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ABSTRACT 

Slender pre-tensioned concrete structures are nowadays of common use, due to their unique features. 
Slender beam can be used to sustain large structures and important loads leaving the architects a lot 
possibilities in the structure design. The health of such structures is strictly related to the conditions of the 
tendon that, in many cases, are not accessible. Visual inspection is the most used technique to assess the 
tendon condition even if in many cases access to the inspection points is very difficult or impossible. This 
paper investigates the possibility of detecting a pre-stress loss or a tendon failure by means of modal analysis. 
A pre-stressed concrete beam has been built and tested under laboratory conditions, varying the applied pre-
stress and the number of active tendon. Modal analysis has been performed in each of the experimental 
condition and attention has been focussed on the variation of all identified modal parameters, frequency, 
damping and mode shapes. Furthermore a set of damage indexes have been computed to highlight the most 
sensible magnitude able to identify a change on the structure. Obtained results showed that an accurate 
analysis is needed in order to identify a change in modal parameters due to variations in the pre-stress, while 
tendon failure leads to more important changes in the identification results. The performed study are the 
starting point in order to properly tune a numerical model of the beam useful to accurately interpreter 
structural changes. 

INTRODUCTION 

A large amount of slender concrete structures are nowadays built using prestress techniques. This technique 
allows to build slender structures sustaining large weights, and thus giving the architects a number of 
additional degrees of freedom in the design process. Another important achievement is the amount of space 
left to be used due to the reduced thickness of floors and walls. 
The prestress condition is obtained by means of steel tendon which provide the compression that allow to 
increase the structural performances reducing the positive (elongation) strain and stress. The health of 
prestressed concrete structures is thus strictly related to the conditions of the tendon that, in many cases, are 
often included in the concrete and there is no way to directly inspect them. 
One of the main problem of prestressed concrete is therefore the tendon conditions which may deteriorate 
due to corrosion, or exceptional loads. To this aim many non-destructive diagnostic techniques have been 
proposed [1,2] but it has to be considered that these techniques are always difficult to apply and their results 
are often affected by a high level of uncertainty. In the last decades a lot of papers have been written 
concerning structural health monitoring via modal analysis, the structure condition is assessed by its modal 
parameters that are considered representative of the actual structure dynamic behaviour. A change in these 
parameters identify an evolution in the dynamic behaviour and a possible ongoing damage [3,4]. 
The latter approach pushed forward to the exploitation of the possibility to consider the relationship between 
prestress conditions and dynamical behaviour of a structure in assessing the tendon conditions and therefore 
the health of prestress concrete. 
The tendon presence and the prestress load influence the structure dynamical behaviour, therefore a reliable 
identification of the modal parameter of a structure could offer the opportunity to monitor the prestress 
condition. This sort of monitoring is really attractive: it is non destructive and can be performed continuously 
during normal life of the structure if operational modal analysis is considered. 
Different researches have been developed in this direction but the connection between damage and modal 
parameter changes has not been completely cleared up yet[5,6,7,8]. One of the main aspects is the entity of 
the modal parameter change due to tendon damage: in many cases it can be of the same order of magnitude 
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in the considered frequency range. All subsequent analyses have been carried out averaging ten impacts and 
always checking coherence information. 
The first condition that has been tested is the simple beam without any preload, results are shown in Figure 5 
(blue line). The first four in plane vibration modes are clearly visible in the frequency response function at 12,5 
Hz, 51,1 Hz, 109,1 Hz and 175,1 Hz. Then preload has been applied and the same analysis have been 
repeated. 

 
Figure 5 Frequency responses measured at 1/3 of the beam span with different tendon configurations 
The analysis of the accelerometer signals showed that other natural frequencies appear when preload is 
applied (Figure 5, light blue and violet lines). A new series of tests has been carried out measuring also the 
out of plane vibrations. This analysis showed that the new natural frequencies that appear when a preload is 
applied are related to torsional and lateral mode shapes, probably due to a non perfect symmetry of the 
applied prestress load. 
In the following analyses only the “in plane” mode shapes will be considered postponing the other results to a 
further step of the research. The results obtained simulating a prestress loss will be presented in the next 
section. 

PRESTRESS LOSS 

This section considers the results obtained applying different preload levels by means of the same number of 
strands. The test is carried out to investigate only the effect of the preload force on the modal properties of the 
beam not taking into account any other damage: as the tendon section remains the same his stiffness does 
not change.  
The first set of experiments has been carried out with 3 strands and different preloads: 45 kN, 22,5 kN and 
0 kN on every strand. The results, in terms of natural frequencies and mode shapes (1st and 2nd natural 
frequency), are shown in Figure 6.  
Increasing the preload level from 0 to maximum leads to a decrease in the identified frequency values as 
shown in the left graph of Figure 6.  
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a) Mode Shapes b)Mode Shape Area 

Figure 11 Modal shapes (1st and 2nd modes) and mode shape area index (1st and 2nd modes) 
Considering what has been found so far a straight relation between the beam dynamic behaviour and the 
prestress condition has not been found yet, even if the beam modal parameters are affected by meaningful 
changes as the prestress is varied. This situation pushes forward to consider a damage index that is related to 
all frequencies/mode shapes, so that all the information can be exploited at one time. This will be shown in the 
next section. 

FLEXIBILITY MATRIX 

As the results obtained considering Natural Frequencies and Mode Shapes alone did not identify a straight 
relationship between prestress value and parameter evolution, here the possibility to resume all indexes into 
changes in the Flexibility Matrix have been investigated. 
Recalling the definition of flexibility matrix [F]: 

FlexMatr= [ ] [ ] [ ]T
i

diagF Φ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛Φ= 2

1
ω  

It can be seen that all modal residues and eigenfrequencies contribute to the final value. It has to be 
considered that every element of the Flexibility Matrix gives local information while the damages considered in 
this research are global.  
In Figure 12 the squared difference between the matrix in reference conditions and with no preload is 
presented. Changes are evident and moreover all matrix elements are affected indicating that changes are 
generalized to the whole structure.  
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