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Saddle-Node Bifurcation

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou, Guangdong,

China
Definition

In the mathematical area of bifurcation theory,

a ▶ saddle-node bifurcation, tangential bifurcation, or

fold bifurcation is a local bifurcation in which
W. Dubitzky et al. (eds.), Encyclopedia of Systems Biology, DOI 1
# Springer Science+Business Media LLC 2013
two fixed points (or equilibria) of a dynamical system

collide and annihilate each other. The term “saddle-

node bifurcation” is most often used in reference to

continuous dynamical systems. In discrete dynamical

systems, the same bifurcation is often instead called

a fold bifurcation. Another name is blue skies bifurca-

tion in reference to the sudden creation of two fixed

points.

If the phase space is one-dimensional, one of the

equilibrium points is unstable (the saddle), while

the other is stable (the node).

The normal form of a saddle-node bifurcation is:
dx

dt
¼ r þ x2

Here x is the state variable and r is the bifurcation
parameter.

If r < 0 there are two equilibrium points, a stable

equilibrium point at � ffiffiffiffiffiffi�r
p

and an unstable one

at þ ffiffiffiffiffiffi�r
p

. At r ¼ 0 (the bifurcation point) there is

exactly one equilibrium point. At this point the

fixed point is no longer hyperbolic. In this case

the fixed point is called a saddle-node fixed point.

If r > 0, then there are no equilibrium points.

A saddle-node bifurcation occurs in the consumer

equation if the consumption term is changed from px to

p, that is the consumption rate is constant and not in

proportion to resource x.
Saddle-node bifurcations may be associated with

hysteresis loops and catastrophes.
0.1007/978-1-4419-9863-7,
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S-Adenosylmethionine

Gota Kawai

Department of Life and Environmental Sciences,

Chiba Institute of Technology, Narashino, Chiba,

Japan
Synonyms

SAM, adoMet
Definition

S-adenosylmethionine (Fig. 1) is synthesized from

ATP and L-methionine and acts as a donor of methyl

groups in prokaryote as well as eukaryote. By the

transfer of a methyl group, S-adenosylmethionine

is converted into S-adenosylhomocysteine, which is

broken down to homocysteine and adenosine.

Homocysteine is then converted to methionine.

S-adenosylmethionine is also used for synthesis of

cysteine as well as polyamines.
COO−

CHH3N+

CH2

CH2

H

H H

H

O

N N

NN

NH2

HO OH

CH3

S+

S-Adenosylmethionine, Fig. 1 Chemical structure of

S-adenosylmethionine
Safety Assessment

▶ Pharmaceutical Toxicology, Application of

Biosimulation
Safety Testing

▶ Pharmaceutical Toxicology, Application of

Biosimulation
SAGA

Tetsuro Kokubo

Department of Supramolecular Biology, Graduate

School of Nanobioscience, Yokohama City

University, Yokohama, Kanagawa, Japan
Synonyms

PCAF; STAGA; TFTC (human)
Definition

SAGA (Spt-Ada-Gcn5-acetyltransferase), which is

orthologous to the mammalian TFTC, PCAF, and

STAGA complexes, was identified originally as

a HAT (histone acetyltransferase) for histone H3

(Baker and Grant 2007; Bhaumik 2011; Timmers and

Tora 2005). This factor is a large protein complex

(�1.8 MDa) containing 5 Tafs (Taf5, 6, 9, 10, and

12) shared by TFIID, as well as 16 other subunits

(Ada1, Ada2, Ada3, Ada5, Gcn5, Spt3, Spt7, Spt8,

Spt20, Sgf11, Sgf29, Sgf73, Ubp8, Sus1, Chd1, and

Tra1). In TFIID, there are five Taf heterodimer pairs

containing a HFD (histone fold domain): Taf4-Taf12,

Taf6-Taf9, Taf3-Taf10, Taf8-Taf10, and Taf11-Taf13.

Similarly, in SAGA, there are three HFD heterodimers,

Ada1-Taf12, Taf6-Taf9, and Spt7-Taf10, and one

intramolecular HFD dimer in Spt3 that resembles

Taf11-Taf13 in TFIID.

http://dx.doi.org/10.1007/978-1-4419-9863-7_101314
http://dx.doi.org/10.1007/978-1-4419-9863-7_1487
http://dx.doi.org/10.1007/978-1-4419-9863-7_1487
http://dx.doi.org/10.1007/978-1-4419-9863-7_1487
http://dx.doi.org/10.1007/978-1-4419-9863-7_1487
http://dx.doi.org/10.1007/978-1-4419-9863-7_101129
http://dx.doi.org/10.1007/978-1-4419-9863-7_101388
http://dx.doi.org/10.1007/978-1-4419-9863-7_101484
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SAGA functions as a co-activator by modifying

histones, such as acetylation (H3) and/or deubiqui-

tylation (H2B), as well as by delivering TBP to

the TATA-containing core promoter. The HAT and

DUB (deubiquitylase) enzyme activities are carried

on the Gcn5-Ada2-Ada3 and Ubp8-Sgf11-Sus1

submodules, respectively (each underlined protein

is a catalytic subunit of HAT and DUB). The TBP

delivery function is carried out by Spt3 and Spt8,

which show genetic and/or physical interaction

with TBP.

Transcriptional activators recruit SAGA to pro-

moters by binding to Tra1, the largest SAGA

subunit (�400 KDa), which contains a catalytically

inactive phosphatidylinositol 3-kinase domain. Once

recruited by activators, SAGA is further stabilized

on the promoter by recognizing chemical modifica-

tions of histones. For instance, acetylated and

methylated histone H3 are recognized by the

bromodomain of Gcn5 and chromodomain of

Chd1, respectively.

A SAGA-related complex, such as SALSA (SAGA

altered, Spt8 absent) or SLIK (SAGA-like), contains

Rtg2 instead of Spt8, and a processed form of Spt7

that lacks a carboxy-terminal region required for inter-

action with Spt8. Although SALSA/SLIK is suggested

to be involved in a response to nitrogen starvation, it

is still unclear whether these two similar complexes

regulate the expression of different sets of genes

in vivo.
Cross-References

▶Transcription in Eukaryote

S
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▶ S-Adenosylmethionine
Sample Variability, Inter-Groups

Anyela Camargo1 and Jan T. Kim2

1Institute of Biological, Environmental and Rural

Sciences, Aberystwyth University, Aberystwyth,

Ceredigion, UK
2School of Computing Sciences, University of East

Anglia, Norwich, Norfolk, UK
Synonyms

Inter-class variability; Inter-sample variability
Definition

A central question in the Bioscience area – and related

sciences – is the degree of variability between sam-

ples obtained from different populations. Inter-

sample variability aims to determine how much

variability should be ascribed to differences in exper-

imental conditions (groups) (Jerrold 1974). As

a simple but common example, an experiment may

comprise two populations of samples, an untreated

reference population, and a population perturbed by

some treatment. A numeric quantity y is measured; yr
denotes measurements of sample from the reference

population and yp, measurements of a sample from

the perturbed population. The problem could be

represented in a linear equation for a general linear

model:
yr ¼ rþ e

yp ¼ rþ xp þ e (1)

http://dx.doi.org/10.1007/978-1-4419-9863-7_1404
http://dx.doi.org/10.1007/978-1-4419-9863-7_1320
http://dx.doi.org/10.1007/978-1-4419-9863-7_100707
http://dx.doi.org/10.1007/978-1-4419-9863-7_100713
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where r is the intercept, that is, the value of y when

the system is unperturbed, xp represents the effect of

the experimental perturbation on y, and e is the

error, comprising both biological variation and

measurement error.

From Eq. 1, the inter-sample variability caused by

the perturbation can be estimated as
s ¼ yp � yr
�� �� (2)

Therefore, if |yp � yr| � s (where s is a given

threshold), there is a substantial difference between the

reference yr and the perturbed class yp, suggesting that

xp has an effect in the outcome. This is a typical

problem in the drug discovery area when the effects

of a drug over a target population are assessed. In

such experiments, samples from subjects taking

a placebo yr and samples from subjects taking the

drug yp are obtained and s is estimated. Note however,

that the significance of s is proportional to the

size of population sampled, the number or replicates

from each experiment and the number of response

variables being assessed. For large experiments,

that is, high-throughput analysis, s should be put in

the context of a multiple testing analysis to correct

for the potential high number of false of positives

that is the result of assessing hundreds of response

variables.

However importantly, the degree of which there

is an assumption of potential differentiation might

and should vary according to the experimental

settings used in the analysis and how complex

the experiment is. For simple experiments, the

assumption of non-equality might be computed

straightforwardly according to Eq. 2. However,

for more complex experiments such as microar-

ray-based analyses, statistics estimates such as the

one-way and two-way ANOVA tests need to be

appropriately normalized and corrected for multiple

testing.
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Sample Variability, Intra-Groups

Anyela Camargo1 and Jan T. Kim2

1Institute of Biological, Environmental and Rural

Sciences, Aberystwyth University, Aberystwyth,

Ceredigion, UK
2School of Computing Sciences, University of East

Anglia, Norwich, Norfolk, UK
Synonyms

Intraclass variability; Intra-sample variability
Definition

A central question in the bioscience area – and related

sciences – is the degree of variability in the samples

obtained from similar experimental settings. This esti-

mate can be used to identify outliers and problems in

the handling of the experiment, to assess the suitability

of the samples to represent a class and to check the

quality of the data. The assessment of sample variabil-

ity can be done by estimating various statistics that

give an indication of the spread of the measurements

around the center of the distribution (Jerrold 1974). For

example, the coefficient of variation (CV) (1), the ratio

of the standard deviation to the mean, is a simple but

very informative metric that indicates the spread of

a dataset as a proportion of its mean.

Cv ¼ s
jmj (1)

where s is the population’s standard deviation and m is

the population’s mean.

Although the estimation of variability obeys the

same principles regardless of the data, the selection

of the estimate to measure variability and its interpre-

tation should be given by the characteristics of the

experiment. For experiments where no information

on the distribution underlying intragroup variability

is available, a Gaussian distribution may be assumed

as a first approximation, and consequently the standard

deviation may be used as a measure of variability.

However, it is important to notice that intragroup

variability may be heterogeneous, i.e., spread or other

characteristics may be different for individual groups.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100715
http://dx.doi.org/10.1007/978-1-4419-9863-7_100716
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As an elementary example, consider a scenario

with four groups of patients, where the first three groups

are comprised of patients with A, B, and C health con-

ditions, respectively, and the fourth group contains

patients who are unwell but no clear diagnosis is avail-

able. The fourth group very likely includes patients with

several different diseases, and, therefore, intragroup

variability can be expected to be elevated for that group.

The method that has been used to designate group

membership to the samples also has various implica-

tions for intragroup variability. For example, multiple

alternatives of group designation were considered and

an optimal designation was chosen from among these.

As illustrated by the examples above, interpreting

intragroup variability strongly depends on the group

designation. Therefore, intragroup variation usually

has to be interpreted relative to total variation and to

intergroup variation.
References
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SBGN
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Synonyms

Graphical representation of biological processes;

Network visualization and exchange; Systems biology

graphical notation
Definition

The Systems Biology Graphical Notation (SBGN) is a

standard graphical format to represent unambiguously

biological networks and cellular processes. SBGN

allows to visualize complex biological knowledge,

including gene regulation, protein interaction, signal-

ing pathways, and metabolic networks. Information is

represented using graphical objects (glyphs) organized

in a (▶Graph) structure and employs controlled

vocabulary of the (▶ Systems Biology Ontology) to

indicate certain types of information. To cover differ-

ent levels of detail and to deal with alternative dimen-

sions of biological knowledge, SBGN consists of three

visual languages: process descriptions, entity relation-

ships, and activity flows. SBGN focuses on the graph-

ical and visualization facets of systems biology

information and is complementary to exchange for-

mats such as ▶Systems Biology Markup Language

(SBML) or BioPAX.
Characteristics

SBGN Languages

SBGN (Le Novère et al. 2009) encodes biological

knowledge in a graphical form. Biological processes

and networks can be represented and explored at

different levels of detail and biological entities may

be involved in a large number and different types of

interactions. Representing all possible interactions and

reactions is often not desired. To deal with this com-

plexity and support different “views” of a biological

system, SBGN provides three orthogonal and comple-

mentary languages. Each language conveys a certain

level of detail and a specific part of the semantics of the

underlying biological system. Each language comes

with its advantages and weaknesses.

1. Process descriptions (PD). The focus of PD is the

temporal dependencies of biological interactions

and transformations in a network. PD represents

networks of events which convert biological enti-

ties into other entities, change their states, or trans-

port them to another location. Entities can be pools

of simple chemicals, macromolecules, nucleic acid

features (such as genes or promoters), and so on,

represented by entity pool nodes (EPN). The trans-

formation or transport of an entity is represented by

http://dx.doi.org/10.1007/978-1-4419-9863-7_218
http://dx.doi.org/10.1007/978-1-4419-9863-7_100600
http://dx.doi.org/10.1007/978-1-4419-9863-7_101024
http://dx.doi.org/10.1007/978-1-4419-9863-7_103000
http://dx.doi.org/10.1007/978-1-4419-9863-7_103000
http://dx.doi.org/10.1007/978-1-4419-9863-7_1289
http://dx.doi.org/10.1007/978-1-4419-9863-7_1287
http://dx.doi.org/10.1007/978-1-4419-9863-7_1091
http://dx.doi.org/10.1007/978-1-4419-9863-7_1091
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a process node (PN). PD describes processes in

a mechanistic manner, shows different states of an

entity as different glyphs, and is best used to repre-

sent mechanistic and temporal aspects of

a biological system. Figure 1a shows a biological

system in PD. For more details about the PD lan-

guage, one can read its technical specification

(Moodie et al. 2011).

2. Entity relationships (ER). The focus of ER is the

relationship in which entities are involved in the

network, and their influences onto other entities.

ER does not explicitly consider temporal aspects

but shows for the biological system all possible

relationships at once. Entity nodes (EN) represent
entities that exist, each entity being represented

only once in the map. Relationships are rules that

decide whether an EN exists. ER describes relation-

ships in a mechanistic manner and is best used to

represent protein interactions and pathways which

involve multistate or multicomponent entities.

Figure 1b shows a biological system in ER. For

more details about the ER language, one can read

its technical specification (Le Novère et al. 2011).
3. Activity flows (AF). The focus of AF is the bio-

logical activity. In contrast to PD and ER, the

representation can be ambiguous when it comes

to the underlying mechanism. The biological

activities are represented by activity nodes. Mod-
ulation arcs show the influence of activities onto

other activities. Different activities of a biological

entity may be represented separately. AF shows

the sequential influence of activities and is best

used to represent functional genomics and signal-

ing pathways. Figure 1c shows a biological sys-

tem in AF. For more details about the AF

language, one can read its technical specification

(Mi et al. 2009).

Structure of an SBGN Map

An SBGN map is composed of graphical objects

(glyphs) which are connected following syntax,

semantics, and layout rules defined in the SBGN

specifications (Moodie et al. 2011; Le Novère et al.

2011; Mi et al. 2009). From a more technical point of

view, an SBGNmap is a (▶Graph) consisting of nodes
and edges.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1289
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For a typical SBGN map, we might consider the

SBGN process description (PD) language. Figure 2

displays a PD map of a biochemical pathway and pre-

sents typical elements of such a collection of biochem-

ical processes: substrates and products, reactions,

enzymes catalyzing reactions, and information

concerning the location (the compartment where the

pathway occurs). Relevant elements of PD to encode

this information are entity pool nodes (EPNs)

representing homogeneous pools of substrates, prod-

ucts, or effectors of processes; process nodes (PNs)

representing the transition between EPNs; connecting

arcs displaying the relationships between EPNs and

PNs (such as “production” or “catalysis”); and

container nodes combining sets of EPNs (such as

“compartment”). Certain rules described in detail in

the PD specification (Moodie et al. 2011) define

possible connections between these elements. As

shown in Fig. 2, simple chemicals (a type of EPN)

can be connected to processes (a type of PN) using

consumption and production (types of connecting

arcs), thereby representing the biochemical reaction.

Macromolecules (also EPNs) catalyze processes; this

is shown by connecting these elements with

connecting arcs of the type catalysis. The pathway

occurs in the compartment cytosol. Finally, clone

markers (black fillings of the lower part of an EPN)

are used to deal with an entity which should be

presented in the map more than once (for better graph-

ical representation).
SBGN Supporting Tools and Libraries

Tool support is essential for the efficient use of

SBGN. There are several tools which partly (only

some languages) or completely (all languages) sup-

port SBGN. Some of them also provide additional

functionality such as validation of SBGN maps,

translation of maps from external sources, or layout

of maps.

SBGN-ML is a computer-readable format of SBGN

maps to support their exchange. Software tools can

make use of SBGN-ML by employing LibSBGN

(van Iersel et al. 2012), which is a software library

for reading, writing, editing, and validating SBGN

maps.

More information about the SBGN specifications,

SBGN tools, and examples can be found under

http://sbgn.org.
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▶ Systems Biology Markup Language (SBML)
SBO

▶ Systems Biology Ontology
SBPAX

▶ Systems Biology Pathway Exchange (SBPAX)
Scale-Free Network

▶Biological Disease Mechanism Networks
Scale Integration

José Román Bilbao Castro

Supercomputing-Algorithms Group, University of

Almerı́a, Almerı́a, Spain
Definition

Processors are mainly designed by two components:

micro-architecture and scale integration. Micro-

architecture refers to a set of instructions that a

processor are capable of processing (addition, sub-

traction, multiplication, etc.). The scale integration

refers to the size of the elements composing the

processor (the number of transistors). The larger

the scale integration, the more transistors can be

integrated in a single processor and the more com-

plexity can be built on it. Currently, integration

technologies on commercial processors allow nano-

meter-scale devices.
Cross-References

▶Multicore Computing
Scale of Investigation

▶Organism State, Lymphocyte
ScaRNA Databases

▶Non-coding RNA Databases
Schemaless Databases

Steve R. Pettifer and Teresa K. Attwood

Faculty of Life Sciences and School of Computer

Science, The University of Manchester,

Manchester, UK
Synonyms

NoSQL databases
Definition

NoSQL databases are a class of structured datastore

that do not use the traditional table structure of rela-

tional systems. They are particularly useful where

“join” operators are not needed, and scale well for

certain modern applications, such as serving web

pages and streaming media.
Cross-References
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Schizosaccharomyces pombe

▶Cell Cycle, Fission Yeast
Schwarz Criterion

▶Bayesian Information Criterion (BIC)
Schwarz Information Criterion (SIC)

▶Bayesian Information Criterion (BIC)
Scientific Instrument

Jutta Schickore

Department of History and Philosophy of Science,

Indiana University, Bloomington, IN, USA
Definition

A (typically specifically designed) device to aid the

investigation of nature, usually as part of a scientific

experiment.
S

Characteristics

Scientific instruments have been an integral part of the

scientific enterprise. Without them, we would know

nothing about DNA and genes, atoms, electrons, and

quasars. But despite their crucial role in science, phi-

losophers of science have rarely discussed scientific

instruments. For the most part of the twentieth century,

philosophy of science focused on scientific theories

and conceptual foundations of science, with a special

emphasis on physics. Only in the late twentieth cen-

tury, scientific instruments have become a theme for

philosophy of science.
Philosophy of technology also deals with instru-

ments, but this field has developed largely indepen-

dently from philosophy of science. Reflections on

instruments in philosophy of technology are usually

much wider in scope and cover all kinds of tools,

devices, and engineering feats from hammers to

cable-stayed bridges. Philosophers of technology are

concerned with the analysis of design processes, ethics

of technology, engineering ethics, and the metaphysics

of artifacts. By contrast, those few philosophers of

science who have considered scientific instruments

have focused more narrowly on the question of how

knowledge is obtained through instruments, and how

we may characterize and interpret the knowledge thus

obtained.

In the following, I present some key general issues

and questions related to scientific instruments that

philosophers of science have raised, questions

concerning the classification of instruments and their

roles in science, the distinction between observables

and unobservables, the relation between instrument

and theory, and instrument-generated images.

Kinds of Instruments

Philosophers and historians of science have identified

several functions scientific instruments may have in

science, including the amplification of phenomena and

events that are below the threshold of the human senses

(e.g., microscopes and telescopes), the creation or con-

struction of phenomena that do not occur in nature in

the absence of the instrument (e.g., the air pump pro-

ducing a vacuum), the (simplified, downsized) imita-

tion of effects that occur in nature without human

intervention (e.g., Leyden jar, Atwood’s machine);

registration (Geiger counters); and measuring or quan-

tification of phenomena (e.g., astrolabes). Notably,

scientific instruments may also be used for purposes

other than the creation, study, and representation of

phenomena, for instance, as demonstration tools, as

“philosophical toys” for amusement and instruction

(e.g., kaleidoscopes), and as routine measuring

devices, e.g., in surveying. It is still an open question

whether these classifications are exhaustive, whether

the boundaries between the categories are clear-cut,

and whether the epistemic functions of instruments

differ for different categories.

http://dx.doi.org/10.1007/978-1-4419-9863-7_17
http://dx.doi.org/10.1007/978-1-4419-9863-7_436
http://dx.doi.org/10.1007/978-1-4419-9863-7_436
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Particularly with respect to recent science, analysts

of science have acknowledged the difficulty, if not

impossibility, of drawing the line between “science”

and “technology.” Large-scale projects in experimen-

tal science, such as genomics, are dependent on com-

plex technologies such as automated high-throughput

technologies for the rapid identification and analysis of

a great number of samples of DNA, RNA, and other

molecules. In these contexts, “scientific research” and

“engineering” are largely indistinguishable. In science

studies, the apparatus and devices that were conceived

and developed by a community connected to both

science and industry are called “research technolo-

gies.” Research technologies such as radioactivity,

liquid scintillation counters, mouse mutants, and

plant genetics are flexible multipurpose instrument

systems binding together universities, industries,

instrument-making firms, the military, public and pri-

vate research facilities, and metrological agencies

(Joerges and Shinn 2001).

To identify the epistemic functions of scientific

instruments, it is crucial not to consider scientific

instruments in isolation but as part of and in the context

of investigative settings. Such settings usually consist

of a number of tools and devices that together form the

material context for an investigation. To study mitosis

in living cells, for instance, investigators need a high-

power microscope as well as tools to prepare the

samples, a device to keep the temperature at the appro-

priate level, a computer to process the data obtained by

the microscope and to translate them into images, and

so on. Together, these tools and devices provide the

material conditions for the investigation to be carried

out, but their epistemic functions will be different

depending on the research situation. Microtomes and

growth media, for instance, are usually considered

unproblematic technical tools. But they may turn into

obstacles for investigations in particular circum-

stances, and in these cases, they may even become

driving forces for further research.

The Distinction Between Observable and

Unobservable Phenomena

Recent biology and recent science more generally deal

with phenomena and effects that are inaccessible to the

unaided senses. Biologists, like scientists in other

areas, draw on data and images produced by instru-

ments in often highly complex experimental settings to

tell us about such things as DNA, neurons, and mitosis.
But what reasons do we have to assume that their

theories are true and these processes and objects really

exist? This is the topic of the philosophical debate

about “realism” and “antirealism.”

The portion of this debate that is related to instru-

ments has centered on the question of the distinction

between observables and unobservables. Intuitively, it

seems obvious that there are things and processes that

we can observe – tables, chairs, lightning – and other

things and processes that are too small, to faint, or too

distant for us to observe – mitosis, quasars, electrons.

But, philosophers have asked, is it really possible to

draw a clear-cut distinction between what is observ-

able and what is unobservable? If so, is this distinction

really philosophically significant? What is the status of

those entities that can be detected with the aid of

instruments but are inaccessible to the unaided senses?

The historical context for this debate is the view,

advocated by some logical empiricists early in the

twentieth century, that the things that our theories

postulate are not physical things. Physical things are

those that are accessible to our unaided senses, such as

tables and trees, and we have good reason to believe

that these things exist. However, since the only access

to things and phenomena such as electrons and mitosis

is provided through instruments, we do not have any

reason to believe in their existence. Conceptions of

electrons and mitosis are merely convenient and useful

constructs that explain our data (say, the images

produced by a camera or computer attached to a

microscope).

During the second half of the twentieth century,

philosophers of science have commented on and crit-

icized this distinction in a variety of ways. In a classic

article, Grover Maxwell argued that there is a contin-

uum of instruments and things made accessible by

these instruments: things we can see directly, things

we can see by looking through a looking glass, by

using a light microscope, by using an electron micro-

scope, and so on. Any line we draw between “still

observable” and “no longer observable” is arbitrary,

and therefore, we cannot attach any ontological signif-

icance to it. It would be absurd to say that things and

phenomena existed less and less (Maxwell 1962).

Bas van Fraassen, however, insists that it does make

a difference epistemologically whether or not we can

see things directly (van Fraassen 1980). He concedes

that the line is, to an extent, arbitrary. But there are

clear enough cases of “observable (in principle)” and
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“unobservable (in principle)” for the distinction to

make sense: Observable are those things that we can

see with the naked eye (including those things that we

could see with the naked eye if we were close enough);

unobservable are those things that we cannot see and

will never be able to see with the naked eye, given our

bodily makeup. For van Fraassen, it makes a difference

in the epistemic status of our knowledge about things

whether or not we can observe them directly. While we

are perfectly justified to say that the things that we can

see directly exist, we are in a more precarious, more

difficult, less secure situation when we deal with enti-

ties of which our theories tell us that they exist, but

which we can only detect (such as electrons). In this

case, we need to be agnostic: They might exist, they

might not, but we will never know for sure. The part of

science that deals with unobservables cannot be

regarded as securely established.

In his influential book Representing and Interven-

ing of 1983, Ian Hacking famously refers to

a biological instrument – the microscope – to advocate

a radically different solution to the problem of the

distinction between observables and unobservables,

thereby giving the debate between realists and antire-

alists new impulses. Hacking argues that the distinc-

tion is not philosophically significant, and that the

concept of “observation with instruments” is in fact

misleading. A microscope is not a tool for observation.

To use it, the investigators actively engage with the

object under study – say, with ribosomes. Precisely

because investigators are able to produce consistent

results while manipulating and interfering with micro-

scopic objects, they have good reason to assume that

the subvisible things and phenomena they study really

exist. Moreover, it is often possible to generate similar

outcomes with different instruments. Hacking argues

that if two physically different instruments produce

similar results, we are justified in assuming that the

phenomena and processes thus detected are real

because it would be highly unlikely that those instru-

ments coincidentally produced the same kind of

artifact.

The “argument from coincidence” has been widely

accepted. But philosophical discussions about instru-

ments have been moving away from debates about

realism and antirealism and toward discussions of

criteria for ascertaining the reliability of empirical

evidence. Several philosophers now interpret this argu-

ment as an argument for the validity of instrumentally
generated results. Empirical information can be con-

sidered valid, the argument goes, if it can be

reproduced through different instruments and indepen-

dent confirmation can thus be obtained. Philosophers

have probed the epistemic strength of this argument by

reconstructing the logic underlying it and by analyzing

the concept of “independent” confirmation.

Instruments, Theories, and Knowledge

One of the classic problems in philosophy of science

more generally is the problem of “theory-ladenness” of

observation (see “▶Theory-Ladenness”). Empirical

evidence is not neutral but imbued by the investiga-

tors’ theoretical commitments. Theory tells us what

observations to make, what observations are salient,

and how to interpret the observations. The epistemo-

logical problem is that if empirical information is

contaminated with theory, we do not have a solid

empirical basis against which to test our theories. The

entire project of “empirical” science is at stake. Scien-

tific instruments pose a similar challenge because in

most cases, they are used to investigate phenomena

that are only accessible through the data produced by

instruments. It thus seems that to obtain knowledge

about the phenomena, one would need to know the

theory of the instrument. The data produced by the

instrument would therefore be contaminated with the-

ory and could not serve as a solid foundation for theory

appraisal.

In recent years, however, philosophers have devel-

oped a number of responses against this argument

from theory-ladenness. Several philosophers have

suggested that if the theory of an instrument is inde-

pendent of the theory that is being investigated (which

is often, but not always the case), then the theory-

ladenness of the empirical investigation does not pose

a problem. Empirical information, although in a sense

theory-laden, does provide a solid enough empirical

basis for the appraisal of the theory under

consideration.

In his essay on microscopes, Hacking makes

a number of additional points that are relevant for

this discussion. For instance, he insists that it is not

necessary to know the theory of the instrument to be

able to use it. Most biologists are unable to explain the

physical principles according to which a high-power

microscope functions. They know how to use it reli-

ably, but they do not know how it works. Moreover,

there are examples from the history of science which

http://dx.doi.org/10.1007/978-1-4419-9863-7_86
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illustrate that certain instruments have been success-

fully applied before any satisfying theory of their func-

tion became available.

Hacking also points out that “knowing how to use”

a microscope is a skill. Such a skill has to be acquired

through training, so the experienced scientist and the

untrained person – whether a nonscientist or an expert

from a different field – will respond differently if

confronted with the same data. This is a common sit-

uation not only in microscopy but more generally,

especially with those instruments that produce picto-

rial outcome. For philosophers, this raises the question

of whether investigators with different levels of skill

are really “seeing the same thing.” Moreover they need

to find ways to characterize the visual and tactile

competence that are integral parts of the development

and use of scientific instruments. However they

respond to these challenges, it is clear that the ability

to explain the physical principles of an instrument is

not sufficient – and perhaps not even necessary – for

the ability to use the instrument successfully. In this

sense, the concept of theory-ladenness appears to be

unhelpful for the philosophy of scientific instruments.

The most sustained recent revision of the traditional

notion of theory-ladenness of scientific instruments is

the conception of “thing knowledge” (Baird 2004). In

Davis Baird’s “materialist epistemology,” the concep-

tion of theory-ladenness is completely reworked. The

basic idea is that like propositions, instruments bear or

encapsulate knowledge, indeed they are knowledge,

but this knowledge cannot usefully be described as

“theory.” Instruments and theories are on a par. To

put it differently: Epistemology, the philosophical

conceptualization of knowledge, should comprise

theoretical knowledge and scientific instruments,

“thing knowledge.” The roles that instruments have

played in science have been analogous to theories

in that instruments too are mediums in which to

develop our understanding of nature. Moreover,

while instruments and theories often develop together,

instruments sometimes develop independent of theory

development.

The conception of “thing knowledge” challenges

the traditional explication of knowledge as “justified

true belief” and as something that requires a knower.

But precisely for this reason, it may help to

tackle another epistemological challenge that philoso-

phers have been slow to take up, namely, the episte-

mological problem arising from large-scale research
technologies. In present science, we are confronted

with big projects that involve many individuals, each

of whom carries out a distinct task. None of these

individuals will have enough knowledge and expertise

to complete single-handedly the research and under-

stand, justify, and defend its outcome. The epistemo-

logical problem is this: If we want to say that those

individuals working with large-scale research technol-

ogies have knowledge or an understanding about what

they are doing, we need to accept that justification

sufficient for knowledge is something less than full

epistemic control over the entire spectrum of justifica-

tory arguments. Alternatively, we may want to accept

that groups have knowledge. We could then say that

the knower (the group) has the relevant knowledge to

understand and justify what the group is doing

(Hardwig 1985). But we would be hard-pressed to

identify the group that comprises “the knower,” par-

ticularly with respect to research technologies. The

notion of “thing knowledge” may help to

reconceptualize this complex of problems.

Visualization and Scientific Images

Many contemporary scientific instruments produce pic-

torial output. Instrument-generated images such as elec-

tron micrographs, x-ray images, and fMRIs have become

ubiquitous and an integral part of biomedical research.

Philosophers have been rather slow to appreciate the

roles of these pictures because for the most part, tradi-

tional philosophy has privileged propositional knowl-

edge. But there is now a growing body of work on

visualization, visual thinking, and images in science,

and the received view that pictorial information can

simply be reduced to propositional knowledge has

become questionable.

Visualization in biology poses special challenges to

philosophy because current instrument-aided image-

making procedures are highly indirect. Pictures pro-

duced by technologies such as fMRI often require

computerization of the signals obtained from an inter-

action of an instrument with a biological specimen.

Images that show macromolecules or neurons may be

products of complex mathematical operations that

transform data into pictures. There is now a growing

body of philosophical work on visualization in biol-

ogy, addressing questions concerning the reliability of

instrument-generated images, their representational

content, and their function as evidence in scientific

arguments (e.g., Pauwels 2006).
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Scoring Function, Graph Alignment

Michal Kolář

Institute of Molecular Genetics, Academy of Sciences

of the Czech Republic, Prague, Czech Republic
Synonyms

Graph alignment; Score; Score network alignment
Definition

A scoring function of a graph alignment (▶Graph

Alignment, ▶Protein Interaction Network) A evalu-

ates the alignment quality by considering both topo-

logical (interaction) similarity of the aligned networks

(▶Protein-Protein Interaction Networks) G1 and G2

and similarity of their nodes. The two contributions of

the score measure independently the agreement of the

alignment A with the topology of the aligned networks

and with the similarity of their nodes. The scoring

function is maximized for the optimal graph alignment

(▶Graph Alignment, Protein Interaction Networks),

which reproduces correctly the relationship between

the nodes (and hence the links) of the networks.

The two contributions of the score represent

independent pieces of biological information

(▶ Information, Biological), thus the score decom-

poses into two parts, the node score (▶Node Score,

Graph Alignment) Sn and the link score (▶Link Score,

Graph Alignment) Sl (Kelley et al. 2003),
S ¼ Sn þ Sl: (1)

Consider Fig. 1. The alignment A of the graphs G1

and G2 pairs together proteins A1A2, B1B2, C1C2, and

D1D2. The aligned pairs of proteins add to the node

score (▶Node Score, Graph Alignment) by

a contribution, which depends on a pair-wise similarity

of the proteins and rewards alignment of homologous

proteins. Aligned links (A1, B1) and (A2, B2) and

(A1, C1) and (A2, C2) add a positive contribution to

the link score (▶Link Score, Graph Alignment) as

they are present in both networks. A mismatch

between existence of the link (A1, D1) and absence of

the link (A2, D2) contributes negatively to the link

score (▶Link Score, Graph Alignment). In a multiple

graph alignment (▶Graph Alignment, Protein Interac-

tion Networks), the node score (▶Node Score, Graph

Alignment) consists of contributions from all equiva-

lence classes of the alignment and the link score

(▶Link Score, Graph Alignment) assesses the total

topological similarity of the aligned networks (e.g.,

the total number of matching and mismatching links).

Assume that a protein C1 in Fig. 1 is homologous to

both C2 and C’2. The existence of an interaction

between (A2, C2) and absence of the interaction

between (A2, C2) leads to alignment of C1 and C2.

The topological part of the score, the link score
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Scoring Function, Graph Alignment, Fig. 1 An illustration

of a graph alignment (▶Graph Alignment, Protein Interaction

Networks) of two graphs G1 and G2. Each node represents a

protein; a link stands for a protein–protein interaction. A graph

alignment (▶Graph Alignment, Protein Interaction Networks) A
maps the proteins connected by dashed lines
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(▶Link Score, Graph Alignment), decides which of

the two possible alignment partners is a better match to

C1. In this way, the graph alignment (▶Graph Align-

ment, Protein Interaction Networks) may correctly

identify an ortholog (▶Orthologs) of C1 between the

▶ Paralogs C2 and C’2. In the extreme case, when C2 is

not homologous to C1 but its interaction pattern is

highly similar to the pattern of C1, the graph alignment

(▶Graph Alignment, Protein Interaction Networks)

may prefer to align C1 and C2 rather than C1 and its

homolog C’2. Then, the relative weight of the

node score (▶Node Score, Graph Alignment) (protein

similarity) and the link score (▶Link Score, Graph

Alignment) (topological similarity) determines the

partner of C1 in the alignment A. Correct parameteri-

zation of the scoring function is essential (▶ Parameter

Estimation, Graph Alignment) (Berg and L€assig

2006).
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▶Orthologs

▶ Paralogs

▶ Protein-Protein Interaction Networks
References

Berg J, L€assig M (2006) Cross-species analysis of biological

networks by Bayesian alignment. Proc Natl Acad Sci

103(29):10967–10972

Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell

BR, Ideker T (2003) Conserved pathways within bacteria and

yeast as revealed by global protein network alignment. Proc

Natl Acad Sci 100(20):11394–11399
Screening Factor

Max Kistler

IHPST, Université Paris 1 Panthéon-Sorbonne,

Paris, France
Definition

A variable (or factor) C is called a screening factor

with respect to variables A and B if and only if (1) there

is a statistical correlation between A and B, so that, for

example, P(B|A) > P(B|:A), but (2) there is no such

correlation if the probabilities are taken as conditional

on factor C. In other words, if and only if C is

a screening factor for the correlation between A and

B, then conditionalizing with respect to C makes

B probabilistically independent of A. In formulas,

P(B|A) > P(B|:A), but P(B|A & C) ¼ P(B|:A & C)

and P(B|A & :C) ¼ P(B|:A & :C).
Search Engines with Faceted Search

Syed Toufeeq Ali-Ahmed

Department of BioMedical Informatics, Vanderbilt

University, Nashville, TN, USA
Synonyms

Faceted browsing; Faceted navigation; Parametric

search
Definition

A faceted search system (or parametric search system)

presents users with key value meta-data that is used for

query refinement (Koren et al. 2008). By using facets
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(which are meta-data or class labels for entities such as

genes or diseases), users can easily combine the hier-

archies in various ways to refine and drill down the

results for a given query; they do not have to learn

custom query syntax or to restart their search from

scratch after each refinement.
S

Characteristics

Faceted search combines faceted navigation with text

search, allowing users to access (semi) structured con-

tent collections, thereby providing support for discov-

ery and exploratory search, areas where conventional

search falls short (Tunkelang 2009). Important

design guidelines for faceted search interfaces focus

on supporting flexible navigation, seamless integration

with directed search, fluid alternation between refining

and expanding, avoidance of empty results sets, and

most importantly making users at ease by retaining

a feeling of control and understanding of the entire

search and navigation process (Hearst 1999, 2006).

An example of faceted search and navigation sys-

tem in biomedical domain is BioEve discovery engine

(Ahmed et al. 2010), which identifies hidden relation-

ships between entities like drugs, diseases, and genes

and highlights them, thereby allowing the researcher to

not only navigate the literature, but also to see entities

and the relations they are involved in immediately,

without having to read the article text fully, thus pro-

viding another aspect of searching relevant articles.

BioFacets (Mahoui 2006) (another good example of

faceted navigation system) is an integration system for

biological databases that provides for researchers

a common interface for querying through multiple

online databases with biological facets as a mechanism

to restrict the search criteria and to browse and refine

the results. Biological facets such as gene information

are user-defined features that researchers can use to

provide a multifaceted description of database records.
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Definition

The members of the genus Streptomyces are consid-

ered to be the most important producers of bioactive

molecules, such as antibiotics, immunosuppressors,

antibacterials, antifungals, antitumoral, pesticides,

etc. The broad chemical diversity of the products

synthesized by Streptomyces is caused by the presence
in their genome of a variety of metabolic pathways

collectively known as secondary metabolism. These

secondary metabolic routes present their highest

activity when the microorganisms undergo a series of

developmental changes associated to the formation of

aerial hyphae (in solid cultures) or to the onset of the

stationary phase of growth (in liquid cultures). The

setoff of those physiological states, and therefore of

the associated synthesis of secondary metabolites, is

linked to the depletion of growth nutrients, and
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a decrease in growth rate may be the signal for trigger-

ing secondary metabolism (Bibb 2005).

The information obtained from the sequencing

projects of S. coelicolor (Bentley et al. 2002),

S. avermitilis (Ikeda et al. 2003), and S. griseus

(Ohnishi et al. 2008) has revealed a very large and

unexpected number of genes linked to secondary

metabolism. A theoretical calculation indicates that

the number of potential antimicrobial compounds

from the genus can be estimated to be in the order of

100,000 (Watve et al. 2001). This is of extreme impor-

tance and makes the members of the genus highly

valuable in drug discovery programs and in the devel-

opment of bioprocess for the production of molecules

of pharmaceutical interest.
Characteristics

A Bit of History

Due to their importance as sources of bioactive

molecules, much is known about the physiology and

genetics of the genus Streptomyces. The initial steps in

the industrial production of antibiotics in the 1950s

gave rise to comprehensive and exhaustive research

projects devoted to the elucidation of antibiotic

biosynthetic mechanisms. However, the design of the

bioprocess for antibiotic production was immediately

recognized to be a very difficult task. Product yields

and productivities from wild-type strains are generally

very low: The antibiotic titers obtained from natural

isolates are generally below 10 mg/ml of culture broth,

considered to be too low for cost-effective production

processes. However, the interest shown by the phar-

maceutical industry prompted researchers to study

ways to increase yields. Initial advances were mostly

due to the application of the technique of submerged

fungal fermentation (developed for the production of

citric acid by Aspergillus) to replace the surface

cultures used in primitive antibiotic production. The

methods developed for the production of penicillin by

Penicillium spp. were later adapted for the production

of streptomycin by Streptomyces griseus and other

antibiotics. An interesting and very detailed account

is given by Waksman (1951). Over the following

decades, the application of classical strain screening

and selection methods resulted in the development of

antibiotic-producing strains with titers approximately

50 times higher than those found in wild-type strains.
The use of physical- and chemical-mutation protocols

allowed attaining titers as high as 7,000 mg/l, while the

development of culture media also helped to increase

yields, in particular through the use of complex

medium components supplemented with precursors

and elicitors of unknown function.

However, all the strategies used for yield improve-

ment were empirical and typical examples of “wait and

see” approaches, lacking any metabolic or biochemical

rationale. The consequence of this was that a success-

ful strategy for one species and product could be inef-

fective for others.

The Current Situation

Low profit margins and the development of generic

drugs have made the production of antibiotics less

important from the commercial point of view. In the

last two decades, most of the major pharmaceutical

companies have discontinued their production, and

there are practically no new antibiotics in the pipeline

(Anon 2010b). However, the rapid emergence of

“superbugs,” presenting multidrug resistance to the

available antibiotics have prompted the warning that

untreatable bacterial infections might be back, resem-

bling the pre-antibiotic era (Stokowski 2010). Only

two new antibiotics have been approved for use in the

past few years, and the development of new drugs

might not be able to match the rate of generation of

resistance. A number of international programs

directed to the development of new antibiotics

have been launched, such as the initiative 10 � 20

(“Ten new antibiotics for 2020”) sponsored by the

Infectious Diseases Society of America (Anon 2010a)

among others (Mossialos et al. 2009).

Why Modeling Streptomyces?

The physiology and biochemistry of the genus has

been very well characterized, and much is understood

about the genetics and regulation of antibiotic biosyn-

thesis. This is the product of almost 60 years of studies

of several antibiotic-producing Streptomyces species.

Interestingly, pioneering work in the early 1960s was

directed to the use of chemostats for the analysis of the

physiology of antibiotic production (Bartlett and

Gerhardt 1959; Sikyta et al. 1959, 1961), providing

a large body of knowledge and expertise, helpful to

overcome the problems associated to the complex life

cycle of the microorganism. Streptomyces is a

spore-forming saprophytic soil-dwelling filamentous
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bacterium. The spores in soil germinate to produce

mycelium under favorable condition. Upon germina-

tion, the cells show complex vegetative hyphal growth,

which enables the microbe to colonize the soil. Under

conditions of high concentration of nutrients and

energy, the hyphae are highly branched and excrete

a number of extracellular enzymes in order to obtain

the required nutrients for growth. In contrast, condi-

tions of nutrient scarcity restrict cell growth and aerial

mycelium is formed, eventually differentiating into

spores and therefore restarting the cycle. This morpho-

logical change is accompanied by metabolic changes

which result in the induction of secondary metabolism.

The formation of spores, a semi-dormant stage in the

life cycle of the bacterium, serves the double purpose

of resisting unfavorable environments and spreading

the organism.

This life cycle is observed during growth on solid

substrate, either natural (soil) or artificial (agar cultures).

However, in order to obtain commercially attractive

titers, the production of antibiotics (as it was discussed

above) should be performed in submerged liquid cul-

tures. In these systems, the life cycle of Streptomyces is

less complex but presents a series of problems for the

design of suitable bioprocesses. The filamentous growth

of the microorganism in liquid cultures may cause mass

transfer limitations leading to insufficient dissolved oxy-

gen concentrations, a problem which requires manipula-

tion of the fermentation conditions (e.g., increasing

agitation rate, etc.).

Arguably, the most important problem in liquid

cultures of Streptomyces species lies in the complex

metabolic and regulatory systems triggered when cells

enter the stationary phase of growth, when the

pathways of secondary metabolism become fully

active. The complexity of these systems is reflected

in the high degree of variability found in Streptomyces

cultures. Minor differences in culture variables may

cause large differences in the performance of the

microorganism, generally affecting the yields and

productivities of the desired antibiotic.

This problem can be tackled by using systems

biology approaches. These can help to understand and

elucidate the metabolic pathways involved in antibiotic

biosynthetic, and to identify and alleviate metabolic

limitations. Metabolic modeling brings a quantitative

picture of metabolism and physiology, allowing the

identification of biosynthetic routes, the elucidation of

missing metabolic links, and the description and
prediction of phenotypes. The analysis of models of

metabolism generated from genome sequences allows

for the discovery of novel metabolic activities and pro-

vides an interpretation of experimental data within

a metabolic framework. In the particular case of antibi-

otics and other secondarymetabolites, this can be used to

explain the causes of the low yields and productivities

observed. Importantly, this approach may assist in the

design of metabolic engineering strategies and in the

development of bioprocess strategies by predicting

the effect of modifications in the growth medium or in

culture conditions.

Metabolic Models for Streptomyces

The reconstruction of a metabolic network requires

information from metabolism and genome sequences

to build the stoichiometric matrix (Matrix containing

the stoichiometric coefficients of the metabolites in the

reactions of a metabolic network.). Details of this

procedure can be found in the literature (Price

et al. 2003, 2004; Durot et al. 2009). A number of

reduced metabolic models have been published for

Streptomyces: S. lividans (Bull-Daae and Ison 1998;

Avignone-Rossa et al. 2002) and S. coelicolor (Kim

et al. 2004) and S. clavuligerus (Kirk et al. 2000). After

the publication of the genome sequence, it has been

possible to build very good genome-scale metabolic

network models for S. coelicolor (Borodina et al. 2005;

Bushell et al. 2006b; Khannapho et al 2008; Alam et al.

2010) and S. clavuligerus (Bushell et al. 2006a).
Stoichiometric models are mathematical represen-

tations of metabolism describing quantitatively the

flow of mass through a metabolic network, containing

all the known and physiologically feasible biochemical

reactions in the microorganism’s metabolism. A stoi-

chiometric model is based onmass balances around the

metabolites: The sum of all the fluxes producing any

given metabolite minus the sum of all fluxes consum-

ing the same metabolite generates one equation for

each metabolite. The set of all linear equations can be

solved by assuming that all reactions are in a dynamic

steady state: The fluxes of all metabolites are numeri-

cally balanced. Stoichiometric models have been used

to analyze the metabolism of two important species,

Streptomyces coelicolor and Streptomyces
clavuligerus (Kirk et al. 2000; Bushell et al. 2006a, b;

Khannapho et al. 2008) with the objective of

rationally designing bioprocesses for antibiotic pro-

duction. Using a genome-scale metabolic network
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(stoichiometric models built using the genome

sequence, genomic annotation and literature informa-

tion, comprising all intracellular enzymatic reactions

in a cell, tissue or whole organism) of Streptomyces

coelicolor, a series of reactions was identified from

unrelated pathways that participate in an

actinorhodin-producing subnetwork. Simulations

using the model predicted that the antibiotic

biosynthetic activity of this network can be influenced

by modifying the composition of the culture medium.

Those predictions were tested experimentally, and the

observed effects of the designed media showed antibi-

otic production rates similar to those calculated in the

simulations. In an unrelated study, a metabolic model

for Streptomyces clavuligerus was used to analyze the

metabolism of the microorganism growing under

different carbon and energy sources. This approach

allowed to identify metabolic limitations affecting

antibiotic biosynthesis, and to redesign the growth

medium to alleviate those limitations. The results of

the simulations were experimentally confirmed using

a combination of metabolomics, transcriptomics, and

flux analysis, constituting a clear example of the appli-

cation of metabolic modeling in systems biology for

bioprocess design. The analysis identified regions of

metabolism that at first glance may be considered

unrelated, but that can be connected to form subnet-

works with activities that can be enhanced by

modifying the supply of precursors through a

reformulation of the culture media feeds.

All the internal metabolic fluxes can be calculated

by solving the system using measurements of input and

output fluxes (i.e., extracellular fluxes). There are two

approaches to be used, depending on the size of the

stoichiometric network. One is metabolic flux analysis

(MFA), where the unknown intracellular metabolic

fluxes can be calculated mathematically using

measurements of external fluxes. This is normally

used in reduced systems, where a numerical solution

can be found using the available experimental

measurements of extracellular rates.

The second approach is flux balance analysis, and it is
based in the use of linear programming (optimization) to

explore possible values of unknown fluxes. Large stoi-

chiometric networks can be constructed from genome

sequence information (genome-scale metabolic net-

works, GSMNs). Typically, there is insufficient input-

output information to obtain unique values for each and

every intracellular reaction: These are underdetermined
systems presenting infinite solutions, and in order to

obtain a solution they are constrained with data obtained

from real-life experiments (transcriptomics, proteomics

or metabolomics, enzyme reversibility, thermodynamics

data, etc.). Such constrained systems are solved defining

an objective function (e.g., maximization/minimization

of growth, nutrient uptake rates, production rates, etc.),

and the solution yields a potential internal flux distribu-

tion that satisfies the system.

Metabolic Flux Analysis for Bioprocess Design and

Optimization: Clavulanic Acid Production by

Streptomyces clavuligerus

Clavulanic acid is an antibiotic produced by

Streptomyces clavuligerus (Reading and Cole 1977),

attracting commercial interest due to its generic status.

The knowledge of the genetics, physiology, and bio-

chemistry of the pathways involved in the biosynthesis

of the molecule provides a good basis to explore sys-

tems biology approaches for the rational design of

cultures to improve product yields in particular, and

for the understanding of secondary metabolism in

general.

Experimentally, the use of continuous cultures

allows the analysis of metabolic flux distributions

in vivo at (quasi-) steady-state conditions. These

cultures permit the cultivation of microorganisms

under tightly controlled growth conditions, and are

ideal for the analysis of the influence of medium

components, growth conditions, and genetic manipu-

lations that can be assessed with any other variables

held constant.

The production of clavulanic acid in cultures of

Streptomyces clavuligerus grown at different growth

rates, nutrient limitation, and culture media, was

analyzed for antibiotic yields and production rates.

Amino acids have diverse roles in Streptomyces

metabolism, among them regulatory roles in nitrogen

metabolism, stimulation of b-lactam antibiotic synthe-

sis by lysine, or inhibitory activity of cephalosporin

biosynthesis by alanine. Furthermore, some amino

acids are precursors of some antibiotics, including

clavulanic acid. Previous reports using metabolic flux

analysis and metabolomics had shown that the nature

of the growth-limiting nutrient affects the availability

of precursors and the titers of clavulanic acid. One of

the precursors of clavulanic acid derives from glycer-

aldehyde 3-phosphate, and the availability of this C3

precursor is limited by a high activity of the anaplerotic



Secondary Metabolite Production in Streptomyces, Table 1 Effect of growth rate on the clavulanic acid production rates and

yields in chemostat cultures of Streptomyces clavuligerus. The corrected yield (Yieldcorrected) takes into account the carbon supplied
by glycerol and the amino acid feed

Biomass production

rate g.l�1.h�1
Glycerol consumption

rate mole.g�1.h�1
Clavulanic acid production

rate mmole.g�1.h�1
Yield mmole.

moleglycerol
�1

Yieldcorrected
mg.gcarbon

�1

0.036 4.84 � 10�3 1.60 � 10�3 0.33 0.88

0.052 6.45 � 10�3 1.46 � 10�3 0.23 0.61

0.071 1.00 � 10�2 0.81 � 10�3 0.08 0.21

0.088 2.34 � 10�2 0.54 � 10�3 0.02 0.05

Adapted from Kirk et al. (2000). Biotechnol. Lett. 22, 1803–1809
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metabolism. In S. clavuligerus, the conversion of orni-

thine into arginine has been described, in a metabolic

pathway akin to the urea cycle. Arginine is the C5

precursor in the synthesis of clavulanic acid. Interme-

diary metabolites and metabolic fluxes were identified

which were highly correlated with antibiotic biosyn-

thesis, and designed culture feeds alleviate limitation

of C3 precursor supply, enhancing clavulanic acid

production.

One of the main problems in the design of efficient

bioprocesses for antibiotic production is that the carbon

fluxes toward the final product (and through precursor

intermediates such as amino acid pools) are very low

compared to the metabolic fluxes through primary

metabolism (Table 1). The analysis of the distribution

of metabolic fluxes in antibiotic-producing cultures

helps to identify intermediary metabolites whose pro-

duction rates are critical to attainment of maximum

yields. The carbon flux distribution through catabolic

pathways depends on growth rate and nutrient availabil-

ity: Increasing growth rates lead to increased flux

through glycolysis and the pentose phosphate pathway.

By applyingMFA to a simplifiedmetabolic network, it is

possible to calculate intermediary metabolite fluxes and

to estimate their influence on clavulanic acid production,

with the ultimate goal of designing nutrient feeds

enhancing clavulanic acid yield.

The metabolic network employed comprised the

main primary metabolic pathways (glycolysis, Krebs

cycle, pentose phosphate pathway), the routes for bio-

synthesis of precursors for biomass production and for

biosynthesis of precursors for clavulanic acid, the

routes for amino acid biosynthesis, the requirements

for cofactors (ATP, NADH, NADPH), and an equation

for the synthesis of biomass, derived from the biomass

macromolecular composition determined experimen-

tally. A simplified representation of the metabolic net-

work is shown in Fig. 1.
In Table 1, the results obtained in chemostat cul-

tures on S. clavuligerus grown at different growth

(dilution) rates are shown. Clavulanic acid production

rates and yields (expressed as amount of product

formed per amount of substrate consumed) decrease

with increasing growth rates, a result that is compara-

ble with the behavior of the microorganism in solid

cultures: The decrease in growth rate triggers the entry

into stationary phase, and the secondary metabolism

machinery becomes active. Exhaustion of substrates in

soil, for instance, causes a decrease in growth rate and

the onset of the events leading to the activation of

secondary metabolism pathways.

Metabolic flux analysis of the system showed that

the fluxes through the glycolytic pathway accounted

for 92–98% of the carbon supplied by glycerol, the

only carbon source, and that the flux through Krebs

cycle represented approximately 50% of the total car-

bon input, while the activity of the pentose phosphate

pathway activity remained very low, consistent with

observed low biomass yield. The pentose phosphate

pathway is the major source of biomass precursors, and

a low biomass production rate would be reflected in

low fluxes through the pentose phosphate pathway.

The fluxes through the reactions of amino acid metab-

olism showed that approximately 5% of the carbon

input flux goes through Asn, Asp, Thr, and Arg syn-

thesis. Approximately 30% of the carbon input goes

through Glu metabolism, while the flux through the

urea cycle corresponds to approximately 15% of the

carbon input flux. These values are relatively constant

over the range of growth rates tested, probably

reflecting the importance of glutamate in nitrogen

metabolism and the major role played by the urea

cycle in the metabolism of S. clavuligerus. The

changes in fluxes toward the antibiotic do not correlate

with fluxes through the urea cycle, supporting the

previous findings that the urea cycle supplies
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Fig. 1 Schematic metabolic network for Streptomyces
clavuligerus, showing the link between the synthesis of

clavulanic acid and primary metabolism and amino acid biosyn-

thesis. The box shows the area of amino acid metabolism

highlighted by the results of metabolic flux analysis
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nonlimiting amounts of the C5 precursor for clavulanic

acid biosynthesis.

The synthesis of clavulanic acid shows a negative

correlation to growth rate. An analysis was performed

to determine the response of the fluxes through all the

reactions in the metabolic network to growth rate (m).
All the reactions were ranked according to their corre-

lation coefficient toward the synthesis of clavulanic

acid (Xclav), using a cutoff value of 0.85. The most

significant positive correlation was the flux for the

synthesis of the C3 precursor glyceraldehyde

3-phosphate from 3-phosphoglycerate, while no

significant correlations were found for reactions linked

to C5 precursor. These results are consistent with an

unlimited supply of Arg for clavulanic acid production

under P-limitation.
The highest positive correlation is observed

between the reaction producing glyceraldehyde

3-phosphate (the C3 precursor of clavulanic acid)

from phosphoenolpyruvate. This reflects a high pro-

duction rate of glyceraldehyde 3-phosphate, allowing

increase of fluxes toward phosphoenolpyruvate and

clavulanic acid under P-limitation. The reactions com-

peting for precursors of G3P (i.e., X35, X34, X2) show

a strong negative correlation with the reaction for

synthesis of clavulanic acid, X57 (Table 2).

Interestingly, the production of glutamate from

glutamine (X42) also shows a very strong negative

correlation (R¼�0.99) with clavulanic acid synthesis,

as glutamate fuels reactions that compete with glycer-

aldehyde 3-phosphate synthesis by consuming phos-

phoenolpyruvate. This may indicate the need to



Secondary Metabolite Production in Streptomyces, Table 2 Metabolic fluxes showing highest correlation with clavulanic

acid production rates (r > 0.85)

Reaction number Reaction

Correlation coefficient

with reaction 57

57 Clavulanic acid synthesis

4 3-Phosphoglycerate + ADP + NAD ! Glyceraldehyde 3-P + ATP + NADH 0.88

5 Glyceraldehyde 3-phosphate ↔ Phosphoenolpyruvate 0.85

34 Phosphoenolpyruvate + Erythrose 4-phosphate + NADPH + ATP + Glutamate !
Phenylalanine + a-ketoglutarate + CO2 + ADP + NADP

�0.85

2 3-Phosphoglycerate + ADP ↔ Fructose 6-phosphate + ATP �0.86

50 FADH + O2 + ADP ! ATP + FAD �0.88

17 Ribulose 5-phosphate ↔ Xylose 5-phosphate �0.89

35 Phosphoenolpyruvate + Erythrose 4-phosphate + NADPH + ATP + Glutamate +

NAD ! Tyrosine + a -ketoglutarate + CO2 + ADP + NADP

�0.98

7 Pyr + NAD ! Acetyl-CoA + NADH + ATP �0.99

42 Aspartate + NAD ↔ UTP + ADP + Glutamate + NADH �0.99

Secondary Metabolite Production in Streptomyces, Table 3 Effect of amino acid feed on the clavulanic acid production rates

and yields in Streptomyces clavuligerus cultures grown at growth rate: 0.3 h�1

Amino acid

Biomass production

rate g.l�1.h�1
Glycerol consumption

rate mole.g�1.h�1
Clavulanic acid production

rate mmole.g�1.h�1
Yield mmole.

moleglycerol
�1

Yieldcorrected
a

mgclav.gcarbon
�1

None 0.036 4.84 � 10�3 1.60 � 10�3 0.33 1.81

Thr 0.046 5.27 � 10�3 2.76 � 10�3 0.52 2.86

Arg 0.052 4.30 � 10�3 2.31 � 10�3 0.54 2.94

Asp 0.038 4.95 � 10�3 1.76 � 10�3 0.36 1.94

Glu 0.039 4.41 � 10�3 1.66 � 10�3 0.38 2.04

Asn 0.046 3.44 � 10�3 1.56 � 10�3 0.45 2.48

Ile 0.031 5.16 � 10�3 2.56 � 10�3 0.50 2.71

aYield value corrected for total carbon input (i.e., considering the consumption of the amino acids fed)
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alleviate the limitations caused by the diversion of

carbon from the central metabolic pathways toward

the synthesis of amino acids through reactions com-

peting with the synthesis of clavulanic acid precursors.

These reactions are shown in a box in Fig. 1.

Feeds were designed based on the identity of the

amino acids involved in the reactions with higher cor-

relation coefficient, as discussed above. Previous

results had shown that when amino acids are fed to

cultures of Streptomyces clavuligerus, the intracellular

pool sizes of the amino acid being fed increase,

suggesting that fed amino acids block or inhibit their

own biosynthesis. Therefore, it was assumed that the

microorganism does not synthesize the amino acids

fed, and therefore their biosynthetic reactions will

carry a flux of 0. The growth rate was kept at
0.03 h�1, and the amino acid concentration in the

culture medium was 10 mM. The amino acids were

undetectable in the culture supernatant, indicating that

they have been completely consumed (Table 3).

As it can be seen, the amino acid feeds affect the

antibiotic yields: compared to the control, Thr, Arg,

and Ile promote yield increases of 58%, 64%, and 52%,

respectively, whereas the increase in yield caused by

Glu and Asp is in the order of 10% only. When MFA

was applied to these results, variations in the flux

distributions were also observed (Table 4). Amino

acid feeds caused a reversal in X2, which was offset

by increases in X34. As observed in the nonfed

cultures, X42 showed a negative correlation with X57

(R ¼ �0.86). A positive correlation (R ¼ 0.86) was

observed with the reaction converting pyruvate into



Secondary Metabolite Production in Streptomyces, Table 4 Values of fluxes through selected metabolic reactions calculated

by application of metabolic flux analysis. The subindices refer to the reactions shown in Table 2. Values are expressed in C-mole to

normalize to different substrate consumption rates

Amino acid
X2 X7 X34 X42 X57

C-mole.l�1.h�1 C-mole.l�1.h�1 C-mole.l�1.h�1 C-mole.l�1.h�1 C-mole.l�1.h�1

None 0.45 87.2 0.41 0.17 0.23

Thr �3.98 87.8 0.35 1.12 0.25

Arg �2.23 85.1 0.04 1.74 0.21

Asp �8.49 82.5 0.64 1.70 0.16

Glu �5.68 82.6 0.71 1.79 0.15

Asn �9.45 84.5 0.64 1.84 0.14

Ile �8.44 85.1 1.40 0.42 0.23

Secondary Metabolite Production in Streptomyces, Table 5 Effect of feeding combinations of amino acids on the clavulanic

acid production rates and yields in Streptomyces clavuligerus cultures grown at growth rate: 0.3 h�1

Amino acid

Biomass production

rate g.l�1.h�1
Glycerol consumption

rate mole.g�1.h�1
Clavulanic acid production

rate mmole.g�1.h�1
Yield mmole.

moleglyc
�1

Yieldcorrected
a

mg.gcarbon
�1

None 0.036 4.84 � 10�3 1.60 � 10�3 0.33 1.81

Arg/Asp/Thr 0.060 2.72 � 10�3 6.68 � 10�3 2.45 13.6

Arg/Asp/Thr/

Asn

0.049 2.39 � 10�3 8.09 � 10�3 3.38 18.7

aYield value corrected for total carbon input (i.e., considering the consumption of the amino acids fed)
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acetyl-CoA, indicating that a major effect of amino

acids feeds is to cause an increase in the rate of entry

of the latter into the Krebs cycle.

The Effect of Feeding a Combination of Amino

Acids

As it was shown in the metabolic flux analysis

discussed above, the biosynthesis of clavulanic acid

depends on the supply of a C3-precursor, and it is

potentially influenced by competing demands for inter-

mediates by other primary metabolic routes such as

glycolysis and the Krebs cycle. Therefore, feeds were

designed based on combinations of amino acids

derived from oxaloacetate.

The results in Table 5 show that a tenfold increase in

antibiotic yields can be achieved by feeding a culture

medium rationally designed by application of the

results of an in silico analysis. This analysis showed

that clavulanic acid synthesis is limited by the avail-

ability of the C3 precursor, and that the flux through

amino acid biosynthesis may affect this availability.

A way of relieving that limitation is by feeding

those amino acids whose fluxes appear to limit

clavulanic acid production. This resulted in yield
increases of ca. 60%. The metabolic flux analysis

results of these experiments showed that a combination

of those amino acids promoted yield increases the

yields up to ten times.

Use of a Genome-Scale Network for Streptomyces

clavuligerus

The results showed above were obtained performing

metabolic flux analysis using a small network. This

calculation provides a unique solution, as the small

size of the network generates an overdetermined

system (A system of linear equations is overdeter-

mined if the number of equations is larger than the

number of unknowns. If the number of equations is

smaller than the number of unknowns, the system is

underdetermined.). Application of metabolic flux anal-

ysis to genome-scale metabolic networks is not possi-

ble, as the large systems of linear equations generated

are necessarily underdetermined, and they do not have

a unique solution. These systems must be solved using

other approaches such as flux balance analysis or its

variant, flux variability analysis, as discussed above.

We constructed a genome-scale network for Strep-

tomyces clavuligerus using information from the
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Table 6 Theoretical and experimental yields of clavulanic

acid in cultures of Streptomyces clavuligerus with fatty acids

as carbon sources

C-source Theoretical yield Experimental yield

Glycerol 1 0.87

Oleic 1.29 1.17

Palmitic 0.99 n.d.

Linoleic 0.89 n.d.
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genomes of Streptomyces coelicolor and S. avermitilis,
combined with experimental data (transcriptome, pro-

teome, metabolome, and enzymatic activities) and

literature data for Streptomyces clavuligerus. The

resulting network consisted of 724 metabolites, 837

reactions, 164 external metabolites, and 9

macromolecules.

We employed flux variability analysis (FVA) to

explore the metabolic state of the system. In flux bal-

ance analysis, the fluxes computed are not necessarily

unique; in FVA, the minimal and maximal admissible

fluxes through each reaction are calculated. The objec-

tive function is constrained to its maximal value,

minimizing andmaximizing flux through each reaction

in the system. The output is a range of reaction fluxes

consistent with the maximal value of the objective

function. The range of flux obtained is unique and

define the internal flux distribution.

The 837 reactions were filtered according to the

admissible flux ranges. Of these, 398 reactions were

found to be nonessential to maximize clavulanic acid

synthesis (their flux ranges ¼ 0), while 439 reactions

showed nonzero flux ranges (i.e., the difference

between minimal and maximal fluxes satisfying

the constraints is nonzero). The reactions showing the

smallest variability (112) were considered to have the

highest influence on clavulanic acid synthesis. Among

those, the reactions involved in the synthesis of Thr,

Arg, Asp, in agreement with the results obtained for the

reduced metabolic network for S. clavuligerus.
Interestingly, FVA also showed that the biosynthe-

sis of fatty acids may have a high influence in

clavulanic acid synthesis. The results were used to

analyze the effect of fatty acid feeds on clavulanic

acid production. Simulations were run using fatty

acid as carbon sources (long chain fatty acids: oleic,

palmitic, linoleic, and linolenic acids) and with an

active b-oxidation pathway. Their effect on clavulanic
acid production was assessed by estimating the meta-

bolic flux distribution when fatty acids are used as sole

C-sources. The objective function was the maximiza-

tion of clavulanic acid synthesis, and the results

were compared to those obtained with glycerol as the

C-source. The fatty acid biosynthesis pathways were

considered to be inactive.

The theoretical yields were calculated and com-

pared to the yields observed with glycerol as the sole

C-source (Table 6). The values obtained showed that

the expected yield with oleic acid is 29% higher than
that obtained with glycerol, while the yield with

palmitic and linoleic acid were 1% and 11% lower

than those obtained with glycerol. Experimentally,

cultures with oleic acid as the sole carbon source

showed a yield of clavulanic acid 34% higher than

the yield obtained using glycerol.

Conclusion

These results demonstrate that there is a major role for

metabolic flux analysis and constraint-based flux

balance modeling in the design of bioprocesses such

as the production of antibiotics, in which the maximi-

zation of yields is desired.

While MFA can only be applied to small-scale

metabolic networks, the results obtained are of

extreme importance not only for the identification of

possible metabolic bottlenecks but also for the design

of culture media to alleviate those limitations. In

the example discussed here, we identified metabolic

limitations affecting antibiotic biosynthesis, and

redesigned the growth medium to alleviate those

limitations. The predictions were experimentally

confirmed.

FBA and FVA can be applied to genome-scale

metabolic networks, and both approaches provide

distributions of metabolic fluxes that represent

solutions to the system. The solution of FBA provides

no unique single flux value, while FVA defines

a feasible flux range for each individual reaction.

However, the limits of each range are unique values,

providing a set of parameters for quantifying the solu-

tion space. In our example, FVA was used to analyze

the metabolism of S. clavuligerus growing under dif-

ferent carbon sources. FVA not only confirmed the

results obtained with a small-scale network, but it

also highlighted areas of metabolism from relatively

disparate pathways that may be considered unrelated
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(e.g., fatty acid metabolism) but that affect the produc-

tion of the desired molecule. The activity of those

pathways can be altered by modifying the supply of

precursors through a reformulation of the culture

media feeds. The results allowed us to identify novel

substrates promoting high yields of the antibiotic, and

experimental observations using the designed media

showed antibiotic yields similar to those predicted in

the simulations.
S
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▶ Selective Reaction Monitoring
Selective Pressure

Philippe Huneman

Institut d’Histoire et de Philosophie (IHPST), des

Sciences et des Techniques, Université Paris 1

Panthéon-Sorbonne, Paris, France
Definition

In a given environment, environmental parameters

which impinge differently on different organisms’

chances of reproduction and survival, according to

the values of their heritable traits (e.g., growth rates

of predators, scarcity of resources, heat, etc.). The

selective pressures are not always known, especially

in small populations.
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▶Explanation, Evolutionary
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Selective Reaction Monitoring

Stefanie Wienkoop

Department for Molecular Systems Biology,

University of Vienna, Vienna, Austria
Synonyms

Absolute protein quantification; Multiple reaction

monitoring (MRM); Selected reaction monitoring;

Stable isotope dilution technique
Definition

▶ Selective Reaction Monitoring (SRM) is a mass-

spectrometry-based technique for the absolute quanti-

fication of a targeted protein. Absolute quantification is

enabled by spiking stable isotope labeled (heavy)

target peptides (e.g., 13C and 15N) of known con-

centration into a complex sample. These stable isotope

standard peptides are also referred to as signature or

proteotypic peptides and need to be carefully selected

prior to SRM. Due to a specific mass shift (label) the

mass spectrometer monitors the signals of the standard

and the native (unlabelled or light) target peptide simul-

taneously. After precursor ion selection of the target

peptide(s), this ion(s) is then fragmented to yield prod-

uct ions. A precursor/product pair is also referred to as

a transition or reaction. In order to improve/ensure

signal selectivity and sensitivity, the specificity of the

reaction(s) is important. Given that these highly selec-

tive signals are in linear range (usually around four

orders of magnitude) quantification in absolute terms

can be calculated by comparing signals of standard

peptide (known concentration) and native peptide.

Cross-References

▶Mass Spectrometry, Proteomics, and Metabolomics

▶ Proteomics, Quantification-Unbiased and Target

Approach
Selenocysteine

Taiichi Sakamoto1 and Gota Kawai2

1Chiba Institute of Technology, Narashino, Japan
2Department of Life and Environmental Sciences,

Chiba Institute of Technology, Narashino, Chiba,

Japan
Synonyms

3-Selanyl-2-aminopropanoic acid; L-Selenocysteine
Definition

Selenocysteine (Fig. 1), which is the major biological

form of the element selenium, has a structure similar to
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that of cysteine, but with an atom of selenium taking

the place of the usual sulfur, forming a selenol group

(Yuan et al. 2010).

Proteins that contain one or more selenocysteine

residues are called selenoproteins (Alberts et al.

2008; H€uttenhofer and B€ock 1998). The 21st

amino acid is typically found in catalytic centers

of selenoproteins where it plays a functionally

essential role. Selenocysteine is incorporated into

polypeptides to form selenoproteins through trans-

lation recoding. Selenocysteine is enzymatically

produced from a serine attached to a special

tRNA molecule that forms base pairs with the

UGA codon, which is normally used as a stop

codon (see ▶Translational Control by cis RNA

Elements, Bacteria). During translation,

selenocysteinyl-tRNASec is delivered to the ribo-

some by a specific translation factor that requires

a characteristic stem-loop structure in the mRNA to

recode an UGA from stop codon to selenocysteine

sense codon.
S
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Distinct genetic code expansion strategies for

selenocysteine and pyrrolysine are reflected in different

aminoacyl-tRNA formation systems. FEBS Letters

584:342–349
Self-Organization
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Biophysics Unit (CSIC-UPV/EHU), University of the

Basque Country, Leioa, Spain
Definition

Self-organization is a dynamic phenomenon in which

a large number of individual units (molecules, cells,

multicellular organisms) spontaneously generate

a global, irreducible correlation that brings and holds

them together, i.e., a collective pattern of order or

behavior that involves all of those interacting units

and cannot be explained just from their individual

properties.
Characteristics

Although there are only a few fundamental forces or

physical interactions in nature, the diversity of systems

that we actually observe in it demonstrates that matter

has found many different ways to come together. This

“coming together” of material parts is classified as

“self-organization” when it occurs spontaneously,

without following some external goal, plan, or design,

and when the process of association of – a necessarily

big number of – those parts does not imply changing

their intrinsic nature (otherwise, the system would be

transforming into something else, not self-organizing).

The limits of this concept, in any case, are fuzzy,

and various examples may challenge that classification

criterion or, at least, be used ambivalently. For

instance, some phase transitions (e.g., the transition

from liquid water to ice) could be regarded as a self-

organizing process. The transition occurs spontane-

ously (if a general condition of the system, like the

temperature or pressure, changes); it involves many

parts (water molecules), which find a new way of

being correlated to the others; and it does not alter

the intrinsic nature of those parts (H2O) – even if

their dynamic properties, for instance, do change.

Someone could argue, however, that the system is not

http://dx.doi.org/10.1007/978-1-4419-9863-7_826
http://dx.doi.org/10.1007/978-1-4419-9863-7_826


S 1916 Self-Organization
self-organizing but transforming into something else,

i.e., that liquid water is essentially different from ice.

A very different example would be chemical oscilla-

tions, also called “chemical clocks.” Think, for

instance, of a Belousov-Zhabotinsky (B-Z) reaction,

in which some components are being converted into

some others but in a cyclic way, so that the original

reactants are also products of the process and, given the

right combination of chemical activators and inhibitors

of that process, periodic oscillations in the concentra-

tions of the different parts of the system (or chemical

waves, if there is also spatial diffusion) are observed.

Here individual molecules are continuously changing

their intrinsic nature but the system, as a whole,

remains the same (i.e., it is made of the same type of

molecules, even if the numbers/concentrations of each

chemical species vary in time and space). Whereas the

first case was clearly in the realm of physics, touching

the bottom threshold of what is to be considered “self-

organization,” the second case, already within chem-

istry, brings us closer to the upper ceiling of it, in the

sense that it faces the boundary with “self-producing”

dynamics, which constitute the proper domain of met-

abolic systems. (Biological systems ‘recruit’ the self-

organising properties of matter and make extensive use

of them at different levels of complexity, but certainly

go beyond self-organisation in a strong sense, for

all living organisms are self-constructing agents

(Ruiz-Mirazo et al. 2004)).

The previous two examples also illustrate a major

distinction in the general domain of self-organizing

phenomena in nature. Depending on whether the cor-

relation among material parts consists in a dynamic

and dissipative (i.e., far-from-equilibrium) pattern,

like in the second case, or in a more stable, structural

(equilibrium or quasi-equilibrium) configuration, like

in the first, these types of processes are usually

regarded as “self-organization” or “self-assembly.”

Certain phase transitions and, more commonly, the

formation of supramolecular structures that do not

involve covalent bonding (e.g., lipid membranes,

micelles, polymer aggregation, polymer folding, etc.)

are considered self-assembling processes (Lehn 1995).

These are phenomena based on many weak interac-

tions (van derWaals forces, hydrogen-bond formation,

medium-range electrostatic/ionic forces, hydrophobic

effect, etc.) acting at the same time among the different

building blocks that make up the supramolecular

structure(s), whose characteristic regularities
(i.e., the emergent spatial and/or temporal periodic-

ities) are roughly of the same order of magnitude

than the dimensions and time scales of the actual

building blocks. Again, if covalent bonds (or, more

generally, chemical reactions) were included, then we

would be facing the edge of what is an organization –

versus a transformation – process.

The other type of phenomena, sometimes also

called “dissipative structures” (Nicolis and Prigogine

1977), which occur just in far-from-equilibrium

conditions and are sustainable only if there is a net

flow of matter/energy through the system, constitute

proper self-organization, according to the more stan-

dard and strict interpretation of the term. In these cases,

fluctuations in the vicinity of bifurcation points, ampli-

fied by non-linear interactions among the material

parts of the system are responsible for the collective

dynamic behavior they get into. And the temporal and

spatial scales of the collective patterns generated in

this way are, at least, several – but typically more than

several – orders of magnitude larger than those of the

parts. The aforementioned B-Z reactions, whirls and

hurricanes, or some complex convection patterns in

liquids (e.g., Bénard cells) are the most frequently

used examples, although there are many others in

biology (e.g., chemical signaling, morphogenesis, eco-

system dynamics, etc.), ethology (e.g., social insects,

flock movement, etc.), or cognitive sciences (neural

network pattern generation).

One of the reasons why this second type of phe-

nomena (nonequilibrium, dissipative structures) are

considered to be more genuine “self-organization” is

because they mark out a clearer distinction with

systems traditionally dealt with in physics, by means

of statistical mechanics or classical thermodynamics

(Yates 1987). In contrast with self-assembly of closer-

to-equilibrium structures, the link between local

properties (microscopic description level) and global

behavior (macroscopic or mesoscopic description

levels) in dissipative structures is more intricate, and

standard statistical methods have proved unsuitable to

bridge that gap. In fact, there is not a well-established

theory, so far, to explain or predict, starting from

microscopic parameters, the key features of the

macroscopic patterns generated under those far-from-

equilibrium conditions. No state function of the system

has been found (analogous to a thermodynamic ‘free

energy function’) to be minimized or maximized along

the process. The correlation among parts is understood
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as the result of the nonlinear amplification of a local

fluctuation but, at the same time, is a necessary condi-

tion for the organizing phenomenon itself. Somehow,

the collective-macroscopic pattern is both cause and

effect of the individual-microscopic dynamics of the

underlying units. Additional boundary conditions or

external constraints are typically required to keep the

system running, staying away from equilibrium (e.g.,

a thermal gradient, the input of material resources,

etc.). But it is characteristic of this type of phenomena

that, at least, one of the critical boundary conditions

that bring the system about, and maintain it there, be

endogenously created. And this is very difficult to

express or make operational mathematically (techni-

cally speaking, it is a “non-holonomic” constraint).

Hence the special relevance of the prefix “self-” in

the term “self-organization”: it refers to the spontane-

ous, inner generation of the collective pattern that

immediately acts as a dynamic constraint on the behav-

ior of the individual units, which, in turn, realize and

reinforce the pattern.

The theoretical modeling or simulation of self-

organizing phenomena has been tackled from many

different standpoints and with diverse tools. Given

the widely accepted difficulties of extending linear

irreversible thermodynamics to far-from-equilibrium

conditions (Nicolis and Prigogine 1977), a more fruit-

ful way of analysis has been through a “dynamical

systems” type of approach, i.e., handling a set of

coupled differential equations (e.g., Turing’s (1952)

reaction–diffusion equations) that, depending on the

specific boundary conditions of the system, become

more or less complicated to integrate. In simple

cases, global patterns of spatial and temporal order

(e.g., oscillatory concentration profiles or spreading

chemical waves) can be predicted and studied in detail

(determining the stability of the different solutions,

number of dynamic attractors of the system, bifurca-

tion points, etc.). Nevertheless, as soon as the system

becomes moderately complex (in terms of diversity of

components, diversity of interactions, nonlinear reac-

tion couplings, etc.), this type of treatment becomes

impracticable. Although this has not prevented the

application of the ‘dynamic systems’ framework to

very intricate cases, like cognitive systems (Kelso

1995), managing to capture some of their basic consti-

tutive and interactive features, too strong simplifica-

tions of the underlying processes were always involved

in those approaches. Alternative attempts to overcome
such intrinsic limitations in our understanding of self-

organization have been made, for instance, through

phenomenological-macroscopic approximations to

the problem (Haken 1983), but their degree of success

and explanatory power has been relatively modest.

However, the rise of “complex systems science” in

the last decades (including here, in particular, the

remarkable advances in network theory and agent-

based modeling), together with the increasing power

of computers and simulation methods, have provided

wider possibilities to study self-organization phenom-

ena. Most of the key ideas had already been conceived

(earlier in cybernetics, systems theory, artificial intel-

ligence, or physics itself) but they crystallized and

have been further developed since the last part of the

twentieth century. A surprisingly successful strategy

has consisted in representing the system as a

discrete and distributed set of units (nodes in

a network, cells in a grid); each of these units shows

a rather simple dynamic state (typically, a binary state:

“on/off” or “up/down”) and also simple – though often

variable – connections with some others (connections

according to which their individual states, at each

subsequent time step, will be defined). Taking up this

general approach (which may be implemented through

numerous methods: random Boolean networks,

cellular automata, neural networks, “spin-glass”

(Ising-type) models, etc.), one can deal with systems

of many components in a radically different way

(as compared to standard “dynamical systems” or

“statistic mechanics” approaches): namely, putting

the emphasis on the degree of connectivity and the

diverse types of interaction that the components of

a system may present, and focusing on the effect that

these interconnections have on its global properties.

One could think that, under such extremely simpli-

fying assumptions for the individual dynamic behavior

of each of the units, and by introducing just a few local

rules of interaction among them, this type of strategy

would have little applicability to real systems that

exhibit self-organizing properties. Quite the contrary,

it has proved successful across many disciplines, help-

ing to explain key emergent features of regulatory

genetic networks (Kauffman 1993), complex ecosys-

tem dynamics (Solé and Bascompte 2006), or the

behavior of social insects (Camacine et al. 2001). Fur-

thermore, the fact that some collective properties of big

ensembles of interacting units are, to a large extent,

independent of the intricacies that each of the units
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actually involve has been interpreted as a sign of the

potential universality of some organizational princi-

ples in nature. If this proves to be the case, and general

principles of organization for complex, many-particle

systems are eventually established (Bak 1996), the

fundamental framework of other scientific theories

will surely have to be reconsidered. In particular, the

consequences that this would have for evolutionary

theory and systems modelling in biology should be

addressed.

More specifically, the self-organization paradigm is

bound to play a central role in the unraveling of the

origins of life, in bringing light to the still obscure

transition from the realm of physics and chemistry

toward biological complexity. Indeed, without the

self-organizing capacities of matter, the appearance

of life on an inert planet, like the primitive Earth,

would seem completely unfeasible. Kant, for instance,

who regarded matter as something essentially passive

(with compounds aggregating into bigger structures

just through random mechanical associations) consid-

ered that it was impossible to approach this problem

scientifically (see comments in: Fry 2000, p. 181–182).

But how would his thinking have changed, had he

known about ‘dissipative structures’? Wouldn’t he

have postulated ‘self-organization’ as the obvious

bridge between the inert and the living? Despite the

fact that, so far, most contributions supporting this

claim in the field of origins of life have been theoretical

(e.g., Kauffman’s model of ‘autocatalytic sets’ – see,

again, Kauffman 1993), the recent advances in the

analysis of complex chemical mixtures, or so-called

‘systems chemistry’, through the use of microfluidics

and dynamic combinatorial chemistry methods

(Ludlow and Otto 2008), together with the increasing

awareness that all living cells fundamentally depend

on self-organising processes (Karsenti 2008), will

surely open the way for important experimental land-

marks, along those lines, in years to come.

The new approaches should take into account that

biological organization is not only based on far-from-

equilibrium processes but also on quasi-equilibrium

supra- and macro- molecular structures, which con-

strain and yet enhance those processes. Therefore,

the most promising avenues of research will be those

that, keeping a ‘bottom-up’ perspective (i.e., taking

relatively simple molecular units as the starting

point), attempt to combine the dynamics of
self-organization and self-assembly. Several interest-

ing model systems that integrate these two different

types of collective dynamic behaviour are currently

under experimental exploration (e.g., oscillatory reac-

tions taking place inmicro-emulsions (Epstein &Vanag

2005) or chemically reacting ‘self-propelled’ oil drop-

lets (Hanczyc et al. 2007)). However, they have not

been designed following prebiotic-plausibility criteria

for the components involved. Furthermore, the synergy

between self-assembly and self-organization should be

more specifically channelled, in this context, towards

the implementation of minimally robust and autono-

mous proto-cellular systems.

The diverse (more or less robust and autonomous)

forms of proto-cellular organization that such a line of

research should bring about in the lab, adequately

interpreted with the help of computer modeling and

simulations, would surely contribute to develop a

richer idea of how self-organizing dynamics may take

place within self-assembling compartments and com-

plex networks of interacting molecules. More specifi-

cally: an idea of self-organization conceived not just as

a global, highly distributed process of generation of

connectivity patterns, but as a process in which mod-

ularity must also emerge, together with functional and

hierarchical relationships among the units (and inter-

mediate modules) of the network. In this way, the

transition from chemical feedback loops towards

increasingly sophisticated mechanisms of regulation

and control (not only within the system but also out-

wards, in its relationship with the environment) should

also be illuminated. For all these certainly constitute

distinctive features of the more complex types of orga-

nization observed throughout the biological world.
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Self-renewal is the property of a particular cell, such as

a stem cell, to divide mitotically and replace itself

while retaining potency – the capacity to give rise to

multiple distinct cell types.
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Definition

Self-replication is any behavior of a dynamical system

that yields construction of an identical copy of the

system itself. Self-replication can be observed in

nature, where biological cells duplicate themselves by

cell division. During cell division, DNA is replicated.

Another example of self-replication is given by

biological and computer viruses.

Von Neumann pioneered the research in the field of

self-replicating systems and established its theoretical

foundations (Von Neumann 1966). Replicators are
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nowadays categorized on the basis of the amount of

support they require:

• Natural replicators have all or most of their design

from nonhuman sources. Such systems include

natural life forms.

• Autotrophic replicators can reproduce themselves

“in the wild.” They mine their own materials. It is

conjectured that nonbiological autotrophic

replicators could be designed by humans, and

could easily accept specifications for human

products.

• Self-reproductive systems are conjectured systems

which would produce copies of themselves

from industrial feedstocks such as metal bar and

wire.

• Self-assembling systems assemble copies of them-

selves from finished, delivered parts. Simple exam-

ples of such systems have been demonstrated at the

macroscale.
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Definition

In mathematics, a self-similar object is exactly or

approximately similar to a part of itself (i.e., the

whole has the same shape as one or more of the

parts). Many objects in the real world, such as

coastlines, are statistically self-similar: parts of them

show the same statistical properties at many scales

(Mandelbrot 1967). Self-similarity is a typical property

of fractals.
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Semantic Web

Mark A. Musen
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Stanford University, Stanford, CA, USA
Definition

A vision for computer interoperability in which

intelligent agents communicate with one another over

the World Wide Web. Knowledge is encoded using

ontologies that are stored on the Web, and problem

solvers (such as Web services) interpret the ontologies

to generate intelligent behavior. Thus, the data avail-

able on the Web are stored in a manner that is suitable

for processing by computers, rather than as text

intended to be readable by humans. The World Wide

Web Consortium views the Semantic Web as a “Web

of data.” The first step toward the Semantic Web has

been work to make data available as linked data,

represented in RDF.
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Definition

Systems Biology requires the integration and interpre-

tation of many different types of data from many

different sources. Understanding how these data can

be compared and combined is a complex interopera-

bility task that requires the understanding of both the

structure and content of the different data sources, and

an understanding of how these sources could be

made to work together coherently. As the amount and

complexity of biological data continues to increase,

scale becomes an issue. There are now over 1,200

different public databases available to the life sciences

(Galperin and Cochrane 2011). For biologists to

benefit from this wealth of information these

databases must interoperate and their content must

effectively become an interlinked web of knowledge

that can be easily navigated and searched. The

Semantic Web is a means of facilitating this.

At the heart of the Semantic Web is the idea of

publishing information as linked statements that are

sufficiently well described that the information can

be automatically processed. The original vision

(Berners-Lee et al. 2001) was to augment the network

of hyperlinked human-readable web pages by inserting

machine-readable metadata about pages and how they

are related to each other. This enables software to

access the Web more intelligently and perform

tasks on behalf of users. There were two primary

motivations. The first was scale. The Web was princi-

pally intended for low-volume browsing and consump-

tion by humans, whereas the Semantic Web would

support machine processing to aid discovery, filtering,

and the use of high volumes of data. The second was

interoperability and integration as information spread

across theWeb needed to be exchanged and combined.

Thus, the Semantic Web community has defined

a collection of standards, languages, and principles

for information interoperability as well as tools and
technologies that implement them. These tools

and technologies have been designed to be layered on

top of the Web’s preexisting infrastructure. However,

they are sufficiently general to be used independently

of the Web. Semantic Web tools and technologies are

already being used in the Life Sciences for a wide

range of data management tasks, such as: data annota-

tion, mapping between data resources, data retrieval,

knowledge management, and inferring new biological

connections between processes. The Semantic Web

concept is particularly well suited to communities

where information encompasses a limited and

defined domain, and where sharing data is a common

necessity, such as in scientific research.
Characteristics

Semantic Web Infrastructure

Publishing Semantic Web data takes a layered

approach and follows a set of conventions. Identity,

structure and meaning are considered independently.

One principle behind interoperability is to normalize

incompatibilities through the adoption of common rep-

resentations (see Fig. 1). Normalizing identities means

that we can draw together information for an entity.

Normalizing the structure of the data by using

a common data model overcomes syntactic incompat-

ibility. Normalizing the meaning of the data by using

controlled vocabularies overcomes semantic incom-

patibilities. Thus, a number of standards have been

defined, building on one another, to provide rich and

shared descriptions using common data models for

syntactic interoperability and shared controlled vocab-

ularies for semantic interoperability.

Defining common data identity: The Inter-

nationalized Resource Identifier (IRI – a more general

form of URI) is used to identify names and resources

on the Web uniquely. The use of common identities

by publishers of Semantic Web data is crucial to inter-

operability; for example, IRIs may identify data (sets),

or terms in ontologies. Mapping services such as

“sameAs” (http://sameas.org) – a part of the Semantic

Web infrastructure – can identify entities with more

than one IRI; a published “same-as” statement can then

link them. Unlike URLs, IRIs are location independent

and their authorities have obligations to guarantee

http://sameas.org
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their long-term persistence. An example from systems

biology is “Identifiers.org” (http://identifiers.org)

developed and maintained by the MIRIAM standardi-

zation initiative.

Defining common data structure: The Extensible

Markup Language (XML http://www.w3.org/XML)

provides a common representation format for arbitrary

data structures. Life Sciences, XML is widely used for

specifying markup languages, such as SBML (Systems

Biology Markup Language) (Hucka et al. 2003) or

MAGE-ML (Microarray Gene Expression Markup

Language) (Spellman et al. 2002). These descriptions

standardize the metadata associated with a particular

type of data so that every instance contains the same

set of information. For instance, each SBML model

has an author and a list of species and reactions, and

each microarray experiment has an author (experimen-

talist) and descriptions of the hybridization and

normalization methods used. These markup languages

define a common data structure, but they do not

describe relationships between metadata items. How-

ever, RDF and related standards enable these

connections.
The Resource Description Framework (RDF) pro-

vides a common and flexible data model where data is

organized into triples and represented as graphs.

An RDF triple consists of a subject, predicate, and

object (e.g., the nucleus [SUBJECT] is part of [PREDICATE]
the cell [OBJECT]). The subject of one triple may be the

object of another (and vice versa). There are many

kinds of cells containing various organelles, for exam-

ple; an RDF representation of that information will

consist of a graph of objects (identified by IRIs),

connected by links, which can further be linked to

web pages and information from databases. A graph

is a data structure consisting of a partially ordered

set of edges (links) between nodes (entities).

RDF triple stores can be queried through SPARQL

(http://www.w3.org/TR/rdf-sparql-query), a query

language that allows the matching of graph patterns

(e.g., a SPARQL query could return all cell types that

contain a nucleus). RDF is one of the core W3C

Semantic Web standards for representing data on

the web.

Defining common data meaning: RDF provides

syntactic normalization but does not guarantee

http://identifiers.org
http://www.w3.org/XML
http://www.w3.org/TR/rdf-sparql-query
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semantic interoperability. For this, we require agree-

ment on the vocabularies that are used within resource

descriptions. A shared controlled vocabulary or ontol-
ogy constrains and standardizes the terminology used

in descriptions and reduces semantic incompatibilities.

For example, the same proteins in different databases

can have many different names and identifiers (e.g.,

Glutamate carboxypeptidase 2 is also known as folate

hydrolase 1, membrane glutamate carboxypeptidase,

and by at least six other synonyms). However, if each

database annotates proteins with common identifiers

from UniProt (Magrane and Consortium 2011), or

protein functions with Gene Ontology terms (Harris

et al. 2004), it makes information about the same

objects directly comparable and could allow inferences

between related objects. RDF Schema (RDF(S)) and

Simple Knowledge Organization System (SKOS) are

additional W3C standards that support the description

(and navigation) of such vocabularies by describing

the relationships between them.

Vocabularies and terminologies can be further

enriched by using more expressive, logic-based lan-

guages. The Web Ontology Language (OWL) allows

for richer descriptions of the terms and concepts within

a vocabulary. The term ontology is often used to refer

to a collection of statements or axioms that provide

a vocabulary structured using knowledge of the way in

which its terms should be interpreted and how

logical inferences should be made about them. Logical

inference can be used for querying information

sources, or to support ontology construction by man-

aging hierarchies and identifying contradictions

(Rubin et al. 2008). For example, the term species

occurs in the Systems Biology Ontology and NCBI

taxonomy, but the term has a different meaning in

each context: in the NCBI taxonomy, it is a specific

level in the taxonomy of living organisms; in the SBO,

it refers to the elements of a biochemical reaction. The

term is ambiguous, but in each context is specific and

nonequivalent.

There are approximately 300 biological ontologies

available through the BioPortal repository (http://

bioportal.bioontology.org/). Many of these are avail-

able in OWL. For a review of Systems Biology and

ontologies see (Courtot et al. 2011).

Semantic Web Content

The Semantic Web’s infrastructure is independent of

its content. To publish interoperable Semantic Web
content requires that information providers agree

upon common frameworks and common controlled

vocabularies or ontologies for annotation. In the life

sciences, there are many standards initiatives develop-

ing markup languages such as SBML and MAGE-ML;

ontologies such as GO (the Gene Ontology)

(Harriset al. 2004), CHEBI (Chemical Entities of Bio-

logical Interest) (Degtyarenko et al. 2008) and SBO

(Systems Biology Ontology) (Le Novere 2006); and

metadata specifications such as MIBBI (Minimum

Information for Biological and Biomedical Investiga-

tions) (Taylor et al. 2008) and ISA (Investigation,

Study, Assay) (Rocca-Serra et al. 2010). By basing

these biological initiatives on technologies and exper-

tise relating to the Semantic Web, such standards

developers can use established tools and more easily

establish interoperability with resources from other

domains – particularly important in Systems Biology.

Furthermore, scientists not only need to draw on

resources from across the life sciences, but also from

medical informatics, mathematical modeling, and

other disparate domains. Following industry-wide

standards allows this kind of interaction.

Practical Applications of the Semantic Web

The SemanticWeb standards and technologies provide

structural layers and guidelines for making use of the

Semantic Web, but they can be employed in a number

of different ways to gain added value. In the life sci-

ences, they are used for a range of tasks from simple

annotation of data to distributed knowledge discovery.

The Annotation Web. Here, the emphasis is on

a separation of presentation from content, with anno-

tations providing additional information about

resources. This involves tagging or marking up web

pages with assertions about their content (i.e., the

original content is augmented with annotations). This

approach was taken in Annotea (Kahan et al. 2001), an

early W3C project aimed at supporting collaboration

through the sharing of metadata, such as bookmarks or

notes, and can be seen in recent initiatives such as the

Annotation Ontology (Ciccarese et al. 2011) and

the Open Annotation Collaboration (http://www.

openannotation.org). Annotations can be embedded

in pages using Microformats (http://microformats.

org) and RDFa, making those pages both human and

machine interpretable. Annotations can also be held

separate from resources (requiring referencing mecha-

nisms). SemanticSBML (Krause et al. 2010) is an

http://bioportal.bioontology.org/
http://bioportal.bioontology.org/
http://www.openannotation.org
http://www.openannotation.org
http://microformats.org
http://microformats.org
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example of the annotation web approach in Systems

Biology. This resource allows the annotation of arbi-

trary data items with terms from a large collection of

ontologies and vocabularies relating to Systems Biol-

ogy. It was originally designed to help with the anno-

tation of Systems Biology models, but is also an

important tool for linking experimental data and

models for comparison and validation.

The Data Web. Here the emphasis is on breaking

down and combining silos of data (and their schemas)

by publishing them in a common framework. Rather

than a document-centric approach that considers pub-

lishing resources/documents along with annotations,

the primary publication is of data, exported as RDF

documents or accessed using the SPARQL endpoint
protocol (a service supporting query of a triple store)

that builds on top of the regular Web HTTP protocol.

The Data Web approach has come to prominence

recently through interest inOpenData and LinkedData.

Open Data are those made freely available for third

parties to reuse and republish. There has been particu-

lar activity around the publishing of government and

scientific data, including through the Science Com-

mons. A number of such open data initiatives have

adopted Semantic Web technologies.

Linked Data are those published according to

guidelines and rules intended to facilitate their discov-

ery, navigation, integration, and reuse (http://

linkeddata.org). Linked Data require a common iden-

tifier scheme (e.g., IRIs) along with meaningfully

described (typed) links between resources; in particu-

lar, the provision of links between datasets, using those

identifiers. Linked Data are increasingly common-

place, with ever more data sources being exposed in

the Linked Data Cloud. Examples of Linked Data

publication include Bio2RDF (Belleau et al. 2008),

Chem2Bio2RDF (Chen et al. 2010), and

LinkedLifeData (http://linkedlifedata.com).

The Inference Web. Here, the emphasis is on que-

rying or reasoning across concepts and data to generate

new knowledge. In the inference web, data and con-

cepts are already semantically linked and are used for

formulating new hypotheses based on the inference of

new relationships. The size and number of resources

available to Systems Biology and the interdisciplinary

nature of the work make it impossible for individual

scientists to track all new research to catch what

portion may be relevant. Querying Semantic Web

resources allows connections to be made. Inference is
also important in discovering possible inconsistencies

in integrated data, acting as a quality control and guid-

ing data curation.

The BioGateway (Antezana et al. 2009) provides

the means to query a large number of systems biology

ontologies and data sources represented in RDF. The

uniform representation and shared semantics provides

a rich environment for formulating new hypotheses

and performing complex queries over multiple data

sources. However, this approach involves converting

native formats of relational databases and flat files into

RDF and creating a central RDF store. While it is

effective, there is a large overhead in the development

and maintenance of such a resource. Systems that

allow inferences over distributed, native RDF may

prove more practical for long-term use, but this

requires the provision of these resources in RDF.

Pioneering projects like the BioGateway demonstrate

the advantages of such approaches and encourage

more resources to adopt RDF.

The value of reasoning over SBML models

converted into OWL has been demonstrated by

(Hoehndorf et al. 2011). Their framework integrates

representations of in silico Systems Biology with those

of in vivo biology as described by biomedical ontol-

ogies. An SBML Harvester automatically converts

annotated SBML models from the BioModels

Database into OWL, generating a knowledge base for

complex biological queries that bridges levels of gran-

ularity and supports model verification. The reasoning

revealed curation errors in published models. Similar

work has been demonstrated by Lister, Pocock, and

Wipat (2007).

The Semantic Web and the Life Sciences in the

Future

This entry focuses on the current problems of data

integration and interoperability from the point of

view of knowledge discovery. This foundational

work will support a range of applications; for example,

to address concerns about the reproducibility of scien-

tific results and the disconnection between published

work and experimental data. If data featured in publi-

cations are readily obtainable from public repositories,

the presentation of work can be more transparent.

Several Semantic Web tools focus on this issue; for

example, Utopia Documents (http://getutopia.com)

uses the Bio2RDF Linked Data cloud (http://www.

bio2rdf.org) to allow researchers to directly interact

http://linkeddata.org
http://linkeddata.org
http://linkedlifedata.com
http://getutopia.com
http://www.bio2rdf.org
http://www.bio2rdf.org
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with data presented in scientific publications,

transforming static representations of data into live

content.

The Semantic Web is an active area of research in

Computer Science and the Life Sciences provide an

ideal test bed for many of the tools and ideas being

developed. The Open PHACTS project (Open Phar-

macological Concepts Triple Store), (http://www.

openphacts.org) which is a European Innovative Med-

icines Initiative, is using Semantic Web approaches to

make existing pharmaceutical knowledge available

for linking, querying and reasoning across public and

commercial domains. Open PHACTS, and other

projects like it, are bringing the use of the Semantic

Web into mainstream research. With the rise in

popularity of RDF and Linked Data in particular, we

are seeing a shift from promising prototypes and proofs

of concept to large-scale adoption by life science

service providers.
S
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SysMO-DB team, University of Manchester,
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Manchester, UK
Definition

SemanticSBML (http://www.semanticsbml.org) is an

online service that facilitates comparison of biological

models (Schulz et al. 2011). Its common uses include

clustering groups of models, as well as alignment of

models describing the same biological system.

The similarity measure employed depends on the

annotation that accompanies the model descriptions

supplied in ▶Systems Biology Markup Language

(SBML) format. SemanticSBML also aids the process

of annotating new models by employing automated

searches of annotation resources using existing model

identifiers, potentially returning a list of ▶MIRIAM

URNs for each of the species and reaction identifiers

used in the model.

http://www.openphacts.org
http://www.openphacts.org
http://www.semanticsbml.org
http://dx.doi.org/10.1007/978-1-4419-9863-7_1091
http://dx.doi.org/10.1007/978-1-4419-9863-7_1091
http://dx.doi.org/10.1007/978-1-4419-9863-7_1525


S 1926 Semidefinite Program
Cross-References

▶ JWS Online
References

Schulz M, Krause F, Le Novère N, Klipp E, Liebermeister

W (2011) Retrieval, alignment, and clustering of computa-

tional models based on semantic annotations. Mol Syst Biol

7:512
Semidefinite Program

Frank Allg€ower, Jan Hasenauer and Steffen Waldherr

Institute for Systems Theory and Automatic Control,

University of Stuttgart, Stuttgart, Germany
Definition

A semidefinite program (SDP) is an optimization

problem with a linear objective function and affine

constraints with an optimization variable in the cone

of positive semidefinite matrices. In mathematical

terms, a semidefinite program can be written as
minimize
xESn

traceðCXÞ
subject to trace ðAiXÞ ¼ bi; i ¼ 1; . . . ;m;

X � 0;

where Sn denotes the space of symmetric n � n matri-

ces, C and Ai, i ¼ 1,. . ., m are symmetric n � n

matrices, and bi, i ¼ 1, . . ., m are real numbers. The

constraint X � 0 means that X is positive semidefinite,

i.e., vTXv � 0 for all vectors u 2 ℝn.

Semidefinite programs are ▶ convex optimization

problems and thus have a unique optimal objective

function value. Many practical optimization problems

can be formulated as semidefinite programs, making

them amenable to efficient solution algorithms. The

term semidefinite programming is commonly used to

denote the activity of formulating and solving

semidefinite programs. The standard algorithms to

solve semidefinite programs are interior point

methods.
Cross-References
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Senescence

Sergio Moreno

Instituto de Biologı́a Molecular y Celular del Cáncer,

CSIC/Universidad de Salamanca, Salamanca, Spain
Synonyms

Cellular aging
Definition

Permanent growth arrest in G1 that protects cells

from different forms of stress and persistent

hyperproliferative signals. Together with apoptosis,

senescence provides a defense mechanism against

aberrant proliferation. Defects in these processes

are associated with tumorigenesis. During senes-

cence, cells undergo morphological changes: they

become larger and flattened, express a senescence

marker, beta-galactosidase, and undergo changes in

gene expression.
Cross-References
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Process Systems Engineering, Imperial College,

London, UK
Synonyms

Model analysis; Uncertainty analysis
Definition

Sensitivity analysis is the study of how sensitive the

output of a model is to variation in the values of its

input factors. SA can apportion the total variance

observed in the model output to various sources of

variation, should more than one be present (Saltelli

et al. 2000). It can provide an indication of the structure

of the model and identify the presence of abundant

parameters and nonnecessary variables. It is consid-

ered to be an important step in model validation, and in

conjunction with experimental work, it can increase

confidence in a model.
S

Characteristics

Sensitivity analysis methods are commonly grouped in

three main categories, namely:

• Screening methods

• Local methods

• Global methods

Screening methods are randomized, one-at-a-time

numerical experiments, which aim to indicate the

most important factors among the totality of model

parameters. While screening methods involve

computationally efficient algorithms, their use is

limited to only preliminary results due to calculation
of only first-order effects (i.e., effects the input factors

have on the model output, without including

their mutual interactions) and they inherently lack

precision, especially when used on nonlinear models.

Efforts to calculate higher-order effects, through

screening methods, have been recorded in the

literature, though these methods fall short either in

terms of accuracy or computational time. Screening

methods are usually preferred for large-scale models or

for initial estimates as they are an economical analysis

that provides a first view of the model’s behavior.

The basic concept behind screening methods is the

experience that in most cases a small number of

parameters tend to account for the majority of the

variability in the model output. In exchange for the

short computational time, one must sacrifice from

the amount and quality of information he receives.

Therefore, screening methods mostly give qualitative

results and cannot provide an estimate of how much

more important one factor is over the other.

Local- or derivative-based sensitivity analysis

derives measures of importance by estimating the

effects infinitesimal variations of each factor have on

the model output, in the area of a predetermined

nominal point. The product of local sensitivity analysis

is derivatives of the variation of the model output with

respect to the input variables. In essence, we get

a map of slope information, thus gaining insight to

the model’s response near a certain operating point.

This could provide useful information not only about

the nature of the studied set of input factors but also

for robustness of the process at the point under

consideration. Model reduction and lumping can be

based on results of local SA. Local methods are

commonly used on steady-state models or on

studies dealing with the stability of a nominal point.

Consequently, local methods fail to capture large

variations in the parameter set and can only account

for small variations from the parameter nominal

values.

Global sensitivity analysis (GSA) methods have the

advantage of performing a full search of the parameter

space, hence providing data independent of nominal

points and are applicable to the whole range of

the model’s existence. Moreover, global methods

apportion the total uncertainty in the model output to

the various sources of variation, while all parameters

are varied at the same time. GSA provides the most

complete set of results and mapping of the system,

http://dx.doi.org/10.1007/978-1-4419-9863-7_255
http://dx.doi.org/10.1007/978-1-4419-9863-7_100918
http://dx.doi.org/10.1007/978-1-4419-9863-7_101588
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being able to cope with nonlinearities and identify

parameter interaction effects. The main drawback of

GSA methods is their extensive computational cost for

large models.
Cross-References
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Master Equation

Ruiqi Wang

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

Robustness characterizes the ability to maintain per-

formance in the face of perturbations and is one of the

essential features of cellular systems. Sensitivity char-

acterizes the ability of living organisms to adequately

react to certain stimulus. In deterministic modeling,

robustness is usually quantified by calculating sensi-

tivity, e.g., period and amplitude sensitivity in quanti-

fying robustness of circadian rhythms.

Using an analogue of the classical sensitivity anal-

ysis, the parameter sensitivity can also be applied to

master equations. In stochastic systems, the state is

probability distribution and parameters affect it indi-

rectly through a master equation. Therefore, sensitivity

of master equation is given by the change of probabil-

ity distribution upon changes in parameters.
References

Gunawan R, Cao Y, Petzold L, Doyle FJ III (2005) Sensitivity

analysis of discrete stochastic systems. Biophys J 88:

2530–540
Sequence Motif

▶Motif
Sequence Ontology

Karen Eilbeck1,2 and Carson Holt3

1Department of Biomedical Informatics,

University of Utah, Salt Lake City, UT, USA
2Department of Human Genetics, Eccles Institute of

Human Genetics, University of Utah, Salt Lake City,

UT, USA
3Department of Human Genetics, University of Utah,

Salt Lake City, UT, USA
Synonyms

SO
Definition

The Sequence Ontology (SO) (Eilbeck et al. 2005) is

an ontology that controls the vocabulary classifying

the contents of genomic sequence and how those parts

of the genome relate to each other. It forms the basis of

structuring and validating genomic annotations and

provides the vocabulary for naming the genomic fea-

tures in databases and file formats. The use of ontol-

ogies to type biological data provides two essential

advantages for the management of large datasets.

First, it provides a unification of the terminology used

by different communities, ensuring interoperability

and enabling comparative analyses. Second, it pro-

vides the relations linking classes within the ontology

allowing the data to be computationally reasoned over;

this simplifies quality control and nurtures scientific

discovery.
Characteristics

Genomic Annotation

Genomic annotation is the process whereby knowl-

edge and evidence about parts of the genome are

http://dx.doi.org/10.1007/978-1-4419-9863-7_30
http://dx.doi.org/10.1007/978-1-4419-9863-7_1283
http://dx.doi.org/10.1007/978-1-4419-9863-7_460
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attached to the assembled sequence via genomic coor-

dinates. A structural genomic annotation captures

information and knowledge pertaining to the contents

of a genome: the kinds of features, such as exons and

introns, located within the sequence. The Sequence

Ontology specifies the kinds of genomic features and

how they relate to each other hierarchically and topo-

logically. To illustrate, an mRNA is_a kind of tran-

script, whereas an exon is part_of a transcript. This is
in contrast to functional genomic annotation whereby

the function of a gene product, be it protein or RNA is

annotated using functional descriptions such as that of

the ▶ gene ontology, protein domains, or processes

and pathways.

The structural annotation is the foundation upon

which other knowledge is added. As illustrated in

Fig. 1, the structural annotation provides two alternate

transcripts that the functional annotation can be

ascribed to. The annotations can be viewed using

a genome browser such as GBrowse (Stein et al.

2002) or Apollo (Lewis et al. 2002). Structural geno-

mic annotations form the basis of many molecular

biology experiments. For example, at the simplest

level, the design of PCR primers relies on the correct
FGF8a

FGF8b

0.636Mb 0.638 Mb
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Sequence Ontology, Fig. 1 Apollo produces a visual repre-

sentation of FGF8 using the relationships among Sequence

Ontology terms in the GFF3 file. The genomic sequence runs

from left to right with transcripts displayed in blue. Red and

green vertical bars in the dark panel represent start and stop
annotation of the feature coordinates such as the start

and stop codons and the intron/exon boundaries.

What is in the Ontology?

Ontologies organize their terms into hierarchies and

networks, this means that data labeled with terms

drawn from an ontology (i.e., annotations) become

substrates for computer-based logical inference,

a necessity for making full use of very large data sets.

The key feature distinguishing ontologies from

controlled vocabularies is that ontologies use

relationships to connect terms. The is_a and part_of

relationships, for example, are commonly used to

relate terms. Traversing the terms in the ontology via

their relationships tells a user more about a given

term. Following is_a relationships upward from

a term to the root of the ontology, for example, defines

what a term “is”. Traversing the part_of relationships

defines the composition of the genomic features, such

as introns and exons form the parts of transcripts. This

is how ontologies capture human knowledge in

a computable format. Figure 2 shows a portion of the

ontology used to describe the gene model represented

in Fig. 1.
0.64Mb
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codons in each reading frame. Zooming in on the region indi-

cated by the dotted line shows how alternative splicing leads to

the truncation of FGF8a in relation to FGF8b. The differences in

the amino acid sequences due to the truncation are shown in the

blowup of the same region

S
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Using SO to label the raw sequence data allows files

and databases to be created that structure the genomic

data, using the unified vocabulary and the defined

relationships, thus removing ambiguity in the interpre-

tation of the data. The ontology then provides the

means to automatically validate the contents of an

annotation. Validation is the process whereby an anno-

tation is checked for mistakes. Statements made in the

annotation such as intron part_ofmRNA can be flagged

as a problem because such a relation is not described in

the ontology. This provides quality control of the data.

The Sequence Ontology is available as both

released versions and frequent minor revisions made

via a concurrent versioning system (CVS). SO is orga-

nized as a directed acyclic graph. It contains less than

2,000 terms falling into four areas: sequence features,

sequence attributes, sequence variants, and sequence

collections. The majority of terms are sequence fea-

tures. These are the features that can be located within

the sequence using genomic coordinates.

There are many kinds of features that can be anno-

tated onto a genome sequence; the most obvious being

the annotation of the location of biological features

like genes onto the chromosomes. Gene models are

composed of one or more transcript features which

are in turn composed of a number of other features

such as untranslated regions, coding regions, exons,

introns, start codons, stop codons, and noncanonical

splice sites. Other derived features such as the align-

ments made by sequence similarity searches may also

be described and annotated using SO.

Sequence Ontology Resources

There are several ways in which to contribute to the

development of SO. There is a term request tracker

where term requests and updates can be made. There is

also a mailing list for developers and those using SO to

annotate data. The SO houses a wiki for the community

to use for development. The SO is developed using

OBO format (Day-Richter et al. 2007) and is nightly
�

Sequence Ontology, Fig. 2 A portion of the Sequence Ontol-

ogy showing terms and relationships used in the annotation of

the FGF8 gene model shown in Fig. 1. The green boxes are terms

used in the annotation, and black boxes are terms in the ontology

not explicitly used in this annotation. By traversing the relation-

ships, it can be shown that both CDS and exon are legal parts of

the mRNA



Sequence Ontology, Table 1 The URLs of Sequence Ontology related resources

SO resource URL

SO website http://www.sequenceontolgy.org

Term tracker https://sourceforge.net/tracker/?group_id¼72703&atid¼810408

Mailing list https://sourceforge.net/mailarchive/forum.php?forum_name¼song-devel

Wiki http://www.sequenceontology.org/wiki/index.php/Main_Page

Latest revision http://song.cvs.sourceforge.net/viewvc/song/ontology/so.obo

OWL version http://www.berkeleybop.org/ontologies/owl/SO

GFF3 http://www.sequenceontology.org/resources/gff3.html

GVF http://www.sequenceontology.org/resources/gvf.html

SOBA http://www.sequenceontology.org/cgi-bin/soba.cgi

GMOD http://gmod.org

##gff-version 3
scaffold_238  x_trop  contig  1       1689823 .  .  .  ID=scaffold_238;Name=scaffold_238
scaffold_238  x_trop  gene    634698  644312  .  +  .  ID=FGF8;Name=FGF8
scaffold_238  x_trop  mRNA    634698  644312  .  +  .  ID=FGF8a;Parent=FGF8;Name=FGF8a
scaffold_238  x_trop  mRNA    634698  644312  .  +  .  ID=FGF8b;Parent=FGF8;Name=FGF8b
scaffold_238  x_trop  exon    634698  635597  .  +  .  ID=FGF8a:exon0;Parent=FGF8a,FGF8b
scaffold_238  x_trop  exon    635685  635721  .  +  .  ID=FGF8a:exon1;Parent=FGF8a,FGF8b
scaffold_238  x_trop  exon    637433  637580  .  +  .  ID=FGF8a:exon2;Parent=FGF8a
scaffold_238  x_trop  exon    641297  641403  .  +  .  ID=FGF8a:exon3;Parent=FGF8a,FGF8b
scaffold_238  x_trop  exon    643179  644312  .  +  .  ID=FGF8a:exon4;Parent=FGF8a,FGF8b
scaffold_238  x_trop  exon    637400  637580  .  +  .  ID=FGF8b:exon5;Parent=FGF8b
scaffold_238  x_trop  CDS     635566  635597  .  +  0  ID=FGF8a:cds;Parent=FGF8a
scaffold_238  x_trop  CDS     635685  635721  .  +  1  ID=FGF8a:cds;Parent=FGF8a
scaffold_238  x_trop  CDS     637433  637580  .  +  0  ID=FGF8a:cds;Parent=FGF8a
scaffold_238  x_trop  CDS     641297  641403  .  +  2  ID=FGF8a:cds;Parent=FGF8a
scaffold_238  x_trop  CDS     643179  643457  .  +  0  ID=FGF8a:cds;Parent=FGF8a
scaffold_238  x_trop  CDS     635566  635597  .  +  0  ID=FGF8b:cds;Parent=FGF8b
scaffold_238  x_trop  CDS     635685  635721  .  +  1  ID=FGF8b:cds;Parent=FGF8b
scaffold_238  x_trop  CDS     637400  637580  .  +  0  ID=FGF8b:cds;Parent=FGF8b
scaffold_238  x_trop  CDS     641297  641403  .  +  2  ID=FGF8b:cds;Parent=FGF8b
scaffold_238  x_trop  CDS     643179  643457  .  +  0  ID=FGF8b:cds;Parent=FGF8b

Sequence Ontology, Fig. 3 The structure of both the tran-

scripts of FGF8 (FGF8a and FGF8b) are defined in Generic

Feature Format 3. The feature type is defined using the Sequence

Ontology terms in column 3 (in this example: gene, mRNA,

exon, and CDS). The parent of a feature is defined in column 9

using the “Parent¼” tag. The relationship among features must

always be a valid “part_of” relationship as defined by the

Sequence Ontology
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S

converted to Ontology Web Language (OWL). These

and other resources are documented in Table 1.

The SO is used to type genomic features in various

file formats and databases. The GFF3 file format is

commonly used for model organism structural genome

annotation. This is a nine-column simple tab delimited

format that specifies the features on a genomic

sequence. As can be seen in Fig. 3, the SO is used to

type the kind of feature being annotated. The relation-

ships between features are captured in column 9 using

the “Parent” tag value pair. The Generic Model
OrganismDatabase (GMOD) community has provided

a comprehensive database schema that uses SO for the

features. These annotations are the input of other

GMOD tools such as GBrowse and Apollo. For re-

sequencing projects and variant annotation, there is

Genome Variation Format (GVF), which uses terms

in the SO to type the kind of alteration observed, the

feature that is altered and the effect of the alteration.

This format is built upon the existing GFF3.

SOBA is a GMOD tool that provides statistical and

ontological analysis of a genomic annotation. This tool

http://www.sequenceontolgy.org
https://sourceforge.net/tracker/?group_id=72703&atid=810408
https://sourceforge.net/mailarchive/forum.php?forum_name=song-devel
http://www.sequenceontology.org/wiki/index.php/Main_Page
http://song.cvs.sourceforge.net/viewvc/song/ontology/so.obo
http://www.berkeleybop.org/ontologies/owl/SO
http://www.sequenceontology.org/resources/gff3.html
http://www.sequenceontology.org/resources/gvf.html
http://www.sequenceontology.org/cgi-bin/soba.cgi
http://gmod.org
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is particularly useful for emerging genome projects

that are beginning to generate automated genomic

annotations. SOBA provides fast feedback about the

features in the annotation such as genomic footprint

and average length.

SO and Systems Biology

Structural genomic annotations are important in the

context of systems biology as they provide the geno-

mic foundation upon which more knowledge is added.

To demonstrate, Fig. 1 shows two annotated splice

forms of the gene FGF8 in Xenopus tropicalis
(FGF8a and FGF8b). The functional products of

these transcripts are responsible for different develop-

mental processes and do not share the same function,

therefore, knocking out one splice form leaves the

other’s function intact. FGF8a promotes posterior

neural fate, and FGF8b affects early mesodermal

development. The Sequence Ontology describes and

separates the two transcript features allowing function,

pathway, and location of expression to be annotated

independently to the relevant transcript sequence. This

is important for any systems biology analysis as the

transcript functions are mutually exclusive, so treating

the gene as a single entity would lead to false

conclusions.
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Department of Supramolecular Biology, Graduate

School of Nanobioscience, Yokohama City

University, Yokohama, Kanagawa, Japan
Synonyms

Set3 complex
Definition

The functions of Rpd3S and Rpd3L, two closely

related yeast HDAC complexes, are described in the

essay “Mechanisms of Transcriptional Activation and

Repression.” In yeast, there is another distinctive

HDAC complex (Set3C) that contains two HDACs,

Hos2p (class I) and Hst1p (class III), in addition to

Set3p, Sif2p, Snt1p, YIL112w, and Cpr1p (Pijnappel

et al. 2001). Phosphorylation of RNAPII CTD helps

recruit Set1p-containing methyltransferase complex

(Set1C/COMPASS) to the 50-end of the coding region

of active genes. Set1C generates dimethylated lysine 4

of histone H3 (H3K4me2), which then recruits Set3C

to deacetylate histone H3 and H4. A recently proposed

model predicts that like Rpd3S, Set3C is recruited co-

transcriptionally by the phosphorylated CTD of

RNAPII and subsequently activated upon binding to

H3K4me2 (Govind et al. 2001). Set1C also catalyzes

trimethylation of lysine 4 of histone H3 (H3K4me3) in

regions of further upstream than those containing

H3K4me2. Regions containing H3K4me3 are highly

acetylated and occupied by fewer nucleosomes.
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By contrast, the neighboring H3K4me2-rich regions

just downstream are less acetylated due to the function

of Set3C and are therefore occupied by more tightly

associated nucleosomes. Set3C and Rpd3S appear to

antagonize the positive function of HATs, e.g., SAGA

and NuA4, which are also co-transcriptionally

recruited to coding regions by the phosphorylated

CTD of RNAPII. However, the details of the func-

tional interactions between HDACs and HATs during

transcriptional elongation still remain unclear.
Cross-References

▶Mechanisms of Transcriptional Activation and
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Sexual Selection

Philippe Huneman

Institut d’Histoire et de Philosophie (IHPST), des

Sciences et des Techniques, Université Paris 1

Panthéon-Sorbonne, Paris, France
Definition

Selection for traits which impinge on chances of repro-

duction by giving an advantage either in the competi-

tion for mates or regarding the female choice. One

distinguishes sexual selection from natural selection,

even if they may not be two really distinct processes

because the sexually selected traits as such may prima
facie go against selection (e.g., the feathers of the

peacock which increase its chances to get parasites

and prevent him from running fast, etc.). This diver-

gence has been accounted for by two main theories, the

runaway selection, defended by Fisher (1915), which

states that a slight preference of females for an arbi-

trary trait will push its values to a limit which can often

differ from its optimal adaptive value; and the handi-

cap principle, elaborated by Zahavi since the 1980s,

which states that sexual characters are a costly signal

of the genetic capacity of their bearer to face environ-

mental demands. Their being costly makes them hon-

est since they are too costly to fake. So females “have

interest” to pick those males because they reliably

signal that they have “good” genes. According to the

handicap principle, peacocks develop long tails pre-

cisely because they display their high ability to run

even though they carry such handicap, and also that

they have few parasites because those are extremely

visible on the symmetrical motives decorating their

tails. Both runaway selection and handicap principle

have been mathematically modeled.
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▶Activation Domain Shielding
Short Hairpin RNA

Melissa L. Kemp

The Wallace H. Coulter Department of Biomedical

Engineering, Georgia Institute of Technology and

Emory University, Atlanta, GA, USA
Definition

Short hairpin RNA is an RNA sequence with a hairpin

structure that is expressed in a cell using a genetic

vector carrying the sequence. Short (or small) hairpin

RNA (shRNA) is cleaved by the Dicer complex to

produce siRNA which can mediate mRNA degrada-

tion. ShRNA can be used to induce siRNA against

specific target mRNAs.
Short ORF (sORF)

▶UORF-mediated Translational Control in

Eukaryotes
Short Tandem Repeats (STRs)

▶Microsatellite Repeats
Shotgun Proteomics

▶ Protein Identification Analysis
Side-scattered Light (SSC)

Xiaojun Liu

Internal Medicine, The Second Hospital of Hebei

Medical University, Shijiazhuang, Hebei, China
Definition

SSC is a special parameter of flow cytometry which

can reflect the physical properties of a particle or cell

examined by the flow cytometry. It is a part of

deflected laser light by the specimen. The extent to

which light scatters depends on the physical properties

of a particle, namely, its size and internal complexity.

Factors that affect light scattering are the cell’s mem-

brane, nucleus, and any granular material inside the

cell. Cell shape and surface topography also contribute

to the total light scattering.
Cross-References
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Kan Tanaka

Chemical Resources Laboratory, Tokyo Institute of

Technology, Yokohama, Kanagawa, Japan
Synonyms

Bacterial transcriptional cascade
Definition

Sigma factor is a subunit of bacterial RNA polymerase

essential for transcriptional initiation, which also

determines the promoter recognition specificity of the

RNA polymerase. Most bacteria possess multiple var-

iants of sigma factors having distinct promoter
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specificities, which we call sigma heterogeneity, and

thus bacterial cells are able to modify the RNA poly-

merase specificity in response to changing environ-

mental or physiological situations by exchanging the

sigma factor. Sequential transcriptional activation of

a series of gene sets is frequently observed during

various developmental processes both in prokaryotes

and eukaryotes. Sigma cascade refers to a conceptual

model that explains sequential transcriptional activa-

tion in bacteria: temporal expression or activation of

one sigma factor results in the activation of another

sigma factor, which results in activation of a set of

genes in the next phase like a cascade (Fig. 1).

S

Characteristics

Sigma Heterogeneity

Purification and biochemical analyses of RNA poly-

merase from bacteria identified a general subunit com-

position of a2bb0s, where the sigma (s) subunit was
defined as promoter recognition and initiation factor

for transcription.While sigma factor was considered of

unique molecular species at first, alternative sigma

factors were later identified from most bacteria, and
thus heterogeneity of sigma factor is a common char-

acteristic of bacteria. However, the originally found

sigma factor is still responsible for the major part of

cellular transcription, and is often called the major or

principal sigma factor. It is known that two hexamer

sequences centered at -10 and -35 positions from

the transcriptional start site are directly recognized by

the cognate sigma factor, which indicates that substi-

tution of sigma factor can change the promoter

sequence specificity of the RNA polymerase. As

a nomenclature for multiple sigma factor species,

sigma factors are usually described with superscript

for the molecular weight in kilodaltons as s70 and s38,

or just for respective names as sA and sgp28.

Bacteriophage Developments

Bacteriophages (or phages) are viruses that infect and

propagate in bacteria cells as the host. After the phage

infection, phage genes are orderly transcribed as con-

veniently divided into temporal classes, such as early,

middle, and late classes. In Bacillus subtilis lytic phage
SPO1 for example, early transcription begins immedi-

ately after the infection, and the transcription depends

on the host RNA polymerase containing the principal

sigma factor sA. After 5 min, phage genes of the
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middle class are turned on by the action of an early

gene product protein, gp28 (gene product 28). The

function of gp28 is now known as an alternative

sigma factor (sgp28) that substitutes for the principal

sigma factor sA, and enables the RNA polymerase to

recognize the middle promoter classes. The middle

class genes include genes 33 and 34, and these gene

products (gp33 and gp34) synergistically direct tran-

scription from the late class gene promoters as another

sigma factor, sgp33-34. Thus, the sequential switching

of promoter classes is well explained by a simple cas-

cade of phage-encoded sigma factors. In addition,

a simpler type of sigma factor cascade was found in

Escherichia coli phage T4 development, where the

middle gene product gp55 is transcribed by the host

sigma factor and functions as an alternative sigma

factor to activate the transcription of late class

promoters.
Sporulation of Bacillus subtilis

B. subtilis is a gram-positive bacteria that differentiates

a highly stress-resistant dormant spore. This differen-

tiation is induced by nutritional limitation, and usually

takes several hours for completion. During the vegeta-

tive growing phase, two sigma factors sA and sH are

dominant in the cell. However, after onset of sporula-

tion, at least five temporally defined classes of sporu-

lation-specific gene expression occur, and a sigma

cascade of sH→sF→sE→sG→sK has been shown

responsible as the underlying mechanism. It is of note

that, in contrast to the sigma cascade in phage devel-

opments, sporulation is a differentiation process

performed by two cells, prespore and mother cell.

Thus, the overall sigma cascade is a composite of two

sigma cascades, sH→sF→sG and sH→sF→sE

→sK, tightly coupled by cell-cell communication

across the boundary of the two cells (Fig. 2). For the

sequential sigma factor activation, a number of regu-

latory mechanisms, such as transcriptional activation,

binding of anti-s factor, and even site-specific DNA

recombination, have been found as the underlying

mechanisms.
Examples in Other Bacteria

Sigma factor cascade has also been found in other

bacterial systems, and thus the mechanism is likely

general among the bacteria kingdom.
Cross-References
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Nobuo Shimamoto

Faculty of Life Sciences, Kyoto Sangyo University,

Kyoto, Japan
Definition

Sigma Factor is the initiation factor of bacterial tran-

scription. A sigma factor is a protein subunit of bacte-

rial RNA polymerase holoenzyme. The enzyme

lacking it is called core enzyme, which is the form of

RNA polymerase in elongation. Since it has an affinity

for the non-template strand of its specific promoter, the
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binding of RNA polymerase to a promoter results in

a formation of ▶ open complex. A bacterium has two

or more sigma factors. In Escherichia coli, RpoD is the

major sigma, and six minor sigma factors have been

identified, RpoE, RpoF, RpoH, RpoN, RpoS, and FecI.

RpoE holoenzyme transcribes the genes for preventing

damages caused at an extremely high temperature,

RpoF is responsible for the expression of flagella

genes, and so on. Some sigma factors, such as E. coli
RpoN, bind to a promoter and then the core enzyme

binds to the factor complexed with DNA, similar to the

way eukaryotic transcription is initiated.
Signal Recognition Particle, Fig. 1 Signal recognition

particle of (a) mammal, (b) Archaea, and (c) E. coli
Cross-References
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Signal Recognition Particle

Taiichi Sakamoto1 and Gota Kawai2

1Chiba Institute of Technology, Narashino, Japan
2Department of Life and Environmental Sciences,

Chiba Institute of Technology, Narashino, Chiba,

Japan
Synonyms

SRP
S

Definition

The signal recognition particle (SRP, Fig. 1) is an

abundant cytosolic ribonucleoprotein that targets

membrane proteins and secretory proteins to the endo-

plasmic reticulum (ER) in eukaryotes and the plasma

membrane in prokaryotes (Alberts et al. 2008; Nagai

et al. 2003). Although SRP is universally conserved in

all organisms, its composition is varied. The mamma-

lian SRP is composed of six distinct proteins (SRP9,

SRP14, SRP19, SRP54, SRP68, and SRP72) bound to

7S RNA (about 300 nucleotides) and consists of two

functional domains; the Alu and S domains. The SRP9-

SRP14 heterodimer binds to one end of 7S RNA,

forming the Alu domain, whereas SRP19, SRP54,
SRP68, SRP72, and the remaining region of 7S RNA

form the S domain. The SRP RNA of Archaea is

similar in size and secondary structure to its mamma-

lian counterpart, but homologues of only two mamma-

lian SRP proteins, SRP54 and SRP19, have been

identified in archaeal genomes. SRP of Escherichia

coli is composed of 4.5S RNA (114 nucleotides) and

one protein Ffh (Fifty-four homolog) (see ▶Transla-

tional Control by Small RNAs, Bacteria).

In eukaryotes, SRP recognizes the secretory signal or

membrane-anchor sequences upon their emergence

from the ribosomal exit tunnel. This interaction leads

to the delay of protein synthesis known as “elongation

arrest.” Translation resumes when the SRP-bound ribo-

some nascent chain complex (RNC) binds to the

translocon in the ER membrane. This binding occurs

via the interaction of SRP with its cognate SRP receptor

that is located in close proximity to the translocon.
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Yufei Huang
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Synonyms

Signal transduction; Signaling pathway

Definition

Signal transduction pathway refers to a set of

chemical reactions in a cell that converts a mechanical/

chemical stimulus into a specific cellular response

(Campbell et al. 2003). These chemical reactions can

take as short as milliseconds (for ion flux), or as long as

days (for gene expression).

Cross-References

▶Gene Regulation
Signaling Crosstalk

▶ Pathway Crosstalk
Signaling Network Resources

Annette A. Alcasabas

BioSyntha Technology, Welwyn Garden City, UK
Definition

Signaling network resources are online databases with

information on molecules that participate in signal

transduction pathways. These pathways can involve
ligands, receptors, kinases, and other enzymes that

modify both upstream and downstream molecules

and transcription factors.
Characteristics

In terms of resources, there is overlap with databases

that also include metabolic and transcriptional path-

ways. General resources such as the KEGG Pathway

Database (http://www.genome.jp/kegg/pathway.html)

contain information on signal transduction as well as

other cellular pathways. However, there are also other

resources that specialize on signal transduction and

even those that further specialize on particular kinds

of signaling.

Cell Signaling Resources

The Signaling Gateway (http://www.signaling-

gateway.org; Saunders et al. 2007), hosted by UC

San Diego in collaboration with other companies, is

a free online database for signal transduction proteins.

Its main feature is the Molecule Pages, a relational

database that holds information on over 4,000 cell sig-

naling proteins. Each protein is given a long description

containing its protein family, its activity and transition

states, its upstream and downstream interactors, and

a graphical representation of the pathway it belongs to.

There is highly structured data that can be interrogated

using bioinformatics tools. The data is edited by invited

experts, who are acknowledged in each molecule page,

and peer-reviewed by the Nature Publishing Group. At

the same time, peer-reviewed data is complemented

regularly by information collected automatically from

public data sources, sequence analyses, and other data-

bases. The goal of the Molecule Pages is to have vali-

dated information that would be readily useful for the

modeling of interactions and pathways. This resource

also features Signaling Update, a weekly digest of the

latest research on cell signaling.

Science Magazine’s Database of Cell Signaling

(http://stke.sciencemag.org/cm/) provides graphical

representations of signaling pathways, called Connec-

tion Maps. A user can view both “canonical pathways”

which are generalized representations of conserved

pathways or “specific pathways” which could be

specific signaling cascade in a particular organism.

In addition, there is a separate section of the database

for Pathway-Independent Component information.
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Each component can be a protein or nonprotein mole-

cule that participates in one or more pathways.

Currently, there is information for over 1,800 compo-

nents, this includes a description of how it is formed,

transition states, the canonical and specific pathways it is

part of, literature references and links to other databases.

Information on both the Connection Maps and Pathway-

Independent Components sections are entered by

experts, called Pathway Authorities, their names appear

on the pages they created. Access to this database is

either by institutional license or by free registration.

Phosphorylation Network Resources

Many signals transduction pathways are comprised of

one or more that modify the activity and/or localization

of both upstream and downstream components by

phosphorylation. In fact, at least half of all proteins in

a eukaryotic cell undergo phosphorylation. Databases

containing kinases, phosphatases, and phosphorylation

have therefore emerged to assist signaling pathway

studies.

Currently, the most extensive study of a eukaryote’s

kinome (kinase/phosphatase interactome) belongs

to budding yeast Saccharomyces cerevisiae. Using

mass-spectrometric analysis of yeast kinase and

phosphatase complexes, Breitkreutz and colleagues

(2010) identified over 1,844 interactions. This led to

the creation of Yeast Kinome database (http://www.

yeastkinome.org), which lists the interacting molecules

of the organism’s 130 protein kinases, 24 lipid and

metabolic kinases, 38 protein phosphatases, 5 metabolic

phosphatases, and their associated proteins.

A complementary resource, PhosphoGRID (http://

www.phosphogrid.org/; Stark et al. 2010) lists the

phosphorylation sites within yeast proteins based on

experimentally verified data.

In contrast to the smaller numbers in budding yeasts,

humans have over 500 kinases and over 100 phospha-

tases. Resources that hold information on kinases in

humans and other organisms include Kinase.com

(http://www.kinase.com/) and a resource website from

Cell Signaling Technology (http://www.cellsignal.

com/reference/kinase/index.html).

To predict phosphorylation sites in protein

sequences from other eukaryotes, one can use Scansite

(http://scansite.mit.edu/) and Netphos (http://www.

cbs.dtu.dk/services/NetPhos/).

PhosphoSitePlus (http://www.phosphosite.org)

manually curates not only phosphorylation, but other
post-transcriptional modifications on proteins from

human, mouse, and rat species.
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Signal-to-Noise Ratio

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou, Guangdong,

China

Definition

Signal-to-noise ratio (often abbreviated SNR or S/N) is

a measure used in science and engineering that com-

pares the level of a desired signal to the level of

background noise. It is defined as the ratio of signal

power to the noise power. A ratio higher than 1:1

indicates more signal than noise. While SNR is com-

monly quoted for electrical signals, it can be applied to

any form of signal (such as isotope levels in an ice core

or biochemical signaling between cells).

Signal-to-noise ratio is sometimes used informally to

refer to the ratio of useful information to false or irrele-

vant data in a conversation or exchange. For example, in

online discussion forums and other online communities,

off-topic posts and spam are regarded as “noise” that

interferes with the “signal” of appropriate discussion.

Signal-to-noise ratio is defined as the power ratio

between a signal (meaningful information) and the

background noise (unwanted signal):

SNR ¼ Psignal

Pnoise
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where P is average power. Both signal and noise

power must be measured at the same or equivalent

points in a system, and within the same system

bandwidth. If the signal and the noise are measured

across the same impedance, then the SNR can be

obtained by calculating the square of the amplitude

ratio:
SNR ¼ Psignal

Pnoise
¼ Asignal

Anoise

� �2

where A is root mean square (RMS) amplitude (e.g.,

RMS voltage). Because many signals have a very wide

dynamic range, SNRs are often expressed using the

logarithmic decibel scale. In decibels, the SNR is

defined as
SNRdB ¼ 10log10
Psignal

Pnoise

� �
¼ Psignal;dB � Pnoise;dB

which may equivalently be written using amplitude

ratios as:
SNRdB ¼ 10log10
Asignal

Anoise

� �2

¼ 20log10
Asignal

Anoise

� �

The concepts of signal-to-noise ratio and

dynamic range are closely related. Dynamic range

measures the ratio between the strongest undistorted

signal on a channel and the minimum discernable

signal, which for most purposes is the noise level.

SNR measures the ratio between an arbitrary signal

level (not necessarily the most powerful signal pos-

sible) and noise. Measuring signal-to-noise ratios

requires the selection of a representative or refer-

ence signal. In audio engineering, the reference

signal is usually a sine wave at a standardized nom-

inal or alignment level, such as 1 KHz at +4 dBu

(1.228 VRMS).

SNR is usually taken to indicate an average signal-

to-noise ratio, as it is possible that (near) instantaneous

signal-to-noise ratios will be considerably different.

The concept can be understood as normalizing the

noise level to 1 (0 dB) and measuring how far the

signal “stands out.”
Silent Chromatin and Active Chromatin

▶Heterochromatin and Euchromatin
Silicon Cell

Franco du Preez

SysMO-DB team, Manchester Centre for Integrative

Systems Biology, University of Manchester,

Manchester, UK
Definition

The long-term goal of the Silicon Cell Initiative

(http://www.siliconcell.net) is the computation of life

at the cellular level using mathematical models based

on the complete genomic, transcriptomic, proteomic,

metabolomic, and cell-physiomic information

(Westerhoff et al. 2003), which is becoming increas-

ingly available with the advent of high-throughput

biology. Silicon Cell models are based on the proper-

ties of the macromolecules comprising the cell and

should be real and based on experimental determina-

tions of those properties themselves. Such experiments

typically correspond to in vitro enzyme kinetics, or to

in vivo determinations of the kinetic properties of the

individual macromolecules. This distinguishes a silicon

cell model from many existing “phenomenological”

models, wherein the parameters are fitted to replicate

the behavior of the living cell.

A number of silicon cell models for parts of cellular

networks have been published and are available from

the ▶ JWS Online model repository, from where they

can be simulated directly (http://jjj.mib.ac.uk). The

aim is to link such models to ultimately model com-

plete cellular networks (Snoep and Westerhoff 2004;

Snoep 2005).
Cross-References

▶ JWS Online
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▶Canonical Network Motifs
Simple Conditional Analysis (SCA)

Marie I. Kaiser and Andreas H€uttemann

Department of Philosophy, University of Cologne,

Cologne, Germany
Definition

Let Ds stand for system s having the disposition D, that

is, s being disposed to M (manifestation) provided

enabling conditions E obtain. According to the simple

conditional analysis (SCA), the necessary and suffi-

cient conditions for s having D can be symbolized

as follows:
S

Ds $ ðEs ! MsÞ

which is to be read as: s has Disposition D if and only

if: If s were confronted with E then s would manifest M

(Choi and Fara 2012).
Cross-References

▶Disposition
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Simple Object Access Protocol

Richard G. Côté

European Molecular Biology Laboratory, European

Bioinformatics Institute (EBI), Hinxton,

Cambridge, UK
Synonyms

SOAP
Definition

The Simple Object Access Protocol (SOAP) is

a lightweight protocol intended for exchanging struc-

tured information in a decentralized, distributed

environment.

It uses XML technologies to define an extensible

messaging framework providing a message construct

that can be exchanged over a variety of underlying

protocols.

The framework has been designed to be indepen-

dent of any particular programming model and other

implementation-specific semantics.
Cross-References

▶Ontology Lookup Service for Controlled

Vocabularies and Data Annotation
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Simple Sequence Repeats (SSRs)

▶Microsatellite Repeats
Simplification

▶Reduction
Simulated Annealing

Feng-Sheng Wang and Li-Hsunan Chen

Department of Chemical Engineering, National Chung

Cheng University, Chiayi, Taiwan
Definition

Simulated annealing (SA) is a heuristic algorithm,

which mimics certain thermodynamic principles of

producing an ideal crystal, in order to achieve

a global optimal solution (Sharda et al. 2003;

Zhilinskas and Žilinskas 2008). The algorithm is used

for simulating thermal moves of molecules at a certain

temperature. This temperature is the crucial parameter

of SA that influences both reliability and efficiency of

optimization. The annealing process in metallurgy can

make particles arrange themselves in the position with

minima potential as the temperature is slowly

decreased. The algorithm starts with a solution and

moves to one of its neighbors in each iteration,

randomly. The probabilities for the uphill moves,

which are the moves toward a worse neighbor, and

the downhill moves, which are the moves toward

a better neighbor, to succeed are different and the

temperature, remaining iteration times, decreases

with the uphill probability. Slowly decrease the tem-

perature until the particle is trapped in the minimum

potential, the minimum solution can be found.
Characteristics

Pseudocode:

X ¼ X0

e ¼ E(X)

Xbest ¼ X; ebest ¼ e

T ¼ T0
Do

Xnew ¼ random neighbor(X)

enew ¼ E(Xnew)

if P(e, enew, T ) > random() then

// P(e, enew, T ) is the probability for the particle to

move from X to Xnew

//where P(e, enew, T ) > P(e, enew, T’) when

e < enew and T > T’

X ¼ Xnew; e ¼ enew
If enew < ebest then

Xbest ¼ Xnew; ebest ¼ enew
T ¼ T-1

While the maximum iteration is not attained.
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Simulated Evolution

▶Artificial Evolution
Simulation

▶Lymphocyte Dynamics and Repertoires, Modeling
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Karl Staser1 and Feng-Chun Yang2

1Departments of Pediatrics and Biochemistry, Indiana

University School of Medicine, Indianapolis, IN, USA
2Departments of Pediatrics, Herman B Wells Center

for Pediatric Research, School of Medicine, Indiana

University, Indianapolis, IN, USA
Synonyms

Competitive repopulation; Single hematopoietic stem

cell transplantation
Definition

The definitive single cell assay for a hematopoietic

stem cell (HSC) is long-term multi-lineage reconstitu-

tion in transplanted primary and secondary hosts.

In single cell experimental designs, putative hemato-

poietic stem cells are isolated using antibody-based

detection methods. These methods include antibody-

conjugated magnetic beads and multi-parameter

fluorescence-activated cell sorting (FACS). Current

methodologies and phenotypic knowledge permit the

isolation of single cells each with a �50% chance of

engendering long-term multi-lineage hematopoiesis.
HSC

Immunophenoty

Lineage– Sca1+ c-Kit+ 
CD34– CD48– CD15

Lineage: CD3, CD4, CD8
Gr1, Mac1, Terr11

Single Cell Assay,
Hematopoietic Stem Cell,
Fig. 1 Basic schema and

immunophenotype of the

HSC, showing the principal of

self-renewal and

differentiation (Adapted, with

modifications, from

(Weissman and Shizuru

2008))
Characteristics

The Hematopoietic Stem Cell

A single hematopoietic stem cell can both self-renew

and differentiate to generate all blood and immune

effector cells (Czechowicz and Weissman 2010;

Weissman and Shizuru 2008). A single transplanted

hematopoietic stem cell can hypothetically restore the

hematopoietic system of a radioablated or otherwise

marrow-conditioned mouse for its lifetime. Similarly,

HSCs from these transplanted mice can give rise to all

blood and immune effector cells in secondary recipi-

ents, definitively demonstrating the principal of stem

cell self-renewal and multi-lineage reconstitution

(Fig. 1) (Spangrude et al. 1988).
The HSC Immunophenotype

Over the past 60 years, investigators have utilized both

tissue culture- and transplantation-based assays to pin-

point the HSC phenotype with increasing accuracy. As

shown in long-term transplantation studies, the HSC

can now be detected, isolated, and transplanted with

about 50% reliability on the single cell level (Kiel et al.

2005). The actual accuracy may exceed this number, as

radioablation-based transplantation assays are subject

to experimental error and engraftment failure at mul-

tiple levels, including unknown consequences of

ex vivo HSC manipulation prior to intravenous

injection.

Current methods of characterization and isolation

rely principally upon the binding and detection of cell
pe

Flk2–

0+

, B220,
9

Multi-lineage
progenitors

Self-renewal

Lymphoid progenitors

Myeloid progenitors

S
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surface proteins with antibody-conjugated magnetic

beads and fluorophores. Accordingly, the phenotypic

detection of HSCs relies on known expression patterns

of certain antigens and, in complementary methods,

dye uptake and efflux (e.g., Hoechst staining)

(Darzynkiewicz et al. 2004; Weissman and Shizuru

2008).

Phenotypically, the HSC expresses the c-Kit recep-

tor tyrosine kinase (c-Kit) and the stem cell antigen 1

(Sca1) while expressing low or undetectable levels of

multiple mature hematopoietic cell proteins – known

as the lineage negative/low (lin�/lo) fraction

(Czechowicz and Weissman 2010; Spangrude et al.

1988; Weissman and Shizuru 2008). These lineage

markers include T-cell markers CD3, CD4, and CD8;

B-cell marker B220; erythroid progenitor marker

Ter119; and myeloid markers Gr-1 and Mac-1 (also

known as Ly6C/G and CD11b, respectively). Using

antibodies to these markers, the investigator can iden-

tify the LSK fraction – lin�/lo, Sca1+, and c-Kit+ – an

enriched population containing a high frequency of

hematopoietic stem and progenitor cells.

Further phenotypic refinement provides a greater

purity and, thus, a greater chance of a single cell

being an HSC. Long-term repopulating murine HSCs

have been described as being negative for both Fetal

liver kinase 2 (Flk-2) and CD34 (Christensen and

Weissman 2001; Osawa et al. 1996). Moreover, micro-

array transcriptional profiling of HSC-enriched

populations have helped to reveal novel and poten-

tially simplifying identifier proteins. Specifically, the

expression pattern of the signaling lymphocyte activa-

tion molecule (SLAM) family proteins, CD150, CD48,

and CD41, may distinguish HSCs (Kiel et al. 2005). In

fact, CD150+ CD41/48� LSK (SLAM-LSK) cells

demonstrate approximately a 50% chance of long-

term multi-lineage hematopoietic reconstitution when

transplanted as single cells. Moreover, in rigorous

detection and isolation protocols, some investigators

have been able to achieve high levels of HSC purity

using only the SLAM markers.

Here, we will use the SLAM-LSK cell as the pro-

totype for single HSC isolation and assay. However,

other detection methods exist, including the use of

CD34, Flk-2, and Hoechst staining, and these pheno-

typical markers may identify “true” yet heterogeneous

populations of HSCs and/or overlap in expression

within the putative HSC population. (For example

Kiel et al. (2005) found that nearly all CD150+
CD41/48� cells also expressed Sca1 and c-Kit.)

Importantly, independent research groups must

develop and validate a detection and isolation tech-

nique before initiating large studies, as many variables

affect purity and yield. A detailed discussion of mod-

ern flow cytometry-based methods of HSC

immunophenotyping can be found in (Challen et al.

2009).
HSC Isolation

Bone marrow contains the greatest numbers of HSCs

and, in mice, is the readiest HSC source. Marrow

isolated from the long bones (femur, tibia, iliac) of

a wild-type adult male mouse yields about 50–100

million mononuclear cells, of which about 0.005–

0.01% are SLAM-LSK cells (as derived from (Kiel

et al. 2005)). Thus, 2,500–10,000 SLAM-LSK cells

can be isolated from the leg bone marrow of the adult

male mouse, a yield varying with the strain of

the mouse, the dissection/purification techniques

employed, and, of course, any pre-dissection interven-

tions performed.

In a typical experiment, the investigator first iso-

lates whole bone marrow from the long bones either by

flushing the shaft of the bone with fluid and a needle or

by crushing the whole bone, enzymatically processing

the tissue, and purifying mononuclear cells by density

gradient. After mononuclear cell isolation, the investi-

gator may choose to further purify the cell population,

such as by using anti-c-Kit antibody-conjugated mag-

netic beads, which enriches the HSC frequency

approximately 20-fold compared to non-purified

mononuclear cells. Next, the investigator adds distinct

antibody-conjugated fluorophores. These antibodies

detect different cell surface proteins which identify

the putative HSC. Fluorophore-marked cells are ana-

lyzed and sorted using an appropriate flow cytometer

(e.g., Becton Dickinson FACS Aria or iCyt

Reflection). These machines are capable of plating

a single cell into each well of a 96-well plate. In the

example given here, the investigator would use flow

cytometry software to identify the lin�/lo, Sca1+,

c-Kit+, CD150+, and CD41/48� fraction, which the

machine could then sort as a single cell into the well

of a 96-well plate (or other vessel). Figure 2 demon-

strates a general schema for this procedure. These

single cells may then be assayed in transplantation or

ex vivo studies.



Transplantation Ex vivo studies

“HSC”

Fluorescence
activated sorting

Further purification
or direct staining

Example Ab panel

Ab-Conjugate

Lineage
Sca1
CD41/48
CD150
c-Kit APC-Cy7

PE-Cy7
PE
FITC

APC

Single Cell Assay, Hematopoietic Stem Cell, Fig. 2 Over-

view of HSC detection and isolation. Bone marrow is isolated,

purified, and labeled with anti-mouse antibody-conjugated

fluorophores. An example five-color antibody panel demon-

strates a detection technique for SLAM-LSK cells (lin�/lo,

Sca1+, c-Kit+, CD150+, and CD41/48�). Using an appropriately

equipped flow cytometer, single cells can be sorted into a 96-well

plate and subsequently transplanted or studied in cell culture
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Single HSC Transplantation

Singly sorted, putative HSCs can be transplanted into

radioablated or otherwise conditioned mice. Essentially,

the single cell transplant assesses the putative HSC’s

potential to find the bone marrow niche, engraft, and

restore long-term multi-lineage hematopoiesis. Thus, the

investigator may have various intentions with the single

cell assay, from improving and validating the phenotypic

definitionof anHSC to testing thehematopoietic potential

of a wild-type versus a genetically modified cell.

Cells to be transplanted are suspended in saline and

then delivered by intravenous injection. Transplanta-

tion validation requires that the donor cells possess

a distinguishing feature from the recipient/host hema-

topoietic cells. In many experimental designs, investi-

gators use congenic mouse strains. These strains differ

in the hematopoietic expression of a single antigenic

epitope, easily distinguished on flow cytometry with

antibody-conjugated fluorophores. For example, an

investigator may isolate an HSC from a C57BL/6
strain mouse, whose mononuclear cells all express

the CD45.2 surface protein, and transplant this HSC

into a radioablated BoyJ strain mouse, whose mono-

nuclear cells all express the CD45.1 surface protein.

After transplantation, the investigator can isolate

mononuclear cells from peripheral blood and stain

them with a mixture of CD45.1, CD45.2, and other

fluorophore-conjugated antibodies. In this way, the

investigator can use flow cytometry to easily and pre-

cisely identify donor (CD45.2+) versus host (CD45.1+)

hematopoietic cells.

Because the radioablated mouse lacks a healthy

hematopoietic system, the mouse requires a co-

injection of non-ablated mononuclear cells to support

its immune functions. In the competitive repopulation

design, the single, putative HSC (e.g., CD45.2+

SLAM-LSK cell) is transplanted along with a varying

number of a host-type (e.g., CD45.1+) non-HSC frac-

tion (e.g., CD150� or lin+). While these cells will help

support the mouse’s immunity following radioablation

and transplantation, the cells should not engender

long-term hematopoiesis. Thus, if the single isolated

cell is truly an HSC, a fraction (�0.5%+) of the circu-

lating lymphoid and myeloid cells in the transplanted

mouse should be CD45.2+ (in this example) 4–6

months following transplantation. This finding would

indicate that the single CD45.2+ cell has given rise to

many (�0.5%+ of billions) multi-lineage (myeloid/

lymphoid) for a long period of time (4–6 months),

fulfilling most criteria of an HSC. The remaining

hematopoiesis derives from host stem cells escaping

lethal radioablation or from contaminating stem cells

contained within the putatively stem cell-depleted

competitor fraction. Figure 3 presents this competitive

repopulation schema. (See Kiel et al. (2005) or

Christensen and Weissman (2001) for example exper-

imental details.)

Secondary Transplantation

After 4–6 months of hematopoietic reconstitution in

the primary recipient, definitive validation of the self-

renewing HSC can be affirmed by secondary transplan-

tation. In a basic experimental design, �2 � 106

mononuclear cells are isolated from the chimeric pri-

mary recipient and transplanted without purification into

a radioablated host-type secondary recipient (e.g.,

CD45.1+). After 4 months, circulating lymphoid and

myeloid cell chimerism should roughly reflect the chi-

merism of the original host (e.g., �0.5–10% CD45.2+),



CD45.2+

Single “HSC”

CD45.1+

1×106 lin+ cells

Mixed cells Irradiated CD45.1+

Long-term outcome
~0.5% of multi-lineage

hematopoietic cells are CD45.2+

Single Cell Assay, Hematopoietic Stem Cell, Fig. 3 [Com-

petitive repopulation]. One putative HSC expressing CD45.2 is

mixed with one million CD45.1+ non-HSCs (support cells) and

injected intravenously into a radioablated mouse with a CD45.1+

hematopoietic system. After 4–6 months, �0.5%+ of the circu-

lating lymphoid and myeloid cells should be CD45.2+ (if the

single cell was, indeed, an HSC), indicating long-term, multi-

lineage hematopoietic reconstitution. Lineage reconstitution can

be assessed by flow cytometric detection of the simultaneous

expression of CD45.2 and lymphoid/myeloid markers such as

CD3,4,8; B220; Gr-1; Mac-1; and Ter119
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indicating successful engraftment, self-renewal, and

multi-lineage commitment of the singly isolated and

transplanted HSC.

Ex Vivo Studies

As an alternative to transplantation, the investigator

may wish to perform any number of studies with single

or low numbers of HSCs in culture. For example,

sorted HSCs can be stimulated with fetal bovine

serum and stem cell factor to induce proliferation,

allowing the investigator to test different conditions

on HSC physiology. However, HSCs inevitably lose

their “stemness,” differentiating away from a cell

capable of in vivo, multi-lineage, long-term hemato-

poietic reconstitution. Thus, several research groups

are currently investigating various strategies (e.g.,

gene delivery, chemical inhibition, culture methods)

to support long-term HSC self-renewal ex vivo.
Cross-References
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▶ Self-Renewal
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Synonyms

Colony-forming fibroblastic cells; Mesenchymal stem

progenitor cells (MSPCs); Multipotent marrow stro-

mal cells; Single-cell culture

Definition

Single-cell assays (▶ Single Cell Experiments) have

utility in a variety of fields, particularly in the area of

stem cell biology where stem cell ▶ differentiation

potency and ▶ self-renewal potentials need to be

assessed on a unicellular basis. Single stem cells are

typically isolated using a technology known as

▶fluorescence-activated cell sorting (FACS) to sepa-

rate individual cells of a particular type based on the

expression level of specific cell surface antigens or

markers. The proliferation and Differentiation potency

of single stem cells can be examined in vitro and in vivo

by a variety of experiments, including colony formation

in liquid or semisolid media, differentiation in the pres-

ence of cytokines and other growth factors, and, for

hematopoietic stem cells, single-cell transplantation to

irradiated host animals such as mice (▶Single Cell

Assay, Hematopoietic Stem Cell) (Ema et al. 2006).

▶Mesenchymal stem cells (MSCs) are

a specialized type of adult stem cell that reside in

multiple tissues throughout the body, including the

bone marrow, peripheral blood, fetal liver, and lung.

Like other stem cells, MSCs retain the properties of

both self-renewal and multipotency, the potential to

differentiate into multiple cell types depending on the

extracellular environment and growth factors present.

Mesenchymal stem cells exhibit the capacity to differ-

entiate into a variety of cell lineages, including▶ oste-

oblasts, ▶ chondrocytes, ▶ adipocytes, connective

tissue stromal cells, muscle, lung, gut epithelium, and

neurons (Uccelli et al. 2008).
While adult stem cell types such as hematopoietic

and neuronal stem cells have been well characterized

by the expression of specific cell surface markers

(▶Fluorescent Markers), mesenchymal stem cells

express a number of nonspecific cell surface antigens

making them difficult to define at a single cell level.

This issue has resulted in debate among stem cell

biologists regarding the true nature of mesenchymal

stem cells. To resolve this question, single cell assays

are being utilized to validate the capacity for self-

renewal and multipotency of putative mesenchymal

stem cells defined by various combinations of cell

surface markers.
Characteristics

Mesenchymal Stem Cell Isolation

Mesenchymal stem cells are most commonly

harvested from mononuclear cells of the bone marrow,

although they also reside within a number of other

tissues, including cord blood, amniotic fluid, fetal

liver, periosteum, and adipose tissue (Chamberlain

et al. 2007). Bone marrow mononuclear cells are iso-

lated from the buffy coat fraction following density

gradient centrifugation to eliminate nonnucleated

cells, such as anuclear erythrocytes and polymorpho-

nuclear neutrophils. These cells are suspended in

medium supplemented with fetal bovine serum and

allowed to adhere to tissue culture dishes in a 37�C,
5% CO2 incubator. Adherent bone marrow mononu-

clear cells contain mesenchymal stem cells as well as

a number of other cell types, including fibroblasts,

hematopoietic progenitor cells, macrophages, endo-

thelial cells, and adipocytes. With repeated passaging

in culture, many contaminating lineages die off under

certain culture conditions or are washed away. Further

enrichment of MSC cultures can also be achieved

using deprivational media or frequent medium changes

to facilitate the removal of non-MSC lineages

(Soleimani and Nadri 2009).

The issue of defining a true MSC population within

a culture of MSC-like cells has been a topic of contro-

versy among stem cell biologists over recent years.

Although MSCs express a variety of cell surface

markers (▶Fluorescent Markers), these antigens are

neither unique nor specific to MSCs. Currently, MSCs

in tissue culture are defined by the expression level of

a panel of cell surface markers. MSCs derived from the
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bone marrow commonly express CD29, CD44,

CD49a-f, CD51, CD73, CD105, CD106, CD166, and

Stro1. They are also characterized by their lack of

expression of CD11b, CD14, and CD45, which are

all markers of the hematopoietic lineage as well as

the endothelial cell marker CD31 (Chamberlain et al.

2007). Unfortunately, the expression level of MSC cell

surface antigens varies significantly across the species

of origin, the tissue source from which they are

derived, and even cell culture conditions. Therefore,

true MSCs are difficult to define by cell markers alone,

but rather, functional assays are required to assess their

self-renewal and multipotency. Such experiments are

most informative when they are performed at the level

of the single cell (▶ Single Cell Experiments).
Single-Cell Assays of Mesenchymal Stem Cell

Function

Like other adult stem cells, MSCs are characterized by

their capacity to self-renew (▶ Self-Renewal) and give

rise to multiple terminally differentiated cell types

(▶Differentiation Potency). MSCs are capable of

forming mesodermal cell types such as ▶ osteoblasts,

▶ adipocytes,▶ chondrocytes, muscle, and connective

tissue stromal cells. Recently, they have also been

reported to transdifferentiate to tissues of the endo-

derm such as gut epithelium and lung tissue, as well

as neurons of the neuroectoderm (Uccelli et al. 2008).

Techniques involving in vitro single-cell assays of

mesenchymal stem cell differentiation are discussed

in the following paragraphs.

After isolation and culture of MSCs from tissue

such as the bone marrow, multicolor ▶ Fluorescence-

activated cell sorting (FACS) is commonly utilized to

isolate individual MSC-like cells based on the expres-

sion level of an array of cell surface markers

(▶Fluorescent Markers). Modern day flow cytometers

are now capable of sorting single cells into 96 well

plates selected via a panel of surface antigens (▶ Flow

Cytometry, ▶Cell Sorting). Besides flow cytometry,

another commonly used method for single-cell

harvesting and transfer is micromanipulation. In par-

ticular, automatedmicromanipulators offer advantages

for high throughput applications, including speed and

precise cell positioning; however, unless coupled to

a flow cytometer, this technology lacks the high spec-

ificity achieved by selecting individual cells with

a signature of fluorescent markers.
After sorting single ▶mesenchymal stem cells into

96 well plates, in vitro single cell assays can now be

performed. One property common to all stem cells is

their capacity for ▶ self-renewal. For mesenchymal

stem cells, this is traditionally assessed by the ability

to form colonies after replating on plastic tissue culture

dishes at low density. This is termed the colony-

forming units (CFU) assay in which the number of

individual colonies is counted after plating MSCs at

subconfluent densities for 2 weeks of culture. The

traditional CFU assay, however, is limited in that

MSCs from one colony may be lifted and replated

elsewhere, giving rise to multiple colonies. In contrast,

the single-cell CFU (sc-CFU) assay circumvents this

issue because it ensures that any and all colonies

formed in a particular well belong to a single MSC.

As such, sc-CFU assays are particularly useful in

determining the true percentage of stem cells with

high self-renewing capacity in various populations

of MSC-like cells defined by cell surface marker

expression panels (▶ Fluorescent Markers) (Fig. 1,

Pochampally 2008).

Differentiation potency, or the capacity to give rise

to multiple cell lineages, is another fundamental char-

acteristic of stem cells. As noted previously, MSCs can

differentiate into multiple mesodermal cell types,

including ▶ osteoblasts, ▶ chondrocytes, ▶ adipo-

cytes, connective tissue stromal cells, and muscle.

Transdifferentiation to lineages of the endoderm (gut

epithelium, lung, etc.) and neuroectoderm (neurons)

has also been reported but will not be discussed in

detail here.

Osteoblast (▶Osteoblasts) differentiation of MSCs

can be achieved by the addition of osteotropic factors

to the culture media such as ascorbic acid, dexameth-

asone, b-glycerophosphate, and bone morphogenetic

protein (BMP). After 5–7 days of culture, the osteo-

blast differentiation potential of MSCs can be evalu-

ated by a variety of phenotypic markers at the cellular

and molecular level. Mature osteoblasts stain posi-

tively for alkaline phosphatase (ALP). Von kossa

staining may also be performed to check for calcium

deposits in the extraceullar matrix. On a molecular

level, terminally differentiated osteoblasts have been

shown to express the critical ▶ transcription factor

Cbfa1/Runx2, as well as an array of other markers,

including osteocalcin, osteonectin, bone sialoprotein,

osteopontin, and Type-I collagen, which can

be assessed at the mRNA level by ▶Quantitative
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single cell sorting

1-2 wks

96-well plate

Single cell CFU-F assay
Single cell differentiation assay

Single Cell Assay, Mesenchymal Stem Cells, Fig. 1 Single-

cells mesenchymal stem cells are sorted into 96 well plates via

fluorescence-activated cell sorting (FACS) utilizing a flow

cytometer. In vitro single-cell assays can subsequently be

performed. These include the single-cell CFU (sc-CFU) assay,

a metric for self-renewal capacity, as well as differentiation

assays to assess differentiation potency

MSC differentiation Phenotypic identification markers

• Positive ALP and von Kossa staining
• Cbfa1 / Runx2 expression
• Osteocalcin, osteonectin, bone
sialoprtein, osteopontin, Type-I collagen

Osteoblast

• Positive toluidine blue stain (proteoglycans)
• Cbfa1 / Runx2 expression
• Type-II collagen, Type-IX collagen Aggrecan

• Positive Oil red O staining (lipid)
• Prominent Cytoplasmic lipid droplets
• PPARγ2, C / EBPβ, ap2 adipsin, leptin,
lipoprotein lipase

• Not discussed

Chondrocyte

Adipocyte

Myocyte

• Not discussed
Connective tissue stroma

Self-renewal

Mesenchymal
stem cell

Lung
Neurons
Gut Epithelium

Single Cell Assay, Mesenchymal Stem Cells, Fig. 2 Mesen-

chymal stem cells retain the capacity for self-renewal as well as

the property of multipotency. MSCs have been shown to differ-

entiate to an array of mesodermal cell types, including

osteoblasts, chondrocytes, adipocytes, connective tissue stromal

cells, and muscle. Transdifferentiation to certain ectodermal cell

types, such as neurons, and endodermal cell lineages, such as gut

epithelium and lung, has also been reported

Single Cell Assay, Mesenchymal Stem Cells 1949 S

S

Real-time Polymerase Chain Reaction (qRT-PCR)

(▶Gene Expression) (Minguell et al. 2001).

MSCs can differentiate toward the chondrocyte

(▶Chondrocytes) lineage with the addition of ascorbic

acid plus growth factors such as transforming growth
factor-beta 1 (TGF-b1) or TGF-b3. Chondrocytes can
be defined phenotypically by the expression of Cbfa1/

Runx2, in addition to Type-II collagen, Type-IX col-

lagen, and Aggrecan mRNA. Histologically, mature

chondrocytes stain positively with toluidine blue,

http://dx.doi.org/10.1007/978-1-4419-9863-7_884
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
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signifying an abundance of proteoglycans within the

extracellular matrix (Minguell et al. 2001).

Adipocytes can also be derived from mesenchymal

stem cells with combinations of factors such as dexa-

methasone, isobutilmethylxanthine, indomethacin,

and insulin. A classic methodology for identifying

adipocytes in cell culture is positive Oil red

O staining, indicating the accumulation of lipid drop-

lets within the cytoplasm. Molecular markers for adi-

pocytes are also available, and they include

peroxisome proliferator-activated receptor gamma 2

(PPARg2), C/EBPb, aP2, adipsin, leptin, and lipopro-

tein lipase (Fig. 2, Minguell et al. 2001).

Single-cell differentiation assays (▶ Single Cell

Experiments) for MSCs hold distinct advantages over

traditional bulk culture approaches because they allow

the investigator to accurately determine the percentage

of MSC-like cells that retain true multipotency. Exam-

ining the proportion of true multipotent stem cells

selected using various combinations cell surface

markers can better inform our phenotypic definition

of a mesenchymal stem cell. In turn, this will allow for

improved selection of purified MSC populations for

in vivo experimentation and future therapeutic appli-

cations in human patients.

Limitations

A major limitation of single-cell assays for mesenchy-

mal stem cells is the lack of in vivo experiments for

assessing MSC function on a single-cell basis. By

contrast, hematopoietic stem cell (HSC) function can

be evaluated on a cell-by-cell basis both in liquid

culture and semisolid media as well as by the trans-

plantation of single HSCs into a lethally irradiated host

animal (▶ Single Cell Assay, Hematopoietic Stem

Cell). For mesenchymal stem cells, comparable exper-

iments would be difficult to perform in vivo due to the

inherent difficulty of ablating prexisting MSCs in the

host animal without incurring irreparable damage to

the hematopoietic system or other cell lineages.
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Definition

The stem cell is an unspecialized cell that can

self-renew and give rise to specialized cell lineages,

such as a blood cell. Stem cells are found in all

multicellular organisms. Stem cells can now be

grown and can differentiate into specialized cell

types with characteristics consistent with cells of

various tissues such as blood, muscles, or nerves in
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in vitro cultures. Up-to-now, highly plastic adult stem

cells are broadly used in clinical therapies. Highly

purified and characterized stem cells from mice have

opened up exceedingly rich fields of basic research

with a variety of clinical potential. Many of the

techniques used in the study of stem cell biology

have become more standardized nowadays. In this

entry, we provide information on up-to-date tools for

studying stem cells. We wish the information in this

entry will help accelerate studies in the stem cell field.
S

Single Stem Cell Studies

A stem cell is characterized by its ability to self-renew,

high proliferative capability, and multilineage differ-

entiation potential. Stem cells can be found in

multicellular organisms. The research in the stem cell

field was initiated by pioneers Ernest A. McCulloch

and James E. Till in the early 1960s (McCulloch and

Till 1960).

There are two major types of stem cells: embryonic

stem cells and adult stem cells. Embryonic stem cells

are isolated from the inner cell mass of a blastocyst.

During development, embryonic stem cells have the

capability to differentiate into all of the specialized

embryonic tissues. An adult stem cell is considered to

be an undifferentiated cell that can be found in adult

tissues/organs. An adult stem cell can renew itself and

differentiate to yield some or all of the major special-

ized cell types of the tissue or organ. Adult stem cells

can maintain the normal turnover of regenerative

organs, such as blood, skin, liver, or intestinal tissues.

These adult stem cells can also repair systems for the

body, replenishing specialized cells.

Hematopoietic stem cells (HSCs) are multipotent

stem cells that give rise to all blood cell types including

lymphoid cells (T cells, B cells, nature killer cells),

myeloid cells (monocytes, macrophages, neutrophils,

eosinophils, erythrocytes, dendritic cells, megakaryo-

cytes, and platelets). In the late 1980s, stem cell

biologists were able to purify the hematopoietic stem

cells, which opened a new era for (1) better under-

standing the stem cell biology, (2) improving stem

cell transplantation, (3) achieving better understanding

of stem cell diseases such as leukemia and myeloma,

and (4) promoting regenerative medicine. Umbilical

cord blood is obtained from the umbilical cord at the

time of childbirth, after the cord has been detached
from the newborn (Cairo and Wagner 1997;

Broxmeyer and Smith 2009). Scientists are able

to collect stem cells from cord blood including hema-

topoietic stem cells. The placenta is another source

of hematopoietic stem cells. The placenta contains up

to ten times more stem cells than cord blood (Cairo and

Wagner 1997).

Hematopoietic stem cell transplantation is a proce-

dure of transplanting pluripotent stem cells into

recipients. The stem cells can be derived from either

bone marrow or umbilical cord blood. Nowadays, stem

cell transplantation has become a common medical

treatment procedure for people with diseases of the

blood, bone marrow, inflammation, or certain cancers.

However, hematopoietic stem cell transplantation

remains risky as this procedure has many possible

complications. Thus, it has been reserved for patients

with life-threatening diseases (Tyndall et al. 1999;

Burt et al. 2008).

Induced pluripotent stem cells (iPS cells) are a

type of pluripotent stem cells derived from a non-

pluripotent cell, generally an adult somatic cell by

artificial overexpression of specific genes. Similar to

ES and adult stem cells, iPS cells express certain

stem cell genes and proteins. iPS cells also have

similar chromatin methylation patterns and

doubling time as ES cells and adult stem cells. Most

importantly, these iPS cells form embryonic bodies

and have the potential of differentiation into

multilineages under certain conditions (Takahashi

and Yamanaka 2006).

Basic research of stem cells in laboratories enables

scientists to understand the essential properties of stem

cells. In fact, scientists have already used stem cells in

the laboratory for drug screening and also for the

development of model systems to understand normal

growth and to identify the causes of birth defects.

However, the heterogeneity of stem cells from

stem cell cultures has been a significant obstacle

in obtaining a homogeneous population for under-

standing the stem cell physiology and conducting

directed differentiation protocols. Studies of single

cell/homogeneous populations can eliminate the vari-

ability hindering population studies, thereby providing

a better understanding of stem cell physiology. Single

cell analysis with our technique will yield valuable

insight into the process of self-renewal, proliferation,

lineage commitment, and differentiation. It will also

provide a platform for the systematic discovery of
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lineage specific markers useful in refining directed

differentiation process.

In this entry, we will present methods/approaches

for studying the stem cells at single cell level. Flow

cytometry is a technique for scoring and examining

cells by suspending them in a stream of fluid and

passing them by an electronic detection apparatus.

This allows scientists to performmultiparametric anal-

ysis of the physical and/or chemical characteristics of

up to thousands of particles per second. Nowadays,

flow cytometry is routinely used in the diagnosis of

health disorders. Dr. Liu provides detailed information

regarding the flow cytometry in this entry. The fluo-

rescence-activated cell sorter is a machine that can

rapidly separate the cells in a suspension on the basis

of size and the color of their fluorescence. The cells

will not be damaged by the process. In contrast, the

percent viability of the sorted cells can be higher than

that in the original suspension due to the setting of the

machine to ignore droplets containing dead cells. Fluo-

rescent marker is a molecule, like a protein, which is

covalently attached by a fluorophore to selectively

bind to a functional group of the target for detection.

The most commonly used fluorescent molecules are

antibodies. As detailed in the section of Fluorescent

Markers described by Dr. He, cell marker is a specified

protein on the surface of every cell, named receptor,

which can selectively bind or adhere to other signaling

molecules. The biological uniqueness of the receptors

and chemical properties of certain compounds was

used to mark cells. Cluster of differentiation (CD)

molecules are markers on the cell surface, which can

be recognized by specific sets of antibodies. Cluster of

differentiation system can be used to identify the cell

type, stage of differentiation, and activity of a cell.

Live cell imaging is the study of living cells using

images acquired from microscopy. This method pro-

vides a tool to better view biological function through

the study of cellular dynamics. This technology has

become increasingly and widely accessible for

scientists to produce pivotal publications in cell

biology, developmental biology, cancer biology, and

many other related biomedical research laboratories.

Mesenchymal stem cells (MSCs) are adult stem

cells that reside in multiple tissues throughout the

body including the bone marrow, peripheral blood,

and fetal liver and lung. MSCs retain the properties

of both self-renewal and pluripotency, the potential to
differentiate into multiple cell types depending on

the extracellular environment and growth factors

present. MSCs exhibit the capacity to differentiate

into a variety of cell lineages including osteoblasts

(bone), chondrocytes (cartilage), adipocytes (fat),

keratinocytes (skin), fibroblasts (connective tissue),

and muscle. In this entry, Dr. Rhodes describes the

up-to-date protocols for study of the MSC biologic

functions, includingMSC isolation andMSC functions

at single cell level.

Clonal cultures are likely the closest technique for

single cell in vivo studies of hematopoietic stem cells.

In addition, hematopoietic stem cell transplantation is

a traditional protocol that has been used to ascertain

that a single hematopoietic stem cell contained in

donor cells is transplanted into a lethally irradiated

host with a high probability. The clonal expansion of

this stem cell can then be observed over time by mon-

itoring the percent donor-type cells in blood as the host

is reconstituted. The resulting time series is defined as

the repopulation kinetic of the hematopoietic stem

cells. Dr. Staser will discuss these methodologies in

this entry.

Spectroscopic methods are the main tools of

modern chemistry for the identification of molecular

structures. These methods play a vital part in many

areas of science. Spectroscopic methods allow scien-

tists to identify compounds, to confirm molecular

structures, to determine and monitor reactions, and to

control the purity of compounds. Spectroscopy can

provide information as to how the electromagnetic

spectrum interacts with matter. Spectroscopic methods

use the entire electromagnetic spectrum: from X-rays

(with a wavelength of 0.1 nm) to radio waves (with

a wavelength of 1,000 m). Spectroscopic methods are

critical in organic chemistry and are required as part of

chemistry courses in all universities. Dr. Wu describes

these methods in this entry.

It is our intention that the entry “▶ Single Cell

Experiments” provides readers detailed and up-to-date

information for single stem cell research. We hope

you find “▶ Single Cell Experiments” instructive

and useful.

Summary

This entry provides up-to-date, yet standard study

methods for the research of single stem cells. It is our

hope that this entry will help accelerate studies in the

http://dx.doi.org/10.1007/978-1-4419-9863-7_185
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stem cell field. Our sincere thanks goes to all of the

contributors and those in the stem cell field that

enlarged our thinking and provided new views/tools

to further understand this promising stem cell.
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Single Nucleotide Polymorphisms

Vani Brahmachari and Shruti Jain

Dr. B. R. Ambedkar Center for Biomedical Research,

University of Delhi, Delhi, India
Synonyms

Point mutations; SNPs
Definition

It is a variation that can be mapped to a single locus, as

it results from the substitution of one nucleotide by

another. Genetic polymorphism is distinguished from

mutation based on its higher frequency of occurrence

in the population indicating that the variation in the

gene sequence is not causing a drastic effect relative to

the normal sequence, which is seen in a much larger

number of individuals in the population. But, in

principle, point mutations are single base changes in

the gene sequence. All SNPs may not bring about

a change in the amino acid sequence of the protein

coded by the gene because of the redundancy in the

genetic code, which is defined as the synonymous sub-

stitution, or they can bring about a change in the amino

acid sequence of the protein causing missense or they

can prematurely terminate the protein synthesis because

of generating a nonsense mutation. They allow for high-

throughput genotyping. SNPs bring about subtle

changes in the activity of gene/its product, which can

have considerable effect under conditions of environ-

mental challenges like exposure to ▶ xenobiotics.
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Definition

Single Round Assay of transcription is the assay

using DNA only in a single round of transcription.

A promoter complex is formed during preincubation

and heparin is added together with substrate nucleoside

triphosphates (NTPs) to prevent free RNA polymerase

from binding to DNA.
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Single-Input Module

Guangxu Jin

Systems Medicine and Bioengineering,

Bioengineering and Bioinformatics Program, The

Methodist Hospital Research Institute, Weill Medical

College, Cornell University, Houston, TX, USA
Synonyms

Single-input module motif, SIM
Definition

Single-input module (SIM) was found in the E. coli
transcriptional regulation network (Shen-Orr et al.

2002). A single transcription factor, X, regulates a set

of operons Z1, . . ., Zn. X is usually autoregulatory. All

regulations are of the same sign (positive or negative).
No other transcription factor regulates the operons.

Mathematical modeling suggests that SIM can show

a detailed temporal program of expression resulting

from differences in the activation thresholds of the

different genes. Built into this design is a pattern in

which the first gene activated is the last one to be

deactivated. The SIM motif is found in systems of

genes that function stoichiometrically to form a protein

assembly (such as flagella) or a metabolic pathway

(such as amino-acid biosynthesis).
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Site-directed Mutagenesis

Animesh Bhattacharya
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Definition

In molecular biology the method called site-directed

mutagenesis is used to induce a mutation at a defined

locus (site) in a DNA sequence.
Site-Specific Mutagenesis

▶ Site-directed Mutagenesis
Size Checkpoint

▶Cell Cycle, Cell Size Regulation
Size Control

▶Cell Cycle, Cell Size Regulation
S

Skp1/Cul1/F-Box Containing
Complex (SCF)

Sergio Moreno

Instituto de Biologı́a Molecular y Celular del Cáncer,

CSIC/Universidad de Salamanca, Salamanca, Spain
Definition

SCF is a multiprotein E3 ubiquitin ligase complex that

is involved in the ubiquitylation of proteins for their

degradation by the proteasome. In the SCF complex,

the F-box component recognizes specific targets for

destruction by the proteasome. F-box protein Skp2

specifies degradation of CDK inhibitors p21Cip1,

p27Kip1, and p57Kip2 at G1/S. In mitosis, F-box protein

bTrCP marks the degradation of mitotic proteins, such

as Emi1 and Wee1.
Cross-References
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Slow-Fast Dynamics
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Tsinghua University of Beijing, Beijing, China
Definition

Slow-fast dynamics is a class of dynamical systems

that are characterized by several different timescales

(Berglund and Gentz 2006).

There are many examples of biological systems in

which such differential timescales are well separated,

for instance:

• The 24 h cycles of ▶ circadian rhythms that are

closely associated with the fast process of the

expressions of clock genes

• The fast transportation of extracellular single

molecules and the slow embryo growing

• Different timescale reactions in a genetic network,

including protein-protein interaction, ▶ transcrip-

tion, translation, and molecule transportation

The feature of the separation of timescales allows us

to model the system by slow-fast ordinary differential

equations of form
e
dx

dt
¼ f ðx; yÞ;

dy

dt
¼ gðx; yÞ;

(1)

where e is a small parameter. Here x

contains the fast variables, and y the slow ones.
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Equivalently, the system can be written in fast time

s ¼ t=e as
dx

ds
¼ f ðx; yÞ;

dy

ds
¼ egðx; yÞ:

(2)

In many situations, we can reduce the slow-fast

dynamics by decoupling different timescales

variables. As the variable y varies slowly in time,

the dynamics of the fast variables in (2) can be consid-

ered as a parameter-dependent ordinary differential

equation
dx

dt
¼ f ðx; lÞ: (3)

If (3) admits an asymptotically stable equilibrium

point x(l) for each value of l, the fast variables can be
eliminated, at least locally, by a projection onto the set

of equilibria, called the slow manifold. This yields the

effective reduced system
dy

dt
¼ gðxðyÞ; yÞ (4)

for the slow dynamics, which is simpler to analyze than

the full system. For instance, switches between differ-

ent (parts of) slow manifolds (toggle switch), relaxa-

tion oscillations in which periodic motions of fast and

slow phase alternate, etc.

Adding noise to a slow-fast dynamics will add one

or several new timescales to the dynamics, namely, the

metastable lifetimes (or Kramer’s time). The dynamics

will depend in an essential way on the relative values

of the deterministic system’s intrinsic timescales, and

the Kramer’s time that is introduced by noise

(Berglund and Gentz 2006).
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Synonyms

Monomeric GTPases
Definition

Small GTPases are a GTP-binding superfamily of

proteins ubiquitous among eukaryotic cells. They

typically range between 21 and 25 KDa in size and

can be classified into the Ras, Rho/Rac, Rab, Arf,

and Ran subfamilies based on conserved domains that

determine their function. For example, members of the

Rho family of proteins are usually involved in the

regulation of cytoskeleton dynamics, including cell

morphology, motility, and cytokinesis. Differently,

Ran GTPases usually regulate nuclear import/export

dynamics and mitotic spindle assembly (Alberts et al.

2008).

Small GTPases are considered molecular switches

that cycle between an active GTP-bound state and an

inactive GDP-bound state. Hydrolysis of GTP to GDP

and the exchange back to GTP is not typically

performed by the intrinsic activity of the GTPase but

by interactions with catalytic binding partners. Proteins

that catalyze the hydrolysis of GTP into GDP are

GTPase-activating proteins (GAPs), and proteins that

help GTPases to release GDP in exchange for GTP are

GTP exchange factors (GEFs). Control over the cellular

localization and activity of GAPs and GEFs results in

spatial and temporal regulation of small GTPase. In

addition, guanine nucleotide dissociation inhibitors, or

GDIs, can sequester small GTPases in their GDP-bound

state and prevent them from interaction with their

corresponding GEF (Alberts et al. 2008).
Cross-References
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Small Interfering RNA
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Definition

Small interfering RNAs are short 19–25-nucleotide

long double-stranded RNA molecules that are endog-

enously generated by processing natural or synthetic

precursors. Small interfering RNAs (siRNAs) can

associate with the multiprotein complex RNA-induced

silencing complex (RISC) which separates the two

strands of the siRNA and retains one of them. The

RISC-incorporated strand of siRNA then associates

with complementary mRNA sequences in the cyto-

plasm and mediates degradation of the mRNA.
S

Small Molecule

Riza Theresa Batista-Navarro

National Centre for Text Mining, Manchester

Interdisciplinary Biocentre, Manchester, UK
Synonyms

Small-molecule drug
Definition

A small molecule is a molecule with a low molecular

weight, as opposed to a biological macromolecule

(e.g., therapeutic proteins). Small molecules comprise

majority of the pharmaceutical agents (Osbourn 2007).
A small molecule has a single, fixed chemical for-

mula. Unlike biological macromolecules which are

degraded due to their protein nature, small-molecule

drugs are metabolized. Their low molecular weight

makes it possible for them to be taken orally and allows

them to diffuse easily (Osbourn 2007).
Cross-References
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Small-World Property

Hendrik Mehlhorn1 and Falk Schreiber1,2

1Leibniz Institute of Plant Genetics and Crop Plant

Research (IPK), Gatersleben, Stadt Seeland, Germany
2Martin Luther University Halle–Wittenberg,

Halle, Germany
Definition

A ▶ graph G = (V, E) has a small-world property if it

has a high ▶ clustering coefficient and a small ▶ char-

acteristic path length. A high ▶ clustering coefficient

represents a local connectivity property, typically

resulting in a high number of cliques and near-cliques,

which denote subnetworks comprising edges between

http://dx.doi.org/10.1007/978-1-4419-9863-7_101367
http://dx.doi.org/10.1007/978-1-4419-9863-7_1051
http://dx.doi.org/10.1007/978-1-4419-9863-7_1322
http://dx.doi.org/10.1007/978-1-4419-9863-7_1341
http://dx.doi.org/10.1007/978-1-4419-9863-7_1289
http://dx.doi.org/10.1007/978-1-4419-9863-7_1239
http://dx.doi.org/10.1007/978-1-4419-9863-7_1460
http://dx.doi.org/10.1007/978-1-4419-9863-7_1460
http://dx.doi.org/10.1007/978-1-4419-9863-7_1239


S 1958 Small-World Property
all or almost all vertices. A small ▶ characteristic path

length represents a global reachability property and

roughly behaves logarithmic to the number of

▶ graph vertices.
Characteristics

Properties

The high ▶ clustering coefficient in small-world net-

works points to the importance of dense local intercon-

nections and cliquishness. In the case of biological

networks, these represent functional modules such as

a set of proteins achieving a common function, a set of

genes participating in a common cellular process, or

local interconnections within metabolic pathways. The

small ▶ characteristic path length in small-world net-

works points to the importance of short paths between

any two vertices. In the case of biological networks,

these afford fast information flow in gene regulatory

and signal transduction networks as well as fast reac-

tion paths in metabolic networks. Both properties fre-

quently appear jointly in biological networks and

significantly discriminate their topology from random

▶ graphs, thus the topology of biological networks is

most likely the result of selection pressure (Wagner

and Fell 2001; Tong et al. 2004; Yook et al. 2004).

Other networks which have been shown to have the

small-world property are theWorldWideWeb, energy

grids, and social networks. ▶Graphs, which model

spatial or temporal proximity, are less likely to have

the small-world property. Reasons are that there is

simply no short way between remote places and no

short time interval between distant time points.

Scale-Freeness

A small ▶ characteristic path length of biological net-

works arises from a ▶ graph property named scale-

freeness. A ▶ graph is scale free if its connectivity

(also called degree) distribution follows a power-law.

The probability that a vertex is adjacent to k other

vertices follows P (k)� ck�g, where c is a normalization

constant and g 2 [2, 3]. Thus, the degree distributions of

multiple scale-free▶ graphs of different sizes look sim-

ilar after rescaling the degree axis. There are also results

indicating that the degree distribution of many biologi-

cal networks is not exactly scale free, but rather follows

a truncated power-law (Khanin and Wit 2006).
However, scale-free ▶ graphs have been shown to be

ultrasmall denoting a▶ characteristic path length which

behaves like log log |V| with |V| representing the number

of vertices in the▶ graph (Cohen andHavlin 2003). The

scale-freeness property results in many weakly

connected vertices and only few strongly connected

vertices. The latter vertices are also named ▶ hubs and

are considered to be responsible for the small▶ charac-

teristic path length. At the same time, the scale-freeness

property results in a great error-robustness of biological

networks, because random errors are more likely to

effect a weakly connected vertex then a strongly

connected vertex. For example, in case of the protein-

protein interaction network of yeast it has been shown

that a mutation of a ▶ hub protein is more likely to be

lethal than a mutation of a non-▶ hub protein (Jeong

et al. 2001).

Models for Small-World Networks

The first model for small-world networks was

proposed by Watts and Strogatz and is called the

Watts-Strogatz model (Watts and Strogatz 1998). The

starting point is a ▶ graph which is composed of

a cycle of vertices, each vertex being connected to

the next k (k� 2) vertices on the cycle. For each vertex

and each edge connected to this vertex, the edge gets

rewired with a specified probability p by reconnecting

the opposite end of the edge to a vertex chosen equi-

probable from all vertices, such that no two edges

connect the same vertex pair and no edge starts and

ends at the same vertex. Rewired edges are also called

shortcuts, because these probably reduce the number

of edges in the shortest path between several vertices.

Depending on p, the ▶ clustering coefficient and the

▶ characteristic path length change dramatically.

However, there is a certain range of p resulting in

a high ▶ clustering coefficient and a small ▶ charac-

teristic path length yielding the small-world property.

Another popular model was proposed independently

by Monasson (Monasson 1999) and Newman and

Watts (Newman and Watts 1999). Instead of rewiring

edges to create shortcuts, new edges are added between

all vertex pairs with a specified probability p. This

model has the advantage that the ▶ graph always

stays connected resulting in a finite ▶ characteristic

path length. Both models have been examined in the

literature of mathematics and physics (Newman 2000).

Although the proposed models are capable to
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reproduce the small-world property, other properties of

biological networks such as scale-freeness and net-

work motifs are lacking.
Cross-References
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▶Graph

▶Hub
S
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SmpB
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Synonyms

Small protein B
Definition

A small protein B (SmpB), which is highly conserved

protein among all bacteria and some organelle, is an

important factor in the trans-translation (Shpanchenko
et al. 2010). SmpB binds to the 30 end of the D-loop in
the tRNA-like domain of tmRNA. The main core of

SmpB (residues 1–133 for Thermus thermophilus)
consists of an oligonucleotide-binding fold (OB

fold) with a central b-barrel and three flanking

a-helices. The poorly structured C-terminal tail

of the protein (about 20 residues), rich in basic

residues, plays a critical role in tmRNA tagged

and function (Shpanchenko et al. 2010; Moore and

Sauer 2007).
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Definition

SNPedia (pronounced “snipedia”) is an online data-

base of ▶ Single Nucleotide Polymorphisms (SNPs)

organized in a▶wiki-format to allow sharing of infor-

mation about genetic variations. The Website was

launched in 2006 by geneticist Greg Lennon and

bioinformatician Michael Cariaso to help optimize

the application of the Human Genome project to

practical living and to realize the relevance of under-

standing genetic variations in humans (Cariaso and

Lennon 2011). SNPedia can be accessed at the site

http://www.snpedia.com.
Characteristics

Description

SNPedia is a free online platform that serves as

a repository of information about SNPs and their

roles in different health conditions based on published

studies. It utilizes information from various public

databases and includes interpretations of the SNPs’

importance (Check Hayden 2008). SNPedia also con-

tains users’ contributed data and information on SNPs

that are present on commercially available microarray

(▶DNA Microarrays) chips enabling comparison of

different microarray platforms. Researchers in systems

biology needing SNPs data will find more than 24,000

SNPs (as of November 2011) in the SNPedia database.

Beyond being a simple online database, SNPedia is

a semantic wiki which has the ability to identify infor-

mation and relationships of information between Web

pages. It is powered by Media Wiki and the Semantic

MediaWiki software (Cariaso and Lennon 2011).Web

users and researchers can easily search or query infor-

mation in a semantic wiki page. One can search the

SNPedia Website by SNP, gene, medical condition, or

other related topics such as medicines. Being a wiki,

SNPedia allows communication between users and

enables users to contribute and edit information on
theWebsite. The contents of theWebsite may be freely

copied, quoted, reused, and adapted by anyone in

accordance with the Creative Commons Attribution-

Noncommercial-Share Alike 3.0 United States License.

SNPedia is associated with Prometease, a freeware

computer program developed by the same SNPedia

team that enables users to compare their genotype infor-

mation against the SNPedia database.

Contents

Each SNP in SNPedia has a Web page with descrip-

tion, links to research publications as well as

microarray information and links to personal genomics

Websites. SNPs are usually identified by their “rs”

numbers following the nomenclature of the National

Center for Biotechnology Information (NCBI). For

example, rs9939609 is an SNP included in SNPedia

and is located in the fat mass and obesity-associated

(FTO) gene or also known as the “Fat Gene” (Frayling

et al. 2007). The description of the SNP in SNPedia

includes its gene, chromosome location, and informa-

tion (if any) of its association with human traits such as

eye color, response to drugs, disease susceptibility, and

other traits. The scientific evidence that supports the

SNP’s association with a human trait is provided as

a link to PubMed (▶MEDLINE and PubMed)

abstracts or other peer-reviewed publications. The

Web page for each SNP also contains links to related

pages within SNPedia and other databases such as

▶ dbSNP, ▶Ensembl, and ▶HapMap. Data on the

SNP’s genotype frequencies in the HapMap population

are presented as graphs in the SNP Web page. In

addition, one can also connect to Internet search

engines and genotyping Websites through links within

the Web page. SNPedia’s data and links may also

provide additional supporting information in

interpreting results of personal genotyping tests.

A screenshot of a sample SNP Web page from the

Website is shown in Fig. 1.

An SNP reported to SNPedia will automatically be

connected to its neighboring SNPs. Its presence on any

known commercial microarrays (▶DNAMicroarrays)

will also be identified once it is included in the data-

base. Knowing the neighboring SNPs might help in

genetic testing in case the SNP of interest does not

exist on any known microarrays. If an SNP is on

a microarray, it can be used as a surrogate marker to

test for its neighbor which is not on the microarray

(Cariaso 2007).
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SNPedia also provides a possibility for users to

discuss about a particular SNP in the online chat

room. A tab for discussion is provided on every SNP

page in SNPedia for this purpose. Aside from being

a discussion venue, for some users the chat room can

also become a venue for genetic counseling.
S

Limitations and Issues

There are limitations to SNPedia’s contents and there

are issues concerning the privacy of personal informa-

tion shared within the site. The general privacy policies

associated with a wiki environment also applies to

SNPedia. This means that anyone may edit the publicly

editable pages of the Website and is identified publicly

as an editor. As a wiki, SNPedia will continually grow

and accumulate more information. However, the

completeness and accuracy of the content of the wiki

cannot be fully guaranteed.
Cross-References
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SNPs

▶ Single Nucleotide Polymorphisms
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▶ Sequence Ontology
SOAP

▶ Simple Object Access Protocol
Social Epistemology

Martin Carrier

Department of Philosophy, Bielefeld University,

Bielefeld, Germany
Definition

Social epistemology analyzes the gain of knowledge as

a social practice. It is understood in contrast to the

traditional conception of the individual researcher, act-

ing in isolation. It studies the impact of social interac-

tions on the production and assessment of assertions.

Social epistemology emphasizes that social factors affect

the credibility of expert judgment and testimony and that

scientific claims are tested and assessed within the perti-

nent scientific community following social rules.

Cross-References

▶Non-empirical Values
Soft X-Ray Microscopy

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center for

Pediatric Research, Indiana University School

of Medicine, Indianapolis, IN, USA
Definition

Soft x-ray microscopy provides a unique set of capa-

bilities in between those of visible light and electron

microscopy.
Cross-References

▶ Spectroscopy and Spectromicroscopy
Solid Tissue

▶Biomarkers, Protein Expression
Solvent Accessible Surface

▶Mathematical Morphology for Protein Surface

Modeling
Solvent Excluded Surface

▶Mathematical Morphology for Protein Surface

Modeling
Somatic Gene Rearrangements

▶ Immune Repertoire Diversity
Somatic Mutations

Vito Quaranta

The Vanderbilt-Ingram Cancer Center, Nashville,

TN, USA
Definition

Mutations arising in non-germline cells not

transmissible to offspring.
Cross-References

▶Cell Cycle, Cancer Cell Cycle and Oncogene

Addiction
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Source Control

▶Distributed Version Control System (DVCS)
Sources of Variability

▶Experimental Design, Variability
Spatiotemporal Pattern Formation

Andreas Deutsch

Center for Information Services and High Performance

Computing (ZIH), Technical University Dresden,

Dresden, Germany
S

Definition

Spatiotemporal pattern formation is the process

of pattern development in space (e.g., spots or

spirals) or in time (e.g., oscillations). It can be

observed in a large variety of systems in nature

(Haken 2004; Mikhailov and Loskutov 1996;

Murray 2002). Examples include oscillating

chemical reactions (e.g., Belousov Zhabotinskii reac-

tion), spiral waves in excitable media (e.g., cyclic

CAMP waves during dictyostelium discoideum aggre-

gation), and reaction-diffusion systems (e.g., Turing

patterns).
References
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Special Sciences

Max Kistler

IHPST, Université Paris 1 Panthéon-Sorbonne, Paris,

France
Definition

Special sciences are those sciences whose domain of

application is not universal. Thus, the class of special

sciences is complementary relative to fundamental

physics. Any object existing in space-time falls in the

domain of fundamental physics, whereas special sci-

ences deal only with a more or less extended part of

those objects. Molecular biology is a special science

insofar as diamonds or stars do not belong to its domain

of application. The concept of special science has

become well known since Fodor’s (1974) argument

that special sciences are not reducible to fundamental

physics.

Cross-References

▶Causality
References

Fodor JA (1974) Special sciences. In: Representations, repr. as

Chapter 5, 1981. MIT Press, Cambridge, MA, pp 127–145
Specialized Metabolic Component
Databases

Orland Gonzalez1 and Alberto Sanguino2

1Institute for Bioinformatics, Ludwig-Maximilians-

University Munich, Munich, Germany
2Specialty Division for Systems Biotechnology,

Technical University Munich, Garching, Germany
Synonyms

Enzyme-ligand interaction databases; Metabolomics

databases; Organism-specific metabolic databases;
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Specialized Metabolic Component Databases,
Table 1 Protein–ligand interaction databases

S 1964 Specialized Metabolic Component Databases
Reaction kinetics databases; Thermodynamic data-

bases for enzyme-catalyzed reactions
Database URLa

Relibase relibase.ccdc.cam.ac.uk

Ligand ligand-expo.rcsb.org

MSDsite www.ebi.ac.uk/pdbe-site/pdbemotif/

eF-Site ef-site.hgc.jp

BindingMOAD bindingmoad.org

PDBbind pdbbind.org

AffinDB agklebe.de/affinity

BindingDB bindingdb.org

Het-PDB hetpdbnavi.nagahama-i-bio.ac.jp

BIND bind.ca

LigAsite www.bigre.ulb.ac.be/Users/benoit/LigASite/

PROCOGNATE www.ebi.ac.uk/thornton-srv/databases/

procognate/

CREDO http://www-cryst.bioc.cam.ac.uk/databases/
Definition

In addition to databases that focus on particular com-

ponents of metabolism, such as metabolites (e.g.,

KEGG Glycan, ChEBI) or enzymes (e.g., BRENDA),

even more specialized resources exist that are devoted

to specific aspects of these components. Examples of

these are databases that deal with the thermodynamics

or kinetics of enzyme-catalyzed reactions, the

ligand binding of enzymes, reference spectra for

metabolomics experiments, or organism-specific

metabolite data (e.g., clinical data).

credo

aCompiled on March 9, 2011
Characteristics

Enzyme–Ligand Interactions

The molecular recognition of small molecules is criti-

cal to many processes in a living cell. In the case of

enzymes, this determines substrate specificity and,

accordingly, catalytic activity. One of the most useful

resources for this type of information (i.e., protein–

ligand interactions) is the worldwide protein data

bank (PDB) (Berman et al. 2000). The structural data

contained therein provides direct evidence for atomic

interactions between protein residues and their binding

partners. Other databases that deal with protein-ligand

interactions are listed in Table 1. Most of them derive

their data, at least in part, from the PDB.

One problem with using the PDB directly is that the

ligands are frequently noncognate (i.e., not biological/

natural). This is because nonphysiological binding

partners are often employed simply to aid crystalliza-

tion. In the case of enzymes, these would be inhibitors,

such as transition state analogues (Bashton and Thorn-

ton 2009). For this reason, some databases, such as

PROCOGNATE, BindingMOAD, and LigAsite, take

steps to ensure the biological significance of the

observed ligands (e.g., by comparison with reactions

defined in KEGG). Indeed, PROCOGNATE, as the

name suggests, specializes in making this distinction.

Some of the databases mentioned in Table 1 sup-

plement their protein-ligand interaction data with rele-

vant information. For example, PROCOGNATE and

BIND further identify domains. This is important
because domains often possess conserved activity,

including, potentially, ligand binding. Other examples

of databases that supplement their interaction data are

PDBbind, BindingDB, and AffinDB, all of which supply

binding affinities curated from the literature. A recent

review of databases that deal with protein-ligand inter-

actions was made by Bashton and Thornton (2009).

Thermodynamics and Kinetics

Thermodynamic data on enzyme-catalyzed reactions

is important for a number of modeling and analysis

frameworks used in systems biology. For instance,

▶metabolic flux analysis (MFA), which is

a constraint-based technique used to predict the distri-

bution of fluxes through metabolic networks, uses

thermodynamic information to further reduce the

range of feasible states that a network can reach (e.g.,

reaction reversibilities). Furthermore, thermodynamic

data can partially replace kinetic information when

building dynamic models or performing sensitivity

analysis (Goldberg et al. 2004, see ▶Metabolic Con-

trol Analysis).

The largest online collection of thermodynamics

data on enzyme-catalyzed reactions can currently be

found in the NIST standard reference database,

TECRDB (Goldberg et al. 2004). In particular, it pro-

vides apparent equilibrium constants and calorimetri-

cally determined molar enthalpies of reaction that were

curated from the literature. Each entry in the database

http://dx.doi.org/10.1007/978-1-4419-9863-7_101257
http://dx.doi.org/10.1007/978-1-4419-9863-7_101501
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contains the appropriate citation, the name of the

enzyme used (including its Enzyme Commission num-

ber), the experimental conditions under which the data

was obtained (e.g., buffers and cofactors), and occa-

sionally some commentary. In addition, TECRDB also

provides a subjective evaluation, using a simple scor-

ing scheme from A (high quality) to D (low quality),

based on the method of measurement used, the number

of data points determined, and the extent to which the

effects of temperature, pH, and ionic strength were

investigated. Other thermodynamic properties, such

as species formation free energies, enthalpies, entro-

pies, and heat capacities, can be derived or estimated

from the primary data provided.

In contrast to thermodynamics, which provides

information on the equilibrium conditions of products

after a reaction takes place, kinetics is concerned with

the rate of a reaction and, accordingly, how fast equi-

librium is reached. A database that collects extensive

kinetic information is the BRENDA (Braunschweig

Enzyme Database) enzyme information system

(Scheer et al. 2011). Among many other things, it pro-

vides experimentally determined KM (Michaelis con-

stant) and kcat (turnover number) values for substrates

or cofactors of enzymes from a wide range of organ-

isms. For molecules that act as inhibitors, it gives the

inhibition constant Ki and the half-maximal inhibitory

concentration IC50. Kinetic parameters are invaluable

for the construction of dynamic models of metabolism

(see ▶Kinetic Modeling and Simulation; ▶ Pathway

Modeling, Metabolic and ▶Ordinary Differential

Equation (ODE), Model).

Another database that curates kinetic parameters

from the literature is SABIO-RK (Rojas et al. 2007).

In contrast to BRENDA, which provides many other

types of information related to enzymes, SABIO-RK is

devoted to reaction kinetics and was developed specif-

ically with the modeling community in mind. In addi-

tion to kinetic constants, the database specifies the type

of kinetic law associated with a reaction, if it was

defined in the original source. Moreover, SABIO-RK

data is structured to facilitate comparison of kinetic

parameters obtained under different experimental con-

ditions or from different organisms, tissues, etc. The

web-based interface of the database supports export in

SBML format (Hucka et al. 2003) (see ▶ Systems

Biology Markup Language (SBML)), allowing facile

import into simulation and modeling programs that

support the standard.
Organism-Specific Metabolism

The human metabolome database (HMDB) is

a comprehensive metabolomics resource that contains

chemical, physical, as well as clinical data for small

molecule metabolites found in the human body

(Wishart et al. 2009). Specific data held by HMDB

include reference NMR, GC-MS, and MS-MS spectra

(MS and NMR), which are invaluable for

metabolomics experiments (other databases that pro-

vide similar data are BMRB, MMCD, and MassBank),

and information on normal and abnormal concentra-

tions of metabolites in a number of biofluids (e.g.,

blood, cerebrospinal fluid, urine, etc.). Although

metabolite records are linked to KEGG pathways,

HMDB also provides its own hand-drawn metabolic

pathway maps. These are unlike most other online

metabolic diagrams in that they are specific to human

metabolism, explicitly show the subcellular compart-

ments where specific reactions are known to take

place, and allow direct visualization of the chemical

structures of participating molecules.

Extensively curated, organism-specific metabolic

databases similar to HMDB are currently only avail-

able for a few model organisms (e.g., BioCyc; see

▶Metabolic Networks, Databases). Nevertheless,

alternative resources exist in the form of genome-

scale metabolic network reconstructions (Reed et al.

2006; Feist et al. 2009; see ▶Metabolic Networks,

Reconstruction). These reconstructed networks pro-

vide explicit relationships between the genes of an

organism, the enzymes that they encode, and the reac-

tions that occur within a cell. A lot of them are manu-

ally curated, and provide citations to relevant literature

(e.g., experimental support for the existence of

a reaction or pathway). Although reconstruction efforts

have focused primarily on microbes (e.g., E. coli),
high-quality networks are already available for

a number of higher organisms, including human,

yeast, and Arabidopsis. The BiGG database

(Schellenberger et al. 2010) attempts to integrate

published metabolic reconstructions into one resource

using a standard nomenclature.
Cross-References

▶KEGG Pathway Database

▶Kinetic Modeling and Simulation

▶Metabolic Control Analysis
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▶Metabolic Flux Analysis

▶Metabolic Networks, Databases

▶Metabolic Networks, Reconstruction

▶Ordinary Differential Equation (ODE), Model

▶ Pathway Modeling, Metabolic

▶ Systems Biology Markup Language (SBML)
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Specific Response

Jinzhi Lei

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua University of Beijing, Beijing, China
Definition

In interconnected signal transduction pathways,

specific response means clearly defined or identified

output in response to input signal.
Different cellular signal transduction pathways are

often interconnected, and therefore, undesirable cross

talk between pathways exists. Specificity and fidelity

are two properties that all pathways in a network must

possess in order to avoid paradoxical situation where

one pathway activates another pathway’s output, or

responds to another pathway’s input, more than its

own (Komarova et al. 2005).

In a network with two pathways (X and Y),
specificity of a pathway is the ratio of its authentic

output to its spurious output (Bardwell et al. 2007;

Komarova et al. 2005):
SX ¼ XoutjXin

YoutjXin

:

The specificity SX is infinite if the pathway X does

not affect outputs from the pathway Y. If SX < 1, it

means that the signal for X is actually promoting the

output of pathway Ymore than its own output. Fidelity

of a pathway is defined as its output when given an

authentic signal divided by its output in response to

a spurious signal (Bardwell et al. 2007; Komarova

et al. 2005):
FX ¼ XoutjXin

XoutjYin :

A pathway with fidelity larger than 1 (i.e., F > 1)

means that it is activated by its authentic signal than by

others. In contrast, if a pathway has fidelity less than 1

(i.e., F < 1), it is activated by another pathway’s

signal than by its own.

Network specificity is defined as the product of the

pathway specificities (the network fidelity, the product

of the pathway fidelities, is always equal to network

specificity).

Mutual specificity (mutual fidelity) of a network

means a property that all pathways in the network

have specificity (fidelity) greater than 1.
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Spectral Count

Stefanie Wienkoop

Department for Molecular Systems Biology,

University of Vienna, Vienna, Austria
S

Definition

For ▶mass-spectrometry-based comprehensive quan-

titative ▶ proteome analysis, the ▶ spectral count

emerged as one of the most simple and even so

most efficient methods in systems biology. Initially,

it has been defined as the sum of all peptide fragment

spectra leading to the identification of a protein (Liu

et al. 2004). Thus, a changing spectral count is

correlated with the relative change of protein abun-

dance between different samples. Due to the devel-

opment of high precursor mass accuracy mass

spectrometer it consequently became possible to

define the spectral count as the sum of all fragment

spectra of the same precursor mass of a peptide. This

technique is also known as “mass accuracy precursor

alignment” (MAPA; Hoehenwarter et al. 2008).

MAPA allows for the analysis of a relative abun-

dance change of peptides in response to experimental

perturbation, which may be detected independent of

identification. This means, the spectral count now

enables database (genomic sequence information)-

independent proteome quantification. One major

advantage of this finding is the recognition of

unknowns such as post-translational modifications

and splice variations not detectable via a database-

dependent search. Another important advantage of

the MAPA-based spectral count technique is the

ability to generate vast data matrices (comparison

of hundreds of samples) in a very short time

(minutes). This is not possible with any other method

so far.
Cross-References

▶Mass Spectrometry, Proteomics, and Metabolomics

▶ Proteomics, Quantification-Unbiased and Target

Approach
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Spectrometry

▶ Spectroscopy and Spectromicroscopy
Spectromicroscope

▶ Spectroscopy and Spectromicroscopy
Spectromicroscopy

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center for

Pediatric Research, Indiana University School

of Medicine, Indianapolis, IN, USA
Definition

Spectromicroscopy is a combination of two well-

established concepts, spectroscopy and microscopy,

in an attempt to reach the ultimate goal of obtaining

element-specific electronic and magnetic information

on the atomic and molecular scale.
Cross-References
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Spectroscopy

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center for

Pediatric Research, Indiana University School of

Medicine, Indianapolis, USA
Definition

Spectroscopy was originally the study of the interac-

tion between radiation and matter as a function of

wavelength (l). Recently, the definition has been

expanded to include the study of the interactions

between particles such as electrons, protons, and ions,

as well as their interaction with other particles as

a function of their collision energy.
Cross-References

▶ Spectroscopy and Spectromicroscopy
Spectroscopy and Spectromicroscopy

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center

for Pediatric Research, Indiana University School

of Medicine, Indianapolis, IN, USA
Synonyms

Microspectroscopy; Spectrometry; Spectromicroscope
Definition

Spectroscopy was originally the study of the interaction

between radiation and matter as a function of wave-

length (l). Spectroscopy was initially referred to the

use of visible light dispersed according to its wave-

length. More recently, the definition has been expanded

to include the study of the interactions between particles

such as electrons, protons, and ions, as well as their

interaction with other particles as a function of their

collision energy. Spectroscopic analysis has been
crucial in the development of the most fundamental

theories in physics, including quantum mechanics, the

special and general theories of relativity, and quantum

electrodynamics. Spectroscopy, as applied to high-

energy collisions, has been a key tool in developing

scientific understanding not only of the electromagnetic

force but also of the strong and weak nuclear forces.

Spectromicroscopy is a combination of two well-

established concepts, spectroscopy and microscopy, in

an attempt to reach the ultimate goal of obtaining

element-specific electronic and magnetic information

on the atomic and molecular scale.
Characteristics

Common Types of Spectromicroscopy

Absorption Spectroscopy

Absorption spectroscopy is a technique in which the

power of a beam of light measured before and after

interaction with a sample is compared. Specific absorp-

tion techniques tend to be referred to by the wavelength

of radiation measured such as ultraviolet, infrared, or

microwave absorption spectroscopy. Absorption

occurs when the energy of the photons matches the

energy difference between two states of the material.

Fluorescence Spectroscopy

Fluorescence spectroscopy uses higher-energy photons

to excite a sample, which will then emit lower energy

photons. This technique has become popular for its

biochemical and medical applications, and can be

used for confocal microscopy, fluorescence resonance

energy transfer, and fluorescence lifetime imaging.

X-ray Spectroscopy

When X-rays of sufficient frequency (energy) interact

with a substance, inner shell electrons in the atom are

excited to outer empty orbitals, or they may be removed

completely, ionizing the atom. The inner shell “hole”

will then be filled by electrons from outer orbitals. The

energy available in this de-excitation process is emitted

as radiation (fluorescence) or will remove other less-

bound electrons from the atom (Auger effect). The

absorption or emission frequencies (energies) are char-

acteristic of the specific atom. In addition, for a specific

atom, small frequency (energy) variations that are char-

acteristic of the chemical bonding occur.With a suitable

apparatus, these characteristic X-ray frequencies or

http://dx.doi.org/10.1007/978-1-4419-9863-7_189
http://dx.doi.org/10.1007/978-1-4419-9863-7_100887
http://dx.doi.org/10.1007/978-1-4419-9863-7_101379
http://dx.doi.org/10.1007/978-1-4419-9863-7_101380
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Auger electron energies can bemeasured. X-ray absorp-

tion and emission spectroscopy is used in chemistry and

material sciences to determine elemental composition

and chemical bonding.

Flame

Liquid solution samples are aspirated into a burner or

nebulizer/burner combination, desolvated, atomized, and

sometimes excited to a higher-energy electronic state.

Visible and Ultraviolet

Many atoms emit or absorb visible light. In order to

obtain a fine line spectrum, the atoms must be in a gas

phase. The spectrum is studied in absorption or emis-

sion. Visible absorption spectroscopy is often combined

with UV absorption spectroscopy in UV/Vis spectros-

copy. All atoms absorb in the Ultraviolet (UV) region

because these photons are energetic enough to excite

outer electrons. If the frequency is high enough, photo-

ionization takes place. UV spectroscopy is also used in

quantifying protein and DNA concentration as well as

the ratio of protein to DNA concentration in a solution.

Infrared Spectroscopy

Infrared spectroscopy offers the possibility to measure

different types of interatomic bond vibrations at dif-

ferent frequencies. Especially in organic chemistry the

analysis of IR absorption spectra shows what types of

bonds are present in the sample. It is also an important

method for analyzing polymers and constituents like

fillers, pigments, and plasticizers.

Near-infrared Spectroscopy

The near-infrared NIR range, immediately beyond the

visible wavelength range, is especially important for

practical applications because of the much greater

penetration depth of NIR radiation into the sample

than in the case of mid-IR spectroscopy range. This

allows also large samples to be measured in each scan

by NIR spectroscopy, and is currently employed for

many practical applications such as: rapid grain anal-

ysis, medical diagnosis pharmaceuticals/medicines,

biotechnology, genomics analysis, proteomic analysis,

interactomics research, inline textile monitoring, food

analysis and chemical imaging/hyperspectral imaging

of intact organisms, plastics, textiles, insect detection,

forensic lab application, crime detection, and various

military applications. Interpretation of Near-Infrared

Spectra is important for chemical identification.
Raman Spectroscopy

Raman spectroscopy is based on the absorption of

photons of a specific frequency followed by scattering

at a higher or lower frequency. The modification of the

scattered photons results from the incident photons

either gaining energy from or losing energy to the

vibrational and rotational motion of the molecule.

The resulting “fingerprints” are an aid to analysis.

Coherent Anti-Stokes Raman spectroscopy (CARS)

CARS is a recent technique that has high sensitivity

and powerful applications for in vivo spectroscopy and

imaging.

Nuclear Magnetic Resonance

Nuclear magnetic resonance spectroscopy analyzes the

magnetic properties of certain atomic nuclei to deter-

mine different electronic local environments of hydro-

gen, carbon, or other atoms in an organic compound or

other compound. This is used to help determine the

structure of the compound.

Photoemission M€ossbauer

Transmission or conversion-electron (CEMS) modes

of M€ossbauer spectroscopy probe the properties of

specific isotope nuclei in different atomic environ-

ments by analyzing the resonant absorption of charac-

teristic energy gamma-rays known as the M€ossbauer

effect.
Spectromicroscopy

Fluorescence microscope is an optical microscope

used to study properties of organic or inorganic sub-

stances using the phenomena of fluorescence and phos-

phorescence instead of, or in addition to, reflection and

absorption.

In most cases, a component of interest in the spec-

imen can be labeled specifically with a fluorescent

molecule called a fluorophore. The specimen is illumi-

nated with light of a specific wavelength (or wave-

lengths) which is absorbed by the fluorophores,

causing them to emit light of longer wavelengths

(i.e., of a different color than the absorbed light). The

illumination light is separated from the much weaker

emitted fluorescence through the use of a spectral

emission filter. Typical components of a fluorescence

microscope are the light source (xenon arc lamp or
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mercury-vapor lamp), the excitation filter, the dichroic

mirror (or dichromatic beam splitter), and the emission

filter. The filters and the dichroic are chosen to match

the spectral excitation and emission characteristics of

the fluorophore used to label the specimen. In this

manner, the distribution of a single fluorophore

(color) is imaged at a time. Multicolor images of

several types of fluorophores must be composed by

combining several single-color images.

Most fluorescence microscopes in use are

epifluorescence microscopes (i.e., excitation and

observation of the fluorescence are from above (epi–)

the specimen). These microscopes have become an

important part in the field of biology, opening the

doors for more advanced microscope designs, such as

the confocal microscope.

Epifluorescence microscopy is a method of fluores-

cence microscopy that is widely used in life sciences.

The excitatory light is passed from above (or, for

inverted microscopes, from below), through the objec-

tive lens and then onto the specimen instead of passing

it first through the specimen. The fluorescence in the

specimen gives rise to emitted light which is focused to

the detector by the same objective that is used for the

excitation. Since most of the excitatory light is trans-

mitted through the specimen, only reflected excitatory

light reaches the objective together with the emitted

light and this method therefore gives an improved

signal-to-noise ratio. An additional filter between the

objective and the detector can filter out the remaining

excitation light from fluorescent light. A common use

in biology is to apply fluorescent or fluorochrome

stains to the specimen in order to image distributions

of proteins or other molecules of interest.

Confocal and Multiphoton Microscopy

The most widely used technologies for in vivo micros-

copy of tissues are confocal and two- or multiphoton

(2P/MP) microscopy. In contrast to conventional

microscopy that requires thin tissue sections, confocal

and 2P/MP microscopy can achieve up to diffraction-

limited resolution when imaging virtual tissue sections

in intact tissue volumes, which is an aspect of these

methods referred to as “tissue sectioning” or “optical

sectioning.” In particular, laser-scanning confocal

microscopy scans a focused laser beam inside the

specimen and uses a pinhole to reject photons that

arrive to the detector from out-of-focus areas; these

have been typically scattered multiple times and
contribute to image blurring. Although the pinhole

rejects a large part of the photons, sufficient signal

from the focal point can be detected using high-

intensity light sources and sensitive detectors. Two-

dimensional “tissue sections” are formed by scanning

the focused beam over a plane in the sample imaged

and piecing together information from each individual

focal area. As information is collected only from the

laser focal spot at each time point, single element

detectors such as photomultiplier tubes are used. By

focusing the beam at different tissue depths, three-

dimensional images can also be generated. Typical

imaging is restricted to depths of a few MFPs owing

to diminishing confocal signal with increasing depth,

primarily because of scattering. Whereas 2P/MP

microscopy also uses laser-scanning principles,

focused femtosecond laser pulses are used for illumi-

nation. By concentrating the beam energy in space

(focusing) and in time (ultrafast pulses) substantial

signal can be generated based on 2P/MP absorption

but only within the spatially confined area of the focus

point. All fluorescence photons generated therefore

come from a highly localized volume. By collecting

light generated from scanning a laser beam over an

area of interest, one can piece together two- or three-

dimensional images as in confocal microscopy. In this

case, the photons collected have generally been

scattered multiple times because no pinhole is used.

In two-photon microscopy, two near-infrared photons

(for example, 900 nm) can excite a fluorochrome in the

visible spectrum (for example, 450 nm). By collecting

all the available light and by using near-infrared excita-

tion light, which is attenuated less than the visible light

used for excitation in confocal microscopy, higher pen-

etration can be achieved in two-photon compared to

confocal microscopy. Typical two-photon setups usu-

ally achieve worse resolution than that of confocal

microscopes because the diffraction-limited focal

spots widen as the illumination wavelength increases.

When expressed in terms of tissue penetration depth in

physical units (millimeters), the depth of two-photon

microscopy (which operates in the near-infrared spec-

tral region) is reported as 2–3 times deeper than confo-

cal microscopy (which operates in the visible range).

However, this difference is not markedly different when

expressed in MFP terms because the MFP is longer for

near-infrared than for visible light.

Together, confocal and 2P/MP microscopy have

been used extensively for in vivo imaging of
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fluorescent proteins, probes, or dyes to investigate

structure, function, and molecular events as they

occur in unperturbed environments. Two-photon

imaging currently defines the upper limit of penetra-

tion depth in diffraction-limited microscopy, achiev-

ing depths of about half a TMFP.

Soft x-ray Microscopy

Soft x-ray microscopy provides a unique set of capa-

bilities in-between those of visible light and electron

microscopy. It has long been recognized that nature

provides a “water window” spectral region between

theK shell x-ray absorption edges of carbon (�290 eV)

and oxygen (�540 eV), where organic materials show

strong absorption and phase contrast, while water is

relatively nonabsorbing. This enables imaging of spec-

imens that are several microns thick with high intrinsic

contrast using x-rays with a wavelength of 2–4 nm.

In recent years, the promise of high-resolution imaging

has been realized, thanks to advances in x-ray sources,

focusing optics, and specimen-preparation methods,

and several microscopes can now image biological

specimens at about 30-nm resolution. New develop-

ments are adding the capability for labeling, for spec-

troscopic mapping of various biochemical components

of cells and tissues at high spatial resolution, and for

mapping of trace (low-Z) elements at submicron reso-

lution with unprecedented sensitivity using higher-

energy x-rays. Soft x-rays have a photon energy

between about 100 and 1,000 eV, corresponding to

very short wavelengths. At these photon energies,

there is essentially no inelastic or plural elastic scatter-

ing, making quantitative analysis of images especially

favorable. It is possible to image single cells through

water layers up to �10 mm thick, but the required

photon exposure for imaging at 30-nm resolution

leads to cells receiving a radiation dose of 108–1,010

rads, ruling out repeated imaging of live specimens.

Some particularly robust specimens can be imaged

with no special treatment, but other specimens show

immediate morphological changes and/or mass loss.

Raman Spectromicroscopy

Raman spectromicroscopy offers several advantages

for microscopic analysis. Since it is a scattering tech-

nique, specimens do not need to be fixed or sectioned.

Raman spectra can be collected from a very small

volume (<1 mm in diameter); these spectra allow

the identification of species present in that volume.
Water does not generally interfere with Raman spec-

tral analysis. Thus, Raman spectroscopy is suitable for

themicroscopic examination ofminerals,materials such

as polymers and ceramics, cells, and proteins. A Raman

microscope begins with a standard optical microscope,

and adds an excitation laser, a monochromator, and

a sensitive detector (such as a charge-coupled device

(CCD), or photomultiplier tube (PMT)). FT-Raman has

also been used with microscopes.

In direct imaging, the whole field of view is exam-

ined for scattering over a small range of wavenumbers

(Raman shifts). For instance, a wavenumber character-

istic for cholesterol could be used to record the distri-

bution of cholesterol within a cell culture.

The other approach is hyperspectral imaging or

chemical imaging, in which 1,000 of Raman spectra

are acquired from all over the field of view. The data

can then be used to generate images showing the loca-

tion and amount of different components. Taking the

cell culture example, a hyperspectral image could

show the distribution of cholesterol, as well as pro-

teins, nucleic acids, and fatty acids. Sophisticated

signal- and image-processing techniques can be used

to ignore the presence of water, culture media, buffers,

and other interferents.

By using Raman microspectroscopy, in vivo time-

and space-resolved Raman spectra of microscopic

regions of samples can be measured. As a result, the

fluorescence of water, media, and buffers can be

removed. Consequently in vivo time- and space-

resolved Raman spectroscopy is suitable to examine

proteins, cells, and organs.

Raman microscopy for biological and medical

specimens generally uses near-infrared (NIR) lasers.

This reduces the risk of damaging the specimen by

applying higher-energy wavelengths. However, the

intensity of NIR Raman is low, and most detectors

required very long collection times. Recently, more

sensitive detectors have become available, making

the technique better suited to general use. Raman

microscopy of inorganic specimens, such as rocks

and ceramics and polymers, can use a broader range

of excitation wavelengths.

Fourier Transform Infrared Microspectroscopy

(FT-IR)

Fourier transform IR (FT-IR) microspectroscopy, in

which the spectrometer is coupled to a light micro-

scope, first introduced in the 1940s, and applied to
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bone in the 1980s, enabled investigators to examine

spectra at discrete points within thin sections of tissues.

FTIR spectroscopy is a long-established and invalu-

able technique, which is based on the principle that

molecules absorb mid-IR radiation, yielding richly

structured IR absorption spectra. The use of apertures

in single point detection methods with a global source

allows routine spatial resolutions of the order of

100 mm. Enhanced spatial resolution can be achieved

using a synchrotron radiation source, which is order of

magnitudes brighter in the IR range. This increased

brightness greatly improves the signal-to-noise ratio

and allows very high-quality spectra to be acquired.

This point-by-point mapping has been widely applied

to the analysis of polymers and to a variety of tissues

and individual cells to learn more about spatial varia-

tion in tissue and cellular composition. It has also been

used to identify pathologic inclusions such as foreign

matter and unusual soft tissue calcifications.
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▶Cell Cycle Checkpoints
Spindle Pole Body
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Synonyms

Microtubule organizing center (or MTOC); Yeast

centrosome
Definition

The yeast spindle pole body (or SPB) is the analogous

organelle to the metazoan centrosome. The SPB is the

major nucleation site for microtubules in mitosis and

forms the ends of the mitotic spindle. As in animal

cells, g-TUBULIN localizes to the MTOC and directs

microtubule nucleation. Fission yeast have multiple

MTOCs during interphase in addition to the SPB;

therefore, SPBs only play a major role in microtubule

nucleation during mitotic spindle formation in this

organism. SPB architecture differs from the one

of the metazoan centrosome. Instead of the orthogo-

nally arranged pair of centrioles surrounded by

pericentrosomal material, yeast SPBs are multilayered

structures that remain associated to the nuclear

membrane at all times. Interestingly, the characteris-

tics of the SPB cycle greatly differ between budding

and fission yeast. The SPB of budding yeast remains

embedded in the nuclear envelope throughout the cell

cycle and divides in G1 by de novo formation of a SPB

satellite (Yoder et al. 2003). In contrast, fission yeast

SPB divide through a semiconservative mechanism

that conceptually resembles the one of higher

eukaryotes. Fission yeast SPBs are also attached to

the nuclear membrane and only ingress into it during

spindle formation (West et al. 1997).
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▶ Stochastic Simulation Algorithm
S
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Synonyms

Canonical nonlinear modeling; Power-law formalism
Definition

S-system is a quantitative nonlinear model based on

power-law functions. It is characterized by a good

compromise between approximate accuracy and math-

ematical flexibility. In systems biology, S-system is

a specific kind of ordinary differential equations with

a simple canonical form. It has a rich structure capable

of capturing complex dynamics of many biochemical

systems, such as gene regulatory networks, signal

transduction networks, and metabolic networks.

Especially, S-system models have been widely used

to infer gene regulatory networks from time-course

microarray data.

Given n genes of interest, the S-system for model-

ing a gene regulatory network is described by:
dxi
dt

¼ ai
Yn
j¼1

x
gi;j
j � bi

Yn
j¼1

x
hi;j
j (1)

where xi is the mRNA concentration of gene i, ai and bi
are the positive rate constants. gi;j and hi;j are

the exponential parameters called kinetic orders.

gi;j > 0 indicates that gene j activates the expression

of gene i, and gi;j < 0 indicates that gene j inhibits
the expression of gene i. hi;j has the opposite effects

on controlling gene expression compared to gi;j. In

the inference of gene regulatory networks by using

S-systems, a main task is to estimate the parameters

ai, bi, gi;j, and hi;j based on experimental microarray

data.
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Definition

The stability of an orbit of a dynamical system char-

acterizes whether nearby (i.e., perturbed) orbits will

remain in a neighborhood of that orbit or be repelled

away from it. Asymptotic stability additionally charac-

terizes attraction of nearby orbits to this orbit in the

long time limit. The distinct concept of structural sta-

bility is treated elsewhere, and concerns changes in the

family of all solutions due to perturbations to the

functions defining the dynamical system.
Characteristics

Equilibrium Point

Consider a set of coupled autonomous ordinary differ-

ential equations (ODEs) that can describe the time

evolution of key components in a gene regulatory

network, written in vector notation as:
dx

dt
¼ _x ¼ FðxÞ; x 2 Rn (1)

where FðxÞ ¼

F1 x1; x2; � � � ; xnð Þ
F2 x1; x2; � � � ; xnð Þ

..

.

Fn x1; x2; � � � ; xnð Þ

0
BBBBB@

1
CCCCCA; x ¼

x1

x2

..

.

xn

0
BBBBB@

1
CCCCCA
Denote by xðtÞ a solution of Eq. 1 satisfying initial

conditions: x0 ¼ xð0Þ. Equilibria (sometimes called

equilibrium points or fixed points or steady states) xe

are special constant solutions xðtÞ ¼ xe, where

F xeð Þ ¼ 0 or Fj x
e
1; x

e
2; � � � ; xen

� � ¼ 0; j ¼ 1; 2; � � � ; n.
For the system of a gene regulatory network, FðxÞ
can often be expressed as FðxÞ ¼ f ðxÞ � gðxÞ, where
f ðxÞ represents the production part whereas gðxÞ does
the degradation part, so the equilibrium xe satisfies

f xeð Þ ¼ g xeð Þ.
Below, we first treat the stability of equilibria and

stability analysis, and then mention extensions to the

stability of more general solutions.

Stability of an Equilibrium

Lyapunov Stability

xe is a stable equilibrium if for every neighborhood

U of xe, there is a neighborhood V 	 U of xe such that

every solution xðtÞ starting in V, i.e., the solution

starting from x0 2 V, remains in U for all t � 0. Note

that xðtÞ need not approach xe.

xe is unstable if it is not stable.

Asymptotic Stability

An equilibrium xe is asymptotically stable if it is

Lyapunov stable and additionally V can be chosen so

that xðtÞ � xej j ! 0 as t ! 1 for all x0 2 V.

An equilibrium that is Lyapunov stable but not

asymptotically stable is sometimes called neutrally

stable. See Figs. 1 and 2 for illustrations.

Note: Lyapunov stability and asymptotic stability

are of local stability.

Stable Region

Definition: If there is a region V of the equilibrium xe

such that a solution of Eq. 1 starting from every point

x0 in V, denoted by xðtÞ, is convergent, i.e.,

xðtÞ � xej j ! 0 as t ! 1, then V is called a stable

region or an attracting basin of xe.

Note 1: The boundary of the stable region of an equi-

librium is possibly complicated and is not easy to be

determined.
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Note 2: If V equates just the definition region of the

system Eq. 1, then we say that xe is globally stable.

Note 3: Completely similarly, we can give definitions

for the stable region of an orbit and global stability.

Stability Analysis

Linearization

Suppose that x ¼ xe is an equilibrium, implying that if

xð0Þ ¼ xe, then xðtÞ 
 xe. For a small perturbation of

xe, denoted by xðtÞ ¼ x1; x2; � � � ; xnð Þ with xðtÞj j � 1,

let xðtÞ ¼ xe þ xðtÞ. Substitute the expression of xðtÞ
into both sides of Eq. 1 and expand function f in

a multivariable, vector-valued Taylor series (we

assume that f is sufficiently differentiable so that

Taylor’s Theoremwith remainder applies to each com-

ponent) to obtain
S

_xe þ _x ¼ F xe þ xð Þ

¼ F xeð Þ þ DF xeð Þxþ O xj j2
� 	

(2)

where DF xeð Þ denotes the n� n Jacobian matrix of

partial derivatives @Fi @xj

� �

, evaluated at the

equilibrium xe, andO xj j2
� 	

denotes terms of quadratic

and higher order in the components x1; x2; � � � ; xn.
Thus, for small enough xj j, the first term DF xeð Þx
dominates. Taking into account that _xe and F xeð Þ van-
ish and ignoring the small term O xj j2

� 	
, we obtain the

linear system:
_x ¼ DF xeð Þx (3)
which is called the linearization of Eq. 1 at xe. It can be
solved by standard methods (Boyce and DiPrima

1997).

The general solution xðtÞ of Eq. 3 is determined by

the eigenvalues and eigenvectors of the Jacobian

matrix DF xeð Þ. However, we are usually concerned

with qualitative properties rather than complete solu-

tions. In particular in studying stability, we want to

know whether the size (norm) of solutions grows, stays

constant, or shrinks as t ! 1. This can be answered

just by examining the eigenvalues.

Recall that if l is a real eigenvalue with the eigenvec-
tor u, then there is a solution to the linearized equation of
the form: xðtÞ ¼ eltu; if l ¼ a� ib is a complex

conjugate pair with eigenvectors u ¼ u� iw (u and w
are real), then x1ðtÞ ¼ eat u cos bt� w sin btð Þ and

x2ðtÞ ¼ eat u sin btþ w cos btð Þ are two linearly inde-

pendent solutions. In both cases, the real part of l
(almost) determines stability. Since any solution of the

linearized equation can be written as the linear superpo-

sition of terms of these forms (except for the case of

multiple eigenvalues), we can deduce the following:

• If all eigenvalues of DF xeð Þ have strictly negative

real parts, then xðtÞj j ! 0 as t ! 1 for all solutions.

• If at least one eigenvalue ofDF xeð Þ has positive real
parts, then there is a solution with xðtÞj j ! þ1 as

t ! 1.

• If some pairs of complex conjugate eigenvalues

have zero real parts with distinct imaginary parts,

then the corresponding solutions for xðtÞj j ! þ1
oscillate and neither decay nor grow as t ! 1.

Note 1: The eigenvalues of the linearization are pre-

served under (smooth) changes of coordinates

(Arnold 1973).

Note 2: When multiple eigenvalues exist and there are

not enough linearly independent eigenvectors to

span Rn, solutions behave like xðtÞj j � tkelt, so

that they still decay for sufficiently long times If

l < 0 and grow if l > 0.

Note 3: The form tkelt implies that transient growth

occurs over initial times even if l < 0.

This can also occur in the case of distinct eigen-

values. See Trefethen and Embree (2005) for more on

this, but consider the example
_x1 ¼ �2x1 þ ax2
_x2 ¼ �x2

(
(4)
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for large aj j. This system has eigenvalues � 1

and � 2. However, taking x1ð0Þ ¼ 0 and x2ð0Þ ¼ 1,

the first coordinate x1ðtÞ ¼ a e�t � e�2tð Þ initially

grows from zero to a maximum value of a 4= . For

sufficiently large a, the growth of x1 will initially

overwhelm the decay of x2 ¼ e�t so that the trajectory

transiently moves farther from the fixed point before

approaching it as t ! 1. This also illustrates the need

for the two neighborhoodsU and V in the definitions of

stability.

This motivates us to introduce the following concept.

Hyperbolic Equilibria

Definition: xe is a hyperbolic or non-degenerate equi-

librium if all the eigenvalues of DF xeð Þ have nonzero
real parts.

Equipped with the linear analysis sketched above,

and recognizing that the remainder terms ignored in

passing from Eqs. 2 to 3 can be made as small as we

wish by selecting a sufficiently small neighborhood of

xe, we can determine the stability of hyperbolic equi-

libria from their linearization:

Proposition: If xe is an equilibrium of _x ¼ FðxÞ and
all the eigenvalues of the Jacobian matrix DF xeð Þ have
strictly negative real parts, then xe is exponentially

(and hence asymptotically) stable. If at least one eigen-

value has strictly positive real part, then xe is unstable.
Moreover, the Hartman-Grobman Theorem says

that the full nonlinear system Eq. 1 is topologically

equivalent to the linearized system Eq. 3 in a small

neighborhood of a hyperbolic equilibrium.

Borrowing from fluid mechanics, we say that if

all nearby solutions approach an equilibrium (e.g., all

eigenvalues have negative real parts), it is a sink; if

all nearby solutions recede from it, it is a source, and

if some approach and some recede, it is a saddle point.
When the equilibrium is surrounded by nested closed

orbits, we call it a center.

Degenerate Equilibria

One might hope to claim that Lyapunov stability (per

the definition above) holds even if (some) eigenvalues

have zero real part, but the following counterexamples

demonstrate that this is not the case:

Example 1.

Consider
_x ¼ ax3; a 6¼ 0 (5)
Here x ¼ 0 is the equilibrium and the linearization

at 0 is
_x ¼ 3ax2
��
x¼0

� 	
x ¼ 0 (6)

with solution xðtÞ ¼ xð0Þ ¼ cons tan t, so certainly

x ¼ 0 is Lyapunov stable for Eq. 6, but not asymptot-

ically stable.

The exact solution of the nonlinear ODE Eq. 5 may

be found by separating variables:
ZxðtÞ
xð0Þ

dx

x3
¼

Z
adt ) xðtÞ ¼ xð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ax2ð0Þtp

We therefore deduce that

xðtÞj j ! 1 as t ! 1
2ax2ð0Þ if a > 0 (blowup!

Instability)

xðtÞj j ! 0 as t ! 1 if a < 0 (asymptotic stability)

The linearized system Eq. 6 is degenerate and the

nonlinear “remainder terms,” ignored in our linearized

analysis, determine the outcome in this case. Here it is

obvious, at least in retrospect, that ignoring these terms

is perilous, since while they are indeed O x2
� �

(in fact,

O x2
� �

), the linear O xð Þ term is identically zero!

Example 2.

Consider the two-dimensional system:
_x ¼ yþ a x2 þ y2
� �

x

_y ¼ �xþ a x2 þ y2
� �

y

(

Note that the linearization is simply a harmonic

oscillator with eigenvalues � i. Is the equilibrium

x; yð Þ ¼ 0; 0ð Þ of this system stable or unstable? To

answer this, it is convenient to transform to polar

coordinates x ¼ r cos y, y ¼ r sin y, which gives the

uncoupled system:
_r ¼ ar3; _y ¼ �1

The first equation is as in the example above, so we

conclude: a > 0 ) unstable; a ¼ 0 ) stable;

a < 0 ) asymptotically stable. The linearization

gives no information if a ¼ 0.
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How can we prove stability in such degenerate

cases, in which one or more eigenvalues has zero real

part? One method requires construction of a function,

often called a Lyapunov function, which remains con-

stant, or decreases, along solutions. For mechanical

systems, the total (kinetic plus potential) energy is

often a good candidate. This allows one to prove sta-

bility and even asymptotic stability in certain cases, via

describe Lyapunov’s second method or direct method:

Theorem (Hirsch et al. (2004)): Suppose that

dx dt= ¼ _x ¼ FðxÞ has an isolated equilibrium at

x ¼ 0 (without loss of generality one can move an
equilibrium xeto 0 by letting y ¼ x� xe). If there exists

a differentiable function VðxÞ, which is positive defi-

nite in a neighborhood of 0 (in the sense that Vð0Þ ¼ 0

and VðxÞ > 0 for x 6¼ 0) and for which

dV dt= ¼ HV � Fis negative definite on some domain

D containing 0, then 0 is asymptotically stable. If
dV dt= is negative semidefinite (i.e. dV dt= ¼ 0 is

allowed), then 0 is Lyapunov stable.
S

Stability of General Orbits

Definitions

The notions of stability may be generalized to

nonconstant orbits (periodic, quasiperiodic, or

nonperiodic) of ODEs.

First, we give some definitions and notation. Let

gtðtÞ ¼ xðtÞ, given the initial value xð0Þ ¼ x Then, the

(forward) orbit is the set of all values that this trajec-

tory obtains: gðxÞ ¼ gtðxÞjt � 0f g. Next, we have the

following:

Definition: Two orbits gðxÞ and g x̂ð Þ are e-close if there
is a reparameterization of time (a smooth, mono-

tonic function) t̂ðtÞ such that gtðxÞ � gt̂ðtÞ x̂ð Þ
��� ��� < e

for all t � 0.

We say that an orbit is orbitally stable if all

orbits with nearby initial points remain close in this

sense:

Definition: An orbit gðxÞ is orbitally stable if, for any
e > 0, there is a neighborhoodV of x so that, for all x̂

in V, gðxÞ and g x̂ð Þ are e-close.
Definition: If additionally V may be chosen so that, for

all x̂ 2 V, there exists a constant t x̂ð Þ so that

gtðxÞ � gt̂�t x̂ð Þ x̂ð Þ
��� ��� ! 0 as t ! 1. Then gtðxÞ is

asymptotically stable.

See Fig. 3, which show (a segment of) the orbit gðxÞ
as well as a neighboring orbit g x̂ð Þ. The black lines

indicate the boundary of an e neighborhood of gðxÞ.
Floquet Theory

Floquet theory (Chicone 1999; Floquet (1883)) is

a branch of the theory of ordinary differential equa-

tions relating to the class of solutions to linear differ-

ential equations of the form
_x ¼ AðtÞx (7)

with AðtÞ being a continuous periodic function with

period T.

The main theorem of Floquet theory, Floquet’s
theorem, due to Gaston Floquet (1883), gives

a canonical form for each fundamental matrix solution

of this common linear system. It gives a coordinate

change y ¼ Q�1ðtÞx with Q tþ 2Tð Þ ¼ QðtÞ that trans-
forms the periodic system to a traditional linear system

with constant, real coefficients.

In solid-state physics, the analogous result

(generalized to three dimensions) is known as Bloch’s

theorem.

Note that the solutions of the linear differential

equation form a vector space. A matrix FðtÞ is called
a fundamental matrix solution if all columns are line-

arly independent solutions. A matrix CðtÞ is called

a principal fundamental matrix solution if all columns

are linearly independent solutions and there exists t0
such thatC t0ð Þ is the identity. A principal fundamental

matrix can be constructed from a fundamental matrix

using CðtÞ ¼ FðtÞF�1 t0ð Þ. The solution of the linear

differential equation with the initial condition
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xð0Þ ¼ x0 is xðtÞ ¼ FðtÞF�1ð0Þx0, where FðtÞ is any

fundamental matrix solution.

Floquet’s Theorem If FðtÞ is a fundamental matrix

solution of the periodic system _x ¼ AðtÞx, with AðtÞ
a periodic function with period T, then for all t 2 R,
0

0
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y
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F tþ Tð Þ ¼ FðtÞF�1ð0ÞFðTÞ (8)

In addition, for each matrix B (possibly complex)

such that eTB ¼ F�1ð0ÞFðTÞ, there is a periodic

(period T) matrix function t7!PðtÞ such that

FðtÞ ¼ PðtÞetB for all t 2 R. Also, there is a realmatrix

S and a real periodic (period 2T) matrix function

t 7!QðtÞ such that FðtÞ ¼ QðtÞetS for all t 2 R.

Consequences and Applications This mapping

FðtÞ ¼ QðtÞetS gives rise to a time-dependent change

of coordinates (y ¼ Q�1ðtÞx), under which our original
system becomes a linear system with real constant

coefficients _y ¼ Sy. Since QðtÞ is continuous and peri-
odic, it must be bounded. Thus, the stability of the zero

solution for yðtÞ and xðtÞ is determined by the eigen-

values of S.

The representation FðtÞ ¼ PðtÞetB is called a

Floquet normal form for the fundamental matrix FðtÞ.
The eigenvalues of eTB are called the characteristic

multipliers of the system. They are also the eigen-

values of the (linear) Poincaré maps xðtÞ ! x tþ Tð Þ.
A Floquet exponent (sometimes called a characteristic

exponent) is a complex m such that emT is

a characteristic multiplier of the system. Notice that

Floquet exponents are not unique, since

e mþ 2pik T=ð Þð ÞT ¼ emT , where k is an integer. The real

parts of the Floquet exponents are called Lyapunov

exponents. The zero solution is asymptotically stable

if all Lyapunov exponents are negative, Lyapunov

stable if the Lyapunov exponents are nonpositive and

unstable otherwise.

• Floquet theory is very important for the study of

dynamical systems.

• Floquet theory shows stability in Hill’s equation

(introduced by George William Hill) approximat-

ing the motion of the moon as a harmonic oscillator

in a periodic gravitational field.

Examples

Example 1: The nonlinear pendulum

Consider the pendulum equations
_x ¼ y

_y ¼ � sin x

(

Orbits lie on the energy level sets shown in Fig. 4.

Neighboring orbits have different periods. However,

the two orbits animated in the figure are e-close, as the
corresponding trajectories remain close under

a reparameterization of time (under which their

periods would become equal). As this is true for all

orbits in a neighborhood of either of the animated

trajectories, they are both orbitally stable. In fact, all

orbits are orbitally stable for this system, except for the

saddle points and their connections.

Example 2: Linear flows on the tori

The flow on the two tori
_y1 ¼ 0

_y2 ¼ sin y1ð Þ

(

is similar to the pendulum example above: Here, all
orbits are orbitally stable, as their neighbors are e-close
under reparameterization of time.

However, upon adding a third coordinate with con-

stant velocity
_y1 ¼ 0

_y2 ¼ sin y1ð Þ
_y3 ¼ 1

8>><
>>:
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the situation changes dramatically. Consider two

neighboring orbits with slightly different initial values

of y1. These two orbits are linear flows on invariant two
tori with different, fixed values of y1. Generically, the
two flows are irrational, so that each orbit is dense on

its two tori. Therefore, the two orbits are close as sets.
However, time cannot be reparameterized so that the

orbits will be e-close under the definition above,

because the flows have different slopes.
Cross-References
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Definition

The stable steady state, stable region, and local stability

are three common subjects of nonlinear dynamical sys-

tems including gene regulatory systems [1–3]. There is

some correlation among the three conceptions.

The stable steady state means that the steady state of

the dynamical system of interest is independent of the

time and that an arbitrary trajectory starting at a small
neighborhood of the steady state finally tends to the

steady state in the limit of the time. A stable region

represents the attracting basin of the steady state of

interest. Local stability means that the steady state of

interest is stable in the Lyapunov sense. When one

studies the qualitative properties of orbits of

a dynamical system, existence, stability, and attracting

domain of steady states of this system are first

concerned.
Characteristics

Consider a set of coupled autonomous ordinary differ-

ential equations (ODEs) that can describe the time

evolution of key components in a gene regulatory

network, written in vector notation as:
dx

dt
¼ FðxÞ; x 2 Rn (1)

where

FðxÞ ¼

F1 x1; x2; � � � ; xnð Þ
F2 x1; x2; � � � ; xnð Þ

..

.

Fn x1; x2; � � � ; xnð Þ

0
BBBBB@

1
CCCCCA; x ¼

x1

x2

..

.

xn

0
BBBBB@

1
CCCCCA:

Denote by xðtÞ a solution to this equation

satisfying initial conditions: x0 ¼ xð0Þ. Equilibria

(sometimes called equilibrium points or fixed

points or steady states) xe are special constant

solutions xðtÞ ¼ xe, where F xeð Þ ¼ 0 or

Fj x
e
1; x

e
2; � � � ; xen

� � ¼ 0; j ¼ 1; 2; � � � ; n. For the system

of a gene regulatory network, FðxÞ can often be

expressed as FðxÞ ¼ f ðxÞ � gðxÞ, where f ðxÞ represents
the production part whereas gðxÞ does the degradation
part, so the equilibrium xe satisfies f xeð Þ ¼ g xeð Þ.

The stability of equilibria mainly includes

Lyapunov stability and asymptotic stability.

Lyapunov stability: xe is a stable equilibrium if for

every neighborhood U of xe, there is a neighborhood

V 	 U of xe such that every solution xðtÞ starting in V,
i.e., the solution starting from x0 2 V, remains in U for

all t � 0. Note that xðtÞ need not approach xe. xe is not

stable if it is unstable.

Asymptotic stability: An equilibrium xe is asymp-

totically stable if it is Lyapunov stable and additionally

http://dx.doi.org/10.1007/978-1-4419-9863-7_532
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V can be chosen so that xðtÞ � xej j ! 0 as t ! 1 for

all x0 2 V.

An equilibrium that is Lyapunov stable but not

asymptotically stable is sometimes called neutrally

stable. See Figs. 1 and 2 for illustrations.

Note: Lyapunov stability and asymptotic stability

are of local stability.

Stable region: If there is a region V of the equilib-

rium xe such that a solution of (1) starting from every

point x0 in V, denoted by xðtÞ, is convergent, i.e.,

xðtÞ � xej j ! 0 as t ! 1, then V is called a stable

region or an attracting basin of xe.

Note 1: The boundary of the stable region of an

equilibrium is possibly complicated and is not easy to

be determined.
Note 2: If V equates just the definition region of the

system (1), then we say that xe is globally stable.

Note 3: Completely similarly, we can give

definitions for the stable region of an orbit and global

stability.

Below, we introduce stability analysis.

Linearization: Suppose that x ¼ xe is an

equilibrium, implying that if xð0Þ ¼ xe, then

xðtÞ 
 xe. For a small perturbation of xe, denoted by

xðtÞ ¼ x1; x2; � � � ; xnð Þ with xðtÞj j � 1, let

xðtÞ ¼ xe þ xðtÞ. Substitute the expression of xðtÞ into
both sides of (1) and expand function f in

a multivariable, vector-valued Taylor series

(we assume that f is sufficiently differentiable so that

Taylor’s Theorem with remainder applies to each

component) to obtain

_xe þ _x ¼ F xe þ xð Þ
¼ F xeð Þ þ DF xeð Þxþ O xj j2

� 	
(2)

where DF xeð Þ denotes the n� n Jacobian

matrix of partial derivatives @Fi @xj

� �

, evaluated at

the equilibrium xe, and O xj j2
� 	

denotes terms of

quadratic and higher order in the components

x1; x2; � � � ; xn. Thus, for small enough xj j, the first

term DF xeð Þx dominates. Taking into account that _xe

and F xeð Þ vanish and ignoring the small term O xj j2
� 	

,

we obtain the linear system:

_x ¼ DF xeð Þx (3)

which is called the linearization of (1) at xe. It can be

solved by standard methods.

The general solution xðtÞ of (3) is determined by the

eigenvalues and eigenvectors of the Jacobian matrix

DF xeð Þ. However, we are usually concerned with qual-
itative properties rather than complete solutions. In

particular, in studying stability, we want to know

whether the size (norm) of solutions grows, stays con-

stant, or shrinks as t ! 1. This can be answered just

by examining the eigenvalues.

Recall that if l is a real eigenvalue with the

eigenvector u, then there is a solution to the linearized

equation of the form: xðtÞ ¼ eltu; if l ¼ a� ib is

a complex-conjugate pair with eigenvectors u ¼ u� iw
(u and w are real), then x1ðtÞ ¼ eat u cosbt� w sin btð Þ
and x2ðtÞ ¼ eat u sin btþ w cos btð Þ are two linearly

independent solutions. In both cases, the real part of l
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(almost) determines stability. Since any solution of

the linearized equation can be written as the linear

superposition of terms of these forms (except for the

case of multiple eigenvalues), we can deduce the

following:

• If all eigenvalues of DF xeð Þ have strictly negative

real parts, then xðtÞj j ! 0 as t ! 1 for all solutions.

• If at least one eigenvalue ofDF xeð Þ has positive real
parts, then there is a solution with xðtÞj j ! þ1 as

t ! 1.

• If some pairs of complex-conjugate eigenvalues

have zero real parts with distinct imaginary parts,

then the corresponding solutions for xðtÞj j ! þ1
oscillate and neither decay nor grow as t ! 1.

Note 1: The eigenvalues of the linearization are

preserved under (smooth) changes of coordinates.

Note 2: When multiple eigenvalues exist and there

are not enough linearly independent eigenvectors to

span Rn, solutions behave like xðtÞj j � tkelt, so that

they still decay for sufficiently long times if l < 0

and grow if l > 0.

Note 3: The form tkeltimplies that transient growth

occurs over initial times even if l < 0.

Consider the example
S

_x1 ¼ �2x1 þ ax2
_x2 ¼ �x2

(
(4)

for large aj j. This system has eigenvalues � 1 and

� 2. However, taking x1ð0Þ ¼ 0 and x2ð0Þ ¼ 1, the

first coordinate x1ðtÞ ¼ a e�t � e�2tð Þ initially grows

from zero to a maximum value of a 4= . For sufficiently

large a, the growth of x1 will initially overwhelm the

decay of x2 ¼ e�tso that the trajectory transiently

moves farther from the fixed point before approaching

it as t ! 1. This also illustrates the need for the

two neighborhoods U and Vin the definitions of

stability.

Thismotivates us to introduce the following concept.

Hyperbolic equilibria: xe is a hyperbolic or

nondegenerate equilibrium if all the eigenvalues of

DF xeð Þ have nonzero real parts.

Equipped with the linear analysis sketched above,

and recognizing that the remainder terms ignored in

passing from Eqn. (2) to (3) can be made as small as we

wish by selecting a sufficiently small neighborhood of

xe, we can determine the stability of hyperbolic equi-

libria from their linearization:
Proposition. If xe is an equilibrium of _x ¼ FðxÞ and
all the eigenvalues of the Jacobian matrix DF xeð Þ have
strictly negative real parts, then xe is exponentially

(and hence asymptotically) stable. If at least one eigen-

value has strictly positive real part, then xe is unstable.
Moreover, the Hartman-Grobman Theorem says

that the full nonlinear system (1) is topologically

equivalent to the linearized system (3) in a small neigh-

borhood of a hyperbolic equilibrium.

Borrowing from fluid mechanics, we say that if

all nearby solutions approach an equilibrium (e.g., all

eigenvalues have negative real parts), it is a sink; if all

nearby solutions recede from it, it is a source, and
if some approach and some recede, it is a saddle

point. When the equilibrium is surrounded by nested

closed orbits, we call it a center.
Degenerate Equilibria: One might hope to claim

that Lyapunov stability (per the definition above)

holds even if (some) eigenvalues have zero real part,

but the following counterexamples demonstrate that

this is not the case:

Example 1. Consider
_x ¼ ax3; a 6¼ 0 (5)

Here x ¼ 0 is the equilibrium and the linearization

at 0 is
_x ¼ 3ax2
��
x¼0

� 	
x ¼ 0 (6)

with solution xðtÞ ¼ xð0Þ ¼ cons tan t, so certainly

x ¼ 0 is Lyapunov stable for (6), but not asymptoti-

cally stable. The exact solution of the nonlinear ODE

(5) may be found by separating variables:
ðxðtÞ
xð0Þ

dx

x3
¼

ð
adt ) xðtÞ ¼ xð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ax2ð0Þtp

We therefore deduce that

xðtÞj j ! 1 as t ! 1
2ax2ð0Þ if a > 0 (blowup!

Instability)

xðtÞj j ! 0 as t ! 1 if a < 0 (asymptotic stability)

The linearized system (6) is degenerate and the

nonlinear “remainder terms”, ignored in our linearized

analysis, determine the outcome in this case. Here it is
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obvious, at least in retrospect, that ignoring these terms

is perilous, since while they are indeed O x2
� �

(in fact,

O x2
� �

), the linear O xð Þ term is identically zero!

Example 2. Consider the two-dimensional system:
_x ¼ yþ a x2 þ y2
� �

x

_y ¼ �xþ a x2 þ y2
� �

y

(

Note that the linearization is simply a harmonic

oscillator with eigenvalues � i. Is the equilibrium

x; yð Þ ¼ 0; 0ð Þ of this system stable or unstable? To

answer this, it is convenient to transform to polar

coordinates x ¼ r cos y, y ¼ r sin y, which gives the

uncoupled system:

_r ¼ ar3; _y ¼ �1

The first equation is as in the example above, so we

conclude: a > 0 ) unstable; a ¼ 0 ) stable;

a < 0 ) asymptotically stable. The linearization

gives no information if a ¼ 0.

How can we prove stability in such degenerate

cases, in which one or more eigenvalues has zero real

part? One method requires construction of a function,

often called Lyapunov function, which remains con-

stant, or decreases, along solutions. For mechanical

systems, the total (kinetic plus potential) energy is

often a good candidate. This allows one to prove sta-

bility and even asymptotic stability in certain cases, via

describe Lyapunov’s second method or direct method:

Theorem. Suppose that dx dt= ¼ _x ¼ FðxÞ has an
isolated equilibrium at x ¼ 0 (without loss of general-

ity one can move an equilibrium xeto 0 by letting

y ¼ x� xe). If there exists a differentiable function
VðxÞ, which is positive definite in a neighborhood of

0 (in the sense that Vð0Þ ¼ 0 and VðxÞ > 0 for x 6¼ 0)

and for which dV dt= ¼ HV � Fis negative definite on
some domain D containing 0, then 0is asymptotically

stable. If dV dt= is negative semidefinite (i.e.,

dV dt= ¼ 0is allowed), then 0 is Lyapunov stable.
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Synonyms

Rpb4/7 heterodimer
Definition

Among the twelve subunits of RNAPII, Rpb4 and

Rpb7 possess intriguing properties. These two subunits

form a “stalk”-like heterodimer (Rpb4/7) near the

RNA exit site in RNAPII (Fig. 1) (Harel-Sharvit et al.

2010; Preker et al. 2010; Vannini et al. 2012). Rpb4/7

attaches to RNAPII via interaction with Rpb1 and

Rpb6 and is readily dissociated from RNAPII espe-

cially under growing conditions. Importantly, RNAPII

lacking Rpb4/7 (RNAPII-DRpb4/7) can be incorpo-

rated into PIC but is deficient in transcription initiation

in vitro. X-ray structural analyses showed that the

clamp domain of RNAPII-DRpb4/7 takes on an “open”

conformation, whereas that of RNAPII containing

Rpb4/7 takes on a “closed” conformation. In addition,

the clamp domain of RNAPII-DRpb4/7 containing

a DNA:RNA hybrid (i.e., in an elongation state)

http://dx.doi.org/10.1007/978-1-4419-9863-7_1268
http://dx.doi.org/10.1007/978-1-4419-9863-7_1566
http://dx.doi.org/10.1007/978-1-4419-9863-7_101308


Stalk of RNAPII, Fig. 1 Multiple functions of the stalk-like

structure (Rpb4/7) in RNAPII, (a) Structure of the PIC. The

stalk-like structure comprising Rpb4 and Rpb7 (Rpb4/7) is

located at a position close to the mRNA exit site of RNAPII.

(b) The Rpb4/7 heterodimer is transferred from RNAPII to

mRNA in the nucleus after which it regulates reactions in the

cytoplasm such as export, translation, and degradation. The

P-body (processing body) is a cellular compartment where

mRNA is either degraded or stored in an inactive form
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takes on a “closed” conformation. Thus, Rpb4/7 may

play a central role in the conformational change of the

clamp domain that likely occurs at an early stage of

transcription initiation.

Rpb4/7 is important not only for transcription initi-

ation but also for some post-initiation steps, such as

elongation, termination, and poly (A) + addition. Fur-

thermore, Rpb4/7 shuttles between the nucleus and

cytoplasm, and functions in the cytoplasm indepen-

dently of RNAPII. Remarkably, Rpb4/7 is transferred

from RNAPII to mRNA in the nucleus after which it

regulates the export, translation, and/or degradation of

mRNA. Importantly, the physical attachment of Rpb4/7

to RNAPII in the nucleus is essential for its cytoplasmic

function, indicating a requirement for the proper

activation of Rpb4/7 during the transcription process,

before the transfer to mRNA. Altogether, Rpb4/7 coor-

dinates the fate of mRNA from the birth (transcription
initiation) to death (degradation). Although stalk struc-

tures are also present in RNAPI and III (Vannini et al.

2012), it is currently unknown whether or not they have

a similar “coordinator” function.
Cross-References

▶Transcription Initiation in Eukaryote
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Vannini A, Cramer P (2012) Conservation between the RNA

polymerase I, II, and III transcription initiation machineries.

Mol Cell 45(4):439–446
Standard Setting

▶Learning, Attribute-Value
Standards for Reporting Enzymology
Data

▶ STRENDA
Start

▶Cell Cycle Transition, Principles of Restriction

Point
State

▶Global State, Boolean Model

▶Local State, Boolean Model
State Synchronization

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou,

Guangdong, China
Definition

Partial synchronization is also a specific type of syn-

chronization. In this synchronization, the synchroniza-

tion error between the corresponding state variables of

any two oscillators in the population finally tends to
zero. For example, for a system of N coupled units

governed by the following set of differential equations

dxi
dt

¼ F x1; x2; � � � ; xNð Þ þ Ci x1; x2; � � � ; xNð Þ; every
xi 2 Rn

where
FðxÞ ¼

F1 x1; x2; � � � ; xNð Þ
F2 x1; x2; � � � ; xNð Þ

..

.

Fn x1; x2; � � � ; xNð Þ

0
BBBBBB@

1
CCCCCCA
;

CiðxÞ ¼

Ci1 x1; x2; � � � ; xNð Þ
Ci2 x1; x2; � � � ; xNð Þ

..

.

Cin x1; x2; � � � ; xNð Þ

0
BBBBBB@

1
CCCCCCA
;

xi ¼

xi1

xi2

..

.

xin

0
BBBBBB@

1
CCCCCCA
; i ¼ 1; 2; � � � ;N and

Ci x1; x2; � � � ; xNð Þ represents the coupling term. Define

the synchronization error as
EðtÞ ¼ 1

N

XN
i;j¼1

xiðtÞ � xjðtÞ
�� ��

If lim
t!þ1EðtÞ ¼ 0, then we say that the N

subsystems achieve state synchronization.
Statistical Experimental Design

▶Designing Experiments for Sound Statistical

Inference
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Statistical Methods in Systems Biology

Eugene Kolker

Bioinformatics and High-throughput Analysis

Laboratory, Seattle Children’s Research Institute,

Seattle, WA, USA

Departments of Biomedical Informatics and Medical

Education and Pediatrics, University of Washington,

Seattle, WA, USA

Definition and Description

Systems (integrative, high-throughput) biology studies

cover vast range of experimental approaches, compu-

tational algorithms, and data types. Therefore to

analyze and interpret these studies, it is imperative

that the correct statistical methods be applied. Sys-

tems biology studies involve modern high-throughput

data technologies and complex experimental designs,

and these characteristics involve many complex

issues and require innovation in statistical methodol-

ogy. Important issues related to systems biology stud-

ies include accounting for diverse sources of

variability, multiple hypothesis testing, and adapting

statistical methods to advance biological technolo-

gies such as microarrays, next-gen sequencing, and

mass spectrometry.

Modern high-throughput technologies generate

large volumes of diverse data that can be used to

address biological questions. The broad spectrum of

research problems in systems biology includes iden-

tifying genes, proteins, and metabolites primary to

a given condition/disease/inference state; comparing

expression profiles across different populations;

modeling chemical and biological processes and

their effect on expression changes; assigning func-

tions to newly identified entities; and much more.

Both the complexity and the volume of the data gen-

erated to answer these questions require advanced,

computationally intensive statistical methods to

process and extract knowledge.

Unfortunately, the generation of large data sets can

easily lead to GOBS – the Generation of BS (bovine

scatus; K. H. Nealson as quoted in Holzman and

Kolker 2003). Time and resources can be wasted
unless proper thought is given to the experimental

design before the experiment is started. “To call in

the statistician after the experiment is done may be

no more than asking him to perform a post-mortem

examination: he may be able to say what the

experiment died of.” (Fisher 1938).

Data collection is a rather complicated, multistage

process. The duration and complexity of data acquisi-

tion introduces bias and sizable technical variation.

A successful experiment, therefore, requires a careful

design in order to reduce technical and instrumental

variation and increase the signal-to-noise ratio.

Consequently, the experimental design is reflected

in statistical analysis models. Such models must con-

sider the large number of sources that may generate

technical variability. As with any other field, a random

sample of experimental units has to be chosen which is

pertinent to the hypothesis of interest. In systems biol-

ogy, the experiments are often costly and time con-

suming. Consequently, investigators typically have

a fairly small number of samples from which they

derive a large number of hypotheses, a problem

known in statistics as p>>n. For example, proteomics

experiments identify expression levels for thousands

of proteins but are usually constrained to a handful of

experimental samples.

Researchers are often interested in building

a prediction model using a number of expression

values, p, to predict the output of interest based on

sample of size, n. For example, researchers try to

identify genes that can accurately predict a disease

status or severity level. Standard algorithms for pre-

diction models (forward selection, backward elimina-

tion, stepwise regression) require p < n. When the

sample size is less than the number of expression

values, the potential is higher that a random variable

could discriminate the two data sets. Thus, identifying

genes of interest that can reliably distinguish cases

from controls poses serious methodological, statistical,

and computational challenges.

In systems biology, data analysis relies on

a complex combination of different methods. One

illustrative example is a “standard” proteomics exper-

iment that compares protein expression levels in two

groups of subjects. Before any cross-experimental

comparisons can be performed, the protein expression
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levels must be calculated for each experiment,

a process requiring numerous steps. Peptide identifica-

tion is accomplished by searching collected spectra

against a target database. False discovery rates are

corresponded with peptide identifications using either

a parametric modeling of the score distribution or

a search against a decoy database of reshuffled spectra.

Next, the peptide identifications need to be combined

to determine the protein content of the sample.

The accuracy of protein identifications is character-

ized by the false discovery rate (FDR) which is typi-

cally reported on the global level. In numerous

proteomics and other systems biology studies, how-

ever, the local FDR is more useful as it measures error

rate for each individual protein. The local FDR can be

used to select a set of proteins for further analysis

ensuring that selected proteins were identified with

desired certainty. The error measurements can also be

directly incorporated into the analyses.

Also different proteins can contain identical pep-

tides, so the proteins cannot necessarily be differenti-

ated from each other based on identified peptides.

Computational models are calibrated to properly

assign peptides to proteins. The number of identified

peptides for each protein is correlated with protein

concentration and, as such, can be used as proxy mea-

sure in hypothesis testing. Having calculated protein

expression levels, cross-experimental comparisons can

now be performed. To compare protein expression

levels between the two populations, the number of

identified peptides can be normalized within experi-

ments to adjust for systematic bias. For each protein,

one computes a test statistic (using F-test, (moderated)

t-test, etc.) and a corresponding p-value (using distri-

butional assumptions or by constructing a permutation

distribution). Since the test is performed simulta-

neously on a large number of proteins, the p-values

are adjusted to maintain the required type I error rate.

Often, this expression analysis is followed by studying

the pathways and protein interactions that belong to the

same pathway.

Functional annotation is another major research

challenge in systems biology. Here, the goal is to

assign biological functions to genes and proteins.

Large volumes of data make manual curation imprac-

tical. Automated methods rely on identifying a protein/

gene, or a group of proteins/genes, with a sequence

most similar to the protein/gene of interest and whose

function is known and propagating this function to
uncharacterized protein/gene. However, even the sim-

plest methods to estimate sequence similarity and

group proteins present an immense computational

challenge. One can reduce the computational complex-

ity of the problem by developing simple, yet sensitive,

scoring rules to classify uncharacterized proteins.

Clustering methods based on hierarchical agglomera-

tion or HiddenMarkov models are prominently used to

tackle the problem of functional annotation.

To meet the challenge of big data in modern life

sciences, the Data-Enabled Life Sciences Alliance

(DELSA Global, “delsaglobal.org”) was formed. The

alliance is an ecosystem of stakeholders: scientists,

statisticians, data analysts, computer scientists, educa-

tors, funding agencies and others working together to

enable a much needed paradigm shift to translate data

to knowledge to action through collective innovation

(Kolker et al. 2012). Big data not only significantly

enable our research capabilities, but also introduce

major challenges, so called the 5 Vs of big data:

volume, veracity, velocity, variety, and value (Higdon

et al. 2013). Both life sciences in general and systems

biology in particular demand special attention to the

variety, value and veracity of big data (for details,

see Higdon et al. 2013).

The Statistical Methods section is intended as

a reference to the fundamental statistical methods and

approaches used in systems biology. The section

reviews classical approaches to statistical inference

and hypothesis testing and provides a background on

standard tests and models such as t-test, analysis of

variance, linear regression, generalized linear models,

and others. It also discusses methods for multiple

hypothesis testing and describes statistical approaches

to gene and protein expression data analysis.
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Statistical Modeling

▶Modeling Formalisms, Lymphocyte Dynamics and

Repertoires
Statistical Sampling

▶Data Sampling
Statistics Model

▶ Probabilistic Model-based Transcription Regulatory

Network Construction
Steady State

Ruiqi Wang

Institute of Systems Biology, Shanghai University,

Shanghai, China
Synonyms

Equilibrium
S

Definition

In deterministic differential equations, a steady state

for a system means that there is no net change in the

number or concentration of molecules in the system

(Guckenheimer and Holmes 1983).
Cross-References

▶Life Span, Turnover, Residence Time

▶Lymphocyte Population Kinetics
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Steady-State Probability Distribution

▶Equilibrium Probability Distribution
Stem Body

▶Midbody
Stem Cell Cenes

▶ Stem Cell Networks
Stem Cell Networks

Eric Werner

Department of Physiology, Anatomy and Genetics,

University of Oxford, Oxford, UK

Department of Computer Science, University of

Oxford, Oxford, UK

Oxford Advanced Research Foundation, Fort Myers,
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Synonyms

Developmental control networks; Figurate networks;

Geometric networks; Stem cell Cenes
Definition

A stem cell network is a developmental control net-

work (▶Developmental Control Networks), also

called a ▶ cene, that contains one or more linear

self-regenerating loops resulting in endless cell prolif-

eration. The nodes in the network are cell control

states. The branches denote cell division with each

daughter cell entering the control state at the end of

its branch.
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Stem Cell Networks, Fig. 1 A linear, 1st-order stem cell

network. It generates cells B if the condition F1 is met (Werner

2011b)

S 1988 Stem Cell Networks
Characteristics

Stem cell networks are a kind of developmental control

network (▶Developmental Control Networks)

(Werner 2011a) with a special topology consisting of

one or more linear self-regenerating control loops.

Stem cell networks can be normal or cancerous.

The difference between normal stem cell networks

and cancer stem cell networks (▶Cancer Networks)

depends on the location of the stem cell network in the

global developmental control network (▶Cenome) as

well as the cell types the stem cell network generates

(Werner 2011a, b).

Stem Cell Network Types

Stem cell networks come in various basic forms:

Linear Networks, Meta-Stem Cell Networks, and the

more general k-th order Stem Cell Networks. These are

also called geometric networks or figurate networks

because their proliferation properties are related to the

geometric or figurate numbers and the coefficients of

Pascal’s Triangle (Werner 2011b). In summary, we

have

• Linear stem cell networks or 1st-order stem cell

networks G1

• Meta-stem cell networks or 2nd-order stem cell

networks G2

• k-th order stem cell geometric or figurate networks

Gk

Stem cell networks are further divided into deter-

ministic or stochastic ▶ developmental control

networks, and they also may or may not involve cell

signaling (Werner 2011b).

• Deterministic

• Stochastic

• Signaling

A stem cell is a self-regenerating cell that generates

other terminal progenitor cells. Depending on the

network these terminal cells may stochastically

dedifferentiate to stem cells (Werner 2011b).

Linear Stem Cell Networks

Linear stem cell networks G1 are 1st-order geometric

networks that contain one self-regenerating loop and

one link to a terminal developmental network

(▶Developmental Control Networks) (Fig. 1).

For one loop after n > 0 synchronous divisions, we

get a one-dimensional structure where its length gives

the number of cells:
Cellsðn; 1Þ ¼ 1þ LinðnÞ ¼ 1þ n

¼
X1
i¼0

n
i

� �
¼ n

0

� �
þ n

1

� �
(1)

where Lin(n) ¼ n

Meta-Stem Cell Networks

Meta stem cell generate stem cells. A meta-stem cell

network is a 2nd order stem cell network that contains

two linked linear loops (Werner 2011b).

Meta-stem cells proliferation is related to the

triangular numbers and the area of a two-dimensional

triangle.
TriðnÞ ¼ n2 þ n

2
¼ nðnþ 1Þ

2
(2)

Thus, for two loops add the triangular number to

give the area of a two-dimensional triangle (Werner

2011b). When n > 0 (Fig. 2):
Cellsðn; 2Þ ¼ 1þ LinðnÞ þ Triðn� 1Þ (3)

¼ 1þ nþ nðn� 1Þ
2

(4)

¼
X2
i¼0

n
i

� �
¼ n

0

� �
þ n

1

� �
þ n

2

� �
(5)
Meta-Meta-Stem Cell Networks

For three loops add the tetrahedral number to the above

to give the volume of three-dimensional pyramid

(tetrahedron) (Werner 2011b). When n > 0:

http://dx.doi.org/10.1007/978-1-4419-9863-7_570
http://dx.doi.org/10.1007/978-1-4419-9863-7_571
http://dx.doi.org/10.1007/978-1-4419-9863-7_1579
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Stem Cell Networks,
Fig. 2 A meta-stem cell

network is a 2nd-order

geometric network. It consists

of a 2nd-order loop at A2

linked to a 1st-order loop at A1

(Werner 2011b)
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ak–1 a 1

A 1 D

d
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Stem Cell Networks,
Fig. 3 A k-th order stem cell

network (Werner 2011b). The

network contains k loops at
control states Ak . . . A1 and

ends in a terminal

developmental network D
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Cellsðn; 3Þ ¼ 1þ LinðnÞ þ Triðn� 1Þ þ Tetðn� 2Þ
(6)

¼ 1þ nþ nðn� 1Þ
2

þ nðn� 1Þðn� 2Þ
6

(7)

¼
X3
i¼0

n
i

� �
¼ n

0

� �
þ n

1

� �
þ n

2

� �
þ n

3

� �
(8)

Where the tetrahedral number is defined as:
TetðnÞ ¼ nðnþ 1Þðnþ 2Þ
6

(9)
S

Geometric or Figurate Networks

Because their proliferative properties are related to the

geometric or figurate numbers and the coefficients of

Pascal’s Triangle, simple stem cell networks are also

called geometric or figurate networks. A k-th order

stem cell network is a k-th order geometric network

Gk that contains k loops ending with one link to

a terminal developmental network (▶Developmental

Control Networks) (Fig. 3).

For k loops and n> 0, sum the sequence of numbers

through n!
k!ðn�kÞ! to give the volume of a k-dimensional

pyramid (Werner 2011b):
Cellsðn; kÞ ¼ 1þ LinðnÞ þ Triðn� 1Þ þ Tetðn� 2Þ

þ :::þ n

i

� �
(10)

¼ 1þ nþ nðn� 1Þ
2

þ nðn� 1Þðn� 2Þ
6

þ :::þ n!

k!ðn� kÞ!
(11)

¼
Xk
i¼0

n
i

� �
¼ n

0

� �
þ n

1

� �
þ :::þ n

k� 1

� �
þ n

k

� �

(12)
So, in general, we have:
Cellsðn;kÞ ¼
1 if n¼ 0Pk

i¼0
n!

i!ðn�iÞ!¼
Pk

i¼0

n
i

� �
otherwise

8<
:

(13)
When n > 0 we have:

Cellsðn; kÞ ¼
Xk
i¼0

n
i

� �
(14)
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Limited Exponential Growth with Geometric

Networks

When the number of rounds of division n is less than

the number of loops k, that is, n 
 k, then a geometric

stem network exhibits exponential growth since the

following holds:
Xn
i¼0

n

i

� �
¼ n

0

� �
þ n

1

� �
þ :::þ n

n�1

� �

þ n

n

� �
¼ 2n

(15)
Subnetworks and Tangential Networks in Stem

Cell Networks

Any loop can include a path that is a subpath of another

developmental network (▶Developmental Control

Networks). This means the loop has further develop-

mental progeny generated by that subpath. Further-

more, a stem cell network can link to a complex

progenitor network that generates complex

multicellular structures.
The Stem Cell Hierarchy and Cancer Stem Cells

Higher-order stem cell networks generate a hierarchy

of stem cell types. This stem cell network

hierarchy imposes a hierarchy on metastases resulting

from cancer ▶ stem cell networks (▶Cancer

Networks).
Cross-References

▶Cancer Networks

▶Cene

▶Developmental Control Networks
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Stem-Loop
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Synonyms

Hairpin; Hairpin loop
Definition

Stem-loop is an essential unit of the structure of single

stranded RNA or DNA. A stem-loop consists of a stem,

double helix, and a loop which links the stem. The

length of the loop is typically 3–8. Tetraloops, stem-

loops with four nucleotides in the loop, are frequently

found in RNA. Especially, tetraloop RNAs with a loop

sequence of GNRA, UNCG, and CUNG (N is any

nucleotide, R is a purine nucleotide) are commonly

found (Nowakowski and Tinoco 1999). For DNA,

triloops with GNA sequences in the loop are found to

be stable (Yoshizawa et al. 1997).
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Stem-Loop Structure

▶Hairpin Structure
Stepwise Assembly Pathway

▶ PIC Assembly Pathways
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Stimulus Conditions

▶Enabling Conditions
Stochastic Chemical Kinetics

▶Chemical Master Equation
Stochastic Differential Equation

▶ Stochastic Processes, Fokker-Planck Equation
Stochastic Effects in Metabolic Networks

Andrea Rocco and Andrzej M. Kierzek

Division of Microbial Sciences, Faculty of Health and

Medical Sciences, University of Surrey, Guildford,

Surrey, UK
Synonyms

Noise in metabolic networks; Noise in metabolic

pathways; Random fluctuations in metabolic

networks; Random fluctuations in metabolic path-

ways; Stochastic fluctuations in metabolic pathways
S
Definition

Stochastic fluctuations in metabolic networks are

random differences between individual cells in meta-

bolic flux distribution (▶Metabolic Flux Analysis),

the metabolite concentrations, or both. The origin of

such stochastic fluctuations may vary. Stochastic fluc-

tuations at the enzymatic level may originate because of

the low copy numbers of the enzyme, or low numbers of

molecules participating in expression of its gene, or

because of other mechanisms. Metabolites are also

affected by stochasticity, propagated from enzyme fluc-

tuations, or related to their own low copy numbers.

Finally, stochastic effects on both enzymes and
metabolites can be expected in presence of fluctuating

control parameters, such as temperature or pH levels.
Characteristics

Understanding that inherent randomness of chemical

reactions constituting molecular machinery of the

living cell can result in different phenotypes of indi-

vidual, genetically identical cells is a major basic

discovery resulting from application of systems biol-

ogy approach. Chemical reactions are inherently ran-

dom because they result from the reactive collision

between molecules moving randomly within reaction

volume. In the case of bulk chemical reactions, very

large numbers of reactant molecules result in

a negligible variance in the concentration of products.

However, biochemical reactions occur in very small

volumes of cells where numbers of reactant molecules

can become very small resulting in considerable

variance in the amounts of products. This inherent

noise in biochemical processes has been demonstrated

to result in phenotypic variability of single cells with

identical genotypes.

Propagation of Gene Expression Noise to the Level

of Metabolic Networks

It is widely appreciated that transcription and transla-

tion machinery may involve molecules that occur in

low copy numbers. Lactose repressor occurring on

average in 10 copies per cell of Escherichia coli is

a classical example. Therefore, the heterogeneity of

gene expression in individual cells has been long

recognized in theoretical studies and confirmed by

numerous experiments including protein molecule

tracking in individual cells of E. coli. As metabolites

and metabolic enzymes are present in the cell usually

at much higher copy numbers metabolic networks

are usually assumed to be deterministic and their pos-

sible stochasticity is frequently ignored. However,

stochasticity of gene regulatory networks implies that

transcription and translation rates of genes encoding

enzymes may be very different in individual cells

leading to different metabolic flux distributions.

Puchalka and Kierzek (2004) studied the propaga-

tion of gene expression noise to the level of metabolic

pathways by large-scale stochastic kinetic simulation.

They studied the model involving glycolysis, and

glucose, lactose, and glycerol transport. Metabolites,
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proteins, transcripts, and DNA elements (promoters,

open reading frames) were represented as molecular

species in stochastic kinetic simulation. In a hybrid

algorithm integrating Gillespie’s exact stochastic sim-

ulation and a tau leap method no explicit distinction

has been made between gene regulatory and metabolic

network; all processes where described as molecular

species taking part in the reactions. It was possible to

estimate kinetic parameters of the model from quanti-

tative experiments performed on this very well studied

system. Computer simulation of a diauxic shift from

glucose to the mixture of lactose and glycerol showed

that individual cells adopted one of two distinct meta-

bolic flux distributions where either lactose or

glycerol, but not both, was used as a carbon source

where the glucose was depleted from the medium. This

behavior was caused by the propagation of gene

expression noise through the network of negative and

positive feedbacks involved in the diauxic shift

response. Delay in the negative feedback loop of

cAMP, CRP, and adenylate cyclase gene resulted in

an “overshooting” behavior leading to the burst of

cAMP amount. Transcription of catabolic operons

was switched on during this time by increased amounts

of cAMP, CRP complex. Depending on the random

delay in activation of lactose operon transcription

either lactose or glycerol promoter was activated first.

Activation of either of the two operons was reinforced

by the positive feedback through increased transport of

the inducer. Full activation of the catabolic operon

resulted in the increased availability of carbon source,

increased levels of PEP and removal of hunger signal.

This prevented other catabolic operon from activation.

Thus propagation of stochastic fluctuations in

catabolic operon expression resulted in two

populations of cells using either lactose or glycerol,

but not both as a carbon source. According to simula-

tion lactose was preferred carbon source in a sense that

more cells were growing on lactose than glycerol, but

significant population of cells growing on glycerol was

still present. Moreover, the state of individual cell

was epigenetically inherited as after cell division two

daughter cells inherited elevated levels of one of the

two permeases thus maintaining the carbon source

phenotype. In conclusion propagation of gene expres-

sion noise through complex networks of negative and

positive regulatory feedback may result in epigeneti-

cally inherited heterogeneity of metabolic flux distri-

bution in single cells.
Intrinsic and Extrinsic Noise

Understanding propagation of noise across different

modules and layers of regulation requires a systemic

description. Two classes of stochastic fluctuations are

relevant, usually referred to as intrinsic and extrinsic

fluctuations (▶Noise, Intrinsic and Extrinsic).

Both types of fluctuations can affect both enzymes

and metabolites, even though their effects may

be different.

Intrinsic Noise in Metabolic Networks

A natural way of studying intrinsic noise of metabolic

networks is to extend metabolic control analysis to the

case when noise is present (Rocco 2009; Bruggeman

et al. 2009; Kim and Sauro 2010).

In Bruggeman et al. (2009), a mathematical frame-

work is presented which aims at studying noise

propagation and management in metabolic networks.

The cases analyzed here refer to hierarchical networks,

and the authors extend typical results of metabolic

control analysis, such as those concerning the role of

feedback loops, or the presence of cascades, to the case

when noise is present, and propagates across the

network.

Along similar lines is the work by Kim and

Sauro (2010), who define a stochastic metabolic con-

trol analysis, based on the introduction of stochastic

sensitivities for mean and covariance values of

concentrations and fluxes, and derive the

corresponding summation theorems.

Extrinsic Noise in Metabolic Networks

Extrinsic fluctuations have also been studied in meta-

bolic networks, both in small modules and at the

systemic level. In particular Samoilov et al. (2005)

have analyzed the effect of extrinsic noise in enzy-

matic futile cycles, and found that bistable oscillatory

behavior emerges in the stochastic system, whereas the

corresponding deterministic dynamics is monostable.

Changes in the stability properties of the lac operon are

also predicted in Ochab-Marcinek (2010). These

findings show how the effect of extrinsic noise can be

highly counterintuitive and implies in general a change

in position, number, and stability properties of the

steady states of the system (Horsthemke and

Lefever 2006).

At the systemic level, Rocco (2009) describes the

effect of extrinsic noise within the framework of met-

abolic control analysis (MCA). Noise is assumed to

http://dx.doi.org/10.1007/978-1-4419-9863-7_353
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affect any control parameter of the system m, with an

intensity e, in general small. In presence of noise, the

natural extension of the deterministic metabolite

concentrations x is assumed to be given by the values

of the concentrations that maximize the resulting sta-

tionary probability distribution, x(m):

x ! xðmÞ when noise is present (1)

Then it can be proven (Rocco 2009) that the sum-

mation theorems of standard MCA for both the

concentrations x(m) and the corresponding fluxes J(m)

still hold true, namely:
XM
j¼1

C
x
ðmÞ
i

~vj
¼ 0; 8i ¼ 1; . . . ;N (2)

and

XM
j¼1

C
J
ðmÞ
i

~vj
¼ 1; 8i ¼ 1; . . . ;N (3)

In Eqs. 2 and 3, N represents the number of metab-

olites in the network,M is the number of reactions, and

the control coefficients C are defined as:
C
x
ðmÞ
i

~v ¼ @ ln x
ðmÞ
i

@ ln ~vj
and C

J
ðmÞ
i

~vj
¼ @ ln J

ðmÞ
i

@ ln ~vj
(4)

Here ~vj is the j-th rate when noise is present, and can
be computed as
S

~vj ¼ vj �

XN
k¼1

XRj

l¼1

el
@

@xk

@vj
@ml

� �
 �
@vj
@ml


 �
Skj (5)

where the vj is the deterministic reaction rate, ml is l-th
of the Rj parameters present in vj, and el is the intensity
of the noise affecting the parameter ml, Skj is the deter-
ministic stoichiometry matrix.

Analogous results can be obtained for connectivity

theorems and partitioned response. This shows that

even though the mathematical structure of MCA is

preserved when extrinsic noise is present, control

coefficients, as much as response and elasticity coeffi-

cients, acquire an explicit dependency on the noise

intensity. Noise therefore can be interpreted as

a control mechanism for the whole network.
This extension of standard MCA describes how

stochastic perturbations originating locally at the

level of single enzymes can propagate up to the

systemic level and affect global variables.
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Total asymmetric exclusion process (TASEP) transla-

tion modeling; Translation modeling
Definition

Stochastic modeling of translation refers to mathemat-

ical models (▶Mathematical Model, Model Theory)

of the protein synthesis process that represent the

movement of ribosomes along the mRNA as a stochas-

tic process. Ribosome movement along an mRNA is

governed by the activity of protein translation factors,

and also by the delivery of transfer RNAs cognate

to the codon at any given ribosomal position. In

a stochastic model of this process, ribosomemovement

codon-by codon along the mRNA is not described by

a deterministic rate, but instead by a probability. Such

models are likely to better represent in vivo translation

systems.
Characteristics

Translation Elongation and Termination

Cellular protein synthesis involves ribosomal transla-

tion of an mRNA, typically considered a three-stage

process comprising ▶ translation initiation,

▶ translation elongation and ▶ translation termination

(Kapp and Lorsch 2004). During the initiation step,

small ribosomal subunits join the mRNA and locate the

AUG initiation codon that begins the open reading

frame. Following large ribosomal subunit joining,

translation elongation then directs sequential addition

of amino acids in response to each successive codon.

New translation initiation events are continually occur-

ring on each mRNA, loading the mRNA with multiple

ribosomes, a so-called polysomal mRNA (Fig. 1).

Each ▶ translation elongation cycle begins with

delivery of charged transfer RNA (amino-acyl tRNA)

delivery to the vacant ribosome acceptor site. The rate

of delivery is proportional to the relative concentration

of each tRNA species. The subsequent peptidyl-

transferase reaction incorporates the newly-delivered

amino acid into the growing polypeptide. Following

this, a translocation reaction moves the ribosome

forward to bring a new codon into the A-site, initiating

the search for a new cognate tRNA. Following a series

of elongation cycles, ribosomal encounter of an
in-frame stop codon triggers the binding of a protein

▶ release factor and a consequent ▶ translation

termination event.
TRNA Abundance and Codon Bias

As amino acid delivery agents, tRNAs control the

stochastic progression of ribosomes along the mRNA.

The availability of each tRNA type and the codon

composition of any given mRNA together regulate

that stochastic movement. TRNA availability is dic-

tated by the molecular abundance of that tRNA, and by

what proportion of its population is charged with

amino acid. Following delivery of the charged,

aminoacyl tRNA to the ribosome, the tRNA is eventu-

ally released uncharged, having delivered its amino

acid. It must subsequently be recharged by aminoacyl

tRNA synthetase enzymes (Fig. 1a). The abundance of

a particular isoacceptor tRNA population must there-

fore be matched by the catalytic capacity of its coun-

terpart tRNA synthetase population (Fig. 1).

There is good evidence that tRNA abundance is

determined by the gene copy number of their encoding

tDNA gene, which in baker’s yeast can vary from 1 to

16 for different tRNAs (Fig. 1). TRNA gene copy

number is in turn matched to relative usage of codons

in the ▶ transcriptome. In many microorganisms

codon usage is subjected to bias (Plotkin and Kudla

2011). In codon-biased genomes, each codon within an

amino acid family that is translated by a distinct tRNA

will be used with different frequencies, with usage in

extreme cases differing by as much as 30-fold within

a codon family. Because tRNA abundance is matched

to codon usage, tRNAs cognate for infrequently used

codons are correspondingly rare. The encounter of

such a rare codon by a ribosome during translation

will produce an extended search for the right tRNA,

and a stochastic ribosomal pause (Fig. 1). Stochastic

variations in tRNA delivery and the consequential

queuing ribosome interactions on an mRNA lattice

are of central importance in defining the proteome

(▶Proteomics) that will be encoded by any given

▶ transcriptome (Gingold and Pilpel 2011). The

requirement to understand and predict how efficiently

ribosomes will translate any given mRNA sequence

(▶Post-transcriptional Regulation) has motivated the

development of stochastic models of translation

elongation.
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Stochastic Modeling of Translation Elongation and Termi-
nation, Fig. 1 Translation elongation and the regulation of

ribosome transit along an mRNA. Panel a; Codon sequence

and tRNA abundance dictate ribosome progression along

mRNA. TRNA abundances are influenced by their gene copy

number, and codon usage is matched to tRNA abundance. Rare

codons (found in codon-biased genomes) generate a stochastic

ribosomal pause while the corresponding low abundance tRNA

is encountered. Following an elongation event, uncharged

tRNAs are released from the ribosome to be recharged with

amino acid by the corresponding aminoacyl tRNA synthetase.

Panel b; Charged tRNA availability is influenced by tRNA

demand/supply ratios. TRNA supply is determined tRNA abun-

dance (see panel a), and by tRNA synthetase activity. Demand is

dictated by the content of any given codon type within the

transcriptome, the latter a response to environment. The sup-

ply/demand ratio for any given tRNA type may thus be balanced

(closed circles and open triangle, transcriptome 1) or imbal-

anced (open square, transcriptome 1). With the induction of

a new transcriptome, a different tRNA type may exhibit

supply/demand imbalance (open triangle, transcriptome 2),

altering the stochastic transit of ribosome populations along

mRNAs, potentially directing changes in the translational effi-

ciency of any given mRNA
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Stochastic Modeling of Translation Elongation and Termi-
nation, Fig. 2 Sketch of the TASEP model, with the lattice

representing the mRNA and the particles representing the

ribosomes. The ribosome at codon i ¼ 4 cannot advance, since

the next codon is occupied

S 1996 Stochastic Modeling of Translation Elongation and Termination
Stochastic Models and Statistical Physics; General

Description of Motion of Ribosomes on a mRNA

Deterministic models have been widely used to model

a broad range of biological systems. However, the

complexity of cellular translation is better represented

using stochastic models, for a number of reasons. First,

the individual motion of one ribosome is a stochastic

process, since it relies on the arrival of the correct

transfer RNA molecule, which can be assumed to

perform a random diffusive motion in the cytoplasm.

Stochastic models take explicitly into account fluctua-

tions due to the random movement of the molecules in

the medium, enabling a more accurate description.

Second, since several ribosomes are translating the

same mRNA at the same time, we are confronted

with a many-particle system. Differential equations

are inadequate tools to describe such systems, which

can be better represented by statistical physics

(Krapivsky et al. 2010). Last, since new ribosomes

can bind the mRNA as soon as the first nucleotides of

the mRNA are unoccupied, the system is subjected to

a continuous flow of particles, permitting the theory of

nonequilibrium statistical physics to be readily

applied.

TASEP-based Models to Describe Translation

Within nonequilibrium statistical physics, the so-

called Totally Asymmetric Exclusion Process

(TASEP) has been widely applied to the study of

processes in which biological particles move along

a track, for example in translation, motion of molecular

motors, transcription, surface growth, and traffic

(Krapivsky et al. 2010). It describes a one-dimensional

lattice consisting of N sites, along which particles

hop in one fixed direction with hopping rate k
(▶Lattice-Gas Cellular Automaton Models). The

interaction among the particles is exclusion; particles

cannot overlap. The particles hop onto the first site of

the lattice (left boundary) with initiation rate a, then
hop from site i of the lattice to site i + 1 with hoping

rate ki, only if site i + 1 is empty, and hop off the lattice

at the last site (right boundary) with termination rate b.
In the context of translation elongation, the one-

dimensional lattice represents the mRNA molecule,

the sites of the lattice represent the codons, and

the particles represent the ribosomes (Fig. 2). The

rate a is the initiation rate with which new ribosomes

bind the ORF, starting the translation, and b describes

the rate with which ribosomes detach from the lattice

at the stop codon, releasing the completed protein into

the cytoplasm. In a first approximation, assuming

that the ribosomes occupy one single codon, occupa-

tion numbers ni with i ¼ 1,. . ., N are typically

introduced, such that either ni ¼ 0 if codon i is empty

or ni ¼ 1 if codon i is occupied. The particle density or

average occupancy at codon i is then given by if¼ hniit,
where h� � �i denotes time average. The system is char-

acterized by the density of ribosomes averaged over

the whole mRNA �r ¼ N�1
P

i ri and the current J of

ribosomes through the mRNA or the number of ribo-

somes per unit time which detach from the mRNA at

the stop codon. Hence, the current J of ribosomes

corresponds to the protein production rate of the under-

lying mRNA. In the simplest case in which all

codons are equal, the hopping rates do not depend on

the codon index, that is, ki ¼ k for i ¼ 1,. . ., N � 1.

Additionally, neglecting correlations between the

occupation probabilities of different sites

(▶Mean-Field Approximation), one obtains the

following master equations (▶Master Equation):
dr1
dt ¼ að1� r1Þ � kr1ð1� r2Þ

dri
dt ¼ kri�1ð1� riÞ � krið1� riþ1Þ

drN
dt ¼ krN�1ð1� rNÞ � brN

(1)

Assuming that we reach steady state, that is,

dri/dt ¼ 0 for all i, one identifies the current of

http://dx.doi.org/10.1007/978-1-4419-9863-7_282
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particles: J ¼ kri(1 � ri+1). Notice that since particles
cannot detach from the lattice until they reach the stop

codon, the current is conserved through the lattice.

Depending on the relative magnitude of the parameters

a, b, and k, it can be shown that the system can exist

in three different phases: low density (LD), where the

current is limited by the initiation rate a, high density

(HD), where the rate limiting factor is the termination

rate b, and the maximal current phase (MC), where

the hopping rate k limits the current of the process.

These phases are characterized as follows:
S

LD : J ¼ a 1� a
k

� 	
; r¼ a

k
; if a< b;a
 k

2

HD : J ¼ b 1�b
k

� �
; r¼ 1�b

k
; if b< a;b
 k

2

MC : J ¼ k

4
; r¼ 1

2
; if a;b>

k

2

Here r denotes the density in the bulk of the lattice.

Due to edge effects, if deviates from r near i ¼ 1 and

i ¼ N, but if the lattice is large enough, �r � r. More-

over, a mixed LD-HD phase is found when a ¼ b and

a, b 
 k/2, which is also denoted as shock phase (SP).

The transition between the LD and HD phase is of first

order in J, whereas between LD and MC, and HD and

MC is of second order (Krapivsky et al. 2010).

Computer Simulation

In order to simulate the TASEP computationally, one

can use either a discrete time simulation approach

(▶Monte Carlo Simulation) or a continuous time

simulation, following, for example, the Gillespie

algorithm (▶Gillespie Stochastic Simulation). In the

typical discrete time simulation, one chooses a Monte-

Carlo time step Dt, in which the particles on the lattice
are updated according to the rules of the TASEP. A site

i of the lattice is picked at random, with i¼ 0,. . ., N. If
1
 i
 N� 1, and if the site is occupied, the particle in

it has probability kDt of hopping to the right, given that
the next site is empty. If i ¼ 0, a new particle can hop

onto the lattice with probability aDt, given the first site
is empty. If i ¼ N and that site is occupied, then the

particle can hop off the lattice with probability bDt.
The other possibility is to apply a continuous time sim-

ulation algorithm, in which both the particle and the

time at which the next update will happen are chosen

according to a probability distribution which can be

derived using probabilistic arguments (Gillespie 1977).
Inhomogenous Lattice: Different tRNAs are in Different

Concentrations

As explained above, different tRNAs are present in the

cytoplasm in different concentrations. Therefore,

when a ribosome is on a codon whose corresponding

tRNA has a low concentration, it will take the ribo-

some a longer time to find it, and therefore, to proceed

to the next codon. In terms of the lattice model, it

means that the hopping rate depends on the site of the

lattice; the mRNA is then represented as a lattice with

hopping rates ki, i ¼ 1,. . ., N. In a first approximation,

the hopping rates ki can be estimated according to the

abundances of the corresponding tRNAs. However, the

abundances of all 41 different species of tRNAs are not

known. Therefore, gene copy numbers of the tRNAs

are typically used as predictors for their abundances,

since tRNA gene copy numbers have been found to

strongly correlate with their abundances. To under-

stand the effect of slow codons, lattices with one single

slow codon in the center were first studied

(Kolomeisky 1998). The lattice can be then modeled

as two separate sub-lattices connected across the slow

site; an effective termination rate is assigned to the left

sub-lattice, and an effective initiation rate to the right

sub-lattice. Then, since the current is conserved across

the slow site, mean-field expressions for the current

and bulk density can be obtained for the four possible

phases of the combined system: LD/LD, HD/HD, MC/

MC, and HD/LD. This last combined phase is also

referred to as queueing phase (QP). Studies including

multiple slow codons show that not only the total

number of slow codons plays a role, but its configura-

tion; the current is maximally reduced when slow

codons are clustered as tight as possible (Chou and

Lakatos 2004). Moreover, a comprehensive study

using configurations of slow codons from real mRNA

sequences from Saccharomyces cerevisiae has

shown that mRNAs can be classified into two main

types, according to the type of transition they are

subjected to when the initiation rate a is increased:

abrupt transition (type-I) and smooth transition

(type-II). Importantly, sequences classified as type-II

share a common biological function, such as ribosomal

proteins. This indicates that as the initiation rate a
changes (which is linked to the availability of ribo-

somes in the cytoplasm), the translation rate of proteins

is regulated (▶Gene Regulation) in a different way

according to the need of the cell for that protein

(Romano et al. 2009).
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Summary

In summary, lattice-gas models of translation are pow-

erful analytical tools, since they condense the underly-

ing essential biological mechanisms using a few

simple rules, but can reproduce rich and complex

behaviors. Lattice-gas models are likely to be increas-

ingly used to understand and predict the complex rela-

tionship between the codon composition of an mRNA,

and its translational efficiency.
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Definition

Though noise is considered as the by-product of life

activities, it often plays important roles in life activi-

ties, for example, gene regulatory networks are inher-

ently noisy. Furthermore, noise contamination in

experimental data is inevitable due to the limitations

of technology. Hence, stochastic model conforms to

reality better than the classical ones.

Stochastic neural network model introduces sto-

chastic processes to describe the biochemical process

in the gene regulatory networks; in other words, given

the expression state vector u(t) where ui(t) is the

expression value of gene i at time t, the model predicts

the state vector u(t + Dt) at the next time point t + Dt as
follows:
uiðtþ DtÞ ¼ uiðtÞ þ PðDtmi f ðxÞÞ � PðDtdiuiðtÞÞ;
where P(l) is a random variable following certain

distribution, f(x) is the sigmoid function of the sum of

u0is received weighted inputs, di is the degradation rate
of gene i, and mi is the maximal expression value of

gene i.
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Synonyms

Biochemical pi-calculus; Stochastic p-calculus

Definition

Stochastic pi-calculus (Priami 1995) is the first process

algebra used to represent biological systems
Stochastic pi-Calculus, Fig. 1 The biochemical pi-calculus

code fragment that specifies the antigen presentation phase. The

global system SYS is given by the parallel composition of four

processes: VIRUS (orange oval in the upper part of the figure),

MACROPHAGE (blue c-shape in the upper part of the figure),

TCELL1, and TCELL2. The code only presents the specifica-

tions of the first two elements. Here we just sketch the intuition

of the behavior of the subsystem given by MACROPHAGE |

VIRUS. The restriction (n) on top of each component stands for

its enclosing membrane. The macrophage phagocytizes the virus

by means of a communication on the public channel Tlr. Oper-
ationally, this communication involves the output action

Tlr<MemM> and its complementary input action Tlr(y).
(Priami et al. 2001). Molecules are modeled as pro-

cesses, and molecular complexes are rendered by par-

allel compositions of processes sharing private names.

Movements between complexes and formations of

new complexes are represented as transmissions

of private names. Once a complex is formed, its

components interact by communicating on comple-

mentary sites.

Moreover, since the calculus is stochastic, the

behavior of biological system can also be described

and analyzed quantitatively. Two simulators for the

biochemical stochastic pi-calculus exist that imple-

ment the direct method of the ▶ stochastic simulation

algorithm (▶BioSPI).

In Guerriero et al. (2009), the authors present

a simple and nice example of a biological system

modeled with biochemical pi-calculus that we want

to report here for showing the language on a specific

case study (we refer the reader to Priami et al. [2001]

for a formal description of the language).
Its effect is twofold: (1) the restricted name MemM becomes

a private communication channel of both MACROPHAGE and

VIRUS (thus modeling the engulfment of the virus); (2) the

name y in VIRUS is renamed into MemM (modeling the adap-

tation of the internal machinery of the macrophage to start the

lysis). The subsequent communication over the channel MemM

is such that Ant1 is transmitted to MACROPHAGE, which in

turn can make Ant1 available to the lymphocytes T (either

TCELL1 or TCELL2) by means of the last action Ant1<str>.

The bang operator, “!”, allows us to model infinite behavior

meaning that the output signal is continuously sent and therefore

MACROPHAGE can activate many TCells expressing Ant1

S
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The example comes from the biology of the

immune system, and it is relative to the activation of

the lymphocyte T helper, which are eukaryote cells

belonging to our immune system. They play a central

role by controlling many specific defense strategies.

Lymphocytes are normally inactive but they can be

activated by macrophages. Macrophages are cells that

engulf a virus (phagocytosis). When this happens, the

virus is degraded into fragments (digestion or lysis),

and a molecule, the so-called antigen, is displayed on

the surface of the macrophage (presentation or mat-

ing). The antigen may be recognized by a specific

lymphocyte T helper, and this in turn activates the

mechanisms of immune reply, a response specific to

the recognized virus (Fig. 1).

Associating rates to the different reactions (i.e.,

communication channels) of the model described

above creates a model that can be analyzed quantita-

tively through stochastic simulations.

Other interesting applications of biochemical

pi-calculus on real biological scenarios include gene

regulatory and metabolic networks, autoreactive lym-

phocyte recruitment, cell cycle (▶Cell Cycle

Modeling, Process Algebra).
Cross-References

▶Cell Cycle Modeling, Process Algebra
References

Guerriero ML, Prandi D, Priami C, Quaglia P (2009) Process

calculi abstractions for biology. In: Condon A, Harel D (eds)

Process calculi abstractions for biology in algorithmic

bioprocesses. Springer, Heidelberg

Priami C (1995) Stochastic pi-calculus. Comput J 38(6):

578–589

Priami C, Regev A, Silverman W, Shapiro E (2001) Application

of a stochastic name-passing calculus to representation and

simulation of molecular processes. Inf Process Lett

80(1):25–31
Stochastic pi-Calculus Simulator

▶BioSPI
Stochastic Processes, Fokker-Planck
Equation

Hong Qian1 and Hao Ge2

1Department of Applied Mathematics, University

of Washington, Seattle, WA, USA
2School of Mathematical Sciences and Centre for

Computational Systems Biology, Fudan University,

Shanghai, China
Synonyms

Diffusion approximation to chemical master equation;

Diffusion processes; Kolmogorov forward equation;

Smoluchowski equation; Stochastic differential equation
Definition

The Fokker–Planck equation describes the time

evolution of the probability density function of the

position of a particle that follows a stochastic differen-

tial equation. It is assumed that the sample trajectories

of the particle are continuous functions of time; but they

are nowhere differentiable with respect to time. It is a

generalization of the diffusion equation with the pres-

ence of a drift force field. It is named after A. Fokker and

M. Planck; It is also known as the Kolmogorov forward

equation, named after A. Kolmogorov. The first use of

the Fokker–Planck equation was for the statistical

description of Brownian motion of a particle in

a fluid, independently, by A. Einstein and M. von

Smoluchowski. Diffusion motion can be considered as

a limiting case of biased random walk.

In one spatial dimension x, the Fokker–Planck

equation for a diffusion process with drift B(x, t) and

diffusion A(x, t) is:
@

@t
pðx; tÞ ¼ � @

@x
½Bðx; tÞpðx; tÞ� þ 1

2

@2

@x2
½Aðx; tÞpðx; tÞ�

(1)

If drift B(x, t) and diffusion A(x, t) do not depend on
time t, then it is called time-homogeneous (or simply

homogeneous) Fokker–Planck equation. In this case,

let p(y, t|x, 0) be the conditional probability density

observing y at time t, starting from x at time 0, then
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B and A are determined by the rates of growth of the

mean value and the variance:

BðxÞ ¼ lim
Dt!0

1

Dt

Zþ1

�1
ðy� xÞpðy; tjx; 0Þdy;

AðxÞ ¼ lim
Dt!0

1

Dt

Zþ1

�1
ðy� xÞ2pðy; tjx; 0Þdy

(2)

If the diffusion A(x, t) ¼ 0, then the equation is

reduced to a simple ordinary differential equation

with a smooth trajectory:
dx

dt
¼ Bðx; tÞ (3)

More generally, the time-dependent probability dis-

tribution may depend on a set of N macrovariables xi.

The general form of the Fokker–Planck equation

is then:
S

@

@t
pðx; tÞ ¼ �

XN
i¼1

@

@xi
½Biðx; tÞpðx; tÞ�

þ 1

2

XN
i¼1

XN
j¼1

@2

@xi@xj
½Aijðx; tÞpðx; tÞ�

(4)

where B is the drift vector and A the diffusion tensor;

the latter results from the presence of a particular type

of stochastic effect: the white noise.

Any stochastic process can be characterized by

two very different types of mathematics: either

by its random sample trajectories or by the proba-

bility distribution as a function of time. The

Fokker–Planck equation is the latter: It gives the

time-dependent probability density function for

the random trajectories described by stochastic dif-

ferential equations.
Characteristics

We shall only consider time-homogeneous case.

According to the mass conservation law, which can

be applied to the probability:
@

@t
pðx; tÞ ¼ �= � Jðx; tÞ; (5)
where = � Jðx; tÞ ¼ PN
i¼1

@
@xi
Jiðx; tÞ is the divergence of

the vector field Jðx; tÞ, then
Jiðx; tÞ ¼ BiðxÞpðx; tÞ � 1

2

XN
j¼1

@

@xj
AijðxÞpðx; tÞ (6)

In case the distribution p(x, t) at long times

approach a stationary distribution pssðxÞ, we must

have time-independent Jss as well. The Jss is not zero

in general. This gives rise to the classification of equi-

librium stationary state (or steady state) with Jss ¼ 0,

and nonequilibrium steady state (NESS) which has

nonzero Jss.
For equilibrium steady state, Jss ¼ 0 leads to:
BiðxÞpeqðxÞ ¼ 1

2

XN
j¼1

@

@xj
AijðxÞpeqðxÞ (7)

This can be written as:

~BiðxÞpeqðxÞ ¼ 1

2

XN
j¼1

AijðxÞ @

@xj
peqðxÞ;

~BiðxÞ ¼ BiðxÞ �
XN
j¼1

@AijðxÞ
@xj

(8)

We then see that the drift BðxÞ and diffusion AðxÞ,
when the latter is nonsingular, satisfy a condition:
2
XN
i¼1

A�1ðxÞ� �
ji
~BiðxÞ ¼ @

@xj
ln peqðxÞ (9)

The vector field on the left-hand side has a potential

function. In the case of one-dimensional system:
peqðxÞ / exp

Zx

2 ~BðyÞ
AðyÞ dy

0
@

1
A (10)

In many cases, because of the gradient nature of the

drift, the stationary distribution for an equilibrium

steady state can be obtained even for high-dimensional

systems. However, for nonequilibrium steady state,

this is a much more difficult task because of the pres-

ence of nonzero Jss, which makes the problem
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nonlocal. Nongradient vector field has a circular com-

ponent which is intimately related to the Jss.

Some Applications of Fokker–Planck Equations

Beyond the classic work of Einstein and

Smoluchowski, H.A. Kramers was the first one who

used a Fokker–Planck equation to study discrete chem-

ical reactions in terms of diffusion in a potential func-

tion with an activation barrier, and derived his famous

rate formula. This work laid the foundation for the

physical basis of chemical reactions in condensed

phase.

When the potential force is harmonic, the

Fokker–Planck equation yields the simple Gaussian

Markov process also known as Ornstein–Uhlenbeck

process (Wax 1954). See an earlier, extensive review

by R.F. Fox. A major application of the multi-

dimensional Fokker–Planck equation is in the theory

for polymer dynamics (Doi and Edwards 1986).

D. Shoup and A. Szabo later developed a unified

treatment of diffusion controlled chemical reaction

studied by Smoluchowski and transition-state con-

trolled reaction studied by Kramers.

Diffusion Approximation to Chemical Master

Equation

Traditionally, a Fokker–Planck equation, or its

corresponding stochastic differential equation, is

developed for macroscopic continuous motion of

dynamic variables with fluctuations. Such an

equation is used to explain small fluctuations around

a deterministic mean dynamics of a macroscopic sys-

tem. Recently, a different derivation of the Fokker–

Planck equation from a mesoscopic nonequilibrium

thermodynamic theory has been developed by Reguera

et al. 2005. In systems biology, however, there is a very

different origin for Fokker–Planck equations. They are

the macroscopic, continuous limit of stochastic popu-

lation dynamics. The population can be number of

molecules in biochemical reaction systems, or number

of cells in an organism, or number of individual in an

ecological setting, etc. These stochastic dynamics are

known as birth-and-death processes in the theory of

probability. The process takes nonnegative integer

values. When the number of individual is sufficiently

large, the discrete increments can be approximated by

a continuous variables X(t), in real numbers.

The chemical master equation is the stochastic

theory for discrete biochemical reaction systems in
a finite volume. If in a biochemical system, the number

of all the components, X(t) ¼ (X1(t), X2(t),. . ., XN(t)),

are very large compared to 1, we can regard the com-

ponents of X(t) as real numbers. In the discrete model,

let aj(x) be the transition rate for reaction j, changing

the number of molecules from x¼ (x1, x2,. . ., xN) to x +
nj¼ (x1+ nj1, x2+ nj2,. . ., xN + njN). Then one can carry
out multivariate Taylor’s expansion for the functions

fj(x) 
 aj (x)P(x, t) if they are analytic in the real

variable x:
fjðx� vjÞ ¼ fjðxÞ þ
X
jmjr1

YN
i¼1

ð�1Þmi

mi!

@

@xi

� �mi

fjðxÞ vmi

ji

(11)

Here m ¼ (m1, . . ., mN) 2 ZN, denoting the nonnega-

tive, N-dimensional integer space (lattice). |m| ¼ m1 +

m2 + . . . + mN. Substituting Eq. 11 into the chemical

master equation, we obtain the Kramers–Moyal

expansion:
@

@t
Pðx; tÞ ¼

X
jmjr1

YN
i¼1

ð�1Þmi

mi!

@

@xi

� �mi

AmðxÞPðx; tÞð Þ

(12)

where
AmðxÞ ¼
XM
j¼1

vm1

j1
vm2

j2
� � �vmN

jN
ajðxÞ: (13)

If one truncates the right-hand side at |m| ¼ 2, we

obtain the Fokker–Plank approximation (or diffusion

approximation) of the chemical master equation:
@

@t
pðx; tÞ ¼ �

XN
i¼1

@

@xi
½BiðxÞpðx; tÞ�

þ 1

2

XN
i¼1

XN
j¼1

@2

@xi@xj
½AijðxÞpðx; tÞ�

(14)

Where
BiðxÞ ¼
XM
j¼1

vjiajðxÞ; AijðxÞ ¼
XM
k¼1

vkivkjakðxÞ: (15)
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The corresponding stochastic differential equations

associated with this chemical Fokker–Plank equation

is called the chemical Langevin equation.

A critique on the diffusion approximation. For many

chemical reaction systems described by the Law of

Mass Action and nonlinear kinetic equations, there

are multiple steady states. For reaction systems with

multiple steady states, the Fokker–Planck equation is

not a faithful global approximation to the chemical

master equation. Simple, explicit examples are

known to show the diffusion approximation gives

wrong stationary distribution with respect to two

steady states, represented as two local maxima in the

distribution function. On the other hand, van Kampen

has shown that the Kramers–Moyal expansion is not

a cogent method of approximation. The more cogent

system-size expansion method developed by van

Kampen is based on conditional variance of

a dynamic process and it yields a time-inhomogeneous

Fokker–Planck equation.

However, these methods are both local rather than

global; they do not allow for the determination of

global features such as multistability and the decay of

metastable states, i.e., barrier crossing. Note that while

the system-size expansion is mathematically more

cogent, it still does not give a global view of

multistability since it could only be applied in

a single basin of attractor for the deterministic system

depending on the initial state.

What can be guaranteed, from both approaches, is

a faithful fluctuation description near a given steady

state which is not absorbing. In other words,

a Gaussian approximation. Note this is precisely the

static and dynamic fluctuation theory developed by

A. Einstein and L. Onsager, respectively. However, if

one is interested in the relative importance (i.e., sta-

tionary probability) among different possible steady

states and their transition kinetics, a more careful anal-

ysis is required. J. Keizer showed a deterministic

unstable fixed point can have probability 1 according

to the CME; and P. Hanggi et al. showed the relative

probability of two stable steady states could be

inverted in the stationary solution from the approxi-

mated Fokker–Planck equation for some range of

the parameters. These observations were later

termed “Keizer’s paradox”(Vellela and Qian 2007).

C. Knessel et al. pointed out that the mean first passage

times between different states can differ by many

orders of magnitude depending on which approach
is used. F. Baras et al. used the microscopic simulation

to demonstrate the failure of the diffusion approxima-

tion approach, but showed the chemical master equa-

tion to be in excellent agreement with the simulations.

The Keizer’s paradox is due to the following origin:

As an approximation to the CME, the Fokker–Planck

equation is expected to be valid near a solution to the

deterministic dynamics. But dynamic going uphill is

impossible in the deterministic dynamics. Therefore,

the Fokker–Planck equation gives poor approximation

for any processes involves uphill dynamics. In fact,

with multiple stable steady states, moving away from

one has a very small probability; but with probability 1

it will occur. The catch is the time it takes is usually

astronomically long.
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Definition

Stochastic resonance (SR) is observed when noise

added to a system changes the system’s behavior

in some fashion. More technically, SR occurs if the

signal-to-noise ratio of a nonlinear system or device

increases for moderate values of noise intensity. It

often occurs in bistable systems or in systems with

a sensory threshold and when the input signal to the

system is “subthreshold.” For lower noise intensities,

the signal does not cause the device to cross threshold,

so little signal is passed through it. For large noise

intensities, the output is dominated by the noise, also

leading to a low signal-to-noise ratio. For moderate

intensities, the noise allows the signal to reach thresh-

old, but the noise intensity is not so large as to swamp

it. Thus, a plot of signal-to-noise ratio as a function of

noise intensity shows a “\” shape.
Strictly speaking, stochastic resonance occurs in

bistable systems, when a small periodic (sinusoidal)

force is applied together with a large wide band

stochastic force (noise). The system response is

driven by the combination of the two forces that
compete/cooperate to make the system switch between

the two stable states. The degree of order is related to

the amount of periodic function that it shows in the

system response. When the periodic force is chosen

small enough in order to not make the system response

switch, the presence of a non-negligible noise is

required for it to happen. When the noise is small,

very few switches occur, mainly at random with no

significant periodicity in the system response. When

the noise is very strong, a large number of switches

occur for each period of the sinusoid and the system

response does not show remarkable periodicity.

Between these two conditions, there exists an optimal

value of the noise that cooperatively concurs with the

periodic forcing in order to make almost exactly one

switch per period (a maximum in the signal-to-noise

ratio).

Such a favorable condition is quantitatively deter-

mined by the matching of two time scales: the period of

the sinusoid (the deterministic time scale) and the

Kramers rate (i.e., the inverse of the average switch

rate induced by the sole noise: the stochastic time

scale). This is the term “stochastic resonance.”

Stochastic resonance was discovered and proposed

for the first time in 1981 to explain the periodic recur-

rence of ice ages. Since then the same principle has

been applied in a wide variety of systems. Nowadays

stochastic resonance is commonly invoked when noise

and nonlinearity concur to determine an increase of

order in the system response.

The mechanism of stochastic resonance is simple to

explain. Consider a heavily damped particle of mass m

and viscous friction g, moving in a symmetric double-

well potential V(x) (see Fig. 1a). The particle is subject

to fluctuational forces that are, for example, induced by

coupling to a heat bath. Such a model is archetypal for

investigations in reaction-rate theory. The fluctua-

tional forces cause transitions between the neighboring

potential wells with a rate given by the famous

Kramers rate, that is,
rK ¼ o0ob

2pg
exp �DV

D

� �
(1)
with o2
0 ¼ V00 xmð Þ m= being the squared angular

frequency of the potential in the potential minima at

� xm, and o2
b ¼ V00 xbð Þ m=j j the squared angular fre-

quency at the top of the barrier, located at xb; DV is the
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height of the potential barrier separating the two

minima. The noise strength D ¼ kBT is related to the

temperature T.

If we apply a weak periodic forcing to the particle,

the double-well potential is tilted asymmetrically up

and down, periodically raising and lowering the poten-

tial barrier, as shown in Fig. 1b. Although the periodic

forcing is too weak to let the particle roll periodically

from one potential well into the other one, noise-

induced hopping between the potential wells can

become synchronized with the weak periodic forcing.

This statistical synchronization takes place when the

average waiting time TKðDÞ ¼ 1 rK= between two

noise-induced interwell transitions is comparable

with half the period TO of the periodic forcing. This

yields the time-scale matching condition for stochastic

resonance, that is,
2TKðDÞ ¼ TO (2)
S

In short, stochastic resonance in a symmetric

double-well potential manifests itself by a synchroni-

zation of activated hopping events between the poten-

tial minima with the weak periodic forcing

(Gammaitoni et al. 1989). For a given period of the

forcing TO, the time-scale matching condition can be

fulfilled by tuning the noise level Dmax to the value

determined by Eq. 2.

In order to better understand some definitions, let us

consider the overdamped motion of a Brownian parti-

cle in a bistable potential in the presence of noise and

periodic forcing:
dxðtÞ
dt

¼ _xðtÞ ¼ �V0ðxÞ þ A0 cos Otð Þ þ xðtÞ (3)
where VðxÞ denotes the reflection-symmetric quartic

potential:
VðxÞ ¼ � a

2
x2 þ b

4
x4 (4)

xðtÞ denotes a zero mean, Gaussian white noise with

autocorrelation function:
xðtÞxð0Þh i ¼ 2DdðtÞ (5)

and intensity D. The potential VðxÞ is bistable with

minima located at � xm.
Characteristics

Periodic Response

For convenience, we choose the phase of the periodic

driving ’ ¼ 0, that is, the input signal reads explicitly

AðtÞ ¼ A0 cos Otð Þ (see Eq. 3). The mean value

xðtÞ x0; t0jh i is obtained by averaging the inhomoge-

neous process xðtÞ with initial conditions x0 ¼ x t0ð Þ
over the ensemble of the noise realizations. Asymptot-

ically (t0 ! �1), the memory of the initial conditions

gets lost and xðtÞ x0; t0jh i becomes a periodic function

of time, that is, xðtÞh ias ¼ x tþ TOð Þh ias with

TO ¼ 2p O= . For small amplitudes, the response of

the system to the periodic input signal can be written

as xðtÞh ias ¼ �x cos Ot� �f
� �

with amplitude �x and

a phase lag �f. The relationship between �x and D is

called response curve (refer Fig. 2).

Signal-to-Noise Ratio

Signal-to-noise ratio (often abbreviated SNR or S/N) is

a measure used in science and engineering to quantify
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how much a signal has been corrupted by noise. It is

defined as the ratio of signal power to the noise power

corrupting the signal. A ratio higher than 1:1 indicates

more signal than noise. While SNR is commonly

quoted for electrical signals, it can be applied to any

form of signal (such as isotope levels in an ice core or

biochemical signaling between cells).

In less technical terms, signal-to-noise ratio com-

pares the level of a desired signal (such as music) to the

level of background noise. The higher the ratio, the less

obtrusive the background noise is. “Signal-to-noise

ratio” is sometimes used informally to refer to the

ratio of useful information to false or irrelevant data

in a conversation or exchange. For example, in online

discussion forums and other online communities, off-

topic posts and spam are regarded as “noise” that

interferes with the “signal” of appropriate discussion.

Signal-to-noise ratio is defined as the power ratio

between a signal (meaningful information) and the

background noise (unwanted signal):

SNR ¼ Psignal

Pnoise
(6)

where P is average power. Both signal and noise power

must be measured at the same or equivalent points in

a system, and within the same system bandwidth. If the

signal and the noise are measured across the same

impedance, then the SNR can be obtained by calculat-

ing the square of the amplitude ratio:
SNR ¼ Psignal

Pnoise
¼ Asignal

Anoise

� �2

(7)
where A is root mean square (RMS) amplitude (e.g.,

RMS voltage). Because many signals have a very wide

dynamic range, SNRs are often expressed using the

logarithmic decibel scale. In decibels, the SNR is

defined as
SNRdB ¼ 10 log10

Psignal

Pnoise

� �
¼ Psignal;dB � Pnoise;dB

(8)

which may equivalently be written as
SNRdB ¼ 10 log10

Asignal

Anoise

� �2

¼ 20 log10
Asignal

Anoise

� �
(9)

The concepts of signal-to-noise ratio and dynamic

range are closely related. Dynamic range measures the

ratio between the greatest undistorted signal on

a channel and the smallest detectable signal, which

for most purposes is the noise level. SNR measures

the ratio between an arbitrary signal level (not neces-

sarily the most powerful signal possible) and noise.

Measuring signal-to-noise ratios requires the selection

of a representative or reference signal. In audio engi-

neering, the reference signal is usually a sine wave at

a standardized nominal or alignment level, such as

1 kHz at +4 dBu (1.228 VRMS).

SNR is usually taken to indicate an average signal-

to-noise ratio, as it is possible that (near) instantaneous

signal-to-noise ratios will be considerably different.

The concept can be understood as normalizing the

noise level to 1 (0 dB) and measuring how far the

signal “stands out.”

An alternative definition of SNR is as the reciprocal

of the coefficient of variation, that is, the ratio of mean

to standard deviation of a signal or measurement:
SNR ¼ m
s

(10)

where m is the signal mean or expected value and s is

the standard deviation of the noise, or an estimate

thereof. Notice that such an alternative definition is

only useful for variables that are always positive

(such as photon counts and luminance). Thus it is

commonly used in image processing, where the SNR

of an image is usually calculated as the ratio of the
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mean pixel value to the standard deviation of the pixel

values over a given neighborhood. Sometimes SNR is

defined as the square of the alternative definition

above.

The Rose criterion (named after Albert Rose) states

that an SNR of at least 5 is needed to be able to

distinguish image features at 100% certainty. An

SNR less than 5 means less than 100% certainty in

identifying image details.

Yet another alternative, very specific and distinct

definition of SNR is employed to characterize sensi-

tivity of imaging systems; see signal-to-noise ratio

(imaging).

Related measures are the “contrast ratio” and the

“contrast-to-noise ratio.”
Residence-Time Distribution

A deeper understanding of the mechanism of stochas-

tic resonance in a bistable system can be gained by

mapping the continuous stochastic process xðtÞ (the

system output signal) into a stochastic point process
tif g. The symmetric signal xðtÞ is converted into

a point process by setting two crossing levels, for

instance at x� ¼ �c with 0 
 c 
 xm. On sampling

the signal xðtÞ with an appropriate time base, the

times ti are determined as follows: Data acquisition is

triggered at time t0 ¼ 0 when xðtÞ crosses, say, x� with

negative time derivative (xð0Þ ¼ c, _xð0Þ < 0); t1 is the

subsequent time when xðtÞ first crosses xþ with posi-

tive derivative (x t1ð Þ ¼ c, _x t1ð Þ > 0); t2 is the time

when xðtÞ switches back to negative values by
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recrossing x� with negative derivative, and so on. The

quantities TðiÞ ¼ ti � ti�1 represent the residence

times between two subsequent switching events. For

simplicity, we set c ¼ xm. The statistical properties of

the stochastic point process tif g are the subject of

intricate theorems of probability theory. In particular,

no systematic way is known to find the distribution of

threshold crossing times. An exception is the symmet-

ric bistable system: Here, the long intervals T of con-

secutive crossings obey Poissonian statistics with an

exponential distribution:
NðTÞ ¼ 1 TK=ð Þ exp �T TK=ð Þ (11)

The distribution Eq. 11 is important for the forth-

coming discussion, because it describes to a good

approximation the first-passage time distribution

between the potential minima in unmodulated bistable

systems (Fig. 3).

Coherent Switch

Among the various patterns of regulation associated

with nonlinear kinetics, bistability, a system-level
property that even relatively simple signaling

networks have the potential to produce, allows

a graded signal to be turned into a discontinuous

evolution of the system along several possible

distinct signaling pathways which can be either

reversible or irreversible. A system is termed bistable

if it can switch between two distinct stable steady

states but cannot rest in intermediate states under the

excitation of external stimuli (e.g., noise). Biological

examples of bistable systems include the l phage

lysis-lysogeny switch, several mitogen-activated

protein kinase (MAPK) cascades in animal cells,

and cell cycle regulatory CI circuits in Xenopus

and Saccharomyces cerevisiae. Usually, bistable

systems in the biological context are thought of as

those involved in the generation of switch-like

biochemical responses, the establishment of cell

cycle oscillations and mutually exclusive cell cycle

phases, the production of self-sustaining biochemical

“memories” of transient stimuli, or the rapid

lateral propagation of receptor tyrosine kinase activa-

tion. In spite of their simple dynamic behaviors,

bistable systems are building blocks of larger
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regulatory elements: genetic networks and signaling

cascades.

Usually, coherent switch means that for a bistable

system, some stochastic fluctuations (or noise) induce

switching between two stable states. In order to under-

stand the basic mechanism of stochastic switch, we

consider a double-well potential system in the presence

of noise and periodic forcing (see Eq. 3). Numerical

simulations show that the appropriate noise strength

can induce optimal switches between two steady states

(refer Fig. 4).

Except for noise-induced stochastic resonance,

coupling can noticeably enhance the stochastic reso-

nance effect. In fact, the influence of spatial coupling

in the SR scenario is revealed in the effect of the

system size. For example, consider the following sys-

tem consisting of globally coupling arrays of bistable

elements:
dxi
dt

¼ _xi ¼ xi � x3i þ
e
N

XN
j¼1

xj � xi
� �

þ A cosotþ xiðtÞ
(12)

where the noise xiðtÞ is assumed as Gaussian white

noise with correlation given by

xiðtÞxj t0ð Þ� � ¼ 2s2dijd t� t0ð Þ, e represents coupling
strength, and N denotes the system size. Figure 5

shows the system size–induced stochastic resonance.
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Definition

The term “simulation” is generally used to indicate the

calculation of the system’s dynamics over time, given

an initial specific system configuration; for biological

systems the initial configuration corresponds usually to

the initial concentration of molecules. Biological sys-

tems can be simulated in different ways using different

algorithms depending on the assumptions made about

the underlying kinetics. Once the kinetics have been

specified, these systems can be used directly to con-

struct full dynamic simulations of the system behavior

on a computer.

Chemical stochastic systems are usually

represented by a chemical master equation (CME)

that describes the time evolution of the probability

distribution of the discrete molecule quantities

(expressed by natural numbers). This evolution is

a continuous time Markov chain (CTMC), of which

any possible realizations can be generated through the

Monte Carlo sampling methods. The most famous of

these methods for coupled chemical reactions is the

SSA algorithm of Gillespie (Gillespie 1976, 1977).

Gillespie designed an efficient way to simulate

a trajectory of a set of coupled chemical reactions. The

algorithm he proposed is exact with respect to the under-

lying principles behind the CME; it simulates a jump

Markov process and is based on the assumption that two

events take place at the same time with zero probability.

Gillespie proposes two mathematically equivalent

methods: the direct method (DM) and the first reaction

method (FRM). The algorithm is computationally

expensive, so many modifications and adaptations

exist: the efficient next reaction method by Gibson

and Bruck (2000) that achieves a significant reduction

in complexity with respect to the Gillespie algorithms,

tau-leaping, and hybrid techniques where reactants in

abundance are modeled with deterministic behavior.

The price to be paid when those more efficient tech-

niques are used is that the exactitude of the theory

behind the algorithm as it connects to the master equa-

tion is generally compromised, but they offer reason-

able realizations for greatly improved timescales.

A summarized description of the steps of FRM

algorithm follows (for the other methods, see the

papers cited in the references).

General idea: at each step a random putative reac-

tion time is calculated for each reaction and the one

with the shortest time is chosen and executed.
1. Initialize the number of molecules for each species

and the initial time ¼ 0.

2. Calculate the propensity value ai for each

i 2 f1; . . . ;mg (where m is the total number of

reactions in the system). Propensities represent the

probability that a reaction Rj occurs in the next

infinitesimal time interval and depend on the

amount of reactants that are present in the system

in that time instant).

3. For each i 2 f1; . . . ;mg generate a putative time ti
in accordance with an exponential distribution of

parameter ai.

4. Let tm and m be the fastest time and the

corresponding reaction.

5. Update the number of molecules to reflect the

execution of m.
6. Set t ¼ t + tm.
7. Go back to Step 2 unless the number of all reactants

is zero or the simulation time has been exceeded.

This method is used heavily in computational sys-

tems biology at the basis of almost all the stochastic

simulators implemented for modeling biological sys-

tems with different computational languages. See

▶Cell Cycle Modeling, Process Algebra for an exam-

ple of a biological relevant case study, modeled with

different process algebra approaches and simulated

with SSA.
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Synonyms

Stochastic simulation algorithms (SSAs)
S

Definition

Gene expression is a stochastic process. The noise may

come in two ways: intrinsic and extrinsic. Such noises

are believed to play especially important roles when

species are present at low-copy numbers. The stochas-

tic modeling framework grasps the essence of the

stochastic collision of biochemical components. How-

ever, most stochastic models are not analytically or

numerically solvable in any but the simplest cases.

Therefore, one has to resort Monte Carlo type simula-

tions. Stochastic simulation methods have become an

invaluable tool to study temporal dynamics of biomo-

lecular systems. In contrast to deterministic approach

based on ordinary differential equations, they can cap-

ture effects that occur due to the underlying discrete-

ness of the systems and random fluctuations in

molecular numbers. Various stochastic, approximate

stochastic, and hybrid simulation methods have been

proposed.

Monte Carlo simulation produces a random walk

through the possible states of the system. In other

words, instead of calculating the probability distribu-

tion, the approach simulates the time evolution of

a particular trajectory, starting at a given initial state.

Stochastic simulation algorithms (SSAs) can roughly

be divided into exact, approximate, or hybrid strate-

gies, depending on whether or not they introduce

approximations or combine different approaches into

one calculation scheme.
Generally, the SSA first constructs numerical real-

izations and then averages the results of many realiza-

tions. When performing simulations, the next reaction

and the time of its occurrence need to be determined,

e.g., through the Gillespie’s direct method. The goal of

stochastic simulation is then to describe the evolution

of the state from some given initial state.

The most widely used SSA was developed by

Gillespie in 1976. The Gillespie’s SSA describes the

state with discrete number of chemical molecules

involved, and models its time evolution as a jump

Markov chain with discrete steps. The Gillespie’s

algorithm numerically simulates individual occur-

rences of reactions. Some simulation trajectories are

required for accurately capturing the probabilistic

nature of the transient behavior of a system.

Exact stochastic methods include direct method and

the first reaction method proposed by Gillespie and

next reaction method proposed by Gibson and Bruck.

Exact stochastic methods explicitly simulate each

reaction event in the system, thus having time com-

plexity approximately proportional to the overall num-

ber of particles present in the system. Therefore, they

are slow for large systems. These exact methods are

mathematically equivalent but differ in how they cal-

culate the so-called reaction probability density

function.

The major drawback of exact stochastic methods is

computational cost because the SSA simulates each

individual reaction event. Therefore, various approxi-

mate simulation methods that sacrifice an acceptable

amount of accuracy in order to speed up the simulation

have been developed. The proposed methods often

involve a grouping of reaction events, i.e., they permit

more than one reaction events per step, e.g., t-leap
method and Langevin method.

In 2001, Gillespie developed an approximate sto-

chastic simulation method named t-leap method to

accelerate the stochastic simulation procedure. This

method allows a sensible trade-off between accuracy

and speed. It avoids simulation of every individual

reaction event. Instead, it leaps in steps of length t
containing many single reaction events. Each timestep

t has to fulfill the so-called leap condition: It must be

small enough so that no significant change in the pro-

pensities occurs during [t; tþ t]. Since many single

reaction events can be leaped over when t is large

enough, the simulation can be much faster. How to

choose an appropriate t depends on the trade-off

http://dx.doi.org/10.1007/978-1-4419-9863-7_358
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between accuracy of the simulation and computation

time. Besides the method proposed by Gillespie,

a number of variants and extensions of the t-leap
method have been developed. For example, unbiased

t-leap method has been proposed to correct the bias in

t-leaping.
As a reaction occurs more frequently, it becomes

more continuous, with the fluctuations in the rates of

the reaction becoming Gaussian, via the central limit

theorem. One may then approximate the fast reactions

using the chemical Langevin equation (CLE), which is

equivalent to an ordinary differential equation (ODE)

with an additive Gaussian term whose variance is cal-

culated from the reaction kinetics. In other words, when

a system possesses a macroscopically infinitesimal time

scale in the sense that during any time increment dt on

that scale, all the reaction channels fire much more than

once and none of the propensity functions change appre-

ciably, its dynamics can be well approximated by

Langevin equations. In particular, when the number of

each species is large, Langevin equations can well

describe the dynamics of cellular systems. The CLEs

for all species form a system of stochastic differential

equations (SDEs). One can then use continuous-

stochastic techniques to simulate cellular dynamics.

Hybrid methods aim to combine different

approaches into one calculation scheme. The essential

idea is to partition reactions or model species into two

or more groups: e.g., a group of low-copy number

species and a group of high-copy number species,

and then treat them in different ways. For further

details, see the entry on hybrid simulation strategies.
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Definition

Stochastic switch means that random forces induce

switching between two stable states of a dynamical

system. The common stochastic switching is the one

occurring in a bistable system subjected to an external

stochastic force.
Stochastic Synchronization

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou, Guangdong,

China
Definition

Stochastic synchronization is a type of synchronization

in the sense of statistics. The fundamental phenomenon

of synchronization occurs in nonlinear self-sustained

oscillators subjected to a periodic force or coupled with

each other. This phenomenon manifests itself in locking
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or suppressing of the natural frequency of the oscillator

by periodic force. Synchronization-like phenomena can

occur in stochastic bistable systems which have no nat-

ural frequency at all. Stochastic bistable system pos-

sesses a noise-controlled mean switching frequency

(MSF) between metastable states being an analogy of

natural frequency. The stochastic synchronization

reveals locking of the mean switching frequency by

external periodic force. The same phenomenon can be

observed in coupled stochastic bistable systems.

For coupled stochastic bistable systems, the

stochastic differential equations have the form
S

dx

dt
¼ ax� x3 þ g y� xð Þ þ

ffiffiffiffiffiffi
2D

p
x1ðtÞ

dy

dt
¼ b� y3 þ g x� yð Þ þ

ffiffiffiffiffiffi
2D

p
x2ðtÞ

where a and b are parameters characterizing the barrier

heights in the subsystems, x1;2ðtÞ are statistically inde-
pendent white Gaussian noises. The parameter g refers
to the strength of coupling in the system. In the

decoupled case (g ¼ 0) the stochastic processes in the

subsystems are statistically independent with different

mean switching frequencies (MSFs), determined by

the parameters a and b. However, with the increase

of the coupling strength g some kind of coherence can

be observed and the MSFs in the subsystems tend to

coincide. In the following figure, the dependence of the

MSF in the subsystems versus g is shown for the fixed

values of D, a, and b. As it is seen from the figure, the
MSFs in the subsystems draw closer to one another

when the strength of coupling is increased. Such

behavior of partial frequencies is indeed typical for

the phenomenon of synchronization of coupled classi-

cal self-sustained oscillators (Fig. 1).
Stochastic Variable

▶Random Variable
Stochastic p-Calculus

▶ Stochastic pi-Calculus
Stock Center

Sabina Leonelli

ESRC Centre for Genomics in Society, University of

Exeter, Exeter, Devon, UK
Definition

A stock center is an institution responsible for the

collection, storage, and distribution of several strains

of a specific group of organisms. Notable examples are

seed banks and stock centres for model organisms

(Rosenthal et al 2002).
Cross-References

▶Model Organism
References
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Stoichiometric Mass Balance Analysis

▶Conservation Analysis
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Stoichiometric Matrix

Osbaldo Resendis-Antonio

Center for Genomic Sciences-UNAM, Universidad

Nacional Autónoma de México, Cuernavaca, Morelos,

Mexico
Definition

The stoichiometric matrix (S) is a matrix that contains

information about all the metabolic transformations

included in a metabolic reconstruction for a microor-

ganisms. In practice, it is formed from the stoichiomet-

ric coefficients of each reaction that comprise the

metabolic reconstruction, which commonly are integer

numbers. These numbers are organized in such a way

that the columns identify chemical reactions and

the rows correspond to metabolic compounds.

For instances, if we have a biological system

conformed by metabolites A, B and C, which can

transform among them following this set of charge

and mass balance metabolic reactions:
Aþ 2B ! C

C ! A

A ! B

The stoichiometric matrix is written as:
S ¼
�1 1 �1

�2 0 1

1 �1 0

2
4

3
5

It is important to stress that the stoichiometric matrix

is an essential component for proceeding to a variety of

computational analysis in genome scale metabolic

reconstructions. Among these computational analyses,

mainly the stoichiometricmatrix plays an important role

in calculating the flux production and degradation for

each one of the metabolites included in a metabolic

reconstruction. This balance is important as it deter-

mines the dynamic profile of metabolic concentrations

by solving the equation:
dx

dt
¼ S � v
Here x ¼ ðx1; . . . xmÞT and v ¼ ðv1; . . . ; vnÞT
are column vectors representing all the metabolic

concentrations and all the metabolic fluxes included

in the reconstruction respectively. Notably, in this

contextual scheme, the analysis of the column, row,

null, and left-null space of S allow us to explore

the dynamical behavior and the feasible steady-state

phenotype of a metabolic network (Palsson 2006).
Cross-References

▶Constraint-based Modeling

▶Dynamic Metabolic Networks, k-Cone

▶ k-Cone Space
References
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Storey Tibshirani Method

Winston Haynes

Seattle Children’s Research Institute, Seatlle,

WA, USA
Definition

The Storey Tibshirani method calculates a specific

False Discovery Rate (FDR) for each feature in

a multiple hypothesis test. Specifically motivated by

microarrays, the Storey Tibshirani method was devel-

oped for experiments with a large number of features

(individual genes) being tested on the same statistical

hypotheses (significant differential expression).

The Storey Tibshirani method emphasizes an

important difference between FDR and the false posi-

tive rate: whereas the false positive rate is the rate that

null features are identified as significant, the FDR is the

rate that features identified as significant are null.

The p-value and q-value are feature specific values

for the false positive rate and FDR, respectively.

Given a list of p-values, the Storey Tibshirani

method determines q-values for each feature.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1143
http://dx.doi.org/10.1007/978-1-4419-9863-7_1144
http://dx.doi.org/10.1007/978-1-4419-9863-7_100731
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The method assumes an accurate calculation of these

p-values. As a foundation, the Storey Tibshirani

method establishes a general definition that the FDR

is the number of false positive features divided by the

total number of significant features.

The Storey Tibshirani method approximates the

proportion of features which are truly null, p0. The
calculation of p0 is derived from a parameter estima-

tion that relies on the assumption that null p-values will
be uniformly distributed. The proportion of null

features is calculated from the density of values in

the uniformly distributed section of p-values.
The number of false positives is approximated as

the proportion of features which are truly null, p0,
times the total number of features, m, times the

p-value, t. The total number of significant features is

the number of p-values in the list which are less than or

equal to t. So, the formula for the q-value is:
p0 � m � t
count pi 
 tð Þ
References
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STRENDA

Carsten Kettner

Beilstein-Institut zur F€orderung der Chemischen

Wissenschaften, Frankfurt am Main, Germany

S

Synonyms

Standards for reporting enzymology data
Definition

STRENDA is both an initiative inaugurated and

funded by the Beilstein-Institut since 2004 and

a working group (Commission) that aims at the

improvement of the quality of reporting functional

enzymology data (Kettner and Hicks 2005).
The STRENDA initiative and working group aim to

establish standards for reporting enzyme data to allow

a full understanding of the conditions under which they

were obtained. The hope is that such standards will

become required by the major scientific journals and

that they will be fully documented in those databases,

such as BRENDA and SABIO-RK related to organ-

isms and enzyme groups that compile enzyme activity

and kinetic data (▶Data Integration). The way toward

these standards is being paved by the compilation of

guidelines which are published on the STRENDA

project website (http://www.beilstein-institut.de/en/

projects/strenda/guidelines/) and which are already

recommended by 28 major biochemistry journals.

These guidelines are divided in two parts: part one is

the Level 1 A checklist that samples the information

that is required for a complete description of an exper-

iment (▶Experimental Design, Variability). This

information allows a quality check on the data and

ensures their value to others. The second part is called

Level 1 B checklist that is concerned with the descrip-

tion of the enzyme activity data (▶Biological

Activity). In principle, this is the minimum informa-

tion to describe the experimental results (Apweiler

et al. 2005).
Characteristics

Background

The modern experimental techniques facilitate the

generation of huge amounts of protein structure and

enzyme activity data. Technical advances increase the

accuracy of both the recording and analysis of data

which leads, consequently, to large data sets which

are published in the scientific journals and collected

in databases such as BRENDA, SwissProt, PDB, and

other electronic repositories (▶Data Integration).

Since experiments (▶Experiment) on enzyme charac-

terizations are carried out under individually defined

and laboratory-specific conditions and experimental

designs (▶Experimental Design, Variability) depend

on the given experimental know-how, methods, and

technical equipment available, raw data for the same

enzyme from different labs are normally not compara-

ble (Kettner and Hicks 2005). Consequently, func-

tional enzyme databases do not provide definite

values of pH and temperature optima, transition rates

of reaction kinetics, Km, KD, and Ki of molecules that

http://dx.doi.org/10.1007/978-1-4419-9863-7_101390
http://dx.doi.org/10.1007/978-1-4419-9863-7_1072
http://www.beilstein-institut.de/en/projects/strenda/guidelines/
http://www.beilstein-institut.de/en/projects/strenda/guidelines/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1191
http://dx.doi.org/10.1007/978-1-4419-9863-7_1337
http://dx.doi.org/10.1007/978-1-4419-9863-7_1337
http://dx.doi.org/10.1007/978-1-4419-9863-7_1072
http://dx.doi.org/10.1007/978-1-4419-9863-7_117
http://dx.doi.org/10.1007/978-1-4419-9863-7_1191
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act as activating and inhibiting substances, and instead

only numbered data within relatively wide ranges can

be found. For example, Km values from the literature

(as stored, e.g., in BRENDA) have been measured at

pH values between 3 and >10 and at temperatures

between 0 �C and more than 100 �C. However, these
ranges of values are neither suitable for making direct

comparisons between two enzymes nor is it possible to

model even sections of physiological pathways due to

the inaccuracy and the broad statistical mean varia-

tions. Therefore, the experimental conditions need to

be clearly and fully stated to avoid misinterpretations

of laboratory findings when data move between

researchers whose laboratories employ individual

methods. Additionally, a clear statement on the mate-

rials used and methods applied is essential for the

successful integration of experimental and theoretical

biology which include in silico analysis and represen-

tations of metabolic systems (▶Kinetic Modeling and

Simulation; ▶Synthetic Models and Methods)

(Stelling et al. 2002; Klipp et al. 2007; LeNovere

et al. 2007).

Aims

STRENDA proposes uniform assay standards

(▶Biological Assay) of data for single enzymes and

groups of enzymes. The Commission is aware that the

conditions under which an enzyme operates will

depend on the organism and organelle in which it

occurs. To take an extreme example, the physiological

temperature at which an enzyme operates in a mammal

may have little relevance to the behavior of the

corresponding enzyme in a hyperthermophile.

Additionally, the use of very different assay conditions

for assaying the forward and reverse reactions cata-

lyzed by the same enzyme may mean that valuable

thermodynamic data are lost.

STRENDA develops an electronic data-submission

form (STRENDA E-Form) that incorporates the

STRENDA guidelines for reporting enzymology

data. This E-Form is a functional data acquisition

system that is intended to serve as a portal (i) to support

both authors and journals as an assessment tool on the

compliance with the STRENDA guidelines with an

emphasis on providing information comprehesively

rather than defining acceptance criteria, (ii) to store

entered functional data along with the experimental

conditions in a data base that will be publicably

accessible. However, neither this form nor the
guidelines are intended to create a substitute for the

review process. The prototype and later the

productive data acquisition system can be accessed

at http://www.beilstein-institut.de/en/projects/strenda/

e-form/. The STRENDA Commission hopes to work

with the community to develop an E-form that can be

integrated into the publication practices of the commu-

nity (Apweiler et al. 2010) (▶Data Integration).

The STRENDA Commission is aware of the fact

that any recommendation on the standardization of

experimental conditions requires broad discussions

within the scientific community to gain acceptance of

the guidelines. Therefore, the Beilstein-Institut orga-

nizes a symposium called “Experimental Standard

Conditions of Enzyme Characterizations” every

2 years to provide a platform for the exchange of

ideas and link to the scientific community. Experts

from all fields of experimental, theoretical, and bioin-

formatics enzymology and metabolic network investi-

gation present and discuss new results, approaches,

and methodologies as well as pitfalls and problems of

data generation and reproduction. Suggestions from

the STRENDA Commission form the basis of subse-

quent discussions in following symposia where they

were are improved, rejected, or replaced by

alternatives.

The Commission is open for the cooperations with

other standardization initiatives in pertinent subjects.

The STRENDA Guidelines

After extensive discussions with the scientific commu-

nity on recent ▶Experimental Standard Conditions of

Enzyme Characterizations (ESCEC) Symposia,

STRENDA proposes the STRENDA guidelines for

supporting authors, referees, and editors to improve

the quality of scientific data publication.

These guidelines (version 1.6) are divided in

two checklists A and B. List A guides through the

determination of those data required for materials

and methods sections of publications and includes

the description of the identity of enzyme, the assay

conditions (▶Biological Assay), and methodologies,

preparation of the enzyme(s), and additional details.

List B supports the description of the experimental

results comprising the determination of reaction

rates and the dimensions of kinetic parameters, the

proper use of units and correct terminology, as well

as the identification of inhibition and activation

parameters.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1088
http://dx.doi.org/10.1007/978-1-4419-9863-7_1088
http://dx.doi.org/10.1007/978-1-4419-9863-7_569
http://dx.doi.org/10.1007/978-1-4419-9863-7_1338
http://www.beilstein-institut.de/en/projects/strenda/e-form/
http://www.beilstein-institut.de/en/projects/strenda/e-form/
http://dx.doi.org/10.1007/978-1-4419-9863-7_1072
http://dx.doi.org/10.1007/978-1-4419-9863-7_1347
http://dx.doi.org/10.1007/978-1-4419-9863-7_1347
http://dx.doi.org/10.1007/978-1-4419-9863-7_1338
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The STRENDA guidelines have been approved by

NC-IUBMB in 2005. Additionally, the guidelines are

recommended to be considered by authors when

reporting kinetic data by 28 biochemistry journals

amongst them are:

• ACS Biochemistry

• The Journal of Biological Chemistry

• Archives in Biochemistry and Biophysics

• Biochemical and Biophysical Research

Communications

• BBA (all nine sections)

• FEBS Journal

• Nature Chemical Biology

• Proceedings of the National Academy of

Sciences, USA

The recommendation to refer to the MIBBI portal

(Taylor et al. 2008) for prescriptive checklists for

reporting research data is made by the following pub-

lishers and journals:

Publishers:

• BioMedCentral (e.g., BMC Bioinformatics, BMC

Biochemistry, BMC Biology, BMC Systems

Biology, etc.)

• PLoS (e.g., PLoS One, PLoS Biology, PLoS

Medicine, etc.)

Journals:

• OMICS: A Journal for Integrative Biology

The Commission is concerned with the develop-

ment of an electronic submission tool (STRENDA

E-Form) for enzymology data to support authors and

journals to report this data in compliance with the

STRENDA Guidelines since several years (Apweiler

et al. 2005). After an evaluation process, STRENDA

and the Beilstein-Institut decide on the final implemen-

tation of E-Form which could lead to development of

a database for the deposition of protein-function data

(Apweiler et al. 2010).
Cross-References

▶Biological Activity

▶Biological Assay

▶Data Integration

▶ESCEC

▶Experiment

▶Experimental Design, Variability

▶Kinetic Modeling and Simulation

▶ Synthetic Models and Methods
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Mary Helen Barcellos-Hoff

Department of Radiation Oncology and Cell Biology,

New York University School of Medicine, New York,

NY, USA
Synonyms

Connective tissue; Microenvironment
Definition

Stroma is the non-parenchyma compartment in which

vessels, nerves, and migratory immune and inflamma-

tory cells reside. Stroma consists of mostly mesenchy-

mal cells, such as fibroblasts, which produce the

interstitial extracellular matrix (ECM), pericytes adja-

cent to blood vessels, and adipocytes.
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Characteristics

All organs are composed of the parenchyma, i.e., the

cells that perform the function of the organ, and the

stroma, a supporting or connective tissue composed

mainly of ▶ fibroblasts, and in some organs, adipo-

cytes. The connective tissues essentially hold the

cells of the body together. These tissues form

a framework, or matrix, for the body. Systemic tissues

that include the vasculature network, immune cells,

and peripheral nerves reside within the stroma. The

stroma provides support for the architecture of the

parenchyma, e.g., epithelial lobules, ducts, and glands,

by producing the interstitial ECM which has abundant

elastin and collagen type I, one of the most abundant

proteins in animals.

The adult stroma is derived from the fetal mesen-

chyme, which is both instructive and inductive for

parenchyma. The early work of developmental biolo-

gists established that epithelia are “specified” via

inductive interactions with stroma (Kratochwil 1969).

During development, the epithelium and stroma

acquire more differentiated phenotypes as a result of

multiple and often reciprocal hormonally regulated

interactions. Tissue recombination studies in vivo

have been useful in elucidating these relationships.

An example is the studies using the mouse mammary

gland to demonstrate that interactions between the

embryonic epithelial and dense fibroblast stroma deter-

mine the ability of the epithelia to interact with the

fatty stroma (Sakakura et al. 1982). If the epithelium

does not come into contact with mesenchymal cells in

the postnatal period, ductal morphogenesis fails to

occur. The tissue-specific pattern of ductal branching

is also dictated by stromal signals. Adipose stroma is

required since epithelial growth occurs only in an

adipose stroma, while adipose itself is dependent

upon the presence of epithelium for inducing the

changes in glycogen metabolism that accompany preg-

nancy and lactation. Thus, both fibroblast and adipose

stroma are intimately involved in the development and

differentiation of the epithelium.

While all organs have stroma, not all stroma are the

same. Some organs have dense connective tissue;

a good example is bone and cartilage, in which the

▶ extracellular matrix is highly specialized for rigidity

and strength. Loose connective tissue acts as a partition

between tissue elements. Adipose tissue is made of

mostly adipocytes, but adipocytes can be dispersed as
they are in the bone marrow, which consists of

a reticular stroma defined by a highly organized net-

work of collagen fibrils.

The vascular and lymphatic endothelium is

supported by specialized stromal cells called pericytes.

Pericytes provide both structural scaffolding and com-

municate with endothelial cells by direct physical con-

tact and paracrine signaling pathways. Gap junctions

between the cytoplasm of pericytes and endothelial

cells enable the exchange of ions and small molecules.

Stroma often contains myofibroblasts that exhibit

smooth muscle phenotypic properties characterized by

the expression of most of the smooth muscle markers

with a significant degree of heterogeneity in smooth

muscle protein expression. The phenotypic transition

of fibroblasts to myofibroblasts is an example of the

plasticity of the differentiated cell phenotype.

Myofibroblasts are contractile and are induced during

healing to facilitate closure of wounds and are also

prevalent in fibrotic pathologies. A special

myofibroblast is induced in cancer that exhibits

a mixed phenotype designated as cancer-associated

fibroblasts (CAF). These fibroblasts may be considered

together as “activated,” in contrast to the relatively

quiescent state of most fibroblasts in normal tissue

(Olumi et al. 1999).

Immune cells, including macrophages, dendritic

cells, and mast cells, reside in the stromal tissue com-

partment and contribute to the composition of the

microenvironment. The adult stroma is also subject to

modification by inflammation, during which fibro-

blasts are responsive to cytokines and participate in

a reciprocal action that is important for the resolution

of acute inflammation. Chronic inflammation can

induce a wound-like (▶Wound Response) stromal

response that in turn promotes persistent inflammation.

Connective tissue disease is any disease in which con-

nective tissue is a primary target of pathology. Many

connective tissue diseases feature abnormal immune

system activity with inflammation in tissues as a result

of an immune system that is directed against one’s own

body tissues, often accompanied by degradation or loss

of ECM.

Stroma is also an important source of growth fac-

tors, cytokines, and regulatory signals that include

IGF-1, SDF-1, FGF-2, and TGF-b. Together, diverse
stromal cells, soluble cytokines, and the insoluble

ECM form a dynamic network of information that

mediates tissue function. A reactive stroma,

http://dx.doi.org/10.1007/978-1-4419-9863-7_1393
http://dx.doi.org/10.1007/978-1-4419-9863-7_1394
http://dx.doi.org/10.1007/978-1-4419-9863-7_1396
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characterized by a shift in either resident or recruited

cell types, participates in wound healing, inflamma-

tion, disease pathology, and cancer progression

(Rowley 1998).
Cross-References

▶Extracellular Matrix

▶ Fibroblasts

▶Wound Response
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Introduction

In systems biology, mathematical models of the

dynamics of cellular processes promise to yield new

insights into the underlying biology and their systems’

properties (Becker et al. 2010). Often, models contain

parameters such as reaction rate constants, amount of

molecular compounds, and detection sensitivities, or
measurement backgrounds are involved that are

unknown or known only with large uncertainty

(Bachmann et al. 2011). Before a model can be used

for prediction, the unknown parameters have to be

estimated by comparing model output to experimental

data. For a realistic assessment of the accuracy of

model predictions, it is important that uncertainties in

the experimental data and in prior model assumptions

are propagated correctly via the estimated parameters

to the model predictions. The processes are usually

nonlinear, high-dimensional and time-resolved exper-

imental data of the processes are sparse. Therefore,

parameter estimation faces the challenges of structural

and practical nonidentifiability of the parameters

(Raue et al. 2009). ▶ Identifiability indicates whether

a parameter can be inferred from the experimental

data (Walter 1987). Nonidentifiability of the model

parameters reduces the predictive power of a

model. The results of an identifiability analysis can

be used for designing new experiments that resolve

nonidentifiabilities (Raue et al. 2010).
Definition

In the context of signaling networks (▶Metabolic and

Signaling Networks), ordinary differential equation

(ODE) systems are frequently used to investigate the

dynamic properties of pathway components and

their transient modifications (Swameye et al. 2003).

This assumes that diffusion is fast compared to

reaction rates and cell volume. Intrinsic stochasticity

can be neglected if the copy number of proteins is

sufficiently large. The model equations
_xðt; yÞ ¼ f xðt; yÞ; uðtÞ; yð Þ (1)

yðti; yÞ ¼ g xðti; yÞ; yð Þ þ ei (2)

describe via the ODE system (Eq. 1) the dynamics of n

species x such as concentrations of proteins in different

phosphorylation states (▶Partial Differntial Equa-

tions, Numerical Methods and Simulations). Their

dynamical behavior may depend on an input function

u(t) such as an external treatment with ligands and

model parameters y ¼ fy1 ::: ylg such as rate constants
or initial conditions of (Eq. 1). The species are mapped

to m model observables y via an observation function

g in (Eq. 2). The model observables are the quantities
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accessible by experiments measured at times ti. They
may depend on additional parameters such as scaling

or offset parameters included in y. Often, only a subset
or combinations of the modeled species are accessible

by experiments, meaning that m < n. The distribution

of the measurement noise Eki � N 0; s2ki
� �

is assumed to

be known.

Commonly, many model parameters y are unknown
and have to be estimated from experimental data

(▶Parameter Estimation; ▶Optimization and Param-

eter Estimation, Genetic Algorithms; ▶Grid Comput-

ing, Parameter Estimation for Ordinary Differential

Equations). The agreement of experimental data

yykðtiÞ with the observables predicted by the model

ykðti; yÞ for parameters y is measured by an objective

function, commonly the weighted sum of squared

residuals
w2ðyÞ ¼
Xm
k¼1

Xdk
i¼1

1

s2ki
yykðtiÞ � ykðti; yÞ

� 	2

(3)

where dk denotes the number of data points for each

observable k ¼ 1. . . m, measured at time points ti with

i ¼ 1. . . dk. ski are the corresponding measurement

errors that are assumed to be known. The parameters

can be estimated by finding the parameter values ŷ that
minimize w2(y). For normally distributed measurement

noise, this corresponds to ▶maximum likelihood

estimation (see, e.g., Seber and Wild (2003)).

Therefore, w2(y) will be called likelihood in the

following.

The key point is that it is not sufficient to rely on the

mere estimated parameter values and the predictions

corresponding to these values. It is important to

consider the uncertainties in the parameter estimation

procedure: from measurement uncertainties, to param-

eter uncertainties and possibly non-▶ identifiability, to

uncertainties in the model predictions. Uncertainties in

the parameter estimates are usually described by

▶ confidence intervals.

Characteristics

An approach for ▶ identifiability analysis utilizing the

profile likelihood
w2PLðyiÞ ¼ min
yj6¼i

w2ðyÞ� �
(4)
was proposed by Raue et al. (2009). The idea of the

approach is to detect flatness of the likelihood by

exploring the parameter space for each parameter in

the direction of least increase in w2(y). Therefore, for
each parameter yi, individually a section along the

minimum of the objective function with respect to all

of the other parameters yj6¼i is computed. At the

same time, the profile likelihood enables calculation

of likelihood-based confidence intervals (Murphy and

van der Vaart 2000).

Structural Nonidentifiability

A structural nonidentifiability arises from the model

structure only and is independent of the amount and

quality of experimental data (see Walter (1987)).

Assuming ideal measurements, with arbitrarily many

and perfectly chosen measurement time points ti and

absence of measurement errors ei ¼ 0, the crucial

question is whether the model parameters y are

uniquely estimable from the model observables y(ti,y).
The analytical solution of y(ti,y) may contain an

ambiguous parameterization with respect to y, arising
from an insufficient mapping function g in (Eq. 2) that

is characterized by functional relations h(ysub)¼ 0 of a

subset of parameters ysub � y. In terms of likelihood,

a structural nonidentifiability manifests as iso-w2

manifold
yjhðysubÞ ¼ 0f g ) w2ðyÞ ¼ const: (5)

For a two-dimensional parameter space, a structural

nonidentifiability can be visualized by a perfectly flat

valley that is infinitely extended along the

corresponding functional relation, as illustrated in

Fig. 1a by the dashed line. Correspondingly, this can

be detected by a flat line of the profile likelihood for

each parameter of ysub (see Fig. 1b). Consequently,

structural nonidentifiable parameters are not uniquely

identified by measurements of y(ti,y), and confidence

intervals of yi 2 ysub are infinite. A parameter is

structurally identifiable if a unique minimum of w2(y)
with respect to yi exists (see Fig. 1c–f).

Practical Nonidentifiability

A parameter that is structurally identifiable may still be

practically nonidentifiable. This can arise due to

insufficient amount and quality of experimental data

or inappropriately chosen measurement time points.

It manifests in a confidence interval that is infinite,

http://dx.doi.org/10.1007/978-1-4419-9863-7_1253
http://dx.doi.org/10.1007/978-1-4419-9863-7_291
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Structural and Practical Identifiability Analysis,
Fig. 1 Assessing identifiability of parameter y1 from the profile

likelihood w2PLðy1Þ. Contour lines in (a, c, e) shaded from black to
white correspond to low, respectively, high values of w2(y).
Highlighted contour lines indicate the threshold Da utilized to

asses likelihood-based confidence intervals, and asterisk
corresponds to the optimal parameters ŷ. Dashed lines in

(b, d, f) indicate the profile likelihood of y1 and its corresponding
trace in (a, c, e)
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although the likelihood has a unique minimum for this

parameter. Confidence intervals can be defined by

a threshold Da in the likelihood. This threshold defines

a confidence region
S

yjw2ðyÞ � w2ðŷÞ < Da

n o
with Da

¼ Q w2df ; 1� a
� 	

(6)

whose borders represent likelihood-based confidence

intervals (Meeker and Escobar 1995). The threshold

Da is the 1–a quantile of the w2df -distribution. The
choice of df yields confidence intervals that hold

jointly for df number of parameters (Press et al.

1990); often, df ¼ 1 is desired.

A parameter is practically nonidentifiable if the

likelihood-based confidence region (Eq. 6) is infinitely

extended in the direction of yi indicated by the likeli-

hood staying below a desired Da (Raue et al. 2009).

Similar to structural nonidentifiability, the flattening
out of the likelihood can continue along a functional

relation. For a two-dimensional parameter space,

a practical nonidentifiability can be visualized as a

relatively flat valley, which is infinitely extended, as

seen in Fig. 1c. This can be detected by the

corresponding profile likelihood in Fig. 1d, indicating

that the height distance of the valley bottom to the

lowest point at ŷ never excesses Da. By designing

new experiments that increase the amount and quality

of measured data and/or adjust the choice of measure-

ment time points ti, a practical nonidentifiability will

ultimately be remediated, yielding finite confidence

intervals (see Fig. 1e–f).

Experimental Design

Structural nonidentifiability is independent of the

accuracy of experimental data. Therefore, it cannot

be resolved by increasing the amount and quality

of existing measurements. The only remedy is

a qualitatively new measurement which alters the

mapping function g in (Eq. 2), usually by increasing
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the number of observed species. For practical

nonidentifiability, increasing the amount and quality

of existing measurements may be sufficient but is often

not very efficient.

To plan new experiments (▶Optimal Experimental

Design) that efficiently resolve nonidentifiability

problems affecting yi, the set of trajectories along the

profile likelihood w2PLðyiÞ should be investigated (Raue
et al. 2009). Spots of large variability of the trajectories

reveal where the uncertainty of yi has high impact.

Additional measurements at these spots are promising

candidates to resolve both structural and practical

nonidentifiabilities and narrow confidence intervals

efficiently. Furthermore, the amplitude of variability

of the trajectories at these spots allows assessment

of the necessary measurement precision to provide

adequate data.
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Synonyms

Immunoinformatics; Structure-based immunoinfor-

matics
Definition

Structural immunoinformatics is the study of Immune

system using computer-aided biotechnological (bioin-

formatics) tools and x-ray crystal structures of immune

system components (Khan et al. 2009).
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Structural Motif

▶Motif
value

Student’s t-Test, Fig. 1 Significantly different populations.
The dark- and light-gray lines represent the distributions
Structure Type

▶ IMGT-ONTOLOGY, StructureType
of two different populations. Since these distributions have

minimal overlap, they appear to be significantly different.

(Parameters: dark-gray mean ¼ 3, standard deviation ¼ 1;

light-gray mean ¼ �3, standard deviation ¼ 1)
Structure-based Immunoinformatics

▶ Structural Immunoinformatics
Structured Terminologies
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Student’s t-Test

Winston Haynes

Seattle Children’s Research Institute,

Seattle, WA, USA
value

Student’s t-Test, Fig. 2 Nonsignificantly different
populations. The dark- and light-gray lines represent the distri-
butions of two different populations. These distributions

are nearly identical and, thus, are not significantly different.

(Parameters: dark-gray mean ¼ 0, standard deviation ¼ 1;

light-gray mean ¼ 0.25, standard deviation ¼ 1)
Definition

The Student’s t-test determines whether two

populations express a significant or nonsignificant

difference between population means. The Student’s

t-test places emphasis on controlling for sample size.

A significant difference, seen in Fig. 1, is distinguished

from a nonsignificant difference, seen in Fig. 2, by the

properties of the normal distributions characterized by

the data.
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Student’s t-Test, Fig. 3 Normal distribution vs. t distribution.
The normal- and t distributions are drawn in light- and dark-
gray, respectively. (Parameters: normal distribution mean ¼ 0,

standard deviation ¼ 1; t distribution degrees of freedom ¼ 2)

S 2024 Student’s t-Test
Properties

Null Hypothesis

The null hypothesis for the Student’s t-test is that

there is no difference in the means of two populations.

Thus, rejection of the null hypothesis asserts

a statistically significant difference between the

population means.

Requirements

The Student’s t-test distinguishes between exactly two
population sets. Typically, one control condition is

compared to a test condition. Measurements of the

two populations must be in the same units.

Since t-test calculations rely on mean and standard

deviation values from a normal distribution, the

Student’s t-test requires that both populations are rea-

sonably approximated by a normal distribution. Fur-

ther, the variance between the two populations must be

roughly equal. If there exists unequal variance in

populations, then the t-test for unequal variances,

▶Wilcoxon Rank Sum Test, or Welch’s t-test may

be used [Ruxton 2006].

t Score Calculation

The t score represents the difference between sample

means divided by the standard error.
t ¼ Mean difference

Standard error

Standard error decreases as variance decreases and

sample size increases. Accordingly, a lower standard

error indicates more confidence in the answer. So,

a high t score indicates that there is a significant dif-

ference in the means and a high confidence in the

difference. To assess the significance of a t score, the
score must be compared to the t distribution, discussed

below.

t Distribution

Though similar to the bell shape of the normal distri-

bution, the t distribution is characterized by a distinct

▶ Probability Distribution. The t distribution is param-

eterized by the degrees of freedom for the data. In

Fig. 3, the normal- and t distributions are drawn in

light- and dark-gray, respectively. The t distribution

has a wider base than the normal distribution, indicat-

ing that a lower percentage of t scores lie near the mean

than in a normal distribution.
The t distribution is dependent on the degrees of

freedom. In the case of the Student’s t-test, the de-

grees of freedom is the total sample size of both

populations minus two. As the degrees of freedom

increase, the t distribution increasingly favors the

mean. Many textbooks and online sources contain

tables where degrees of freedom and confidence inter-

vals are used to look up threshold values for t scores.

Once a threshold t score is determined, significance of

the t score can be determined. If the t score is greater

than the threshold, the difference between the

populations is significant up to the selected confidence

interval. Otherwise, there is no significant difference

between the two populations.

Formalized t Score Calculation

Note: In practice, most statistical software and

spreadsheet applications can be used to perform

a student’s t-test.
To calculate the t score for two means m1 and m2

with variances s1 and s2, respectively, and sample

sizes of n1 and n2, respectively, the formula is

represented as:
t ¼ m1 � m2

s2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

� 	r

http://dx.doi.org/10.1007/978-1-4419-9863-7_1185
http://dx.doi.org/10.1007/978-1-4419-9863-7_1178
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where the pooled variance, sp

2 is calculated as:
s2p ¼
n1 � 1ð Þs21 þ n2 � 1ð Þs22

n1 þ n2 � 2
Example

We performed a test to determine whether our new

chemical significantly increased cell size. For test-

ing purposes, we measured both a control population,

C and a test population, T one hour after nontreatment

and treatment, respectively. Our results for C and T are

{35, 43, 40, 38, 36, 40} and {52, 47, 39, 43, 41, 48},

respectively.

From this dataset, we used our spreadsheet to

calculate the t score as 2.73. Since there are 12 data

points, the distribution has 10 degrees of freedom.

From the t distribution table, we found that a 95%

confidence interval with 10 degrees of freedom has

a t threshold of 1.812, so we can say with 95% confi-

dence that the difference between control and test was

significant. Our trials require even more precision, so

we look at the 99% confidence interval and find

a threshold of 2.764. Unfortunately, our t score is less

than 2.764, so we cannot say with 99% confidence that

the difference is significant.
S
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Definition

In subset surprisology, one studies the stochastic

behavior of the cardinality of the intersection of col-

lections of subsets of a given finite set of cardinality n.
More specifically, given three natural numbers n, a, k

and a family of natural numbers a0, a1,. . ., ak, one

investigates the asymptotic behavior of the total

number
Anja0;a1;...;akðaÞ

:¼ n

a

� �Xn
a0¼a

n� a

a0 � a

� �
ð�1Þa0�a

Yk
i¼0

n� a0

ai � a0

� �

(1)

of families of subsets A0, A1, . . . , Ak of {1, . . . , n} for

which #Ai ¼ ai holds for all i ¼ 0,. . ., k whose inter-

section \i¼0; ... ;kAi has cardinality a. This is applied

in particular to given collections of real-valued

maps f0, . . . , fk defined on the set {1, . . . , n}
to search for thresholds, that is, real numbers T0,

T1, . . . , Tk 2 R, for which the intersection

\i¼0; ... ;kfj 2 f1; . . . ; ng : fiðjÞ � Tig is – relative to

the size of the individual sets Ai(Ti) :¼ {j 2
{1, . . . , n} : fi(j) � Ti} – surprisingly large (or small).
Characteristics

The Formal Setup

In (Dress et al. 2004), it was shown that, given n, k, and

a0, a1, . . . , ak as above, the associated probability

distribution
pnja0;...;ak ¼ pnja0;...;akðaÞ
� �

a2N0

http://dx.doi.org/10.1007/978-1-4419-9863-7_5
http://dx.doi.org/10.1007/978-1-4419-9863-7_640
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defined on the set N0 of nonnegative integers by
pnja0;...;akðaÞ :¼
Anja0;...;akðaÞQk

i¼0

n
ai

� � ða 2 N0Þ
converge, with n ! 1, toward the Poisson

distribution
poissaðaÞ :¼ aa

a!
expð�aÞ

for some fixed a 2 R>0, provided the numbers ai
(i ¼ 0, . . . , k) are assumed to converge with n to

infinity in such a way that the conditions
ai 
 n and lim
n!1

Qk
i¼0 ai
nk

¼ a

are satisfied (More specifically, the proof revealed

that the alternating signs in the expressions (1) for

Anja0;...;ak (a) resulting from the standard exclusion-

inclusion principle correspond exactly to the alternat-

ing signs in the power series expression for

expð�aÞ ¼ P1
s¼0

ð�1Þsas
s! when n turns to infinity.).

In consequence, given any k + 1 subsets A0, A1,. . .,
Ak of {1,. . ., n} of cardinality a0, a1, . . . , ak, respec-

tively, whose intersection has cardinality a, one may

put a ¼ aðA0;A1; . . . ;AkÞ :¼
Qk

i¼0
ai

nk
and then approxi-

mate, for example, the probability Q+(a0, . . . , ak) of
finding by chance a collection of subsets of {1, . . . , n}

of cardinality a0, a1,. . ., ak whose intersection has

cardinality at least a by the sum

poissað� aÞ :¼ P1
s¼a

as
s! expð�aÞ.

And, given a collection of real-valued maps f0,. . ., fk
defined on the set {1, . . . ,n} as above, one may use

these approximations to quickly identify thresholds T0,

T1,. . ., Tk 2 R, for which the intersection

AðT0; T1; . . . ; TkÞ :¼ \i¼0;...;kfj 2 f1; . . . ; ng : fiðjÞ � Tig
is – relative to the size ai(Ti) of the individual sets

Ai(Ti) :¼ {j 2 {1, . . . ,n} : fi(j) � Ti} – surprisingly

large (or small) as, putting

a ¼ aðT0; T1; . . . ; TkÞ :¼
Qk

i¼0
aiðTiÞ

nk
and a ¼ a(T0,

T1, . . . , Tk) :¼ |A(T0, T1, . . . , Tk)|, one can easily

search for local maxima (or minima) of the function

R+(T0, . . . , Tk) :¼ � ln (poissa(� a)).
Applications in Toponomics

The recently developed fluorescence-microscopy tech-

nique called Multi-Epitope Ligand Cartography/TIS

(cf. Toponomics) allows medical researchers to

measure – for any given tissue (or blood) sample, any

position j within that sample, and any given family of

protein(-epitope)s P0, P1,. . ., Pk – the (relative) abun-

dance fi(j) of protein Pi (i ¼ 0,. . ., k) at position j.

It has been established (see, for instance, Schubert

2002, 2003; Schubert et al. 2006, 2009) that

• biologically relevant interactions between the

proteins in question will show up in surprisingly

large (or small) numbers of “areas” (i.e., just

single positions j or – just as well – appropriately

chosen collections of nearby positions) within

the sample for which the measurements fi(j) simul-

taneously exceed some appropriately chosen

thresholds Ti,

• by considering “areas” rather than just single posi-

tions, topologically defined linkages between pro-

teins can be detected directly at the cellular site of

their biological (inter)action (see also ▶ Topology
and Toponomics),

• from the detection of such linkages, it will be

straightforward to identify those proteins and

“pathways” that are linked to, for example, dis-

ease-specific or any other biologically important

functional states of a cell.

Direct functional linkage analysis in cells thus com-

plements standard “large-scale protein-expression pro-

filing” techniques that are all based upon

homogenization of cell tissue and subsequent extrac-

tion of proteins from the homogenate. Actually, it

might even be superior to such techniques that are all

based on the destruction of the specific modes of

spatial protein arrangements and the resulting topolog-

ically determined functional protein hierarchies

(cf. Schubert 2002, 2003; Schubert et al. 2006).

A Typical Result

As reported in (Dress et al. 2004), this strategy was

applied to various examples involving 2–18 proteins,

and it was observed for instance that, in one case

considering just a pair of two proteins, a local maxi-

mum R(T0, T1) ¼ 36.7368 for T0, T1 values with

a0(T0)/n ¼ 0.0088 and a1(T1)/n ¼ 0.0088 was attained

while, for T0, T1 values with a0(T0)/n ¼ 0.141 and

a1(T1)/n¼ 0.106, the value of R(T0, T1) was inconspic-
uously low.

http://dx.doi.org/10.1007/978-1-4419-9863-7_639
http://dx.doi.org/10.1007/978-1-4419-9863-7_639
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This has to be interpreted as follows: Looking at the

threshold T0 :¼ T0(14, 1%) for which protein P0 shows

an intensity above T0 at exactly 14, 1% of all pixels and

the threshold T1 :¼ T1(10, 6%) for which protein P1

shows an intensity above T1 at exactly 10, 6% of all

pixels, no conspicuous local interaction between P0

and P1 can be detected. In contrast, looking at the

corresponding thresholds T0
0 :¼ T0ð0; 88%Þ and

T0
1 :¼ T1ð0; 88%Þ, a surprisingly high local interaction

between P0 and P1 could be observed. That is, while at

already reasonably high levels of abundance, P0 and P1

do not seem to influence each other, this is completely

reversed at really high levels of abundance.

This underlines that direct functional linkage anal-

ysis based on toponomics data can detect rare, but

perhaps crucial protein-interaction patterns that are

not observable by standard proteomics techniques.

Related Matters

It is worth noting that related approaches based on

Kullback-Leibler divergence (see, e.g., Wikipedia on

Kullback-Leibler Divergence) have been worked out

in (Barysenka et al. 2009, 2010, 2011), and that

approaches based on copula theory (see Wikipedia on

copula theory) are studied in (Barysenka in

preparation).

And it is also worth noting that subset surprisology

(as well as the methods described in (Barysenka et al.

2009, 2010, 2011) and (Barysenka in preparation)) can

just as well be applied to other image stacks that arise,

say, in multispectral or any other kind of multichannel

imaging (cf., e.g., Wikipedia on multi spectral

imaging).
S
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References

Barysenka A, Dress A, Schubert W (2009) An information-

theoretical approach to medical image segmentation.

In: ICISE’09 proceedings of the first IEEE international
conference on information science and engineering. IEEE

Computer Society, Washington, DC, pp 3592–3595

Barysenka A, Dress A, Schubert W (2011) A comparative

method for analysing toponome image stacks. East Asian

J Appl Math 1:35–48

Barysenka A, Dress A, Schubert W (2010) An information

theoretic thresholding method for detecting protein

colocalizations in stacks of fluorescence images.

J Biotechnol 149:127–131

Barysenka A. Copula-based methods of exploring statistical

dependence between fluorescent markers, Ph.D. thesis, in

preparation

Dress A, Lokot T, Pustyl’nikov LD, Schubert W (2004) Poisson

numbers and poisson distributions in subset surprisology.

Ann Comb 8:473–485

Schubert W (2002) Polymyositis, topological proteomics tech-

nology and paradigm for cell invasion dynamics. J Theor

Med 4:75–84

Schubert W (2003) Topological proteomics, toponomics,

MELK-technology. Adv Biochem Eng Biotechnol 83:189–

209, http://www.ncbi.nlm.nih.gov/pubmed/12934931

Schubert W, Bonnekoh B, Pommer A, Philipsen L, B€ockelmann

R, Malykh Y, Gollnick H, Friedenberger M, Bode M, Dress

A (2006) Analyzing proteome topology and function by

automated multidimensional fluorescence microscopy.

Nature Biotechnol 24:1270–1278

Schubert W, Gieseler A, Krusche A, Hillert R (2009) Toponome

mapping in prostate cancer: detection of 2000 cell surface

protein clusters in a single tissue section and cell type specific

annotation by using a three symbol code. J Proteome Res

8:2696–2707

Wikipedia on Kullback-Leibler divergence. http://en.wikipedia.

org/wiki/Kullback-Leibler_divergence

Wikipedia on copula theory. http://en.wikipedia.org/wiki/

Copula_(statistics)

Wikipedia on multi-spectral imaging. http://en.wikipedia.org/

wiki/Multi-spectral_image
Subunit Vaccine

Gajendra Raghava

Bioinformatics Centre, Institute of Microbial

Technology, Chandigarh, Chandigarh, India
Definition

This is the minimum component from the pathogen

required to generate host immune response.

This may be a purified protein. It does not include

whole pathogen (dead or alive) in the vaccine

formulation thus posses less risk of adverse reactions

than whole organism–based vaccines.
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Summation Theorem

Emma Saavedra and Rafael Moreno-Sánchez

Department of Biochemistry, National Institute for

Cardiology “Ignacio Chávez”, Mexico City, Mexico
Definition

It is the sum of all the control coefficients for flux

(summation theorem for flux control coefficients) and

for metabolite concentrations (summation theorem for

concentration control coefficients). In the case of flux

control coefficients the sum has to add up a value of 1

whereas for that of concentration control coefficients it

has to be zero.
Cross-References

▶Metabolic Control Theory
Superorganism

▶Metaorganism
Supervenience

Ulrich Krohs

Department of Philosophy, University of M€unster,
M€unster, Germany
Disclaimer: The views presented in this article do not necessarily

reflect those of the U.S. Food and Drug Administration.
Definition

Supervenience is a relation between lower-level prop-

erties of a system and higher-level properties, where

the further determine the latter.

Let A and B be classes of properties. B-properties

supervene on A-properties if and only if there cannot

be any change in B without change in A. In other

words, no change in the class of supervenient (higher

level) properties can occur without change in the class

of subvenient (lower level) properties, while, on the

other hand, not any change in the subvenient class is

accompanied by a change in the supervenient class
(McLaughlin and Bennett 2011). For example,

according to neuronal determinism, there cannot be a

change in mental properties without at least a minute

change on the neuronal level. There are, nevertheless,

many neuronal activities that do not change any

mental state.

The supervenience relation is quiet about the foun-

dation of this coupling, in particular about its meta-

physical background. It is thus weaker than any

concept of ▶ emergence. It does neither rule out nor

require a reduction relation to hold between both clas-

ses of properties (▶Reduction). Ontological and con-

ceptual reduction in the strict sense, on the other hand,

requires a supervenience relation to hold.
Cross-References

▶Emergence
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Surrogate Endpoint

Weida Tong and Donna L. Mendrick

Division of Systems Biology, National Center for

Toxicological Research, US Food and Drug

Administration, Jefferson, AR, USA
Synonyms

Surrogate markers
Definition

Surrogate endpoints (Fig. 1) are a subset of bio-

markers, which are intended to be used as a substitute
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Surrogate Endpoint, Fig. 1 Path diagram illustrating the biomarker-surrogate-clinical endpoint relationship and qualification
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for a clinically meaningful endpoint. Characterization

of a biomarker as a surrogate endpoint requires it to be

“reasonably likely, based on epidemiologic, therapeu-

tic, pathophysiologic or other evidence, to predict clin-

ical benefit.” (The Food and Drug Modernization Act

of 1997). The term “validation” is discouraged for use

in linking biomarkers as surrogate endpoints to clinical

endpoints (Biomarkers Definitions Working Group

2001). This is largely due to the limitation for gener-

alization in use of biomarkers as clinical endpoints in

a clinical trial, which are often dependent on the spec-

ification of the therapeutic intervention, the character-

istics of the population and disease state, and the

statistics applied. Although the term “evaluation” is

recommended for determining surrogate endpoint sta-

tus (Biomarkers DefinitionsWorking Group 2001), the

term “qualification” is more commonly used to date to

describe a process of linking a biomarker to

a meaningful biological event.
Cross-References
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S
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Surrogate Markers

▶ Surrogate Endpoint
Survival Analysis

Shuangge Ma

Yale School of Public Health, Yale University,

New Haven, CT, USA
Synonyms

Duration analysis; Lifetime data analysis
Definition

Survival analysis involves analyzing longitudinal data

on the occurrence of events. In biomedical studies,

events may include death, injury, onset of illness,

recovery from illness, and transition above or below

a clinical threshold of a meaningful continuous

marker. The main objectives of survival analysis

include (a) estimation of time to event for a group of

individuals, for example, time to second heart attack

for MI (myocardial infarction) patients; (b) compari-

son of time to event between two or more groups, for

example, treated versus placebo MI patients in

a randomized controlled clinical trial; and (c) assess-

ment of the relationship between variables and time to

event, for example, whether weight, insulin resistance,

and cholesterol influence survival time of MI patients.

In survival analysis, commonly used measurements

include (a) survival function, which is the probability

that the time of event is later than a specified time;

(b) hazard function, which is the event rate at

a specified time conditional on survival until this

point; (c) expected survival time, which is the expected

value of the time remaining until event at a specified

time, and others.

Survival analysis can be complicated due to the

nonnegative nature of time to event data and, more

http://dx.doi.org/10.1007/978-1-4419-9863-7_211
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importantly, censoring and truncation. Existing sur-

vival models include parametric (for example expo-

nential model, Weibull model), semiparametric (e.g.,

Cox proportional hazards model, additive risk model,

accelerated failure time model), and nonparametric

models. Estimation and inference in survival analysis

can be based on the maximum likelihood theories and

(generalized) estimating equations. Other commonly

used estimation and inference techniques are martin-

gales and empirical processes techniques.
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Survival Analysis, Fundamental
Statistical Techniques

Shuangge Ma

Yale School of Public Health, Yale University,

New Haven, CT, USA
Synonyms

Duration analysis; Lifetime data analysis
Definition

Denote T as the event time, which is a nonnegative

random variable having a certain probability distribu-

tion. The main objectives of survival analysis are to

(a) estimate the time to event for a group of individ-

uals; (b) compare the time to event between two or

more groups; and (c) assess the relationship between

covariates (risk factors) and time to event.
Characteristics

Main Measurements

For the random variable T, denote f ðTÞ as the proba-

bility density function. Other commonly used mea-

sures include

• Distribution function FðtÞ ¼ PðT 
 tÞ for t � 0;
Survival function SðtÞ ¼ PðT > tÞ ¼ 1� FðtÞ;

• Mean survival time m ¼ EðTÞ; Median survival

time m ¼ maxft : SðtÞ 
 0:5g;
• Mean residual time at a specific time

t0 : mrlðt0Þ ¼ EðT � t0jT � t0Þ;
• Hazard function lðtÞ ¼ limh!0

Pðt
T<tþhjT�tÞ
h ;

which is the instantaneous rate of failure at time t;

given that an individual is alive at time t: Cumula-

tive hazard functionLðtÞ ¼ R t
0
lðuÞdu ¼ � log SðtÞ:

Commonly Adopted Statistical Models

Commonly adopted survival models, as in other

regression analysis, can be classified as parametric,

semiparametric, or nonparametric.

• Examples of commonly used parametric models

include (a) exponential model, where lðtÞ ¼ l;
i.e., a constant hazard; (b) Weibull model, where

lðtÞ ¼ alta�1:Depending on the value of parameter

a; the hazard function may increase or decrease

over time; and (c) Gamma model, where

SðtÞ ¼ 1� Iðlt; bÞ and Iðt; bÞ ¼ R t
0

ub�1 expð�uÞ
GðbÞ du:

More parametric models can be found in Klein

and Moeschberger (2010).

• Examples of commonly used semiparametric

models include (a) the Cox proportional hazards

model. Denote X as the length-d covariate. Under

the Cox model, lðtjXÞ ¼ l0ðtÞ expðb0XÞ: Here, b is

the length-d regression coefficient, b0 is the trans-

pose of b; and l0ðtÞ is the unspecified nonparamet-

ric baseline hazard; (b) the additive risk model,

where lðtjXÞ ¼ l0ðtÞ þ b0X; and (c) the accelerated
failure time model, where logðTjXÞ ¼ aþ b0X þ e:
Here, the logarithm transformation can be replaced

by other known, monotone increasing functions, a
is the unknown intercept, and e is the random error.

• With nonparametric models, the forms of the den-

sity (or distribution, survival, hazard) functions are

left unspecified. Sometimes it is assumed that those

functions satisfy certain properties. For example, it

has been assumed that the hazard function is mono-

tone or continuously differentiable.
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Survival Analysis, Fundamental Statistical Techniques 2031 S

Censoring and Truncation

Survival analysis is often more complicated than other

types of regression analysis because of censoring and

truncation.

The most commonly encountered censoring is right

censoring, where the event time is only known to be

after some time point. Right censoring occurs for sub-

jects who have not experienced the event of interest

when the follow-up ends. Other forms of censoring

include left censoring and interval censoring. Left

censoring occurs when the event of interest has

already happened at the observation time, but it is not

known exactly when. Interval censoring occurs

when the event of interest is only known to happen in

a finite time interval. It is possible that a study cohort

is composed of subjects with different types of

censorings.

Truncation happens when subjects with event times

less than some threshold are not observed at all. Note

that truncation is different from left censoring. For

a left-censored datatum, we know the subject exists,

whereas for a truncated datum, we may be completely

unaware of the subject.

Maximum Likelihood Estimation and Inference

In survival analysis, the most commonly used estima-

tion and inference techniques are based on the likeli-

hood function. Assume that the observations are

independent given the parameters. When constructing

the likelihood function, we partition the data into four

categories: uncensored, left censored, right censored,

and interval censored. Denote y as the generic

unknown parameter. Then the likelihood function has

the form
S
LðyÞ ¼
Y

i2uncensored
PðT ¼ TijyÞ�

Y
i2left censored

PðT 
 TijyÞ�
Y

i2right censored
PðT > TijyÞ�

Y
i2interval censored

PðTi;l<T 
 Ti;rjyÞ

• For an uncensored datum, Ti is the actual event

time. We have PðT ¼ TijyÞ ¼ f ðTijyÞ;
• For a left-censored datum, the event time is known

to be less than or equal to Ti. We have

PðT 
 TijyÞ ¼ FðTijyÞ ¼ 1� SðTijyÞ;
• For a right-censored datum, the event time is

known to be greater than Ti. We have

PðT > TijyÞ ¼ 1� FðTijyÞ ¼ SðTijyÞ;
• For an interval-censored datum, the event time

is known to be less than or equal to Ti;r but

greater than Ti;l. We have

PðTi;l < T 
 Ti;rjyÞ ¼ SðTi;ljyÞ � SðTi;rjyÞ:
Once the likelihood function is properly

constructed, most likelihood-based estimation and

inference techniques are applicable.
Kaplan–Meier Estimator

The Kaplan–Meier (KM) estimator is a nonparametric

estimate of the survival function. It can be used

to measure the fraction of subjects surviving

for a certain amount of time, for example, after

treatment.
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A representative plot of the KM estimator is shown

above. In this plot, subjects with gene B signature die

much more quickly than those with gene A signature.

After 6 years, more than 80% of the subjects with gene

A signature are still alive, whereas only 40% of the

subjects with gene B subjects are alive.

Consider N subjects with the observed event times

t1 
 t2 
 ::: 
 tN: Corresponding to each ti is ni, the

number “at risk” just prior to time ti, and di, the number

of deaths at time ti. The KM estimator of SðtÞ is

ŜðtÞ ¼ Q
ti<t

ni�di
ni

: When there is no censoring, ni is the

number of survivors just prior to time ti. With censor-

ing, ni is the number of survivors less the number

of losses (censored cases). For the KM estimator,

the most commonly used variance estimator is the

Greenwood’s formula vârðŜðtÞÞ ¼ Ŝ2ðtÞP
ti<t

di
niðni�diÞ:
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Logrank Statistic

Quite often researchers need to compare the survival

functions of two or more groups. The logrank statistic,

also called the Mantel–Cox statistic, can be used for

such a purpose. It is a nonparametric statistic applica-

ble to uncensored and right-censored data.

Consider two groups. Let j ¼ 1:::J be the distinct

times of observed events in either group. For each time

j; let N1;j and N2;j be the number of subjects at risk in

groups 1 and 2, respectively. Let Nj ¼ N1;j þ N2;j: Let

O1;j and O2;j be the observed number of events in the

groups, respectively, at time j:DefineOj ¼ O1;j þ O2;j:

The logrank statistic is defined as Z ¼
PJ

j¼1
ðO1;j�E1;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiPJ

j¼1
Vj

q :

Here E1;j ¼ Oj
N1;j

Nj
and Vj ¼ OjðN1;j=NjÞð1�N1;j=NjÞðNj�OjÞ

Nj�1
:

If the two groups have the same survival functions,

the logrank statistic is approximately standard normal.

If the hazard ratio is l, there are a total of N subjects, r
is the probability a subject in either group will eventu-

ally have an event (so that Nr is the expected number

of events at the time of the analysis), and the proportion

of subjects in each group is 50%, then the logrank

statistic is approximately normal with mean

logðlÞ
ffiffiffiffiffi
Nr
4

q
and variance 1.

More Estimation and Inference Techniques

Although likelihood-based techniques are applicable

to most estimation and inference problems encoun-

tered in survival analysis, they are not applicable to

all or not necessarily the most convenient techniques.

A family of techniques extensively used are martingale

techniques. They are built on the observation that the

observed event process less its expectation forms

a martingale. Another family of techniques are empir-

ical processes techniques, which are especially power-

ful with semiparametric models.

Advanced Survival Analysis

• Competing risk. In some situations, the endpoint

may consist of several distinct events of interest

and the eventual failure may be attributed to one

event exclusively to the others. Under such

a competing risk situation, both the cause-specific

and overall hazard (survival, distribution) functions

need to be modeled.
• Improper survival function. A survival function S is

improper if Sðþ1Þ > 0: An improper survival

function is used to describe a nonhomogeneous

cohort with a subgroup that will never experience

the event of interest. Corresponding survival

models have been referred to as “cure rate” or

“immune” models.

• Correlated observations, which may arise from, for

example, family-based studies. Beyond adopting

the aforementioned models for each individual

observations, it is also necessary to model the

correlation among subjects using, for example,

frailties.
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Survival Curve

Shuangge Ma

Yale School of Public Health, Yale University,

New Haven, CT, USA
Definition

A survival curve is a statistical picture of the

survival experience of a group of subjects in the

form of a graph showing the percentage surviving

versus time.

In prognosis studies, survival curves are

commonly used to compare the survival experience

of subjects in different groups (for example,
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subjects with gene-A signature versus subjects with

gene-B signature).
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With a survival curve, the vertical (Y) axis gives the

percentage of subjects surviving. The horizontal (X)

axis gives the time after the start of the observation or

experiment. Although expected survival curves can be

smooth, those computed from real data (for example, the

Kaplan–Meier estimators) are usually step functions.

Cross-References
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Fig. 1 Period, peak, and

trough in sustained oscillation
Sustained Oscillation

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou, Guangdong,

China
Definition

Sustained oscillation is a specific type of oscillation

where each cycle of the oscillation is identical to

the previous one. In control theory, sustained oscil-

lation means continued oscillation due to insuffi-

cient attenuation in the feedback path. In physics,

sustained oscillation means oscillation in which

forces outside the system, but controlled by the

system, maintain a periodic oscillation of the sys-

tem at a period or frequency that is nearly the

natural period of the system. Figure 1 is an exam-

ple of sustained oscillation, showing the behavior

of a stock exhibiting sustained oscillation over the

course of 12 time units.
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▶Toggle Switch, Switching Network
Switch Rate

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou, Guangdong,

China
Definition

Switch rate refers to the speed at which a limit switch

opens or closes a set of contacts after initial actuation.
Switching Function

▶Boolean Function
Switch-Like Response

▶Ultrasensitivity
Symbolic Model

Eberhard O. Voit

The Wallace H. Coulter Department of Biomedical

Engineering, Georgia Institute of Technology and

Emory University, Atlanta, GA, USA
Definition

A pathway system is often first conceptualized and

diagrammed and the diagram is subsequently trans-

lated into equations. These equations are initially sym-

bolic, because values for their parameters have not yet

been specified.
Cross-References

▶ Forward and Inverse Parameter Estimation for

Metabolic Models
Symmetric Cell Division

Heiko Enderling

Center of Cancer Systems Biology, St. Elizabeth’s

Medical Center - CBR 115D, Tufts University School

of Medicine, Boston, MA, USA
Definition

A symmetric cell division yields two daughter cells

with equivalent cellular fate, i.e., a cell of type A gives

rise to two daughter cells of type A.

A

A

A

Cross-References

▶Cancer Stem Cell Kinetics
Synaptic Proteins

Anne Gieseler

Molecular Pattern Recognition Research

(MPRR) Group, Otto-von-Guericke-University

Magdeburg Medical Faculty, Magdeburg, Germany
Definition

Synaptic proteins exert their function at the synapse –

a highly specialized structure on the surface of nerve

cells. The human brain contains around 1015 synapses,
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Synaptic Proteins, Fig. 1 Scheme of prominent proteins in
a synapse. The named proteins belong to different synaptic

functions: presynaptic ion homeostasis (gray); vesicle-mediated

neurotransmitter release (red); transsynaptic cell adhesion

(green); postsynaptic neurotransmitter receptors (blue); proteins
of the PSD (brown); and cell-cytoskeleton-related

proteins (yellow)
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which connect approximately 1012 neurons

(Pocklington et al. 2006). This entry focuses on the

so-called chemical synapse which represents the most

frequent synaptic type in vertebrates transmitting elec-

trochemical impulses from one neuron to another. This

synaptic activity is fundamental for neurobiological

processes such as learning, memory (Kandel and

Schwartz 1982), and development of the nervous sys-

tem (Changeux and Danchin 1976). The molecular

machinery underlying synaptic function consists of

a network of hundreds, if not thousands of distinct

synaptic proteins (Yoshimura et al. 2004). Hence, syn-

aptic proteins can be defined as a collection of highly

specialized molecules, assembled as local molecular

networks, enabling the synapse to process and transmit

interneuronal information.
Characteristics

Synaptic transmission involves the release of

neurotransmitters from presynaptic neurons (Fig. 1,

“presynaptic,” upper part of the figure) and their bind-

ing by specific ion channels located at the surface
membrane of postsynaptic neurons (Fig. 1, “postsyn-

aptic” lower part of the figure). The presynaptic part is

specifically characterized by presence of small vesi-

cles. The vesicles contain a high abundance of synaptic

vesicle proteins/peptides, such as components of the

free synaptic fusion and retrieval machinery

(e.g., SNARE proteins) (S€udhof and Rothman 2009),

and other proteins potentially involved in regulating

the functional and structural dynamics of the nerve

terminal (Coughenour et al. 2004). In postsynaptic

membrane preparations isolated from homogenized

brain tissue, the number of biochemically identified

proteins has been reported to range from around 100

to more than 1,000. These proteins can be classified

into distinct functional groups: organizers/cytoskeletal

scaffold proteins; transporters and channels; sensors

and signal transduction proteins; priming, docking

and fusion apparatus; endocytotic and recycling

machinery; components of energy supply; and linkers

between the presynaptic and postsynaptic membranes

(Peng et al. 2004; Cheng et al. 2006). Note that Fig. 1

depicts some prominent protein classes. The whole

postsynaptic region, including the postsynaptic

membrane and the corresponding submembrane
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structure (e.g., postsynaptic density – PSD, ribosomes,

etc.), is one of the most complex and well-organized

subcellular structure, or, macromolecular machine, in

evolutionary biology. It appears to have the capacity to

function in a semiautonomous manner.

Although a large number of synaptic proteins have

been identified, it is important to note that not all of

these proteins are present in each synapse, indicating

a large range of functional diversity based on differen-

tial assembly of synaptic proteins (▶ synaptic

toponome). Moreover, the kind and characteristics of

the postsynaptic electrical activity of the postsynaptic

membrane depends on the type and combination of

receptor channels present in that membrane. This com-

bination determines many fundamental properties,

such as (1) reversion of the postsynaptic electrical

potential, (2) the action potential threshold voltage,

(3) ionic permeability of the ion channels, as well as,

(4) the concentrations of the ions inside and outside of

the neuronal cell surface membrane. Altogether these

components determine whether interneuronal commu-

nication is stimulated or inhibited (excitatory or inhib-

itory synapse, respectively) (Xu 2011).

The strength of signaling between the pre- and

postsynaptic neurons is based on the coordinated

interaction by the different protein components.

Synaptic plasticity is regulated by changes in the

amount of receptors of the postsynaptic membrane;

changes in the shape and size of dendritic spines;

post-translational modification of PSD components;

and modulation kinetics of the synthesis and

degradation of proteins (Xu 2011). Integration of

these processes leads to long-lasting changes in synap-

tic function and neuronal networks underlying

learning-related plasticity, memory, and information

processing in the nervous system of multicellular

organisms.

The detailed analysis of synaptic plasticity based on

the myriads of interactions of the synaptic protein

network is a fundamental future challenge toward

understanding the brain and the detailing of selective

and efficient therapies against the so-called synaptic

disorders, such as Alzheimer’s, and Parkinson’s

disease (Reddy et al. 2010).
Cross-References

▶ Synaptic Toponome
References

Changeux JP, Danchin A (1976) Selective stabilization of devel-

oping synapses as a mechanism for the specification of

neuronal networks. Nature 264(5588):705–712

Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA,

Duong DM, Xu P, Wijayawardana SR, Hanfelt J,

Nakagawa T, Sheng M, Peng J (2006) Relative and absolute

quantification of postsynaptic density proteome isolated

from rat forebrain and cerebellum. Mol Cell Proteomics

5(6):1158–1170

Coughenour HD, Spaulding RS, Thompson CM (2004) The

synaptic vesicle proteome: a comparative study in membrane

protein identification. Proteomics 4(10):3141–3155

Kandel ER, Schwartz JH (1982) Molecular biology of

learning: modulation of transmitter release. Science

218(4571):433–443

Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng MJ

(2004) Semiquantitative proteomic analysis of rat forebrain

postsynaptic density fractions by mass spectrometry. Biol

Chem 279(20):21003–21011

Pocklington AJ, Armstrong JD, Grant SGN (2006) Organization

of brain-complexity-synapse proteome form and function.

Brief Funct Genomic Proteomic 5:66–73

Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP,

Shirendeb U (2010) Amyloid-beta and mitochondria in

aging and Alzheimer’s disease: implications for synaptic

damage and cognitive decline. J Alzheimers Dis

20(Suppl 2):499–512

S€udhof TC, Rothman JE (2009) Membrane fusion: grappling

with SNARE and SM proteins. Science 323(5913):474–477

Xu W (2011) PSD-95-like membrane associated guanylate

kinases (PSD-MAGUKs) and synaptic plasticity. Curr Opin

Neurobiol 21(2):306–312

Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H,

Takahashi N, Isobe T, Yamauchi T (2004) Molecular

constituents of the postsynaptic density fraction revealed by

proteomic analysis using multidimensional liquid

chromatography-tandem mass spectrometry. J Neurochem

88(3):759–768
Synaptic Toponome

Anne Gieseler

Molecular Pattern Recognition Research (MPRR)

Group, Otto-von-Guericke-University Magdeburg

Medical Faculty, Magdeburg, Germany
Definition

The term “toponome” describes one of the functional

levels of the cell, such as genome, transcriptome,

and proteome, and can be quantitatively described

and deciphered by means of the ▶TIS technology.
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Synaptic Toponome, Fig. 1 Exemplified synaptic toponome
in the central nervous system. (a) 3D imaging of the toponome of

a single neuron inside rat spinal cord: colocalization map of

seven surface-rendered signals of postsynaptic proteins on the

surface of a nerve cell body (red, yellow, and blue colors). Note
that these colors highlight regions in which these seven proteins

are differentially assembled as multi-protein clusters; cell

nucleus is marked in solid green for reasons of orientation

(propidium iodide signal). This example illustrates that these

postsynaptic toponome structures can be analyzed at high sub-

cellular spatial resolution. Scale bar 10 mm. (b) 2D imaging of

a fraction of the synaptic toponome present in a murine brain

hippocampus tissue section fluorescently labeled for the synaptic

marker protein synaptophysin (light gray) (5 mm thickness, area

CA3). Four distinct mutually exclusive synaptic regions are

shown (on the right, different colors), each of which expresses

a distinct synaptic protein assembly in the stratum radiatum (SR)

of hippocampus-CA3. Colors indicate specific protein

colocation and anti-colocation codes (combinatorial molecular

phenotyes, CMPs, unique to these highlighted subregions). Note

on the left of the figure precisely the same visual field illustrating

for orientation the location of neuronal cell bodies accumulating

in the stratum pyramidale (SP), as indicated by their prominent

stain for nuclear DNA (propidium iodide signal, corresponding

to round dark areas spared for synaptic fluorescence signals,

light gray: asterisk in the image on the right). The subregion-

specific distinct CMPs (four distinct colors) characterizing the

four distinct synaptic toponome fractions are illustrated in the

color-decoding list (protein colocation and anti-colocation code,

1/0). Scale bar 12 mm (After Schubert et al. 2006; Bode et al.

2008)

Synaptic Toponome 2037 S

S



S 2038 Synchronization
It encompasses the topology of all proteins, protein

complexes, and protein networks in a subcellular struc-

ture (Schubert et al. 2006). The ▶ synaptic toponome

is defined as the entirety of protein networks of the

synapse, in which proteins and protein clusters physi-

cally interact to form complexes and structures with

a given spatial localization and function (Fig. 1) (Bode

et al. 2008).

Understanding the toponome of the synapse, which

controls normal and disease-related pathways of inter-

neuronal communication, will provide access to the

mechanisms underlying synaptic functions in health

and disease. A novel approach to detect and map the

functional molecular networks of synaptic proteins is

the functional super-resolution (fSR) microscopy TIS

(Schubert 2003; Schubert et al. 2011), a technology

based on cyclical fluorescence imaging of proteins of

morphologically cells and tissues. It can co-map thou-

sands of distinct multi-protein clusters associated with

synapses in brain tissue sections. Resulting toponome

maps have revealed the existence of higher-order rules

for the spatial organization of the synaptic toponome:

synapses expressing the identical toponome are

grouped together to define new functional regions

inside known brain areas (Fig. 1). Exact description

of these regions and their functional interaction is held

to lead to understanding the functional compartmen-

talization of distinct neuronal qualities.
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Definition

The word synchronization has originated from a Greek

root (s&grupsilon;n: syn ¼ the same, common and

wrónoB: chronos ¼ time), which means “to share the

common time” (Boccaletti et al. 2002). Colloquially,

synchronization is often referred to as an adjustment of

the rhythms of oscillating objects due to their weak

interactions. On the contrary, asynchrony (or

desynchronization) refers to those situations that are

not synchronized or uncoordinated in time.

The most well-known example of synchronization,

now known as the ▶ synchronized oscillations, was

discovered by Huygens in the seventeenth century in

which two pendulum clocks hang on the same wooden

beam. Many new types of synchronization have been

found in the last 30 years, such as partial synchroniza-

tion, complete synchronization, phase synchronization,

general synchronization, lag synchronization, and

▶ synchronized switching, etc.

In the field of physiology, there are many synchro-

nization phenomena (Glass 2001), for example, the

synchronizing of circadian oscillators to the light–

dark cycle. There are two possible mechanisms that

can induce synchronization in multicellular systems:

▶ cell communication and common extracellular

signaling.
Characteristics

Mathematical Formulations for Synchronization

Consider a system of N individuals whose dynamics is

described by an ▶Ordinary Differential Equation

(ODE), Model
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dxi
dt

¼ f ðxiÞ; ði ¼ 1; . . . ; NÞ: (1)

Here xi is either a scalar or vector that represents the

state of the i’th individual. When there are interactions

among the individuals, the system dynamics can be

modeled as
S

dxi
dt

¼ f ðxiÞ þ gi ðx; tÞ; ði ¼ 1; . . . ; NÞ: (2)

Here x ¼ (x1,..., xn), and gi(x,t) measures the inter-

connections among the individuals. The above system

is said to be synchronized when all individuals

(starting from different initial states) converge to the

same dynamical process. Mathematically, there exists

a common dynamical process ’ðtÞ such that

lim
t!1 xiðtÞ � ’ðtÞk k ¼ 0 (3)

for all i.
A simple example of synchronization described

above is the ▶Kuramoto model. Kuramoto model is

one of the most representative models of coupled phase

oscillators that displays a large variety of synchroniza-

tion patterns (Acebrón et al. 2005). The Kuramoto

model consists of a population of N all-to-all coupled

phase oscillators yi(t) whose natural frequencies oi

distribute with a probability density g(o). The dynam-

ics are described with

_yi ¼ oi þ K

N

XN
j¼1

sinðyj � yiÞ; i ¼ 1; . . . ; N: (4)

In the Kuramoto model as described by (4), collec-

tive dynamics of the whole population is measured by

the macroscopic complex order parameter

rðtÞeifðtÞ ¼ 1

N

XN
j¼1

eiyjðtÞ: (5)

Here the module 0 
 r(t) 
 1 measures the phase

coherence among all individuals and fðtÞ is the

average phase. Using the order parameter, we can

rewrite (4) as
_yi ¼ oi þ Kr
XN
j¼1

sinðf� yiÞ; i ¼ 1; . . . ; N: (6)
The synchronizability of the oscillators is measured

by the limit R ¼ limt!1 rðtÞ, which depends on the

coupling strength K. When K ¼ 0, all oscillators move

incoherently and therefore R¼ 0. On the other hand, in

the case of strong coupling that K!1, all oscillators

become synchronized to their average phase yi � f,
and hence (6) implies R ¼1, which gives complete

synchronization. For intermediate couplings, Kc < K

<1 (Kc is the critical value of coupling strong to have

synchronization), a part of oscillators are phase locked

ð _yi ¼ 0Þ, and some oscillators are rotating out of syn-

chrony with the locked oscillators. This gives the state

of partial synchronization with 0 < R < 1 (Acebrón

et al. 2005).

In the above definition, (3) is one of many mathe-

matical descriptions of the word “synchronization,”

each of which represents different physical meaning

of synchronization. For extend discussions, refer

Brown and Kocarev (2000), Boccaletti et al. (2002),

Arenas et al. (2008), and references therein.

Cell Communication and Synchronization

The above simple example of the Kuramoto model

shows that coupling between oscillators is essential to

have synchronization. In biological systems, ▶ cell

communications among different cells through signal-

ing molecules provide an important way of coupling.

In this way, each cell acts individually in accordance to

its intrinsic gene regulatory network and meanwhile

communicates with other cells to form a complex net-

work. Cell communications appear in two forms that

are described by different mathematical formulations

and induce synchronization through different

mechanisms.

The first form of cell communication is direct cell-

to-cell interconnection through various ways, such as

ion channel conductivity, synaptic release of neuro-

transmitters, transcytosis, etc. Neural networks are

well-known examples of this type in which neurons

interact with each other to form a network by either

ionic current or chemical synaptic transmission.

Therefore, all involved cells connect with each other

to form a complex network (Fig. 1a). The network

dynamics can be described by a mathematical formu-

lation of form
_xi ¼ f ðxiÞ þ
XN
j¼1

Kij hijðxi; xjÞ; ði ¼ 1; . . . ;NÞ: (7)

http://dx.doi.org/10.1007/978-1-4419-9863-7_544
http://dx.doi.org/10.1007/978-1-4419-9863-7_100189
http://dx.doi.org/10.1007/978-1-4419-9863-7_100189


Cell 1 Cell 2

Cell 3

Cell 1

a b
Cell N

Cell 2
Cell 4

Cell N

Synchronization,
Fig.1 Cell communication.

(a) Direct cell-to-cell

interconnection. (b) Secretion

of diffusible signal molecules

S 2040 Synchronization
Here xi (usually a vector) represents the state of the

i’th cell, Kij equals 1 or 0 indicating the connectedness

of the j’th to the i’th cells, and hij(xi, xj) are functions

describing the interactions between two cells. In this

system, a cell does not affect other cells equally.

Instead, the way how cells connect with each other is

essential for the network dynamics. Synchronizability

of a network is known to be associated with many

characteristics of the network structure, such as the

average shortest path length, the betweenness central-

ity, the clustering coefficient, and the degree correla-

tions, etc. (Arenas et al. 2008). Nevertheless,

knowledge for relationship between network topolo-

gies and synchronizability is still far from complete.

The other form of cell communication is communi-

cating through indirect diffusible signal molecules

(Fig. 1b). Each cell synthesizes and secretes signal

molecules that can diffuse in extracellular matrix, and

are endocytosed by other cells to regulate the gene

regulatory networks in these cells. Through this form

of communication, the extracellular environment serves

as buffer chamber that averages out the concentration of

signal molecules in each individual cell, and therefore

drives the cell to display synchronization behavior

(Danino et al. 2010). Mathematical description of pop-

ulation dynamics can be given by equations of form
_xi ¼ f ðxi; siÞ
_si ¼ gðxi; siÞ þ Dðs� siÞ ði ¼ 1; . . . ; NÞ:

_s ¼ �
XN
i¼1

Dðs� siÞ
(8)

Here (xi, si) represent the state of the i’th cells, with

si the concentration of signal molecules, s stands for
the concentration of extracellular signal molecules, D

is the diffuse coefficient across cell membrane.
Synchronization Induced by Extracellular Stimuli

In additional to cell communication, extracellular

stimuli is an alternative way to induce synchronization

among cell populations. Synchronization of circadian

clocks to the light–dark cycle is a familiar example of

this type.

For a population of cells each of which has intrinsic

clock, common external periodic stimuli can induce,

enhance, or ruin collective rhythms (Zhou et al. 2007).

This effect becomes significant if the external stimuli

are resonant with the intrinsic clocks.

Extracellular fluctuations in environment can also

induce synchronization. Stochasticity has been known

to play important role in the dynamics of ▶ gene reg-

ulatory network. There are two sources of noise,

including intrinsic noise that is inherent to the system

and extrinsic noise that comes from fluctuations

external to the system (▶Noise, Intrinsic and Extrin-

sic). The two types of noise contribute oppositely in

synchronization. In a population of cells, intrinsic noise

(or intracellular noise) inherent to each individual

cell tends to break the synchronization and induces

cell-to-cell variances, while the extracellular noise that

is common to all cells can induce collective dynamics

and stochastically synchronize the population (Nakao

et al. 2005; Zhou et al. 2005).

In a gene regulatory network with ▶ bistability,

noise perturbation has been known to induce ▶ toggle

switch. Furthermore, extracellular noise can induce

▶ synchronized switching among a population (Wang

et al. 2007).
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Synchronization of Oscillators

▶ Synchronization Oscillation
S

Synchronization Oscillation

Xiaojuan Sun

Zhou Pei-Yuan Center for Applied Mathematics,

Tsinghua university of Beijing, Beijing, China
Synonyms

Synchronization of oscillators
Definition

Oscillation is referred to be a repetitive variation in

magnitude or position in a regular manner around
a central point and is often described through the

changing of phase with time. Synchronized oscillation

is a phenomenon that a group of individual oscillators

vary simultaneously from the central point, that is,

phases of different oscillators share the common

dependence with time. Synchronization of oscillators

is thought to be a process of adjusting the rhythms of

many oscillations due to (weak) coupling or

external forcing (Pikovsky et al. 2001). The phenom-

enon of synchronized oscillation was first observed

by Huygens in the seventeenth century. He

found that two weakly coupled pendulum clocks

(hanging on the same wooden beam) become synchro-

nized in phase.
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Definition

Synchronization switching is a phenomenon of collec-

tive behavior of ▶ toggle switches that all subsystems

switch between the two stable steady states in

a synchronous manner. In the case of cell behavior,

synchronization switching can be induced by extracel-

lular stimuli (Wang et al. 2007). This is to be distinct

from incoherent switches of individual cells that are

induced by intracellular driving forces.
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Synonyms

Synchronization
Definition

There are two types of Boolean Network (BN) models

for modeling genetic regulatory networks: synchro-

nous model and asynchronous model, depending on

whether or not the states of nodes (genes) are updated

synchronously. In a synchronous model, all the states

are updated synchronously in accordance with the

functions assigned to them (see, e.g., Shmulevich

et al. (2002)).

The following is an example of a BN having two

genes with the truth table given in Table 1.

Suppose the current state is (0, 1). Then in the

next step, these two nodes will be updated

synchronously:
f ð1Þð0; 1Þ ¼ 1 and f ð2Þð0; 1Þ ¼ 0
where the first gene transforms from 0 to 1, and the

second gene transforms from 1 to 0. Hence, the state of

the network in the next step is (1, 0).
Synchronous Model, Table 1 The truth table

State v1(t) v2(t) f (1) f (2)

1 0 0 1 1

2 0 1 1 0

3 1 0 0 0

4 1 1 0 0
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▶Text Parsing
Synthetic Biology, Predictability and
Reliability

Jinzhi Lei and Xiaojuan Sun
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Tsinghua University of Beijing, Beijing, China
Definition

Synthetic biology is a new field of biological research

that brings engineers and biologists together to design

and build novel biomolecular components, networks,

and pathways and to use these constructs to rewrite and

reprogram organisms (Khalil and Collins 2010). In this

field, synthetic biologists engineer complex artificial

biological systems in order to investigate the natural

biological phenomena and to induce various applica-

tions (Andranantoandro et al. 2006).

To achieve predictability and ▶ reliability for the

synthetic biological systems, classical engineering

strategies have to be extended to take into account

the inherent characteristics of biological devices and

modules, such as ▶ robustness, ▶ adaptation, ▶ spe-

cific response, etc. It has been shown that in many

biological systems, it is the topological structure of

gene networks that is responsible to achieve these

properties, instead of the fine tuning of reaction rates.

Such well-designed structures can be achieved by evo-

lution of ▶ gene regulation.
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Characteristics

Robustness

Robustness is a property that allows a system to main-

tain its functions despite both external and internal

perturbations. The property of robustness is

a fundamental feature of complex evolvable systems

(Kitano 2004). Phenotypes of biological systems are

robust against both mutations between generations and

fluctuations from both internal and external origins

during a single generation.

Robustness is a ubiquitously observed property of

biological systems. For example, fate decision behav-

ior of l phage – either lysis or lysogeny – is robust

against point mutations in the promoter region. Bacte-

rial chemotaxis is highly sensitive to environmental

changes over a broad dynamic range and is indepen-

dent to ligand concentration. In embryo development,

gradients of many morphogens are robust against gene

mutations and changes in boundary concentration

levels to enable reliable pattern formation.

Robustness is an important principle for designing

biological circuitries: biological circuits are robustly

designed such that their essential functions are nearly

independent to biochemical parameters that might

vary from cell to cell (Alon 2005).

In ▶ gene regulatory networks, there are specific

architectural features that are known to be responsible

for robustness. Furthermore, these features might be

universal to many robust and evolvable complex sys-

tems. For example, system controls, modularity,

decoupling, and redundancy are known to be basic

mechanisms to provide robustness to the system

(Kitano 2004).

System control consists of negative and positive

feedbacks to attain a robust dynamic response.

▶Negative feedback is a principle mode of control

that enables robust response (or ▶ adaptation) to per-

turbations. ▶Positive feedback contributes to robust-

ness by amplifying the stimuli. It often produces

▶ bistability so that the activation level of downstream

pathway clearly distinguishes from non-stimulated

states and both states can be maintained under

perturbations.

Modularity is an effective mechanism for

containing perturbations or damage locally in order

to minimize their effects on the whole system.
Modules are widely observed in biological systems,

which constitute semiautonomous entities that show

dense internal functional connections but loose con-

nections with environment. A single cell is an obvious

example of a module that constitutes multicellular

systems. Modules are often organized hierarchically.

Decoupling is a mechanism similar to modularity

that isolates low-level variation from high-level

functionalities.

Finally, the simplest strategy to ensure robustness is

to provide multiple ways to achieve a specific function.

In this way, failures in a specific component can be

rescued by others.

In biological systems, the above mechanisms are

organized in a coherent architecture so that they are

effective at the level of organisms.

Biological systems are evolved to be robust against

certain perturbations but extremely fragile to unex-

pected perturbations. This robust yet fragile trade-off

is fundamental to complex dynamic systems.

Adaptation

Many signaling systems show ▶ adaptation – the abil-

ity to reset their output to the original levels after

a transient response to a stimulus. A mathematical

definition of adaptation is given by two characteristic

quantities: the circuit’s sensitivity to input change and

the precision of adaptation (Fig. 1) (Ma et al. 2009).

Networks with perfect adaptation display both sensi-

tivity (large peak output) and precision (the output

returns exactly to the prestimulation levels)

(Ma et al. 2009; Artyukhin et al. 2009). Examples of

perfect or near-perfect adaptation include many impor-

tant biological processes, such as light sensing, osmo-

response, calcium regulation, and bacteria chemotaxis.

Despite the large amount of possible topologies,

there are very limited number of gene networks that

can achieve perfect adaptation. Among all minimal

framework of three-node topologies in which one

node is for receiving inputs, one node for transmitting

output, and one regulatory node, only two of them have

perfect adaptation: ▶ negative feedback loops with

a buffering node and incoherent ▶ feed-forward loops

with a proportioner node (Fig. 1) (Ma et al. 2009). The

regulatory node therein plays essential role in these two

topologies. In negative feedback loops, the regulatory

node is a buffer that integrates the difference between

http://dx.doi.org/10.1007/978-1-4419-9863-7_364
http://dx.doi.org/10.1007/978-1-4419-9863-7_529
http://dx.doi.org/10.1007/978-1-4419-9863-7_896
http://dx.doi.org/10.1007/978-1-4419-9863-7_528
http://dx.doi.org/10.1007/978-1-4419-9863-7_526
http://dx.doi.org/10.1007/978-1-4419-9863-7_896
http://dx.doi.org/10.1007/978-1-4419-9863-7_529
http://dx.doi.org/10.1007/978-1-4419-9863-7_100493
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network response and steady-state output. In feed-

forward loops, the regulatory node negatively regulates

output so that it is proportional to the input. These

results provide a rule for how to robustly engineer

biological circuits capable of achieving adaptation.

Specificity in Cell Signaling

Different cellular signal transduction pathways are

often interconnected so that pathways cross-talk to

each other. Therefore, different signals are often trans-

mitted by common components, yet evoke distinct

outcomes. Special strategies are needed to ensure that

the specificity in cell response is maintained between

different signal transduction pathways sharing similar

(or identical) components, particularly when this

occurs in a same cell.

A framework of analyzing the specificity in cell

signaling was proposed in Komarova et al. (2005)

and Bardwell et al. (2007). Two properties, specificity
and fidelity, are important for a network with cross-talk

pathways to have specific response. Here the specific-

ity of a pathway is measured by the ratio of its authen-

tic output to its spurious output, and the fidelity of

a pathway is defined as its output in response to an

authentic signal divided by its output in response to

a spurious signal (Fig. 2). The network specificity is

then defined as the product of the all pathway specific-

ities. In a network with specific response to different
inputs, all pathways should have both specificity and

fidelity greater than 1. If otherwise, paradoxical situa-

tions would occur so that one pathway activates

another pathway’s output or responds to another path-

way’s input more than its own (Komarova et al. 2005).

Special characteristics have to be emerged so that

a gene network possesses specificity signaling. The

simplest network with shared components, as shown

by the “basic architecture” in Fig. 3a, cannot achieve

specificity and fidelity. Fig. 3b–f shows several

insulating mechanisms – combinatorial signaling,

cross-pathway inhibition, compartmentalization, and

the selective activation of scaffold proteins – that are

found in nature and have been proposed to promote

specificity (Bardwell et al. 2007).

In combinatorial signaling, the simultaneous action

of two or more different signals is required to induce

a response, so that the output of a pathway is deter-

mined by the combination of signals acting on

a network. In such networks, the downstream compo-

nent (x2 in Fig. 3b–c) acts as a molecular “AND gate”

or “coincidence detector” that integrates two separate

inputs. In both types of combinatorial signaling, spec-

ificity of a network is inversely proportional to the

amount of leakage kleak, the basal activity of R when

X is off. Thus, it is possible to obtain arbitrarily high

levels of network specificity by making kleak small

(Bardwell et al. 2007).
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Cross-pathway inhibition (Fig. 3d) occurs when

a downstream component inhibits the other one. An

example of this type has been found in the mating

pathway of yeast. In the cross-pathway inhibition as

shown in Fig. 3d, the specificity of the network is larger

than 1 only when the signal strength for the pathway X

is stronger than that of the pathway Y. The requirement

of fidelity requires additional conditions on both the

relative strength and duration of the input signals

(Bardwell et al. 2007).
Compartmentalization and the action of scaffold

proteins are two simple insulating mechanisms to

achieve specificity and fidelity by separating the path-

ways. In compartmentalization, different pathways are

localized to different compartments or regions of

a cell. Scaffold proteins can bind to two or more

consecutively actin components of a pathway and

accelerate the reaction rates between them. In

fact, scaffolds can create the equivalent “micro-

compartments” by binding to multiple components of
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a given pathway. When deactivation rates are fast

compared to exchange rates, a network with either

compartmentalization or the action of scaffold proteins

is able to have both specificity and fidelity (Komarova

et al. 2005). Such networks reduce to the “basic archi-

tecture” when the exchange rates tend to infinity.

Evolution of Gene Regulation

Natural gene regulatory networks are robustly

designed such that various cellular functions are car-

ried out reliably despite the complex environment in

and outside the cell. How could this be? Are there

principles of natural designs that can help us to con-

struct predictable and reliable circuits? Natural gene

regulation networks are results of billions of years of

evolution that random changes are induced and sur-

vival changes are selected. Evolution has played

an important role in the selection of these networks

(Perez and Groisman 2009).

Each individual has a genome and transcription

factors from which its gene regulatory networks are

derived. Random changes in genes or transcription

factors may alter the genome and regulatory circuits.

The resulting networks after change determine the

gene expression patterns, cell behaviors, and hence

fitness of the individual. The changes with better fit-

ness in a changing environment will survive under

Darwinian selection. Further, the resulting gene net-

work has to be evolvable when environment continues

to change. With this protocol, long-term evolution of

complex gene regulatory networks in a changing envi-

ronment can lead to a robust design and to carrying out

cell functions reliably. Being hard to observe the evo-

lution in laboratory, computational simulations have

shown that evolution is able to generate gene networks

that are robust with respect to both noise perturbations

and mutations (Kaneko 2007).
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Definition

A synthetic (biomimetic) model (SM) is constructed

from extant, autonomous software components

whose existence and purpose are independent of the

underlying model they comprise. It combines these

elements in a systematic manner to form a coherent

whole. A simulation, which is an executed instance

of an SM, generates the model’s behavior according to

a prespecified computational design. Synthetic methods

(Hunt et al. 2006) were invented to tease apart the

underlying dynamics of complex systems (▶Complex

System;▶Complexity), in contrast to inductive models

(▶ Induction) and related methods, which target predic-

tion of the average behavior of systems in a continuous

manner and are less concerned with the dynamics of

individual model components.
Characteristics

Fundamentally Different Models

Successful development of new, safe, and effective

drugs and treatment protocols requires deeper insight

http://dx.doi.org/10.1007/978-1-4419-9863-7_1073
http://dx.doi.org/10.1007/978-1-4419-9863-7_1073
http://dx.doi.org/10.1007/978-1-4419-9863-7_55
http://dx.doi.org/10.1007/978-1-4419-9863-7_733
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familiar inductive

pharmacokinetic models
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into the mechanisms involved, at all biological levels.

Because the systems are complex and dynamic, we

need new classes of simulation models, calibrated to

current mechanistic knowledge (▶Knowledge),

to facilitate experimentation to discover plausible

treatment outcomes and enable exploration of the

origins of emergent phenomena as they unfold.

As an example of describing differences in

model types, we consider hepatic drug disposition.

Relationships between three different model types

are illustrated in Fig. 1. Measures of drug loss from

perfusate during liver perfusion (center) provide

a classical pharmacokinetic (PK) profile

(▶Pharmacokinetic Modeling). During perfusion,

hepatic components interact with transiting drug

changing the drug’s concentration-time profile. The

leftmost diagram illustrates creating and fitting a PK

model to the profile data. The researcher identifies

patterns in the data in both an exploratory and

a statistical fashion. An abstract, albeit idealized,

hypothesized mechanism is formulated, thus

establishing a conceptual mapping between this

abstract description and hepatic cellular mechanisms.

One or more PK equation models are selected

to describe data patterns. There is also a conceptual

mapping from description to equations. Software is

executed to simulate equation output, enabling

a quantitative mapping from simulation output to PK

data. Metrics specify the goodness of fit.

In contrast, in the rightmost model, a mechanistic

description is specified; it is similar, but not identical,

to the one in the leftmost diagram. Software compo-

nents are designed, coded, verified, and connected,
guided by the mechanistic specifications. The end

product is a collection of micro-mechanisms to be

rendered in software. A concrete, realistic mapping

(A) exists from in silico components and how they fit

together to (1) hepatic physiological andmicroanatom-

ical details and (2) drug interactions between compo-

nents. Dynamics observed during simulations map to

(B) corresponding dynamics (hypothesized to occur)

within the liver. Simulation metrics provide a PK pro-

file that is intended to mimic the liver perfusion PK

profile. Quantitative metrics establish similarity

between the two outflow profiles (C).

The rightmost model of Fig. 1 is an extant hypoth-

esis: the components (objects) will illuminate

a traceable mechanism upon simulation execution,

a consequence of which will be emergent phenomena

(e.g., as response following xenobiotic exposure). If

similarities between the resulting simulated system

(systems, modeling) and the referent system meet

some prespecified criterion, the simulation stands as

an abstract, plausible, mechanistic theory about events

that may have occurred during wet-lab experiments

(▶Experiment).

Agent-Based Methods

The mechanisms that generate pharmacological

phenomena are consequences of components at

multiple levels of detail interacting in a complex

manner with drug compounds. Simulation of such

behavior may be achieved by adopting discrete-event

modeling and simulation (M&S) methods (▶Agent-

based Models, Discrete Models and Mathematics)

(Fishman 2001) in which component interactions can

http://dx.doi.org/10.1007/978-1-4419-9863-7_1030
http://dx.doi.org/10.1007/978-1-4419-9863-7_297
http://dx.doi.org/10.1007/978-1-4419-9863-7_117
http://dx.doi.org/10.1007/978-1-4419-9863-7_283
http://dx.doi.org/10.1007/978-1-4419-9863-7_283
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proceed according to stochastically defined rules

(▶Rule-based Methods) (Ullah and Wolkenhauer

2010).

Some biological components subject to wet-lab

analysis possess a degree of spatial organization

and are both semi-modular and quasi-autonomous.

Synthetic models must be capable of exhibiting these

same attributes. Component quasi-autonomy, coupled

with realistic, spatially organized, biomimetic mecha-

nisms, can be achieved using agent-based (agent-based

modeling) and agent-oriented methods (An et al. 2009;

Hunt et al. 2009), a discrete-event M&S method based

on the object-oriented programming paradigm. The

quasi-autonomous, decision-making software objects,

called agents, can map to an organism, an organ,

a tissue subsection, a cell, and/or a subcellular process.

Other components, such as compounds (biologics/

xenobiotics), may themselves be represented as

objects. Agents follow sets of rules that govern their

actions and interactions. A biomimetic agent will have

its own agenda, can schedule its own actions, and can

dynamically change its operating logic. Agent-based

SMs possess advantages when the modeler wishes to

understand and simulate phenomena produced by sys-

tems of interacting components, and that makes them

useful for gaining deeper insight into pharmacological

phenomena within different individuals. An important

characteristic of these models is that they yield an

understanding of the mechanisms that generate

disease-related phenomena and how compounds and

treatment protocols influence these mechanisms by

altering pharmacological phenomena.

Agents can be either atomic or composite.

Increasing levels of organization define the system’s

granularity (▶Granularity), or the extent to which the

system is subdivided, and in which the smallest

components are considered “atomic” (an atomic object

contains no components of its own). Indeed, the more

finely grained the system, the greater level of

biological detail a given model wishes to examine.

Agents, both atomic and higher-level, are designed to

be inherently modular, and can be replaced (as distinct

from being subdivided) with more finely grained

components that exhibit similar behaviors.

Components can be hierarchically nested, allowing

the use of SMs to discover plausible bidirectional

relations necessary for hypothesizing, instantiating,
and in silico testing of multiscale genotype-phenotype

relationships. Though in practice, a greater degree of

nesting implies the need for more components and

interactions, SMs should be just finely grained enough

to produce targeted phenomena and achieve the

simulation’s specified uses.

Precise stoichiometric knowledge of component-

compound interactions is rarely if ever available. An

advantage of discrete-event methods is that both

knowledge and ignorance (uncertainties) can be

represented concurrently and simulated across a wide

spectrum. The effective stoichiometry of interactions

involving compounds can be represented at almost any

convenient granularity level below that of the targeted

phenomena, but the mappings from objects

representing compounds to their referent molecules

are not one-to-one. The presence of a compound can

be represented as a property of a space or as mobile

objects (Hunt et al. 2009). Mobile objects representing

compounds can map to an arbitrary number of mole-

cules. An important feature of the synthetic approach,

from a pharmaceutical sciences perspective, is that each

mobile object carries a list of physicochemical properties

(PCPs) along with bioactivity attributes (the chemical

entity is a CYP 2C9 substrate, etc.). In that way, SMs can

accommodate any number of different compounds con-

currently, which of course is ideal for studying and

exploring drug-drug interactions (Lam and Hunt 2009).

A component empowered to interact can use PCP infor-

mation to adjust how it interacts.

Parameterizations

Early in SM development, micro-mechanistic

knowledge is insufficient to parameterize component-

compound interactions a priori using PCPs.

Micro-mechanism logic must be tuned for the first

several compounds. As the set of compounds enlarges,

inductive modeling methods (e.g., ▶Ordinary Differ-

ential Equation (ODE), Model; ▶ Partial Differential

Equation (PDE), Models) can be used to establish

quantitative mappings from patterns in PCPs to pat-

terns in parameter values of tuned component-

compound interactions. Such mappings will be the

synthetic model’s counterpart to a structure-activity

relationship. In subsequent rounds of SM refinement,

the new knowledge contained in that relationship can

be used, in some cases automatically, to provide an

http://dx.doi.org/10.1007/978-1-4419-9863-7_610
http://dx.doi.org/10.1007/978-1-4419-9863-7_65
http://dx.doi.org/10.1007/978-1-4419-9863-7_381
http://dx.doi.org/10.1007/978-1-4419-9863-7_381
http://dx.doi.org/10.1007/978-1-4419-9863-7_694
http://dx.doi.org/10.1007/978-1-4419-9863-7_694
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initial SM parameterization for the next chemical

entity to be studied. Simulations using those parame-

terizations will stand as crude predictions of the new

compound’s attributes (Yan et al. 2008).

Iterative Refinement

The stages in scientific M&S are illustrated on the

right side of Fig. 2. The micro-mechanisms form

a hypothesis to be executed in silico and to yield output
Synthetic Models and
Methods, Fig. 2 An iterative

refinement protocol used to

improve synthetic models
data. When the data fails to achieve a prespecified

measure of similarity with referent data, the

mechanisms are rejected as being plausible represen-

tations of wet-lab counterpart (Lam and Hunt 2010),

and the cycle begins anew.

The iterative refinement protocol in Fig. 2

facilitates parsimony, which is important when

building SMs that are expected to become increasingly

complex. The protocol facilitates generating multiple
S
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mechanistic hypotheses and then eliminating the least

plausible through experimentation.

The iterative refinement protocol shown in Fig. 2 is

core to the scientific use of SMs. When faced with

the task of building a scientifically relevant,

multi-attribute SM in the face of significant gaps in

knowledge, parameterizations, and model components

must strike a balance between too many and too few.

Doing so can be complicated by the fact

that a validated, parsimonious, multi-attribute SM

will be over-mechanized (“over-parameterized”;

▶Overfitting) for any one attribute. Too many com-

ponents and parameters can imply redundancy or

a lack of generality; too few can make the SM useless

for researching multi-attribute pharmacological phe-

nomena. SMs are ideal for discovering mechanistic

explanations in the form of relationships between com-

ponents. However, because of the uncertainties

reflected in poorly resolved model parameters and

mappings to the referent system, they lack the precise

predictive power of mathematical models. A SM such

as that on the right side of Fig. 1 can be used to make

predictions (quantitative or qualitative), for example,

about where and how multiple “compounds” adminis-

tered together may effectively interact.

Knowledge Embodiments

SMs have the potential to evolve into executable rep-

resentations of what we know (or hypothesize) about

biological systems during pharmacological exposure:

they become executable biological (Fisher and

Henzinger 2007) knowledge embodiments that pro-

vide concrete instances of that knowledge (right side

of Fig. 1) rather than computational descriptions of

conceptual representations (left side of Fig. 1). During

simulation, a synthetic model demonstrates when,

how, and where our knowledge matches or fails to

match details of the referent system.

Such systems will represent the current best theory

for how different pharmacological phenomena emerge

within different individuals (Hunt and Ropella 2011).

Adjusting (tuning) an SM to represent, for example,

a normal rat liver in one in silico experiment,

a diseased rat liver in another (as in Park et al. 2010),

and a human liver in another will be relatively straight-

forward because uncertainty can be preserved. Auto-

matable cross-validation of component functions can

specify which features to tune and by how much. One

may take copies of the same model and tune each
separately to reflect differences in measured, patient-

specific attributes.

Cross-References

▶Agent-based Modeling

▶Agent-based Models, Discrete Models and

Mathematics

▶Complex System

▶Complexity

▶Experiment

▶ Induction

▶Knowledge

▶Lattice-Gas Cellular Automaton Models

▶Ordinary Differential Equation (ODE), Model

▶Overfitting

▶ Partial Differential Equation (PDE), Models

▶ Partial Differntial Equations, Numerical Methods

and Simulations

▶ Pharmacokinetic Modeling

▶Rule-based Methods
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Ligand L binds to cell surface receptor R and activates it. Active

R activates K, which induces expression of P. P triggers

a response and at the same time suppresses K
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SysMO (http://www.sysmo.net) is a Pan-European

consortium studying the Systems Biology of Microor-

ganisms, containing over 100 research groups working

on eight projects, generating a wide range of data

including transcriptomics, proteomics, metabolomics,

and reaction kinetics. The goal of the SyMO projects is

to combine experimental data and mathematical

models for the description of dynamic molecular pro-

cesses. SysMO was started in 2006 and will run up to

2014 in two funding periods.
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Definition

This essay discusses specific types of experiments that

are useful for the quantitative characterization of sig-

naling systems. Since signal transduction often

involves genes and proteins; distinctly different exper-

imental perturbations can shed light on various aspects

of the signaling system.
Characteristics

Creating Experimental Perturbations

An important goal in systems biology is to construct, as

completely as possible, abstract representations of
biological systems that can be analyzed with compu-

tational techniques. The resulting biological network
models define the system in a graphical or mathemat-

ical manner that contains information about the inter-

action partners of an entity and the strengths of these

interactions (Alon 2003). Cellular signaling pathways

comprise a particularly interesting type of biological

network. These networks relay environmental signals

to the interior of the cell and initiate appropriate

responses. Figure 1 illustrates a generic signaling net-

work. An environmental cue in the form of ligand

L activates the cell surface receptor R. The activated

receptor protein often undergoes a conformational

change, which activates the protein K, which in turn

induces the transcription of gene G into the

corresponding mRNA M. M is translated into protein

P, which triggers an appropriate response to the extra-

cellular signal. The response could take the form of

targeted gene expression, cell proliferation, apoptosis,

or some other physiological event. P also acts to inhibit

or inactivate protein K, thereby turning off the signal

over time. It is clear that this system, as is typical of

signal response systems, is comprised of functional

elements at the genome (G), transcriptome (M), and

proteome (R, K, P) levels. This multi-scale operation is

http://www.sysmo.net
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significant, because it allows experimental perturba-

tions that may be introduced into the signaling system

at the genome, transcriptome, or proteome level.

Experimentally introduced perturbations can be

used as the basis for inferring the features of

a biological system. To this end, the same or similar

perturbations are simulated in corresponding quantita-

tive models, which make predictions regarding the

expected responses of the natural system. Sophisti-

cated computer-aided comparisons between experi-

mental and simulation results together with iterated

analyses eventually lead to insights into the true struc-

ture of the system.

Experimental perturbations can be applied in dif-

ferent ways. Gene-knockout techniques and mutagen-

esis can be applied to perturb the system at the level of

DNA (G in Fig. 1). By interfering with the gene

sequence, these methods result in altered gene expres-

sion and a corresponding loss of function. RNA inter-

ference using synthetic siRNA or expressed shRNA

constructs, can perturb cellular systems at the tran-

script level by “knocking down” (i.e., silencing)

genes and thereby reducing the number of mRNA

copies in the cell (M) (Leung and Whittaker 2005).

Both approaches ultimately attenuate the concentra-

tion of the targeted protein (R, K, P). Finally, pertur-

bations at the protein level can be created with

stimulating agents, such as natural receptor ligands

(L) or agonists that activate the signal. Opposite per-

turbations are possible with chemical inhibitors and

antagonists that suppress receptor activation.

Kinetic Models of the System

Themost commonway of quantitatively describing the

kinetics of a signal transduction pathway is through

a system of ordinary differential equations (ODEs)

(Aldridge et al. 2006). Multiple mathematical formats

are available to describe the temporal progress of indi-

vidual biochemical reactions and can be chosen as

deemed fit. Commonly used models include mass

action, Michaelis–Menten and power-law kinetics

(Voit et al. 2000). Irrespective of the particular model

choice, the ODE system must be parameterized for

further analysis. This process consists of determining

numerical values for quantities representing the initial

concentrations of the species in the model and for

quantities determining the strengths of interactions

and the speed of the biochemical reactions. For exam-

ple, consider theMichaelis–Menten description (Eq. 1)
of a unimolecular elementary reaction where substrate

S is converted into product P.

S ! P

� d S½ �
dt

¼ d P½ �
dt

¼ nm S½ �
Km þ S½ �

(1)

[S] and [P] represent the concentrations of the bio-

chemical species S and P, respectively, as functions of

time. To solve Eq. 1, the quantities vm and Km need to

be specified along with the values of [S] and [P] at the

beginning of the experiment, usually for time 0. This

specification is accomplished through a statistical eval-

uation of specific experiments or from literature infor-

mation. An ODE system made up of multiple reaction

rates requires similar quantities, namely, rate and inter-

action parameters for individual reactions and the ini-

tial values of all the participating biochemical species

(Voit et al. 2000). Thus, an ODE model can be written

for the system in Fig. 1 using the same principles for all

interactions. As a variation to including all compo-

nents explicitly, the model may be simplified by mak-

ing some species implicit. For example, the steps

leading from the activation of transcription by K to

the production of protein P could be simplified by

making gene G and mRNAM implicit. The production

of P would then follow directly from K. It would be

modeled with a more complicated function and possi-

bly a time delay, and the species G and M would no

longer be visible in the model.

Implementing Perturbations in the Model

It is straightforward to simulate experimental manipu-

lations with the parameterized model, if all compo-

nents are explicitly included. Because all components

and interactions have their unique representation in the

model, an experimental perturbation applied at the

level of a gene, RNA, or protein is directly

implemented in the corresponding component or pro-

cess of the model. If a component is only implicitly

accounted for in the model, the perturbation can still be

modeled, but the procedure is not quite as

straightforward.

A stable gene-knockout disturbs the functionality of

a gene sequence and leads to the absence of functional

protein. This perturbation is easily modeled by setting

the initial values and production rates of mRNA and

protein to zero. Mutagenesis can result in a protein that

is completely nonfunctional with respect to its natural
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role or exhibits altered reactivity. A nonfunctional pro-

tein can be modeled as in the case of a knockout by

setting the mRNA and protein initial values and pro-

duction rates to zero. By contrast, perturbation through

mutagenesis resulting in a protein with altered reactiv-

ity is modeled by adjusting the rate parameters of

the reactions in which the protein participates.

A perturbation achieved with a transgenesis experi-

ment can enhance the level of an existing protein or

even introduce a new protein into the system. The

former situation is easy to resolve since only the pro-

duction rate and the initial value of the existing protein

is adjusted. In the latter case, new reactions may come

into play, and these can change the structure of the

system. Such changes require that entirely new species

are introduced and that additional rate and interaction

parameters are determined.

A knockdown experiment targeting the transcripts of

a gene attenuates the protein level without completely

abolishing it. In a kinetic model that explicitly includes

mRNA, a changed protein level is easily implemented

by lowering the initial value and enhancing the decay

rate of mRNA induced by RNA interference. If mRNA

is only implicit in the model, the effect of knockdown

can be modeled by decreasing the initial value and

production rate parameters of the protein to a level

commensurate with the extent of the knockdown.

Perturbations can be introduced at the level of pro-

teins to enhance or suppress a signaling pathway.

Small chemical molecules can activate a signaling

pathway through the receptor or even bypass the recep-

tor and activate signaling directly. For example, ago-

nist molecules can activate receptor-induced signaling

when the natural ligand is not present. By contrast, an

antagonist molecule may suppress receptor-induced

signaling in the pathway. The direct effects of agonist

(antagonist) molecules can be modeled by taking into

account the enhanced (attenuated) rate of receptor

activation in response to these molecules. Small chem-

ical molecules can also be used to inhibit the activities

of enzymes in the signaling pathway, and their effects

can be translated into the kinetic model by decreasing

the catalytic rates of the target enzymes. In all these

cases, an experimental perturbation can be translated

to the kinetic model by altering the corresponding

initial conditions or rate parameters or by slightly

adjusting the structure of the system.

Experimentally introduced perturbations can some-

times have unexpected off-target effects. For example,
a small-molecule inhibitor with a known target

enzyme may also have lower yet significant specificity

for other proteins in the system, hence creating addi-

tional variation (Davies et al. 2000). Other perturbation

measures, such as the introduction of an exogenous

transgene that reacts with existing species in the net-

work, could introduce new reactions or alter the

existing parameters of the model. These newly intro-

duced or altered parameters may not always be simple

to determine and can complicate the problem of

parameter estimation instead of simplifying it.

Data obtained from perturbation experiments can

be valuable in several ways. Importantly, they can help

establish a hierarchical relationship between the ele-

ments of the signaling network. Knocking out protein

K in Fig. 1 would prevent synthesis of P even in the

presence of a stimulatory signal from ligand L. This

result, for example, establishes that P lies downstream

of K in the network. An inhibitor of enzyme P would

shut off the inhibition of K in Fig. 1. Measurements of

K under perturbed and unperturbed conditions provide

additional data that can be used to estimate rate param-

eters in the model. Perturbation data can be further

used to validate a candidate kinetic model of the sys-

tem. For example, protein K could be measured over

time after knocking down enzyme P using RNAi.

Without using this experimental result to train the

model, the model could then be queried by simulating

knocked-down levels of P. Finally, perturbation exper-

iments can be used with a computational model to

unravel regulator principles operating in signal trans-

duction systems.

Time course measurements on species in the sig-

naling network obtained under different perturbation

conditions require more effort but provide a much

richer data set that can aid the process of parameter

estimation and system identification (Chou et al.

2009). Once the signaling system is reliably identified,

simulating the effects of many additional perturbations

generates hypothetical drug targets and informs exper-

imental design for biotechnology and pharmaceutical

applications (Schoeberl et al. 2009).
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Definition

It is perhaps no exaggeration to say that systems biol-

ogy is transforming the way we understand biological
processes in health and disease. Its influence on drug

discovery is not in the least surprising, marking an

important paradigm shift in drug discovery science

(Kitano 2002; Butcher et al. 2004; Hood and

Perlmutter 2004). Several factors such as availability

of publicly accessible databases containing genome

sequences, functional and structural data of macromol-

ecules, high-throughput experimental profiling,

protein-protein interactions and pathway models, as

well as adaptation and application of computational

methods for efficient data mining and modeling, have

all been directly contributing to this paradigm shift.

Systems approach is really not new to the study of

diseases or medicine. There has been sufficient empha-

sis in literature on the merit of wholistic approaches

and phenotypic medicine. Heavy reliance on whole

animal models and need for rigorous clinical trials

stand out as evidence to such thinking. Yet, there is

a remarkable difference with those approaches and the

emerging systems biology approaches. While conven-

tional approaches have surely benefitted from systems

philosophy, comprehension of the “system” is at best

only implicit in these. In fact the system is most often

more of a “black box,” which only facilitates a systems

output as a “readout,” but does not tell us why or how,

such an output results. Current approaches to systems

biology, on the other hand, adopt a bottom-up strategy

and reconstruct the system brick by brick, thus facili-

tating an understanding of the mechanistic basis of

individual molecular events, leading to the ability to

simulate different scenarios, thus enabling predictions.

It must be noted that systems biology approaches thus

also differ from the theoretical “spherical cow” type of

abstractions. Data describing various complex real-life

phenomena, in the form of multilevel “omics” data on

various fronts are increasingly becoming available,

making such realistic systems level modeling feasible

and in fact a necessity.

One of the main challenges is to build complete

models with high enough resolution accounting for

presence of all components, interactions, and reactions

such that variation in genotypes at the molecular level

can be mapped onto phenotypic differences. For

example, it would be desirable to understand not

merely a relation between a specific gene mutation to

disease susceptibility or disease prognosis, but to

reckon why that mutation should result in such

a phenotype. There is still a paucity of quantitative or

experimentally validated data required for model

http://dx.doi.org/10.1007/978-1-4419-9863-7_364
http://dx.doi.org/10.1007/978-1-4419-9863-7_1147
http://dx.doi.org/10.1007/978-1-4419-9863-7_381
http://dx.doi.org/10.1007/978-1-4419-9863-7_585
http://dx.doi.org/10.1007/978-1-4419-9863-7_803
http://dx.doi.org/10.1007/978-1-4419-9863-7_210
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building. Lack of established protocols for high-

throughput validation of the predictions is yet another

problem. Notwithstanding these problems, the benefits

of using systems level analyses far outweigh the cur-

rent limitations. One of the biggest advantages is that

predictions of the outcomes of a variety of scenarios

can be made through simulations. In addition, systems

level modeling enables dissection of the roles of indi-

vidual components and their interactions with other

components in the system.

Available methods for modeling complex networks

span different abstraction levels and capture such com-

plex cellular behavior through mathematical equations

describing molecular interactions. Methods such as

kinetic modeling using ODEs, stochastic modeling,

flux balance analysis, and metabolic control analysis

have been developed to model metabolic and signaling

pathways (Orth et al. 2010). Kinetic modeling methods

have been used extensively for specific pathways

where detailed reaction rate information is available,

while the reaction flux-based methods, although semi-

quantitative in nature, cater to study of genome-scale

metabolic networks and measure the relative fluxes of

individual reactions for a given set of optimization

criteria. Flux variability analysis enables the study of

the range of concentrations, a particular reaction flux

could adopt. Networks involving molecular interac-

tions and influences at a genome scale have been

studied using graph-theoretical methods and help in

providing a molecular connectivity map in the cell.

Simulations using synthetically constructed models

enable dissection of the role of individual elements

and underlying dynamics of complex systems. Higher

levels of abstraction, where an entire process is

described in a couple of equations, enable generaliza-

tion of different phenomena with similar characteris-

tics and thus help in providing a bird’s-eye view of the

system and find common patterns in related systems.

An urgent need presently is to generate data and

develop scalable quantitative predictive models, built

with the foundations of biochemical knowledge.While

genome sequence data is available for many organ-

isms, quantitative data reflecting reaction velocities,

interactions strengths, and temporal dynamics is rela-

tively scarce, making it difficult to perform accurate

quantitative predictions on several systems. System-

atic experiments to obtain quantitative measurements

of the components and the parameters that govern

cellular behavior will be very useful for this purpose.
Once obtained, a systems view of the disease, can

be used for addressing a variety of questions such as

(a) identifying optimal strategies for treating a given

disease; (b) identifying which proteins would serve as

ideal drug targets to achieve the desired strategies

(Rappuoli and Aderem 2011); (c) identifying which

targets are druggable; (d) identifying which targets

would be best suited for particular disease states such

as actively dividing bacteria in an infectious disease;

(e) understanding effects of a given drug, which trans-

lates to understanding pharmacodynamics and phar-

macokinetics and hence ranking drug candidates; and

(f) repurposing drugs used for other pathological indi-

cations. Besides these, the additional advantages of

systems biology come from its ability to address

important but difficult aspects of drug discovery such

as polypharmacology, emergence of drug resistance,

drug safety, and personalized medicine (Boran and

Iyengar 2010). The entries in this section illustrate

many of these aspects.

The study of disease through the integration of

clinical, morphological, quantitative, and molecular

parameters into detailed networks that can be studied

using well-established mathematical techniques can be

described as systems pathology. Systems models are

developed that explain pathophysiological processes

in their entirety and generate testable hypotheses. Sim-

ilarly, systems pharmacology is emerging as

a discipline in its own right, which addresses drug

action including pharmacokinetics, pharmacodynam-

ics at a systems level. A wide variation is seen in the

response to treatment in different patients both with

respect to beneficial effects as well as adverse reac-

tions. Pharmacogenomics, another emerging disci-

pline, seeks to address molecular basis of such

variability at a genome scale and has the potential to

lead to personalized medicine in the future. A systems

perspective enables a study of the outcome of drug

treatment as a nonlinear function of multiple events

of molecular recognition and biochemical and bio-

physical reactions involving drug transporters,

metabolizers, and intended targets. A further degree

of complexity is brought about by epigenetic modifi-

cations of these classes of genes. Thus, besides the

genetic variations, it is important to study epigenetic

variations between individuals and in populations.

Complex biological processes are represented as

networks in terms of specific interactions among thou-

sands of molecules. Genome-scale molecular networks
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have been constructed for a variety of organisms (Lee

et al. 2009) and are known to be significantly different

from random networks and exhibit specific properties

in terms of their structure and organization. Specific

rewiring of the interactions is known to occur in dis-

ease, making a network perspective important to iden-

tify and characterize a disease, elucidate disease

mechanisms, and identify important biomarkers and

drug targets.

Experimental data such as genome-wide gene

expression profiles have been incorporated onto net-

works to derive “response networks” specific to certain

conditions such as in the case host responses to an

infection, disease progression, or drug treatment

(Forst 2006; Ideker and Krogan 2012). Variations in

a network between two states can be mapped onto

specific modules representing a closer set of connected

reactions such as in a pathway or a process. Such

modules often contain characteristic features to repre-

sent a signature of the disease. Topological analysis

and comparison of relevant networks can help in iden-

tification of such signature patterns and further link it

to the functional categories of the individual compo-

nents. Several examples of such studies sometimes

termed as gene or protein enrichment analysis of net-

works are available in literature (Glaab et al. 2012)

where specific genes in a module are mapped to known

pathways and gene ontology terms and interpreted in

terms of which pathway or functional category is over-

represented in a module.

Discovery of new drugs for diseases such as cancer

require an understanding of the complex nonlinear

interactions among the hundreds of molecular compo-

nents contributing to cancer pathogenesis. Alterations

in networks between health and disease provide signif-

icant clues as to the mechanisms that could be targeted

with drugs. Networks then, rather than individual

genes or proteins, need to be targeted for drug discov-

ery. An example of a systems biology approach has

been described for melanoma, where knowledge of

signaling networks with feedback loops and redundant

pathways has led to exploring targets for possible

combination drug therapy. An example for glioblas-

toma is described in the drug discovery section. In the

case of Parkinson’s disease, a neurodegenerative

movement disorder, the dynamics and interdependence

of the disease pathways, their temporal order, synergy,

and regulation has been addressed through systems

biology–based dynamic modeling and predictive
analyses supported by experimental data. Such

knowledge will ultimately help in design of better

optimized drugs and more importantly reduce the risk

of failure in the discovery pipeline.

Networks among different patients with the same

disease could explain differences in drug susceptibility

and emergence of drug resistance. A genome-scale

protein-protein interaction network has been studied

in a deadly bacterial pathogen to predict possible

molecular pathways through which drug resistance

could be triggered (Raman and Chandra 2008). Such

knowledge lead to a new concept in drug discovery

that targets could perhaps be prioritized and picked

based on their potential to trigger drug resistance.

Systems approaches are being applied to study sev-

eral infectious diseases. In the case of malaria, avail-

ability of omics data has led to systems studies of both

the causative parasite Plasmodium falciparum as well

as the mosquito vector it uses for transmitting malaria.

Roles of molecular features corresponding to active

growth, starvation, and environmental stress response

of the parasite have been identified, as also those in the

vector such as specific pattern recognition receptors

important for its longevity and hence for the disease.

These studies have led to several insights for the ratio-

nal identification of drug targets for the design of novel

antimalarial agents. Systems biology methods have

been applied to understanding Mycobacterium tuber-

culosis, the pathogen responsible for the deadly dis-

ease of tuberculosis, through an integration of

proteome, reactome, and interactome. A multilevel

analysis involving study of genome-scale metabolic

networks, protein-protein interaction networks inte-

grated with the study of three-dimensional structures

of proteins at a proteome scale has led to the prediction

of a list of high-confidence drug targets in the pathogen

(Raman et al. 2008). A systems approach to

understanding host-pathogen interactions is being

applied for viral infections as well, where models are

developed to study the influence of virus infection on

cellular signaling pathways, roles of specific viral and

host genes in different steps of the viral life cycle,

and disease initiation and the host response to

viral infection.

Biology is increasingly tending to be a data-driven

science, which serves as an excellent precursor for

systems biology. It is almost automatic that these

approaches will have a significant impact in the area

of drug discovery. Predictions based on sound physical
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models and tacit rule-based models have long been

used in product development and safety testing in

various engineering disciplines, such as aerospace

engineering and electronic circuit design. It can be

envisaged that predictive approaches is expected to

increase significantly in the coming years in drug dis-

covery too. The extent of omics-scale data and the

advances in systems technologies to enable compre-

hension of such large complex data in the form of

meaningful biological models are promising to help

in this process. The power of systems biology methods

is such that it may become possible in the not-too

distant future, that a disease could get diagnosed in

a clinical setting and characterized at the systems level

with precise genotype and phenotype definitions, lead-

ing all the way up to predictive quantitative titrations

of the available remedies and finally personalized

prescriptions.
S
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Synonyms

SBML
Definition

SBML (the Systems Biology Markup Language) is

a representation format, based upon XML, used for

communicating and storing computational models of

biological processes (Hucka et al. 2003). SBML can

represent many different classes of biological phenom-

ena, including metabolic networks, cell-signaling

pathways, regulatory networks, disease models, and

many others. It does not attempt to be a universal

language for quantitative models; rather, SBML’s pur-

pose is to serve as a franca lingua for exchanging the

essential aspects of a computational model between

software systems and databases. It is intended to be

used by software and not written by humans directly,

although its text-based nature makes it reasonably

comprehensible for situations such as debugging and

software development, when direct access is useful.
Characteristics

There are many aspects to SBML and its correct use.

The following paragraphs can only summarize some

notable points; elaborations and further details are

available in the SBML specification documents

(SBML Team 2011).

http://dx.doi.org/10.1007/978-1-4419-9863-7_1096
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General Principles of SBML

SBML has three main purposes:

1. Enable modelers to use multiple software tools

without having to rewrite models to conform to

every tool’s idiosyncratic file format

2. Enable models to be shared and published in a form

that other researchers can use even when working

with different software environments

3. Ensure the survival of models beyond the lifetime

of the software used to create them

Themost common and basic form of an SBMLmodel

consists of entities (called species in SBML) acted upon

by processes (called reactions in SBML). An important

principle is that models are decomposed into explicitly

labeled constituent elements, the set of which resembles

a verbose rendition of an explicit set of equations. This

set of equations can represent both chemical reaction

equations (if the model uses reactions) and equations

derived from other concepts (again, if the model uses

them). The SBML representation deliberately does not

express a model directly as (for instance) a set of differ-

ential equations or other specific interpretation of the

model. This explicit, framework-agnostic decomposition

makes it easier for a software tool to interpret the model

and translate the SBML form intowhatever internal form

the tool actually uses.

A software system can read an SBML model

description and translate it into its own internal format

for model analysis. For example, a software system

might provide the ability to simulate the model by

constructing differential equations and then perform

numerical time integration on the equations to explore

the model’s dynamic behavior. Or, alternatively,

a package might construct a discrete stochastic repre-

sentation of the model and use a Monte Carlo simula-

tion method such as the Gillespie algorithm.

Another important feature of SBML is that every

entity can have machine-readable annotations attached

to it. These annotations can be used to express relation-

ships between the entities in a given model and entities

in external resources such as online databases. A good

example of the value of this is in BioModels Database

(Li et al. 2010), where every model is annotated and

linked to relevant data resources such as publications,

databases of compounds and pathways, controlled

vocabularies, and more. With annotations, a model

becomes more than simply a rendition of a mathemat-

ical construct – it becomes a semantically enriched

framework for communicating knowledge.
SBML is sometimes incorrectly assumed to be lim-

ited in scope only to biochemical network models

because the original publications and early software

focused on this domain. In reality, although the central

features of SBML are indeed oriented toward

representing “reaction-like” processes that act on

some entities to generate new or different amounts of

other entities, this same formalism serves analogously

for many other types of processes; moreover, SBML

also supports the direct expression of mathematical

formulas and discontinuous events apart from reaction

processes, allowing SBML to represent much more

than only biochemical reactions.

Structure of SBML

SBML allows models of arbitrary complexity to be

represented. Each type of component in a model is

described using a specific type of SBML data structure

that organizes the relevant information. The data struc-

tures determine how the resulting model is encoded in

XML. The main data structures in SBML Level 3

Version 1 are the following:

• Function definition: A named mathematical func-

tion that may be used throughout the rest of a model.

• Unit definition: A named definition of a new unit of

measurement. Named units can be used in the

expression of quantities in a model.

• Compartment: A well-stirred container of finite size

where species may be located. Compartments may

or may not represent actual physical structures.

• Species: A pool of entities of the same kind located

in a compartment and participating in reactions

(processes). In biochemical network models, com-

mon examples of species include ions, proteins, and

other molecules; however, in practice, an SBML

species can be any kind of entity characterizable

in terms of an amount.

• Parameter: A quantity with a symbolic name. In

SBML, the term “parameter” is used in a generic

sense to refer to named quantities regardless of

whether they are constants or variables in a model.

SBML provides the ability to define parameters that

are global to a model as well as parameters that are

local to a single reaction.

• Initial Assignment: Amathematical expression used

to determine the initial conditions of a model. This

type of object can only be used to define how the

value of a variable can be calculated from other

values and variables at the start of simulated time.



Systems Biology Markup Language (SBML) 2059 S

S

• Rule: A mathematical expression added to the set of

equations constructed based on the reactions

defined in a model. Rules can be used to define

how a variable’s value can be calculated from

other variables, or used to define the rate of change

of a variable. The set of rules in a model can be used

with the reaction rate equations to determine the

behavior of the model with respect to time.

• Constraint: A means of detecting out-of-bounds con-

ditions during a dynamical simulation and optionally

issuing diagnostic messages. Constraints are defined

by an arbitrary mathematical expression computing

a true/false value from model variables, parameters,

and constants. An SBML constraint applies at all

instants of simulated time; however, the set of con-

straints in the model should not be used to determine

the behavior of the model with respect to time.

• Reaction: A statement describing some transforma-

tion, transport, or binding process that can change the

amount of one or more species. For example, a reac-

tion may describe how certain entities (reactants) are

transformed into certain other entities (products).

Reactions have associated kinetic rate expressions

describing the speed at which reactions occur.

• Event: A statement describing an instantaneous,

discontinuous change in one or more variables of

any type (species, compartment, parameter, etc.)

when a triggering condition is satisfied.

Mathematical formulas are represented using

a subset of MathML. The SBML specification defines

the MathML operators allowed in formulas in SBML,

as well as how the identifiers of the various constructs

like species and compartment objects are linked with

MathML formulas.

Annotations

The constructs in SBML have only limited mathemat-

ical semantics. They have no predefined biological or

biochemical semantics, and though a human could

make inferences when inspecting a given model, soft-

ware programs are not as competent in that regard. For

software, the intended meaning of each model compo-

nent needs to be made explicit and in a machine-

readable form. SBML defines two separate systematic

ways of adding annotations to any component of

a model.

The first type of annotation takes the form of refer-

ences to terms taken from the Systems Biology Ontol-

ogy (SBO; Le Novère 2006). This set of controlled
vocabularies provides terms for identifying such things

as common reaction rate expressions, common partic-

ipant types and roles in reactions, common parameter

types and their roles in rate expressions, common

modeling frameworks (e.g., “continuous,” “discrete,”

etc.), and common types of biochemical species and

reactions. By adding references to SBO terms to com-

ponents of an SBML model, a software tool can pro-

vide additional details using independent, shared

vocabularies that can enable other software tools to

recognize precisely what the component is meant to

represent. For example, if a given reaction in a model

has an SBO attribute referencing term SBO:0000049

(which corresponds to “first-order irreversible mass-

action kinetics, continuous framework” in SBO), then

regardless of the identifier and name given to the

reaction in the model, a software tool can look up the

SBO term to inform users that the reaction is a first-

order irreversible mass-action reaction.

The second type of annotation in SBML is more

flexible and wider in scope. Its syntax consists of

a structured subelement (the “annotation” subelement)

that can be attached to any component in a model and

can be used to define a relationship between the SBML

component being annotated and the annotation con-

tent. The content can be either history information

(date created, date modified, author, contact info,

etc.) or references to external resources. The external

resource can be anything – an entry in an online data-

base, a publication, a part of another model, a term in

an ontology, etc. The format of this kind of extended

annotation in SBML follows the MIRIAM guidelines.

Each annotation is a triplet consisting of (1) a data

type, (2) an identifier, and (3) an optional qualifier.

The data type is a unique controlled description of

the type of the data in annotation and should be

recorded as a Uniform Resource Name (URN); the

identifier refers/points to a specific datum in whatever

source is identified by the data type; and the qualifier

serves to refine the nature of the relationship between

the model component being annotated and the

referred-to datum. Examples of common qualifiers

include “is version of,” “has part,” etc.

SBML Evolution and Growth

The development of SBML is stratified in order to

organize architectural changes and versioning. Major

editions of SBML are termed Levels and represent

substantial changes to the composition and structure
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of the language. Models defined in lower Levels of

SBML can always be represented in higher Levels,

though some translation may be necessary. The con-

verse (from higher Level to lower Level) is sometimes

also possible, though not guaranteed. The Levels

remain distinct; a valid SBML Level 1 document is

not a valid SBML Level 2 document. Minor revisions

of SBML are termed Versions and constitute changes

within a level to correct, adjust, and refine language

features. Finally, specification documents inevitably

require minor editorial changes as its users discover

errors and ambiguities. Such problems are corrected in

new Releases of a given SBML specification.

The latest generation of SBML, which is Level 3, is

modular in the sense of having a defined core set of

features and optional packages adding features on top

of the core. This modular approach means that models

can declare which feature-sets they use, and likewise,

software tools can declare which packages they support.

It also means that the development of SBML Level 3

can proceed in a modular fashion. The development

process for Level 3 is designed around this concept.

SBML Level 3 package development is today an

ongoing activity, with packages being created to

extend SBML in many areas that its core functionality

does not directly support. Examples include models

whose species have structure and/or state variables,

models with spatially nonhomogeneous compartments

and spatially dependent processes, and models in

which species and processes refer to qualitative entities

and processes rather than quantitative ones.

SBML Development Process

SBML uses a community-oriented development

approach. For example, technical decisions are made

by a group of volunteer editors, with major decisions

made as much as possible using electronic voting by the

whole SBML community. Much of the development

process is defined in a written document (made avail-

able on the SBML.org website) that provides guidelines

for various aspects of the overall management of SBML

development and the SBML community. The following

are some of the features of the process:

• The SBML community is organized into the SBML

Forum, the SBML Editors, and the SBML Team.

The SBML Forum consists of all members of the

community who subscribe to the sbml-discuss mail-

ing list, with the list membership acting as a kind of

basic voter registration mechanism. The SBML
Editors are volunteers who are sufficiently inter-

ested in SBML and its continued development that

they are willing to spend time in the development,

writing, and correction of SBML specification doc-

uments. There are five SBML Editors at any given

time; they are elected by a majority vote from

among the SBML Forum, and they serve 3-year

terms, with reelection being possible but consecutive

terms being disallowed. The SBML Team are mem-

bers who are employed to work on SBML-related

activities. Their tasks include maintaining the

resources that support the SBML community and

SBML development in general; developing critical

software such as libraries and online facilities; and

organizing events and other similar activities.

• Discussions are held publicly as much as possible,

usually on the sbml-discuss mailing list and in bian-

nual face-to-face meetings. The public discussions

and archives improve transparency, provide

a public record of arguments and reasoning, and

stimulate the broader community.

• Consensus is sought as much as possible. In situa-

tions where a decision appears to have no obvious

right or wrong answer on technical grounds alone,

the SBML Editors may initiate a public vote on the

matter. These votes are typically conducted using

an electronic voting system, with the topic and call-

for-votes announced on the sbml-discuss@caltech.

edu mailing list.

Strengths and Weaknesses of SBML

A few notable strengths of the SBML approach are

(1) the use of explicit constructs for representing dif-

ferent facets of a model, (2) the relatively limited

number of constructs, and (3) the community-driven

development approach. A few notable weaknesses of

SBML are (1) the seeming focus on biochemical

reaction-based processes and (2) the introduction of

syntactic differences between versions.

The use of explicit constructs means that the differ-

ent aspects of a model in SBML are labeled and char-

acterized explicitly. This facilitates consistent

software interpretation of models, because the impor-

tant features of a model are made explicit – an inter-

preter does not have to guess at the meaning behind,

say, a set of equations (which ones stand for reactions?

which ones are other relationships?), and various fea-

tures such as function definitions are provided in

a consistent (if limited) syntax. Moreover, this makes
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it more straightforward to take the same model and

express it in any of a variety of different mathematical

frameworks.

A second strength, the relatively limited number of

constructs in SBML, means that it is less work for

a software developer to implement tools for working

with the format. SBML could have been designed

with, for example, a deeper hierarchy of data types,

but this was rejected purposefully to limit the com-

plexity of implementations. (However, in fairness,

this is not to say that SBML is very simple; there are

still quite a few constructs and nuances in their

meaning).

Finally, a third strength of SBML is, as mentioned

above, the support and involvement of the community

in its development and adoption. Specifications and

technical decisions are made collectively by a small

set of SBML Editors in collaboration with the whole

SBML community, and electronic voting is used to

reach community-wide consensus on important

decisions.

Among the notable weaknesses, the first is SBML’s

seeming focus on reaction-based processes. The

objects and terms in SBML (such as its “Species” and

“Reaction” objects) are admittedly couched in bio-

chemical reaction terms, reflecting SBML’s origins

and history. Many potential users assume SBML is

limited to models of this type, but in reality, the same

concepts can easily be used in other domains. In hind-

sight, it is now clear that more neutral terms could have

been chosen.

A second weakness is the number of changes

between versions within an SBML Level. The changes

reflect hard-won experience by the SBML community

and especially software developers, so from one per-

spective they are an understandable consequence of

evolution and improvement. However, the changes

make it admittedly more difficult for software devel-

opers to support all versions of SBML.

Relationships to Other Standardization Efforts

SBML has proven useful for software tools to

exchange computational models. Still, by itself it

does not provide a complete framework for reproduc-

ible modeling. Several related efforts now exist to

standardize additional aspects of model exchange.

• The Systems Biology Ontology (SBO). As men-

tioned above, SBO provides a set of controlled

vocabularies that can be used to annotate a model
to make its mathematical semantics more precise

(Le Novère 2006).

• The Minimum Information Requested in the Anno-

tation of biochemical Models (MIRIAM). SBML

defines a syntax for how to encode annotations in

a MIRIAM-compliant way, but MIRIAM is

itself a separate standardization effort applicable

to any encoding format, not just SBML. It

defines a basic and straightforward annotation

scheme. It is also backed by a software resource,

the MIRIAM Services, that provides a variety of

tools for address resolution of references to

resources on the Internet.

• The Simulation Experiment Description Markup
Language (SED-ML). This XML-based format for

encoding simulation experiments provides a tool-

independent way of defining the model(s) to be

used, the experimental task(s) to be run, and the

result(s) to be produced (Waltemath et al. 2011).

Besides these, there also exist standardization activ-

ities for closely related topics. Many have separate

sections in this encyclopedia: the Systems Biology

Graphical Notation (SBGN; Le Novère et al. 2009),

the Biological Pathway Exchange (BioPAX) language

(Demir et al. 2010), NeuroML, and CellML.

Resources for SBML

For software developers who seek to implement sup-

port for SBML in their software, as well as modelers

working with SBML files, there are many relevant

resources available. The following paragraphs summa-

rize some that may be especially useful.

Software

In addition to the hundreds of SBML-aware software

systems for biological modeling and other purposes,

two classes of important software resources for SBML

are software libraries and validation tools.

Developers interested in supporting SBML in their

software are encouraged to consider the use of the free,

open-source software libraries libSBML (Bornstein

et al. 2008) and JSBML (Dr€ager et al. 2011).

LibSBML is written in ISO C and C++ and provides

language interfaces for C, C#, C++, Java, MATLAB,

Octave, Python, Perl, and Ruby. LibSBML is

supported on Linux, Windows, and Mac OS X, and is

distributed in both source-code form and as

precompiled, ready-to-install libraries. Among its

many features are support for all releases of SBML,
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unit checking and dimensional analysis, full validation

of SBML, and APIs for working with mathematical

formulas, annotations, and handling of compressed

files. The JSBML library is a pure-Java implementa-

tion similar in its API to libSBML; at the time of this

writing, it is relatively young and so does not offer as

many features as libSBML, but may be more conve-

nient to use for developers who cannot use the Java

Native Interface employed by libSBML to provide its

Java layer.

A free, online validation system is provided by

SBML.org. Users can interact with it directly through

a Web-based user interface or through a network pro-

gramming interface. It provides the ability to upload

a model and have it analyzed for conformance to the

SBML specifications. The validation system cannot

report whether the model is correct (i.e., the models’

behavior may be wrong or pointless), but at least it can

determine syntactic validity and consistency of the

SBML file.

Documentation

The specification documents that define SBML are

freely available from SBML.org. In addition, a list of

Frequently Asked Questions and Answers is available,

along with other help documents and code samples.

The libSBML library described above comes with

extensive documentation for many of the supported

programming languages. It also comes with sample

programs to help developers get started.

Other Resources

There is an Internet MIME type defined for SBML,

defined by RFC 3823 (Kovitz 2004).

SBML.org provides a web forum interface to the

several SBML-related mailing lists. The list archives

contain many years’ worth of discussions about

SBML, making this a helpful resource when first

starting out programming with SBML.
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Synonyms

SBO
S

Definition

As the field of computational modeling flourished, it

became clear that there was a need to provide a means

of supplementing model data with additional informa-

tion to clarify or specify the semantic content of com-

putational models. Furthermore, this additional

semantic information needed to be of a standard form

to facilitate interoperability and exchange between

different model-encoding formats. Orthogonal, struc-

tured controlled vocabularies, comprised of commonly

used modeling terms and concepts, were created to

meet the requirements of the SBML (▶ Systems Biol-

ogy Markup Language (SBML)), community (Courtot

et al. 2011).
The ontology currently consists of seven orthogonal

vocabularies that cover the following: “participant

role,” to describe component roles, such as “substrate”;

“systems description parameter,” to describe various

parameters and constants, such as the “Michaelis con-

stant”; “mathematical expression,” to ascribe particu-

lar calculus associations between model parameters

and variables, such as “mass action rate law”;

“modeling framework,” to specify the approach or

assumptions made in model creation, such as “logical

framework”; “physical entity representation,” to define

the type of the component within the model, such as

“macromolecule”; “occurring entity representation,”

to define processes that take place, such as “transport

reaction,” and “metadata representation,” to specify

the different types of metadata that may be

incorporated within a model, such as “database cross

reference.”

A mechanism to directly incorporate SBO terms

within SBML models has been available since Level

2 Version 2, using the attribute “sboTerm,” and is

described in the SBML specification. It is also directly

linked to ▶SBGN, where each glyph is

associated with a specific SBO term, facilitating the

conversion between SBML and the graphical SBGN

representation.

Systems Biology Ontology is a member of the Open

Biomedical Ontology effort (OBO; Smith et al. 2007),

and hence committed to ontology development by

a community-prescribed set of principles. The

ontology can be browsed and downloaded in several

formats at http://www.ebi.ac.uk/sbo, and is accessible

programmatically via Web Services.
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Systems Biology Pathway Exchange
(SBPAX)

Oliver Ruebenacker

Center for Cell Analysis and Modeling, University of

Connecticut Health Center, Farmington, CT, USA
Synonyms

SBPAX
Definition

Systems Biology Pathway Exchange (SBPAX) is an

ontology and data format designed to store and orga-

nize systems biology knowledge data related to bio-

logical pathways, quantitative modeling, and the

relationships between these two. Originally developed

as an extension to BioPAX Level 2, it is now being

developed as an extension to BioPAX Level 3 (the

current BioPAX version) and proposed as an addition

to the upcoming BioPAX Level 4. SBPAX enables

broad interoperation between BioPAX and other sys-

tems biology modeling formats by creating hierarchies

into which data, terms, and data objects from other

formats can be inserted. While technically, SBPAX

can incorporate any controlled vocabulary, some are

better suited for this purpose than others. The preferred

choice is the Systems Biology Ontology (SBO). Other

suitable sources of terms would be the Systems Biol-

ogy Markup Language (SBML), the Virtual Cell

Markup Language (VCML), CellML, and MathML.
Characteristics

By serving as a common container for all these for-

mats, SBPAX enables cross-format integration of bio-

logical data and knowledge. Integration is achieved by

converting, mapping, or merging data across formats.

In general, it is not possible to directly convert, map, or

merge across formats, because there is no one-to-one

correspondence between the elements of one format

and the elements of the other format. But it is always

possible to map one-to-one from a source format to
SBPAX. Once mapped to SBPAX, the data can be

reorganized and additional data be added as needed,

and automatic derivations can be employed. Since the

target format also maps one-to-one to SBPAX, it is

clear what data needs to be added to export the data

one-to-one to the target format, and as soon as that data

has been added, the export can be performed. Without

SBPAX, integrating two formats is a difficult process

usually involving a set of complex rules that are for-

mulated based on both formats and the possible rela-

tionships between the two. With SBPAX, integration

consists of two components: the trivial one-to-one

mappings between SBPAX and other formats, and

the essential algorithms which now can be formulated

entirely within SBPAX. SBPAX also serves as

a container for all additional information added during

the integration process, where it can be reused when-

ever data has been modified and needs to be

reintegrated.

Current Status

As a response to the release of BioPAX Level 3 in

2009, a new version of SBPAX, called SBPAX3, is

under development and has been heavily revised com-

pared to the SBPAX version accompanying BioPAX

Level 2: Features that were essentially adopted into

BioPAXwere removed from SBPAX and new features

have been added reflecting new priorities.

The new focus of SBPAX3 is the inclusion of the

kind of systems biology data provided by pathway

databases that so far is not supported by BioPAX. For

this purpose, SBPAX supports the addition of con-

trolled vocabulary and quantitative values, and allows

these to be arranged into hierarchies. The preferred

choice for the controlled vocabulary is the Systems

Biology Ontology (SBO), but other vocabularies can

be used as well, such as the Systems Biology Markup

Language (SBML), the Virtual Cell Markup Language

(VCML), CellML, or MathML. If a database provides

a type of data for which no established controlled

vocabulary exists, it may make sense to provide their

own terms.

The primary base class in SBPAX3 is the systems

biology entity, which represents anything that can be

characterized by one or more systems biology terms.

A systems biology term is a term taken from

a controlled vocabulary dedicated to systems biology,

as explained above. A systems biology entity can have

http://dx.doi.org/10.1007/978-1-4419-9863-7_101319
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Table 1 Possible subentity relationships in SBPAX3, with

examples. Column 1 shows a category for entities that can

have a subentity, and column 2 shows what category that

subentity would be. Column 3 shows an example for such an

entity, and column 4 shows an example for the respective

subentity

Entity type Subentity type Entity example

Subentity

example

Material

object

Component Hemoglobin Hb subunit,

heme group

Process Partial

process

A ! B ! C A ! B

Object Property Conductor Conductance

Entity Mathematical

description

Reaction Rate law

Mathematical

expression

Partial

expression

Rate law Rate law

parameter

Indexable Index Michaelis

constant for

substrate ATP

ATP
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any number of other systems biology entities as

subentities, which represent a part, aspect, attribute,

or specialization of an entity. Examples of subentities

are listed in Table 1.

An overview over SBPAX3 classes and properties

can be seen in Fig. 1. An important subclass of the

systems biology entity is the BioPAX entity, and all its

subclasses, such as pathways, interactions, physical

entities, and genes. This allows any entity in BioPAX

to be characterized by systems biology terms and

subentities. For example, a BioPAX interaction can

be described by the SBO term for redox reaction or

can have as a subentity one of the many rate laws

specified by SBO.

Another subclass of the systems biology entity is

the systems biology measurable, which represents any

measurable quantity relevant to systems biology, char-

acterized by a number and a unit. The number can be

any floating-point number and the unit is taken from

Unit of Measurement Expressions (UOME), another

proposed standard to specify units by controlled

vocabulary, derivation from more basic units, and

a growing list of currently hundreds of predefined

units. SBO has large classes of quantitative systems

description parameters, including conductance, disso-

ciation constant, pressure, half-life, or Michaelis con-

stant, so any of these quantities can be attached to any

interaction, pathway, physical entity, or gene.
Since any systems biology entity can have

subentities, hierarchies can be built. A simple appli-

cation is this: An interaction can have, as a subentity,

one of the many rate laws included in SBO, and the

rate law (e.g., Michaelis-Menten rate law) can have

subentities the appropriate parameters (e.g., specific

activity and Michaelis constant), which are also

included in SBO.

Finally, systems biology entity has a subclass sys-

tems biology state, which represents the state of

a system, and can be used to group entities that belong

to the same system state. For example, quantities that

are measured together, such as an equilibrium constant

and the temperature, would best be described as

subentities to a common state.

Figure 2 shows how a quantitative value (the disso-

ciation constant), a systems biology measurable with

number and unit, is added to a systems biology entity,

which in this case is a BioPAX complex formation.

The meaning of the quantity is described by the appro-

priate SBO term (SBO 0000282 for dissociation con-

stant). The complex formation can also be described by

an SBO term.

Figure 3 is slightly more involves example. Here,

two quantities are characterized by the same SBO term

(conductance), but indexed by two different subentities

(calcium and sodium), representing the differing con-

ductance of an ion channel for two different ions.

Figure 4 shows a practical example for model build-

ing: A catalysis process is an entity, the kinetics

(Michaelis-Menten with two substrates) is its subentity,

and the parameters are subentities of the kinetics.

Implementation

SBPAX3with examples and documentation is available

as for download from the SBPAXwebsite (www.sbpax.

org). Signaling Gateway Molecule Pages has

implemented preliminary SBPAX export. MetaCyc

and EcoCyc have declared to implement SBPAX export

within months. VCell plans to implement within the

coming weeks or months import of SBPAX3 to help

build and annotate models, including by providing

kinetic parameters. A validator is also being developed.

Background

When SBPAX was originally introduced in 2008, the

latest version of BioPAX was Level 2. To integrate

BioPAX Level 2 or earlier with SBML, it was

http://www.sbpax.org
http://www.sbpax.org
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Exchange (SBPAX),
Fig. 1 An overview over

classes (boxes) and properties

(arrows) of SBPAX3. Here,
“is-a” means “is subclass of.”

The dashed line separates

SBPAX3 classes form

BioPAX classes

Systems Biology Pathway Exchange (SBPAX), Fig. 2 A

simple example of SBPAX3 usage to add a quantity to an entity.

A solid box refers to a systems biology entity. A box nested

inside another represents a subentity

Systems Biology Pathway Exchange (SBPAX), Fig. 3 An

ion channel has a conductance that depends on the type of ion

(e.g., calcium versus sodium)
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necessary to extract from BioPAX the information

needed to construct species in SBML,which are defined

as pools of indistinguishable entities at a specific loca-

tion, and which are a central concept in SBML and

quantitative modeling in general. The problem is that

BioPAX has no term for species. Instead, BioPAX uses

the term “physical entities” as collectives regardless of

locations and in the case of sequence-based molecules

such as proteins, DNA, and RNA, regardless of chem-

ical modifications that leave the sequence intact. Loca-

tions and modifications were specified individually for

each interaction in which a physical entity participated,

and the difficulty was that in BioPAXLevel 2, sequence

features were used to represent modifications, but not

every sequence feature was a modification. It was fur-

ther not clear, whether the absence of a sequence feature
signified that amodificationwas absent, ormerely that it

was not relevant for the interaction.

SBPAX facilitated BioPAX-SBML integration by

providing both the term “substance,”which corresponds

to the BioPAX physical entity, and the term “species,”

which corresponds to the same term in SBML and is
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Exchange (SBPAX),
Fig. 4 Michaelis-Menten

kinetics with two substrates
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a substance with a location. This allows to specify all

relevant relationships between a set of BioPAXdata and

the corresponding set of SBML data.

A typical work flow would be as follows: BioPAX

data (or those part of it that are related to quantitative

modeling) is converted to SBPAX data. Then, addi-

tional data is gradually acquired and added to the

SBPAX data. Finally, the extended SBPAX data is

converted one-to-one to SBML. There is no one-to-

one relationship between the BioPAX and the SBML

elements, but some BioPAX objects have a one-to-one

relationship with SBPAX objects which have relation-

ships to SBPAX objects that have a one-to-one rela-

tionship with some SBML elements. Should the

BioPAX input data be modified or extended, some of

the data that was added to the SBPAX can still be used

to convert again from BioPAX to SBML.
SBPAX was implemented as the native format of

the Systems Biology Linker (SyBiL), an application

that imported BioPAX and exported SBML (and

allowed to save intermediate results as SBPAX). This

functionality was then integrated into the Virtual Cell.

In SBPAX, a substance can be a subset of another

substance, and the absence of a feature can be speci-

fied, as well as basic set operations. This means we can

easily specify a substance with a feature, a substance

without that feature, and the union set of both, where

the presence of the feature is optional. The intersection

of a substance with one feature and the same substance

but with another feature is to be understood to be that

substance with both features.

In 2009, BioPAX Level 3 was released which incor-

porated several improvements previously introduced

by SBPAX: Physical entities were redefined to
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correspond to what SBML and SBPAX call species;

newly introduced physical entity references corre-

sponds to a restricted version of SBPAX’s substance;

sequence features were clearly divided into modifica-

tion features and other features; the absence of

a feature can now be explicitly expressed, as can be

subset relationships among physical entities, as well as

among physical entity references.
Cross-References

▶CellML

▶RDFS

▶ Systems Biology Markup Language (SBML)

▶ Systems Biology Ontology

▶Virtual Cell (VCell) Modeling and Analysis

Platform

▶Web Ontology Language (OWL)
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Introduction

Since the advent of high-throughput technologies

toward the end of the twentieth century, the life

sciences are experiencing decades of “data deluge”

and “information explosion.” Respected researchers

in fact speak of “data-driven science” as a new era of

science, citing the life sciences as the newest example
(Hey 2010). This scenario highlights the need for

appropriate resources and tools to help life scientists

extract the knowledge useful for their research.

This need is perhaps even greater in the field of

Systems Biology: it not only displays the typical

dynamics of an emerging field but also an unusually

broad multidisciplinary character largely due to its

highly integrative approach. The field may be viewed

currently as a highly dynamic “network of disciplines”

(at least seven according to the Institute of Systems

Biology in Seattle) and simultaneously tightly

coupling computational and experimental efforts

(a novelty in most of the life sciences!). These factors

together with the field’s high impact potential –as

expressed in the concept of “Systems Medicine”

(EU Workshop Report 2010) – explain why even

after more than a decade since its renaissance in

2000, there is still a lot of variation in the defining

the field’s scope (Mendoza 2009). A section

“Resources” has hence to balance covering sufficient

ground and at the same time be selective to be useful

for the audience of the Encyclopedia.
Section Structure

This section focuses primarily on databases as

resources for Systems Biology and discusses other

forms such as portals, wikis, and specific community-

oriented information systems only briefly in this

overview. It should be noted however that some of

the systems considered have a hybrid character and

include digital library features.
Hierarchical Network as Paradigm

Though some authors of Systems Biology textbooks

restrict the concept of Systems Biology resources

to databases directly needed for modeling (e.g.,

Klipp et al. 2009), this section is structured according

to the predominant network paradigm for computation-

ally representing biological systems. The majority of

the entries (around 80%) are dedicated to resources for

the major molecular components (genes, proteins,

metabolites) and the interactions between them in

terms of important subnetworks (gene regulatory,

signaling, and metabolic). In one entry, the transition

from the “molecular” to the “systemic” via the concept

http://dx.doi.org/10.1007/978-1-4419-9863-7_1093
http://dx.doi.org/10.1007/978-1-4419-9863-7_1518
http://dx.doi.org/10.1007/978-1-4419-9863-7_1091
http://dx.doi.org/10.1007/978-1-4419-9863-7_1287
http://dx.doi.org/10.1007/978-1-4419-9863-7_1462
http://dx.doi.org/10.1007/978-1-4419-9863-7_1462
http://dx.doi.org/10.1007/978-1-4419-9863-7_1519
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of modularity is discussed both in physical terms

(organelles) and computational (functional modules)

terms. In the remaining entries, a few important aspects

of higher levels of organization are addressed in terms

of sample topics. In particular, in view of the very

broad scope of resources for “organs” and “organ sys-

tems” (the whole realm of physiology), only pointers to

the work of the IUPS Physiome Project and related

activities are provided later in this overview.
Genome and Transcriptome Resources

The first five entries deal with resources for the study of

DNA, genes, and genomes. Overviews of the resources

at the three most important sites (NCBI, EBI, and

DDBJ) are provided to orient users, in particular the

beginners, in these rich collections. The following

entry on viral genome resources at NCBI provides an

example of the use of these resources. The next three

entries deal with resources for three related topics

of intensive current research: single nucleotide

polymorphisms (SNIPs), coupling of genomic and

environmental data (metagenomics), and important

genome resource tools. A glimpse into the world of

transcriptomes is provided by the entry on resources

for non-coding RNAs.
S

Proteome Resources

Three entries describe important resources for proteins

and proteomes. The first entry discusses in detail

several proteome databases, while the next two handle

information on parts of protein structure (domains) and

related functions on the one hand, and then groups of

proteins (protein complexes) and relation functions

on the other. Such (physical) protein complexes

find their computational analogues in functional

modules (discussed in the entry on ▶Organelle and

Functional Module Resources).
Metabolome Resources

After an overview entry on metabolism resources, an

entry on special metabolic components is provided.

These include resources on organism-specific metabo-

lism, information on thermodynamics and kinetics and
enzyme–ligand interactions. The third entry discusses

resources for natural products, which are metabolites

produced by living organisms. The importance of these

substances is highlighted by the fact that, to this day,

natural products and their derivatives are the basis of

the majority of available drugs (Li and Vederas 2009).
Resources on Pathways and Networks

Three entries on pathways and networks follow, each

corresponding to an important subnetwork in the cell.

The overview entry on ▶ transcriptional and epige-

netic regulation resources provides insights into

genetic and epigenetic regulatory networks. The

entry on ▶ signaling network resources is then

complemented with a description of databases on met-

abolic networks which are general (in particular, not

organism specific). The final entry of this series

addresses resources on functional subunits of cells,

both physical (organelles) and computational (func-

tional modules). Resources on organelles need to

explicitly consider spatial aspects, for example, loca-

tion, which are very important particularly for proteins.

Functional modules are often represented as subnet-

works and, in this sense, are partly considered in

resources for networks. On the other hand, specific

resources for such functional subnetworks are just

beginning to be established and discussed in the entry.
Model Organism and Disease Resources

A comprehensive discussion of resources of higher

levels of organisms and their interactions with envi-

ronmental factors is well beyond the scope of this

section. However, overviews of information on

model organisms and diseases are useful as examples

for the kind of information available. Entries on infor-

mation concerned with two important diseases, cancer

and metabolic diseases, are also provided to give

a flavor of such resources.
Model Repositories

The final entry describes the repositories available for

models of biological systems. Such models cover

small functional units, like network motifs, which

http://dx.doi.org/10.1007/978-1-4419-9863-7_1053
http://dx.doi.org/10.1007/978-1-4419-9863-7_1053
http://dx.doi.org/10.1007/978-1-4419-9863-7_1052
http://dx.doi.org/10.1007/978-1-4419-9863-7_1052
http://dx.doi.org/10.1007/978-1-4419-9863-7_1047
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corresponds to basic “circuits”) over mid-sized func-

tional modules to large subnetworks over several

levels of hierarchy (an example would be the human

circadian system which consists of a “master clock” in

the brain, responding to light input and interacting with

clocks in various organs in different parts of the body

via a multitude of signaling mechanisms. In this sense,

the models in such resources select and attempt to

integrate the data and information from the previous

resources to answer biological questions posed by the

researchers.
Further Systems Biology Resources

Cross References to Other Encyclopedia Sections

Various sections discuss topics closely related to spe-

cific entries in this section in more detail. These

include, along with their respective entry(s), the

following:

• ▶Transcriptional and Epigenetic Regulation

Gene regulatory networks: modeling, reconstruc-

tion, and analysis

Systems biology in epigenetics and post-

translational regulation

• Metabolism Resources, General Metabolic Net-

work Resources, ▶ Specialized Metabolic Compo-

nent Databases

Metabolic networks

• ▶Metabolic Diseases Resources

Systems biology of diabetes and beta cells

• ▶Natural Products Resources

Systems Biology applications in drug discovery

• ▶Model Repositories

Systems Biology model databases

The following sections are directly relevant for the

discussion of resources in general:

Standards, guidelines, and infrastructure

▶Text mining in systems biology

▶Ontologies and controlled vocabularies

Note also that tools relevant to each section are

discussed within that section.

Special Journals, Issues, and Books

One of the best references for Systems Biology

resources is the Database Issue of the journal Nucleic

Acids Research (NAR), annually published in January.

It contains short descriptions of new databases related

to molecular biology as well as updates on important
systems like those from MCBI, EBI, and DDBJ. For

example, the 2011 edition has descriptions of 96 new

online databases and updates on 83 previously intro-

duced systems (Galperin and Cochrane 2011). In 2009,

as an additional service, the Molecular Biology

Database Collection (described in more detail in the

following subsection) was introduced and now

includes 1,300 databases. Due to the high demand

for publication of information on such resources,

NAR also introduced a new open access journal

DATABASE: The Journal of Biological Databases

and Curation (http://database.oxfordjournals.org/).

Specialized journals of course constitute another

important form of Systems Biology resource and

the growing number with “Systems Biology” or

“Biosystems” in their title reflect the emergence of

the field since 2000 as the paradigm of life sciences

research in the early twenty-first century. Among these

journals areMolecular Systems Biology, BMC Systems

Biology, IET Systems Biology (formerly IEE Proceed-

ings Systems Biology), Systems and Synthetic Biology,
Biosystems, and Molecular Biosystems. Also given the

growing trend to integrative approaches (including

data integration), many journals on Computational

Biology and Bioinformatics include a large number

of papers on Systems Biology. The best known exam-

ples are PloS Computational Biology, Bioinformatics
(with a special section on “▶Systems Biology” in each

issue), and BMC Bioinformatics.

In the same period, a bonanza of books on Systems

Biology have been published and most of these have

chapters on resources. As an example, the textbook of

Klipp et al. 2009 discusses three kinds of databases:

pathway databases, databases of kinetic data, and

model databases. However, the book entitled Bioinfor-

matics and Systems Biology: Collaborative Research
and Resources by Frederick Markus (2010) is particu-

larly valuable since it has specifically pulled together

information on Bioinformatics Systems Biology

research networks and communities and resources

they have generated, particularly in the context of

European Union research programs.

Collection of Databases

The NAR Molecular Biology Database Collection

(http://www.oxfordjournals.org/nar/database/a/) stands

out as a source of information for Systems

Biology databases because of its structured format,

breadth, and strong community support, resulting in a

http://dx.doi.org/10.1007/978-1-4419-9863-7_1052
http://dx.doi.org/10.1007/978-1-4419-9863-7_1050
http://dx.doi.org/10.1007/978-1-4419-9863-7_1050
http://dx.doi.org/10.1007/978-1-4419-9863-7_1056
http://dx.doi.org/10.1007/978-1-4419-9863-7_1051
http://dx.doi.org/10.1007/978-1-4419-9863-7_1058
http://dx.doi.org/10.1007/978-1-4419-9863-7_101479
http://dx.doi.org/10.1007/978-1-4419-9863-7_1105
http://database.oxfordjournals.org/
http://dx.doi.org/10.1007/978-1-4419-9863-7_101433
http://www.oxfordjournals.org/nar/database/a/
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well-maintained up-to-date resource. Entry information

consists of a NAR Collection ID, the system’s URL, the

email address of a contact person, a one-paragraph

summary of the database’s features, one or more NAR

categories to which the system belongs (http://www.

oxfordjournals.org/nar/database/c/) and a link to the

most current NAR Database Issue description of the

system. The list of currently 1,300 entries can be viewed

alphabetically or by NAR category.

Further lists include the “Reactome Resource

Guide,” which can be found on the Reactome database’s

Wiki (http://wiki.reactome.org/index.php/Reactome_

Resource_Guide) and Wikipedia’s bio databases

list (http://en.wikipedia.org/wiki/List_of_biological_

databases). Both lists have only around 100 entries,

the former provides only one-sentence descriptions

and the system’s URL while the latter categorizes the

entries and provides their names and links.
S

Portals

The differentiation between a portal and community-

oriented systems discussed in the following subsection

is based on the audience addressed – a Systems

Biology portal strives to address the wide audience of

persons with general interest in the field and the major-

ity of its information is available to all who visit the

website. A good example of this approach is the

Systems Biology Institute’s Portal for Systems

Biology http://www.systems-biology.org/ initiated by

one of the field’s pioneers, Hiroake Kitano (2002).

A community-oriented information system on the

other hand typically is more focused on specific topics

and provides resources related to these topics. Such an

information system also typically has more sophisti-

cated access and security features. However, the

difference is not black and white since, although most

of the resources are accessible only to the specific

community, such systems also have portal-like

features for “outreach” such as the public resources

available at the Institute of Systems Biology in Seattle

(http://www.systemsbiology.org/Public_Resources),

founded also by another of the field’s pioneers, Leroy

Hood. The websites of various Systems Biology

research centers and groups hence offer resources

like educational material, software, and even data

sets. In general, the quality of resources available

from the latter is better, both due to stronger focus

and higher demands on the site’s maintenance.
In addition to particular institutions, several journals

have initiated portals for Systems Biology. Examples of

these are BioMed Central’s Systems Biology Gateway

http://www.biomedcentral.com/gateways/

systemsbiology and Nature’s Systems Biology portal:

http://www.nature.com/sysbio/index.html.

Several region-oriented portals have been

established by regional “communities of interest,”

a recent example is the “Council for Systems Biology

in Boston” (http://www.csb2.org/), which “builds

local, regional, and national links between academic

and industrial laboratories active in the areas of

systems and computational biology.” Again the infor-

mation quality is quite dependent on the community’s

level of activity: while the “San Diego Consortium for

Systems Biology,” founded in 2005, transformed into

the “San Diego Center for Systems Biology” (http://

sdcsb.org/), an NIH-funded center and offering

a unique resource called “CircadianServer” (http://cir-

cadian.salk.edu/), others like the Munich Systems

Biology Forum (http://www.msbf.mpg.de/) has practi-

cally ceased to exist and the information on its portal is

quite outdated. Portals maintained by individuals or

small groups generally are not well maintained.

http://www.biochemweb.org/systems.shtml

Specific Community-oriented Information

Systems

A recent development in Systems Biology is the estab-

lishment of networks of Systems Biology research

centers by national funding authorities. In most cases,

the mandate of these networks of research centers

includes an “outreach” component and leads to very

informative portals: a good example is given by the

portal of the National Centers for Systems Biology

http://www.systemscenters.org/, with resources cover-

ing databases, software tools, and via Biositemaps

available experimental technology. Similar networks

have been established in Switzerland (SystemsX,

http://www.systemsx.ch/), Germany (FORSyS Centers,

http://www.forsys.net/joomla/index.php?lang¼en), and

the UK (BBSRC Systems Biology Centres, http://www.

bbsrc.ac.uk/organisation/institutes/systems-biology-

centres.aspx).

The information systems of international research

networks are also a good source of specific resources in

Systems Biology. Interesting examples are provided by:

• Current Physiome projects, in particular the IUPS

Physiome Project (http://www.physiome.org.nz/)

http://www.oxfordjournals.org/nar/database/c/
http://www.oxfordjournals.org/nar/database/c/
http://wiki.reactome.org/index.php/Reactome_Resource_Guide
http://wiki.reactome.org/index.php/Reactome_Resource_Guide
http://en.wikipedia.org/wiki/List_of_biological_databases
http://en.wikipedia.org/wiki/List_of_biological_databases
http://www.systems-biology.org/
http://www.systemsbiology.org/Public_Resources
http://www.biomedcentral.com/gateways/systemsbiology
http://www.biomedcentral.com/gateways/systemsbiology
http://www.nature.com/sysbio/index.html
http://www.csb2.org/
http://sdcsb.org/
http://sdcsb.org/
http://circadian.salk.edu/
http://circadian.salk.edu/
http://www.msbf.mpg.de/
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and the Virtual Physiological Human (http://www.

vph-noe.eu/), where resources regarding organs and

organ systems (particularly on the computational

side) are bundled.

• Clusters formed from related projects of European

Union Framework Programs, such as the NanoSafety

Cluster, which addresses important technological

and social questions raised by growing use of

nanoparticles in daily life and biomedical applica-

tions (“Nanomedicine”) and the resulting Bionanoin-

teractions. An important specific resource is, for

example, the comprehensive compendium of Euro-

pean nanosafety projects under http://www.

nanosafetycluster.eu/home/european-nanosafety-

cluster-compendium.html.

• EUCLIS (EUCLOCK Information System,), which

has evolved from an information for chronobiology

researchers in a large 5-year project to an informa-

tion infrastructure for the worldwide community of

chronobiologists, as evidenced by the decision of

the two largest professional societies, the Society

for Research on Biological Rhythms (SRBR) and

the European Biological Rhythms Society (EBRS)

collaborating to fund the maintenance of the system

beyond the termination of the EUCLOCK project.

A unique resource available in EUCLIS is

ChronoCollections, which contain scanned papers

and research notes of early pioneers of the field

which are otherwise not easily accessible.
Related Resources and Perspectives

The broadly integrative approach of Systems Biology

has led to its tremendously growing scope and dooms

any attempt at comprehensiveness, particularly in

describing the resources available. The entries in this

section cover only some important aspects and focus

on the most important form: online databases. In this

overview, examples of other forms of resources such as

portals and community information systems (which

are also partly digital libraries) were briefly discussed.

An important perspective is the importance of

establishing community-based standards regarding

the “core structure” of biological databases. Such stan-

dards are urgently needed to facilitate the development

and ease the maintenance and management of the

growing number of systems worldwide. While this

can only succeed through a joint effort of scientists
and partners from industry (who will provide better

platforms), an initial effort to specify such a “core

structure” has been started: in Gaudet et al. (2011),

a proposal for “BioDBCore” is sketched and a working

group encompassing representatives from a wide range

of existing life sciences resources, but remains open to

all interested parties concurring its goals which include

maximizing the consistency and interoperability of

resources, the promotion of adoption of syntactic

and semantic standards, and provision of guidance

for users in evaluating the scope and relevance of a

esource. An initial list of attributes for a BioDBCore

checklist is available (Table 1 in Gaudet et al. 2011).
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Innate Adaptive

Evolution

Time scale Ancient Relatively new

Phylum Plants, invertebrates,

and vertebrates

Vertebrates
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Characteristics

Specificity For structures shared

by group of related

microbes termed

pathogen-associated

molecular patterns

(PAMPs)

For antigens of

microbes and for

nonmicrobial antigens

Diversity Limited; germline-

encoded

Very large; receptors

are produced by

somatic recombination

of gene segments

Action time Immediate activation

of effectors

Delayed activation of

effectors

Memory None Yes

Nonreactivity

to self

Yes Yes

Components

Physical and

chemical

barriers

Skin, mucosal

epithelia;

antimicrobial

chemicals and

peptides

Lymphocytes in

epithelia; antibodies

secreted at epithelial

surfaces

Blood

proteins

Complement Antibodies

Cells Phagocytes

(macrophages,

neutrophils), natural

killer cells

Lymphocytes (B- and

T-cells)

S

Introduction

Systems immunology is a novel means for studying,

analyzing, and understanding complex immune

systems using a systems approach. This is an interdis-

ciplinary approach that uses high-throughput technol-

ogies and computational methods that can be applied

to identify a global map of complex interactions

between cell–cell, cell–environment, protein–protein,

and protein–DNA interactions. Currently, DNA

microarrays, next generation sequencing, and modern

mass spectrometry are used to define and monitor all

components of the immune system. The overall goal of

this approach is to generate a hypothesis, identify new

biological rules, and predict the behavior of biological

systems. Traditional approaches to studying immune

regulation is primarily based on reductionist

approaches of molecular biology. They offer

a limited view of the complex immune system since

there are so many different types of host cells and

genes perturbed by the entry of a pathogen. To make

things more complex, the pathogens occasionally use

alternate virulence factors and manipulate the host’s

systems to kill the host cells or survive inside the host

cells for prolonged intervals of time. Systems

approaches have been used to study the role of innate

and adaptive immune systems, host-pathogen interac-

tions, and lymphocyte dynamics after stimulation by

a pathogen, and development of drugs or vaccines. In

this introductory chapter, brief overviews of the host

immune system, pathogens, and systems approaches

used in immunology are presented, concluding with

challenges and caveats of using systems approaches.
Immune System

The immune system is the body’s defense mechanism

and protects it against disease. In vertebrates, it con-

sists of two different types: innate and adaptive
immunity. Table 1 describes the characteristics and

components of innate and adaptive immunity. The

innate immune response is the first defense barrier

against invading pathogens and relies on a limited

number of germ line–encoded receptors that recognize

pathogen-associated molecular patterns (PAMPs) of

microbial pathogens, but not the host. Recognition of

these molecular structures allows the immune system

to distinguish infectious nonself from noninfectious

self. Toll-like receptors (TLRs) present in phagocytes

(macrophages, dendritic cells), and natural killer cells

play a major role in pathogen recognition. There are 10

TLRs in humans, 13 in mice, and 222 in sea urchins,

which are evolved to recognize PAMPs from fungi,

bacteria, viruses, and parasites. Stimulation of toll-like

receptors by PAMPs leads to the activation of
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There are two branches of the adaptive immune response:

humoral immunity and cell-mediated immunity. Generally, for

extracellular and intracellular pathogens, humoral immunity,

and cell-mediated immune responses protect the host,

respectively
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signaling pathways that result in the induction of anti-

microbial genes, inflammatory cytokines, and matura-

tion of dendritic cells to induce costimulatory

molecules and increased antigen-presenting capacity.

Innate immunity helps to direct adaptive immune

responses to eliminate the encountered pathogens and

establish long-lasting protective immunity against

them (Janeway and Medzhitov 2002).

The principal features of adaptive immunity are

specificity and generation of immunologic memory.

There are two branches of the adaptive immune

response: humoral immunity and cell-mediated immu-

nity (Bonilla and Oettgen 2010). Humoral immunity

involves the transformation of B cells into plasma cells

that produce and secrete antibodies to a specific anti-

gen. Antibodies (or immunoglobulin, Ig) are large

Y-shaped proteins used by the immune system to iden-

tify and neutralize foreign objects. In mammals, there

are five types of antibodies: IgA, IgD, IgE, IgG, and
IgM, differing in biological properties. Each has

evolved to handle different kinds of antigens. Cell-

mediated immunity is dependent upon T lymphocytes

which are sensitized by first exposure to a specific

antigen. Subsequent exposure stimulates the release

of a group of substances known as lymphokines, such

as interferon, and interleukins as well as direct killing

by cytotoxic T lymphocytes (Fig. 1).
Pathogens

A pathogen is a biological agent such as a virus, bac-

teria, fungi, and protist that cause disease to its host.

Some notable pathogenic viruses are Human rhinovi-

ruses (HRVs), Human T-lymphotropic virus type-1

(HTLV-1), and Human Immunodeficiency virus

(HIV). HRVs are thought to be the cause of more

than half of all acute upper respiratory tract infections
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(common cold) worldwide. HTLV-1 is the etiological

agent of an aggressive leukemia, called adult T-cell

leukemia/lymphoma (ATL), and inflammatory disor-

ders, including arthritis and dermatitis. Transmission

of HTLV-1 occurs through transfer of infected cells

from mother to child during breast-feeding, via sexual

intercourse, and through exposure of infected blood

products or sharing of needles and syringes. Measure-

ment of lymphocyte dynamics in HTLV-1 infected

subjects shows that T-cell proliferation is increased

compared to controls (Boxus and Willems 2009).

HIV is a lentivirus (a member of the retrovirus family)

that causes acquired immune deficiency syndrome

(AIDS), a condition in humans in which the immune

system begins to fail, leading to life-threatening oppor-

tunistic infections. Transmission of HIV is similar to

the HTLV-1 virus, such as, breast milk, unprotected

sex, and contaminated needles. An advanced phase of

this disease is marked with depletion of CD4+ T-cells

that leads to acquired immune deficiency syndrome.

Highly active antiretroviral therapy (HAART) has

greatly reduced HIV plasma viremia, which results in

increased CD4+ T-cell counts (Moir et al. 2010). The

most common bacterial disease is tuberculosis, caused

by the bacterium Mycobacterium tuberculosis H37Rv.

Its success fully relies on its ability to utilize macro-

phages for its replication (Meena and Rajni 2010).

There is a wide diversity of pathogenic bacteria

species, and there is even an enormous diversity of

virulence genes in strains of the same species (Rosen-

berg 2005). Pathogenic bacteria contribute to other

globally important diseases, such as pneumonia, food

borne illnesses, and infections such as tetanus, typhoid

fever, diphtheria, and syphilis. Bacteria can often be

killed by antibiotics. Fungi are common problems in

the immunocompetent population as the causative

agents of skin, nail, or yeast infections. Some eukary-

otic organisms, such as protists and helminths, cause

disease. One of the epidemic diseases caused by pro-

tists in the genus Plasmodium is malaria.
Systems Approaches in Immunology

The systems approach is an imperative means to study

complex immune systems, where interaction occurs

between different cell types, and there is variation

within a cell due to the large number of receptors on

the cell membrane. Broadly speaking, systems
immunology is focused on immunoinformatics, anti-

gen processing and presentation, host-pathogen inter-

actions, modeling of the immune system, and

vaccinomics.

Immunoinformatics

The field of immunology generated huge amount of

data, comprising of pathogen’s antigen or epitopes,

host antibodies, and T-cell receptors and are manually

curated and maintained in databases. The Marie-Paule

Lefranc group maintains IMGT®, the international

ImMunoGeneTics information system® http://www.

imgt.org, created in 1989, which consists of web

resources of sequence and structure databases and

interactive tools. This is an integrated knowledge

resource specialized in immunoglobulins (IG) or anti-

bodies, T-cell receptors (TR), major histocompatibility

complex (MHC) of human, and other vertebrate spe-

cies, and in the immunoglobulin superfamily (IgSF),

MHC superfamily (MhcSF) and related proteins of the

immune system (RPI) of vertebrates and invertebrates

(Ehrenmann et al. 2010). The Raghava group from the

institute of microbial technology, India, maintains an

immunoinformatics database of pathogen antigens,

B- and T-cell epitopes and MHC binders available at

http://www.imtech.res.in/raghava/antigendb (Ansari

et al. 2010). The National Institute of Allergy and

Infectious Diseases maintains the immune epitope

database and analysis resource (IEDB) available at

http://www.immuneepitope.org/, which contains data

related to antibody and T-cell epitopes for humans,

nonhuman primates, rodents, and other animal species

(Vita et al. 2010). The B-cell epitopes and available

MHC binders curated data were used to develop pre-

diction methods using machine learning techniques,

such as artificial neural networks and support vector

machine. There are online resources for prediction of

B-cell epitopes (Saha and Raghava 2006), and MHC

class I and II binders (Bhasin and Raghava 2004;

2006).

Antigen Processing and Presentation

Antigen-presenting cells are comprised of dendritic

cells (DCs) and macrophages, they internalize bacte-

ria, fungi, and parasites sensed by toll-like receptors

(TLRs) into phagosomes, where proteolytic processing

of microbial antigens (Ags) produces antigenic pep-

tides that are subsequently presented by class I major

histocompatibility complex (MHC I) to CD8+ T-cells

http://www.imgt.org
http://www.imgt.org
http://www.imtech.res.in/raghava/antigendb
http://www.immuneepitope.org/
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and class II MHC (MHC II) molecules to CD4+

T-cells. The regulation of phagosomal internalization

and processing seems to be controlled by TLRs in

bacteria. During the process of phagocytosis, the host

delivers antimicrobial properties that include the gen-

eration of toxic reactive oxygen species and antimicro-

bial peptides. Antimicrobial peptides (also called host

defense peptides) and toll-like receptors are evolution-

arily conserved components of the innate immune

response and are found in both vertebrates and inver-

tebrates. Thus, antigen processing and presentation

contribute to both the innate host defense and adaptive

immune response to microbes by MHC I and II

restricted to T-cells (Ramachandra et al. 2009).

Host–Pathogen Interactions

Host–pathogen interactions (HPIs) are a multilevel

problem ranging from molecular interactions to cell–

cell communications. HPIs may occur at five different

levels, e.g., at the entry level where host receptors like

toll receptors bind to PAMPs, at the virulence level, at

the nutrition level, at the critical host-cell pathway

level, and at the immune evasion level. This interspe-

cies interaction plays a crucial role in initiating infec-

tion in a host-pathogen system. The HPIs may induce

programmed host-cell death pathways which involve

a delicate balance between the host’s defensive

responses and a pathogen’s virulence mechanism.

Microbial pathogens have evolved many strategies to

modulate the host system and facilitate replication and

proliferation inside host cells (Lamkanfi and Dixit

2010). Current computational methods to study HPIs

focus on topological connections based on network

biology which uses the graph structure of protein–

protein, protein–DNA, and protein–small chemical

interaction data. There are few simple mathematical

and computational network models developed that

study the process of signaling through immune system

receptors. Knowledge of the host-pathogen system

enables accelerated drug development such as success-

ful antibiotics against chronic Chlamydia infection

(Forst 2006).

Modeling of the Immune System

The immune response to pathogen infection stimulates

lymphocytes such as B- and T-cells and other factors

like inflammatory cytokines, and forms a complex

system that necessitates the use of systems approaches

for its analysis. Experimental methods to study
lymphocyte population dynamics after stimulation by

a pathogen are mainly based on lymphocyte labeling

and quantifying cell division as function of time, rates

of accumulation, rates of proliferation, or rates of

replacement of labeled cells. These methods are

tedious and costly, whereas computational modeling

requires less time and cost, aids in experiments that are

not possible in a laboratory setting, and finally gener-

ates novel insights and hypotheses for further research.

Another important aspect of computational methods is

once the models are constructed and validated, they

can be perturbed in different ways which enables the

exploration of many possibilities. There are numerous

mathematical approaches, including nonlinear dynam-

ics, differential equations, and agent-based modeling

(ABM). ABM is a mathematical approach used in

simulating immune systems in discrete time and

space and uses logical rules learned by experimental

outcomes. ABM is useful in characterizing properties

of immune systems and is well suited for addressing

key challenges in immunology (Chavali et al. 2008).

Vaccinomics

Vaccinomics deals with vaccine analysis, which

includes in silico epitope vaccine design and novel

evaluation of vaccine efficacy. Traditionally, the

killed/inactivated vaccine (e.g., cholera) and live/

attenuated vaccine (e.g., oral polio vaccine) are suc-

cessfully used in many individuals; however, there are

a few limitations. The components of inactivated

whole organism may be toxic and are responsible for

side effects, whereas there is a potential risk of viru-

lence in attenuated vaccine. Modern vaccine includes

subunit vaccines (e.g., using the surface antigen of the

hepatitis B virus) and epitope vaccines, where T-cell

and B-cell epitopes of the antigen are used. The iden-

tification of potential vaccine candidate antigens and

their epitopes is a challenging job. Experimental

approaches include epitope mapping which are expen-

sive and rigorous. Computational methods can help the

development of in silico epitope vaccines by

narrowing down the potential antigen and identifica-

tion of B-cell and T-cell epitopes. However, a major

challenge is the evaluation of vaccine efficacy in

a short time period. The current clinical trial format

is lengthy (four clinical phase trials) and, thus, it

involves many resources and other factors. Blood sam-

ples provide a snapshot of the immune status, and gene

or protein expression signatures were used to identify
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Systems

immunology

approaches Topic References

Immunoinformatics Databases of

antigens, B-cell and

T-cell epitopes,

MHC I and II

binders

Ansari et al. 2010;

Ehrenmann et al.

2010; Vita et al.

2010

Antigen processing

and presentation

The effect of

proteosome on

shaping T-cell

epitopes

Ramachandra et al.

2009

Host–pathogen

interactions

Gene regulation and

signal transduction

of host cells by

pathogens

Lamkanfi and Dixit

2010

Modeling of the

immune system

Mathematical

modeling of

Chavali et al. 2008
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biomarkers of vaccine efficacy from clinical phase I

volunteers. A systems approach was used to identify

early gene signatures that predicted immune responses

in humans vaccinated with the yellow fever vaccine

(Querec et al. 2009). The three most common factors

that correlate protection are the magnitude of the

antigen-specific antibody titers, the functional signa-

ture of the T-cell response, and the functional signature

of vaccine-induced innate immunity (Pulendran et al.

2010). Another area that could benefit from a systems

approach is the identification of new adjuvants. The

adjuvants are molecules used to improve the vaccine

efficacy. The functional signatures of the innate immu-

nity (e.g., TLRs) may be used to screen adjuvants.

A great variety of adjuvants are available; however,

alum described by Glenny in 1926 was only globally

licensed for human use.
lymphocytes against

infection

Vaccinomics Vaccinomics deals

with vaccine

analysis

Pulendran et al.

2010

S

Challenges and Pitfalls of Systems
Approaches

Despite the promise of the systems approach, there are

still challenges in the real understanding of complex

immune systems. In immunoinformatics, prediction

methods of MHC binders are based on machine learn-

ing and fail to predict with high accuracy to unknown

experimental or blind datasets (Gowthaman and

Agrewala 2008). When modeling the immune system,

it is often difficult to locate key model parameters,

including rate constants, in published literature. In

these cases, parameters need to be estimated, either

through additional laboratory experiments or theoreti-

cal approaches. In addition, theoretical models raise

the challenge of experimental validation, and it is risky

to rely on these models for vaccine or drug develop-

ment decisions (Forst 2006). In vaccinomics,

researchers have recently been using high-throughput

gene expression microarray data which provide

a global picture of the biological response to

a vaccine. There are cases of genes that are statistically

differentially expressed, yet are of no consequence to

the biological response to the activation because there

are redundancies of gene functions during evolution.

Still, there is a challenge to identify true casual rela-

tionships between genes differentially expressed and

the stimulated immune response. Recently, emphasis

has been given to pathway and network analyses

because they use prior knowledge into data analysis.
In the future, we have to get beyond colorful heat maps

and graphical protein–protein interaction networks to

an understanding of the biological significance of the

molecular signatures or biomarkers of the vaccine

discovery process (Pulendran et al. 2010). Inspite of

these short comings, systems immunology promises to

offer a new paradigm in vaccine discovery. Still, there

is a paramount interest in the rational design of future

vaccines against HIV, malaria, and tuberculosis.
Summary

The immune system is the body’s defense against

pathogens and other invaders. The pathogen can be

any biological agent such as a virus, bacteria, fungi,

or protist that causes disease to its host. The first body

defense after stimulation by a pathogen comes from

the innate immune system, which in turn activates the

adaptive response. Primary features of adaptive immu-

nity are specificity and generation of immunologic

memory. There are two branches of the adaptive

immune response: humoral immunity and cell-

mediated immunity. Humoral immunity is activated
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by extracellular pathogens and intracellular pathogens

activate the cell-mediated immune response in order to

protect the host. The pathogen manipulates the host

immune system to promote infection. Thus, there is

a need to implement systems approaches which com-

prises of high-throughput experimental and computa-

tional methods for better understanding of the immune

system. Systems approaches in immunology are briefly

summarized in Table 2. These approaches allow us to

better understand the complex communications

between the host cell–cell and cell–environment

which can further be used to develop potential drugs

or vaccines.
Cross-References

▶Adaptive Immunity

▶Adjuvants

▶Epitope

▶ Immunoinformatics

▶ Innate Immunity

▶Major Histocompatibility Complex (MHC)

▶Vaccinomics
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mechanisms of adaptive immune responses to HIV

infection. With the advent of high-throughput data

acquisition platforms coupled with advances in com-

putational biology, systems immunology approaches

to HIV infection investigate molecular signatures of

adaptive immunity in response to HIV infection, eval-

uate and establish pathways and/or networks linking

biomolecules to perturbations related to HIV infection,

and generate testable hypotheses. Thus, it offers better

platforms to define networks of molecular modules

that are unique to HIV infection, activation, replica-

tion, and pathogenesis. Elucidation of these molecular

modules should eventually lead to defining better treat-

ment options to HIV infection.
S

Characteristics

Adaptive Immune Response

Our immune system has evolved over millions of years

and includes highly complex innate and more specific

adaptive immune responses. While both responses are

unique there is a strong interplay between the two.

They are part of a single, coordinated response of the

host mounted against microbial infection or any other

foreign biological mater in the host body. In fact, the

defining feature of an adaptive immune response is its

specific, inducible reaction to pathogens. It focuses and

drives the effectiveness of innate immunity mecha-

nisms to the levels not present in lower organisms

(Kindt et al. 2007).

Human Immunodeficiency Virus (HIV)

HIV is a member of the retrovirus family which causes

acquired immune deficiency syndrome (AIDS). It is

a persistent pathogen and evolves its own means to

survive and replicate in the host’s hostile environment.

HIV-1 not only manages to escape the first line of host

defense mechanisms (innate responses) but is also able

to hijack the adaptive immune defense mechanisms by

infecting specifically the very cells (CD4 and CCR5

and/or CXR4 receptor expressing cells) necessary to

activate both B-cell and cytotoxic T-cell immune

responses, sequestering itself in privileged cells

including long-lived memory T-cells and encoding

and expressing proteins that restrict, redirect, or mod-

ify various protective functions of the host immune

system (Nathanson et al. 2007). In addition, viral

sequence diversification during the spreading infection
allows the virus to escape or tolerate adaptive immune

responses.

Enormous progresses have been made over the past

decades defining the individual components of HIV-1

and the host cell at the molecular level. This progress

has led to developing highly active antiretroviral ther-

apies (HAART) that have sharply altered the course of

HIV infection and progression to AIDS allowing

patients to live longer and with greatly improved qual-

ity of life. Thus far, chemotherapy has been the most

successful intervention for HIV-1. However, we still

have no cure from HIV and/or no HIV-1 preventative

vaccines has shown efficacy, in spite of considerable

efforts. As a result, HIV, a generation after its identi-

fication, still has major health and socioeconomic

impacts, particularly in developing countries. There

is no clear path from the discovery and characteriza-

tion of the molecular components of HIV-1 to the

development of vaccines. Part of the solution lies in

understanding the complex interactions between

HIV-1 and the host in a systems immunology context.

Approaches to HIV-1 Infection

Advances in immunological sciences have mainly

been achieved through analysis of individual biologi-

cal components at any given time. There is certainly

great value to this approach, for instance we now have

rich and detailed data about the function for all the 17

proteins that are expressed and processed by HIV-1

and understand many of their interactions with host

cell proteins. However, this approach may promote an

oversimplified view with a focus on single factors

without explicit regard for the network of elements

within which each individual component carries out

its function. Recently, however, as new data types and

technologies have become available through high-

throughput techniques such as gene expression

microarrays, deep sequencing, and mass spectrometry

to characterize genes, transcripts, and proteins, the

concept of a system-level analysis, which aims to

relate all of these individually determined patterns to

each other has become feasible. A conceptual repre-

sentation of a system immunology approach, as shown

in Fig. 1, can be examined through iterative cycles of

perturbing model systems at different levels of com-

plexity, measuring the response with high-throughput

techniques, analyzing the results with

multidimensional data mining, and (re)developing

a predictive model, with evaluation and refinements
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Infection, Fig. 1 Schematic overview of high-throughput data

comprising a systems model of host response to viral infection

form the view of protein-interaction networks as a means to

understand disease biology. This figure is adapted from (Tan

et al. 2007) with some modifications
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to the model. It is apparent that each data type from any

given high-throughput technologymay reveal only one

layer of the system. However, as these data sets have

global scope, when combined and critically evaluated

they provide new perspectives on the organization,

complexity, functionality, and dynamics of biological

entities.

The framework of Fig. 1 illustrates a system-wide

analysis of quantitative and/or qualitative changes in

biomolecules including transcripts, proteins, lipids,

and metabolites followed by clustering and

establishing networks linking the biomolecules to per-

turbations related to HIV infection and its pathogenesis.

For instance a number of microarray and/or proteo-

mics studies of CD4 T-cells following HIV-1 infec-

tion or exposure to HIV-1 accessory proteins have
illustrated a very broad perturbation in host gene

and/or protein expression profiles. Clustering the

gene, or protein expression, according to similarity

of its expression profile is often followed by anno-

tation using functional classification tools such as

The Database for Annotation, Visualization, and

Integrated Discovery (DAVID), expression analysis

systematic Explorer (EASE), or Ingenuity pathways

analysis (IPA) to identify overrepresented gene

families and pathways that are involved in viral

replication and/or CD4 T cell apoptosis. With this

high-throughput approach, it has been demonstrated

that HIV-1 infection up-regulates transcriptional fac-

tors that are shown to support HIV-1 long terminal

repeat (LTR) transcription while at the same time

down-regulating expression of negative regulators of
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S 2082 Systems Immunology, Adaptive Immune Response to HIV Infection
HIV transcription to tip the balance in the T-cell

activation in favor of viral replication. Parallel to

modulating the T-cell activation, HIV-1 infection

has a direct impact on the cell cycle and apoptosis

of the host cells by up-regulating the genes that are

involved in death receptor pathways while at the

same time down-regulating DNA repair genes.

HIV-1 has also been shown to induce genes that

are involved in cholesterol biosynthesis to enhance

viral infectivity and replication (Giri et al. 2006).

These approaches have provided a global view of

host gene modulation by HIV-1, have provided

answers to many global biological questions, and

have suggested novel hypothesis related to immune

dysregulation, susceptibility to apoptosis, virus rep-

lication, and viral persistence following in vitro or

in vivo infection by HIV-1. On the other hand,

a limitation to this approach is that many human

gene functions have not been (correctly) annotated

to defined pathways.
Recent systems approaches, in addition to cluster-

ing of the gene and/or protein expression data with

predefined pathways, aim to integrate protein–protein

interaction network information to identify interesting

groups of genes that have not been pre-identified in

pathways in an ontological framework. This approach

combines measures derived from expression data and

metrics on biological networks into single coherent

framework. To this end, expansion of protein–protein

interaction (PPI) databases mainly either through high-

throughput experimental techniques (such as two-

hybrid screens and affinity purification followed by

mass spectrometry (AP/MS)) or literature curation

(assembled from publicly available datasets), coupled

to advances in software technology, can be used to

integrate data within novel interaction networks to

identify disease-specific, functional subnetworks

(Galitski et al. 2004; Sharan et al. 2007). One of the

approaches aims to integrate the molecular networks

with the gene or protein expression data with the goal
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to extract relevant network modules (expression

activated modules) based on coherent expression

patterns of their genes. Ideker and colleagues

pioneered this approach (Ideker et al. 2002) that has

been later extended and improved by several groups.

The idea behind this approach is that by interrogating

a protein interaction network with high-throughput

data such as gene/protein expression it is possible

to extract subnetworks whose protein states are

perturbed by the condition of interest and functionally

connected.

There exists a rich literature on methods for inte-

grating protein–protein interaction networks and path-

way databases with protein/gene expression data with

the goal of identifying expression-activated subnet-

works or modules that are better diagnostic and prog-

nostic markers for cancer (for review, see Ideker and

Sharan 2008; Nibbe and Chance 2009). Of interest,

recently it is demonstrated that subnetwork markers

extracted based on protein-network approach are more
reproducible classifiers of breast cancer metastasis

than individual gene markers selected from conven-

tional expression-alone analysis (Chuang et al. 2007).

This approach has also recently been improved to

combine both protein and gene expression data

(Nibbe et al. 2010).

HIV-1–human interaction databases based on high-

throughput protein interaction measurements are under

development, and there is a publicly available HIV-1

and human protein interaction database curated from

multiple studies accessible at http://www.ncbi.nlm.

nih.gov/RefSeq/HIVInteractions/. This database rep-

resents a unique and continuously updated scientific

resources and a graphical visual representation of HIV-

1–human protein interactions (Ptak et al. 2008) and is

shown in Fig. 2. It is important to understand this

complex interaction between HIV-1 proteins and

a vast array of host protein as demonstrated in Fig. 2

to understand the underlying mechanisms in viral rep-

lication and pathogenesis.

http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/
http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/
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Even though there is not an established secondary

level literature review on annotating network informa-

tion for viral pathogenesis, some progress has been

made recently. For example, with the availability of

HIV-1–human interaction database, Human Protein

Reference Database (HPRD), and high-throughput

time series gene expression data for HIV-1 reactivation

in human T-cell lines, it has been illustrated that

a network-level analysis (integrating the expression

clustering with the protein–protein interaction net-

works) can identify significant “activated networks”

and/or subnetworks that are unique to the latent and

early stages of viral replication (Bandyopadhyay et al.

2006). According to the authors, with this integrated

approach they were able to extract highly significant

active networks (P< 0.05) for both latent (un-induced)

and in the early stage of HIV-1 activation. As shown in

Figs. 3 and 4, the active networks for the latent and

early-stage HIV-1 activation, respectively, are

enriched with Tat-interacting proteins. One of the

interesting outcomes from this analysis is to see how

the active networks topology changes from the latent

to the early stages in HIV-1 activation. In addition, the

approach offers additional information such as identi-

fying the genes (e.g., Tuba3, Fig. 1) that are not anno-

tated as indicting changes in expression but strongly

interact with genes that have significant differential

expression. Thus activated networks and or subnet-

works are novel diagnostic and/or prognostic markers

and they also provide multiple layers of information

related to the causes of disease or viral pathogenesis

that can be tested.
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The discipline of immunoinformatics deals with apply-

ing bioinformatics principles and tools to the

molecular activities of the immune system. Immunoin-

formatics provides databases and predictive tools,

which are used in discovering novel vaccines and this

approach is referred to as computer-aided vaccine

design. The focus of immunoinformatics has been to

enable identification of antigens or epitopes capable of

eliciting immune response.

B-cells and T-cells are important cells of the

immune system. Subsequent to recognition of epi-

topes, these cells are activated. An epitope, also

known as “antigenic determinant” is a surface local-

ized part of antigen capable of eliciting an immune

response. A B-cell epitope is the region of the antigen

recognized by soluble or membrane-bound antibodies.

B-cell epitopes are classified as either linear or discon-

tinuous epitopes. Linear epitope constitutes of a single

continuous stretch of amino acids within a protein

sequence, whereas epitopes whose residues are

distantly placed in the sequence brought together by

physicochemical folding constitute discontinuous

epitopes. T-cell epitope is a short region presented on

the surface of an antigen-presenting cell, where they

are bound to MHC molecules.

An important goal in the process of discovering new

vaccines is to identify protein sequences capable of

generating a potent protective immune response

while minimizing the possibility of developing cross-

reactions with host system components. Data using

immunoinformatics can help in this endeavor to

a significant extent. To this end, in order to help users

mine the data through a set of criteria meeting the

requirements, user-friendly software platforms are

built for query analysis using scripts.

S

Characteristics

Tools of Immunoinformatics

Epitope prediction tools are hallmark of immunoin-

formatics. The main goal of these tools is to aid in

reliable epitope identification. Computational T-cell

epitope prediction methods have been developed

such as algorithms based on artificial neural networks

and weight matrices – NetMHC, predictive IC(50)

values IEDB-ARB method (Zhang et al. 2008; Bui

et al. 2005), predicted half-time of dissociation –

Bimas, and quantitative matrices – Propred.
Reliable and accurate B-cell epitope prediction is still

in development although we have some tools such as

ABCpred and Bcepred.

It is desirable that a candidate vaccine is

nonallergic. In this direction various tools of

immunoinformatics have been developed with aim to

predict allergenic proteins. AlgPred allows prediction

of allergens through single or combination of support

vector machine, motif-based method, and searching

the database of known IgE epitopes. Allermatch per-

forms BLAST search against allergen representative

peptides using a sliding window approach. References

for all tools are available from the Journal article

MalVac (Chaudhuri et al. 2008).

Process Initiation

Starting of an analysis involves identification of the

relevant subproblems under the major problem under-

taken. The fundamentals of the main problem need to

be understood elaborately. This should be followed by

subsequent data mining using literature search and rel-

evant bioinformatics and immunoinformatics tools. As

a case in point, where the problem undertaken is iden-

tification of potential adhesin vaccine candidate, the

fundamental importance of the problem lies as under:

• Induced antibody response at cell surface against

adhesins can prevent attachment of pathogen to cell

surface and thus abrogate colonization at the very

first stage of infection.

• Adhesins also show a high degree of antigenic

conservation (bind to invariant host receptors)

The subproblems involve identification of probable

adhesin proteins from a pathogen’s proteome to iden-

tify probable adhesins (Sachdeva et al. 2005) or sur-

face located proteins using subcellular localization

tools. Other bioinformatics tools of relevance are

orthologs, paralogs, transmembrane topologies, beta

helix supersecondary structural motifs, signal pep-

tides, similarity against human proteins, and conserved

domains (Fig. 1). Each prediction comes with associ-

ated confidence level. References for all tools are

available from the Journal article MalVac (Chaudhuri

et al. 2008). This set of analytical data constitutes the

first layer for datamining. The immunoinformatics

data constitute the second layer.

Creation of Datasets in R Platform

R is a high-level interpreted language suitable

for developing new computational methods
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(R Development Core Team, 2010). Several computa-

tional biology packages have been developed in

R language. Developing computational packages in

R provides advantage as to carry out the analysis

locally and also build further tools and scripts. This

facilitates development of both new applications and

extension of existing applications. R thus facilitates

accomplishment of complex tasks using simple scripts.

Another major advantage of preparing datasets and

computational biology tools in R is that a large set of

statistical and mathematical tools can be applied on the

datasets for analysis. R being an open source con-

trolled by GNU General Public License, allows future

developments and customizations more widely. The

responsibility for the maintenance of R is taken upon

by a core group thereby ensuring its availability for

long life.

Data for R platform can be prepared as “.RData”.

For the problem addressed in the above section, data

were prepared as CSV files from various pathogens

Plasmodium falciparum, Plasmodium vivax,
Plasmodium yoelii (malaria causing species), Asper-

gillus fumigatus, Candida albicans, Candida glabrata,
Blastomyces dermatitidis, Histoplasma capsulatum,

Coccidioides immitis, Coccidioides posadasii,

Paracoccidioides brasiliensis (fungal pathogens),

Mycobacterium tuberculosis (H37Rv and H37Ra

strains) and Chikungunya Virus. The orthologs,

paralogs, transmembrane topologies, beta helix

supersecondary structural motifs, subcellular localiza-

tion, similarity against human proteins, antigenic

regions, conserved domains informations were placed

into one CSV file as first layer data and read

into a single R object. The epitope and allergen infor-

mation collected using various immunoinformatics

prediction tools were read into separate R objects,

each corresponding to the specific result.

These R objects were saved together as R image data

files *.RData. These can be sourced from the link

http://sourceforge.net/projects/sysbior/. All the data

objects can be accessed instantly by loading

the R image data files using the load command.

http://sourceforge.net/projects/sysbior/
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Similarly multiple R image data files can be loaded as

desired within seconds.

Samples and Scripting

1. Knowing the contents: After loading the R image

data files, ls() command allows listing of the loaded

objects. The command names(dataobjectname) dis-

plays characteristics of the data table corresponding

to a given R object. The dim(dataobjectname) com-

mand displays its size. Further work depends on the

question asked and knowing the data types present

in the R object. This information will help formu-

late scripts to carry out searches for complex

queries in order to meet conditional criteria.

We represent here a decision process taken using

immunoinformatics data. The process can be

implemented using scripts for conditional searches

and operations of set theory
2. Sample Scripts: To address the example problem

undertaken as under

(a) From the first layer data certain subproblems to

target a potential adhesin vaccine candidate can

be stated as follows: the protein should be an

adhesin, the protein should not be intracellularly

located, it should not have similarity to human

reference proteins, and it should not have more

than one tansmembrane helices facilitating proper

cloning and expression. The following script

retrieves the resulting proteins meeting these

criteria:
To get ORFids of the filtered proteins fulfilling all

conditions made directly into an R object firstlayer_

filteredorfidsfirstlayer_filteredorfids<-NULL; for

(i in 1:322) {if(((as.character(firstlayer_malaria

[i,10])¼¼"Other_Location") || (as.character(first-

layer_malaria[i,10])¼¼"Secretory_Pathway")) &&
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(firstlayer_malaria[i,11]<3) && (firstlayer_malaria

[i,14]<¼1) && (as.character(firstlayer_malaria

[i,17])¼¼"No hits found")) firstlayer_filteredorfids

<-c(firstlayer_filteredorfids, as.character(first-

layer_malaria[i,1]))} here the 14th column refers to

the number of tansmembrane helices, the 10th col-

umn has data for localization of the protein, the 11th

column has reliability class (RC) of localization

prediction (this value ranges from 1–5, and lower

the RC, greater the confidence of prediction), and

17th column has data for similarity of the protein

to human reference proteins. Post execution of this

script z5 stores the row numbers of the proteins

fulfilling above-mentioned criteria.
(b) To get the ORFids of high scoring B-cell and

T-cell epitopes containing proteins, scripts can be

written using conditional operators. If, for example,

to select high scoring B-cell from ABCpred

abcpredfilteredorfids <- NULL; for (i in 1:

32299) {if (as. numeric(as.character(abcpred_

malaria[i,6]))>¼0.9) abcpredfilteredorfids
<-c(abcpredfilteredorfids, as.character(abcpred_

malaria[i,1]))} here the 1st column has ORF id

of the protein and 6th column has scores against

individual epitopes predicted from ABCPred

server for the corresponding protein.

In this way, scripts can be run on First layer,

B-Cell, T-cell, and Allergen data provided to select

the filtered ORF Ids fulfilling all criteria which come

out to be the list of potential vaccine candidates

(Figs. 2 and 3).
References

Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton
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Synonyms

Systems vaccinology; Vaccine molecular signatures;

Vaccinomics
S

Definition

Systems biology offers a new approach to vaccine

design by understanding the molecular networks mobi-

lized by vaccination. Systems vaccinology approaches

investigate global correlates of successful vaccination,

beyond antigen-specific immune responses, providing

new methods for measuring early vaccine efficacy and

generating hypotheses for understanding the mecha-

nisms that underlie successful immunogenicity. Using

functional genomics, vaccine-specific molecular sig-

natures can be identified and used as predictors of

efficient immune responses.
Characteristics

Vaccine

Vaccines are the most effective tools to prevent infec-

tious diseases in humans or animals. A vaccine typically
contains an agent resembling a disease-causing micro-

organism. The agent (antigens) stimulates the body’s

immune system to recognize the agent as foreign, induc-

ing specific immune responses and memory for long-

term protection. Vaccines can be prophylactic (e.g., to

prevent or ameliorate the effects of a future infection),

or therapeutic (e.g., vaccines against cancer).

Immune Responses Induced by Vaccine

Following vaccination, both innate and adaptive

immune system components synergize to elicit an

immune response. Antigen-presenting cells – notably

dendritic cells – take up antigens and traffic to the

draining lymph nodes where they present processed

antigens to naı̈ve CD4+ and CD8+ T lymphocytes.

Naı̈ve T cells are stimulated to proliferate and differ-

entiate into effector and memory T cells. Activated,

effector, and memory CD4+ T cells provide help to B

cells to mount antibody responses, and to naı̈ve CD8+

T cells to enhance their clonal expansion and differen-

tiation into cytotoxic CD8+ T lymphocytes (CTL). The

quality of the vaccine-induced immune response

depends on several factors, e.g., antigen nature, route

of administration, antigen presentation, vaccine prep-

aration adjuvants, and timing between challenges.

Immune Responses Required for Protection

To be effective a vaccine should be capable of eliciting:

• Activation of antigen-presenting cells to initiate

antigen processing and presentation to T cells

• Activation of T and B cells:

– Production of antibodies that bind and neutralize

antigens and/or target invading pathogens for

destruction by complement- or antibody-

dependent cellular cytotoxicity

– Generation of memory B cells

– Generation of memory CTL

– Generation of memory CD4+ T cells

Evaluation of Vaccine Efficacy

Classically, the effectiveness of vaccination is

ascertained until vaccinated individuals exposed to

infection are protected. A central goal of vaccine

research is to identify whether an early vaccine-

induced immune response is predictive of later protec-

tion. An immune correlate can be used for guiding

vaccine development, for predicting vaccine efficacy

in different settings, and for guiding vaccination poli-

cies and regulatory decisions.

http://www.R-project.org
http://www.R-project.org
http://dx.doi.org/10.1007/978-1-4419-9863-7_101442
http://dx.doi.org/10.1007/978-1-4419-9863-7_101611
http://dx.doi.org/10.1007/978-1-4419-9863-7_718
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Most current successful vaccines were developed

with little or no understanding of cellular immune

responses. Prior to the 1990s, most vaccination pro-

grams have been evaluated based on the efficacy to

induce high antibody titres without assessing T-cell

responses. Moreover, ▶ immunomonitoring methods

to evaluate vaccine immunogenicity are not suitable

to predict vaccine efficacy; e.g., antibody assays are

mainly based on antigen-binding parameters that do

not reveal the antibody function. Therefore, immune

correlates of protection are poorly characterized.

Newmethods are now emerging to assess a growing

number of vaccine-associated immune parameters. In

particular, T-cell functions and interactions with other

cells (e.g., antigen-presenting cells) are evaluated: tet-

ramer binding to TCR, epitope immunoreactivity,

cytokine production, cell phenotype, etc.

The expanding knowledge on the molecular mech-

anisms of immune responses and the development of

genomic and proteomic analysis now offers new

approaches for modeling vaccine-induced immune

responses and opens the possibility to establish predic-

tive signatures of effective responses.

Still, these methods assess vaccine efficacy at the

individual cell, when investigations should be done at

the various scales of the organism. Indeed, induction of

antigen-specific memory immune responses does not

imply that antibodies, memory cells, or cytokines

represent surrogates or correlates of vaccine efficacy.

This highlights the requirement for an integrated eval-

uation of vaccine efficiency including numerous

multiparametric variables:

• Potential host efficiency (age-, disease-, or treatment-

related immunodeficiency)

• Antigenicity of the vaccine preparation

• Cellular and humoral immunogenicity

The goal is to establish correlates between protec-

tion and cellular and molecular responses: mucosal

response, local antibody production, timely B- and

T-cell responses, and appropriate effector or regulatory

biological pathways. Systems immunology provides

new tools to investigate the immune system dynamics

following immunization, and derive models of effi-

cient vaccine-induced immune responses.

Current State-of-the-Art of Systems Vaccinology

Historically, progress in vaccine development has come

in waves produced by technological revolutions (for

a review, see Germain 2010). Current developments
translate vaccinology as a combinatorial science which

studies the diversity of pathogens and the complexity of

the immune system, throughout screening or immunoin-

formatic tools. The future advances for vaccine devel-

opment will be based on taking a systems biology

approach to the immune system, leading to the creation

of a virtual or in silico immune system capable of

complex simulations. This systematic approach aims

to predict vaccine immunogenicity allowing its

advancement into clinic without the uncertainties of

the current vaccine development processes.

▶Reverse vaccinology involves the in silico
screening of the entire genome of a pathogen to find

genes that encode proteins with the attributes of good

vaccine targets, using either the genome of a single

pathogenic isolate or the pan-genome of a pathogenic

species.

Computational vaccinology models antigen

processing and presentation in order to support T-cell

epitope mapping (▶T Cell Epitope, Prediction with

Peptide Libraries). Web-accessible computational

methods have been developed for each of the different

antigen processing steps including proteasome cleav-

age, transport by the transporter associated with anti-

gen processing, peptide binding to MHC molecules,

and cell surface presentation (Flower 2007; Brusic

et al. 2004).

A new era of genomic vaccinology and computa-

tional prediction methods comes out, enabling system-

atic screening of multiple complete genomes of

pathogens together with analysis of the variability

of pathogens and/or MHC complex. The field of

▶ vaccinomics investigates the host genetic heteroge-

neity, with the aim of predicting and minimizing vac-

cine failure or adverse events.

Systems Vaccinology

Systems biology is bringing more robust approaches to

vaccine design based upon understanding of the

molecular network and relationships among the vari-

ous immune system components. While genomics has

successfully identified new vaccine antigens, it is also

promising for evaluating vaccine-induced immune

response–specific signature and assessing their predic-

tive value.

Proof of concept was recently brought by Pulendran

and colleagues who used a systems biology approach

to build a predictive algorithm of yellow fever vaccine

immunogenicity (Querec et al. 2009). Their method

http://dx.doi.org/10.1007/978-1-4419-9863-7_716
http://dx.doi.org/10.1007/978-1-4419-9863-7_717
http://dx.doi.org/10.1007/978-1-4419-9863-7_109
http://dx.doi.org/10.1007/978-1-4419-9863-7_109
http://dx.doi.org/10.1007/978-1-4419-9863-7_718
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involves immunology, genomics, and bioinformatics.

The investigators identified gene expression signatures

in the blood a few days after vaccination that could

predict, with up to 90% accuracy, the strength of the

immune response to the yellow fever vaccine. The

consistency of these predictive signatures across two

trials for CD8+ T cell and antibody responses raises the

possibility that these rules have broad applicability for

different types of immunogens and vaccines.

Therefore, systems biology approaches permit the

observation of a global picture of vaccine-induced

immune responses at an early time point after vacci-

nation. These gene expression signatures of early

innate immune activation predict the ensuing adaptive

immune responses. Thus, in addition to providing

a potential tool for the forward assessment of vaccine

efficacy, the findings from this systems approach pro-

vide a starting point for the development of new

hypotheses aimed at elucidating the parameters that

control memory T cell and antibody production.

Rational Development of Novel Genetic Vaccines

By bringing together high-throughput experimental

methods and information technology, our ability to

decipher complex interactions that occur in the

immune system has significantly improved. The cur-

rent developments in computational vaccinology,

including systems modeling of vaccine responses,

aim to establish immune correlates and thus to accel-

erate the development of effective vaccines.

In this line a number of research initiatives have

been supported, such as follows:

• VIOLIN (Vaccine Investigation and Online Infor-

mation Network, www.violinet.org) integrates in

a dedicated database of curated vaccine experimen-

tal data, a vaccine target prediction algorithm, and

a vaccine ontology.

• CompuVac (Rational Design and Standardized

Evaluation of Novel Genetic Vaccines, compuvac.

cs.put.poznan.pl), a European FP6 integrated pro-

ject devoted to (1) rational development of a novel

platform of genetic vaccines and (2) standardization

of vaccine evaluation, assembled a platform of viral

vectors and virus-like particles and developed stan-

dardized protocols and database to comparatively

evaluate vector platform efficacy.

• ImmSim is a cellular automata-based simulator of

immune responses used to compare the behavior of

64 virtual viruses with various speeds of growth,
infectivity level, and lethal load. Protection against

infection conferred by different vaccine strategies

could be tested and showed how different viruses

are more susceptible to either antibody or T-cell-

mediated responses (Kohler et al. 2000).

Vaccine design and evaluation should also gain

from mathematical and computer models of host/path-

ogen interactions and immune responses (see for

reviews Cohn and Mata 2007; Flower and Timmis

2007 and▶Vaccine Antigen Databases). For example,

models of influenza viral epitope spread over years,

their spatial dissemination and antisera responses will

certainly guide the design of more adapted vaccines

(Park et al. 2009).

Conclusion

Despite their great success, mechanisms describing

how effective vaccines stimulate protective immune

responses are poorly known. A major challenge in

vaccinology is to prospectively determine vaccine effi-

cacy. High-throughput technologies, such as gene

expression profiling, multiplex cytokine analysis,

multiparametric flow cytometry, and imaging, com-

bined with computational modeling, offer new per-

spectives. Elucidation of clusters of signatures which

correlate with vaccine immunogenicity should facili-

tate the rapid screening of vaccines but also propose

new hypotheses on how vaccines mediate protective

immune responses, and identify early predictive signa-

tures of vaccine efficacy. Systems vaccinology offers

great promise for future translation of basic immunol-

ogy research advances into successful vaccines.
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Synonyms

Immune enhancer; Immuno-stimulant
Definition

Adjuvants are compounds that when added to vaccines

enhance the specific immune response against co-

inoculated vaccine antigens. The word adjuvant

comes from the Latin word adjuvare, which means to

help or to enhance.
Characteristics

The concept of vaccine adjuvants arose 90 years ago

from observations that the inclusion with vaccine anti-

gens of inflammatory substances such as mineral oil or
live or killed microorganisms boosted the levels of

antibody generated against the co-injected antigen

(Petrovsky and Aguilar 2004).

These days vaccine adjuvants are used to

• Enhance the humoral and/or cellular immune

response against of purified or recombinant

antigens

• Reduce the amount of antigen needed for protective

immunity (antigen sparing)

• Reduce the number of immunizations needed for

protective immunity (dose reduction)

• Obtain faster vaccine protection

• Improve vaccine effectiveness in individuals with

impaired immunity (newborns, the elderly, trans-

plant patients, or those with chronic disease)

• Improve the uptake of antigens by immune cells

(antigen delivery)

• Drive the immune response in a particular desired

direction (immune deviation)

Altogether, several hundred natural and synthetic

compounds have been identified to have adjuvant

activity, including bacterial, fungal, and viral com-

pounds, such as RNA, DNA, proteins, lipopeptides,

lipopolysaccharides, and glycolipids (Vogel et al.;

Hackett and Harn 2006). Adjuvants principally work

via activation of specific innate immune receptors

which sense tissue damage or invasion and provide

the immune system with an early warning or “danger

signal” (Matzinger 2007). This results in production of

inflammatory molecules including cytokines and

chemokines such as tumor necrosis factor alpha, inter-

leukin 1, and type 1 interferons, which together acti-

vate and attract immune cells to the site of origin of the

danger signal, in this case the site of immunization,

where they phagocytose the foreign antigen(s) and

then migrate to the draining lymph node where they

present the digested antigen to resident T and B cells.

In this way antigen-specific memory T and B cells are

expanded which in turn are able to elicit an adaptive

immune memory response when reexposed to the rel-

evant antigen(s).

The specific innate immune receptors which sense

tissue damage and danger signals have recently been

identified to include multiple members including the

toll-like receptor (TLR) family, components of the

inflammasome, and other cytoplasmic, lysosomal, or

membrane receptors that recognize pathogen-

associated molecular patterns (PAMPs) or endogenous

danger signals.

http://dx.doi.org/10.1007/978-1-4419-9863-7_100666
http://dx.doi.org/10.1007/978-1-4419-9863-7_100673
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Adjuvants can be classified according to their

source, mechanism of action, or physicochemical

properties, and can be subdivided into (1) carriers,

being immunogenic proteins that provide T cell

help; (2) vehicle adjuvants, being oil emulsions, lipo-

somes, or particles that bind antigens; and

(3) immunostimulants, being substances that increase

the immune response to the antigen by activation of the

innate immune system. Adjuvants can also be classi-

fied according to their site of delivery; that is, paren-

teral adjuvants are injected, mucosal adjuvants are

applied tomucosal surfaces, and transdermal adjuvants

are applied directly to the skin.

As new methods of vaccination are developed, for

example, DNA vaccines, a major challenge has been to

find new adjuvant forms compatible with these new

vaccine technologies. For example, DNA vaccines can

be adjuvanted by inserting the coding sequence for

inflammatory cytokines such as interleukin 12 or

GM-CSF into the actual DNA vaccine vector. Simi-

larly, mucosal vaccines require their own unique adju-

vants, with the most potent mucosal adjuvant being

cholera toxin.

Unfortunately due to their propensity to induce

severe inflammatory responses, the most potent adju-

vants are often the most toxic (Petrovsky 2008). Local

adjuvant reactions include pain, local inflammation,

swelling, injection site necrosis, lymphadenopathy,

granulomas, ulcers, and the generation of sterile

abscess. Systemic adjuvant reactions include nau-

sea, fever, adjuvant arthritis, uveitis, eosinophilia,

allergy, anaphylaxis, organ specific toxicity, and

autoimmune disease. Aluminum hydroxide, while

not a potent adjuvant, is relatively well tolerated,

helping explain its effective monopoly over human

vaccine use for the last 90 years. The monopoly

that aluminum adjuvants have held over human

vaccines is slowly being forced back with develop-

ment of new adjuvants.

One of the biggest breakthroughs in the adjuvant

field was the identification and characterization over

the last 20 years of the innate immune receptors includ-

ing the TLRs through which many longstanding adju-

vants were found to be working. For example, alum

was recently found to work via activation of NALP3

leading to inflammasome activation and production of

inflammatory cytokines including IL-1 and IL-18 that

in turn stimulate adaptive immune responses. Simi-

larly, bacterial and viral components, such as RNA,
DNA, protein, lipopolysaccharides, and lipopeptides,

bind and activate specific innate immune receptors

including the TLRs, leading to activation of NFkB

and an inflammatory response, thereby explaining

their adjuvant activity.

The major challenge for adjuvant development

remains the question of whether adjuvant

reactogenicity and potency can ever be separated. His-

torically, compounds inducing the greatest inflamma-

tion and thereby the greatest immune danger signal

have been the strongest adjuvants, with Freund’s com-

plete adjuvant being a case in point. Unfortunately the

inflammation that is critical to the potency of such

adjuvants is also responsible for toxicity including

local injection site pain and swelling to fevers, muscle

aches, and autoimmunity. The solution to this conun-

drum would be to develop adjuvants that specifically

enhance adaptive immunity but do not induce innate

immune activation responsible for toxicity. Recent

adjuvant research indicates that this objective can be

met and adjuvant potency and reactogenicity poten-

tially separated. A good example of this is a newly

developed range of adjuvants based on the polysaccha-

ride delta inulin, which show potent adjuvant activity

on humoral and cellular immunity but are not

reactogenic.

While vaccine adjuvants have traditionally been

identified by trial and error experimentation, the iden-

tification of specific innate immune receptors, includ-

ing the TLR receptors and the inflammasome and the

inflammatory pathways through which adjuvants are

working, has for the first time allowed a more system-

atic approach to adjuvant identification (Singh 2007).

It is now possible to express individual TLR receptors

on cell lines and then use these cell lines to screen

candidate compounds for their ability to bind and acti-

vate these receptors to identify novel adjuvants. Sim-

ilarly, it should be possible to use gene array signatures

generated by a known adjuvant in human immune cells

to screen for other compounds which generate a similar

signature, and may thereby share similar adjuvant

properties. On the adjuvant toxicity side, a systems

approach now provides the opportunity to use similar

tools to screen candidate adjuvants for potential toxic-

ity, this time using gene array signatures in cell lines

from toxin-sensitive tissues such as the liver and kid-

neys to deselect potentially toxic candidates without

the time and cost of needing to undertake extensive

animal experimentation.
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Definition

The availability of high-throughput techniques opened

a new epistemological era in biology. New disciplines

such as genomics, functional genomics, proteomics,

metabolomics, and structural biology leveraged these

technological advances to deepen our understanding of

cellular physiology and regulation. The need to extract

knowledge from these large data streams stimulated

the development of computational techniques to store,

organize, mine, and model the data, facilitated by the

increasing availability of cheaper computer hardware

and improved performance. These developments led to

the emergence of the umbrella discipline of computa-

tional systems biology (Kitano 2002). The initial intent

and motivation underlying the large resources and

funding devoted to this major effort was to enhance

human health. The human genome project (HGP),

where the bulk of the work was conducted

between 1990 and 2003, and which successfully led

to sequencing the entire human genome, is arguably
the archetypal example of the necessary combination

of high-throughput techniques and computation

contributing to a monumental accomplishment. The

relatively modest practical output from the HGP,

such as advances in diagnostic testing for cancer,

hematological and liver disease, and deeper under-

standing of comparative biology and evolution, has

demonstrated that the road to translating these new

disciplines into tools that would indeed contribute to

diagnosing and treating human disease in

a personalized fashion will be a challenging one.
Characteristics

One can define systems medicine as the application of

systems biology to the diagnosis, prevention, patho-

physiologic understanding, and treatment of develop-

mental disorders, disease, and recovery processes in

humans (Clermont et al. 2009). The concept of system

as an assembly is fundamental: organisms are com-

prised of a large number of parts, or sub-systems,

creating a whole which accomplishes biological func-

tions beneficial to the integrity of the system, and

admits observables that are relevant at the system

level, not merely its constituent parts. In this sense,

there are strong parallels between the discipline of

systems engineering and systems medicine (Parker

and Clermont 2010). Systems engineering is an inter-

disciplinary science that combines the expertise of

industrial engineering, control engineering, manage-

ment science toward the design, logistical execution,

and maintenance of large complex projects such as

submarine and airplane design, the international

space station, and other large-scale projects such

as the Internet. Importantly, systems engineering

conceives of a project over its entire life cycle.

Similarly, as systems medicine strives to pursue its

goals, it draws not only from rich multi-scalar data

streams, but also from several quantitative fields that

are not otherwise naturally aligned, such as statistics

and control engineering.

Many consider that the system is not bound to

individual living organisms, but also extend to com-

munities of such organisms and how these interact. At

a biological level, it is increasingly recognized that

human interactions with their physical and microbio-

logical environments have a key effect on health. An

argument can be made that the goal of systems

http://dx.doi.org/10.1007/978-1-4419-9863-7_107
http://dx.doi.org/10.1007/978-1-4419-9863-7_111
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medicine is to be more global in scope and to extend

beyond health of individuals. This perspective has

driven large-scale research efforts, such as the human

microbiome project (Turnbaugh et al. 2007), which

seeks to understand the relation between human health

and the microbial flora inhabiting gut, oral cavity, upper

respiratory system, and skin. At the population scale and

from a societal viewpoint, the interaction between

health-care delivery models and population health indi-

cators is further pushing the envelope as to what could

still be considered systemsmedicine. Clearly, there is an

extensive need for modeling how different factors,

including financial constraints and corporate and public

policies, impact health at this level.

Some researchers have suggested the concept of

translational systems biology (An et al. 2007) to

describe several of the efforts, goals, and promises

described above, and we clearly see a conceptual dis-

tinction between systems medicine and translational

systems biology.

Systems Medicine and Personalized Therapies

A fundamental goal of systems medicine is to open an

evidence-based path toward personalized therapies.

The concept of personalized therapy is pervasive in

clinical medicine in that clinicians will implement

a broad concept of treatment for specific diseases,

while constantly adapting and refining treatments to

the perceived circumstances of their patients. The lack

of rigor in the implementation of this approach

combined with a fundamental lack of scientific

evidence lead to the recognition that the initial

ad-hoc attempt at personalized medicine was

well-intended, but prone to error, often misguided or

frankly harmful (Kohn et al. 2000). Standardizing and

organizing the delivery of health care and building of

the evidence, mostly from randomized clinical trials

has started to address these concerns (Leape and

Berwick 2005), but also to the realization that predict-

ably effective personalized medicine remains

a challenging long-term goal. The human genome pro-

ject’s promise was to present a full description of the

human genome and to leverage this knowledge toward

the goal of personalized medicine. The discipline of

genome medicine offers a genome-centric approach to

understanding the association between the human

genome, human disease, and pharmacological

approaches to treatment. Genome medicine falls

under the umbrella of systems medicine.
Systems Medicine and Models

The role of mathematical models as an integrative,

formal framework that represents how constituent

parts of a system are dynamically linked is more

central to systems medicine than it is in more

traditional systems biology, or medicine. At the very

least, formalizing knowledge into a model will identify

critical knowledge gaps and guide experimental

efforts, including experimental design. Beyond,

models represent a new vehicle through which

interdisciplinary teams of quantitative, biological,

and clinical investigators can focus discussions and

evaluate the merit of competing hypotheses prior to

experimental evaluation. Models could represent the

preferred method to integrate and interpret data that

opens the way to personalized medicine and, thus,

redraws the playing field for systems medicine.

Future Developments

Advances in basic science and mathematics will be

required for systems medicine to deliver on its promise

beyond the initial results of association studies. Less

than 2% of the human genome codes for proteins and

the majority of proteins have regulatory roles which

are not primarily involved in core cellular functions.

Rather, they promote system robustness. The scientific

community is getting early glimpses into the role and

significance of the non-protein world and the funda-

mental role of epigenetics in disease. Systems medi-

cine will likely provide a strong motivation for the

development of methods and applications that will

integrate this evolving knowledge in more comprehen-

sive theories of health and disease.

The field of pharmacokinetics has pioneered the

development of model-based individualized predic-

tions of pharmacokinetic data. Similar predictions

will be much more difficult to achieve for more com-

plex system for which experimental or clinical data are

considerably sparser and for which model representa-

tions are less well known or subject to ongoing con-

troversy. General methods that extend mixed effect

modeling in standard statistical theory to nonlinear

dynamical systems are under development, as are

model selection algorithms that allow comparing the

relative merit of competing models. In several fields,

such as weather prediction, the concepts of model

ensembles and consensus models have emerged and

early approaches using similar methods to express

incomplete information and other source of variations
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in a system in terms of parametric and structural model

uncertainty. It would stand to reason that a proximal

goal of this research would be to describe “similar

patients” in terms of such a model ensemble, on the

way to a fully probabilistic description of individual

patients.

How accurate would inferences made about indi-

vidual patients based on such model ensembles need to

be? Scientists do not require full understanding of

a system before useful applications can be realized.

Gravity and electromagnetism come to mind as canon-

ical examples of physical phenomena for which a full

theory is not yet established, but applications based on

incomplete knowledge have, nevertheless, shown

extreme usefulness. How much knowledge is neces-

sary before practical predictions can be extracted from

existing models of a system is a difficult question. This

applies directly to systems medicine. It is likely that

current knowledge is sufficient to predict the effect of

certain interventions. Several biosimulation compa-

nies have developed prediction engines for clinical

trials based on in silico models of disease. Whether

such contributions have actually impacted drug

design on delivery is unclear at this stage, but some

degree of success is almost certain within the next

few years.

A Roadmap for Systems Medicine

The construction of a roadmap for systems medicine is

imperative for its development as a successful science

and will require the involvement of several stake-

holders, including academic faculty and trainees, the

scientific dissemination industry, institutions of higher

knowledge, government and other regulatory and

funding entities, the biotechnology industry, and phar-

maceutical companies (Table 1). Each of these pro-

moting entities is an essential stakeholder in systems

medicine.
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Synonyms

Clinical systems pathology; Predictive pathology;

Systems histopathology
Definition

Systems pathology is the study of disease through the

integration of clinical, morphological, quantitative,

and molecular parameters using mathematical analyt-

ical frameworks. The aim is to create coherent models

which enable the understanding of pathophysiological

processes in their entirety and generate hypotheses that

can be tested experimentally. In practice, systems
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pathology aims to personalized therapy and predictive

outcomes for patients (▶ Personalized Medicine;

▶ Predictive Medicine).
Characteristics

Pathology is the study of mechanisms and diagnosis of

disease and is the basis of all components of Labora-

tory Medicine including hematology, immunology,

biochemistry, microbiology, genetics, and anatomic/

histopathology. The word pathology comes from the

Ancient Greek pάyoB, pathos, “feeling, suffering”; and
-logı́a, -logia, “the study of.” Pathology addresses

four main components of disease, namely, etiology

(cause), mechanism (pathogenesis), cell and tissue

structure (morphology), and the clinical manifestations

or consequences of disease. The main branch of

pathology is anatomical pathology, which is concerned

with the diagnosis of disease based on examination of

the gross, microscopic, immunological, or molecular

examination of tissues, organs, and whole bodies.

These examinations often demand qualitative rather

than quantitative analysis, such as human interpreta-

tion of thin slices of tissue (histopathology) by pathol-

ogists to make a diagnosis of cancer, or the presence or

absence of a protein labeled with an antibody (immu-

nohistochemistry) in order to determine whether

a particular target for therapy is present and, therefore,

whether the agent should be given. However, anatom-

ical pathology remains the mainstay of analysis of

tissues, organs, and bodies, and frequently determines

the need and mode of therapy for patients with both

neoplastic and nonneoplastic diseases, often very

accurately.

Four main developments have challenged the

use of this traditional framework for anatomical

pathology:

1. An awareness that within disease groups there is

considerable heterogeneity both between patients,

and within each individual patient, whichmay influ-

ence the natural progression of disease and response

to therapy.

2. The development of high-throughput analytical

techniques, such as ▶DNA-microarrays and next

generation sequencing (see ▶DNA Sequencing),

which give unprecedented detail on the underlying

molecular abnormalities of disease, that is

pathogenesis.
3. An understanding that the quantitative, as well and

qualitative differences in biological parameters

influence cellular outcomes and therefore disease

pathogenesis (e.g., sustained versus transient

MAPK signaling can result in differentiation or

cell division, respectively).

4. Diseases change phenotypic characteristics as they

progress, and therefore both spatial and temporal

parameters must be taken into account (e.g., differ-

ences between primary and metastatic disease in

▶Cancer).

Therefore it is implicit that in systems pathology:

1. Data generation should be quantitative rather than

qualitative.

2. Data generation should aim to quantitate both tem-

poral (disease progression, pharmacokinetic/

pharmacodynamics) and spatial (site in organism,

morphology) characteristics of disease.

3. Disparate, multiscale data sources should be inte-

grated (e.g., clinical and radiological parameters,

histopathology, molecular) in order to characterize

how the disease process impacts on the organism as

a whole.

4. There should be a mathematical and computational

framework which can handle quantitative, qualita-

tive, and dynamic data types.

Algorithms and Tools (Experimental)

The tools for experimental data generation for systems

pathology can broadly be divided into molecular,

spatial, and temporal quantification.

Molecular data generation is increasingly high-

throughput, especially with the advent of next genera-

tion sequencing, which permits quantitative analysis

of DNA and RNA sequence at base-pair resolution.

Likewise, ▶mass spectrometry has advanced

protein analysis to the level of post-translational

modifications.

Spatial resolution usually employs the use of imag-

ing, either isolation or with molecular labeling (such as

▶ Fluorescence Microscopy with in situ hybridization

or protein labeling with antibodies), in order to quan-

tify the relationship of structures on the subcellular,

tissue, or organism level. Examples of imaging include

digital imaging of histological sections using light or

▶ fluorescence microscopy, or more recently imaging

of molecules from tissue sections using MALDI-TOF

▶mass spectrometry.
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Temporal quantification for systems pathology

makes use of suitable experimental models (in vitro

or in vivo) in order to quantitate biological phenomena

over time, or relevant clinical models in order to quan-

tify changes in disease process over time. An example

might be to measure changes in gene expression in

cancer tissue samples before and after therapy, as has

frequently been performed in breast cancer clinical

trials.

Ideally, the above methods are combined in order to

gain a systems level understanding of pathology, such

as ultra-deep sequencing in order to resolve spatial

complexity and molecular heterogeneity, or in vivo

models with molecular imaging.

Algorithms and Tools (Mathematical)

No single mathematical framework is universally

appropriate for analyzing systems pathology data.

However, methodologies may broadly be divided into

hypothesis-driven and data-driven approaches.

Hypothesis-driven approaches that are relevant to the

study of the dynamics of cell networks, which are

important in cancer, include those where the network

is prescribed a priori, such as mechanistic, determinis-

tic ordinary differential, equation-based mathematical

models (e.g., those describing ▶Receptor Tyrosine

Kinase signaling). Important examples of data-driven

approaches are general▶ power-law functions (a set of

mathematical tools for the approximation, modeling,

numerical simulation and analysis of nonlinear sys-

tems) including ▶ biochemical systems theory (BST)

and▶metabolic control analysis. The alternative data-

driven approach can be used when qualitative and/or

imprecise measures are present to harness ▶ fuzzy

logic, a mathematical term used to describe decisions

or biological readouts that have a continuous range

between 0 and 1, that is, they are imprecise but within

boundaries, in contrast to binary logic, when the deci-

sion is discrete, either 0 or 1. Fuzzy logic is a type of

mathematical approach which might be useful where

qualitative data are available, such as from gene

expression array or clinical data.

Examples

Systems pathology has been used with good effect to

predict outcome in prostate cancer, through the inte-

gration of clinical, molecular, and morphometric data

using support vector machine methods (Saidi et al.

2007). Likewise, in breast cancer, systems pathology
was used in order to predict sensitivity to targeted

therapy and aid the ▶ biomarker discovery process in

breast cancer using an▶ ordinary differential equation

based approach (Faratian et al. 2009).
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Definition

System pharmacology describes the application of

systems biology to answer questions relating to the

action of drugs, which include pharmcokinetics,

pharmacodynamics, toxicology, and drug discovery.
Characteristics

The number of drugs the average individual is being

prescribed has increased in the past decade, and in the

first 8 months of 2010, another 69 first-time generic

drugs have been approved. In this setting of increasing

pharmacotherapy, it is important to know how drug

combinations may interact to produce both beneficial

and ▶ adverse events. We need an integrated under-

standing of how drugs are affected by both genetic and

environmental factors. The field of systems pharma-

cology helps with this integration, by considering data

at various levels (Wist et al. 2009). Systems

pharmacology helps determine how the organization

of cellular networks, within which drug targets reside,

affects tissue-and organ-level functions to produce

both the desired beneficial effects and ▶ adverse

events. This knowledge can be used to

tailor individualized therapies, which is at the core of

▶ personalized medicine.

Sequencing genomes, profiling mRNAs and

proteomic studies allow scientists to examine the

biology of diseases at a higher resolution. It has

become apparent that disease profiles are complex

and most are phenomena emerging from the interac-

tions of multiple gene products with environmental

factors. Even known single gene mutation disease,

such as Marfan’s (El-Hamamsy and Yacoub 2009),

has been shown to involve many downstream interac-

tions, which influence the phenotypes of the disease.

Systems medicine and pharmacology offer

a framework for integrating the hundreds of thousands

of interactions and identify important interactors

and interactions (▶Edge Betweenness Centrality)

involved.

Goals of Systems Pharmacology

The overall goals of drug therapy are to determine

what drugs should be prescribed to which patients,

the dosage for maximum beneficial effect, and

what side effects may be expected. This knowledge is
required for the practice of personalized and

▶ evidence-based medicine. However, predicting the

balance between clinical benefit and adverse side

effect is a complex because a patient’s response to

a drug is affected by various factors, including diet,

co-administered medications, genetic background, and

behavioral responses. Systems pharmacology can help

us predict the balance between clinical benefit and risk

of▶ adverse events by analyzing the drugs in conjunc-

tion with the human ▶ interactome, and integrating

clinical, behavioral, environmental, and genomic

background (Fig. 1).

An important obstacle in pharmacology concerns

drug design and therapy optimization. Even if a drug

can be designed to not to bind to ▶ off-targets, the

multiplicity of downstream effects of the ▶ primary-

target may lead to ▶ adverse events (Fig. 2a).

As a result, pharmacologists have started to consider

combination therapies that each on their own have

minimal effect on the phenotype, but together interact

to achieve an optimal effect (Fig. 2b). Systems phar-

macology offers a method to aid in the design of

a combination profile, by predicting how various

targets may participate together to give a beneficial

effect profile.

Data Sources

An essential feature of systems pharmacology is the

integration of data sources. Some of the important

types of data sources include Drug structure and target

databases, database of interactions of human gene

products, genome wide association studies, and

▶ adverse events databases.

Drug Databases

In order to study drugs using a systems pharmacology

approach, one first needs to link the drug and their

targets together. This task is often done utilizing data-

bases, such as Drugbank (http://drugbank.ca/) or

PharmGKB (http://www.pharmgkb.org/). These data-

bases offer information on drug properties, including

gene targets as well as metabolic information, which

can then be analyzed using systems biology methods.

Databases of Gene Product Interactions

Pharmacological treatments perturb cellular systems

interacting through the underlying ▶ interactome,

that make up the regulatory pathways and cellular

machines. Systems pharmacology uses interaction

http://dx.doi.org/10.1007/978-1-4419-9863-7_795
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Systems Pharmacology, Fig. 1 A schematic representation

where ▶ systems pharmacology integrates various types of

information (Clinical Phenotypes, Adverse Events, Genomic

and Proteomic Studies, and Interaction databases) into an

▶ interaction network (represented by black squares), performs

analysis adverse event reporting to predict the effects profile

a b

Systems Pharmacology, Fig. 2 (a) A representation of the

traditional paradigm of drug design, where a drug is optimized

for a particular target, but despite the targeting being optimized,

the effect profile downstream may still vary. (b) The use of

▶ systems pharmacology to combine multiple drugs together

to give a targeted effect, also minimizing for side effects
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databases, to construct the ▶ interactome. Together,

these databases help to highlight how different drugs

may influence each other and how these interactions

may lead to unexpected beneficial or harmful events.

Examples of these databases may include large net-

works, such as Biogrid (http://thebiogrid.org/) and

HPRD (http://www.hprd.org/), as well as more

detailed pathway networks, such as NCIPathway

(http://pid.nci.nih.gov/) and KEGG (http://www.

genome.jp/kegg/).

Genome Wide Association Studies (GWAS)

Systems pharmacology often includes genomic infor-

mation that can help to capture the individual varia-

tions between patients. This information has become

increasingly available. Many large post-approval drug

safety clinical trials have started to conduct genomic

wide association studies. Such studies can be found at

various websites, including http://www.genome.gov/

gwastudies/ and http://gwas.lifesciencedb.jp/cgi-bin/

gwasdb/gwas_top.cgi. One tool that is often used dur-

ing the analysis is plink, available at http://pngu.mgh.

harvard.edu/~purcell/plink/. For a more detailed

review on how to interpret GWAS studies, see review

by Pearson and Manolio (2008).

Adverse Events Databases

An adverse event database can help in studying side

effects at a systems level. Using such a database, one

can identify common side effects to various classes of

drugs, and determine how drug combinations can be

applied to reduce a particular side effect. An example

of this kind of database is the adverse event reporting

system database, available through the United

States Food and Drugs Administration (http://www.

fda.gov/Drugs/GuidanceComplianceRegulatoryInforma

tion/Surveillance/AdverseDrugEffects/default.htm).

Methods

Systems pharmacology uses both experimental

and computational techniques. These methods act to

complement each other in answering pharmacological

questions in an integrated way.

Experimental Methods

An important part of the experimental methods is the

collection of clinical data, which range from family

medical history to medication histories. Such informa-

tion allows the clinician and investigator to integrate
them into the▶ interactome and▶ genome-wide asso-

ciation studies, which can then be used to give pre-

dictions on the potential effects of a drug.

Genomic analyses provide genetic signatures

of disease. In particular, a genomic screen can help

identify genotypes, which leads to a resistance to

drug therapy. An example of this is the screening for

estrogen receptor positive breast cancer, leading to the

prescription of tamoxifen.

Proteomic analysis such as stable isotope labeling

with amino acids (SILAC) (Pimienta et al. 2009)

and drug screens provide a data-rich background for

▶ systems pharmacology approaches (Zhu and

Cuozzo 2009). Additionally, model organisms such

as fruit fly, worms, and zebra fish have offered methods

of screening disease gene phenotypes. Furthermore,

robotics and high-throughput microscopy imaging are

also becoming increasingly available. Nevertheless,

new biological components, such as microRNA, are

emerging and new experimental techniques are

required to identify how they may influence our

existing knowledge base.

Beyond studying a disease of interest, experimental

and clinical methods can also be used to monitor

patient responses to therapy, providing feedback to

how system pharmacological models need to be mod-

ified and refined for discovering rare unanticipated

mechanisms.

Computational Methods

Systems pharmacology largely uses computational

techniques that revolve around the interactome.

Statistical methods are used to analyze network

features. This type of analysis is called graph theory.

Centralities, maximum flow, and eigenvalue analysis

may be applied to deduce information about the net-

work (West 2000). Specialized algorithms have been

constructed to identify various network architectures.

These algorithms can be found in tools which are

available on various websites: genes2networks

(http://actin.pharm.mssm.edu/genes2networks/) for

identifying significant gene interactions, and cytoscape

for visualization and analysis (http://www.cytoscape.

org/). Commercial products are also available through

ingenuity (http://www.ingenuity.com/) or metacore

(http://www.genego.com/metacore.php). Network

analysis–based computational tools can be used to

analyze ▶ adverse events for correlations with

influencing factors and can propose cellular and

http://dx.doi.org/10.1007/978-1-4419-9863-7_876
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molecular mechanisms based on these correlations of

▶ adverse events. Such integrate analysis can

potentially enable physicians to prescribe medicine in

an evidence-driven manner.

Dynamical modeling is done through computations

wherein the interactions are treated as a series of dif-

ferential equations with rate constants (Hoppensteadt

and Peskin 2010). These models can allow us to

explore drug action as the drug is used for varying

treatment periods. Tools for this are also available

through various websites: virtual cell for dynamical

stimulation of chemical and biological species, and

stochsim (http://www.sys-bio.org/sbwWiki/sysbio/

stochsim) for stochastic simulations of biochemical

networks. If a custom algorithm is desired, one can

find frameworks for developing such as the systems

biology workbench (http://www.sys-bio.org/research/

sbwIntro.htm). These dynamical modeling allows for

integration of network models with the classical phar-

macokinetic data of drug action.
S

Conclusion

▶ Systems pharmacology is a new field that is

a branch of both systems biology and pharmacology.

The applications of ▶ systems pharmacology offer

methods for exploring various pharmacological

areas, including pharmacokinetics, pharmacodynam-

ics toxicology, drug design and discovery in an inte-

grated manner. As a result, one of the goals of

▶ systems pharmacology is to bring evidence-based

medicine to drug therapy.With the advent of electronic

medical record systems and personalized genomics,

▶ systems pharmacology can be developed to help

physicians treat patient optimally on an individual

basis.
Cross-References
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Synonyms

Drug disease networks
Definition

Relationships between drugs and pathologies can be

characterized in a comprehensive manner by interac-

tion networks, giving a global view of drug disease

interactions.
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Characteristics

The relationships between drugs and diseases are

complex. In the classical view, a particular drug used

to be associated to a particular molecular target and to

a particular treatment. However, cellular systems are

highly interconnected by nature and this view is

therefore incomplete. To obtain a comprehensive

description of interactions between drugs, targets, and

diseases, integrated approaches are needed where the

relationships between all these components can be

analyzed globally. Network approaches enable such

analyses and have the potential to better explain the

influence of drugs on diseases, as well as to understand

interdependencies between drugs themselves (Spiro

et al. 2008).

Network representations of drug–disease interac-

tions necessitate classifications of drugs on the one

side and of diseases on the other. Several classifica-

tions are available and have been used in different

contexts.

Disease Classifications

The Mendelian Inheritance in Man (MIM) and its

online version, the Online Mendelian Inheritance in

Man (OMIM), is a comprehensive catalog of human

genes and their associated phenotypes (Amberger

et al. 2009). It details Mendelian traits associated to

genetic disorders and includes links to literature

references, sequences, and chromosomal localizations.

The nomenclature of OMIM is mainly text based,

making it complex for use in computational analyses.

A subset of the database, the Morbid Map, therefore

provides a more condensed view of the relationships

between genes and diseases.

The World Health Organization (WHO) developed

the International Statistical Classification of Diseases

and Related Health Problems (ICD-10). It uses

a hierarchical structure, where the first level classifies

diseases into 22 main categories.

The Unified Medical Language System (UMLS)

provides a series of controlled vocabularies for many

areas of biomedicine, including the description of

diseases. It is aimed at enabling the development

and interoperability of computer systems to handle

health-related information.

The UMLS system was used to develop the

Disease Ontology (DO), where diseases are classified

following a hierarchical structure (Osborne et al. 2009).
This structure makes it possible to carry out enrichment

analyses in a similar manner to the Gene Ontology

(GO). For example, a set of overexpressed genes

detected in high-throughput experiments can

be queried against DO to reveal diseases that are

significantly overrepresented in the data.

The Medical Subject Headings (MeSH) provide

another controlled vocabulary for medical terms,

which are organized in a hierarchical structure. They

include disease terms and have been used to map genes

to diseases.

The Kyoto Encyclopedia of Genes and Genomes

(KEGG) contains a database of diseases, KEGG

DISEASE (Kanehisa et al. 2010). They developed

their own classification system based on knowledge

of genetic and environmental perturbations, but

also reference diseases by their ICD-10 Disease

Classification.

Drug Classifications

The Anatomical Therapeutic Chemical (ATC)

classification system classes drugs according to their

therapeutic properties or the organ on which they act.

The ATC system is developed by the World Health

Organization (WHO 2010). ATC codes have

a hierarchical structure composed of five levels,

representing increasingly detailed levels of anatomical

and therapeutic properties. The first level comprises 14

main anatomical groups; the second level represents

a therapeutic subgroup; the third level represents

a pharmacological subgroup; the fourth level distin-

guishes between chemical subgroups, and the fifth

level identifies the chemical substance itself. A drug

can be assigned multiple ATC codes if it possesses

multiple therapeutic applications or routes of

administration.

The DrugBank database is a comprehensive repos-

itory of approved and experimental drugs. It contains

detailed information on the chemical, pharmaceutical,

and pharmacological properties of drugs, including

their associated ATC codes, as well as drug target

data (Wishart et al. 2008).

The Approved Drug Products with Therapeutic

Equivalence Evaluations, commonly known as the

Orange Book, lists drugs approved by the US Food

and Drug Administration (FDA) with their therapeutic

equivalence evaluations.

The Kyoto Encyclopedia of Genes and Genomes

(KEGG) contains the KEGG DRUG database,
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Fig. 1 First ATC level of the

therapy projection of a drug–

therapy bipartite network. All

nodes in the network represent

therapeutic classes as defined

in the ATC classification; the

name associated to each node

is the first-level ATC heading.

The node size is proportional

to the number of drugs in each

therapy class; the edge

thickness is proportional to the

number of common drugs

involved in each pair of

therapies
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a unified database of drugs approved in Japan, USA,

and Europe (Kanehisa et al. 2010). Drugs are

represented with details of their chemical structure

and classified according to ATC codes as well as to

the Therapeutic Category of Drugs in Japan, a system

derived from the Japan Standard Commodity

Classification.

Integrated Representations

Network representations are efficient tools to combine

heterogeneous information and reveal patterns of

connections between different types of data. Paolini

et al. (2006) integrated several pharmacological

resources to construct a global mapping of drugs and

human targets (▶ Systems Pharmacology; ▶Drug

Target), including drug indications indexed by

a disease code. This approach reveals a high level of

promiscuity in the pharmacological space.

A bipartite graph of interactions between human

genes and associated disorders was constructed. In

this representation, one set of nodes represents genetic

disorders and the other represents disease-related

genes (Goh et al. 2007). Two projections can be

obtained from this bipartite graph; in the disease

projection, two diseases are connected if there is

a common gene involved in both; in the gene

projection, two genes are connected if they are

associated to a common disease. Several types of can-

cers, including colon cancer and breast cancer, appear

as hubs in the disease projection which are genetically

connected to a large number of other disorders.

However a majority of disease genes are found to be
nonessential, showing no tendency to encode hub

proteins and occupying more peripheral positions.

Interactions between drugs and associated therapies

are revealed by constructing a bipartite graph whose

nodes are either drugs (D) or therapies (T), such that

each edge connects a node in D and a node in

T (Nacher and Schwartz 2008). This bipartite graph

can be decomposed into two projections; in the drug

projection, two nodes from D are connected if

a common therapy is involved in both of them; in the

therapy projection, two nodes from T are connected

if a drug is implicated in both of them. When the

hierarchical ATC classification of therapies is used,

these networks can furthermore be represented at dif-

ferent anatomical and therapeutic levels. The first ATC

level shows that the therapeutic space is fully

connected, revealing unexpected links between several

areas of therapeutic applications (Fig. 1).

The importance of particular drugs in the drug–

therapy network can be assessed by computing mea-

sures of network centrality (▶Network Metrics).

Drugs with a high betweenness centrality constitute

key bottleneck connections between distinct classes

of therapies; these include scopolamine, morphine,

tretinoin, tolbutamide, among others.
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Definition

Relationships between drugs and their molecular

targets can be characterized in a comprehensive

manner using interaction networks.
Characteristics

For many years, the dominant approach of drug

design has focused on the search for highly selective

ligands targeting a specific disease-causing agent.
However, this reductionist approach is now being

questioned as many drugs are failing in late clinical

development stages. It is estimated that as much as

30% of newly developed drugs fail due to a lack of

efficacy and a similar rate due to harmful side effects

(Hopkins 2008).

Systems biology has challenged this view by raising

awareness that no component or process is isolated in

biological systems. This principle applies to diseases as

well, since many genes are related to more than one

disease, and the pharmacology of drug-disease

interactions reveals intricate connections between

heterogeneous classes of therapies (▶Systems Pharma-

cology, Drug Disease Interactions).

A new approach to drug discovery is therefore

emerging, which has been termed “polyphar-

macology.” It requires a comprehensive description

of the relationships between diseases and molecular

biological components, and aims to identify the best

combinations of targets to achieve a desired therapeu-

tic effect. In this context, network pharmacology is

expected to provide valuable information by relating

the topological properties of potential targets to their

biological functions and assisting in the development

of new therapeutic strategies.
Drug-Target Databases

Recently, thanks to an increasing number of available

databases, many systems have been described in terms

of networks where individual nodes are connected by

specific relationships or interactions. Interestingly, the

drug-target system can be investigated along a similar

approach and interaction data are available in several

databases.

The DrugBank database is a bioinformatics-

chemoinformatics resource that combines drug data

with comprehensive drug-target information with

over 4,900 drug entries. However, it often occurs that

to find specific information about drugs, ligands, ther-

apies, and related disease categories, it is necessary to

navigate through different databases. A knowledge

base of human and genetic disorders can be found at

the Online Mendelian Inheritance in Man (OMIM).

The KEGG database has also devoted a large part

of its storage categories to drugs and diseases. Associ-

ated therapeutic properties of each drug are classified

using the Anatomic Therapeutic Chemical (ATC)

classification.

http://dx.doi.org/10.1007/978-1-4419-9863-7_575
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Drug-Target Networks

A rich variety of complex networks can be constructed

in systems pharmacology (Spiro et al. 2008; Berger

and Iyengar 2009). At different complexity levels,

from top to bottom, patient records can be used to

define individual patient-drug target networks. This

information can be closely related to features of phe-

notype variability of complex disorders. Similarly,

data related to patient symptoms can lead to symp-

tom-drug interactions. These networks can be entirely

represented using bipartite graphs, but still remain

largely unexplored.

The nodes in a bipartite graph can be divided into

two disjoint sets such that each edge links nodes from

different sets. The bipartite graph representation

has been the framework used in most of the network

analyses carried out to study drug-target networks. In

network pharmacology, drugs and targets define the

two disjoint sets used to define bipartite graphs

structures.

By going into higher levels of complexity, connec-

tions between therapies and specific drugs also define

bipartite networks. Key drugs that connect distinct

classes of therapies in a few steps could be identified

(Nacher and Schwartz 2008). Moreover, each therapy

is linked to specific drug targets. Complex networks

defined by drug targets and drug interactions represent

a higher level of detail to study polypharmacology

phenomena.

A bipartite network connecting drug targets and

drugs made it possible to analyze targets in the context

of a global protein-protein interaction network

(Ma’ayan et al. 2007) or in its projections (Yıldırım

et al. 2007). Network projection is a general tech-

nique in graph theory that allows us to transform

a bipartite graph into two simple graphs. In the

drug network projection, each node represents

a drug and two drugs are linked to each other if

they share one or more drug targets. On the other

hand, in the drug-target network projection, nodes

represent proteins or gene targets. Two targets are

linked if they share at least one common drug. Both

projections revealed a power-law decay for the node

degree, highlighting the heterogeneous character of

these networks. This topology is governed by the

statistics of hubs. Although the probability of finding

a hub in a scale-free network is very low, each hub

tends to have many links. Projections of drug and

drug-target networks follow the same principles,
containing a few drugs (proteins) that share many

drug targets (drugs).

Moreover, drug targets can be linked to disease-

gene products and this information can be mapped

back to the protein-protein interaction networks

(PPI). The human disease network was collected

from OMIM-based disorder-disease gene associations

(Goh et al. 2007). Etiological and palliative properties

can then be investigated using network metrics

(▶Network Metrics). The shortest path then estimated

the number of molecular steps that separate a drug

target from the corresponding disease cause (Yıldırım

et al. 2007). Enhancement of the distribution was

observed for short distances when compared to random

groups of proteins. This result suggested a dominance

of palliative drugs. Network analysis also highlighted

the recent trend toward more rational drug design

thanks to the increased knowledge on complex disor-

ders. A similar shortest path analysis was conducted

between networks composed of drugs approved in the

last 10 years and before 1996. The results indicated

a higher frequency in the distribution of shorter paths

indicating a more rational drug design. They also

showed the importance of developing new multi-target

drugs that shorten the routes in the drug-target net-

work. The study of drug targets from a systemic point

of view has not been limited to bipartite network

approaches. For example, a global mapping of phar-

macological space enabled the identification of human

targets for which chemical tools and drugs have been

discovered to date.

On the other hand, the distribution of targets asso-

ciated to approved drugs has been reported to follow

a power law. It shows that a large proportion of drugs

can act on only one target but a few of them can act on

multiple targets. This fact can be used to develop

multi-target drugs which already showed promising

results. Complementary approaches may consist in

developing drugs which combine the action on multi-

ple targets with topological features in the drug-target

network space, such as, for example, high centrality

values (Nacher and Schwartz 2008).

Recent studies have started working on networked

interactions of drugs with single complex diseases or

subtypes of the same diseases like cancer (Dalkic et al.

2010). Network analyses of drug and mutation targets

led to new insights on how drugs are shared between

cancer types and vice versa, since some cancer variants

share drug targets but not mutation target. This finding

http://dx.doi.org/10.1007/978-1-4419-9863-7_761
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suggests that new drug targets or mutation targets

could be discovered for these cancers.

Beyond purely network-based analysis, data inte-

gration based on phenotypic and chemical indexes in

pharmacological space and protein interaction net-

works has also been suggested as a way to identify

new drug targets as well as to find new applications for

existing drugs (Shiwen and Li 2010). First, drug ther-

apeutic similarity among drugs that belong to ATC

categories was defined using a probabilistic model.

The chemical similarity was derived using the

Tanimoto coefficient. On the other hand drug-protein

closeness and its genomic relatedness were computed

as an exponential functional that decays with the

square of the shortest distance between a given protein

p and the pk targets of the protein in the protein-protein

interaction networks. By computing the three possible

linear correlations among these three metrics, concor-

dance scores between a given protein and drug could

be obtained. The results showed that unexpected drug-

drug interactions emerged in more than 500 cases,

highlighting new possible applications. This approach

perfectly illustrates the network pharmacology con-

cept (Hopkins 2008) where the network framework is

naturally embedded in the analysis. Drug-protein

closeness is computed thanks to the shortest path in

the protein interaction network and the knowledge of

drug-protein interactions.

Drug Scopes

A complementary approach to investigate the relation-

ships between drugs and metabolic systems is offered

by the metabolic drug scope (▶Drug Scope, Meta-

bolic). The drug scope represents the largest possible

set of compounds that a drug can influence in

a metabolic system, when only metabolic network

connections are taken into account, irrespective of

kinetic or thermodynamic laws (Schwartz and Nacher

2009). A systematic investigation of the scopes of

drugs from the DrugBank database revealed that

drugs can be classified into different categories,

where some of them have small scopes corresponding

to localized action, while others have large scopes

corresponding to potential widespread systemic

action. These different categories are furthermore

associated to distinct classes of therapies. This

approach opens new possibilities to determine appro-

priate sets of targets aimed at achieving a desired ther-

apeutic effect.
Cross-References
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Definition

Systems Virology can be defined as the application of

systems biology approaches and methods to the field of

virology. The aim of Systems Virology is to develop

a system-level understanding of viral infection, by

focusing on the dynamic interplay between virus and

host. A hallmark of Systems Virology approaches is

the use of quantitative and dynamic mathematical

models to simulate and predict viral interactions with

the host, to develop a systems-level understanding

of these interactions, and ultimately to identify new

potential targets for antiviral drugs using model anal-

ysis. Systems Virology thus aims at the development

and analysis of models of the influence of virus infec-

tion on cellular signaling pathways, of the role of

specific viral and host genes in all steps of the viral

life cycle, and of the host response to viral infection.

There is no clear boundary between systems

biology and systems virology, the latter could be

characterized as applied systems biology in the field

of virology. While the central aim of systems biology

is the development of a fundamental understanding

of biological networks in general, systems virology

ultimately aims at predictive and therapeutic applica-

tions (Clermont et al. 2009).
S

Characteristics

Viruses are ideal systems to argue for the necessity of

systems approaches, since they depend on host pro-

cesses for almost every single step in their life cycle.

Surprisingly, in spite of the fact that viruses encode

a relatively small number of genes, virus–host interac-

tions lead to extremely complex molecular interaction

networks, encompassing both viral and host processes,

and which are far from being well understood. For

example, hundreds of different host factors have been

implicated in the HIV life cycle using RNA interfer-

ence, with most of them only poorly annotated and no

obvious direct role in the infection process. Corre-

spondingly, antiviral drug design remains an extremely

challenging goal and faces serious obstacles, as

witnessed by the tendency of viruses to quickly

develop resistance against many antiviral drugs,

failure to develop efficient vaccines for many viruses,

and only slow development of novel antiviral drugs,
guided often by trial and error instead of a systematic

drug design.

Interestingly, most of the currently available

antiviral drugs target virus-encoded enzymes that are

essential for successful viral replication. Examples

include transcriptase or protease inhibitors, which are

used, for example, in combination therapy against

HIV. Such drugs targeting viral enzymes are often

subject to the quick development of viral resistance,

due to high mutation rates in particular of RNA

viruses. To circumvent development of resistance,

an alternative treatment strategy is to target host

processes, for example, by stimulating or manipulating

the host viral response, or by targeting host factors

required by the virus in its life cycle (Tan et al.

2007). Examples of compounds targeting host factors

includeMaraviroc, which inhibits a cofactor required by

HIV to enter cells, or pegylated interferon and ribavirin,

which are nonspecific antiviral drugs used in treatment

of hepatitis C. Such a strategy may be more successful

for several reasons: (1) Resistance might be less of

a problem since the virus would have to replace the

entire host process and thus evolve a far more complex

strategy to evade the drug. (2) It may become possible to

develop antiviral drugs with broad applicability against

many different viruses, if the same host process is

exploited by different viruses. (3) Many more potential

drug targets become available, when targeting host fac-

tors instead of one of maybe only a few dozen viral

proteins. On the downside, side effects are already

a problem for drugs targeting viral enzymes, and this

problemmay clearly be aggravated if host processes are

being targeted. On the other hand, a large number of

small molecules exist for the treatment ofmany diseases

with manageable side effects, and a systems-level

understanding of virus–host interactions will be of con-

siderable utility in the development of safe and efficient

antiviral drugs targeting host processes instead of viral

enzymes (Tan et al. 2007).

The development of such drugs will require

a fundamental understanding of viral infection, and

therefore, demands a study of the dynamic interplay

between the virus and its host. Systems virology

attempts to fill this gap by focusing not just on the

pathogen alone, but by integrating models of the

virus and viral processes with processes in the host

cell, thus achieving a systems view. Systems Virology

thus aims at the development and analysis of models of

the influence of virus infection on cellular signaling



S 2110 Systems, Autopoietic
pathways, of the role of specific viral and host genes in

all steps of the viral life cycle, and of the host response

to viral infection. The aim of systems virology is the

identification and characterization of key network

components or connections, and their interplay in the

virus–host interaction network as a whole. Using

model analysis, systems virology aims to identify

load- and choke points of viral infection and replica-

tion processes, which can be used as potential new

targets for antiviral drug design. Ultimately, the prom-

ise of systems virology is to provide profound knowl-

edge about the complex virus–host system, and to

translate this knowledge into predictive, preventive,

and personalized medicine to combat viral infection.

To achieve these objectives at a systems level,

large-scale experimental data sets are required. Sys-

tems virology, therefore, benefits greatly from major

advances in molecular virology and from the develop-

ment of high-throughput experimental techniques and

associated data processing and analysis methods in the

recent years. These include microarray-based func-

tional genomics, high-throughput and high-content

siRNA screening, live cell imaging, high-throughput

protein interaction measurements using Yeast-2-

Hybrid screens, automated mass spectrometry and pro-

tein arrays, and next generation sequencing (Peng et al.

2009). These technological developments are

paralleled by novel developments in data processing,

data integration, and data analysis techniques in the

fields of statistical data analysis, bioinformatics, data

mining, and machine learning, which are employed to

reconstruct virus–host interaction networks and

develop a basis for more detailed, quantitative, and

dynamic models of virus–host interactions.

Systems virology typically proceeds in an iterative

cycle, consisting of systematic and large-scale pertur-

bation of individual entities in the virus–host system,

measuring the outcome using high-throughput tech-

nologies, and then trying to relate the change at the

molecular level to global properties of the system

during the infection, using modeling and simulation,

followed by the design of further experiments to fill the

knowledge gap highlighted by the difference between

the model simulation and the real system (Kitano et al.

2002). As an example strategy, large-scale siRNA

screens to identify new host factors involved in viral

replication are followed by live cell imaging and more

detailed biochemical characterization of identified host

processes to develop quantitative, dynamic models of
HIV and HCV infection at Heidelberg University, lay-

ing the basis for computational modeling and model

analysis of virus–host systems. Modeling and data anal-

ysis are then carried out using a combination ofmachine

learning approaches for the data-driven reconstruction

of virus–host networks, bioinformatics annotation and

database queries, and forward modeling using knowl-

edge-based approaches and based on differential equa-

tions. Ultimately, all these approaches are mapped onto

one, virus and host cell type–specific, integrated model

of virus–host interactions. Suchmodels integrating viral

and host processes can then be used to identify critical

points in the infection cycle, to design new drugs with

optimal efficiency and minimizing side effects, and to

gain a better understanding of host immune response

and thus vaccines development.
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Definition

The authors’ definition of the autopoietic system has

evolved through the years. One of them states that
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an autopoietic system is organized (defined as a unity)
as a network of processes of production (transforma-

tion and destruction) of components that produces the
components which: (1) through their interactions and

transformations regenerate and realize the network of

processes (relations) that produced them; and (2) con-
stitute it (the machine) as a concrete unity in the space

in which they exist by specifying the topological

domain of its realization as such a network (Varela

1979, p. 13). Nearly the same formula was earlier used

to define an autopoietic machine (Maturana and Varela

1973/1980, 1984/1987, p. 135).
S

Characteristics

The Chilean biologists H. Maturana and F. Varela

proposed the term autopoiesis in the early 1970s to

account for the organization of individual living

beings, characterized as a process by which they

produce their own identity in a mechanistic way.

The autopoietic approach to life is very different

from that of the Theory of Evolution and Molecular

Biology: On the one hand, instead of reproduction or

evolution, the theory focuses on autonomy and identity

to naturalize them as marks of life; on the other hand, it

considers that all system components have the same

status to explain the self-referent dynamics by which

they produce a unity; that is to say, living phenome-

nology is not explained in terms of some components

being information carriers.

Autopoietic systems, also called initially

autopoietic machines, explore the general relational

scheme common to all living systems as the configu-

ration of transformative processes whose result is the

configuration itself, so that identity and activity,

producer and product coincide. Unlike Turing

machines, set by external programmers (thus being

heteropoietic) to compute problems referring to issues

other than the system itself (thus being allopoietic),

autopoietic machines realize a self-defined identity in

a space of interactions. Already in 1974 (Varela et al.

1974), the authors presented their account of living

organization with a computational model in cellular

automata which was later rehearsed by Barry

McMullin (in Di Paolo 2004).

Some of these distinctions, for example, between

autopoietic and heteropoietic, already appear in

Canguilhem’s La connaisance de la vie. In fact, the
autopoietic approach belongs to a systemic tradition

focused on the problem of the relational unity of the

living, associated to Kant’s understanding of organ-

isms in the Critique of Judgment, Claude Bernard’s

concept ofmilieu intérieur, and the organicist tradition

that considers life as organization (G. Canguilhem,

H. Jonas, J. Piaget among others, seeWeber and Varela

2002), and opposed to the mainstream of the time, such

as some of the views of Jacob´s La logique du vivant.
Other clear associations are with the cybernetic

movement, especially with second-order cybernetics.

The influence of the autopoietic approach has been

significant in theoretical Biology (especially on work

on the definition of life and origins and organization of

minimal living systems), Artificial Life, and Cognitive

Science. In contrast, it has had no comparable effect on

mainstream biology (e.g., Molecular and Evolutionary

Biology), although it appears to be more present in

Systems Biology, whose approach is less centered on

master molecules and information.

The Main Conceptual Development

Autopoietic systems aim to grasp what makes an

organism be a unity of a specific kind, that is to say,

how a system appears out of a continuous flux of

transformations at the level of its components.

The system is characterized by its organizational
closure, a notion that provides a reinterpretation of the

cybernetic notion of circular self-stabilization, which

instead of considering single regulatory processes in

isolation and then coupling them together (as homeo-

static machines, acting on internal variables, behave)

refers to the whole living system: The autopoietic

system is organized in such a way that it does not

only maintain the interval of stability of some

variables, but also the global organization is kept

invariant.

Some of the main concepts of the theory refer to

distinctions, such as the following:

• Organization and structure: This emphasizes that an

organism is not characterized by its material or

physicochemical processes, but by how the interac-

tions are related to produce and maintain the

integrated biological unity they belong to.

The structure refers to the variant aspect of a living

system: to its physical realization, whereas the notion

of organization aims to grasp the invariant one: the

topology of the relations that constitute it. Thus, the

authors embrace a particular form of multiple
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realizability between organization and structure, as

the autopoietic organization is proposed as

a main invariant underlying the diverse biological

phenomenology, that is conserved through the onto-

genetic and phylogenetic changes.

• Openness and closure: Whereas living systems are

open to the exchange of matter and energy at the

level of structure, the network of processes that

constitutes their organization is closed in the form

of a global cyclical process that determines and

regenerates itself. Rosen developed a similar view

independently and expressed it mathematically in

the notions of the system being open to material
causation and closed to efficient causation (Letelier

et al. 2006). The distinction between open structure

and closed organization can be also found in

Piaget’s Biologie et connaissance, complemented

by an internal mechanism of adaptation to pertur-

bations in terms of Waddington’s assimilation and

accommodation.
Another characteristic feature of the theory is its

internalism, present through the notion of structural

determinism. In each time step, the system interacts

and changes in a way totally determined by its struc-

ture, which specifies the set of all possible changes to

effective perturbations. The latter do not define, but

only trigger structural changes. Thus, environmental

perturbations do not have intrinsic meaning, their

effect depends on the structure of the receiver: Unlike

in input-output relations, the same stimulus can cause

different alterations. F. Varela (in Varela et al. 1991)

showed this peculiarity through a cellular automata

model called Bitorio. Similar to this is the idea

that in the communication between two systems,

there is no transmission of information but a structural
coupling.

In this framework, evolution is reinterpreted in

neutralist terms as a natural drift. The idea of adapta-

tion as optimization of the organism’s traits by natural

selection is replaced by one of conservation of adapta-

tion, as the maintenance of a specific form of coupling

between the living system and its environment

(Maturana and Varela 1984).

Further Developments

Developments of the autopoietic theory have particu-

larly been connected with the definition of life

and autonomy and with agency and cognition.
Finally, some have tried, without success so far, to

extend the notion of autopoiesis from the cellular level

to that of multicellular organisms and social systems.

• Definition of life as autonomy. The main influence

of autopoietic systems has been in fields related to

the definition of life and its organization, such as

Artificial Life, Synthetic Biology, Astrobiology or,

in general, Systems Biology. The main impact of the

autopoietic theory in these areas has been through

the notion of autonomy as an ingredient of the

definition of life.

The goals of the initial approach to Artificial Life
were congenial to the theory of autopoietic systems

in the significance of form above matter, but very

different in what concerns the nature of life, which

was there thought to be connected to reproduction

and evolution by the mainstream, not to autonomy

or organization as the autopoietic theory maintains.

Nevertheless, for some authors, it is problematic to

consider the operations of the living only at a formal

abstract level, without considering the complexities

of material and historical realizations of life as we

know it. For example, the formal account of auton-

omy fails to meet the thermodynamic criteria

required to realistically maintain the state of activ-

ity of any candidate system in its environment, and

this has been one of the main developments of the

original theory by researchers who, accepting the

relevance of autonomy, would not want to explore it

only in formal models but related to material

constraints.

Similarly, in the Origins of Life field, the theory

of autopoiesis has been particularly influential

among those pursuing the cellular origins of life

(as opposed to molecular origins) in the generation

of self-maintaining and self-reproducing systems

(Luisi 2006).

In Systems Biology, autopoietic theory has

revealed itself promising as a theoretical guideline

in developing a notion of system as a integrated

unity, in modeling the cellular metabolism as

a closed and intertwined network of processes, in

reinterpreting the role of the genomes in the cell in

a more ecological fashion, and in pointing out the

relevance of self-regulation at different hierarchical

levels (Boogerd et al. 2007).

• Agency and cognition. From the autopoietic

perspective, cognition is the system’s capability to
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provide meaning to the world, a property connected,

if not coincident, with life. An increasingly relevant

issue raised in the investigation of cognition is the one

concerning how to characterize the specific mecha-

nism of self-maintenance instantiated by biological

metabolism in its basic form, being the notion of self-

production insufficient to account for agency as the

ability to act in the environment. There have been

proposals to expand the definition of self-production

through the introduction of active mechanisms of

self-regulation.

With respect to the impact on the study of

cognition in the conventional sense, autopoietic

theory has provided an analysis of the biological

roots of knowledge by considering human

observers as structurally determined systems.

In doing so it has pointed out the limits of the

notions of representation and objectivity and con-

tributed to the development of an epistemological

perspective known as “radical constructivism”

according to which the natural world emerges as

coherences in the coupling between the observer

and its medium. In cognitive sciences, the

autopoietic theory has pointed to the need to

develop embodied and situated accounts to charac-

terize autonomous agents, by inaugurating the

so-called enactive approach (Varela et al. 1991).

• Other levels of organization. As autopoietic sys-

tems define life at the cellular level, multicellular

living systems and social ones – respectively

defined as autopoietic systems of the second and

third order – are considered as derivative, even

if not trivially, with respect to the properties of

cellular ones. But satisfactory criteria for this

operation of expansion of the theory have not been

provided in the original formulations.

In spite of these acknowledged difficulties,

the notion of autopoiesis brings forth a relevant

scenario for inquiry about the nature of life,

providing an intuitive idea of what it means to

be alive, autonomy, which is lacking in other

approaches.
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EditorialUniversitaria, Santiago deChile. (English translation:

The tree of knowledge. Shambhala, Boston)

Varela F (1979) Principles of biological autonomy. Elsevier

North Holland, New York

Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organi-

zation of living systems, its characterization and a model.

Biosystems 5:187–196

Varela F, Thompson E, Rosch E (1991) The embodied mind.

Cognitive science and human experience. MIT Press,

Cambridge, MA

Weber A, Varela FJ (2002) Life after kant: natural

purposes and the autopoietic foundations of biological indi-

viduality. Phenomenology and the Cognitive Sciences

1(2):97–125

http://dx.doi.org/10.1007/978-1-4419-9863-7_51
http://dx.doi.org/10.1007/978-1-4419-9863-7_54
http://dx.doi.org/10.1007/978-1-4419-9863-7_77
http://dx.doi.org/10.1007/978-1-4419-9863-7_82
http://dx.doi.org/10.1007/978-1-4419-9863-7_537



	S
	3-Selanyl-2-aminopropanoic Acid
	10Sa RNA
	Saccharomyces cerevisiae
	Saddle-Node Bifurcation
	Definition

	S-Adenosylmethionine
	Synonyms
	Definition

	Safety Assessment
	Safety Testing
	SAGA
	Synonyms
	Definition
	Cross-References
	References

	SAM, AdoMet
	Sample Variability, Inter-Groups
	Synonyms
	Definition
	References

	Sample Variability, Intra-Groups
	Synonyms
	Definition
	References

	Sampling
	SBGN
	Synonyms
	Definition
	Characteristics
	SBGN Languages
	Structure of an SBGN Map
	SBGN Supporting Tools and Libraries

	Cross-References
	References

	SBML
	SBO
	SBPAX
	Scale-Free Network
	Scale Integration
	Definition
	Cross-References

	Scale of Investigation
	ScaRNA Databases
	Schemaless Databases
	Synonyms
	Definition
	Cross-References

	Schizosaccharomyces pombe
	Schwarz Criterion
	Schwarz Information Criterion (SIC)
	Scientific Instrument
	Definition
	Characteristics
	Kinds of Instruments
	The Distinction Between Observable and Unobservable Phenomena
	Instruments, Theories, and Knowledge
	Visualization and Scientific Images

	Cross-References
	References

	Score
	Score Network Alignment
	Scoring Function, Graph Alignment
	Synonyms
	Definition
	Cross-References
	References

	Screening Factor
	Definition

	Search Engines with Faceted Search
	Synonyms
	Definition
	Characteristics
	References

	Secondary Metabolite Production in Streptomyces
	Definition
	Characteristics
	A Bit of History
	The Current Situation
	Why Modeling Streptomyces?
	Metabolic Models for Streptomyces
	Metabolic Flux Analysis for Bioprocess Design and Optimization: Clavulanic Acid Production by Streptomyces clavuligerus
	The Effect of Feeding a Combination of Amino Acids
	Use of a Genome-Scale Network for Streptomyces clavuligerus
	Conclusion

	References

	Secondary Structure 2D Structure
	Selected Reaction Monitoring
	Selective Pressure
	Definition
	Cross-References
	References

	Selective Reaction Monitoring
	Synonyms
	Definition
	Cross-References

	Selenocysteine
	Synonyms
	Definition
	References

	Self-Organization
	Definition
	Characteristics
	Cross-References
	References

	Self-Regulation
	Self-Renewal
	Cross-References

	Self-Replication
	Definition
	References

	Self-Similarity
	Definition
	References

	Semantic Frame Filling
	Semantic Integration
	Semantic Web
	Definition
	Cross-References

	Semantic Web, Interoperability
	Definition
	Characteristics
	Semantic Web Infrastructure
	Semantic Web Content
	Practical Applications of the Semantic Web
	The Semantic Web and the Life Sciences in the Future

	References

	SemanticSBML
	Definition
	Cross-References
	References

	Semidefinite Program
	Definition
	Cross-References
	References

	Semidefinite Programming
	Senescence
	Synonyms
	Definition
	Cross-References

	Sensitivity
	Sensitivity Analysis
	Synonyms
	Definition
	Characteristics
	Cross-References
	References

	Sensitivity and Robustness, Master Equation
	Definition
	References

	Sequence Motif
	Sequence Ontology
	Synonyms
	Definition
	Characteristics
	Genomic Annotation
	What is in the Ontology?
	Sequence Ontology Resources
	SO and Systems Biology

	Cross-References
	References

	Sequentially Rejective Bonferroni Test
	Set3 Complex
	Set3C
	Synonyms
	Definition
	Cross-References
	References

	Sexual Selection
	Definition
	Cross-References
	References

	Shannon Information
	Shared Resources
	Shielding of Activation Domain
	Short Hairpin RNA
	Definition

	Short ORF (sORF)
	Short Tandem Repeats (STRs)
	Shotgun Proteomics
	Side-scattered Light (SSC)
	Definition
	Cross-References

	Sigma Cascade
	Synonyms
	Definition
	Characteristics
	Sigma Heterogeneity
	Bacteriophage Developments
	Sporulation of Bacillus subtilis
	Examples in Other Bacteria

	Cross-References
	References

	Sigma Factor
	Definition
	Cross-References

	Signal Recognition Particle
	Synonyms
	Definition
	References

	Signal Transduction
	Signal Transduction Pathway
	Synonyms
	Definition
	Cross-References

	Signaling Crosstalk
	Signaling Network Resources
	Definition
	Characteristics
	Cell Signaling Resources
	Phosphorylation Network Resources

	References

	Signaling Pathway
	Signal-to-Noise Ratio
	Definition

	Silent Chromatin and Active Chromatin
	Silicon Cell
	Definition
	Cross-References
	References

	SIM
	Simple Conditional Analysis (SCA)
	Definition
	Cross-References
	References

	Simple Object Access Protocol
	Synonyms
	Definition
	Cross-References
	References

	Simple Sequence Repeats (SSRs)
	Simplification
	Simulated Annealing
	Definition
	Characteristics
	References

	Simulated Evolution
	Simulation
	Single Cell Assay, Hematopoietic Stem Cell
	Synonyms
	Definition
	Characteristics
	The Hematopoietic Stem Cell
	The HSC Immunophenotype
	HSC Isolation
	Single HSC Transplantation
	Secondary Transplantation
	Ex Vivo Studies

	Cross-References
	References

	Single Cell Assay, Mesenchymal Stem Cells
	Synonyms
	Definition
	Characteristics
	Mesenchymal Stem Cell Isolation
	Single-Cell Assays of Mesenchymal Stem Cell Function
	Limitations

	Cross-References
	References

	Single Cell Experiments
	Definition
	Single Stem Cell Studies
	Summary

	References

	Single Hematopoietic Stem Cell Transplantation
	Single Nucleotide Polymorphisms
	Synonyms
	Definition
	Cross-References

	Single Round Assay
	Definition
	Cross-References

	Single-Cell Culture
	Single-Cell Time-Lapse Microscopy
	Single-Gene Disorders
	Single-Input Module
	Synonyms
	Definition
	References

	Single-Input Module Motif, SIM
	Single-Nucleotide Polymorphism Database
	Singular Value Decomposition (SVD)
	Site-directed Mutagenesis
	Synonyms
	Definition

	Site-Specific Mutagenesis
	Size Checkpoint
	Size Control
	Skp1/Cul1/F-Box Containing Complex (SCF)
	Definition
	Cross-References

	Slot Filling
	Slow-Fast Dynamics
	Definition
	References

	Small GTPases
	Synonyms
	Definition
	Cross-References
	References

	Small Interfering RNA
	Definition

	Small Molecule
	Synonyms
	Definition
	Cross-References
	References

	Small Protein B
	Small-Molecule Drug
	Small-World Property
	Definition
	Characteristics
	Properties
	Scale-Freeness
	Models for Small-World Networks

	Cross-References
	References

	Smoluchowski Equation
	SmpB
	Synonyms
	Definition
	References

	SnoRNA Databases
	SNPedia
	Definition
	Characteristics
	Description
	Contents
	Limitations and Issues

	Cross-References
	References

	SNPs
	SO
	SOAP
	Social Epistemology
	Definition
	Cross-References

	Soft X-Ray Microscopy
	Definition
	Cross-References

	Solid Tissue
	Solvent Accessible Surface
	Solvent Excluded Surface
	Somatic Gene Rearrangements
	Somatic Mutations
	Definition
	Cross-References

	Source Control
	Sources of Variability
	Spatiotemporal Pattern Formation
	Definition
	References

	Special Sciences
	Definition
	Cross-References
	References

	Specialized Metabolic Component Databases
	Synonyms
	Definition
	Characteristics
	Enzyme-Ligand Interactions
	Thermodynamics and Kinetics
	Organism-Specific Metabolism

	Cross-References
	References

	Specific Response
	Definition
	References

	Spectral Count
	Definition
	Cross-References
	References

	Spectrometry
	Spectromicroscope
	Spectromicroscopy
	Definition
	Cross-References

	Spectroscopy
	Definition
	Cross-References

	Spectroscopy and Spectromicroscopy
	Synonyms
	Definition
	Characteristics
	Common Types of Spectromicroscopy
	Absorption Spectroscopy
	Fluorescence Spectroscopy
	X-ray Spectroscopy
	Flame
	Visible and Ultraviolet
	Infrared Spectroscopy
	Near-infrared Spectroscopy
	Raman Spectroscopy
	Coherent Anti-Stokes Raman spectroscopy (CARS)
	Nuclear Magnetic Resonance
	Photoemission Mössbauer


	Spectromicroscopy
	Confocal and Multiphoton Microscopy
	Soft x-ray Microscopy
	Raman Spectromicroscopy
	Fourier Transform Infrared Microspectroscopy (FT-IR)

	References

	Spindle Checkpoint
	Spindle Pole Body
	Synonyms
	Definition
	Cross-References
	References

	SRNA Databases
	SRP
	SSA
	SsrA
	S-System
	Synonyms
	Definition
	Cross-References
	References

	Stability
	Definition
	Characteristics
	Equilibrium Point
	Stability of an Equilibrium
	Lyapunov Stability
	Asymptotic Stability
	Stable Region

	Stability Analysis
	Linearization
	Hyperbolic Equilibria
	Degenerate Equilibria

	Stability of General Orbits
	Definitions
	Floquet Theory
	Floquet´s Theorem
	Consequences and Applications

	Examples


	Cross-References
	References

	Stability, States and Regions
	Definition
	Characteristics
	References

	Stable Isotope Dilution Technique
	STAGA
	Stalk of RNAPII
	Synonyms
	Definition
	Cross-References
	References

	Standard Setting
	Standards for Reporting Enzymology Data
	Start
	State
	State Synchronization
	Definition

	Statistical Experimental Design
	Statistical Methods in Systems Biology
	Definition and Description
	References

	Statistical Modeling
	Statistical Sampling
	Statistics Model
	Steady State
	Synonyms
	Definition
	Cross-References
	References

	Steady-State Probability Distribution
	Stem Body
	Stem Cell Cenes
	Stem Cell Networks
	Synonyms
	Definition
	Characteristics
	Stem Cell Network Types
	Linear Stem Cell Networks
	Meta-Stem Cell Networks
	Meta-Meta-Stem Cell Networks
	Geometric or Figurate Networks
	Limited Exponential Growth with Geometric Networks
	Subnetworks and Tangential Networks in Stem Cell Networks
	The Stem Cell Hierarchy and Cancer Stem Cells

	Cross-References
	References

	Stem-Loop
	Synonyms
	Definition
	References

	Stem-Loop Structure
	Stepwise Assembly Pathway
	Stimulus Conditions
	Stochastic Chemical Kinetics
	Stochastic Differential Equation
	Stochastic Effects in Metabolic Networks
	Synonyms
	Definition
	Characteristics
	Propagation of Gene Expression Noise to the Level of Metabolic Networks
	Intrinsic and Extrinsic Noise
	Intrinsic Noise in Metabolic Networks
	Extrinsic Noise in Metabolic Networks


	References

	Stochastic Fluctuations in Metabolic Pathways
	Stochastic Modeling of Translation Elongation and Termination
	Synonyms
	Definition
	Characteristics
	Translation Elongation and Termination
	TRNA Abundance and Codon Bias
	Stochastic Models and Statistical Physics; General Description of Motion of Ribosomes on a mRNA
	TASEP-based Models to Describe Translation
	Computer Simulation
	Inhomogenous Lattice: Different tRNAs are in Different Concentrations

	Summary

	Cross-References
	References

	Stochastic Neural Network
	Definition
	Cross-References
	References

	Stochastic pi-Calculus
	Synonyms
	Definition
	Cross-References
	References

	Stochastic pi-Calculus Simulator
	Stochastic Processes, Fokker-Planck Equation
	Synonyms
	Definition
	Characteristics
	Some Applications of Fokker-Planck Equations
	Diffusion Approximation to Chemical Master Equation

	Cross-References
	References

	Stochastic Resonance
	Definition
	Characteristics
	Periodic Response
	Signal-to-Noise Ratio
	Residence-Time Distribution
	Coherent Switch

	References

	Stochastic Simulation Algorithm
	Synonyms
	Definition
	Cross-References
	References

	Stochastic Simulation Algorithms
	Stochastic Simulation Algorithms (SSAs)
	Stochastic Simulation Methods
	Synonyms
	Definition
	Cross-References
	References

	Stochastic Switch
	Definition

	Stochastic Synchronization
	Definition

	Stochastic Variable
	Stochastic pi-Calculus
	Stock Center
	Definition
	Cross-References
	References

	Stoichiometric Mass Balance Analysis
	Stoichiometric Matrix
	Definition
	Cross-References
	References

	Storey Tibshirani Method
	Definition
	References

	STRENDA
	Synonyms
	Definition
	Characteristics
	Background
	Aims
	The STRENDA Guidelines

	Cross-References
	References

	Stroma
	Synonyms
	Definition
	Characteristics
	Cross-References
	References

	Structural and Practical Identifiability Analysis
	Introduction
	Definition
	Characteristics
	Structural Nonidentifiability
	Practical Nonidentifiability
	Experimental Design

	Cross-References
	References

	Structural Immunoinformatics
	Synonyms
	Definition
	Cross-References
	References

	Structural Motif
	Structure Type
	Structure-based Immunoinformatics
	Structured Terminologies
	Student´s t-Test
	Definition
	Properties
	Null Hypothesis
	Requirements
	t Score Calculation
	t Distribution
	Formalized t Score Calculation
	Example


	References

	Subgraph Patterns
	Subset Surprisology
	Subset Surprisology and Toponomics
	Definition
	Characteristics
	The Formal Setup
	Applications in Toponomics
	A Typical Result
	Related Matters

	Cross-References
	References

	Subunit Vaccine
	Definition

	Summation Theorem
	Definition
	Cross-References

	Superorganism
	Supervenience
	Definition
	Cross-References
	References

	Surrogate Endpoint
	Synonyms
	Definition
	Cross-References
	References

	Surrogate Markers
	Survival Analysis
	Synonyms
	Definition
	References

	Survival Analysis, Fundamental Statistical Techniques
	Synonyms
	Definition
	Characteristics
	Main Measurements
	Commonly Adopted Statistical Models
	Censoring and Truncation
	Maximum Likelihood Estimation and Inference
	Kaplan-Meier Estimator
	Logrank Statistic
	More Estimation and Inference Techniques
	Advanced Survival Analysis

	References

	Survival Curve
	Definition
	Cross-References

	Sustained Oscillation
	Definition

	Switch
	Switch Rate
	Definition

	Switching Function
	Switch-Like Response
	Symbolic Model
	Definition
	Cross-References

	Symmetric Cell Division
	Definition
	Cross-References

	Synaptic Proteins
	Definition
	Characteristics
	Cross-References
	References

	Synaptic Toponome
	Definition
	Cross-References
	References

	Synchronization
	Definition
	Characteristics
	Mathematical Formulations for Synchronization
	Cell Communication and Synchronization
	Synchronization Induced by Extracellular Stimuli

	Cross-References
	References

	Synchronization of Oscillators
	Synchronization Oscillation
	Synonyms
	Definition
	References

	Synchronization Switching
	Definition
	References

	Synchronous Model
	Synonyms
	Definition
	References

	Syntactic Analysis
	Synthetic Biology, Predictability and Reliability
	Definition
	Characteristics
	Robustness
	Adaptation
	Specificity in Cell Signaling
	Evolution of Gene Regulation

	References

	Synthetic Models and Methods
	Definition
	Characteristics
	Fundamentally Different Models
	Agent-Based Methods
	Parameterizations
	Iterative Refinement
	Knowledge Embodiments

	Cross-References
	References

	SysMO
	Definition

	System Identification in Signal Transduction, Experimental Perturbations
	Definition
	Characteristics
	Creating Experimental Perturbations
	Kinetic Models of the System
	Implementing Perturbations in the Model

	Cross-References
	References

	System-Immanent Conditions
	Systems Biology
	Systems Biology Applications in Drug Discovery
	Definition
	References

	Systems Biology Graphical Notation
	Systems Biology Markup Language (SBML)
	Synonyms
	Definition
	Characteristics
	General Principles of SBML
	Structure of SBML
	Annotations
	SBML Evolution and Growth
	SBML Development Process
	Strengths and Weaknesses of SBML
	Relationships to Other Standardization Efforts
	Resources for SBML
	Software
	Documentation
	Other Resources


	Cross-References
	References

	Systems Biology of Viral Pathogens
	Systems Biology of Virus-Host Interactions
	Systems Biology Ontology
	Synonyms
	Definition
	References

	Systems Biology Pathway Exchange (SBPAX)
	Synonyms
	Definition
	Characteristics
	Current Status
	Implementation
	Background

	Cross-References
	References

	Systems Biology Resources
	Introduction
	Section Structure
	Hierarchical Network as Paradigm
	Genome and Transcriptome Resources
	Proteome Resources
	Metabolome Resources
	Resources on Pathways and Networks
	Model Organism and Disease Resources
	Model Repositories
	Further Systems Biology Resources
	Cross References to Other Encyclopedia Sections
	Special Journals, Issues, and Books
	Collection of Databases
	Portals
	Specific Community-oriented Information Systems

	Related Resources and Perspectives
	References

	Systems Biomedicine
	Systems Histopathology
	Systems Immunology
	Introduction
	Immune System
	Pathogens
	Systems Approaches in Immunology
	Immunoinformatics
	Antigen Processing and Presentation
	Host-Pathogen Interactions
	Modeling of the Immune System
	Vaccinomics

	Challenges and Pitfalls of Systems Approaches
	Summary
	Cross-References
	References

	Systems Immunology, Adaptive Immune Response to HIV Infection
	Synonyms
	Definition
	Characteristics
	Adaptive Immune Response
	Human Immunodeficiency Virus (HIV)
	Approaches to HIV-1 Infection

	Cross-References
	References

	Systems Immunology, Data Modeling and Scripting in R
	Synonyms
	Definition
	Characteristics
	Tools of Immunoinformatics
	Process Initiation
	Creation of Datasets in R Platform
	Samples and Scripting

	References

	Systems Immunology, Novel Evaluation of Vaccine
	Synonyms
	Definition
	Characteristics
	Vaccine
	Immune Responses Induced by Vaccine
	Immune Responses Required for Protection
	Evaluation of Vaccine Efficacy
	Current State-of-the-Art of Systems Vaccinology
	Systems Vaccinology
	Rational Development of Novel Genetic Vaccines
	Conclusion

	Cross-References
	References

	Systems Immunology, Vaccine Adjuvant
	Synonyms
	Definition
	Characteristics
	Cross-References
	References

	Systems Medicine
	Definition
	Characteristics
	Systems Medicine and Personalized Therapies
	Systems Medicine and Models
	Future Developments
	A Roadmap for Systems Medicine

	References

	Systems Microbiology
	Systems Network in HIV
	Systems Pathology
	Synonyms
	Definition
	Characteristics
	Algorithms and Tools (Experimental)
	Algorithms and Tools (Mathematical)
	Examples

	Cross-References
	References

	Systems Pharmacology
	Synonyms
	Definition
	Characteristics
	Goals of Systems Pharmacology
	Data Sources
	Drug Databases
	Databases of Gene Product Interactions
	Genome Wide Association Studies (GWAS)
	Adverse Events Databases

	Methods
	Experimental Methods
	Computational Methods

	Conclusion

	Cross-References
	References

	Systems Pharmacology, Drug Disease Interactions
	Synonyms
	Definition
	Characteristics
	Disease Classifications
	Drug Classifications
	Integrated Representations

	Cross-References
	References

	Systems Pharmacology, Drug-Target Networks
	Definition
	Characteristics
	Drug-Target Databases
	Drug-Target Networks
	Drug Scopes

	Cross-References
	References

	Systems Vaccinology
	Systems Virology
	Synonyms
	Definition
	Characteristics
	Cross-References
	References

	Systems, Autopoietic
	Definition
	Characteristics
	The Main Conceptual Development
	Further Developments


	Cross-References
	References



