and

monitor the communication between their

http://dx.doi.org/10.1007/978-1-4419-9863-7_137
http://dx.doi.org/10.1007/978-1-4419-9863-7_137
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systems and the BCMS. This tool set the whole

challenge in an environment that simulated the applied

use case in which these annotations would be

generated online and provided to a human annotator

(see Fig. 1). Furthermore, this also made it possible

to time the systems and factor that variable into the

evaluation’s conclusions.

Finally, in an effort to bring together all sides of

this effort, namely, the publishers, the curators,

and the scientists, a workshop was held in Madrid

(Spain), in 2009, to present the results and discuss

their implications for both the efforts in text-mining

research, the feasibility of adding human annotation

efforts with automated systems, and the outlook of

possible avenues to add annotations to publications

in general.
Pipeline DataServers

BioCreative II.5 and the FEBS Letters Experiment on Struc-
tured Digital Abstracts, Fig. 1 The simulated online setting

of BioCreative II.5 reproduced by the BioCreative Meta-Server.

The gray box “Users” represents the hypothetical human anno-

tator creating a SDA, while the “BCMS” and “Annotation

Servers” form the technical framework created for the challenge
Results

Detailed results are found in the relevant

publications reported across three journals – Nature

Biotechnolgy, FEBS Journal, and IEEE’s Transactions

on Computational Biology and Bioinformatics

(TCBB); all (Leitner 2010a, b, c). They describe the

outcome and conclusions in meticulous detail and

also spurred research of independent organizations –

the challenge’s participants – resulting in nine

additional research articles that formed part of the

TCBB special issue that contains the main BC II.5

article.

The texts this effort is based on, 122 PPI publica-

tions, together with more than 1,000 negative example

articles (i.e., articles that explicitly do not contain PPI

descriptions with experimental evidence) from the

same period and journal (FEBS Journal 2008 and

2009), were provided by the FEBS Journal. With the

friendly permission of Elsevier, they are now accessi-

ble as a free and open resource for further

research projects in text mining (Leitner 2010c). This

resource is available through the BioCreative

homepage (www.biocreative.org), as a so-called

corpus. This alone presents an important achievement,

as text resources with high-quality annotations are –

mostly due to copyright and other legal issues – scarce

and very hard to come by; Furthermore, this resource is

in XML format, which is simpler to read for

machines as opposed to the usual PDF format scientific

manuscripts are made available.
The main comparison of the results of both the

FEBS experiment and the BioCreative II.5 challenge

dealing with each source of annotations (authors,

curators, and text-mining systems) has been published

in Nature Biotechnology; this is also the lead article of

this joint effort. The comparison focused on the correct

annotation of protein [database] identifiers and of the

[binary] interaction pairs found in the SDAs, which

were the main two tasks for the automated systems

in BioCreative II.5. The main conclusions from this

work are:

(a) At least the two FEBS magazines (FEBS Journal

and Letters), Cell (their graphical abstracts), and

the ScienceDirect annotations (provided by NeXT

Bio) – but potentially other publishers, too – are

very interested in adding annotations to their

manuscripts.

(b) Although authors and systems might perform

reasonably well, none of the two produced results

that are sufficient for database standards.

(c) The time requirement of systems is significantly

lower than that of manual annotations

http://www.biocreative.org
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the three sources and the combination of authors and curators (left) and results of individual text-mining systems, including their

performance when taking their ranking into account (AUC iP/R, right)

Task Class

Precision

(%)

Recall

(%) F-Score Task Class

Precision

(%)

Recall

(%) F-Score

AUC

iP/R

Protein

identifiers

Systems 74 55 0.59 Protein

identifiers

Best F-score

(T42, S1)

74 55 0.59 0.53

Authors 84 66 0.71

Curators 96 89 0.91 Best AUC iP/R

(T10, R5)

14 73 0.21 0.57

Authors +

curators

96 94 0.95

Interaction

pairs

Systems 53 34 0.37 Interaction

pairs

Best F-score and

AUC iP/R

53 34 0.37 0.31

Authors 72 57 0.59

Curators 93 83 0.86 Incl. MINT data

(T18, R1)

64 61 0.58 0.58

Authors +

curators

93 89 0.90
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(averaging at 2 min/articles, vs. almost 1 h for the

human annotations) and the quality of systems

seems to be sufficient to at least aid human

annotators.

(d) Systems and authors, although producing lower

quality results than curators, were able to identify

annotations the curators missed, and in the evalu-

ation it became apparent that when one source

based its annotations on another, the quality of

the resulting annotations was higher. For example,

curators basing their annotations on author results

performed better than if the curators started anno-

tating from scratch. A similar correlation is shown

in annotations in the publications between systems

and authors.

Table 1 shows the evaluation results of the

three sources as well as the performance of curators

when basing their annotations on author data (left),
and the detailed results of the best submissions of

text-mining systems from the BioCreative II.5 partic-

ipants (right).
Last but not least, a detailed analysis of the

core text-mining part, that is, BioCreative II.5

itself, that includes a comparison of the systems and

applying various statistical approaches to the 134

result sets produced by the 15 participant teams is

part of the third publication in Transactions on Com-

putational Biology and Bioinformatics. This publica-

tion documents the evaluation metrics (F1-Score,

AUC iP/R), the online setting of the challenge with

the BioCreative Meta-Server, and shows that combin-

ing the results of the text-mining systems with the
author annotations would produce better results than

the two approaches by themselves did.
Perspectives

With the results of the BioCreative II.5 challenge and

the insight created by evaluating it in comparison

with the FEBS Letters SDA experiment, it is clear

that neither curators (databases), nor authors, or text-

mining systems can be tasked with creating the

needed annotations on their own. Our proposal is to

combine the approaches (as combining sources at

least increased performance in terms of quality and

it is likely that adding automated systems will

decrease annotation times) and distribute the effort

between all participants. A theoretical framework for

combining human and machine annotations is

presented in Leitner and Valencia (2008).

A potential outline of this architecture is shown in

Fig. 2 and explained in deep detail in the supplemen-

tary material of the Nature Biotechnology publica-

tion. Therefore, the further development of the

BioCreative Meta-Server from a demonstration

server to a production-ready public service

representing the main resource provided by the text-

mining community is a major objective, and this also

encompasses the generation of an international stan-

dard for annotating scientific texts, which will

increase the interoperability of text-mining systems

and make it easier to interface with tools humans use

to annotate the articles.
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BioCreative II.5 and the FEBS Letters Experiment on Struc-
tured Digital Abstracts, Fig. 2 The target architecture to

integrate authors and text-mining systems in the process of

extracting annotations from scientific manuscripts (see the

chapter ▶BioCreative Meta-Server and Text-Mining Interoper-

ability Standard in this book, too)
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Definition

Over the past decade, text-mining systems have

matured to serve both bioinformaticians and biologists

in a variety of ways. However, this also has the nega-

tive impact that a plethora of protocols, sites, and tools

exist that are not compatible between each other. With

the BioCreative Meta-Server (BCMS) the first proto-

type system to counterbalance this development was

published. Because of uniting several text-mining sys-

tems into one service using one protocol, both access

and use of those resources could be significantly

simplified. In addition, the BCMS provides

a straightforward means to combine results from mul-

tiple text-mining systems, contributing an added ben-

efit that can lead to an even higher quality result than

the individual annotations of the systems available

through the BCMS. To push the capabilities of text-

mining systems even further, a project was recently

launched to create a text-mining community consensus

on an interoperability standard for the annotation of

texts. This project should facilitate the use of annota-

tion systems and annotated texts for both text miners

and consumers of text-mining services.
Characteristics

Over the past decade, many text-mining and informa-

tion extraction systems for biomedical texts have been
developed (Krallinger et al. 2008a). Some of them

have matured to industrial-standard quality sites

that are frequented by many users, such as iHOP

(Hoffmann and Valencia 2004) or Reflect (Pafilis

et al. 2009). Others have developed powerful web

service APIs (application programming interfaces),

as, for example, WhatIzIt (Rebholz-Schuhmann

et al. 2008), or the NaCTeM Service Systems

(Kano et al. 2010). Many more are available as indi-

vidual applications that can be downloaded and

installed. However, all this wealth of available soft-

ware, tools, services, and sites does not come without

cost. Due to no real community agreement on annota-

tion standards, document formats, and the semantics of

the generated data, it is painful to interface between

tools, especially if they are not from the same organi-

zation. Also, the power of even the best systems can be

still outstripped by a consensus result created from

many different systems that all provide the same kind

of annotations (e.g., Smith et al. 2008). In addition, to

use one tool, it often is necessary to rely on results of

another. For example, before identifying gene names

in an article, such a gene name “tagger” can signifi-

cantly gain performance if its annotations are based on

the results of a pipeline that first tags the “part-of-

speech” (PoS) of the words; PoS taggers annotate the

grammatical sense of words, such as verb, noun, adjec-

tive, etc.. However, while it might be easy to find high-

quality tools for one specific task, another area often

can be lacking in terms of the number of systems that

are available. Many tools only come with very basic

command-line interfaces or are system libraries that

only computer experts know how to make use of. This

creates a very high entry barrier for many potential

users. Even worse, in a few cases research groups

decide to not make their tools publicly available; Yet,

they might agree to make their pipeline available as

a web service, so that users can gain access to them but

nobody can gain access to the source code the system

relies on.

All these issues led to a community understanding

that the current status quo is ripe for improvement. In

the area of sequence annotation and structure predic-

tion, these bioinformaticians have years ago already

begun to build distributed systems and meta-services.

The idea is fairly simple: For distributed systems,

instead of having many different protocols and for-

mats, a community agrees to certain standards and

then builds their tools to those specifications
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(nowadays, this design principle is termed “service-

oriented architecture”). The earliest example of such as

system is (Bio)DAS, a distributed sequence annotation

system (Dowell et al. 2001). On the other hand, as

combining results leads to often superior consensus

predictions, structural biology researchers at the same

time begun to create so-called meta-servers (Bujnicki

et al. 2001). In this case, the user contacts a central

“service broker” or “meta-server” with the protein

sequence for which he wishes to receive a structure

prediction. The meta-server, in turn, instead of calcu-

lating a protein structure on its own, forwards this

request to many different prediction servers via web

services. Then the broker waits for the results to return

form those prediction servers, collecting each server’s

result. Once all results are in, the meta-server creates

a superimposed consensus prediction from the individ-

ual the results, which usually tends to be a better esti-

mate of the true protein structure than any single result.

Then the user is informed that his result is ready and he

can fetch the structure and accompanying information

directly from the meta-server.

Both of these approaches would also solve plenty of

the issues mentioned with current approaches in text-

mining: The (Bio)DAS approach shows how to reduce

interoperability problems by defining a standard for the

data exchange. This makes it easy to chain the outputs

of one tool to another and to join or merge data from

several sources. The general web service approach

allows organizations to make the fruits of their

labor available to the public without having to worry

about loosing control over who has access to their

source code. By using the web, a user also does not

need to know anything about command-line interac-

tion or programming and can run sequence annotation

tools and structure prediction services directly from his

browser in a graphical environment he is familiar with.

Last, meta-servers reap the fruits of consensus results,

providing the user with possibly improved results.

All this insight created the motivational basis to

develop the BioCreative Meta-Server (BCMS)

(Leitner et al. 2008). This first prototype was directly

created after BioCreative II, a text-mining community

challenge where information extraction systems are

evaluated by an independent group of judges to mea-

sure the performance of those systems on some topic in

the field of molecular biology (Krallinger et al. 2008b).

This version of the BCMS became the first attempt to

provide true “meta-services” for text-mining to the
scientific community. In essence, it is similar to

a structure prediction meta-server, but instead of

adapting the interface to every possible text-mining

system, it defined a standard exchange format that

any system plugged into the BCMS had to follow.

Thereby, it inherently has advantages similar to the

ones of the BioDAS system – namely, a uniform pro-

tocol and data model. The BCMS prototype requests

and manages annotations of four basic types and works

on PubMed abstracts:

1. Classifying the abstract as to whether it describes

protein–protein interactions

2. Identifying the mentions of genes and proteins in

the abstract

3. Listing of possible mappings to UniProt accessions

for the mentions

4. Listing the most likely organisms the abstract is

discussing

However, the current, publicly available version of

the BCMS is a prototype. It only offers these annota-

tions in a very limited scope: This particular service

broker is limited to the approximately 22,000 PubMed

abstracts used during the BioCreative II challenge.

Therefore, only queries for that data set can be made

and are distributed to the connected servers. In other

words, it is not possible to enter any new text to

annotate, request annotations other than the above

mentioned four base types, or even just query for any

other PubMed abstract.

This prototype project, however, enabled the par-

ticipants and developers of the servers to glean some

very important insights into the endeavor of setting up

a distributed and interoperable annotation system for

biomedical texts to and providing a public, automated

text-mining platform. These problems can be related to

the three layers of interoperability (see Fig. 1): First,

there are low-layer syntactic issues that need appropri-

ate solutions, such as:

• Concurrency and thread management on all servers;

a fair queueing policy of requests on the broker/

meta-server side

• Fail-safe and nonrestrictive handling of the various

possible representations of text in computers (so-

called encoding schemes) on all participating

servers

• Compatibility issues with web service

implementations provided by different platforms

and programming languages (“service

agnosticism”)
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BioCreative Meta-Server and Text-Mining Interoperability
Standard, Fig. 1 The three layers of interoperability (IOP).

The syntactic layer relates to technical problems such as speci-

fications and implementation details. The semantic layer treats
issues related to data content and meaning, and interfaces.

Finally, the systemic layer determines the use-case and process

requirements and outlines the strategy for solving issues on the

two inner layers
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These are just a few of the many technical details

that need attention. Then there are concerns that are

related to the content and meaning of the annotation

data, such as:

• What kind of attribute values are permitted; for

example, that reporting a probability value annota-

tion of zero for an annotation is a violation or how to

report the position of a mention inside a text: either

by counting the number of characters or the number

of bytes up to that mention, which is additionally

obfuscated by the variable multibyte character

nature of many encoding schemas, or via inline

annotations such as XML tags that come with dis-

tinct and possibly larger set of disadvantages for

interoperability

• Which databases to use for the mappings to and

how (e.g., which databases can be used for a gene

annotation or a protein, and, e.g., for UniProt,

whether to map to entry names or to the UniProt

accessions; or how to treat obsolete database

identifiers; etc.)

Are the most prominent issues to agree upon at the

semantic layer. Finally, there are high-level, syntactic

problems that have to be considered, such as:

• Establishing a consensus annotation, runtime

requirements of the servers (if they take too long,

users would get annoyed, but if servers tune the text

processing too much, annotation quality suffers)
• The impact of copyright issues (e.g., only granting

access to a text to which the user has access, espe-

cially for publications, once the BCMS allows to

annotate any text resource)

• Designing an interactive process with the users,

for example, by allowing the user to provide

initial annotations when sending a request,

such as the organism(s) the text treats, which

would significantly reduce the possible number of

protein IDs the systems need to concern themselves

when generating ID mappings (Leitner and

Valencia 2008)

From these insights into issues that have to be

addressed for an “ideal” distributed text annotation

system, and by designing solutions for these problems,

the next stage of the BCMS is now under development

(Fig. 2). The goal will be to provide a framework that

will allow users to request annotations for text in

many of the common document formats (e.g., plain-

text, HTML, XML, Word, or PDF files), permitting

the use of any encoding schema to represent those

texts, having a universal entity annotation schema

that is not limited to a predefined set of types,

avoiding a lock-in into one specific service protocol

by providing the most common ones “out of the box”

(i.e., JSON-RPC, XML-RPC, SOAP, and REST),

providing the ability to query for and annotate any

PubMed abstract, interactively allowing both human

and machine annotations, etc. An important milestone

on this path is to establish a community agreement

on a biomedical text-mining annotation interopera-

bility standard (currently, termed “BAIS” and acces-

sible via web at http://bais.bioinfo.cnio.es/) that

will provide the essential guidelines for any informa-

tion extraction tool, even for systems that do not

necessarily have to be coupled with the BCMS

platform.

At the current state (October 2010), all the

development is by and large still in very early

development stages. Hopefully, a fully functional

BCMS will replace the prototype version that is

currently found at http://bcms.bioinfo.cnio.es/,

running at the Spanish National Cancer Research

Center in Madrid in the near future. Also, the inter-

operability standard (BAIS) should have matured

by that time and currently resides at http://bais.

bioinfo.cnio.es/.

http://bais.bioinfo.cnio.es/
http://bcms.bioinfo.cnio.es/
http://bais.bioinfo.cnio.es/
http://bais.bioinfo.cnio.es/
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BioCreativeMeta-Server and Text-Mining Interoperability
Standard, Fig. 2 The current design proposal for the final

BCMS. Essentially, there are five units, from top to bottom: (1)
Clients accessing the platform, either from a browser or pro-

grammatically via a web service; (2) The front end that provides

the web site and services, accepts documents, queues jobs,

returns annotations, and communicates with PubMed; (3) The

storage layer that is responsible for the data management and

persistency; (4) The back end that processes inline annotations,

manages communication with the text-mining servers, and val-

idates database identifiers, adding supplementary information

(e.g., the protein or gene names) to the annotations; (5) And

the text-mining servers, providing the actual annotations of any

type agreed upon by the community (i.e., BAIS) via web services

again. Blue arrows symbolize communication channels over the

Internet, black dashed arrows outline internal communication

pathways for the BCMS components
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Synonyms

Bioactivity; Pharmacological activity
Definition

Biological activity is “the capacity of a specific molec-

ular entity to achieve a defined biological effect” on

a target (Jackson et al. 2007). It is measured in terms of

potency or the concentration of the molecular entity

needed to produce the effect (Pelikan 2004).

A biological activity is determined by means of

a biological assay.
Cross-References
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▶Drug Target
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Definition

A protein-protein interaction (PPI) network of a certain

organism is a network that contains proteins and

physical interactions between protein pairs. In the

network, each node/vertex is a protein and each edge/

link is a physical interaction.

An interactome refers to a complete PPI network

that contains all protein physical interactions in
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a certain organism. An interactome is usually approx-

imated by combining all known PPI data from large-

and small-scale experiments, expert curations, and

possibly computational predictions.

A general greedy search is any algorithm or method

that makes a locally optimal decision in order to retrieve

or approximate a globally optimal solution. A greedy

searchmethod often contains a candidate set, a selection

criterion, a feasibility criterion, an objective function,

and a solution criterion. The candidate set contains all

candidates that can be added to the solution. The selec-

tion criterion or function determines the best candidate

to add next into the solution. The feasibility criterion

determines whether a candidate can be added to con-

tribute for the solution. The objective function assigns

and calculates a heuristic score for a solution or partial

solution. The solution criterion indicates whether the

final solution is achieved.
Characteristics

Network modules identified by network clustering are

widely suspected to correspond to ▶ functional mod-

ules and complexes. Therefore, module identification

is directly applied for functional module discovery.

The evaluation of identified modules mainly includes

the comparison with known protein complexes and

pathways, as well as ▶ functional enrichment analysis

in modules. Protein complexes data of yeast can be

retrieved from Munich Information Center for Protein

Sequences (MIPS) database (Mewes et al. 1999), and

Kyoto Encyclopedia of Genes and Genomes (▶KEGG

PATHWAY) is the most comprehensive database for

pathway-related information (Kanehisa and Goto

2000). On one hand, identified modules are likely

biologically meaningful if the proteins/genes in the

module overlap with certain protein complexes or

pathways. On the other hand, network modules

are likely functional modules if many of identified

modules have overrepresented functions by their

protein members.

Further applications of identified network modules,

especially in ▶ protein-protein interaction (PPI) net-

works, mainly include protein function prediction by

assigning overrepresented functions in a module to

protein members with unknown functions, as well as

▶ network-based biomarker discovery for disease status

or outcome (Chuang et al. 2007; Zhang et al. 2010).
Protein Function Prediction Based on Modular

Analysis

One application of module identification is to predict

functions for proteins in modules with unknown func-

tional annotations. Such protein function predictions

are based on identified modules as well as known

functional annotations, such as ▶ gene ontology or

Saccharomyces Genome Database annotations

(Ashburner et al. 2000; Cherry et al. 1998).

A straightforward method to predict protein func-

tions is to assign a function shared by the majority

of proteins/genes in a module to other unannotated

protein/gene in the same module, also considering

each of the assigned functions as a function of the

whole module. In this way, proteins with unknown

functions are assigned these shared functions within

the same module. Alternatively, a hypergeometric test

(or one-tailed ▶ Fisher’s test) can be performed for

each function to calculate a p value indicating whether
or not a function is overrepresented by genes/proteins

in a module:

p ¼ 1�
Xk�1

i¼0

j
i

	 

n� j
m� i

	 

n
m

	 
 ;

where n is the number of nodes in the whole network,

j is the number of nodes in the network annotated with

the function, and m is the module size. The p value

indicates the probability of observing at least k proteins
from a module or cluster of size m by chance to have

the tested function, and small p values imply possible

enrichment of certain functions in modules. Given

a threshold for the p value, the significantly overrepre-

sented functions are then predicted for all proteins/

genes in the module and assigned to proteins with

unknown functions. For example, suppose a module

with 20 nodes is identified from a curated human

▶ interactome network from Human Protein Refer-

ence Database (HPRD; the 9th release) (Keshava

Prasad et al. 2009), where each node is a human protein

and each edge indicates a physical interaction between

two proteins, and 18 out of the 20 proteins have

▶ gene ontology annotations. If 16 out of the 18

annotated proteins all have a specific function, for

example GO:0006950 (response to stress), while

among other 9,462 human proteins in the interactome,

1,924 proteins are annotated with this function, then
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http://dx.doi.org/10.1007/978-1-4419-9863-7_478
http://dx.doi.org/10.1007/978-1-4419-9863-7_491
http://dx.doi.org/10.1007/978-1-4419-9863-7_100732
http://dx.doi.org/10.1007/978-1-4419-9863-7_100732
http://dx.doi.org/10.1007/978-1-4419-9863-7_878
http://dx.doi.org/10.1007/978-1-4419-9863-7_878
http://dx.doi.org/10.1007/978-1-4419-9863-7_205
http://dx.doi.org/10.1007/978-1-4419-9863-7_489
http://dx.doi.org/10.1007/978-1-4419-9863-7_451
http://dx.doi.org/10.1007/978-1-4419-9863-7_876
http://dx.doi.org/10.1007/978-1-4419-9863-7_489


B 112 Biological Assay
this function is significantly overrepresented

by proteins in this module, with p value ¼ 1.7e-8 by

a ▶ Fisher’s exact test. Considering that the module

is very likely to be involved in a function related to

response to stress, the other four proteins including the

two proteins with unknown functions can be predicted

or assigned to have this function as well.

Biomarker Discovery Based on Modular Analysis

Another application of modular analysis is the discov-

ery of ▶ network-based modular biomarkers for

disease status or outcome. Such discovery is

performed by combining network modular analysis

with disease-related genomic data and often involves

several steps of scoring and search. Specifically, over-

laying genes from gene expression data of two differ-

ent phenotypes (e.g., disease versus normal control, or

cancer metastatic samples versus primary tumor sam-

ples) onto molecular networks, for example PPI net-

works, will result in a set of connected components, or

subnetworks with disease-related genes. For each

sample from one of the two phenotypes, an activity

score can be calculated for each subnetwork by aver-

aging the normalized gene expression levels of all

genes in the subnetwork. Correlation between the

subnetwork gene activity score and the phenotype

can be assessed by the▶mutual information measure.

Such ▶mutual information between genes in

a subnetwork and the resulting phenotype can be opti-

mized based on a greedy search method by

seeding with one gene and growing the subnetwork

by adding connected genes based on the PPI network.

Finally, a set of subnetworks that can best

classify the two phenotype outcomes are output as

▶ network-based modular biomarkers for disease sta-

tus or outcome.
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Synonyms

Assay; Bioassay
Definition

A biological assay is an experiment that determines

a substance’s biological activity based on its effect on

a specific drug target, relative to that of a standard

preparation (IUPAC 1997). It is also the process by

which the potency of an agent is measured in terms of

the reactions of a specific drug target (Pelikan 2004).
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Synonyms

Diseasome; Gene network; Intercatome; Protein net-

work; Scale-free network; Transcriptional regulatory

network
Definition

The biological networks are constructed from any

type of molecular/biochemical and biological data

to interpret the overall functional and regulatory

schema of any biological system (cell/tissue/organ

and organism). These networks are represented

through wiring diagram of nodes (genes/proteins) and
edges (directed/undirected connections) and classified

into different subtypes.

In other words, the complex biological processes

are presented through the precise interaction and reg-

ulation of 1,000 of molecules. These biological

networks are significantly different from any random

networks and often exhibit ubiquitous properties in

terms of their structure and organization.

Biological networks are developed and analyzed to

understand the pathophysiology of different human

diseases. Such networks also help in identifying

novel biomarkers, candidate genes, pathway cross

talk pattern, etc., leading to the progression/molecular

characterization of complex diseases, i.e., type 2

Diabetes and Cancers.
Characteristics

Network Classification/Network Types

The high-throughput data-collection techniques

like microarrays, protein chips, or yeast two-hybrid

screens determine how and when these molecules

interact with each other. Various types of interaction

networks, including protein–protein interaction, and

metabolic, signaling, and transcription-regulatory net-

works emerge by integrating these data and interac-

tions. Figure 1 describes interrelation across different

types of biological networks, which are mostly

constructed from high-throughput molecular data.

The basic networks are required to study any biological

phenomena or disease includes protein network, sig-

naling and metabolic network, co-expression and tran-

scriptional regulatory network, and protein-DNA

interaction network (Fig. 1). All these networks are

analyzed to identify biologically relevant modular

structure of the networks (Please see the box for Mod-

ular Network).

The classifications of such biological networks are

mostly based on types of input data, information con-

nectivity, architecture topology, and overall functional

interpretations.

Based on aforementioned criteria, some of the

important networks are defined as follows:

1. Protein–Protein Interaction Network

• It is a network of interacting proteins. This is

undirected network, in which proteins are

represented by nodes and the interaction

between the proteins are represented by edges.
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Fig. 1 Biological/molecular networks and relative complexity
It shows sequential increase in complexity in terms of both data

and information. The layers represent different network types

and cross-correlation of different types of molecular networks,

which are finally merged to construct complex disease networks

(Please refer Network Complexity Box for details) (Note: D1,

D2, D3 exemplify related diseases and Gx, Gy, Ga, etc. represent

reported candidate genes for corresponding diseases)
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2. Signaling and Metabolic Networks

• Signaling network is molecular bridge of events

between the cell and the outside environment. It

is directed and is composed of proteins or

enzymes or factors that trigger or suppress the

expression of a number of genes. The signaling

event involves various proteins localizing to

different compartments in the cell and finally

controlling gene expression in the cell nucleus

(Hughey et al. 2009).

• The signaling networks are mostly integrated

with metabolic networks, which are biochemical

reactions along of substrates, metabolites, and
enzymes. The nodes are either metabolites or

enzymes or reactions. It is a directed and

weighted network. It is constructed from the

literature information on reactions, enzymes,

genes, substrate–enzyme concentration, product

concentration, etc. (Ma and Zeng 2003;

Albert 2005).

3. Co-expression Network and Transcriptional Regu-

latory Network

• Co-expression networks are constructed from

the co-expression measures of genes across var-

ious tissue samples. Here, the nodes correspond

to genes and edges represent the connection
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strength which is obtained from the

co-expression similarity. It is also called as cor-

relation or association networks (Horvath and

Dong 2008).

• The co-expression data is modeled to generate

transcriptional regulatory networks, in

which one gene may regulate transcription of

another gene either directly or indirectly.

Here, the nodes are genes that are connected

through directed edges. Arrows in the network

topology diagram indicate that they trigger

the target gene activation, while bars in the

network indicate a repressive effect on the

target gene (Keurentjes et al. 2007). This net-

work presents both physical and functional

interactions composed of genes controlled by

transcription factors. The network is directed

and the node types are genes and transcription

factors. The transcriptional regulatory networks

are having several signature motifs including

feed-forward loop motif, bifan, and auto-

regulatory loops (Dobrin et al. 2004). Descrip-

tions of these motifs are given in the following

paragraphs.

• Feed-forward loop motif – It consists of a pattern

of three genes which is composed of two tran-

scription factors and a target gene. One of the

transcription factors regulates the other while

both together regulate the target gene.

• Autoregulatory loops – It consists of a regulator

gene that in turn binds to its own gene promoter,

thereby bringing autoregulation.

• Bifan motifs – Bifan consists of two source

nodes, which directly cross regulates two target

nodes. Such motifs are common in mammalian

cell signaling and in transcriptional networks.

4. Protein–DNA interaction (PDI) network – It is

constructed from interactions between proteins/

transcription factors and gene regulatory elements

such as promoters, cis- and trans-regulatory ele-

ments. Such interactions lead to temporal gene

expression during development, and other physio-

logical status. Here, the nodes represent “interactor

proteins” and promoters as “DNA targets” while the

edges represent the interactions between them. The

complexity of PDI is dependent on number of pro-

moter targets per interactor/protein (outgoing con-

nectivity) and the number of interactors per
promoter (in coming connectivity). The network is

undirected (Deplancke et al. 2006).
Network Complexity

A rational integration of molecular networks

describes substantial understanding of the com-

plexity of a biological phenomena/molecular

mechanism. For example, a researcher con-

structs biologically important networks sepa-

rately from genomics and proteomics data from

a diseased system. Then, these networks are cor-

related and integrated to develop a single and

meaningful disease model or network. The bio-

logical significance and complexity of

a molecular network increases by integrating

various types of molecular data/networks as

one base and holistic network.
Modular Network

M1

M2

M3

M5

M4

M = Modules

Modular networks are created due to interactions

across smaller subnetwork modules. The biolog-

ical networks are functionally organized into

modules, which are group of genes forming

hubs. Interactions between the modules repre-

sent the cross talk between them. Each module’s

function is determined by the module organizer

genes or proteins. This modular fashion of net-

works reduces the complexity into a small num-

ber of connected structures and function (Rives

and Galitski 2003).
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Disease Mechanism Network

High-throughput molecular, biochemical, and genetic

data are used to construct disease specific networks in

human. Such networks hold high relevance in terms of

elucidating disease mechanism, identification of impor-

tant candidate genes and pathways, biomarkers etc.

There are some landmark developments in the area,

which signify understanding on disease mechanism

and description of human diseasome through the cor-

relation of candidate genes and corresponding pheno-

typic properties. The following network describes

a diseasome.
Phenotypic Disease Network (PDN)

It is the network of interactions between diseases

and the candidate genes. The candidate genes are
linked to a disorder/disease from the known dis-

ease–gene relationship. The nodes correspond to

candidate genes or disease names while the

edges represent the relation between them. This

is a type of undirected network (Goh et al. 2007).

The phenotypic disease network displays

a relation across multiple diseases through

overlapping candidate genes.

Scientists working on specific complex dis-

eases have used various approaches to build dis-

ease networks to understand the disease

mechanism at system wide scale. Studies on

complex diseases like type 2 diabetes, prostate

cancer, lung cancer, colon cancer, glioma,

malaria, and tuberculosis led to the identification

of candidate genes, biomarkers, and novel cross
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talk and protein interaction points. The network

biology approach has led to the discovery of

causative pathways in several of these complex

diseases like androgen receptor (AR) pathway

for metastatic prostate cancer (Vellaichamy

et al. 2010), role of TGFB pathway in inducing

oxidative stress and MAPK pathways to finally

facilitate vascular complications in type 2 dia-

betics (Sengupta et al. 2009). Network-based

analysis has also facilitated discovery of markers

in brain cancer, i.e., identification of CSK21 and

PP1A as progression markers in the pathogenesis

of glioblastoma (GBM) (Ladha et al. 2010).

Glioblastoma

GBM is the most common primary brain tumor occur-

ring in adult population. They are highly malignant and

in turn show several subtypes. System biology appro-

aches have identified potential tumor suppressor genes,

prognostic genes, gene signatures, tumor subtypes,

survival-associated genes, and cell-cycle regulators.

The functionally relevant weighted gene co-

expression network analysis (WGCNA) method has

identified some key molecular targets for glioblastoma

(Horvath et al. 2006). A similar approach has detected

rare cancer driver mutations, which could drive late

tumorigenesis (Torkamani and Schork 2009).

An integrated approach based on DNA copy

number changes and gene expression changes was

used to identify targeted gene signatures, tumor sub-

groups, and potential tumor suppressor genes for glio-

blastoma (de Tayrac et al. 2009). Systems approach

based on combined gene sets and protein interaction

network has been used to develop a prognostic gene

classifier that can predict survival-associated genes

(Zhang et al. 2009).

Another approach combining DNA copy numbers

and mutations, associated with sequences, along with

human interaction networks has helped in identifying

the cancer driver genes and potentially altered modules

(Cerami et al. 2010).

Our own investigation from experimentally vali-

dated upregulated genes and corresponding protein–

protein interaction information has led to identification

of novel and important connecting proteins, CSK21

and PP1A, which are implicated in cell-cycle regula-

tion (Ladha et al. 2010) (Fig. 2).
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Biological Marker

▶Biomarkers
Biological Module

▶Organelle and Functional Module Resources
Biological Network Model

Melissa L. Kemp

The Wallace H. Coulter Department of Biomedical

Engineering, Georgia Institute of Technology and

Emory University, Atlanta, GA, USA
Definition

Biological network model is an abstract, graphical, or

mathematical representation of a biological system

using nodes and connecting edges to denote biomole-

cules and biomolecular interactions, respectively.
Disclaimer: The views presented in this article do not necessarily

reflect those of the U.S. Food and Drug Administration.
Biological System Model

Eberhard O. Voit

The Wallace H. Coulter Department of Biomedical

Engineering, Georgia Institute of Technology and

Emory University, Atlanta, GA, USA

Definition

A biological system model is a mathematical represen-

tation of a biological network, its regulation, and

dynamics.
Biomarker

▶Biomarker Discovery, Knowledge Base
Biomarker Discovery, Knowledge Base

Donna L. Mendrick and Weida Tong

Division of Systems Biology, National Center for

Toxicological Research, US Food and Drug

Administration, Jefferson, AR, USA

Synonyms

Adverse events; Biomarker; Knowledge base; Systems

biology
Definition

The current challenges as well as opportunities in

biomarker discovery lie in the integration of in-house

generated data of multiple types together with diverse

data in the public domain to assess disease and toxicity

at the systems level (systems biology). The knowledge

base approach (Fig. 1) takes advantage of current

advances in computer technology and bioinformatics

to integrate diverse data sets into a content-centric

resource for evaluation of molecular biomarkers in

determining efficacy or adverse events in animals and

humans. Such a knowledge base will spawn hypothe-

ses to develop new studies to address the current gaps

and lead to further improvements in biomarker discov-

ery. New data and information generated from these

studies, in turn, will further enrich the knowledge base.

Knowledge bases are not only important in biomarker

discovery for biomedical research and drug develop-

ment, but also essential for the regulatory agencies for

use as a first tier of information to review drug sub-

missions supported by biomarkers for efficacy or

safety concerns.
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Biomarker Discovery, Typical Process

Emily A. Moon and Marquis P. Vawter

Functional Genomics Laboratory, Department of

Psychiatry and Human Behavior, University of

California, Irvine, CA, USA
Definition

Biomarker – a specific physical measure or indicator of

healthy biological processes, disease states, or phar-

macologic responses to treatment. Can be a predictor

of disease severity, onset, or recovery; does not have to

be related to pathophysiology, may be an indirect

marker of pathophysiology.
Characteristics

The discovery of novel biomarkers represents

a lucrative future of preventative, predictive, and

personalized medicine (▶Biomarkers, Clinical Rele-

vance). A great subset of funding from the pharmaceu-

tical and clinical diagnostic industries and government

sponsors has resulted in the detection and validation of

biomarkers relevant to disease state, point of care
monitoring, drug-metabolism, drug-efficacy, and

drug-toxicity biomarkers. The processes by which bio-

markers are discovered vary, depending on the type of

biological materials and health or disease states being

investigated. Typically, the process begins when

researchers discover an association between a specific

indicator and a disorder, diagnosis, or drug response,

usually out of a large number of indicators that are

analyzed in the initial phase of the study. These signif-

icant indicators are then verified through a range of

tests and analyses, depending upon the biomarker

being studied, and then validated in a larger sample

set that seeks to replicate the biomarker association

across multiple populations. Regardless of the course

that researchers take in the biomarker discovery pro-

cess, however, this process is only the initial step in

a path toward clinical validation and commercializa-

tion of novel biomarkers.

Perhaps the best way to understand the biomarker

discovery process is to look at a few examples within

the discovery of blood-derived biomarkers.

RNA

RNA biomarkers are typically RNA measurements

that are indicators of normal biologic processes, dis-

ease states, toxicological reaction, or therapeutic

response to treatment. RNA species can include

microRNA, message RNA, ribosomal RNA, and

http://dx.doi.org/10.1007/978-1-4419-9863-7_212
http://dx.doi.org/10.1007/978-1-4419-9863-7_212
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represents greater expression of the HLA-CD74 gene
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transfer RNA levels, as well as RNA editing and splic-

ing of message RNA. Alterations in the sequences and

expression of the RNA molecules are commonly used

biomarkers. The RNA biomarker discovery process

begins with the recruitment of individuals for

a biomarker study and the isolation of RNA from

subjects’ whole blood or peripheral blood mononu-

clear cells (PBMCs), or generation of lymphoblastic

cell lines (LCLs). Researchers typically screen the

known set of genes with candidate genes generated

either from published studies or unpublished pilot

studies done by the researcher that repeatedly show

expression alterations in the state of interest, as com-

pared to normal expression. These putative biomarkers

are usually compiled via gene-focused microarray

analysis of whole blood, LCL, or PBMCs. Once

a gene, gene list, or network of genes of interest is

compiled, high quality RNA from subjects that meet

the researcher’s inclusion criteria is transcribed into

cDNA and expression data is generated via quantita-

tive PCR, normalized with an appropriate reference

gene. The qPCR data can be generated with real-time

amplification plots (Fig. 1) and is analyzed to evaluate

the ability of individual and composite gene expression

markers to differentiate cases from controls based on

transcript abundance as well as to validate the micro-

array results. The primary endpoint of the RNA bio-

marker discovery process is the area under the curve

(AUC) of the Receiver Operating Characteristic

(ROC) curve (▶Area Under the ROC Curve,

▶Receiver Operating Characteristic (ROC) Curve).

The ROC is a plot that measures classification perfor-

mance of a model across the entire range of thresholds

(Dwinnell 2010). The ROC curve is generated by

graphed data points of the true positive rate (sensitiv-

ity) and the false positive rate (100 minus specificity).

The more the ROC curve breaks toward the top-left of

the graph, the better the model is at separating cases

from controls, as opposed to a random prediction

shown by the dashed line (Fig. 2). Thus, AUC of the

ROC represents the predictive ability of the gene

expression markers, and a greater AUC correlates to

a stronger predictive marker. If an expression profile

based on the ROC can be developed for cases versus

controls, the biomarker can be used for early detection,

monitoring, and treatment decisions with predictive

medicine for disorders, and with the added benefit of

greater cost effectiveness.
DNA

Genomic biomarkers can be characterized by varia-

tions in DNA: single nucleotide polymorphisms

(SNPs), haplotypes, insertions, copy number variation,

inversions, deletions, or methylated cytosine residues.

Relevant SNPs can be determined from a subject’s

isolated DNA by direct sequencing or SNP genotyping

assays which employ fluorescence technology to

assess genotypes. Figure 3 shows an allelic discrimi-

nation plot generated from a TaqMan SNP genotyping

assay from Applied Biosystems (Foster City, CA).

▶ Fluorescent markers are detected at the locus of

interest, depending on genotype of the sample. The

blue cluster is a software call of homozygous Allele

Y, marked with FAM fluorescence, and the red cluster

is a call of homozygous Allele X, marked with VIC

fluorescence. Dual fluorescence, an indicator of

heterozygosity, is seen as the green cluster centered

between the two fluorescent extremes. The results of

multiple SNP genotyping assays or sequencing

studies can be analyzed together to find haplotype

biomarkers.

Copy number variation (CNV) assays consisting of

a primer/probe reagent mixture can be purchased from

http://dx.doi.org/10.1007/978-1-4419-9863-7_209
http://dx.doi.org/10.1007/978-1-4419-9863-7_242
http://dx.doi.org/10.1007/978-1-4419-9863-7_192
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bioscience companies, or can be created in the labora-

tory using primer and probe and standard dilutions of

calibrated DNA references. Figure 4 shows a table

generated by CopyCaller after an Applied Biosystems

CNV assay run on an ABI 7900HT PCR system

(Applied Biosystems, Foster City, CA). The assay

uses a multiplex reaction that includes a reference

assay and a target assay, and the cycle numbers of

the two assays are compared for each sample, and

a copy call is generated. CNV calls are analyzed to

determine their predictive power of the characteristic

of interest.

Methylation of cytosine deoxyribonucleotides in

DNA (▶DNA Methylation) has been added to this

critical list of genomic biomarkers, and there has

been a flood of methylation research in all fields of

medicine to discover valid epigenetic markers.

DNA cytosine methylation is stable, and although

not permanent, could mark transition states from

health to disease as well as environmental alterations

to the epigenome. Biomarkers of methylated DNA

are typically discovered via PCR techniques, as

methylated DNA is readily amplifiable and easily

detectable. Typically, DNA is treated with sodium-

bisulfite, which converts cytosine residues to uracil.
PCR and nucleotide sequencing is then used to detect

the converted base pair and confirm the presence of

methylation at cytosine residues (Shiraishi and

Hayatsu 2004). DNA hypermethylation usually occurs

near or within the promoter region of genes, although

http://dx.doi.org/10.1007/978-1-4419-9863-7_351


B 122 Biomarker Discovery, Typical Process
microarray probes can measure methylation

changes across all regions of genomic DNA. Bio-

markers of methylation are particularly useful, as

screening in at-risk populations can occur with

minimally invasive techniques. Multiple studies

show that DNA methylation of certain loci can be

detected in blood, sputum, bronchoalveolar lavage,

and, potentially, exhaled breath-condensate (Anglim

et al. 2008).

Proteins

Protein biomarker discovery (▶Biomarkers, Protein

Expression) can be defined as the process by which

the differential expression of proteins in diseased

versus healthy or transitional states is first identified.

Protein biomarker discovery can use model systems

(i.e. mouse models, cell lines) or the analysis of

a variety of human biological fluids including blood,

urine, tissue lysates, and cerebrospinal fluid. Protein

biomarker discovery commonly employs two-

dimensional gel electrophoresis and mass spectrome-

try technology to separate and identify differential

expression of proteins in diseased and normal states,

via measurement of peptide abundance.

From this first pass separation and identification

analysis, a list of candidate biomarker proteins is gen-

erated. These lists generally consist of hundreds of

candidate biomarkers, with a high rate of false posi-

tives. A biomarker candidate verification phase

reduces the number of false positives and ensures that

only the most promising putative biomarkers found in

discovery go on to the validation phase. Human plasma

(if not used in the discovery process) is typically ana-

lyzed during verification, as it is considered the most

comprehensive illustration of the human proteome and

is in contact with all tissues and could be a sentinel of

the disease processes (Anderson and Anderson 2002).

Once a candidate biomarker has been verified, it can

move on to the clinical validation and commercializa-

tion process.

Caveats of Biomarker Discovery: DNA Versus RNA

Versus Protein

DNA diagnostics such as SNPs are useful but often do

not reflect variants that have a biological role. More-

over, DNA variants do not provide critical information

on the environmental factors that are important for

pathogenesis of these diseases except in cases of epi-

genetic biomarkers. Protein biomarker discovery,
though rich in promise, is not always a particularly

fruitful endeavor. Several limiting factors to protein

biomarker discovery exist and include:

• The relatively low abundance of some biomarkers

in the proteome that must be detected in a complex

matrix and the lack of means to amplify these infre-

quent markers

• The post-translational complexity of protein bio-

markers in human blood and biological fluids mak-

ing detection somewhat ambiguous

• The variability in human population and

pathologies that make valid biomarkers very

difficult to detect and apply to disease states (Rifai

et al. 2006)

Further, on a genome-wide basis, protein or multi-

proteins levels are quite difficult to obtain and techni-

cally not feasible at this time. However, this is not as

large of a problem for RNA diagnostics, which evalu-

ate the expression of the genes in question. Because

gene expression can reflect both genetic and environ-

mental influences, it may be particularly useful for

identifying risk factors for complex disorders which

are thought to have a multi-factorial polygenic etiol-

ogy in which many genes and environmental factors

interact. In addition, multiple gene biomarkers can be

used to identify disease risk and to predict or monitor

drug response. Lastly, novel RNA diagnostic tools can

be employed with PBMCs, whole blood or LCLs,

providing more options for researchers and

practitioners.

Other Biomarkers

Besides the trilogy of RNA, DNA, and protein, the

field of biomarkers routinely engages the use of

other diverse measures such as metabolomics, lipids,

small molecules such as steroids, and toxic environ-

mental residues in bodily tissues. Also to be consid-

ered as biomarkers are the following imaging

techniques: computed tomography, magnetic reso-

nance imaging, positron emission tomography, and

ultrasound. Electrophysiological measures such as

electroencephalogram, electrocardiogram, and elec-

tromyogram are considered informative biomarkers,

to accurately measure tissues of interest in disease

or transitional states. Biomarker discovery in

these categories follows a process similar to that of

blood-derived biomarkers, but with verification and

validation stages and analyses that suit the biomarker

in study.

http://dx.doi.org/10.1007/978-1-4419-9863-7_214
http://dx.doi.org/10.1007/978-1-4419-9863-7_214
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Cross-References

▶Area Under the ROC Curve

▶Biomarkers, Clinical Relevance

▶Biomarkers, Protein Expression

▶DNA Methylation

▶ Fluorescent Markers

▶Receiver Operating Characteristic (ROC) Curve
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Biomarkers

Donna L. Mendrick and Weida Tong

Division of Systems Biology, National Center for

Toxicological Research, US Food and Drug

Administration, Jefferson, AR, USA
Synonyms

Biological marker; Molecular marker; Surrogate

endpoint
Definition

A biomarker is a characteristic that is objectively

measured and evaluated as an indicator of normal
Disclaimer: The views presented in this article do not necessarily

reflect those of the US Food and Drug Administration.
biologic processes, pathogenic processes, or pharma-

cologic responses to a therapeutic intervention

(Biomarkers Definitions Working Group 2001).

A biomarker can be used as an indicator of a change

or, if it meets the highest standard of proof,

a surrogate endpoint that is expected to predict clin-

ical benefit (or harm, or lack of benefit or harm) based

on epidemiologic, therapeutic, pathophysiologic, or

other scientific evidence.

Biomarkers are widely used in medicine, drug

discovery and development, and safety assessment.

They serve as indicators for disease progression

(diagnosis and prognosis), therapeutic responses

(efficacy), and adverse side effects (safety) in organ-

isms, organs, and/or cells. An ideal clinical biomarker

should contain the following characteristics (Lesko

and Atkinson 1999): (1) clinical relevance, (2) sensi-

tivity and specificity to treatment effects, (3) reliabil-

ity, (4) practicality, and (5) simplicity.

Biomarkers need to be qualified to define

their specific use and context (fit for purpose). How-

ever, most biomarkers in use today have not been

evaluated in a comprehensive qualification process

(Goodsaid et al. 2008). This, unfortunately, means

that new biomarkers are being compared to older

ones for which a full understanding of their

context for use is not known. Currently, there is no

widely accepted framework for biomarker qualifica-

tion. The FDA has taken an initiative to develop

a consistent and standardized qualification frame-

work for the acceptance of biomarkers for regulatory

use. Such a regulatory driven effort will facilitate

communication between regulatory agencies, phar-

maceutical companies, the research community, clin-

ical practice, and consumer participants for

evaluation of the biomarker-surrogate-clinical end-

point relationship in different settings and

applications.

Current biomarker discovery increasingly is

relying on emerging molecular technologies that

aim to determine the causal and mechanistic relation-

ships of molecular markers with clinical endpoints.

The representative technologies and associated bio-

marker types are summarized in Table 1, and most

of them are high throughput or high content in

nature. These technologies can be applied indepen-

dently or in parallel; the latter is able to identify

multiple biomolecules at different level of biological

complexity.

http://dx.doi.org/10.1007/978-1-4419-9863-7_209
http://dx.doi.org/10.1007/978-1-4419-9863-7_212
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http://dx.doi.org/10.1007/978-1-4419-9863-7_242
http://matlabdatamining.blogspot.com/
http://matlabdatamining.blogspot.com/
http://dx.doi.org/10.1007/978-1-4419-9863-7_100119
http://dx.doi.org/10.1007/978-1-4419-9863-7_100946
http://dx.doi.org/10.1007/978-1-4419-9863-7_247
http://dx.doi.org/10.1007/978-1-4419-9863-7_247


Biomarkers, Table 1 An emerging molecular technology landscape in biomarker discovery

Different

biological levels

Scientific disciplines and their representative molecular

technologies Data type Biomarkers

DNA Genetics/epigenetics: Genome Wide Association Study

(GWAS), next generation sequencing

SNP variation Genetic

markers

RNA Genomics: microarrays; next generation sequencing Gene expression Genomic

markers

Protein Proteomics: 1D/2D gel coupled with MS or MS/MS Protein profiling Protein markers

Metabolite Metabolomics: NMR and MS Metabolites Metabolomics

markers

Cell Drug screening: cell-based assays Multiple mechanistically

relevant parameters

Cellular

biomarkers
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Marquis P. Vawter and Emily A. Moon

Functional Genomics Laboratory, Department of

Psychiatry and Human Behavior, University of

California, Irvine, CA, USA
Definition

Human blood provides a source for multiple types of

biomarkers. Within blood, biomarkers can be found in

multiple components (plasma, serum, cellular) at the

following levels.

Functional Genomic

A functional genomic biomarker can be defined as an

RNA characteristic that is an indicator of normal
biologic processes, disease states, toxicological reac-

tion, or therapeutic response to treatment. RNA species

can include microRNA, message RNA, ribosomal

RNA, transfer RNA levels, as well as RNA editing

and splicing of message RNA. Alterations in the

sequences and expression of the RNA molecules are

commonly used biomarkers.

Genomic

Genomic biomarkers can be characterized by varia-

tions in DNA (single nucleotide polymorphisms,

insertions, copy number variation, translations,

inversions, haplotype effects or deletions). A

recently discovered single nucleotide biomarker

predicting response to Hepatitis C treatment is

a relevant example of a DNA level biomarker of

therapeutic response to pegylated interferon-alpha-

2b. The CC genotype at rs12979860, located 3 kb

from the IL28B gene on chromosome 19, is associ-

ated with a twofold greater rate of sustained viro-

logical response (the absence of detectable Hepatitis

C virus) at the end of pegylated interferon-alpha-2b

treatment, over the TT genotype (Ge et al. 2009).

Genomic screening also increasingly includes mito-

chondrial DNA as a biomarker for mitochondrial

diseases, and there are databases developed that list

all mitochondrial DNA mutations associated with

disease such as MITOMAP (http://www.mitomap.

org/MITOMAP).

Epigenomic

DNA methylation involves the addition of a methyl

group to DNA and is essential for normal develop-

ment. Mammalian DNA methylation occurs mostly at

the number 5 carbon of the cytosine of a CpG

http://dx.doi.org/10.1007/978-1-4419-9863-7_214
http://dx.doi.org/10.1007/978-1-4419-9863-7_216
http://www.mitomap.org/MITOMAP
http://www.mitomap.org/MITOMAP
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dinucleotide. Approximately 75% of all CpGs are

methylated, and unmethylated CpGs are clustered in

“CpG islands,” generally located at the 50 end of

a gene. Inmany disease processes, CpG islands undergo

abnormal hypermethylation. Hypermethylation has

been found to be a powerful biomarker for prostate

cancer screening, detection, and diagnosis (Nakayama

et al. 2004), as well as early detection and monitoring of

lung cancer (Belinsky 2004). DNA methylation may

also be useful for monitoring adverse environmental

effects upon DNA.

Peptides and Proteins

Proteins and peptides are often studied in the bio-

marker discovery process, as proteomics gives

a much better dynamic understanding of an organism

than genomics. Human plasma is thought to be the

most comprehensive representation of the proteome

and of all body tissues and processes. Protein bio-

marker discovery faces many challenges given the

complexity of the proteome; the difficulties in studying

low abundance proteins, where many biomarkers are

thought to exist; and the variation within populations

and pathologies. Protein biomarker discovery will

become a more fruitful endeavor as high throughput

proteome technologies and data mining continue to

advance.
Metabolomics

Metabolomics, the study of the small molecules

(such as metabolites) that chemical processes leave

behind, is a rapidly emerging field of study and

rather promising source of novel biomarkers. Study-

ing these molecules, via mass spectrometry or capil-

lary zone electrophoresis, is particularly useful in

biomarker discovery, as metabolomics takes into

account the way lifestyle, diet, and environment

affect the health of an individual, in addition to

genetics. Additionally, as compared to the genome,

transcriptome, and proteome, the metabolome is

very small, and with a high translatability across

species and eukaryotic and prokaryotic cells.

One caveat of metabolomic biomarker discovery,

however, is the enormous amount of data that is

generated from metabolomic mining studies. Analyt-

ical technologies must advance in order to fully elu-

cidate the potential of the information-rich field of

metabolomics.
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Functional Genomics Laboratory, Department of

Psychiatry and Human Behavior, University of

California, Irvine, CA, USA
Definition

Biomarkers have significant clinical relevance as diag-

nostic tools. Finding diagnostic biomarkers for dis-

eases that can only be identified by observation and

patient self-reports, like schizophrenia and

Alzheimer’s, can direct proper treatment and, for dis-

eases where cure or improvement in prognosis is

related to early detection and intervention, potentially

extend the lives of affected patients.

Biomarker discovery represents a plausible

future of preventative, predictive, and personalized

medicine.

Preventative

An example of a preventative biomarker is blood pres-

sure, used to assess risk for coronary heart disease

(CHD) in a population. A meta-analysis of nine studies

of over 400,000 subjects found that there was

a positive, continuous, log-linear relationship between

diastolic blood pressure (DBP) and stroke/CHD events

(MacMahon et al. 1990). Blood pressure screening

represents a preventative biomarker that, when

indentified, can be used to direct treatment for lower-

ing DBP, either via drug therapies or changes in diet

and exercise.
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Predictive and Personalized

Biomarkers can also be used to predict the efficiency of

drug treatment in affected patients. One example of

a drug-response predictive biomarker is cytochrome

P450 2D6 (CYP2D6), a gene predominantly expressed

in the liver and involved in the metabolism of many

drugs, including antidepressants and tamoxifen, which

is biotransformed to the estrogen receptor blocker,

endoxifen, by the CYP2D6 enzyme. Among women

with estrogen-dependent breast cancer, tamoxifen is

the most widely used drug therapy in tumor suppres-

sion. Studies on CYP2D6 polymorphisms suggest that

individuals carrying functional variants associated

with deficient CYP2D6 metabolism receive less cura-

tive benefit from tamoxifen and are at a higher risk of

relapse than those without these variants (Goetz et al.

2007). Screening breast cancer patients for these

variants can guide practitioners in developing a more

personalized and effective treatment plan. In this

example, prediction of better survival rates for patients

with estrogen-dependent malignancy treated with

tamoxifen is conditioned on the genetic variant that

increases tamoxifen bioavailability.

Biomarker discovery also plays a role in clinical

economics; as health care moves more toward individ-

ualized care, the market for biomarker commercializa-

tion has grown substantially. The increased allocation

of health-care resources to molecular diagnostics has

created a $23 billion dollar potential global market of

high-cost, high-profit products (Wilson et al. 2007). As

an example, prescreening patients in a drug trial based

upon a genetic variant can potentially limit the cost of

achieving positive results by reducing the number of

non drug responders enrolled.
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Research Group, University of Groningen, Groningen,
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Synonyms

Machine learning; Model cross-validation; Model

testing; Model validation
Definition

Biomarker discovery is a complex procedure

consisting of discovery and validation phases. In

cases where there are no assumptions about the under-

lying molecular mechanism of a disease, the discovery

phase consists of comprehensive profiling using the

biological fluid, which will be used for the final diag-

nostic test. Analytical methods applied for comprehen-

sive profiling are time-consuming and have low

sample throughput, while they provide quantitative

information on several hundreds or thousands of pro-

teins or metabolites. The aim of statistical analysis is to

select from these compounds those that may have an

association with the biological states in question, such

as diseased vs. healthy. However, due to the low

sample size relative to the number of measured com-

pounds, the outcome of statistical analysis may lead to

the selection of spurious biomarker candidates that do

not have a strong correlation with the biological state

that is being monitored. Supervised statistical classifi-

cation methods have different assumptions, which may

not always be true, such as even distribution of features

across the data set, similar variance in case control

sample groups. There are assumptions about the gen-

eralization of findings and that a real association exists

between the identified biomarkers and the investigated

conditions. In addition, statistical methods in cases of

low sample size and large quantified compounds tend

toward overfitting, especially in cases where the out-

come of classification is a combination of multiple

compounds. Latent parameters not taken into consid-

eration at sample selection, collection, storage, or

analysis may influence the outcome of biomarker
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discovery and may result in poor classification perfor-

mance to classify new sample sets using the model

built with previously identified biomarkers (Mischak

et al. 2010).

To test the association strength between the selected

biomarkers and the studied biological state as well the

generalizability of the classification, validation with an

independent sample set is compulsory. The selection

of a new sample set should be based on the same

clinical criteria that were used in the study to identify

the biomarker panel, and these clinical criteria should

also be applied in the final diagnostic test. For exam-

ple, if samples with a certain age range are used to

perform discovery and validation studies, the final

diagnostic test is only valid for that age range. In

order to minimize the influence of latent variables it

is advisable to perform the validation in a multi-center

setting with blinded samples. Application of a faster

analytical method targeting only the selected com-

pounds is recommended for the validation phase to

increase the statistical power. For example, when com-

prehensive profiling using label-free LC-MS is applied

in the discovery phase, targeted Multiple-Reaction-

Monitoring (MRM) may be used to quantify the iden-

tified discriminating compounds in the independent

data sets. MRM acquisition enables faster analysis,

resulting in higher sample throughput. Both the dis-

covery and validation data sets should have a large

enough sample size to provide meaningful statistical

outcome (Mischak et al. 2010; Feng et al. 2004). How-

ever, use of an independent validation data set with

enough power is a necessary but not sufficient condi-

tion to identify a clinically successful biomarker panel,

but other parameters such as sample selection, collec-

tion, characterization and handling, and a clear state-

ment of the clinical objectives are also important.

Predictive value of the diagnostic test should be deter-

mined on the independent validation set as it provides

unbiased results compared to the more optimistic pre-

dictive value determined using only the data set used

for discovery (Azuaje 2010).
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Department of Pharmacy, Analytical Biochemistry

Research Group, University of Groningen, Groningen,

The Netherlands
Synonyms

Biomarkers; Independent validation; Protein expres-

sion; Solid tissue
Definition

Biomarkers are characteristics that are objectively

measured and evaluated as indicators of normal

biologic processes, pathogenic processes, or pharma-

cologic responses to a therapeutic intervention

(Biomarkers Definitions Working Group 2001). In

most cases, biomarkers are related to compounds

such as proteins or metabolites, whose concentrations

are specifically correlated to the biological state(s).

Biomarkers are mostly used to diagnose diseases and

to monitor disease progression and treatment effi-

ciency. Other physical measures such asMRImeasure-

ments, PET images, or imaging mass spectrometry

data may be used as biomarkers; however, in most

cases, these measures are strongly correlated with the

molecular change due to disease. A surrogate marker

(Katz 2004) is a laboratory measurement or physical

sign that is used in therapeutic trials as a substitute for a
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tribution of hypothetical protein biomarker in group of samples

obtained from healthy control group and diseased individuals.

The difference of the concentration distribution and the cut-off

value define the number of true positive (TN), false positive

(FP), true positive (TP) and the false negative (FN)
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clinically meaningful endpoint, and it is a direct mea-

sure of how a patient feels, functions, or survives and is

expected to predict the effect of the therapy. The main

difference between a surrogate marker and a biomarker

is that a biomarker is a meaningful “candidate” for

a surrogate marker, and a surrogate marker is a test

used as a measure of the effects of a specific treatment.

Proteins are most suitable for biomarkers as their

expression is regulated in correlation with the general

state of living organisms and contributes considerably

to the display of the phenotype. In an experimental

context, this means measuring protein concentration

distribution in samples obtained at different biological

states. Figure 1 shows different concentration distribu-

tions of a hypothetical biomarker between two stages,

corresponding to the healthy and diseased stages.

Overlap between the two concentration distributions

and the cut-off value define the Type I (number false

positive or FN) and Type II errors (number false neg-

ative or FP) and specify the sensitivity and specificity

of the test. The area under the receiving operation

curve (AUROC) can be used to compare efficiency of

different diagnostic tests.

Proteins have a complex life cycle from synthesis

on the ribosome to the ubiquitin degradation

mechanism. During the life span of a protein it may

undergo several chemical, isomerization, and sterical
modifications, and modified proteins may perform dif-

ferent biological roles. This may lead to an enormous

explosion in the number of protein forms, and sophis-

ticated analytical methods are required to distinguish

between the different forms. The situation is further

complicated because the activity of proteins may be

influenced by many factors, such as cofactors, forma-

tion of protein complexes, local pH conditions, and the

presence of natural inhibitors, and often in is not the

concentration but the activity of the protein that is in

strong relation with the disease state. This has lead to

the development of analytical methods providing

activity profiles of classes of proteins (Fig. 2).

For diagnosis and treatment, follow-up biomarkers

are mostly detected from easily accessible body fluids

such as blood, urine, and saliva or from the cerebro-

spinal fluid. However, in body fluids, the difference

between the concentration of the least and most

abundant compounds is large (11–12 orders of magni-

tude in the case of human blood) (Schiess et al. 2009).

Interesting biomarker candidates originating from the

diseased tissue(s) or organ(s) are mixed with com-

pounds from all other parts of the body, providing

a huge challenge for detection by analytical chemistry.

Other biomarker discovery approaches first identify

biomarker candidates directly in the diseased cells,

tissues, or organs, followed by subsequent validation

of the identified candidate compounds or their specific

metabolites if they are present in sufficient amount in

easy accessible body fluids, where the final diagnostic

test is applied.

The most widely used techniques are antibody-

based ELISA tests, protein arrays, and specific LC-

MS analysis. Research to identify new biomarkers is

composed from biomarker discovery process, where

a high number of proteins are identified in low number

of samples using comprehensible quantitative analyti-

cal techniques such as protein arrays, LC-MS, or

SELDI measurements. This is followed by identifica-

tion of the most discriminating peaks between

predefined class of samples (e.g., healthy and disease)

and validation of the biomarkers on large number of

samples using fast, targeted analytical methods such

as MRM-based LC-MS or ELISA tests. The final val-

idation comprises the exploration of the role of

the biomarker compound(s) in the mechanism of the

disease.
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Biomarkers, Protein Expression, Fig. 2 Plasma protein con-

centration showing three main categories (classical plasma pro-

teins, tissue leakage products, signaling compounds e.g.,

cytokines). Red dots indicate proteins that were identified by

the HUPO plasma proteome initiative and yellow dots represent
currently utilized biomarkers (Figure taken from Schiess et al.

(2009))
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Affinity-based protein arrays or two-dimensional

gel electrophoresis with mass spectrometric identifica-

tion are able to quantify whole intact proteins. Due to

the difficulties to separate intact proteins with reverse-

phase chromatography compatible with MS detection,

LC-MS methods use protein fragments obtained with

cleavage of protease enzymes such as trypsin. In this

approach, which is also called as shotgun proteomics,

the better chromatographic separation is at the expense

of obtaining higher sample complexity, which

results in difficulty to obtain exact quantification of

the intact protein in the presence of proteins with

high homology having few peptides in common or

proteins having partly different type of post-translation

modifications. Quantification of compound using mass

spectrometry can be also performed in several ways.
Methods without using any chemical modifications are

called label-free, and methods using chemical reaction

or incorporation of amino acids with non-natural iso-

tope compositions form one other type of protein quan-

tification method.
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Ronnie Alves

Instituto de Informática, Universidade Federal do Rio

Grande do Sul, Porto Alegre, Brazil
Synonyms

Gene ranking; Order statistics; Transcriptomic data

analysis
Definition

Biomolecular markers (Biomarkers) include altered or

mutant genes, RNA, proteins, lipids, carbohydrates,

small metabolites molecules, and changed expression

states of such markers that can be correlated with

biological behavior or a clinical outcome. Most of the

discovered biomarkers are based on changes in gene

expression patterns from profiling (Transcriptomic)

studies (Ewens and Grant 2004).

In order to make a clear definition of the term “bio-

markers” solely based on gene expression data, let us

define gene expression data as a pair GED ¼ (g,c),
where the m � n matrix g ¼ (gij)i ¼ 1,. . .,m; j ¼ 1,. . .,n

contains m observations of the random vector (G1,. . .,

Gn) (as an example, the expression levels of m genes),

and c ¼ (c1,. . .,cm) stores either an experimental con-

dition C fixed by design or the response variable of

interest for those m observations. Let us define

a ranking of the variables G1,. . .,Gn as a permutation

r ¼ (rj)j ¼ 1,. . .,n of (1,. . .,n), where rj is the rank of the

variable Gj with respect to its association between the

considered gene and C, either positive or negative.

A ranking provides an ordered gene list

gl ¼ (glk)k ¼ 1,. . .,n defined by
Glk¼ j , rj ¼ k for all j; k ¼ 1; . . . ; n: (1)

Taking the differential expression of a gene G54, the

variables r54¼ 1 and gl1¼ 54 mean that G54 is pointed

as the most differentially expressed gene. Since gl is an

ordered list, the k top genes in the list gl1,. . .,glk form
the Top-K gene list (k << n). Biomedical reports

usually report gene lists ranging from the Top-10 to

the Top-50 (Lockhart and Winzeler 2000; Parmigiani

et al. 2003).
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Synonyms

Biomarkers; Protein expression
Definition

Biomarker discovery approaches based on case-

control studies of solid tissues or organs are best placed

to provide compounds with a close relation to the

disease. However, diagnostic tests are generally

applied to easy accessible body fluids such as blood,

urine, saliva, or cerebrospinal fluid, and, in most cases,

sampling solid tissues and organs affected by

pathological alterations is too invasive for the patient.

Therefore, compounds strongly associated with the

disease indentified in solid tissues and organs need to

find their way directly or indirectly to the body fluid

sampled for the diagnostic test. A further complication

is that such compounds, after being transported to the

target body fluid, are surrounded by a large number of

other compounds having a large dynamic
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Fig. 1 Workflow for MALDI

imaging mass spectrometry

analysis. Schematic outline of

a typical workflow for fresh

frozen tissue samples. Sample

pre-treatment steps include

cutting and mounting the

tissue section on a conductive

target. Matrix is applied in an

ordered array across the tissue

section and mass spectra are

acquired at each x,

y coordinate. Single stage

mass spectra are used to found

discriminating between

diseased and healthy area with

statistical methods. Tandem

MS (MS/MS) spectra are used

for peptide and protein

identification. Further data

analysis steps include the

visualization of the

distribution of a single peptide

or protein within the tissue or

to visualize the image of

discriminating peaks. The

scale represents the relative
intensity of the protein

(Figure taken from ref

(Schwamborn and Caprioli

2010))
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concentration range (often 11–12 orders of magni-

tude). This presents an enormous challenge for analyt-

ical chemistry and statistical methods to select

compounds with a real association with the disease.

Tissue- or organ-derived discriminating compounds

should therefore be validated so that they reach periph-

eral body fluids either in intact or modified forms. One

promising approach is the measurement of the

secretome molecular profile of in vitro cultivation of

removed tissue samples. Generally, samples obtained

from solid tissues are pure, but inevitable contamina-

tion from blood may result in alteration of the

measured tissue secretome molecular profile.

The most widely used sampling method for solid

tissues is laser capture microdissection (Murray and

Curran 2005; Liu 2010), which enables highly accurate

cutting of diseased altered and healthy tissue pieces

using precise laser shots. This technique enables
case-control sampling of the same tissue and therefore

excludes the majority of the biological variance from

the analysis. However, disease cells may influence the

surrounding healthy cells, e.g., with proteins secreted

by the disease-altered cells. Therefore, validation by

comparing disease-altered cells, the surrounding

healthy tissue in diseased tissue, and healthy cells in

healthy samples is required.

MALDI imaging mass spectrometry (Schwamborn

and Caprioli 2010) is one other promising technique

for finding tissue-derived compounds closely related to

the disease. It enables direct in situ or cross-sample

comparison of the molecular profile of diseased

and healthy cells in tissue sections (Schwamborn and

Caprioli 2010). Figure 1 presents the outline ofMALDI

imaging mass spectrometry analysis from tissue

section preparation to the statistical analysis of the

acquired data.
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Biomedical Decision Support Systems

Guy Tsafnat

Centre for Health Informatics, Australian Institute for

Health Innovation, University of New South Wales,

Sydney, NSW, Australia
Synonyms

Clinical decision support systems
Definition

A biomedical decision support system (DSS) is any

computational system that aids decisions made

by clinicians, medical researchers, and medical biolo-

gists when interpreting large amounts of information

relevant to a particular decision. Some DSS may

support decision making by retrieving (only) the

information required to make the decision, while

others also summarize the information and/or predict

the outcomes of decisions.

Examples of biomedical decision support

systems are:

• Information retrieval systems that help clinicians

find clinical guidelines accurately and quickly

• Intelligent systems that suggest diagnoses based on

patient symptoms

• Simulation systems that calculate the outcomes of

complex biochemical pathway to predict treatment

outcomes

• Data analysis systems that summarize, interpret,

and visualize hundreds of microarray assays

identifying genes that are under- or over-expressed

in cancer tissue
Biomedical Named Entity Recognition,
Whatizit

Dietrich Rebholz-Schuhmann

European Bioinformatics Institute, Hinxton, UK
Definition

Named entities in the biomedical research domain

comprise genes and proteins, diseases, species, chem-

ical entities, anatomical components, and other seman-

tic types. A large number of biomedical named entities

have to be included into text-mining solutions due to

the descriptive nature of biomedical research.
Introduction

Ready access to text-mining solutions requires the

integration of various resources and specialized

technologies into an open access infrastructure. In the

past, solutions have been proposed that incorporate

these resources into standalone applications (Friedman

et al. 2001; Kano et al. 2009). Unfortunately, such

solutions have an architecture that does not support

well integration of bioinformatics services similar to

open IT solutions such as Taverna (Hull et al. 2006).

Other systems such as iHOP provide special interfaces

for programmatic access, but iHOP does not allow to

process other documents than Medline abstracts with

new means (Hoffmann et al. 2005).

A Web service–based TM solution centralizes and

harmonizes crucial tasks and thus solves a number of

difficulties reducing maintenance for users. A server-

based solution can incorporate large terminology sets

from biomedical data resources: updates to these

resources are efficiently propagated through the server.

The end user profits from a harmonized schema,

including coupling of text processing services to bio-

informatics data resources.
Implementation

Whatizit is a modular infrastructure that delivers TM

services to the public. Each module processes and

annotates text, for example, identifies named entities

http://dx.doi.org/10.1007/978-1-4419-9863-7_100215
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and introduces links to database entries. Individual

modules can be composed of a number of internal

modules. All terminologies are based on publicly

available resources (e.g., UniProtKb/Swiss-Prot, gene

ontology, DrugBank, see below). Terms are matched

to the text taking morphological variability into con-

sideration (Kirsch et al. 2006).

The user submits the name of a pipeline and the text

to be annotated, and Whatizit returns the text with all

the annotations contained. As an alternative, the user

can access Whatizit services without building a client

application. On the Web interface, Whatizit provides

a text input area where user can submit any kind of

Unicode encoded text or retrieve Medline abstracts for

subsequent analysis.

Different types of modules are available through the

Whatizit infrastructure. One set of modules annotates

named entities. WhatizitChemical searches for chemi-

cal entities based on the terminology from ChEBI and

the identification of chemical terms by OSCAR3

(Corbett et al. 2006). WhatizitDisease identifies

disease terms using a controlled vocabulary (CV)

extracted from MedlinePlus, whereas whatizitDi-

seaseUMLS allows access to MetaMap (Aronson

2001). For whatizitDrugs, the CV has been extracted

from DrugBank (http://redpoll.pharmacy.ualberta.ca/

drugbank/). WhatizitGO is a pipeline searches for

gene ontology terms using exact matching and consid-

ering morphological variability (Ashburner et al.

2000). Last, whatizitOrganism identifies species

names extracted from the NCBI taxonomy (NLM).

Other annotation pipelines represent solutions

that are more complex, i.e., they identify combinations

of semantic types: for example, whatizitSwissprotGo

for UniProtKb/Swiss-Prot in conjunction with GO

annotations and whatizitEbiMed for the annotation

pipeline from EbiMed (Rebholz-Schuhmann et al.

2007). The retrieval engine for Medline abstracts is

accessible via the module whatizitQbmarsdf. For

the retrieval, the user has to submit query terms or

PubMed IDs.
Conclusion

Whatizit is a service that copes with large terminologi-

cal resources, is aligned with updates from the primary

resource, and is available through a centralized service

that scales with the amount of integrated resources, with
the demands of different extraction methods and with

the amount of literature processed over time.
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Synonyms

BioModels; Model repository

Definition

BioModels Database is a public online resource that

allows storing and sharing of published, peer-reviewed

quantitative, dynamic models of biological processes.

The model components and behavior are thoroughly

checked to correspond the original publication and man-

ually curated to ensure reliability. Furthermore, the

model elements are annotatedwith terms from controlled

vocabularies as well as linked to relevant external data

resources. This greatly helps in model interpretation and

reuse. Models are stored in SBML format, accepted in

SBML and CellML formats, and are available for down-

load in various other common formats such as BioPAX,

Octave, SciLab, VCML, XPP and PDF, in addition to

SBML. The reaction network diagram of the models is

also available in several formats. BioModels Database

features a search engine which provides simple andmore

advanced searches. Features such as online simulation

and creation of smaller models (submodels) from the

selected model elements of a larger one are provided.

BioModels Database can be accessed both via a web

interface and programmatically via web services. New

models are available in BioModels Database at regular

releases, about every 4 months.

Characteristics

BioModels Database (http://www.ebi.ac.uk/biomodels/)

(Le Novère et al. 2006; Li et al. 2010a) hosts a collection

http://dx.doi.org/10.1007/978-1-4419-9863-7_158
http://dx.doi.org/10.1007/978-1-4419-9863-7_52
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http://dx.doi.org/10.1007/978-1-4419-9863-7_100127
http://dx.doi.org/10.1007/978-1-4419-9863-7_100927
http://www.ebi.ac.uk/biomodels/
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Fig. 1 Growth of BioModels
Database: The total number of

models (red) and the total

number of reactions (green) in
all models are plotted here.

The number of relationships

includes SBML “reactions,”

“rate rules,” “assignment

rules,” and “events.” There has

been approximately a 20-fold

increase in the number of

models since the launch of the

resource in 2005, with an

average increase in

complexity of the models

(measured by the number of

mathematical relationships)

being increased five times in

the same period

BioModels Database:
A Repository of
Mathematical Models of
Biological Processes,
Fig. 2 Type of models:
Categorization of models in

the curated branch of

BioModels Database based on

the GO terms present in the

annotation of the models. This

chart was generated by

enumerating models in the

database, whose annotations

refer either the GO terms listed

here or the child of the GO

terms listed here
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of mathematical models of biological processes,

described in peer-reviewed scientific literature. It is

part of the BioModels.net initiative (http://biomodels.

net/) (Le Novère 2006), which aims to help researchers

in the modeling field to exchange and build upon each

other’s work with greater ease and accuracy.

It has significantly grown both in size and number

of the models since its origin in 2005 (Fig. 1) and

serves as an efficient model sharing platform.
Diversity of Models Hosted

BioModels Database covers a wide range of models

from several biological categories. It hosts models

from simple biochemical reaction systems to larger

and complex dynamic models, metabolic network

models, and FBA models. Figure 2 represents the

categorization of models in the curated branch using

terms from Gene Ontology (GO) present in the model

annotation.

http://biomodels.net/
http://biomodels.net/
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Models Provenance

Models are implemented from articles published in

peer-reviewed scientific journals by a team of curators.

Also, there are an increasing number of models which

are directly submitted by the modelers themselves and

this demonstrates the popularity and recognition of

BioModels Database in the community. In the past,

some models came from collaboration with other

repositories, such as the former SBML model reposi-

tory (Caltech, USA), JWS Online, (http://jjj.biochem.

sun.ac.za/) the Database Of Quantitative Cellular Sig-

naling (DOQCS), (http://doqcs.ncbs.res.in/) and the

CellML Repository (http://models.cellml.org/cellml).

Several scientific journals recommend deposition of

models to BioModels Database in their instructions

for authors. These include journals that are published

by Nature Publishing Group (NPG), Public Library of

Science (PLoS), Royal Society of Chemistry (RSC),

and BioMed Central (BMC).

Model Submission, Curation, Annotation, and

Publication

Submission of models to BioModels Database is free

and is open to everyone. Models can be submitted via

an online interface and are accepted in two formats,

SBML (Systems Biology Markup Language) (http://

sbml.org/) and CellML. While BioModels Database

only distributes models that have been described in

the peer-reviewed scientific literature, models can be

submitted prior to the publication of their associated

paper. However, these models are made publicly avail-

able only after the publication of their corresponding

paper. At the time of submission, each model is

assigned a unique and perennial identifier which

allows users to access and retrieve it. This identifier

can be used by authors as a reference in their

publications.

The models that are submitted pass through several

steps prior to get published. BioModels Database is

composed of a curated and a non-curated branch.

Models in both these branches are fully SBML com-

pliant. Depending on their curation status, models are

moved to one of the two branches. Models that satisfy

the MIRIAM (Minimum Information Required in the

Annotation of Models) guidelines (Le Novère et al.

2005) progress to the curated branch. These models

are thoroughly checked and corrected for accuracy as

they must match and reproduce the results published in
the reference publication. A representative figure or

table reproduced by the model (which is present in

the reference publication) together with a description

of how it was obtained are available for each model.

This ensures that the encoded form of the model that is

provided corresponds to what was described in the

paper.

There are several reasons for models to be in the

non-curated branch. These are models that either do

not satisfy the full requirements for MIRIAM compli-

ance or have not been curated yet due to limited time

and resources. Many of these models are pathway

maps or models for networks and Flux Balance Anal-

ysis (FBA), without sufficient quantitative results pro-

vided for validation. Some others are only the subsets

of the whole model described in the article, as some

parts cannot be encoded in SBML. And finally, a small

number of models could not be made to reproduce the

published results due to untraceable errors in the

implementation or typos in the publication (often

even after contacting the authors of the article).

All model elements in the curated branch are fur-

thermore thoroughly annotated with cross-references

to other database records and ontology terms.

The annotations are included in the models using

MIRIAM URIs (Juty et al. 2012). As model elements

are not always named precisely to relate directly to the

corresponding biological processes or physical entity,

annotations are necessary to enhance interpretability

by both users and software tools. To date, model ele-

ments in BioModels Database are annotated using

around 40 different external data resources. Some of

the predominantly used external resources for model

annotations are Gene Ontology, ChEBI ontology,

Brenda Tissue Ontology, Systems Biology Ontology

(SBO), Taxonomy, Reactome, KEGG, and UniProt.

A collection of data resources and their URIs can be

obtained from MIRIAM Registry (http://www.ebi.ac.

uk/miriam/) (Laibe and Novère 2007).

Once the curation and annotations are completed,

the model is tagged as ready for publication, and

becomes available online during the next release of

BioModels Database. New releases happen two to

four times a year.

Model Browsing, Searching, and Retrieval

There are several features available through the

web interface which facilitate efficient usage of

http://jjj.biochem.sun.ac.za/
http://jjj.biochem.sun.ac.za/
http://doqcs.ncbs.res.in/
http://models.cellml.org/cellml
http://sbml.org/
http://sbml.org/
http://www.ebi.ac.uk/miriam/
http://www.ebi.ac.uk/miriam/
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the models. They can be browsed by branches.

They can also be located by using a tree-structured

browser based on the Gene Ontology (GO) terms

used in the annotation of the models. BioModels

Database incorporates a powerful search engine that

allows users to retrieve models of their interest. The

search can either be a simple keyword search or an

advanced one.

Model Display

Each model in the curated branch is presented in

a tabbed form, providing access to all the information

stored about the model. The model elements are

hyperlinked between its entries in different tabs and

in addition, the annotations are hyperlinked to their

detailed resource page. The detailed description

about the model is separated into six categories

namely: Model, Overview, Math, Physical entities,
Parameters, and Curation, which are all accessible

via a dedicated tab.

Model Exports

For convenience, as certain simulation tools

support only specific Levels or Versions of SBML,

the Download SBML menu allows users to

download the model in various versions of SBML,

including the version that was checked by the

curators. Models can be downloaded in various

other formats such as BioPAX, (http://www.biopax.

org/) the Virtual Cell Markup Language (VCML),

(http://vcell.org/) XPPAUT, (http://www.math.pitt.

edu/~bard/xpp/xpp.html) SciLab, (http://www.scilab.

org/) Octave (m-file), (http://www.gnu.org/software/

octave/) and PDF (generated using the SBML2LaTeX

tool) through the “Other formats (auto-generated)”

menu.

The reaction network of the model that follows the

Systems Biology Graphical Notation (SBGN) is avail-

able in PNG and SVG formats via the Action menu.

The reaction networks are also provided in a dynamic

way via an interactive Java applet.

The Actionsmenu also provides access to the online

simulation tools. BioModels Database embeds SOSlib

(Machné et al. 2006) to provide a basic online simula-

tion tool. The simulation results are returned both in

graphical and textual form. For many models, an addi-

tional and more flexible simulation tool is available

using JWS Online.
The Action menu provides an additional feature for

some model, called “Model of the Month” which is

a brief article that discusses the biological background,

significance, structure, and results of the model. The

“Model of the Month” is also accessible through BMC

Systems Biology Gateway.

Web Services

For programmatic access, BioModels Database fea-

tures web services (http://www.ebi.ac.uk/biomodels-

main/webservices) (Li et al. 2010b), allowing, for

example, direct retrieval of complex searches for

models, and the creation of submodels. The available

services are described in a Web Services Description

Language (WSDL) file that enables software to under-

stand available functions and their usage. The web

services use the Simple Object Access Protocol

(SOAP) to encode requests and responses. The com-

plete list of available methods, as well as a Java library

and the associated documentation, is provided on the

BioModels Database website.

BioModels Database is developed under the GNU

General Public License and the software is freely

available from its SourceForge repository (http://

sourceforge.net/projects/biomodels/).

Usage

BioModels Database has significantly grown both in

size and number of the models since its origin in 2005

and serves as an efficient model sharing platform.

BioModels Database announced its 21st release on

8 February 2012, with a total of 829 models provided.

The submission of models by modelers/authors them-

selves is increasing rapidly, and this demonstrates the

popularity and recognition of BioModels Database in

the community. The resource helps modelers to reuse

already existing models or model components, to mod-

ify them by implementing their own theory, to publish

articles describing new models, and submit those new

models to BioModels Database. For example,

BIOMD0000000176 and BIOMD0000000177 are

derived from BIOMD0000000172 which in turn is

derived from BIOMD00000000064. BioModels

Database is also used as a source of trusted models

for benchmarking model simulation software

packages.

BioModels Database has the potential to serve as

a comprehensive repository for computational systems

http://www.biopax.org/
http://www.biopax.org/
http://vcell.org/
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.scilab.org/
http://www.scilab.org/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/
http://www.ebi.ac.uk/biomodels-main/webservices
http://www.ebi.ac.uk/biomodels-main/webservices
http://sourceforge.net/projects/biomodels/
http://sourceforge.net/projects/biomodels/
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biology models, similar to the functionality of

GenBank and Protein Data Bank (PDB), the data

resources for genes and protein three-dimensional

structures.
Cross-References

▶MIRIAM Guidelines

▶MIRIAM URI

▶ SBGN

▶ Systems Biology Markup Language (SBML)

▶ Systems Biology Ontology
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Definition

BioNLP Shared Task (BioNLP-ST, hereafter) is

a series of shared evaluations and workshops focused

on biomolecular event extraction from literature. The

first BioNLP-ST evaluation was organized in 2009 by

the Tsujii Laboratory of the University of Tokyo, with

a workshop held under the auspices of Biomedical

Natural Language Processing Special Interest Group

(SIGBIOMED) of the Association for Computational

Linguistics (ACL). The task targeted the extraction of

biomolecular events (bio-events), defined as changes in

the states of biomolecular objects following the defini-

tion and event representation of the GENIA project. The

task data was based on the GENIA corpus (Kim et al.

2008) human-curated annotations of bio-events in

PubMed abstracts. BioNLP-ST 2009 was the first

community-wide effort for the automatic extraction of

bio-events from literature (Kim et al. 2009).

The event extraction task was quite new to much

of the community, as most bio-text mining (bio-TM)

targeted simple binary relationships between

bio-entities, such as protein–protein interactions (PPI)

(Bunescu et al. 2004) and disease-gene associations

(DGA) (Chun et al. 2006). However, BioNLP-ST’09

met community-wide participation, with 42 teams

signing up for initial registration and 24 teams submit-

ting final results.

At the time of writing, BioNLP-ST 2011, the

second event of the series, is being organized as

a joint effort of several groups. The evaluation seeks

to provide a variety of tasks and annotations centered

around event extraction.
Characteristics

The MUC (1987–1997) (Chinchor 1998), TREC

(1992–) (Voorhees 2007), and ACE (1999–) (Strassel

et al. 2008) shared evaluation initiatives have

http://dx.doi.org/10.1007/978-1-4419-9863-7_1176
http://dx.doi.org/10.1007/978-1-4419-9863-7_1285
http://dx.doi.org/10.1007/978-1-4419-9863-7_1096
http://dx.doi.org/10.1007/978-1-4419-9863-7_1091
http://dx.doi.org/10.1007/978-1-4419-9863-7_1287
http://dx.doi.org/10.1007/978-1-4419-9863-7_1349
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significantly motivated research in information

retrieval (IR), information extaction (IE), and text

mining (TM) for general domain text. There have

been similar efforts organized for bio-IR, -IE or -TM.

The TREC Genomics track (2004–2007) (Hersh et al.

2007) was organized to address bio-IR, and the

JNLPBA shared task (2004) (Kim et al. 2004) to

address named entity recognition (NER). (Organized

by the GENIA project using the same corpus, JNLPBA

can be regarded a predecessor to the BioNLP-ST

series.) The LLL challenge (2005) (Nédellec 2005)

focused on interactions of proteins or genes (IE), and

BioCreative (2005–) (Hirschman et al. 2007) addressed

a variety of tasks, including named entity normalization

and protein–protein interactions.

While LLL ran a typical relation extraction task to

find interacting pairs of proteins or genes, BioCreative

and BioNLP-ST have taken definitive steps forward,

although in different directions: BioCreative toward

user-oriented task settings and extrinsic evaluation

and BioNLP-ST toward fine-grained IE. The differ-

ence in direction is motivated in part by

different applications envisioned as being supported

by the IE methods. For example, BioCreative aims

to support curation of PPI databases, such as MINT

(Chatr-aryamontri et al. 2007), for a long time one of

the primary tasks in the domain. BioNLP-ST aims to

support the development of more detailed and structured

databases, e.g., pathway (Bader et al. 2006) or Gene

Ontology Annotation (GOA) (Camon et al. 2004)

databases, which are gaining increasing interest in bioin-

formatics research in response to recent advances in

molecular biology.
BioNLP-ST 2009

The first event of the series, BioNLP-ST 2009 (http://

www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/),

had the following characteristic features which made

it different from and complementary to other shared

evaluation efforts.

1. Events were represented as typed n-ary associa-

tions of proteins and other events in various

roles, allowing complex, structured associations

of multiple entities to be captured.

2. The event extraction task was divided into three

subtasks: core event extraction, event enrichment,

and negation and speculation recognition.
3. Detailed evaluations at each subtask were

provided.

4. Human-curated corpus annotations corresponding

to each subtask were prepared for system training,

tuning, and evaluation purposes.

5. The basic IE task of named entity recognition was

excluded to encourage the participants to concen-

trate on event extraction, the novel challenge of the

task. Accordingly, the gold standard annotations for

protein references were provided to the participants

also for test data.

6. Publicly available natural language processing

(NLP) tools adapted for the BioNLP-ST data format

were provided in readily available packages to

encourage the adoption of NLP tools and to further

allow participants to focus on event extraction.

Task Definition

Table 1 shows the event types targeted at BioNLP-ST

2009. The event types are selected from the GENIA

ontology, with consideration given to their importance

and the number of annotated instances in the GENIA

corpus. The selected event types all concern

protein biology, implying that they take proteins as

their theme. The first three types concern protein

metabolism, i.e., protein production and breakdown.

The fourth, Phosphorylation, is one type of pro-

tein modification, selected because it appears fre-

quently in the GENIA corpus. Localization and

Binding are representative fundamental molecular

events. Regulation (including its subtypes, Positive

and Negative_regulation) represents regulatory events

and general causal relations. The last five event types

are universal, but frequently occur on proteins. For the

biological interpretation of the event types, readers are

referred to Gene Ontology (GO) and the GENIA

ontology.

As shown in Table 1, the theme or themes of

all events are considered primary arguments, that is,

arguments that are critical to identifying the event. For

regulation events, the entity or event stated as the cause

of the regulation is also regarded as a primary argu-

ment. For some event types, further arguments detail-

ing the events are also defined (Secondary Arg. in

Table 1). From a computational point of view, the

event types represent different levels of complexity.

When only primary arguments are considered, the first

five event types require only a single argument, and the

task can be cast as binary relation extraction between

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/
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Table 1 The event types and

their arguments targeted at

BioNLP-ST 2009. Arguments

that may be filled more than

once per event are marked

with “+.” Site means a site of

a theme entity, and CSite a site
of a cause entity

Type Primary arguments Secondary Arg.

Gene_expression Theme(Protein)

Transcription Theme(Protein)

Protein_catabolism Theme(Protein)

Phosphorylation Theme(Protein) Site

Localization Theme(Protein) AtLoc, ToLoc

Binding Theme(Protein)+ Site+

Regulation Theme(Protein/Event), Cause(Protein/Event) Site, CSite

Positive_regulation Theme(Protein/Event), Cause(Protein/Event) Site, CSite

Negative_regulation Theme(Protein/Event), Cause(Protein/Event) Site, CSite

The failure of p65 translocation to the nucleus . . .
T1 (Protein, 15-18)
T2 (Localization, 19-32)
E1 (Type:T2, Theme:T1, ToLoc:T3)
T3 (Entity, 40-46)
M1 (Negation E1)

BioNLP Shared Task, Fig. 1 Example event annotation. The

protein annotation T1 is given as a starting point. The extraction

of annotation in bold is required for Task 1, the Entity type

t-entity T3 and the secondary argument ToLoc:T3 for Task 2,

and M1 for Task 3
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a predicate (event trigger) and an argument (Protein).

The Binding type is more complex in requiring

the detection of an arbitrary number of arguments.

Regulation events always take a Theme argument

and, when expressed, also a Cause argument. Further,

a Regulation event may take an event as its primary

argument (theme or cause), creating structures linking

multiple events that represent causal chains. Such

connections between events are a unique feature of

the BioNLP task compared to other event extraction

tasks such as ACE.

Format and Example

In the BioNLP-ST data sets, annotations to text are

provided in a stand-off style, as shown in the example

in Fig. 1. The annotations are of two general types: ones

identifying text spans referring to bio-entities (e.g., T1

and T3) and event triggers (e.g., T2), and ones expressing

events (e.g., E1) and their modifications (e.g., M1). The

former type of annotations are represented by pairs,

(type-specification, span-specification), and the latter by

n-tuples resembling predicate–argument structures,

(predicate, argument1, argument2, etc.).
Results

The final results enabled to observe the state-of-the-art

performance of the community on the bio-event

extraction task. It showed that the automatic extraction

of simple events – those with unary arguments,

e.g., gene expression, localization, phosphorylation –

could be achieved at the performance level of 70%

in F-score, but extraction of complex events,
e.g., binding and regulation, was a lot more challeng-

ing, achieving 40% of performance level.

Continuation

After BioNLP-ST 2009, all the resources from the

event were released to public, to encourage continuous

efforts for further advancement. Since then, several

improvements have been reported (Bj€orne et al.

2010; Miwa et al. 2010a, b; Poon and Vanderwende

2010; Vlachos 2010). For example, Miwa et al.

(2010b) reported a significant improvement with bind-

ing events, achieving 50% of performance level.
BioNLP-ST 2011

The second event of BioNLP-ST series is organized for

2011 (https://sites.google.com/site/bionlpst/). While

its predecessor, BioNLP-ST 2009, relied on the

GENIA corpus which only contained PubMed

abstracts on transcription factors in human blood

cells, the main theme of BioNLP-ST 2011 is

https://sites.google.com/site/bionlpst/
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generalization, which was pursued to three directions:

text types, event types, and subject domains. To

achieve that, various tasks and annotations were col-

lected through contributions from several groups, and

five event extraction tasks were arranged in four tracks.

• GENIA (GE)

• Epigenetics and Post-translational Modifications

(EPI)

• Infectious Diseases (ID)

• Bacteria Track

– Bacteria Biotopes (BB)

– Bacteria Interaction (BI)

The GE task remains similar to the task of BioNLP-

ST 2009, to play the role of pivot for generalization and

to measure the progress of community with the

previous task. However, to avoid overfitting to the

evaluation data set, the GE task is planned to arrange

additional text sets, most of them coming from full

paper articles, so that generalization from abstracts to

full papers can be measured. The EPI task is arranged

to evaluate generalization of event types with focus on

events relevant to epigenetics and post-translational

protein modification without further subdomain

restruction. The ID and BB tasks involve generaliza-

tion to new domains, ID targeting events relevant to the

biomolecular mechanisms of infectious diseases and

BB localization events of bacteria.

BioNLP-ST 2011 also includes three supporting

tasks: Coreference, Entity relation, and Gene renaming.

Although these are not event extraction tasks them-

selves, according to the analysis on the results of

BioNLP-ST 2009, coreference resolution and entity rela-

tion detection are expected to play an important role for

making a breakthrough in improving event extraction

performance. Gene naming has similar features with

coreference; thus it is included as a supporting task.
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Synonyms

Biomedical ontologies; Ontologies for the life sciences
Definition

Bio-ontologies have come to play a crucial role in the

dissemination of results across research contexts and in

the extraction of inferences and testable hypotheses

from available datasets (▶Data-intensive Research).

They are essentially classification tools, whose imme-

diate function is to store, organize, and retrieve data via

databases accessible through the Internet. They consist

of networks of terms that are linked to existing data-

bases. Each term in the network is precisely defined as

describing specific biological entities or processes; it is

used as a keyword with which to identify and retrieve

datasets that constitute relevant evidence toward the

investigation of the entities or processes described by

its definition. The terms are related to each other

through simple structuring rules, such as X “is_a”

Y and X is “part_of” Y.

Bio-ontologies classify datasets in terms of their

potential usefulness to research, as documented by

previous empirical studies. This is different from

a classification based on information about the prove-

nance of data (the place or group in which they were

produced), the model organism on which they were

obtained, or the instrument with which they were cre-

ated. Bio-ontologies do incorporate these other types

of information through ▶metadata; yet the key prop-

erty of datasets annotated through bio-ontologies – the

official criterion for data retrieval in this system –

remains their association to terms defining their rele-

vance to understanding biological objects and

processes.

Because of their descriptive nature, bio-ontologies

are often referred to as “representations of biological

knowledge” (e.g., Bard and Rhee 2004). They repre-

sent the knowledge needed to share resources for
further research, which is thus meant to be as universal

and basic as possible. Rhee et al. (2006, p. 345) point to

the quality of definitions in bio-ontologies as their most

important characteristics: “data and knowledge need to

be described in explicit and unambiguous ways that

must be comprehensible to both human beings and

computer programs.” Indeed, bio-ontologies are

constructed to work across different research contexts,

disciplines, and ▶model organism communities. The

Gene Ontology, for instance, was developed to anno-

tate gene products across community databases in

▶model organism biology. To guarantee the interop-

erability of bio-ontologies across biological domains,

the Open Biomedical Ontologies Consortium has pro-

posed a set of simple rules for the development of

ontologies, such as, for instance, the rule of univocity:

Terms should mean the same wherever they are used,

so the same term cannot be used to indicate two dif-

ferent processes (Smith et al. 2007). Also, bio-

ontology terms and relations are selected and defined

through consensus-seeking mechanisms implemented

on a global scale, such as consultations and workshops

with prospective users (Leonelli 2008).
Characteristics

Bio-ontologies are an achievement of the bioinfor-

matic effort toward an efficient organization and dis-

tribution of data produced by genomic research. They

provide a framework through which heterogeneous

sets of biological data can be classified, stored, and

retrieved through freely available, online databases

(Rubin et al. 2008). For the purposes of this entry,

I restrict my examination of bio-ontologies to the

ones collected by the Open Biomedical Ontologies

Consortium (http://www.obofoundry.org), an organi-

zation founded to facilitate communication and coher-

ence among bio-ontologies with broadly similar

characteristics (Ashburner et al. 2003), and particu-

larly to the Gene Ontology, which is widely regarded

as the most successful case of bio-ontology construc-

tion to date and used as a template for several other

prominent bio-ontologies (Ashburner et al. 2003;

Brazma et al. 2006).

Structure

Bio-ontologies have three defining features: the use of

precisely defined terms to refer to biological entities or

http://dx.doi.org/10.1007/978-1-4419-9863-7_100125
http://dx.doi.org/10.1007/978-1-4419-9863-7_101069
http://dx.doi.org/10.1007/978-1-4419-9863-7_58
http://dx.doi.org/10.1007/978-1-4419-9863-7_1066
http://dx.doi.org/10.1007/978-1-4419-9863-7_76
http://dx.doi.org/10.1007/978-1-4419-9863-7_76
http://www.obofoundry.org
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processes; the use of precisely defined relations among

terms; and the association of each term with datasets.

Terms

The crucial feature of bio-ontology terms is their sub-

stantive meaning. Bio-ontology terms are not purely

conventional signs. They are intended to be descriptive

of existing biological phenomena – in other words, to

capture commonly agreed knowledge about the fea-

tures and components of biological entities and pro-

cesses. The meaning of each term is fixed via a precise

definition, in which curators specify the characteristics

of the phenomenon which the term is intended to

designate, sometimes including species-specific

exceptions (Baclawski and Niu 2006, p. 35). Each

ontology represents knowledge from one or more spe-

cific domains. For instance, the Gene Ontology

includes three classifications, each of which addresses

different groups of phenomena (Ashburner et al.

2003): a process ontology describing biological objec-

tives to which the gene or gene product contributes,

such as metabolism or signal transduction; amolecular

function ontology representing the biochemical activ-

ities of gene products, such as the biological functions

of specific proteins; and a cellular component ontol-

ogy, referring to the places in the cell where a gene

product is active (see also entry on ▶Disease Ontol-

ogy). At the same time, to guarantee interoperability

among ontologies, curators strive to make sure that

terms used in one ontology are compatible with terms

used in other ontologies (Smith et al. 2007).

Relations

Bio-ontology terms are related through a network

structure whose basic features are determined by the

programming language through which bio-ontologies

are implemented. Within the eXtensible Markup

Language (XML), the standard language used for

bio-ontologies, the basic relationship between objects

is called containment and involves a “parent” term and

a “child” term. The child term is “contained” by the

parent term when the child term represents a subclass

of the parent term. This relationship is fundamental to

the organization of the bio-ontology network, as it

supports a hierarchical ordering of the terms used.

The criteria used for the hierarchical ordering of

terms are chosen in relation to the types of phenomena

described by the terms in each bio-ontology. Each

subset of the Gene Ontology uses the same three
types of relations among terms: “is_a,” “part_of,” and

“regulates.” The first category denotes relations of

identity, as in “the nuclear membrane is a membrane”;

the second category denotes mereological relations,

such as “the membrane is part of the cell.” The third

category has been implemented in 2008 to signal reg-

ulatory roles. In other bio-ontologies, for instance, the

ones employed to gather data about phenotypes, the

categories of relations available are more numerous

and complex: for instance, including relations signal-

ing measurement (“measured_as”) or belonging

(“of_a”). To help with standardization and interopera-

bility, an ontology of relationship types (▶Relation-

ship Type Ontology) is currently under development.

Data Association

Terms in bio-ontologies function as keywords through

which existing datasets can be ordered and retrieved.

The criterion used for data classification is the eviden-

tial significance of data, i.e., their role as evidence

toward establishing the structure and function of

a specific entity or process. In the Gene Ontology,

data on a specific gene product are categorized in

terms of its known functional significance toward the

development of specific traits (e.g., gene FFO2 is asso-

ciated with “meristem growth”). Datasets are extracted

(▶Data Mining) either from digital repositories

containing all available data of a specific type (e.g.,

GenBank), or from scientific publications. Once cura-

tors have selected a set of relevant data as well as a set of

bio-ontology terms to which data should be associated,

they label the data with a unique identifier, a machine-

readable symbol that allows for the automatic analysis

of data in cross-reference to other datasets. This process

is called annotation (Hill et al. 2008). Unique identifiers

effectively enable bio-ontologies to function as tools for

data analysis. For instance, functional annotations made

within the Gene Ontology are used to analyze and

correlate microarray data on gene expressions and thus

to ground statistical evaluations of clusters of co-

expressed genes (Rubin et al. 2008).

Curation

Bio-ontology terms have the same tendency of other

classificatory categories: that of stabilizing objects of

knowledge in ways that enable, but at the same time

constrain, future research. At the same time, the knowl-

edge captured by bio-ontologies is bound to changewith

further research, as well as manifesting themselves

http://dx.doi.org/10.1007/978-1-4419-9863-7_220
http://dx.doi.org/10.1007/978-1-4419-9863-7_220
http://dx.doi.org/10.1007/978-1-4419-9863-7_169
http://dx.doi.org/10.1007/978-1-4419-9863-7_169
http://dx.doi.org/10.1007/978-1-4419-9863-7_599
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differently in each research context. Resolving the ten-

sion between stability and flexibility of classificatory

categories is crucial to bio-ontologies’ success and is

a core responsibility of curators, who engage in adapting

and updating bio-ontologies so that they mirror the

research practices and knowledge of their users. The

following activities are good examples (if not exhaus-

tive) of steps in bio-ontology development that require

expert judgment and intervention by curators.

Data Mining from Publications

When extracting data from publications, curators have

to single out publications that they consider to be reli-

able, updated, and representative for specific datasets.

For instance, when gathering available data on a specific

gene, curators need to choose one or two publications

that best represent data relevant to a given gene product

for the purposes of classification. They cannot compile

data from each relevant publication, as it would be too

time consuming aswell as generating inconsistent anno-

tations. Thus, curators choose what they see as the most

up-to-date and accurate publications on a specific gene

product, which as a consequence become “representa-

tive” publications for that entity. Further, once curators

settle on a specific publication, they have to assess

which data therein contained should be extracted and/

or how the interpretation givenwithin the papermatches

the terms and definitions already contained in the bio-

ontology. Does the content of the paper warrant the

classification of given data under a new bio-ontology

term? Or can the contents of the publication be associ-

ated to one or more existing terms? These choices are

unavoidable when extracting data from a publication

and they are impossible to regulate through fixed and

objective standards. The reasonswhy the process of data

extraction requires manual curation are the same rea-

sons why it cannot be divorced from subjective judg-

ment: The choices involved are informed by a curator’s

expertise and his or her ability to bridge between the

original context of publication and the context of bio-

ontology classification.

Data Formatting

Without a minimal degree of homogeneity across for-

mats, there is no chance of making data searchable and

displaying them through the visualization tools used

within databases. Formatting is also geared towardmak-

ing data computationally manageable: Data generated

through high-throughput technologies are already in
a machine-readable format, while other types of data

(such as photographs) might need manipulation to be

stored and retrieved through digital means. The extent

to which curators need to manipulate data depends on

the format in which data are produced and extracted,

which is not always compatible with the software and

format supported by any given bio-ontology.

Including Information About Data Provenance

Curators use metadata to classify information about

data provenance. This procedure enables database

users to search through datasets on the basis of

context-independent criteria such as bio-ontology

terms, while still allowing them to retrieve information

about the production of data when needed. Curators

have the responsibility of determining which informa-

tion about provenance are most useful to the classifi-

cation of data for circulation and reuse.

Defining Terms

Definitions that befit bio-ontology terms are not often

found in biology textbooks or other publications, since

those are usually steeped within specific research tra-

ditions or communities. Constructing a definition that

will be acceptable to all potential users of bio-

ontology, no matter which tradition they come from

and which organism they work on, constitutes a chal-

lenging conceptual task for curators (Leonelli 2012).

Through activities such as the above, curators medi-

ate between the diverse assumptions and practices

characterizing the work of bio-ontology users and the

need for bio-ontologies to conform to universal

requirements such as consistency, computability, ease

of use, and wide intelligibility. Curators’ interventions

are crucial to the good functioning of bio-ontologies,

and ideally need to be informed by a wide range of

expertise, including IT and programming skills, train-

ing in more than one biological discipline (allowing

them to bridge between different scientific contexts)

and familiarity with experimentation at the bench (so

that they understand observational statements made in

the context of specific experimental settings, as well as

anticipating the expectations of bio-ontologies users).
Cross-References
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▶Data-intensive Research
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▶Disease Ontology

▶Model Organism

▶Ontology Lookup Service for Controlled

Vocabularies and Data Annotation

▶Relationship Type Ontology
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Synonyms

PEPA
Definition

Bio-PEPA (Ciocchetta and Hillston 2009) is an

extension of the PEPA language (Hillston 1996) for

dealing with biochemical signaling pathways.

PEPA is a formal language for describing continuous

time Markov chain originally defined for the

performance analysis of computer systems. PEPA

allows to quantitatively model and analyze

large pathway systems and it is supported by a lot of

software tools for analysis and stochastic simulations

are available. The combined use of PEPA and

the probabilistic model checker PRISM describe,

simulate, and analyze biochemical signaling

pathways.

A Bio-PEPA system is a formal, intermediate, and

compositional representation of biochemical systems,

on which different kinds of analysis can be carried out:

deterministic analysis of the ODE system, stochastic

simulations (with the ▶ Stochastic Simulation Algo-

rithm), generation and analysis of the underlying

continuous time Markov chain, and generation of the

input code for the PRISM model checker. Each of

the analysis carried on in the different derived formal-

isms can be of help for studying different aspects of

the biological model. Moreover, they can be used in

conjunction in order to have a better understanding of

the system.

The Bio-PEPA extension modifies PEPA to deal

with some features of biological models that are pecu-

liar of those kinds of systems (Calder and Hillston

2009):

• Functional rates: In contrast to PEPA,

individual processes are not able to define their

own rates for actions. Instead the rate associated

with an action is specified once, independently

of the processes in which the action occurs.

The value of this rate can be specified to be

a function that depends on the current state of the

system.

• Stoichiometry: For each action, as well as its type,

the stoichiometry or degree of involvement is also

specified.

• Parameterized processes: Bio-PEPA has

been designed to support the population-based

reagent-centric style of modeling and so a model

consists of a number of sequential components

each representing a distinct species which evolve

quantitatively (increasing or decreasing amounts).

http://dx.doi.org/10.1007/978-1-4419-9863-7_220
http://dx.doi.org/10.1007/978-1-4419-9863-7_76
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http://dx.doi.org/10.1007/978-1-4419-9863-7_101134
http://dx.doi.org/10.1007/978-1-4419-9863-7_768
http://dx.doi.org/10.1007/978-1-4419-9863-7_768


A  =  (r 1, 1)¯A + (r 2, 1)�A
def

B  =  (r 1, 1)¯B + (r 2, 1)�B + (r 3, 1)¯B

A r1 r3

r4

r2

r5

B D

C
E

def

C  =  (r 2, 1)�C
def

D  =  (r 4, 1)¯D + (r 3, 1)�D
def

E  =  (r 4, 1)¯E + (r 5, 1)�E

System  =  A(A0) �� B(B0) �� C(C0) �� D(D0) �� E(E0)
∗ ∗ ∗ ∗

def

def

Bio-PEPA, Fig. 1 A small synthetic pathway of five reactions:

A + B ! C, C ! A + B, B ! D, D + E ! B, ! E. The

equations exhibit various combinations of increasing/

decreasing/preserved reagents between the left- and right-hand

sides. The meaning of the code in the lower part of the figure is

the following: in each term in the form of “(r, k) op S”, r is

an action name and can be viewed as the name or label of

a reaction, k is the stoichiometry coefficient of the species,

the combinator “op” represents the role of the element in the

reaction (specifically, down arrow denotes the role of reactant,

up arrow product), and S the state after the reaction is fired.

The operator + expresses the choice between possible actions.

The system is defined as the synchronization between

components A, B, C, D, and E on the whole set of common

action names (“ * ” symbol). S(S0) represent the initial quantities

of each species
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Thus in order to capture the state of a system

each component is parameterized recording its

current level.

• Differentiated prefix: For each action (reaction)

that a component is involved in it records its role

within that reaction, e.g., reactant, product, inhibi-

tor etc. This enables the appropriate values to be

used in the functional rate associated with this

reaction.

Recently, some extensions of Bio-PEPA have

been defined in order to represent some specific

features of some biochemical networks. Specifically,

the language has been extended to support
SBML-events that represent changes in the

system due to some trigger conditions and to support

the definition of a hierarchy of compartments

that have a fixed structure, but a dynamic varying

size.

In Fig. 1, an example pathway modeled with Bio-

PEPA is shown.

Bio-PEPA language has been used for modeling

many biological case studies (for a complete list see

http://biopepa.org/).
Cross-References
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BioPortal

Mark A. Musen

Stanford Center for Biomedical Informatics Research,

Stanford University, Stanford, CA, USA
Definition

BioPortal is an online repository of biomedical termi-

nologies and ontologies maintained by the National
Center for Biomedical Ontology. BioPortal contains

the world’s largest collection of biomedical

ontologies, which it makes available using

a standard Web interface and a standard API at

http://bioportal.bioontology.org.

http://biopepa.org/
http://dx.doi.org/10.1007/978-1-4419-9863-7_26
http://bioportal.bioontology.org
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▶ Protégé Ontology Editor
B

BioSPI

Alida Palmisano1 and Corrado Priami2
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Synonyms

Stochastic pi-calculus simulator
Definition

BioSPI is a computer application developed for

simulating the behavior of biochemical systems spec-

ified in the stochastic version of pi-calculus. It is

based on the Logix system, which implements flat

concurrent prolog (FCP). The use of FCP allows

both mobility and synchronized communication, two

of the major features of the pi-calculus. This frame-

work includes several debugging tools for tracing

stepwise execution of programs, including tree

traces and step-by-step execution mode. In stochastic

simulations, the number of processes is monitored

and recorded, as the internal clock progresses, to

produce a fully ordered trace of all events (Regev

et al. 2001).

This framework has been used for modeling many

biological systems like circadian clock (Barkai and

Leibler 2000), cell cycle (see ▶Cell Cycle Modeling,

Process Algebra), metabolic pathways, signal trans-

duction networks, etc.

All the software tools and examples related toBioSPI

can be found at its official Web site (http://www.

wisdom.weizmann.ac.il/~biospi/index_main.html).
The BioSPI project was the main inspiration for

another framework designed around the pi-calculus

language: SPiM (Phillips and Cardelli 2007). The sim-

ulation algorithm is based on the ▶ stochastic simula-

tion algorithm and the language features a simple

graphical notation for modeling a range of biological

systems.
Cross-References
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Marie Lisandra Zepeda-Mendoza and Osbaldo

Resendis-Antonio

Center for Genomics Sciences-UNAM,

Universidad Nacional Autónoma de México,

Cuernavaca, Morelos, Mexico
Synonyms

Bigraph
Definition

A bipartite graph is one whose vertices, V, can be

divided into two independent sets, V1 and V2, and

every edge of the graph connects one vertex in V1 to

one vertex in V2 (Skiena 1990). If every vertex of V1 is

http://dx.doi.org/10.1007/978-1-4419-9863-7_1104
http://dx.doi.org/10.1007/978-1-4419-9863-7_101411
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connected to every vertex of V2 the graph is called

a complete bipartite graph. If V1 and V2 have equal

cardinality, meaning they have same number of verti-

ces, the graph is called a balanced bipartite graph.

Another way to view a bipartite graph is by coloring

the two vertices with different colors. Say all vertices

of set V1 will be colored green and all vertices of set V2

will be colored red, then each edge will connect

vertices of different colors.

This view helps to understand the fact that a graph

that does not contain odd-length circles is a bipartite

graph, because if it had an odd number of vertices, one

of the edges would have endpoints of the same color.
Cross-References

▶Modules, Identification Methods and Biological

Function
References

Skiena S (1990) Coloring bipartite graphs, }5.5.2. In:

Skiena S (ed) Implementing discrete mathematics:

combinatorics and graph theory with mathematica. Addison-

Wesley, Reading, p 213
Bipartite Network

▶MicroRNA-mRNA Regulation Networks
Bipolar Attachment

Rosella Visintin

IEO, European Institute of Oncology,

Milan, Italy
Definition

Bipolar attachment is achieved when sister chromatids

bind to microtubules emanating from the opposite

poles.
Cross-References

▶Mitosis
Bistability

Jinzhi Lei

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua University of Beijing, Beijing, China
Synonyms

Bimodality
Definition

Bistability is a fundamental phenomenon in nature

by which a system can be resting in two states.

In biological systems, bistability is a situation in

which two stable states coexist in a population of

interest.

Bistability is key for understanding basic

phenomena of cellular functioning, such as decision-

making processes in cell cycle progression,

cellular differentiation, and apoptosis. In a population

with bistability, we typically observe bimodal

distribution.

From a physical point of view, the bistability of

a system comes from the fact that the free energy of

the whole system possesses two local minimums that

are separated by a peak (maximum).

In genetic network, a ▶ positive feedback with

cooperative binding is a necessary condition to achieve

bistability. The positive feedback often appears as

a double-▶ negative feedback.

Figure 1 shows the basic characteristics of a

bistable genetic system. In a bistable system, a key

regulator protein X activates its own expression to

form a positive feedback. The feedback can be formed

either directly, through a cooperative binding site of

protein X to its own promoter, or indirectly, through

a signal-transduction cascade via other regulators.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1315
http://dx.doi.org/10.1007/978-1-4419-9863-7_1315
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http://dx.doi.org/10.1007/978-1-4419-9863-7_528
http://dx.doi.org/10.1007/978-1-4419-9863-7_529


fp(X)

fp(X)

= fp(X) - fd(X)
dX
dt

fd(X)

X

R
at

es

Production

a

b

Degradation
X

fd(X)

Bistability, Fig. 1 Characteristics of bistable systems (Smits

et al. 2006). (a) Schematic illustration of a bistable gene regula-

tion. The functions fp(X) and fd(X) represent the production and

degradation rates of X, respectively. The differential equation

shows the change of X over time (dX/dt). (b) Plot of the functions
fp(X) and fd(X) within the same graph. The intersection points

show the steady states

Bisulfite Conversion 149 B

B

The production rate of X can be expressed as a Hill

function:
fp ðXÞ ¼ fo þ f1X
n

Kn þ Xn
; (1)

Here n is the Hill coefficient. The degradation

(or dilution) of the protein can be described by

a linear-type function. The change of X over time is

described by a differential equation combining

the production and degradation rates. The interaction

of these two functions gives the steady states of the

system in which the change of X is equal to 0 (Fig. 1b).

When the positive feedback is cooperative, i.e., the

Hill coefficient is n > 1, there are three steady

states, two of which are stable and separated by an

unstable state.
Cross-References

▶Cell Cycle Dynamics, Irreversibility
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Bistable Switch

▶Toggle Switch, Switching Network
Bisulfite Conversion

Vani Brahmachari and Shruti Jain

Dr. B. R. Ambedkar Center for Biomedical Research,

University of Delhi, Delhi, India
Synonyms

Bisulfite sequencing: methylation status analysis
Definition

Bisulfite conversion is a frequently used technique to

directly identify the methylated status of cytosine

residues in DNA, besides the method based on using

▶methylation-sensitive restriction endonucleases

(Frommer et al. 1992). On treatment of DNA with

sodium bisulfite, unmethylated cytosine residues are

converted to uracil, and on replication of this DNA,

thymine is incorporated at these positions. On the other

http://dx.doi.org/10.1007/978-1-4419-9863-7_22
http://dx.doi.org/10.1007/978-1-4419-9863-7_524
http://dx.doi.org/10.1007/978-1-4419-9863-7_100132
http://dx.doi.org/10.1007/978-1-4419-9863-7_852


N
H

O

N

NH2

Cytosine

N
H

O

HN

O

Uracil

N
H

O SO3
+

HN

O

Uracil
sulphonate

N
H

H2O

NH4
+

SO3
+O

+HNNaHSO3

Sulphonation

STEP 1

H+

NH2

Cytosine
sulphonate

NaOH

OH−

Hydrolytic
Deamination

STEP 2

Alkali
Desulphonation

STEP 3

a

AT... mCG... GC... AACG...AT... mCG
TA... GCm ...CG...TTGC...TA... GCm

AT...   CG...  AT... AATA...AT...  CG
TA...   GC...   TA...TTAT...TA.... GC

AT... mCG...  GU... AAUG...AT... mCG
TA...  GCm ...UG...TTGU...TA... GCm

Bisulfite
conversion

PCR
Amplification

b

Bisulfite Conversion,
Fig. 1 Schematic

representation of bisulfite

sequencing. (a) Steps of

chemical conversion. (b) The

sequence obtained after

conversion is shown; cytidine

(C) is replaced by thymidine

(T) at positions where there is

no methylation (arrow) while
methylated cytidine remains

unchanged (arrowhead). The
relevant dinucleotides are

shown in bold font
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hand, methylated cytosine (5-methylcytosine)

remains unaffected by the bisulfite treatment (Fig. 1).

When the sequence of bisulfite converted DNA

is determined, unmethylated cytosine is read as

thymine while 5-methyl cytosine remains as cytosine.

On comparison with DNA sequence without bisulfite

conversion, the methylation pattern of the DNA can

be deciphered.
Cross-References
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Alida Palmisano1 and Corrado Priami2

1Department of Biological Sciences and Department

of Computer Science, Department of Biological

Sciences Virginia Tech, Virginia Polytechnic Institute

and State University, Blacksburg, VA, USA
2Microsoft Research-University of Trento Centre for

Computational and Systems Biology and DISI,

University of Trento, Povo, Trento, Italy
Synonyms

Beta workbench; BetaWB; CoSBiLab
Definition

BlenX (Dematté et al. 2008, 2010) is a stochastic lan-

guage implementing the b-binders process algebra

(Priami and Quaglia 2005) explicitly designed for

modeling biological systems. A BlenX program is

made up of a program file for the system structure, an

interfaces file for the quantitative information about the

system, and an optional declaration file for the user-

defined variables and functions. A BlenX program can

be executed by the Beta Workbench software tool

http://dx.doi.org/10.1007/978-1-4419-9863-7_567
http://dx.doi.org/10.1007/978-1-4419-9863-7_852
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http://dx.doi.org/10.1007/978-1-4419-9863-7_100291
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(which can be freely downloaded at http://www.cosbi.

eu/index.php/research/prototypes together with the

CoSBiLab companion tools) that implements an effi-

cient variant of the ▶ stochastic simulation algorithm.

The basic metaphor of BlenX is that a biological

entity (i.e., a component that is able to interact with

other components to accomplish some biological func-

tions) is represented by a box. A box has interfaces (also

called binders) and an internal structure that drives its
BlenX, Fig. 2 Coding a basic enzymatic reaction in BlenX.

Upper part: boxes are pictured as different shapes where corners
represent molecule interfaces (with their associate type). Lower
part: The BlenX model of this reaction network is coded in three

files: the program file (containing the definitions of the species),

the interfaces file (containing the affinities between the types),

and the declaration file (containing the definitions of the con-

stants). The complexation between E and S happens because of

the affinity of DE and DS types at rate ka. This reaction is

reversible, so the decomplexation rate between the same types

site3site1 S1_Ph S3_act

S2_act

site2

P

CycB

BlenX, Fig. 1 Graphical notation of a BlenX box. The small

squares on the border of the box are the binders; site1, site2, and

site3 are the interfaces subjects (omitted when not necessary);

S1_Ph, S2_act, and S3_act are the interfaces types; the line

surrounding the interface with type S3_act indicates that the

interface is hidden; P is the internal program and CycB is the

name of the box
behavior (see Fig. 1). For example, in a box modeling

a protein, binders may represent sensing and effecting

domains. Sensing domains are the places where the

protein receives signals, effecting domains are the places

that a protein uses for propagating signals, and the inter-

nal structure codifies for mechanism that transforms an

input signal into a protein conformational change, which

can result in the activation or deactivation of another

domain. The exchanging of signals can happen between

boxes whose binders have a certain degree of affinity,

which codes the strength of their interaction.

The internal program of a box is described by

a process built on top of the a set of primitives, derived

from the classical process algebra primitives con-

structs (i.e., input/output actions on communication

channels, sequential/alternative/parallel composition

of actions) and some other primitives specific for the

BlenX language (i.e., changing the type/state of an

interface and conditional statements).

In addition, BlenX allows the definition of events

which are statements, or verbs, that are executed with

a specified rate and/or when some conditions of the

system are satisfied. Events can split an entity into two

entities, join two entities into a single one, and add or

remove entities into or from the system. The final

peculiar characteristic of BlenX is the possibility of
is kb. If E and S are connected, they share a private channel

through which the synchronization of the output action x!() and

input action y?() can happen at rate kc. If this happens the binder

of S changes (at infinite rate) its type from DS to DP (see the

internal code of S), allowing the decomplexation of the two

boxes (because the affinity between DE and DP is infinite for

the decomplexation event, see the interfaces file). The final state

of the system is the E species back in its initial state and a new

product species P

http://www.cosbi.eu/index.php/research/prototypes
http://www.cosbi.eu/index.php/research/prototypes
http://dx.doi.org/10.1007/978-1-4419-9863-7_768
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creating complex-on-the-fly (i.e., during the simula-

tion): the complexation event is performed when two

boxes have interfaces with compatible types and it is

used for modeling the creation of a private and perma-

nent (until the complementary decomplexation event)

communication channel between two specific boxes.

Those two boxes will maintain their individual internal

behavior but they will be able to communicate on the

shared channel: the only thing that the user needs to

define is a rate of complexation/decomplexation

between two binder types.

An example of a basic enzymatic reaction modeled

in BlenX is shown in Fig. 2.

Cross-References
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BLOcks SUbstitution Matrix (BLOSUM)

Joo Chuan Tong

Data Mining Department, Institute for Infocomm

Research, Singapore, Singapore

Department of Biochemistry, Yong Loo Lin School of

Medicine, National University of Singapore,

Singapore
Definition

BLOSUM matices are calculated from blocks of

highly conserved amino acid sequences with a certain

degree of similarity between these sequences. Matrix

constructed from no more than x% similarity is called
BLOSUM-x matrix. The probability pi,j of a unique

pair of amino acids at a site (Ai and Aj) is computed as

well as the probability pi of the unique amino acid to

be Ai. Then the log odd ratio log
pi;j
pi
is computed and

recorded in the (i,j) entry of the matrix. The BLOSUM

matrix comprises of information regarding the

20 amino acid properties similarity and yields delicate

evolutional and chemical association among the

20 amino acids.
Cross-References
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Bone Marrow-derived Cells

Mary Helen Barcellos-Hoff

Department of Radiation Oncology and Cell Biology,

New York University School of Medicine,

New York, NY, USA
Definition

Bone marrow-derived cells (BMDC) are derived from

hematopoietic stem cells that give rise to diverse cell

types present in blood and lymphatic organs, some of

which are recruited to other organs.
Characteristics

The term, bone marrow-derived cells (BMDC),

encompasses a broad class of undifferentiated cells

known to originate from the bone marrow (▶Bone

Marrow-derived Cells) that are dispersed among tis-

sues. The plasticity of these cells has been implicated

in diverse processes from development to pathology

but remains poorly understood. Bone marrow trans-

plantation and lineage-tracing experiments have

http://dx.doi.org/10.1007/978-1-4419-9863-7_26
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provided strong experimental evidence that BMDC

can generate distinct cell types, including cardiac mus-

cle, liver cell types, neuronal and nonneuronal cell

types of the brain, as well as endothelial cells and

osteoblasts. These multiple cell types could have orig-

inated from either HSC orMSCwithin bone marrow or

from other less well-defined precursors. Injury may

mobilize BMDC into circulation and recruitment and

differentiation at damage sites (Orlic et al. 2001).

Inflammation can also mobilize BMDC, and chronic

inflammation may drive BMDC to actively participate

in pathological process, including cancer (Houghton

et al. 2004).

Bone marrow, a tissue that replenishes the circulat-

ing cells of the blood and immune system, contains

many cell types, including stroma, vascular cells, adi-

pocytes, osteoblasts, and osteoclasts. These cells form

the microenvironment, or niche, in which mesenchy-

mal stem cells (MSC) and hematopoietic stem cells

(HSC) reside. Both stem cells originate within the bone

marrow, but HSC mostly function to regenerate

hematopoietic cells within the marrow and the circu-

lation, while MSC mostly relocate to produce a variety

of cell types found in diverse organs.

MSC replicate as undifferentiated cells and have the

potential to differentiate to lineages of mesenchymal

tissues, including bone, cartilage, fat, tendon, muscle,

and marrow ▶ stroma (Pittenger et al. 1999). A MSC

population resides in bone marrow, but cells with

similar molecular, phenotypic, and functional proper-

ties, at least in vitro, have been identified in a wide

range of tissues. MSC populations in adult tissues and

organs contribute to tissue cell turnover and also

respond to tissue damage, for example, in wound

healing (▶Wound Response).

HSC give rise to three main lineages, erythroid,

myeloid and lymphoid, which respectively form red

blood cells, monocytes, and immune cells (Morrison

et al. 1997). Extensive single-cell transplantation of

highly purified stem cells demonstrated that the clonal

contribution to the different blood cell lineages varies

significantly and can be stably maintained through

serial passaging, providing evidence that the pool of

HSCs comprises at least two and possibly more distinct

clonal subtypes imbued with differential lineage and

self-renewal potential (Dykstra et al. 2007). A great

many functional and characterization studies have

established a functional hierarchy of HSC using assays

for growth potential under restrictive conditions and
the ability to rescue lethally irradiated mice.

The uncommitted, or pluripotent, gives rise to five

progenitor cells that give rise to seven distinct cell

types: erythrocyte, lymphocyte, neutrophil, eosino-

phil, basophil, monocytes, and platelets. For many

of these cells differentiation occurs within the

bone marrow, but for lymphocytes and monocytes,

maturation occurs after release into circulation

and residence in tissues. In the case of lymphocytes,

this occurs in the tissues of the immune system.

Monocytes circulate for 3 days before migrating

into tissues where they become tissue-resident

macrophages. Dendritic cells, an important antigen-

presenting cell residing in tissues, can be either

lymphoid or myeloid in origin.

BMDC are mobilized in cancer-bearing animals

and in humans (Wels et al. 2008). Many studies were

initiated following the observation that recruitment of

a subset of hematopoietic and vascular progenitors

were required to assemble new vessels in tumors

(Lyden et al. 2001). The key concepts are that BMDC

have temporally and spatially restricted roles in

supporting in specific types of tumors, that recruitment

of even small numbers of BMDC can play a crucial

role in catalyzing tumor progression and that BMDC

may precede or presage cancer, implicating them in the

very earliest manifestations of cancer (Kaplan et al.

2005).

The variety, rarity, and plasticity of different

BMDC subsets complicate their analysis and respec-

tive importance and specific functions in response to

injury, cancer, and pathology at large. An important

tool has been implementation of bone marrow trans-

plantation in conjunction with various genetic reporter

systems and immunologic markers. One idea is that

BMDC can be used to treat injured tissues and promote

repair, and another is that blocking BMDC recruitment

and/or action can prevent disease, but there is still

much to be learned about the recruitment, behavior,

and stability of these cells across development, during

homeostasis, and in disease.
Cross-References
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Definition

In ▶Multiple Hypothesis Testing, the Bonferroni cor-

rection is a conservative method for probability

thresholding to control the occurrence of false

positives.
When deciding whether to accept or reject an indi-

vidual null hypothesis, a probability threshold, a, is
utilized to control the likelihood of false positives. In

multiple hypothesis testing, an increased number of

samples, n, in a given family increases the probability

that false positives will arise within that family at the

same probability threshold, a. Thus, the threshold, a,
should be lowered to control the total number of false

positives.

The Bonferroni correction controls the number of

false positives arising in each family by using

a probability threshold of a/n for each observation

within the family. By guaranteeing that the probability

of a test being accepted within a family is the same as

or less than the probability of any individual test being

accepted, the Bonferroni correction is extremely con-

servative. When the number of comparisons is large,

use of the Bonferroni correction should be limited and

replaced by methods like the ▶Benjamini-Hochberg

Method.
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Synonyms

Switching function
Definition

In mathematics, a Boolean variable B has the value

0 or 1. A Boolean function is a function with the form
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f: Bn ! B, where Bn ¼ B � B � . . . � B ¼ {0, 1}

� {0, 1}� . . .� {0, 1}, the Cartesian product of Bwith

itself to n factors (Chatterjee 2005).
For example, for n¼ 2, B2¼ {0, 1}� {0, 1}¼ {00,

01, 10, 11}. Thus, a Boolean function of two variables

is a function from B2 to B which assigns every ordered

pair of elements of B to a unique element of B. “AND”

function and “OR” function are two important Boolean

functions of two variables (Koshy 2004).
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Synonyms

Boolean networks; Probabilistic boolean networks
Definition

Boolean network (BN) is known as a popular mathe-

matical model for modeling genetic regulatory net-

works. The BN model was first proposed by

Kauffman (1969). In a BN model, the gene expression

states are quantized into only two levels: on and off

(represented as 1 and 0). The target gene is determined

by several other genes called its input genes according

to regulation rules (given as Boolean functions). A BN

is said to be well defined when all the input genes and

Boolean functions are given (Kauffman (1993)). There

are two types of BN models: synchronous BNs and

asynchronous BNs, depending on whether or not the

states of nodes are updated synchronously. Synchro-

nous model is more popular and easier to analyze and
therefore we adopt it in our discussion. We note that

a BN model is a deterministic model and the only

randomness comes from its initial state. Considering

the inherent deterministic directionality in BNs as well

as only a finite number of possible states, it is easy

to see that the BN will eventually enter into a set of

state(s) and stay there forever. These states are called

attractors and the states that lead to them comprise

their basins of attraction. The number of transitions

needed to return to a given state in an attractor is called

cycle length.

Since a BN is a deterministic model, to better model

a genetic regulatory network, one has to overcome the

deterministic rigidity of a BN. It is therefore natural to

extend BNs to a stochastic setting and this results in

a new class of mathematical models, namely, probabi-

listic Boolean networks (PBNs). The basic idea is

described as follows. In a PBN, each gene can have

more than one Boolean function with a certain selec-

tion probability assigned to it. The dynamics of a PBN

can be studied by using Markov chain theory, and the

network behavior is characterized by its transition

probability matrix and its steady-state probability dis-

tribution. One can understand a genetic regulatory

network and identify the influence of different genes

via such a network. Then, therapeutic gene interven-

tion and gene control policies can be developed and

studied. Similar to BN, there are two classes of PBNs :

synchronous PBNs and asynchronous PBNs. Synchro-

nous PBNs are more popular as they are easier to be

analyzed. Moreover, there are two types of PBNs:

instantaneously random PBNs and context-sensitive

PBNs. The instantaneously random PBN is essentially

a collection of Boolean networks in which, at any

discrete time point, the gene state vector transforms

according to the rules of one of the constituent net-

works. That is, the rule for updating each gene is

randomly chosen at each time step from several possi-

ble rules in accordance with a fixed probability distri-

bution. The context-sensitive PBN is an extension of

PBN. It differs from instantaneously random PBNs for

two reasons: (1) each gene is allowed to change its

activity with a small probability at each time instant,

regardless of which constituent BN is active at the

moment, and (2) switching between constituent BNs

occurs with a small probability, such that a PBN may

remain in the same constituent BN for a longer time

interval (Pal et al. 2005).
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Boolean Model, Table 1 The truth table

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1

2 0 1 1 0

3 1 0 1 0
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Characteristics

A Boolean Network (BN) G(V, F) actually consists of

a set of n nodes (where each node corresponds to

a gene):
4 1 1 0 0
V ¼ fv1; v2; . . . ; vng:

and a list of Boolean functions (which represent the

regulatory rules for nodes):
F ¼ f f1; f2; . . . ; fng:

where fi : {0, 1}
n ! {0, 1}. Define vi(t) to be the state

(0 or 1) of the node vi at time t. The rules of the

regulatory interactions among the genes are then

represented by
viðtþ 1Þ ¼ fiðvðtÞÞ; i ¼ 1; 2; . . . ; n:

Here, we let v(t) ¼ (v1(t), v2(t),. . ., vn(t) )
T, which is

called the Gene Activity Profile (GAP). The GAP can

take any possible form (state) from the set
S ¼ ðv1; v2; . . . ; vnÞT : vi 2 f0; 1g
n o

(1)

and thus totally there are 2n possible states in the

network. Hence, v(t + 1) is determined from v(t) in

a BN. As mentioned before, given an initial state v(0),

the BN will enter into a cycle called attractor. An

attractor consisting of only one global state is called

a singleton attractor. Otherwise, it is called a cyclic

attractor with period p if it consists of p states.

The following is an example of a BN having two

genes with the truth table given in Table 1.

From the truth table, there are four states and they

are (0, 0), (0, 1), (1, 0), and (1, 1). Let us label them as

1, 2, 3, and 4, respectively. We note that if the current

state of the BN is 3, the network will stay with State 3

in the next step (with probability one). Suppose the

current state is 2, the network will go to State 3 in the

next step (with probability one). Similarly if the cur-

rent state is 1, the network will go to State 4 in the next

step (with probability one). Finally, if the current net-

work state is 4, the BN will then go to State 1 in next

step (with probability one). The transition-probability

matrix (Boolean network matrix) of the 2-gene BN is

then given by
B1 ¼
0 0 0 1

0 0 0 0

0 1 1 0

1 0 0 0

0
BB@

1
CCA (2)

The truth table provides the one-step transition

probability (0 or 1 in the case of BN) between any

two states. We observe that there are two cycles and

they are given as follows: (a) (0, 0) ↔ (1, 1), and (b)

(1, 0) ↔ (1, 0). Thus, State 3 is an attractor cycle of

period (length) one and States 1 and 4 form an attractor

cycle of period two. We remark that there is a one-to-

one relation between a BN and its corresponding BN

matrix.

Since BN is a deterministic model, it may not be

able to capture the properties of a biological system

which processes certain randomness. Moreover, the

microarray data sets used to infer the network structure

are usually not accurate because of experimental noise

in the complex measurement process. To address this,

a stochastic model, namely, probabilistic Boolean

network (PBN) was developed by Shmulevich,

Dougherty, Kim, and Zhang (2002). In a PBN, each

gene instead of having only one Boolean function,

there are a number of Boolean functions (predictor

functions) f
ðiÞ
j ð j ¼ 1; 2; . . . ; lðiÞÞ to be chosen for

determining the state of gene vi. The probability of

choosing f
ðiÞ
j as the predictor function is c

ðiÞ
j

(Shmulevich and Dougherty 2007),
0 	 c
ðiÞ
j 	 1 and

XlðiÞ
j¼1

c
ðiÞ
j ¼ 1 for

j ¼ 1; 2; . . . ; lðiÞ; i ¼ 1; 2; . . . ; n:

(3)
The probability c
ðiÞ
j can be estimated by using the

statistical method Coefficient of Determination (COD)

developed by Dougherty, Kim, and Chen (2000) with

real gene expression data sets.
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Boolean Modeling of Cell Cycle Control

▶Cell Cycle Modeling Using Logical Rules
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Boolean Networks, Fig. 1 Left: An example of Boolean net-

work. X, Y, and Z are three genes. The Boolean functions of them
are given by the truth tables placed next to them. For example,

the Boolean function fz of gene Z at time T is fz(0, 0) ¼ 0;
Boolean Networks

Zhong-Yuan Zhang

School of Statistics, Central University of Finance and

Economics, Beijing, China
Synonyms

Kauffman network; N-K model
Definition

A Boolean network model is composed of two parts:

(1) A directed and loops-allowed graph with N nodes

representing the genes where each gene is connected

with only K other genes (hence, Boolean network is

also called N-K model) (Jong 2002; Kauffman 1969;

L€ahdesm€aki et al. 2003). Each gene only has two

states: 1 (on) means expressed and 0 (off) means silent.

(2) Boolean functions and states of genes, where the

state of each gene i, i ¼ 1, 2, ···, N, are modeled as the

output of Boolean function fi with K (or at most K)
inputs specified by the graph. Once the network and the

Boolean functions are determined, the model’s state at

any discrete time step is uniquely determined by the

initial assignment of the states of the genes. Since the

number of the possible states is finite, the model will

inevitably fall into an attractor at last (point attractor or

cyclic attractor; see Fig. 1).
1 1 0

1 0 1

1 1 1

0 1 1

1 0 0

fz(1, 0)¼ 0; fz(0, 1)¼ 0; fz(1, 1)¼ 1.Right: The states trajectories
of two particular realizations of the Boolean network. The top

trajectory falls into a cyclic attractor, and the bottom one falls

into a point attractor
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To find the Boolean networks for real gene expres-

sion dataset, many algorithms have been developed.
Cross-References

▶Boolean Model

▶ Identification of Gene Regulatory Networks,

Machine Learning
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Bootstrap Aggregating

▶Bagging
Bootstrap Resampling

▶Bootstrapping
Bootstrapping
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Synonyms

Bootstrap resampling
Definition

The bootstrap is a data resampling strategy (Efron

1983; Efron and Tibshirani 1997; Duda et al. 2001).

This resampling provides an estimate for an unknown

population parameter y. Let a data setD be a sample of

n data points (or cases) xi, i¼ 1..n, from the population

under study. The values of these cases are assumed to

be the outcomes of independent and identically distrib-

uted random variables with (unknown) probability

density function. Without specific assumptions or

a particular model for this probability function, the

bootstrap is non-parametric, otherwise parametric.

The parameter y is a function of the values in the

population, y ¼ T(x), for example, the population

mean (Dixon 2006). This function also determines

the sample statistic, ŷ ¼ T(x), for example, the mean

of all values in D (i.e., the sample mean). To estimate

the sampling distribution Fy(x) of the function T,
a bootstrap sample is generated by randomly and uni-

formly selecting n cases from D with replacement.

This sampling is repeated B times to generate B
bootstrap samples (Fig. 1). The statistic ŷ is calculated
for all B bootstrap samples individually. Then the

bootstrapped estimate, ŷboot, of the population param-

eter is calculated based on all b ¼ 1..B individual

statistics ŷb.Thus, the empirical distribution of all ŷb
provides an estimate for the theoretical sampling

distribution Fy(x) of the function T (Dixon 2006). For

example, if this function is the mean, then we average

all estimates ŷb as shown in (1) to obtain the

bootstrapped estimate of the mean, ŷboot.
ŷboot ¼ 1

B

XB
b¼1

ŷb (1)
Characteristics

Bootstrapping is a general data resampling strategy for

estimating any population parameter. For example,

from the empirical distribution of the B statistics ŷb,
we can calculate the bootstrapped estimates for bias

and variance of the sample statistic ŷ as follows:
biasfŷg ¼ 1

B

XB
b¼1

ðŷb � ŷÞ (2)
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Bootstrapping,
Fig. 1 Simplified schematic

of the standard bootstrap

process. From the data set D
comprising n points, B
bootstrap samples are

generated by repeated uniform

sampling with replacement.

From each bootstrap sample,

an estimate of the parameter y
is calculated. The B estimates

are used to derive the

bootstrapped estimate ŷboot
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B

variancefŷg ¼ 1

B� 1

XB
b¼1

ŷb �
PB

b¼1 ŷb
B

 !2

(3)

For B ! 1, the bootstrapped estimate approaches

the true parameter of interest. Therefore, by increasing

the number of bootstrap samples, we can improve the

accuracy of our estimate.

To create one bootstrap sample, the data set D

with n cases is sampled n times. In the standard

bootstrap, this sampling is uniform; hence, each of

the n data points in D has the same probability 1/n

of being selected for the bootstrap sample. Thus,

the probability that a point is not selected for the

bootstrap sample is (1� 1/n)n, which is approximately

e�1 � 0:368 for large n. Therefore, the expected num-

ber of distinct points in a bootstrap sample is about

0.632 times n.

The standard non-parametric resampling is

arguably the most widely used type of bootstrap.

Alternative methods include the balanced bootstrap,

which warrants that each case occurs exactly B times

in B bootstrap samples (Dixon 2006). The smoothed

bootstrap adds a small amount of noise to each

sampled case (Silverman and Young 1987). Both

balanced and smoothed bootstrap stabilize the variance
estimation. Whereas the standard bootstrap assumes

that the data points are independent and identically

distributed random variables, the moving blocks

bootstrap is applicable to correlated observations,

for example, time series data (K€unsch 1989;

Dixon 2006).

The Bootstrap in Systems Biology

The bootstrap and ▶ cross-validation are the two

most widely used data resampling strategies in

systems biology. Specifically for evaluating classifica-

tion performance in small sample scenarios such

as microarray data classification, the bootstrap is a

popular choice.

In ▶ classification tasks, the bootstrap can be used

to estimate the prediction error e of a classifierC. Here,
the classifier is built B times using the data in the

bootstrap samples, which serve as training sets. The

resulting Bmodels are then applied to the original data

set D, which serves as test set.

Let yi denote the true class label of a case xi. Cb is

the classifier resulting from the application of

a learning algorithm to the data of the bth bootstrap

set, and Cb(xi) is the prediction of this classifier for

case xi. L(yi, Cb(xi)) is the loss function of the classifi-

cation. For example, the 0–1 loss function gives

http://dx.doi.org/10.1007/978-1-4419-9863-7_941
http://dx.doi.org/10.1007/978-1-4419-9863-7_606
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0 if yi ¼ Cb(xi) and 1 otherwise. Equation (4) defines

the bootstrapped estimate of the prediction error

(Hastie et al. 2008). Here, B is the number of bootstrap

samples, and n is the total number of cases.
êboot ¼ 1

B

1

n

XB
b¼1

Xn
i¼1

Lðyi;CbðxiÞÞ (4)

The expected number of cases that are identical in

the data set D and the bth bootstrap sample is 0.368

times n. As the training sets overlap with the test set,

the bootstrapped estimate of the prediction error, êboot,
is biased downward (i.e., optimistically biased). For

▶ overfitted classifiers, the bootstrapped estimate of

the prediction error would then be smaller than their

true prediction error e.
To alleviate the optimistic bias of (4), we

can exclude those cases that are contained in both

the bootstrap samples and the original data set.

The resulting estimate is called the leave-one-out

bootstrap estimate of the prediction error (Hastie

et al. 2008).
êloob ¼ 1

n

Xn
i¼1

1

jS�ij
X
b2S�i

Lðyi;CbðxiÞÞ; (5)

with S–i being the set of indices of bootstrap samples

that do not contain the case i, and |S–i| is the number of

those samples. Because of the random sampling, it is

possible that all bootstrap samples contain the case i,

leading to |S–i| ¼ 0. To avoid a division by zero, the

number of bootstrap samples needs to be sufficiently

large so that at least one bootstrap sample does

not contain the case i. Alternatively, we could omit

those cases that are included in all bootstrap samples

(Hastie et al. 2008). Note that, although the estimate

êloob is called the leave-one-out bootstrapped estimate,

on average, 0.368 times n cases are left out per boot-

strap sample. The leave-one-out bootstrap estimate of

the prediction error is not to be confused with the out-

of-bag estimate of the error rate resulting from bagged

classifiers.

For each bootstrap sample, the expected number of

distinct training cases is 0.632 times n. So each
classifier is trained on about 63% of the cases only.

As a result of the small effective training set, the leave-

one-out bootstrapped estimate êloob tends

to overestimate the true prediction error (i.e., êloob

is biased upward). The 0.632 bootstrap

(▶Bootstrapping, 0.632 Bootstrap) addresses

this bias by weighing the leave-one-out bootstrapped

estimate and the bootstrapped resubstitution error,

êresub, which is defined in (6).
êresub ¼ 1

n

Xn
i¼1

1

jSþij
X
b2Sþi

Lðyi;CbðxiÞÞ; (6)

with S+i being the set of indices of bootstrap

samples that contain the case i, and |S+i| is the number

of those samples. Like any resubstitution error esti-

mate, êresub is biased downward, i.e., it is smaller

than the true prediction error. To correct the downward

bias of the 0.632 bootstrap (▶Bootstrapping, 0.632

Bootstrap), Efron and Tibshirani (1997) developed

the 0.632 +bootstrap (▶Bootstrapping, 0.632+

Bootstrap).

Figure 2 illustrates the relation between the

leave-one-out bootstrapped estimate and the

bootstrapped resubstitution error in a simplified

example. To calculate the contribution of case 1 to

the leave-one-out bootstrapped estimate, the

prediction of only model C2 is relevant because it is

derived from a bootstrap sample that does not contain

case 1. In contrast, to calculate the contribution

of case 1 to the bootstrapped resubstitution error,

the predictions of only models C1 and C3 are used

because only the bootstrap samples #1 and #3 contain

case 1.

Advantages and Disadvantages of the Bootstrap

The bootstrap is one of the most commonly

used resampling strategies for assessing the reliability

of performance measures in classification tasks, specif-

ically when the data sets are relatively small. This is

generally the case for genomic data sets where the

number of features (e.g., probe sets on a microarray) is

orders of magnitude smaller than the number of

specimens.

http://dx.doi.org/10.1007/978-1-4419-9863-7_601
http://dx.doi.org/10.1007/978-1-4419-9863-7_1328
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Bootstrapping, Fig. 2 Illustration of the leave-one-out

bootstrapped estimate and the bootstrapped resubstitution error.

The data set contains n¼ 10 cases; here, only the case indices are

shown. From the original data set D, three bootstrap samples are

drawn, and three classifiers (C1, C2, and C3) are built
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The non-parametric bootstrap method does not

rely on any assumptions about the data distribution.

Therefore, bootstrapping can be applied to real-world

data sets for which specific distributional assumptions
are questionable and classic statistical procedures

thus problematic. However, it is also possible to

include distributional assumptions into the sampling,

for example, we may assume that the data follow

approximately a normal distribution. Or, on the

basis of our prior beliefs, we may assign different

prior probabilities to the individual cases for being

selected for a bootstrap sample. The bootstrap is then

a parametric method. Thus, the bootstrap can be

performed either with or without a predefined proba-

bility model (Davison and Hinkley 1997).

A particular advantage of the bootstrap is that its

implementation is straightforward. The language

and environment ▶R, for example, provides several

functions for parametric and non-parametric

bootstrapping (see, e.g., the R library boot). Specifi-

cally, R provides functions for computing a variety of

bootstrapped confidence intervals (see, e.g., the

R function boot.ci). For instance, using the percentile

bootstrap, we derive a confidence interval for our

statistic of interest as follows: (1) we sample several

hundred bootstrap samples with replacement; (2) we

calculate the statistic for each sample; and (3) we use

the a/2 and (1� a/2) percentiles of the distribution to
obtain an empirical (1 � a/2)-level confidence inter-
val. For many real-world data sets, the assumptions

underlying conventional confidence intervals are vio-

lated. Specifically for small data sets, the assumption

of an asymptotic distribution may not hold.

Bootstrapped confidence intervals are then an inter-

esting alternative.

The bootstrap requires multiple samplings of the

data set. The computational costs may be considered

a disadvantage, specifically if all possible subsamples

are generated. The exhaustive subsampling, however,

is generally not necessary. In the context of perfor-

mance assessment, bootstrapped estimates of error

rates tend to be optimistically biased, specifically for

the leave-one-out bootstrap and the 0.632 bootstrap

(Molinaro et al. 2005). For small data sets, the 0.632+

bootstrap performs competitively with leave-one-out

cross-validation and ten-fold cross-validation

(Simon 2007). Although bootstrapping is often

recommended for small sample scenarios, it is no

panacea for a lack of data (Jiang and Simon 2007;

Isaksson et al. 2008).

http://dx.doi.org/10.1007/978-1-4419-9863-7_619
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Definition

The 0.632 bootstrap weighs the bootstrapped

resubstitution error (▶Bootstrapping), êresub, and the

leave-one-out bootstrapped estimate of the prediction

error (▶Bootstrapping), êloob, as follows:
ê:632 ¼ 0:368 êresub þ 0:632 êloob (1)

This weighted average corrects the upward bias of

the leave-one-out bootstrapped estimate. However,

ê:632 can now be biased downward (Hastie et al.

2008). Consider the example of a classification prob-

lem with two balanced classes where the class labels

are independent of the data set attributes. For this data

set, the true prediction error of any classifier

cannot be smaller than 0.5. However, consider the

0.632 bootstrap estimate for the 1-nearest neighbor

classifier (Hastie et al. 2008). Its resubstitution

error is zero because 1-NN uses the class label of

the duplicated training case to predict the class label

of the corresponding test case inD. The leave-one-out

bootstrapped estimate is 0.5 because for those

cases that are not included in the bootstrapped sam-

ples, 1-NN performs like a random guesser. Thus,

the 0.632 bootstrapped estimate of the prediction

error is ê:632 ¼ 0þ 0:632 � 0:5 ¼ 0:316, which

underestimates the true error rate of 0.5 in this

example. To correct the downward bias of the 0.632

bootstrap, Efron and Tibshirani (1997) developed

the 0.632+ bootstrap (▶Bootstrapping, 0.632+

Bootstrap).
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Definition

The 0.632+ bootstrap adjusts the weights of the 0.632

bootstrap (▶Bootstrapping, 0.632 Bootstrap) as fol-

lows (Hastie et al. 2008).
ê:632þ ¼ ð1� wÞ êresub þ w êloob; with

w ¼ 0:632

1� 0:368R
and R ¼ êloob � êresub

êrandom � êresub
(1)

Here, êresub is the bootstrapped resubstitution error

(▶Bootstrapping), and ê loob is the leave-one-out

bootstrapped estimate of the prediction error

(▶Bootstrapping). ê random is the estimate of the pre-

diction error under the assumption that the class

labels are independent of the data set attributes

(▶Learning, Attribute-Value). R is an estimate of the
degree of ▶ overfitting. Hence, the weights for the

0.632+ bootstrap are not fixed as in the 0.632

bootstrap but determined based on the degree of

▶ overfitting. Efron and Tibshirani (1997) developed

the 0.632+ bootstrap to address the downward bias

of the 0.632 bootstrap (▶Bootstrapping, 0.632

Bootstrap).
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Definition

Bromodomains, initially identified in the Drosophila

protein Brahma, is an acetylated histone recognition

domain and found in various chromatin factors.

ATP-dependent nucleosome-remodeling factors and

histone acetyltransferases frequently contain

bromodomains (Allis et al. 2006). Typical

bromodomains are composed of approximately 110

amino acid residues. Tertiary structure analyses showed

that the bromodomain adopts a four-a-helix-bundle
structure and has a cavity at the top of the molecule to

accommodate an acetylated lysine residue (Fig. 1).
Bromodomain, Fig. 1 Crystal structure of bromodomain in

complex with an N-tail peptide of histone H4 (PDB code: 1E6I).

Bromodomain and the N-tail peptide of histone H4 are shown in

cartoon (cyan) and stick models (carbon atoms in white),
respectively
A tandem repeat type bromodomain, which is des-

ignated as a double bromodomain, was first found in

the TAF1 (also called as CCG1 or TAF(II)250)

subunit of TFIID. This double bromodomain interacts

with histone chaperone CIA/Asf1. The Rsc4 subunit

of the RSC complex, which is an ATP-dependent

nucleosome-remodeling factor, also contains tandem

bromodomains. The physical interactions between

the bromodomain and factors for the nucleosome

structural change suggest that histone acetylation

affects nucleosome structural change.
Cross-References
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Definition

Brownian Ratchet is a model mechanism for translo-

cation of RNA polymerases. In this model, the

transcript molecule, complexed with the template

DNA, is supposed to thermally move forward

and backward rapidly in the catalytic site of RNA

polymerase. Thus, an eventual big backward

movement makes the backtracked complex, with

the 30-end of the transcript molecule protruding

from RNA polymerase. A big forward movement

dissociated the transcript in abortive synthesis. In

normal elongation, a big backward movement is

hampered by the ratchet of the collision with the

bridge helix, and a big forward movement by the
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reaction with a substrate nucleoside triphosphate

(NTP), which is inserted into a space occasionally

formed between the helix and the 30-end of the tran-

script. In this model, a transcription complex with the

transcript molecule at any given position is merely

a conformation but no longer a chemical species.

Thus, there must be neither a chemical transition

state nor an activation energy of translocation, and

the system should be described in dynamics rather

than kinetics.
Cross-References
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