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ABSTRACT 
Evaluation of defects in heterogeneous materials, such as cellulose-fiber composites, can lead to methods for 
improving strength. Full-field displacement measurement techniques, e.g., digital image correlation and electronic 
speckle pattern interferometry, provide useful information by which defects can be evaluated. Inverse Methods 
(IM) have been used to determine material properties from full-field displacement data. In homogenous materials, 
the resulting system of equations relating displacements with applied load and constitutive properties is 
overdetermined and is solved with traditional least squares methods. However, heterogeneous materials create 
an underdetermined system that cannot be addressed in the same way. Numerically simulated heterogeneous, 
orthotropic materials were evaluated in a 2-D finite element model, and the resulting nodal displacements were 
used as input to an IM algorithm. The algorithm determined local moduli, Ex and Ey, with errors, ranging from 9% 
to 20%. Errors in calculated Gxy were greater. Techniques for reducing error are provided. Simulations suggested 
IM can be an important tool in defect evaluation given full-field displacement measurements. 
 
INTRODUCTION 
All practical engineering materials contain strength-reducing defects. Defects increase local stresses above far-
field applied stress through disorder, discontinuities, and material variability. For many years, measurement of 
strength reduction was a primary method of defect detection. In general, defects lower strength by concentrating 
stresses to levels that can be an order of magnitude greater than far-field stresses. Size, location, and frequency 
of defects in crystalline and ceramic materials have been an area of active research for many years. Hull and 
Bacon [1] described the stress fields caused by a variety of defects in crystalline solids. 
 
Defect analysis of materials containing long-chain polymers, such as cellulose fibers in paper, has concentrated 
on fracture behavior [2-4]. However, papermaking also creates defects through variations in fiber alignment, fiber-
to-fiber bonding, distribution of fiber lengths, and other parameters. As the density of native cellulose approaches 
1500 kg/m3 and paper density ranges from 600-800 kg/m3, a large amount of void space is present that generates 
geometric defects with a range of sizes and shapes. As in crystalline materials [5], these defects can be detected 
through stress-distribution analysis. 
 
One method of evaluating stress distribution is the use of inverse methods (IM). Avril and Pierron [6] reviewed 
several IM approaches and showed their general equivalency. IM can be generally described as the iterative 
adjustment of parameters in a numerical model, usually a FEM (finite element method) model, to minimize the 
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difference between an experimentally measured quantity and the numerically calculated quantity. For example, 
adjustable parameters may be constitutive properties and the measured quantities may be displacements. 
  
By comparing FEM calculated out-of-plane displacements with those  measured by shadow moiré, Le Magorou et 
al. [7] used IM to determine bending stiffness in composite wood panel. Molimard et al. [8] evaluated Exx, Eyy, xy, 
and Gxy of a  composite material by minimizing the difference between moiré-measured displacements and those 
predicted by FEM in a perforated tensile plate. Similarly, Genovese et al. [9] used IM procedures to evaluate a 
truss system and a composite plate. Each of these references incorporated a specific type of IM entitled FEMU-U 
(finite element method updating–displacement). 
 
With FEMU-U, the r.m.s. (root mean square) of displacement differences, also called a cost function, between 
measured values and those predicted by FEM are minimized by iteratively changing constitutive parameters in 
the FEM model. FEMU-U is attractive because displacements are first-order outputs of high-resolution full-field 
techniques of DIC and ESPI. Strain, a second-order output, has greater noise associated with numerical 
differentiation. 
 
A common feature of these earlier investigations [7-9] is that only homogeneous materials were evaluated. The 
resulting system of equations was overdetermined. In 2-D models, the degree of freedom is (number of nodes) x 
2 – (number of constitutive parameters) – 1. For homogeneous, isotropic materials, the number of constitutive 
parameters is two (E, ); for homogeneous, orthotropic materials, the number of constitutive parameters is 4 (E1, 
E2, 12, G12). For either case, the number of degrees of freedom is large and the problem has a unique solution 
based on minimizing least squares of the chosen cost function. 
 
 Quasi-heterogeneous material systems have been evaluated by Sutton et al. [10], who evaluated a weld-zone 
between two isotropic materials, and by Avril et al. [11], who identified the stiffness ratio between a high modulus 
spherical inclusion within a low modulus material. In these cases, a large portion of each specimen was 
homogeneous and isotropic. 
 
Contrasted with isotropic cases, the system of equations associated with evaluating the constitutive parameters of 
heterogeneous, orthotropic materials is underdetermined in that there are many more parameters to evaluate 
than available inputs. A heterogeneous, orthotropic FEM model consisting of 100 four-node quadrilateral 
elements, arranged in a 5 x 20 array, has 126 nodes (252 displacement inputs) and 400 constitutive parameters 
to be determined. Underdetermined systems have an infinite number of solutions; the conventional least squares 
solution of an underdetermined system minimizes the appropriate cost function using the smallest value of 
constitutive parameters. 
 
Heterogeneous, orthotropic models are important in defect analysis of composite materials. In fibrous composites 
like paper, defects can be attributed to items such as locally varying orthotropy ratios, fiber misalignment, low 
weight and poorly bonded regions, non-uniform fiber length, and incorporation of foreign materials. Each of these 
defects alters the surrounding stress field, creating regions of tensile and compressive stress concentration. 
Knowledge of local stress combined with local constitutive parameters provides the basis for defect analysis. 
 
The goal of this work is to numerically simulate defects in heterogeneous, orthotropic materials and to use those 
simulations to evaluate the effectiveness of FEMU-U in determination of local constitutive parameters. These 
simulations reflect worst-case scenarios; material properties that limit variability, such as material characteristic 
length, were not incorporated in the simulations. Parasitic displacement noise was not included in this exploratory 
evaluation. The resulting system is underdetermined, but approaches are suggested for improving model 
conditioning. 
 
Here defects are defined by any combinations of disorder, discontinuity, or variability that cause local stresses to 
exceed far-field applied stresses. This work describes two simulations: (1) a simulation to produce defects 
through local constitutive property variability and (2) a simulation to incorporate nodal displacements of a uniaxial 
tensile and biaxial tensile specimen in a FEM model from the first simulation in a FEMU-U algorithm to determine 
local constitutive properties. 
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METHODS 
Evaluation of FEMU-U for heterogeneous materials was accomplished through numerical simulations of five 
parameters known to be associated with defects in paper materials and IM analysis of 100 randomly selected 
simulations. The five parameters included (1) principal elastic modulus, E1, (2) COV (coefficient of variation) of E1, 
(3) orthotropy ratio, R = E1/E2, (4) COV of misalignment angle, , between the principal material direction and 
direction of load application, and (5) COV of density, . The following pseudo-code generates material properties 
for 100 elements as input for a FEM model. 
 

 Let E1 vary from 4 GPa to 10 GPa in 0.5 GPa increments [13 cases] 
  Let COV(E1) vary from 10% to 40% in 10% increments [4 cases] 
  Generate 100 E11s randomly from normal distribution with mean E1 and COV(E1) 
   Let R (orthotropy ratio) vary from 2.0 to 5.0 in 0.25 increments [13 cases] 
   Generate 100 E22s randomly from normal distribution with mean E1/R and COV(E1) 
    Let COV( ) vary from 10% to 40% in 10% increments (with COV( ) evaluated at =45°[4   

   cases] (*see following discussion in text) 
    Generate 100 ’s randomly with mean 0° and COV( ) 
     Let COV( ) vary from 10% to 40% in 10% increments [4 cases] 
     Generate 100 ’s randomly with mean 1.0 and COV( ) 
      Let 12 = 0.23 (common for cellulose materials) 
      Let 21 = 12·E22/E11 for each of 100 elements 

      Let  for each of 100 elements (see [12]) 

     Let [E’
11, E’

22,G’
12] = · [E11,E22,G12] 

      Calculate Ex, Ey, xy, Gxy from transformation of E’
11,E’

22, 12,G’
12 with  for each of 100  

     elements 
 
*Calculation of : 100  were randomly generated with a mean of 45° and the specified COV and 45° was 
subtracted from each of the 100  values. 
 
The pseudo-code produces 10816 heterogeneous simulations, each with 100 elements. These simulations 
represent worst cases because large variations in material properties are allowed in adjacent elements. Such 
cases are justified by the large COV( ), as great as 40%, measured by researchers [13-15] during tensile testing. 
Material characteristic length or correlation distance, which describes how rapidly material properties vary in 
space, is not included. 
 
Here Kt, tensile stress concentration factor, is defined as the ratio of FEM-calculated element stress in the 
direction of far-field stress to far-field stress. Kc is defined as the ratio of FEM-calculated element stress in the 
direction orthogonal to far-field stress to far-field stress. A homogeneous, linear elastic tensile specimen has Kt 
equal to unity and Kc equal to zero. 
 
Each of the 10816 heterogeneous simulations was used as input for two FEM models, shown in Figures 1a and 
1b. The long model dimension corresponded with the y-direction because 2-direction properties are generally the 
most critical in applications involving paper materials. FEM analysis was performed within ANSYS® using 
PLANE42 (4-node quadrilateral) elements and an orthotropic material model. Nodal displacements were used as 
input to the FEMU-U solver. Parasitic noise was not added to nodal displacements but has been addressed in 
other simulations [6]. 
 
The particular inverse method used here is FEMU-U, finite element model updating via displacement gap. 
Through an iterative process that determines new constitutive parameters, the displacement difference between 
the simulation-produced nodal displacements and FEM nodal displacements is minimized. Nodal displacements 
come from the constitutive property variability simulations and are used as input to the FEMU-U algorithm. 
 
The function to be minimized is 
 

                                                           (1) 
where 
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  = vector containing nodal u-, v-displacements determined by heterogeneous model simulation 
   = vector containing nodal u-, v-displacements from FEM model 
         = vector containing constitutive parameters, Ex, Ey, xy, Gxy 
   = norm of  
 
Because Equation (1) is nonlinear with respect to , iterative procedures are appropriate methods for 
minimization of  and determination of . LMA (Levenberg–Marquardt Algorithm) (e.g., see [16]) is 
commonly used because it combines the benefits of Steepest Descent Method with Gauss–Newton Method. The 
LMA has the form 
 

                                                                     (2) 
where 
       =  iteration number 
  =  Jacobian and Jacobian transpose, determined by backward difference, ; m = number of 
   nodal displacements (number of nodes x 2 for planar models), n = number of constitutive   
   parameters x number of elements (100 in this work)  
      =  non-negative damping factor, adjusted each iteration step, adjusts between Steep Descent  
   Method and Gauss–Newton Method. 
 
The Jacobian, , in Equation (2) is calculated by backwards finite difference. The primary disadvantage of LMA is 
the need for matrix inversion during each iteration. In most applications, reduced iterations compensate for the 
matrix inversion.  
 
After calculating a new the constitutive parameters are checked for validity, e.g., a positive-definite stiffness 
matrix in the FEM model, and are adjusted if not valid. Invalid elements  are adjusted to global mean . The 
validated are inputs to a new FEM analysis and the resulting nodal displacements are used to determine . 
If  , the constitutive parameters are updated, ,  is reduced by a factor of 10, and the next 
iteration begins. If , then  is increased by a factor of 10 and  is not updated. As   0, LMA becomes 
exactly the Gauss–Newton Method. Typically 10 iterations were required. 
 
RESULTS AND DISCUSSION 
Figure 2a compares maximum tensile stress concentration, Kt, and maximum absolute value of the compressive 
stress concentration, Kc, for each heterogeneous simulation used as input for the FEM model in Figure 1a. 
Compressive failure strength for cellulose materials is typically 25% of tensile failure strength for both 1- and 2-
directions; therefore, the simulated defects appear sufficient to test the ability of IM to determine heterogeneous 
constitutive behavior. A randomly chosen 100-member subset of scenarios (shown in Figure 2b) was used for 
subsequent investigations. 
 
The model system, as originally formulated, was underdetermined because it contained 400 unknowns (Ex, Ey, 

xy, Gxy for each of the 100 elements) with 252 inputs (126 nodes with u-, v-displacements). A possibility to 
improve system conditioning is to increase node density, but ultimately this is not a practical solution. One would 
usually like to know local behavior at the smallest element size possible based on experimental measurement 
techniques. If a particular measurement technique can accurately provide displacement information within a 1-mm 
x 1-mm grid, a resulting FEM model using PLANE42 elements would have element size of 1 x 1 mm. An 8-node 
quadrilateral element, such as the ANSYS® PLANE82 element, would need to be 2 x 2 mm and the region over 
which the constitutive properties are determined for this element would be 4 times larger than for the PLANE42 
element. 
 
System conditioning was improved here following the example of other researchers, Avril et al. [17] for example, 
reduced the number of parameters by eliminating  from iterations. This approach was employed here in that xy 
was assumed to be a homogeneous 0.23, based on representative results from Baum et al. [18]. 
 
LMA requires two initial estimates of  in order to calculate  and begin iterations. Genovese et al. [9] evaluated 
the effect of initial estimates on the number of iterations using FEMU-U in an overdetermined system and found 
that poor initial estimates increased the iterations required for minimization, but minimization was eventually 
achieved. Although thorough evaluation of initial estimates is beyond the scope of this investigation, an informal 
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analysis showed lack of convergence for poor initial estimates, primarily because the rate of convergence was 
different for each of Ex, Ey, and Gxy. It was found that minimization could be achieved if the first initial estimate for 
each of Ex, Ey, and Gxy, was the same throughout and with each modulus estimated 2 times larger than expected. 
The second initial estimate assumed that each of the parameters was heterogeneous, with Ex and Ey 
approximated at their mean values with a COV of 10%, and randomly assigned to each of the 100 elements. The 
mean value initial guess for Ex and Ey was justified because these values are generated during the same 
experimental tests used to capture full-field displacements. The second initial estimate for element Gxy was 

calculated as in the pseudo-code, with xy = 0.23, i.e,.  . 

Figures 3a and 3b show some results of FEMU-U applied to 100 simulations of the uniaxial load model, illustrated 
in Figure 1a. Root mean square errors provide an estimate of global error and were calculated according to 

                                                      (3) 

where 
one of Ex, Ey or Gxy 

Some correlation appeared evident in Figure 3a between the errors of Ex and Ey;  increased with 
.This type of behavior was expected because error in Ex cannot be compensated in Ey. The converse 

is also true. Such an understanding has practical application in that usually some material behavior is known prior 
to evaluation. If an FEMU-U algorithm for an underdetermined system produces a result contrary to known 
behavior in Ex or Ey, all material parameters are likely inaccurate. 

A similar correlation was not evident in Figure 3b. Errors in the calculation of Gxy were higher and had no general 
trend with errors in Ey. Shear-induced nodal displacement was minimal for the uniaxial loading in Figure 1a and 
was created by nearby property heterogeneity. Another factor increasing  was a poor initial estimate. 
Avril et al. [17] used an Iosipescu shear test for accurate determination of Gxy in a homogeneous, orthotropic 
material. 

Simulations allowed freedom to investigate unrealistic test geometries, such as in Figure 1b. This geometry was 
included to determine if FEMU-U more accurately determines Ex, Ey, and Gxy with alternate loading configurations. 
Figures 4a and 4b show errors of moduli as determined with the biaxial load geometry. The errors were similar to 
those in Figures 3a and 3b. No significant improvement in Ex, Ey, and Gxy were observed. 

It is encouraging to note that comparison of Figures 3a and 4a suggests that uniaxial testing is sufficient for Ex, Ey 
determination. However, accurate determination of local Gxy seems to require a test geometry with significant 
shear behavior.    

Errors shown in Figures 3 and 4 may seem high considering the lack of parasitic noise in simulated nodal 
displacements. This type of noise was not introduced because it creates a specific length scale that can be 
accurately determined only when a specimen geometry and evaluation scale are determined.  

Errors in moduli determination can be reduced by determination of xy. In specific simulations with large orthotropy 
ratios, inaccuracy of xy greatly increases errors in moduli. In applications, determination of local xy may be 
important because locally negative values may exist. 

We are working to improve the accuracy of FEMU-U in defect analysis in the following ways: 
 Material correlation length—This length scale can be used to limit the gradient of moduli changes. 
 Knowledge of defect location—Nodal displacements in the region of the defect can be weighted to 

improve moduli determination near that region. 
 Moduli filtering—Similar to correlation length, filtering can be used to damp periodic large moduli 

fluctuations associated with displacement measurement errors. 
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CONCLUSION 
Defect analysis of materials can be accomplished by the determination of stress concentrations within materials. 
Numerical simulations were performed to create a variety of heterogeneous models that exhibited tensile and 
compressive stress concentrations. Nodal displacements, as calculated by a heterogeneous, orthotropic FEM 
model, were used in a FEMU-U algorithm to determine its success in local moduli evaluation. The resulting 
system was underdetermined as it attempted to compute 300 moduli from 252 inputs. Ex and Ey, as determined 
by FEMU-U, had similar errors, from 9% to 20%. Calculations of Gxy had larger errors. Uniaxial and biaxial models 
had similar errors in moduli determinations. Some portion of the errors was attributed to the elimination of 
Poisson’s Ratio in the FEMU-U algorithm. 
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Figure 1a: FEM model for uniaxial loading. 

 
 

Figure 1b: FEM model used for biaxial loading. 

 

 
 

Figure 2a: Maximum tensile stress concentration 
compared to minimum compressive stress 
concentration for each simulation. 

Figure 2b: A subset of 100 randomly chosen 
simulations from Figure 2a subsequently used for 
FEMU-U. 

  
Figure 3a: Root mean square error of Ey and Ex for 
uniaxial loading, as a % of actual mean Ey and Ex. 

Figure 3b: Root mean square error of Ey and Gxy for 
uniaxial loading, as a % of actual mean Ey and Gxy. 
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Figure 4a: Root mean square error of Ey and Ex for 
biaxial loading, as a % of actual mean Ey and Ex. 

Figure 4b: Root mean square error of Ey and Gxy for 
biaxial loading, as a % of actual mean Ey and Gxy. 
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