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A rock pocket is a deficient volume within hardened concrete consisting of coarse aggregate and 
voids that reduce the overall stiffness of the concrete members. The leakage of wet concrete from 
the form, segregation, or insufficient consolidation during concrete placement may leave rock 
pockets in concrete construction. This study is concerned with the detection, location and 
quantification of internal defects, particularly rock pockets, in reinforced concrete members. This 
is achieved by coupling in situ vibration testing with finite element analysis through Bayesian 
inference. First, the importance of providing sufficient physical evidence while calibrating the 
finite element models is illustrated using simulated experiments. With simulated experiments, 
model calibration successfully detected not only the locations but also the severity of rock pocket 
defects. Then, the results of impact hammer tests, completed on a concrete beam defected with 
rock pockets are presented. The finite element model of the test beam is segmented, and the 
stiffness properties of these segments are independently calibrated with the help of Bayesian 
calibration techniques using varying amounts of experimental information. The success in 
detecting defects obtained using simulated experiments, was not observed when the procedure is 
applied to the scaled concrete beams tested under laboratory conditions. However, the cause(s) 
of the poor performance with real experiments can be attributed to several factors, each of which 
requires further evaluation. (Publication approved for unlimited, public release on November-4-
2009, Unclassified.) 

1. Introduction: 

A rock pocket is a local, internal defect, which may be left in concrete members when the mortar 
paste fails to fill the space around the coarse aggregates. Therefore, the presence of these internal 
defects typically reduces the load capacity of a concrete member, the severity of this reduction 
being proportional to the dimensions of the defect. Depending on the size and location of internal 
defects as well as construction factors (i.e., water-to-cementitious materials ratio, curing, 
environmental conditions, etc.), degrading effects of these internal defects may either be evident 
immediately or present themselves after the structural element is in service. For instance, in pre-
stressed precast beams, such internal defects, if extensive or if located near the anchorage can 
cause compression failure during the stressing of tendons. Also, the presence of such inherent 
construction defects tends to accelerate the degrading effects of aging, operational and 
environmental conditions. 
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Rock pockets, being internal defects, cannot be located through visual inspection, thus traditional 
techniques of detecting these defects required drilling samples. The traditional techniques were 
labor intensive, time consuming and semi-invasive. Because the civil engineering community 
has a pervasive interest in the ability to detect defects in concrete members, a number of 
nondestructive evaluation techniques have been developed. These techniques are primarily based 
on the mechanical principle of stress wave propagation; see for instance Mori et al. (2002). 
Examples of such methods include acoustic impact method (sounding), ultrasonic wave 
propagation (Acciani et al., 2008) and impact-echo method (Sansalone, 1997). Although these 
localized nondestructive methods exhibited a level of success in detecting defects near the 
surface of the member where measurements are taken, they have a drawback of requiring a 
priori knowledge about the vicinity of the defect as well as access to the region with the defect to 
perform nondestructive testing. In typical applications, the presence of internal defects, as well as 
their location, severity and kind are not known a priori. Therefore, a defect detection method 
must be capable of detecting defects without prior knowledge of these aspects.  

An important step in decision making regarding the maintenance of a concrete element is the 
classification of the defect- that is the determination of type and severity of the defect. 
Ultimately, one needs to determine whether the degrading effects of a defect are significant to 
mandate repair schemes. Therefore, any defect-detection method must be able to determine the 
type and quantify the severity of defect to be of any use. Moreover, knowing the precise location 
of the defect would make elaborate and invasive repair schemes possible, which typically include 
removal of concrete and mortar injections.  

The goal of this study is to make a small step towards assessing the feasibility and success of 
vibration testing coupled with finite element simulation as a rapid assessment tool to detect not 
only the presence but also the location and severity of internal defects. Although not presented 
herein, it is the intention of the author to extend the present work to investigate the potential of 
the method in distinguishing between honeycombing and rock pockets in reinforced concrete 
beams. Vibration testing based nondestructive method has the potential to provide, in real time, 
reliable, global information regarding the defects in the concrete member. Therefore, if 
successful, one output of the proposed approach may be the rapid and inexpensive assessment of 
the conditions of existing concrete structures. Moreover, the ability to determine the presence of 
defects, or lack thereof, when made readily available, can also provide venues for quality 
assessment of prestressed, precast concrete members.  

2. Background in Vibration Based Defect & Damage Detection: 

The problem of defect detection is not any different than the widely studied problem of damage 
detection. The assessment of defects in a system can either be calculation based or 
experimentation based. However, neither of these approaches can yield a complete set of 
information about internal defects. By complete set of information, we mean the tasks identified 
by Rytter (1993) for complete damage detection: detection, location, quantification and 
prognosis. As a result of the natural similarity of the two problems these tasks can easily be 
transferred to the problem of defect detection.  
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The detection problem can be handled by using pattern recognition or novelty detection 
approaches using solely measurements without a strict need for a simulation model (Worden 
2003). However for localization, quantification and prognosis, almost certainly one must 
combine a simulation model with measurements (Friswell, 2008). Therefore, the current trend is 
in integrating the experimental measurements with FE model calculations in order to obtain a 
calibrated finite element (FE) model which can be used to make predictions about the state of the 
structural element unavailable with physical measurements due to a variety of reasons. Detection 
of damage in structural members through model calibration against vibration measurements has 
received significant attention from those who are involved in structural health monitoring over 
the last two decades. A detailed overview of the pertinent literature is deemed out of the scope of 
this paper, but interested readers are referred to Doebling et al. (1998) and Sohn et al. (2004).  

Theoretically, when the FE model is built assuming linearly elastic response, if a sufficient 
number of vibration modes of a structure were identified experimentally (with minimal or no 
uncertainty), the calibration exercise would be able to retrieve all parameters necessary to 
construct a FE model. In other words, when physical evidence is in sufficient quality and 
quantity, one can effectively calibrate the individual properties of each finite element. Such an 
approach would also enable the representation of local variability of material properties as well 
as localized cracks -- an important uncertainty source for civil engineering structures.   

Aoki et al. (2005) presented the results of such study. A dynamic identification, FE modeling and 
FE model calibration campaign was applied to a brick chimney. The FE model of the chimney 
was built with 20-node isotropic solid elements. A correction factor was assigned for both the 
mass and stiffness of each finite element. Using a sensitivity based calibration approach, the 
elemental mass and stiffness correction factors were sought. To alleviate the inevitable 
incompleteness of the measurements, a weighting function was applied to eliminate the finite 
elements with low sensitivity. The element stiffness at the base of the chimney was observed to 
be reduced, while at the corners, the stiffness was observed to be increased. The authors 
explained the former by chimney soil interaction and the latter by the iron angles at the corners. 
The way calibration is handled in this study can be considered as a reconstruction of discrete 
elemental matrices. Such an approach has been demonstrated to be successful for simpler 
problems. However, for more complex problems with larger numbers of finite elements, a 
recosntruction approach renders “detection” an undetermined problem.  

However, Vestroni (2008) emphasizes that a damage (or defect) detection problem can also be 
represented as a determined problem. Formulating damage in terms of location and severity 
instead of the reconstruction of the entirety of the elemental matrices eliminates the need for 
excessively large amounts of experimental information. Therefore, the mass and stiffness 
parameters of a structure can be considered to be uniform and equal to the baseline value 
throughout the structure except at some distinct locations where damage (or defect) is present. 
Such an approach can effectively be applied to the present problem while aiming at detecting 
rock pocket defects in concrete structures. The construction defects considered in this study are 
localized and typically few in number, therefore only a limited number of parameters would be 
sufficient to describe the defects. However, the absence of knowledge about their location, type 
and severity makes the evaluation of a large number of candidate scenarios necessary. How this 
evaluation is completed will be discussed in Section 3.  
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3. Model Calibration Procedure: 

In this study, the FE model parameters that define the internal defects will be sought through 
calibration of the FE model against experimental measurements obtained from the concrete beam 
members cast with deliberately located rock pocket defects. To reiterate, the detection problem is 
defined as a calibration problem. The details of the FE model calibration procedure adapted 
herein can be found in Higdon et al. (2007–2008) and Kennedy and O’Hagan (2000). In this 
section, only a brief overview of the method will be provided.   

The calibration methodology adapted herein treats both the FE model input and the FE model 
output probabilistically. Therefore, two types of uncertainty propagation are required. 
Determining how much uncertainty in the selected calibration parameters causes variability in 
the output is referred to as forward uncertainty propagation. The inverse uncertainty propagation, 
in contrast, investigates the sources of uncertainty in the output by focusing on the variability of 
calibration parameters [Figure 1].  

The forward propagation of uncertainty consists of a family of computer runs repeated at the 
sampled input parameters to observe the variability in the FE model outcomes. As long as a large 
enough number of samples are generated, this sampling approach converges to the actual 
distribution of the output parameter. The number of necessary samples depends strictly on the 
order of complexity of the sampled behavior and on the type of sampling design. On the other 
hand, inverse propagation of uncertainty is computationally more involved as it conceptually 
requires the FE model to be inverted. However, for real engineering solutions, the requirement of 
inverting a FE model is practically prohibitive because of the discretization based approximate 
approach inherent in the FE analysis. 
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Figure 1: The forward and inverse propagation of uncertainty forms the basis of stochastic 
calibration. 

In stochastic model calibration, the inverse propagation of uncertainty forms the basis of the 
statistical inference problem. In theory, if the uncertainty in input parameters (particularly those 
that exercise sensitivity on the output) can be reduced, the uncertainty in the output will also be 
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reduced. Thus, the inverse propagation of uncertainty is usually called upon in model calibration 
activities to seek the sources of the output uncertainty. 

Clearly, reduction in output uncertainty is made possible by the physical experiments. Although 
experiments constitute our best representation of physical reality, they are subject to random and 
bias errors. Thus, the calibration process must incorporate experimental errors. Experimental 
uncertainty is typically categorized in two groups: (1) measurement uncertainty, for instance due 
to instrumentation and data processing, and (2) natural variability of the structure, for instance in 
heterogeneous materials. Experimental errors are typically defined as a zero-mean Gaussian 
random variable. Such an approach is best justified by the central limit theorem. If we assume 
that the experiments are immune from systematic errors, the experimental error can be 
considered to be a summation of a large number of independent processes. According to the 
central limit theorem, these sources would collectively converge to a normal distribution (Hogg 
and Craig 1978). 

In the formulation adapted in this study, the inverse propagation of uncertainty is replaced by a 
large cohort of forward propagation of uncertainty via Markov Chain Monte Carlo (MCMC) 
sampling. Because MCMC sampling involves performing multiple runs of a computer code, the 
computational requirements can rapidly become prohibitive. To remedy this problem, the FE 
simulation is replaced by a Gaussian Process Model (GPM), a fast running surrogate trained 
using a limited number of computer runs. A GPM represents the input-output relationship of a 
numerical model, in our case a FE model, in a purely mathematical way.  

MCMC performs a random walk in the domain defined by the calibration parameters defined by 
α1 and α2 in Figure 2 according to the probability distribution of the calibration parameters: 
P(α1) and P(α2). In the absence of better knowledge, the probability distribution of calibration 
parameters can be assigned equal probability for all possible values between an upper and lower 
limit. During each random walk, the model calculates the selected output response according to 
the sampled parameter values, defined by ω in Figure 2. The acceptance criterion for the sampled 
parameters is guided by the likelihood estimation P(ω | α1, α2). The current sample point (in the 
domain of the calibration parameters α1 and α2) is rejected if it reduces the likelihood that the set 
of calibration parameters is correct. If the current sample point is rejected, the random walk 
returns the last accepted point and the probability distributions of the calibration parameter 
remains unchanged. However, if the sample point is accepted, the posterior distributions of 
calibration parameters are obtained. Based on Bayes’ theorem, these posterior distributions of the 
calibration parameters become the prior distributions in the next random walk. According to the 
current priors, MCMC performs another random walk from the last accepted point to the next 
point [Figure 2].  

The repeated feedback in Bayesian inference progressively characterizes not only the posterior 
distributions of the calibration parameters, defined by α1 and α2 in Figure 2, but also the 
hyperparameters of the GPM, the fast running surrogate used to replace the computationally 
expensive FE simulations.  If there are ‘n’ MCMC iterations, there will be ‘n’ different sets of 
estimates for hyperparameters of the GPM and calibration parameters of the FE model that are 
accepted by the likelihood function. By using the hyperparameters of the GPM of the 
discrepancy term, one can now construct the error model, and by using the calibration parameter 
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values along with the hyperparameters of the simulation emulator, one can construct the GPM 
surrogate model. Thus, the method defines all possible values of η(x; t) and δ(x) that, when 
added together, reproduce the experiments.  

 

 
Figure 2:  The adapted procedure combines Markov chain Monte Carlo with the context of 
Bayesian inference. 

The mean estimates of the posterior distribution provide the most likely values for the calibration 
parameters. These values obtained through stochastic calibration, can also be used in a 
deterministic study. The standard deviation of the posterior distributions captures the remaining 
uncertainty in the parameter values.  

4. Proof-Concept 

A key aspect of calibration based defect detection is the suitable parameterization of the defect of 
interest. For instance, rock pocket defects result in localized reduction in stiffness while the 
change in mass, relatively speaking, is negligible. However, honeycomb defects result in 
reduction in both stiffness and mass. If the defect is strictly known to be a rock pocket through 
local non-destructive methods, then the defect parameterization may exclude the mass-related 
parameters from calibration. However, for honeycomb defects to be detected, the mass of the 
structure must also be parameterized.  

A first approach to the defect detection problem is through calibration of individual stiffness and 
mass properties of all seventeen units. Such an approach can be considered as a total 
reconstruction of the elemental matrices of the beam. Assuming a lump mass and stiffness 
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model, a total reconstruction approach yields a total of 34 calibration parameters (i=1:17; k(i) 
and m(i)). A total of 34 calibration parameter would result in non-unique calibration solutions 
unless the available experimental information is in sufficiently high quantity and quality. From a 
practical stand-point, this kind of high demand on experimentation is commonly not feasible.  

An alternative formulation is to define the defect in terms of its ordinate across the length of the 
beam (x) and two reduction percentages: one for stiffness (α) and one for mass (β) [Figure 3]. As 
mentioned earlier, the consequence of rock pocket defects is primarily some localized reduction 
in the stiffness of the member. Therefore, β parameter will be kept constant and equal to 1. In the 
presence of one defect, this approach reduces the model calibration to three parameters (x, α and 
β) only. However, when a higher number of defects is present in the member, the number of 
calibration parameters increases in proportion to the number of defects. This approach accepts 
the stiffness and mass properties of the beam to be identical throughout the member except for at 
certain locations where the damage is present.  

The consequence of internal defects can be represented in different precision levels varying from 
a very refined finite element or a substructure consisting of several finite elements. The desired 
precision will be reflected in the parameterization of the defect, and naturally a larger amount of 
experimental information will be necessary for improved precisions. In this study, because only 
lower order vibration modes were available, the defects are represented with a relatively crude 
model. However, a more sophisticated and precise approach than the one adapted herein is 
unlikely to lead to practical tools for rapid assessment of existing concrete structures. 

The defect is assumed to be contained in one of the 17 segments of the FE model, and the 
structural effect of the defect is modeled with a reduction in stiffness of that bin. This approach 
reduces the number of calibration parameters significantly. This approach however, has the 
drawback that a good estimate of the number of defects should be available a priori. This 
drawback is more pronounced especially when experimental evidence in support of calibration is 
limited to the first few natural frequencies of the member. This statement is illustrated in the 
Scenario #1 given below.  

 

Figure 3: Scenario #1: Defect is defined with a location parameter and a reduction parameter.  

A FE model of a simply supported beam is developed in ANSYS. The beam has a cross-section 
of 15 cm x 22.5 cm and a length of 1.95 m. The beam is assumed to be simply supported at both 
ends. A uniform 30 GPa Young’s Modulus and 2400 kg/m3 density are assumed. The beam 
model has a total of 17 sections, each of which are assigned an individual mass (density) and 
stiffness (Young’s modulus) property [Figure 3]. The mesh of the beam FE model is given in 
Figure 4. A more refined mesh was deemed unnecessary because an element with a quadratic 

x: location of defect α: reduction in stiffness due to  defect 
β: reduction in mass due to  defect 
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shape function was used. For defect indicators, the first bending modes in the Y direction are 
considered [Figure 5].  

  
 
Figure 4: Finite element model of a simply 
supported beam.  
 

 
 
 
 

 
 
 
Figure 5: The first four bending modes of the 
beam are used for defect detection.  

• Scenario #1: Detecting single rock-pocket defect using only natural frequencies. 

Let’s assume a single defect close to the mid-length of the beam [Figure 6]. We will assume to 
know the exact number and type of the defect: one rock-pocket defect. Therefore, the calibration 
parameters will be reduced to two parameters only: x and α.  This scenario represents the ideal, 
in other words the easiest, condition for defect detection approach proposed herein.   

Virtual experimental data of the natural frequencies of the first four bending modes are simulated 
by the FE model with the prescribed defect (x = 7, α = 0.75 and β = 1.0).  Virtual experiments 
are deterministic in nature, however to account for potential variability during physical 
experiments, a 2.5 percent experimental uncertainty is assumed. The goal is to retrieve the 
‘correct’ x and α value used to generate the virtual experiments.  

 

Figure 6: Characteristics of the virtual defect simulated using the finite element model.  

In this framework, the maximum allowable changes for the calibration parameters are assigned 
through the domain within which the MCMC algorithm performs random walks. The defect can 
be located in any of the 17 bins of the beam FE model. Therefore, the x parameter is allowed to 
be (x = 1:17). The defect is expected to reduce the Young’s Modulus of concrete, therefore a 
range from 21 GPa to 30 GPa is considered for the stiffness reduction parameters (α = 0.7:1). 
Five different levels of stiffness reduction are considered between these lower and upper bounds.  

location of defect, x=7   reduction factor for stiffness, α:0.75 
reduction factor for mass, β:1.0 

Mode 1 

Mode 2 

Mode 3 

Mode 4 
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Figure 7: The influence of the defect location on the first four natural frequencies.  

A total of 85 computer runs are obtained each time varying the location of defect and the 
reduction factor for stiffness. The natural frequencies of the first four bending modes are 
observed to vary depending on the defect location along the beam [Figure 7]. 

A GPM is trained using the first four natural frequencies of the beam. Because only the natural 
frequencies are adapted herein, we cannot expect to locate the defect in a symmetric structure 
without incorporating spatial information, such as mode shapes. Clearly, two possible symmetric 
locations of defect will be equally plausible; and MCMC algorithm would converge to one of 
these plausible solutions. It also is possible that the posterior distribution may yield two poles 
with equal probability for the location parameter (x).  

Then, according to the procedure described in Section 3, the two parameters, which describe the 
location and extent of damage, are characterized. The posterior distributions of these two 
parameters after calibration are given in Figure 8.  
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Figure 8: The posterior distributions of the two calibration parameters: location and severity 
of rock pocket defect.  

Table 1: The calibrated values of the parameters that define the location and severity of rock 
pocket defect.  

Calibration Parameter True Value Calibrated Value (mean) 

Location of Defect (x) 7.0 units 6.92 units 

Extent of Defect (α) 0.750 0.753 

As seen in Table 1, the calibration approach successfully identified the location and extent of the 
rock-pocket defect – once the type of defect and the number of defects are known. It must be 
emphasized that these results present the best case scenario and, in practical applications, we 
cannot expect this knowledge to be available. Because the true number of defects in a member 
will not be known, the defect detection method should be able to indicate distinct poles in the 
posterior distribution of the location parameter (x) for each defect. The same approach is applied 
to the case where there were two distinct rock pocket defects, illustrated in Figure 9, using only 
the first four natural frequencies. The calibration is observed to yield an incorrect defect location 
which was somewhere between the two actual defects. The method predicts one single defect 
with a higher severity- in other words; it incorporates the effects of two defects into a single, but 
larger one. This is an example of a very general problem where the influence of a defect at one 
location on the measured quantities is identical to the influence of a defect of different severity or 
even type located at some other location in the system. These results, not shown here in the 
interest of brevity, raise the problem of uniqueness and emphasize the importance of the quality 
and quantity of experimental information.  

• Scenario #2: Detecting two Rock-pocket defects using natural frequencies and 

mode shapes. 

Perhaps the most important problem during calibration based damage or defect detection is the 
uniqueness: several different combinations of calibration parameters can make the FE model 
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match the experiments. Such a problem is observed in Scenario #2 while attempting to detect 
more than one defect using only the natural frequencies. One obvious remedy to the problem is 
increasing the quantity of experimental information. In this scenario, the FE model will be 
calibrated using both natural frequency and mode shape information to detect two separate rock 
pocket defects as illustrated in Figure 9.  

 

Figure 9: Scenario #2: Characteristics of the two virtual defects simulated using the finite 
element model. 

The beam FE model with two virtual rock pocket defects, as illustrated in Figure 9, is used to 
generate simulated experimental data. The defects are located at the seventh and thirteenth 
compartments. Consistent with the previous scenario, the first four bending modes are used as 
defect indicators. The mode shapes were defined for the vertical deflections of the 18 equidistant 
points at the center of the beam width. Mode shape vectors are high dimensional and make the 
statistical inference computationally expensive. Therefore, singular value decomposition is 
applied to reduce the dimensionality of mode shape vectors. A total of four singular values are 
used to represent the mode-shape vectors.  

The FE model is calibrated to retrieve the ‘correct’ values for x and α parameters used to 
generate the virtual experiments. The posterior distributions, given in Figure 10, illustrate two 
poles for the location of defect- proving the possibility of detecting more than one defect even 
though the true number of defects is initially unknown. Also, the posterior distribution that 
defines the severity of defects displays a correct trend. 

The difference in the posterior distributions of the two scenarios, with one defect versus two 
defects, emphasizes the challenge in detecting multiple defects in the absence of knowledge 
about the true number of defects. However, in the second scenario, although the levels of 
uncertainty in the posterior distributions are significantly increased – meaning that the influence 
of defects are spread over a larger area- the proposed method still delivers viable information 
regarding the location and severity of defects. In cases where more than one defect is present, the 
outcome of most concern is the ability to determine the presence and the number of defects. The 
results presented in Figure 10 can be considered satisfactory for such purposes. Perhaps one can 
repeat the calibration procedure defining two distinct parameters (x1 and x2) as well as two 
distinct reduction factors (α1 and α2) to better identify the location as well as the severity of the 
defects.  

location of defect, x=5   

reduction factor for stiffness, α:0.75 
reduction factor for mass, β:1.0 

location of defect, x=7   
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Figure 10: The posterior distributions of the two calibration parameters: location and severity 
of defect. 

As a result, using simulated data, we can successfully detect, locate and quantify defects in 
concrete members. Clearly, it is easier to identify defects using simulated experimental 
information. The effectiveness of inverse methods must, however, be tested using real physics 
measurements, because methods which perform well with simulated data may struggle when 
dealing with measurement errors and inadequate simulation models.  

In the next section, the practical application of this approach is illustrated on scaled beam 
specimens built and tested under laboratory conditions. When dealing with real measurements 
the following problems are anticipated to raise: (a) the defect present in the test beams is 
unavoidably different than the defect model represented in the FE model; (b) the boundary 
conditions of the beam during testing is, again unavoidably, different then the idealized boundary 
conditions in the FE model.  

5. Test Beams: 

Test beam consists of a lightly reinforced concrete beam, 15 cm by 22.5 cm in cross section and 
1.95 m in length. The beam is supported with roller suppers at both ends. To prevent rattling, the 
beam is clamped by two 5/8” steel rods running between the roller supports provided both at the 
bottom and top surface of the beam. The rock pocket defects are created with aggregates placed 
in a net before the concrete is placed, see Figure 11. Approximate locations of these rock pockets 
are provided in Figure 12.   

 

7th block 13th block 

~2250 GPa 
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Figure 11: Rock pocket defects are intentionally located in the concrete beam.  

 

Figure 12: The location of rock pocket defects.  

6. Experiments: 

The experiments are conducted to obtain the time history response of the beams to a hammer 
impact excitation. Accelerations at 16 points located equidistant are measured using 
accelerometers. Vibration measurements are strictly limited to the vertical vibration of the beam 
to be relevant to practical application where only the top of the beam would be accessible for 
testing. Two locations, one approximately at quarter-length (excitation #1 in Figure 13) and one 
at approximately at mid-length (excitation #2 in Figure 13) of the beam, are excited with an 
impact hammer (see Figure 14). 

Location of defects 
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Figure 13: Experimental set-up includes 16 measurement location and two excitation 
locations.   

        

Figure 14: The boundary conditions of the beams are designed to provide simple support and 
at the same time to prevent rattling.  

7. Feature Extraction: 

The Frequency Response Functions (FRF), obtained exciting point #7, are illustrated in Figure 
15. A number of modes are observed between 40 Hz and 450 Hz. Because of the complexity of 
the boundary conditions, some of these modes are noted to be a result of the coupling between 
the beam flexural modes and the supporting system. These coupled modes are not included 
during defect detection.  

1      2     3      4     5     6       7      8     9     10    11    12   13   14   

Excitation -2 Excitation -1 

168



 

Figure 15: The FRF of beam with rock pockets identified frequencies are illustrated with read 
dashed lines: (top) excitation 1, (bottom) excitation 2.  

Feature extraction is completed using rational fraction polynomials method (Richardson and 
Formenti, 1982). A total of four bending modes are identified within the tested frequency range. 
The frequencies of these modes are given in Table 2, while the mode shapes are presented in 
Figure 16.  

Table 2: The natural frequencies obtained from the beam with rock pockets.  

Mode Frequency 

1 89.2 Hz 

2 242 Hz 

3 380 Hz 

4 435 Hz 

The variability of physical experiments can only be studied by repeated experiments. However, 
the experiments are typically costly and time-consuming relative to the FE models. It is a 
common application to repeat only a portion of the experiment. For instance, in a test setup with 
k measurement points, repeating the experiments at a select few measurement points (<<k) can 
reduce the required resources yet can still yield reasonable information about the inherent 
variability in the experiment. The driving point measurements at point #7 are repeated 16 times 
to quantify the experimental variability, which is incorporated during calibration.  
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Figure 16: The first four mode shapes of the beams with rock pocket defects are given in red 
dashed lines (the blue and green lines represent two nominally identical beams. The blue solid 
line is the mode shapes of the reference beam without defects and the green dotted line is the 
beam with honeycomb defects. The results obtained from these beams are not included 
herein.)  

8. Numerical Models: 

Defect detection of a simply supported beam is a simple problem that can be tackled using closed 
form solutions developed for continuous systems; however a discrete model approach adds 
versatility in the application of the procedure to systems of various geometry and complexity. 
Discretization of the model does not influence the nature or formulation of the defect detection 
problem. Discrete numerical models are built as explained earlier in Section 4. The beams are 
built based on linearly elastic behavior assumption.  This assumption is reasonable as the 
vibration levels induced during the tests are low. Moreover, the defects are not anticipated to 
induce nonlinearity.  

The boundary conditions are represented with two springs exerting vertical restraints both at the 
top and bottom surface of the beam [Figure 17]. The stiffness constants are estimated based on 
the axial stiffness of the steel rods to be approximately 1.04x107 kN/m. The spring constants are 
assumed to be symmetric for both ends– which is with all likelihood not the case, because 
variation in assembly is a routinely experienced practical problem.  However, it is very difficult 
to quantify this variability.  
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Figure 17: The configuration of the finite element model boundary conditions.  

The FE model is build to have 17 sections each of which can have independent young’s modulus 
and density. The corresponding mode shapes obtained by the beam FE model are illustrated in 
Figure 18.  

 

Figure 18: The first four mode shapes predicted by the finite element model.  

9. Determination of Defects in Test Beams: 

The particular difficulty while detecting defects in the test beams is due to complexity of the in 
situ boundary conditions of the test beams [Figure 14]. Typically, beam vibrations are measured 
under free-free boundary conditions to alleviate the problems due to difficulty of reproducing the 
theoretical fixed or pinned boundary conditions in laboratory conditions. However, to have any 
practical value, a defect detection approach must be applicable under conditions commonly 
found in, for instance, existing concrete structures as well as the prestressed precast reinforced 
concrete beam manufacturing industry. The significant differences between the initial FE model 
predictions and the experimental measurements are shown in Table 3. 

The x and α parameters are calculated using various levels of experimental information: (1) only 
the first three natural frequencies (see scenario 1 in section 4), (2) the first three natural 
frequencies along with the singular values of the first three mode shapes (see scenario 2 in 
section 4) and (3) the first three natural frequencies along with the three mode shape vectors. In 
any of these three cases, the correct location of the defects is not obtained.  

K1 

K1: Linear spring 
E: Young’s Modulus 

K1 K1 

E 
K1 

Mode 1 

Mode 2 

Mode 3 

Mode 4 
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Table 3: The significant differences between the initial FE model predictions and 
experimental measurements.  

Mode Experimental  Frequency 
Beam with rock pockets 

FE Model (mean of 85 runs) before Calibration 
Without Defects  

1 89.2 Hz 95 Hz 

2 242 Hz 255 Hz 

3 380 Hz 390 Hz 

The posterior distributions obtained using the first three natural frequencies and mode shape 
vectors; that is, the largest available dataset used in calibration, are illustrated in Figure 19. 
Although the severity of the defect seems to be identified relatively accurately, the effects of 
three defects are lumped into one single location. The reasonable success obtained when two 
defects were simulated in Section 4 is not present in this particular case. The explanation may be 
because (1) defects in numbers larger than two are significantly more difficult to distinguish, (2) 
the imprecision of physical experiments degrade the success of the inference process, (3) the 
inaccuracies in the numerical model through the boundary conditions is interfering with the 
inference process.  

 
Figure 19: The posterior distributions obtained for the test beam defect locations.  

As mentioned earlier, the spring constants representing the boundary conditions are 
approximated by calculating the axial stiffness of the steel rods used to clamp the beam at both 
ends. Although, this calculated value is expected to be imprecise, it is not defined as a calibration 
parameter. Perhaps by calibration, the boundary condition parameters simultaneously with the 
defect detection may yield better results.  

Defect 1 Defect 2 Defect 3 
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10. Discussion and Conclusion: 

In civil engineering practice, a method, which can detect the location, severity and type of 
damage in concrete construction, is of great value. In this paper, a general procedure for defect 
detection is applied to concrete beams with both simulated experiments and physical experiments 
conducted under laboratory conditions. . 

The adapted approach does not depend upon the type of the defect, the structure of interest or the 
measured quantities as it relies on the simple fact that a structure with and without defects would 
yield different response characteristics. By coupling these response characteristics with a 
simulation model, one can, theoretically, determine the presence of defects. Therefore, it can be 
concluded that FE modeling coupled with nondestructive testing can provide a viable solution to 
detection of internal defects in concrete members. This statement is supported by the findings 
obtained using simulated experiments. Although the actual implementation of the proposed 
methodology will be application specific, its generality allows it the use of various forms of 
experimental information. Moreover, the use of discrete method add further versatility such that 
the method can be deployed to structural forms of varying geometry and complexity. 

Although the same success is not observed when the method is exercised on a scaled laboratory 
specimen, this does not necessarily demonstrate the limits of the adapted method. Due to the 
limited test cases, it is difficult to know the exact cause of the problem. We tabulate three 
possible explanations: (1) defects in numbers larger than two are significantly difficult to 
distinguish, (2) the imprecision of physical experiments degrade the success of the inference 
process, (3) the inaccuracies in the numerical model through the boundary conditions is 
interfering with the inference process. The physical experiments must be repeated for a variety of 
scenarios to evaluate the potential of the method to be a rapid, practical assessment tool that can 
be implemented in industry. 

Moreover, if a defect is smaller than the defect size which would result in detectable and 
measurable change in the dynamic response, its influence will be undistinguishable within other 
environmental effects, such as ambient vibration, measurement noise, etc. Therefore, it is 
important to note that a defect detection approach based on vibration measurements, as in every 
nondestructive technique, has a lower defect size limit for which it can be deployed. Also, for 
two closely spaced cracks, unless a large amount of accurate experimental information is 
available, the calibration approach will, with all likelihood, smear the effects of these two defects 
into a larger defect located between the two. For defects which are spaced farther apart, the 
problem of non-unique solutions poses lesser of a problem. 

 

Also, existing structures and their operational conditions are subject to statistical variations. 
Therefore in practical applications of this method to existing civil engineering systems, it is 
anticipated that the posterior distributions would yield higher uncertainty compared to those 
presented herein.  
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