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ABSTRACT 

In operational modal analysis the input forces are unknown so the modes shapes are obtained with an 
arbitrary normalization. In some applications the mass normalized modes shapes are required and the scaling 
factors have to be estimated. A way of obtaining these factors is to modify the modal properties of the 
structure by introducing changes in the mass or stiffness; mass change is usually the most convenient way to 
modify the structural properties in a controlled manner. Different strategies and approaches to perform the 
mass change method have been proposed in recent years. In this work the scaling factors of a 15 tonnes 
concrete slab strip are obtained using several equations proposed by different authors and the results are 
compared. 

The results show that the scaling factors can be estimated with reasonable accuracy using the different 
equations if a good mass change strategy is applied. 

Nomenclature 

Φ Mass normalized mode shape                                                                                                                                           
Ψ Arbitrary normalized mode shape                                                                                                            
α Scaling factors                                                          
[K] Stiffness Matrix                        
[M0]       Mass Matrix                        
[M1] Spatial distribution of added masses             
β1 Ratio of added mass              
ω0 Natural frequencies                  
ω1 Modified natural frequencies                
k Terms of the diagonal of the projection matrix 
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1. Introduction 

In operational modal analysis only arbitrary normalized modes shapes can be obtained [1], e.g. maximum 
component of unity or arbitrary length. If the modal masses are required the scaling factors must be 
estimated. The scaling factors are constants that relate each mass normalized mode shape with the 
correspond arbitrarily normalized one. That is:  
 

Ψ=Φ α                           (1) 
 
where Φ  is the mass normalized modal shape, Ψ is the correspond arbitrary normalized modal shape and 
α  is the scaling factor. 
 
A way to estimate the scaling factors is to modify the dynamic behavior of the structure changing the stiffness, 
the mass or both and perform a new operational modal testing and analysis. These methods based on 
dynamic modification use both the modal parameters of the unmodified and modified structure, so if the modal 
parameters are related the scaling factors can be obtained. 
 
In recent years, some different approaches [2, 3, 4, 5, 6, 7] and strategies [8, 9, 10] in the mass change 
method have been proposed. The method consists of modifying the dynamic behavior of the structure by 
attaching masses to several points on the structure where the mode shapes are known. The accuracy 
obtained in the scaling factor estimation depends on both the accuracy obtained in the modal parameter 
identification and the mass change strategy used to modify the dynamic behavior of the structure. The mass 
change strategy refers to the definition of the magnitude, the location and the number of masses to be 
attached to the structure. 
 
In this paper, the scaling factors of a 15 tonnes concrete slab strip by means of Operational Modal Analysis 
(OMA) are estimated with the mass change method using different proposed approaches and strategies and 
the results are compared. The results are also compared with the estimated scaling factors using classical 
modal analysis (CMA). 
 
2. Mass Change Method - Theory 
 
The mass change method consists of performing operational modal analysis on both the original and the 
modified structure. The modification is carried out by attaching masses to several points of the structure 
where the mode shapes of the unmodified structure are known. The user selects the number, the magnitude 
and the location of the masses. To facilitate the mass modification and the calculation of the scaling factors, 
lumped masses are often used, so that, the mass change matrix becomes, in general, diagonal. 
 
Different approaches to determine the scaling factors can be derived mainly from the eigenvalue equations of 
both the original and the modified structure. The classical eigenvalue equation in case of no damping or 
proportional damping is given by: 
 

[ ] 0
2
000 ][ Φ⋅=⋅Φ KM ω                         (2) 

 
where 0Φ  is the mode shape, 0ω  the natural frequency, [M0] the mass matrix and [K] the stiffness matrix. If a 

mass change is made so that the new mass matrix is given by [M0 + β M1], then the eigenvalue equation 
becomes: 
 

[ ] 1
2
1110 ][ Φ⋅=⋅Φ+ KMM ωβ            (3) 

 
where 1Φ  and 1ω are the mode shape and the natural frequency of the modified problem, respectively, M1 is 
a matrix of arbitrary rank describing the spatial distribution of the mass modification and β is a scaling 
parameter with respect to which the mass change magnitudes are computed. Combining equations (1), (2) 
and (3) and after several assumptions a number of different expressions can be derived to estimate the 
scaling factors. A general form of these expressions can be summarized in the following formula [7]: 
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where the group of parameters (a1, a2, a3) are different in each expression, e.g.: 
 
(ω0/2, Ψ0, 1) in the expression from Parloo et al. [2],      
(ω1, Ψ0, 1) in the expression from Brincker et al. [5]                
(ω1, Ψ1, 1) in the expression from Aenlle et al. [6], and     
(ω1, Ψ1, κ) in the Bernal projection expression [7].       
 
The parameter β1 is taken so that the [∆M] mass change matrix that it is used in eqs. (5), (6) and (7), can be 
obtained by means of the relation [∆M] = β1 [M1]. In the projection approach, eq. (8), the main idea is to 
express the mode shapes of the modified state on the basis of the unmodified modes shapes [7]. To introduce 
this projection the vector of constants κ is used, which is obtained from the diagonal of the matrix [q]= [Ψ0]

-1 
[Ψ1]. 
 
For the above described methods the following notation will hereafter be used: α00P for eq. (5), α00 for eq. (6), 
α01 for eq. (7) and α01B for eq. (8). 
 
If only the modified modes shapes are used in eq. (7), that is, the parameters (a1, a2, a3) are given by  (Ψ1

T
 M1 

Ψ1), the α11 scaling factor is obtained and a new approach can be used combining α00 and α11. 
 
�∗ = (��� + ���)/2                                                                                                                  (9) 
 
It can be observed from eqs. (5) to (9) that different results from the scaling factors would be expected in each 
expression since different parameters are used in each one. For example, in eqs. (5) and (6) the unmodified 
modes shapes of the structure are used, so if the mode shapes change significantly, when adding the masses 
to the structure, the results would be expected to be less accurate. On the other hand, the eqs. (7), (8) and (9) 
take into account both the modified and unmodified modes shapes. Eq. (7) is expected to be better for small 
changes in the modes shapes and eqs. (8) and (9) are expected to be better for large changes in the mode 
shapes. 
 
To obtain good results with the aforementioned equations it is important to take into account that different 
strategies can be used. These strategies are related to the mass magnitude and the number and location of 
the masses in the experiment [8, 9, 10]. 
 
 
3. Experimental Program   
 
In this work, several OMA measurements using different mass strategies are done in a concrete slab. In each 
mass configuration the natural frequencies and mode shapes are estimated and then, the scaling factors are 
estimated with the mass change method using the different expressions. For comparing the estimated scaling 
factors obtained with OMA, CMA measurements are also done in the slab and the scaling factors are 
calculated from the FRF’s. 

3.1. Structure and Test Configurations 

The structure used for the experiments is a simply supported in-situ cast post-tensioned slab strip of span 
10.8 m. Its total length is 11.2 m, which includes 0.2 m overhangs over the knife edge supports. It has a width 
of 2 m, depth of 0.275 m and weighs approximately 15 tonnes. There is a known non-linearity in the slab at 
one of the supports, where exist a gap between the knife-edge support and the slab. There is also a potential 
for friction at the supports. Due to these effects the frequencies can change by 2-3% depending on the 
amplitude of excitation.  

In both modal analysis, OMA and CMA, 21 Honeywell QA750 accelerometers were used. They were located 
at degrees of freedom (DOFs) 4 to 24, as indicated in Figure 1, and were installed on leveled Perspex base 
plates. For digital data acquisition, a Data Physics DP730 spectrum analyzer (Mobilyzer II) with 24 input 
channels and 4 output channels (24-bit resolution) was used. The Mobilyzer was controlled by a laptop PC 
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connected to it via an Ethernet connection. Figure 2 shows images of the slab strip during the measurements, 
both with and without additional mass blocks present. The sampling rate and acquisition time used were 
128 Hz and 15 minutes, respectively. 

�������������  

Figure 1: Slab dimensions and test grid 

  

Figure 2: Concrete slab strip 

To obtain the modal properties of the concrete slab from OMA, the Enhanced Frequency Domain 
Decomposition (EFDD) and Stochastic Subspace Iteration (SSI) techniques were used, both implemented in 
the ARTeMIS Extractor software. Since the natural excitation level is too low (the slab is in a very quiet lab) 
and due to the non-linearities, artificial excitation is used in the tests to avoid variations in frequencies that 
cannot be related with the mass change configurations. Two APS Dynamics Model 113 shakers were used as 
source of excitation. The slab was driven with uncorrelated random signals from both shakers with the same 
excitation level for all the experiments. The shakers were located at DOFs 15 and 19.  

In CMA, the modal properties were estimated from Frequency Response Function (FRF) data calculated 
using both the excitation and response time histories with the same configuration of shakers and 
accelerometers than the OMA analysis, that is, shakers located at DOFs at 15 and 19 and accelerometers 
located at DOFs 4 to 24. To obtain the modal parameters from FRF data, the ME’scopeVES software was 
used in a MIMO modal analysis with two inputs and 21 outputs. 

The first four significant natural frequencies of the concrete slab, obtained from OMA and CMA, are presented 
in Table 1.  
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Table 1: First four natural frequencies of the slab 

Mode 1: Bending 2: Bending 3: Torsion 4: Bending 

OMA 
Freq. (EFDD) [Hz] 4.497 16.844 25.717 37.600 

Freq. (SSI) [Hz] 4.499 16.835 25.767 37.612 

CMA Freq. (FRFs) [Hz] 4.499 16.845 25.750 37.612 

 
3.1. Mass configuration and strategies 

The quantity of mass reduces the aforementioned gap between the slab and its support and therefore affects 
the non-linearity introduced in the dynamic properties of the slab. To minimize this effect the same quantity of 
mass, 1050 kg, is used in all the experiments. There is one exception, where a mass of 600 kg was used to 
examine the difference between different changes in mass magnitude. The different mass configurations used 
in the measurements are presented in Table 2, which were selected to compare the different expressions 
described in paragraph 2 as well as different mass change strategies [10]. As the mass magnitude is always 
the same, except for case 3b, the strategies are related to the location and number of masses used in the 
experiments.  The results are expected to be of decreasing accuracy from case 1 to case 5, since a more 
uniform distribution of masses would be expected to perform better over a range of modes. Cases 1 and 2 try 
to optimize the first four modes of the structure, cases 3 and 3b try to optimize modes 1 and 4 of the structure 
whereas cases 4 and 5 are strategies for which a significant mode shape modification is expected, hence 
allowing the comparison of the different expressions that take into account the modified mode shapes. 

Table 2: Mass configurations 

Case № of Masses Mass per DOF Mass change DOF’s with Mass 

1 21 50 1050 Kg 7 % All except [1 2 3 25 26 27] 

2 14 75 1050 Kg 7 % [4 6 7 9 10 12 13 15 16 18 19 21 22 24] 

3 6 175 1050 Kg 7 % [7 9 13 15 19 21] 

3b 6 100 600 Kg 4.3 % [7 9 13 15 19 21] 

4 3 350 1050 Kg 7 % [ 7 13 19] 

5 4 --- 1050 Kg 7 % [7 (425 kg) 13 (150 kg) 19 (200 kg) 21 (275 kg)] 

 

4. Results 

The FRF’s of some channels (MIMO analysis) and the EFDD singular value decomposition (OMA) are 
presented in Figure 3. The first four natural frequencies of the slab were presented in Table 1. 

 

 

Figure 3: FRFs and SVD 
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The scaling factors obtained with CMA are presented in Table 3. These are obtained from two different data 
sets, m00 and m00b, without masses on the slab. In both data sets the inputs are uncorrelated random and 
the shakers are in the same location. As two reference inputs are used the strongest reference is used for 
each mode for the residue estimates. 

It is important to remark that although the modal masses, and hence the scaling factors, were obtained 
directly from the FRF’s, there are several factors such as the location of the shakers, lines used in the FRF’s 
or the fit model used in the analysis that can result in variations of 10-20% in the results. In order to compare 
the results with those from OMA through the mass change method, the average of the estimated scaling 
factors provided by CMA is used for each mode, see Table 3. 

Table 3: Scaling factors from CMA analysis 

Data Set 

m00 m00b 

Number of Lines in the FRFs 

MODE 1024 2048 4096 1024 2048 4096 Average 

1 0.01236 0.01242 0.01260 0.01320 0.01240 0.01315 0.01269 

2 0.01250 0.01255 0.01290 0.01288 0.01270 0.01310 0.01277 

3 0.01440 0.01370 0.01430 0.01440 0.01360 0.01565 0.01434 

4 0.01322 0.01317 0.01325 0.01370 0.01366 0.01373 0.01345 

 

4.1. Symmetric mass change configurations 

The scaling factors, corresponding to cases 1, 2 3, and 3b, obtained from EFDD analysis and using the 
expressions described in paragraph 2, are presented in Table 4. The column ∆ω is the frequency shift that is 
obtained for each mode in the different configurations and the MAC is the modal assurance criteria between 
the unmodified and modified mode shapes. 

It can be seen that in cases 1 and 2, where the attached masses are uniformly distributed across the slab, the 
scaling factors are estimated with a good accuracy and the different expressions provide similar results. As 
was expected, the changes in mode shapes are very small. 

There is a significant difference in the third mode shape between cases 1 and 2. This mode is the first torsion 
mode of the slab at 25.72 Hz. Due to the gap in one of the slab supports, there is a rocking motion at 28.5 Hz 
that, depending of the mass configuration, can interfere in the stability of the torsion mode. In Figures 3a and 
3b are presented the SSI stabilization diagram for the configurations with 14 and 21 masses respectively. In 
these figures can be seen that the first singular value and how the magnitude of the rocking motion is higher 
in the configuration with 21 masses. This effect can reduce the accuracy in the estimation for this particular 
mode. On the other hand, the configuration of 14 masses is a better strategy for the torsion mode (masses on 
both sides of the slab). In table 4 it can be observed that high frequency shift and MAC are obtained with this 
mass distribution, so that better results are expected. 
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Table 4. EFDD scaling factors 

EFDD Case 1: 21 MASSES 50 kg Each DOF's [All except supports] 

Mode α00 α01 α* α00P α01B αFRF's ∆ω [%] MAC 

1 0.01244 0.01241 0.01241 0.01206 0.01244 0.01269 4.11328 0.99998 

2 0.01278 0.01278 0.01278 0.01241 0.01278 0.01277 3.87354 0.99993 

3 0.01249 0.01251 0.01250 0.01218 0.01247 0.01434 3.35588 0.99687 

4 0.01354 0.01328 0.01354 0.01307 0.01354 0.01345 4.61459 0.99928 

EFDD Case 2: 14 MASSES 75 kg Each DOF's [4 6 7 9 10 12 13 15 16 18 19 21 22 24] 

Mode α00 α01 α* α00P α01B αFRF's ∆ω [%] MAC 

1 0.01263 0.01259 0.01259 0.01222 0.01263 0.01269 4.25529 0.99998 

2 0.01312 0.01313 0.01313 0.01271 0.01312 0.01277 4.18566 0.99991 

3 0.01424 0.01430 0.01430 0.01356 0.01423 0.01434 6.33416 0.99937 

4 0.01377 0.01354 0.01378 0.01325 0.01352 0.01345 4.98406 0.99965 

EFDD Case 3: 6 MASSES 175 kg Each DOF's [7 9 13 15 19 21] 

Mode α00 α01 α* α00P α01B αFRF's ∆ω [%] MAC 

1 0.01228 0.01220 0.01220 0.01185 0.01228 0.01269 4.66487 0.99987 

2 0.01358 0.01353 0.01353 0.01305 0.01358 0.01277 5.10335 0.99993 

3 0.01683 0.01679 0.01678 0.01562 0.01677 0.01434 9.39348 0.99783 

4 0.01875 0.01839 0.01863 0.01741 0.01857 0.01345 9.34624 0.98862 

EFDD Case 3b: 6 MASSES - 100 kg Each DOF's [7 9 13 15 19 21] 

Mode α00 α01 α* α00P α01B αFRF's ∆ω [%] MAC 

1 0.01251 0.01270 0.01260 0.01213 0.01270 0.01269 3.04230 0.99986 

2 0.01231 0.01255 0.01246 0.01120 0.01255 0.01277 2.85250 0.99968 

3 0.01269 0.01290 0.01280 0.01187 0.01290 0.01434 3.52880 0.99836 

4 0.01400 0.01413 0.01401 0.01346 0.01412 0.01345 3.26300 0.99866 

 

 

  

 

In cases 3 and 3b 6 masses are located at the same position but with different mass magnitude. The results 
present quite significant differences. In case 3 the scaling factor corresponding to the first mode are 
acceptable but in the values corresponding to the other three modes are too high. In case 3b, which has the 
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Figure 3a and 3b: SSI stabilization diagram for 21 and 14 masses configurations. 
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same mass locations but less mass magnitude, the accuracy in the results improves. On one hand, it is not a 
good strategy to optimize many modes simultaneously with only a few heavy masses. On the other hand, the 
gap and the friction in the supports change depending on the location and the magnitude of the masses, so 
that, the non linear effects are mass dependent. So, although better results are expected when the ratio ω0/ω1 
is higher [10], in this particular case, the dynamic behavior change of the slab is too much and the results 
don’t present good accuracy. That is, although the mode shapes do not change significantly the dynamic 
behavior of the structure is quite different, as shown in Figure 4. Anyway, in both cases the results obtained 
for the different mass change methods are similar, indicating that none of them improve the results when a 
poor strategy is used. 

  

Figure 4: SVD of cases 3 (left) and 3b (right) 

4.2. Non-symmetric mass configurations 

Cases 4 and 5 correspond to two non-symmetric mass configurations. The results are presented in Table 5 
for both cases with EFDD analysis. It can be seen that some mode shapes change significantly. As in case 3, 
there is a lot of concentrated mass on the slab and therefore there are important changes in the dynamic 
behavior of the structure due to the non linear effects. As expected, the results from α00P and α00P are the most 
inaccurate and α00P, in particular, gives lower values than the other approaches. Although expressions α01, α* 
and α01B use the modified mode shapes, the results are still not particularly good. In α01B (the projection 
approach) the κ factor that is introduced to improve the results is not enough due to large changes in mode 
shapes, where the new modified mode shape can be a projection of more than one un-modified mode shape. 
Nevertheless, α01B improves the results compared with α01 and α*.  

Table 5: Non-symmetric mass configurations (EFDD) 

EFDD Case 4: 3 MASSES - 350 kg Each DOF [7 13 19] 

Mode α00 α01 α* α00P α01B αFRF's ∆ω [%] MAC 

1 0.01219 0.01216 0.01216 0.01176 0.01216 0.01269 3.69273 0.99992 

2 0.01455 0.01430 0.01430 0.01393 0.01440 0.01277 8.30466 0.97431 

3 0.01862 0.02190 0.02192 0.01703 0.02027 0.01434 8.72393 0.99300 

EFDD Case 5: 4 MASSES - DOF's [7 (425 kg) 13 (150 kg) 19 (200 kg) 21 (275 kg)] 

Mode α00 α01 α* α00P α01B αFRF's ∆ω [%] MAC 

1 0.01452 0.01452 0.01451 0.01378 0.01452 0.01269 6.51488 0.99957 

2 0.01382 0.01421 0.01415 0.01291 0.01417 0.01277 8.23031 0.99104 

3 0.01592 0.01751 0.01731 0.01487 0.01737 0.01434 8.81142 0.96573 

4 0.01781 0.01832 0.01724 0.01651 0.01749 0.01345 9.12996 0.86864 
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5. Conclusions 

• Different mass change expressions have been applied to estimate the scaling factors of a 15 tonnes 
concrete slab. The results show that all the methods estimate the scaling factors with good accuracy 
when a good mass change strategy is used. 
 

• The approach of Parloo et al. [2] is the one that estimates the scaling factors with the largest errors for all 
the mass change configurations. 
 

• The scaling factors obtained directly from the FRF’s present the same or even higher uncertainties that 
the scaling factors obtained by means of the mass change method.  
 

• The Bernal projection approach [7] provides better results when mode shapes change significantly.  
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