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ABSTRACT 
Since a reliable finite element model has broad applications in structural response prediction, control, health 
monitoring and condition assessment, model updating techniques are often applied to improve the performance of 
an analytical model for its intended use. The sensitivity-based iterative model updating approach becomes 
preferable because of its physically meaningful results, however, the selection of updating parameters remains a 
difficult problem to handle. In this paper, a synthesized approach, which combined substructure energy functions 
and subset selection, was proposed recognizing that the former can be used to locate the area containing 
dominant modeling errors and the latter to ensure the least number of effective parameters be chosen to reduce 
the modal residue adequately. This synthesized method can potentially reduce the burden of calculation but have 
more credible results. Its effectiveness was demonstrated systematically by numerical simulation with encouraging 
results. 

NOMENCLATURE 
, jK K           stiffness matrix, substructure stiffness matrix; 
, jM M          mass matrix, substructure mass matrix; 

, ,A Eω ω ω        circular frequency, analytical circular frequency, experimental circular frequency; 
, ,A Eψ ψ ψ        mode shape vector, analytical mode shape vector, experimental mode shape vector; 

N              number of measured mode shape; 
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,s k
j jΔ∏ Δ∏       strain energy, kinetic energy functions of the J th substructure; 

S               sensitivity matrix; 
b               modal parameter residue between measured and analytical results; 
θ               physical parameters vector for updating; 
, EΦ Φ            mode shape matrix, experimental mode shape matrix; 

UAΦ             analytical mode shape components corresponding to unmeasured degrees of freedom;   

,MA MA
+Φ Φ        analytical mode shape components corresponding to measured degrees of freedom and its 

pseudoinverse matrix; 
,, i jλ λ            eigenvalue, the derivative of the i th eigenvalue with respect to the j th physical parameter; 

,, i jψ ψ            eigenvector, the derivative of the i th eigenvector with respect to the j th physical parameter; 

,jK              the derivative of stiffness matrix with respect to j th physical parameter; 

,jM              the derivative of mass matrix with respect to j th physical parameter; 

W               weight matrix; 
 
1. INTRODUCTION 
Since a reliable finite element model has broad applications in structural response prediction, control, health 
monitoring and condition assessment, model updating techniques are often applied to improve the performance of 
an analytical model for its intended use. Model updating is a sequential process which including several steps, and 
the selection of parameters for updating is probably the most important task [1]. The parameters should be chosen 
which associated with features of the model which are in doubt for physical reasons, thus these recognized 
uncertainties can be corrected. So parameter selection means modeling error localization. However, this is a 
nontrivial task. It needs structural analysts’ application of considerable physical insights. Several parameter 
selecting methods have been proposed during the past decades, and they have relation to parameterization 
method used in model updating.  

In direct model updating, the potential updating parameters are individual terms of stiffness and mass matrixes. 
Lallement and Piranda proposed a method of balancing the eigenvalue equation ω2[K- M] =0ψ , in which the analytical 
eigensolution ω ψ ω ψ2 2( , )=( , )A A  is replaced by eigenvalues and properly expanded eigenvectors from experiments 
ω ψ2( , )EE , to give a localization matrix ω ψ2[K- M] =LE E [2]. The dominant modeling errors are reflected by those degrees 

of freedom associated with large values of 
n

2q = p L ,i=1, ,ni ihh
h=1
∑ ⋅ ⋅⋅ ，where hP  is weighting scalars.  

In iterative model updating, one parameterization method is substructure parameter, which is associated with 
individual finite element or groups of finite elements, the other parameterization method adopts physical 
parameters, such as Young’s modulus, mass density and so on. With regard to the former case, Link and Santiago 
[3] proposed the use of energy functions based upon the substructures to locate regions which possibly have 
modeling error. In the latter case, Lallement and Piranda proposed a method named best subspace to choose 
those updating parameters which can reduce the discrepancy more effectively between analytical and 
experimental results [2]. Selecting updating parameters from all possible ones is in fact a subset selection, and the 
theory of which has been well established in the statistical literature [4]. And the best subspace method adopts a 
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forward subset selection approach. Fritzen studied QR orthogonalisation strategy in subset selection, and 
compared it with Efroymson’s criterion method, saying that both performed successful [5] [6]. Golub and Van loan 
described SVD-based subset selection procedure [7]. Friswell extended the subset selection method to 
circumstance of multiple testing data [8]. In subset selection, all kinds of methods try to select a subset of 
parameters which are least in correlation thus reduce the residue most effectively. 

Updating parameters should be selected with the aim of correcting modeling errors. Subset selection method 
which is not based upon physical insights choose the parameters which most effectively improve the correlation of 
analytical and experimental results, However, this is not a sufficient condition to assure that these parameters must 
have dominant errors. Substructure energy functions is a method based upon physical insights with the potential to 
find modeling error regions, but not all parameters in error regions are suited to be updated due to the property of 
sensitivity-based model updating approach. These two methods can complement each other to obtain potentially 
the parameters selected not only based upon physical insights but with high effectiveness in updating process. 

In this paper, a synthesized approach based on the discussion above was proposed which begins with the use of 
substructure energy function aiming at obtain the likely regions with modeling errors, then only the physical 
property parameters in these regions are filtered by subset selection, the best subspace method is used in subset 
selection for example, with parameters obtained as final updating parameters. Section 2 outlines some important 
theory used in this synthesized approach. A simulated cantilever beam example is used to demonstrate the 
properties of the method in section 3, coming to conclusions in section 4. 

2. THEORETICAL BACKGROUND 
In this synthesized approach, the measured mode shapes are firstly expanded by the system equivalent reduction 
expansion process (section 2.3), and the likely regions with modeling error are obtained according to the theory of 
substructure energy functions (section 2.1), then physical parameters in these likely error regions are filtered by the 
subset selection theory (section 2.2), finally, those parameters chosen are used to be updated by a sensitivity- 
based model updating approach (section 2.5). 
 
2.1 Substructure Energy Functions 
Link and Santiago proposed the use of energy functions based upon the substructure stiffness and mass matrixes 
[3]. The substructure strain energy function can be expressed as, 

                    ( - ) ( - )   
1

N
s T Kaj Eh j ah Ehh

h
ψ ψ ψ ψ∑Δ∏ =

=
                                               (1) 

And substructure kinetic energy function as, 

                   2( ) ( )
1

N
K TMj j ah Eh Ehah Eh

h
ψ ψ ψ ψ ω∑Δ∏ = − −

=
                                               (2) 

Poorly modeled regions are believed to be detected by large residual substructure strain energy function or kinetic 
energy function values. Since in both residual energy functions, full experimental eigenvectors are obtained from a 
few component values of mode shape corresponding to places with sensors by modal expansion process in which 
the analytical eigenvectors with errors are used in most practices, the detected regions with modeling error can just 
be likely. 
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2.2 Subset selection 
In sensitivity-based model updating, the following equation is obtained, 
                               S bθ⋅ =                                                           (3) 
where S  is the sensitivity matrix and contains the first order derivatives of modal residual between experimental 
and analytical results with respect to the candidate updating parameters. It is assumed that only a subset of these 
parameters are non-zero. Lallement and Piranda proposed a subset selection procedure, commonly known as 
forward subset selection, to produce a sub-optimal solution [2].  
 
Firstly, a single column is sought which can best represent the residual vectorb . If the columns ofS are given by 

jS , namely 1 2[ ... ]pS S S S= , then the parameter which minimizes the residual  

                           2

2j jJ b S θ= −                                                         (4) 

is selected, where jθ is the least squares estimate of the j th parameter, with the expression of 

                         /T T
j j j jS b S Sθ =                                                          (5) 

Substituting equation (5) into (4), The result is obtained that the j th parameter is selected that maximizes  

                          2( ) /( )T T
j j jS b S S                                                          (6) 

Since b is a constant vector,  

                     2 2cos ( ) /( )( )T T T
j j j jS b S S b bφ =                                                  (7) 

is maximized equivalently when the j th parameter is selected, where jφ  is the angle between the vectors b and 

jS . In other words, the j th parameter is selected that minimizes the angle between the vectorb and jS . 

 
Then, the forward subset selection method starts to select the second parameter, together with the already 
selected one, to make a combination of  two columns of S , which constitutes the best sub-basis for the 
representation of b . Let 1j  represents the first parameter selected and the corresponding column of S  be 1jS . 
To select the subsequent parameter following 1j , the vector b  and columns of S  must be transformed to be 
orthogonal to vector 1jS . Thus the columns of S  and vector b  are replaced with 

                       1 1 1 1( / )T T
j j j j j j jS S S S S S S→ −                                                 (8) 

                         1 1 1 1( / )T T
j j j jb b S S b S S→ −                                                   (9) 

In this transformed problem, the second parameter is similarly obtained 2 1( )j j≠  as the first one , which minimizes 
the angle between the vectorb and jS . So far, an iterative process is produced to find a subset collection from all 

candidate parameters, provided a stop rule is specified. 
 
2.3 Modal Expansion Process 
In model updating, problems arise from comparing measured experimental modal data with numerical analytical 
modal data because of incompleteness. There are fewer freedoms of response measured by sensors in 
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experiments than those calculated in analysis. Aiming to make this comparison done, one way is to reduce the 
number of degrees-of-freedom (DOFs) of analytical model, the other is to expand the DOFs of measured modal 
vectors. In this paper, the updating parameters are defined in the analytical model, which is to be updated, thus, the 
measured incomplete mode shapes vectors are expanded to the full set of DOFs of the analytical model. 

Several modal expansion techniques are available [1], and in terms of preservation of eigeninformation, the system 
equivalent reduction expansion process (SEREP) is adopted here considering its improved accuracy resulting from 
preserving the dynamics before and after the process in the least-squares sense [9]. The expanded mode shape 
matrix is given by 

                                   ETΦ = ⋅ Φ                                                    (10) 

where the transformation matrix T  is given by 

MA
MA

UA
T +⎡ Φ ⎤

= ⋅ Φ⎢ ⎥Φ⎢ ⎥⎣ ⎦
                                               (11) 

2.4 Eigenpair Sensitivities 
To obtain sensitivities of eignvalues and eigenvectors with respect to physical parameters, the method proposed by 
Fox and Kapoor’s [10] is used in this paper. The expression of sensitivity of eigenvalue is 

, , ,[ ]T
i j i j i j iK Mλ ψ λ ψ= −                                           (12) 

And the sensitivity of eigenvector is 

,
1

N

i j ijk k
k

aψ ψ
=

= ∑                                                   (13) 

where coefficients ijka  is determined by 

, ,[ ] /( )T
ijk l j i j i i la K Mψ λ ψ λ λ= − − −   l i≠                                (14) 

,( /2)T
iji i j ia Mψ ψ= −                                                (15) 

2.5 Sensitivity-based model updating methodology 
In sensitivity-based finite element model updating using measured modal parameters, the identification of 
structural parameters is formulated in an optimization problem where the structural parameters are sought so that 
the updated finite element model can reproduce as closely as possible the measured modal parameters [11]. The 
objective function measuring the residual of modal data (natural frequencies (NF) and mode shapes) between 
experiment and numerical analysis is expressed by 

21/2
2

( ( )T
XMinJ W W z zε ε θ= = −                                       (16) 

where ε  is the output error of the modal parameters, z  and ( ) nz Rθ ∈  are the experimental and analytical 

modal vectors with ( 1)f mn n n= × + , fn and mn are the numbers of measured modal frequencies and 

measured coordinates for each mode respectively. 
 
The solution to equation (16) is obtained from a sensitivity-based iterative optimization approach. Beginning with 
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an initial estimate of updating parameters, the solution for updating parameters at the K th iteration step is 
obtained by the expressions of 

1K K Kθ θ θ+ = + Δ                                                   (17) 

1[ ] ( ( ))K T T KS S S z zθ θ−Δ = −                                         (18) 

where S is sensitivity matrix obtained by the theory described in section 2.4. 

3. NUMERICAL EXAMPLE 
In this illustrative numerical example, a refined FE reference model is built to represent the true behavior of the 
experimental structure ( see Figure 1), and mode shape data with partial DOFs is obtained by a limited number of 
sensor measurements from this reference model. Accordingly, a FE updating model with a relatively coarse FE 
mesh is built which has modeling errors to be updated (see Figure 1). The structural type used is a 1D cantilever 

beam with the following properties: density 2,500 3/Kg m  and elastic modulus 3.0e+10N/㎡; length 6.4 m, cross 

section area 20.2 0.3b h m× = × . Matlab is used for building the finite element model and performing the whole 
numerical calculation process. 
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Figure 1: The reference model and updating model Figure 2: The first four NF discrepancy 

between reference model and theoretical value
 
The reference model(RM) has 64 Euler-Bernouli beam elements, and the updating model(UM) 32 elements. 
Modeling errors are simulated with reduction of elastic moduli iE  of 40% and 50% of the 8th and 18th elements 
respectively in updating model. Eight equally spaced responses ( representing sensor measurements) are 
obtained from the reference model, and only first five modes with 9 DOFs (eight from sensors and one from fixed 
end of cantilever) are used in the model updating process to represent realistic situation. 
 
The reference model is firstly inspected whether it can represent the true physical structure. The first four natural 
frequencies are compared to their theoretical values [12], with the result of the largest discrepancy below 0.1 
percent (see Figure 2). Thus the reference model can be assumed to represent the experimental data accurately, 
and the discretization error ignored. Before updating, the discrepancy between the reference model and updating 
model are reflected by natural frequencies discrepancy percent J  and modal assurance criteria(MAC) values 
(see Table 1), where  

/ 100%ref upd refJ f f f= − ×                                        (19)  

2
/( )T T T

E A E E AAMAC = Φ Φ Φ Φ ⋅ Φ Φ                                 (20) 
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Table 1. The First Five Natural Frequencies (NF) and MAC Comparisons before and after Updating. 

Mode
s 

NF-RM 
(Hz) 

NF-UM 
 (Hz)(before) 

NF-UM 
  (Hz)(after) 

J(%) 
(before)

J(%) 
(after) 

MAC 
(before) 

MAC 
(after) 

1 4.0947 3.9947 4.0875 2.44 0.18 1.0000 0.9989 
2 25.6650     24.8689     25.6395 3.10 0.10 0.9998 1.0000 
3 71.8840     70.7533     71.8963 1.57 0.02 0.9987 1.0000 
4 140.9275 136.0643 140.9898 3.45 0.04 0.9988 1.0000 
5     233.1025 229.9906 233.9547 1.34 0.36 0.9985 1.0000 

In order to use the substructure energy function to localize the regions with modeling errors, the updating model is 
organized into 16 substructures with every substructure composed of two contiguous FE elements, and the first 
five mode shapes are expanded using SEREP method. In this example, structural mass is assumed unchanged, 
and substructure strain energies of all 16 substructures are calculated and normalized to the greatest one of them 
(see Figure 3). 
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Figure 3:  Normalized substructure strain energy 

Four substructures with largest strain energy are taken to be likely regions with modeling errors, which are 
sequentially the 13th , 9th ,4th and 1st substructure. Thus the moduli of 1, 2, 7, 8, 17, 18, 25, 26 elements of updating 
model will be provided as candidate parameters to be filtered by subset selection. After implementing a best 
subspace subset selection, the first four elements chosen are 2, 17, 18, 8 elements. Based on the results of these 
two methods, the moduli of 17,18,8 elements are finally chosen to be updated by a sensitivity-based approach with 
good results shown in the Table 1 and Table 2. 

Table 2. The Values of updating parameters before and after Updating.   Unit: N/㎡ 

Element Before updating After updating True values  discrepancy 
8 1.80e+10 2.97e+10 3.00e+10 -1.00% 
17 3.00e+10     3.07e+10     3.00e+10     +2.33% 
18 1.50e+10     2.95e+10     3.00e+10     -1.67% 

If the updating parameters are chosen by subset selection alone as usually, all of moduli of 30 elements in updating 
model will be candidate parameters, leading to that not only greater quantity of calculation, especially in step-wise 
regression subset selection [8], but also relatively large number of elements will be finally used in order to include 
the two true error parameters. From this example, the fact that it is very hard to accurately choose the updating 
parameters is also discovered. In order to obtain good updating result, one needs make trade-offs between using 
more updating parameters hoping to contain all parameters with errors and the negative influence by those 

69



 

 

parameters which should not be included indeed in practice. 
 
4. SUMMARY 
The selection of updating parameters is a very important question in model updating, but it seems that there is no 
an exact method to solve it. It is recommended to use several different methods and only to pick out those 
parameters which have been selected by more than one technique, and the approach proposed here is a try. From 
the results of this synthesized approach composed of two complementing methods, one can potentially be more 
sure of the feasibility of the rightness in choosing updating parameters and reduce the burden of calculation though 
it is still very difficult to obtain the exact parameters with modeling error.   
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