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Nomenclature

ωi Natural Frequency
[M ] Mass Matrix
[K] Stiffness Matrix
[KG] Geometric Stiffness Matrix
E Young’s Modulus
I Area Moment of Inertia
A Cross Sectional Area
L Length of Beam Element
ρ Density
yi Transverse Displacement
ϕi End Rotation
m Mass
J Moment of Inertia
P Axial Load
qi Displacement Vector
q̈i Acceleration Vector

ABSTRACT

This paper considers the free vibration of a plane, rectangular, portal frame consisting of slender members. Natural
frequencies and mode shapes are influenced by the addition of mass at the corners of the frame. The members are
sufficiently slender that axial effects occur, and may ultimately lead to buckling. The results from both theoretical
and experimental studies are presented.

Introduction

A recurring theme in the design of structures is to consistently push for them to be thinner and lighter. This is
especially true in the case of the aerospace industry, where any weight savings translates into better performance
and efficiency. However, with any design goal, there are trade-offs that need to be taken into consideration. As
structures become lighter and more slender, loadings can start to have an effect on dynamic behavior as well as
static behavior. For frame structures, axial loads on the members can affect the stiffness, and in turn, the natural
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frequencies of the frame. Several studies have investigated the effects of applied axial loads to simple frame
structures. Lieven and Greening [1] conducted modal tests on a frame with an induced forced due to the shortening
of a turnbuckle in one of the members. In their study they also utilized numerical matrix methods to predict mode
shapes and natural frequencies. Similarly, Mead [2] analytically investigated the variation of natural frequencies and
mode shapes of a planar frame structure that was subjected to externally applied axial loads.

The experimental setup considered in this paper is a simple portal frame structure with slender members. Instead of
an external load being directly applied to the structure itself, axial loads are induced by adding masses to the corners
of the frame. The masses themselves have an effect on the dynamics of the structure in addition to degrading the
stiffness by adding a compressive axial load to the columns. Modal tests were conducted to find the variation in
the natural frequencies as mass was added to the frame. Numerical simulations were then ran in ANSYS and
FRAME3DD finite element packages to model and gain further insight from the behavior of the structure [3][4].

Theory

Frames are essentially an assembly of beams connected at the ends, and can be modeled by solving a system
of partial differential beam equations whose boundary conditions are determined by the joints of the frame. These
systems of equations generally produce very large transcendental equations that are only tractable when the struc-
ture has a very simple geometry and several other simplifying assumptions can be made [5]. In order to analyze
more complex structures, matrix methods have been developed that discretize frame structures into a set of beam
elements and lumped masses [6]. When the mass and stiffness properties are discretized, a matrix set of equations
describing the behavior of the system can be written as

[M]q̈i + [K]qi = 0, (1)

where the mass and stiffness matrices are the global mass and stiffness matrices for the entire structure, with the
qi vector consisting of displacement and rotational degrees of freedom.

The global mass and stiffness equations are assembled from local beam mass and stiffness matrices, where qi =
[yk ϕk ym ϕm]T is a vector of end displacements and rotations. The displacements and rotations for a single beam
element are shown in Fig. 1.

Figure 1: Original and deformed beam with local coordinates. After [7].

The local mass, [M], and stiffness, [K], matrices for a beam element of a frame are

[M] =
ρAL

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 , (2)
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and

[K] =
EI

L2


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 . (3)

When compressive axial loads are applied to beams their stiffness is degraded by the load. This is called a ‘geo-
metric stiffness’ effect and, in the static sense, is the mechanism that is responsible for buckling. In order to account
for this in the matrix stiffness method, a separate geometric stiffness matrix,

[KG] =
P

30L


36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2

 , (4)

is factored into the traditional beam stiffness formulation [8].

By adding in the axial load effects on the stiffness of the system, a geometric stiffness matrix augments the traditional
stiffness matrix. Equation (1) now becomes

[M]q̈i + [K − KG]qi = 0. (5)

Equation (5) can either be used in a time marching algorithm to produce dynamic simulations, or if qi is assumed to
be simple harmonic motion, q̈i = −ω2qi, the equation

([K − KG] − ω2
i [M])qi = 0 (6)

can be solved as a general eigenvalue problem to attain the natural frequencies and mode shapes of the structure.

Experimental Setup

The experimental laboratory setup consisted of a simple portal frame comprised of polycarbonate beam members.
The polycarbonate beams had a cross section of dimensions, 2.554 cm x 0.154 cm, and a density of ρ = 1157 kg/m3.
A schematic and picture of the setup is shown in Fig. 2. For the experiments conducted, the bottom supports of the
columns were clamped and the corners were connected at 90 degrees using angled aluminum fixtures. The base
fixtures for the columns could also be converted to pinned connections in order to allow the bottom of the columns
to freely rotate. The column length, L1, was 15.24 cm and the length of the cross beam of the frame, L2, measured
45.72 cm. Threaded rods were attached to the aluminum brackets such that masses could be added to the two
corners.

Modal data were taken using an Ometron VH300+ laser doppler vibrometer, and an Endevco 2302-50 modal impact
hammer. The data were recorded with a Dell laptop computer with PULSE data acquisition software and a Brüel &
Kjær type 3109 input module. All of the hammer impact hits and vibration measurements took place in the plane of
the frame.

121



Figure 2: Schematic of experimental frame setup and picture of physical laboratory model

Simulations

Simulations of the frame were ran in both the commercial finite element software package ANSYS, and FRAME3DD,
an open source frame analysis software package. The frame was modeled using 2-D beam elements, with fixed
end supports for the columns. The experimentally added mass was modeled as a lumped mass added to the nodes
at the top two corners of the frame. The simulations also allowed for the option of adding a lumped inertia term to
the corners nodes. The geometric stiffness effects from the masses were modeled as a force in FRAME3DD, in
addition to the lumped mass. The geometric stiffness was accounted for in ANSYS by applying an acceleration to
the frame equal to that of gravity, creating an equivalent force on the columns from the lumped masses.

Results

The experimental frequency response functions were loaded into and analyzed using ME’scopeVES [9]. Figure 3
shows the experimental mode shapes for the lowest four modes of the frame. Figure 4 shows the four lowest
calculated mode shapes from ANSYS.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 3: Experimentally determined mode shapes

The experimentally determined mode shapes all corresponded with those that were predicted by the simulations
from ANSYS and FRAME3DD. The mode shapes also retained their ordering, both experimentally and in simulation,
as mass was added to the frame.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 4: Numerically determined mode shapes from ANSYS

Figure 5 shows the variation of the natural frequencies of the first four modes of the frame with increasing axial load
due to added mass. Both ANSYS and FRAME3DD programs produce very similar results for all four sets of natural
frequencies. Experimentally the structure was found to be very lightly damped, and damping was not considered
in the numerical results. Additionally, initial geometric imperfections that are bound to be present in experimental
systems were also not included in the numerical results.
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(a) Mode 1
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(b) Mode 2
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(c) Mode 3
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(d) Mode 4

Figure 5: Natural frequency variations with added mass. Red - experimental data. Blue - Frame3DD simulation
results. Black - ANSYS simulation results. Green - ANSYS simulation results without geometric stiffness.
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An interesting point to investigate with this structure is what factors contribute to this change in natural frequency.
Unlike several of the other studies on geometric stiffness effects, mass and rotational inertia were being added
to the frame structure which can also have an effect on the natural frequencies of the system. Using numerical
simulations, the effects of the axial loading can be separated from those of mass and rotational inertia. The green
trace in Fig. 5 shows the results of ANSYS simulations where the natural frequencies are calculated without any
geometric stiffness effects, i.e. assuming negligible axial loading effects on the lateral stiffness of the columns.
Mode 1, which is very similar to the static buckling mode, was the most affected by neglecting the axial loading.
Figure 5a shows the natural frequency plotted versus the axial load on each column, which is caused by gravity
acting on the masses added to the corners, P = mg. The independently calculated static buckling load from ANSYS
is shown with an ‘X’ at an axial load value of 4.185 N. Modes 2-4 are primarily affected by the mass and show little
change in their behavior from neglecting the axial loading. Figures 5b-5d show the variation of the natural frequency
of modes 2-4 with the amount of mass, m, added to each corner of the frame.

Conclusions

A planar frame with slender, flexible members was investigated both experimentally and numerically to attempt
to characterize a change in modal behavior with added mass and increased axial load. Natural frequency was
shown to vary due to not only geometric stiffness effects but to added mass and rotational inertia present in the
experimental system as well. Additionally, the change in dynamic behavior due to axial loading did not change all
of the modes of vibration in the same way. The loading did cause a significant difference in the prediction of the
fundamental frequency of the frame as mass was added, but did not have much of an effect on the higher modes.
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