
Chapter 8

Cognitive Dialog Systems for Dynamic

Environments: Progress and Challenges

Felix Putze and Tanja Schultz

Abstract In this chapter, we present our existing setup and ongoing research on the

development of cognitive dialog systems for dynamic environments like cars,

including the main components that we consider necessary to build dialog systems

to estimate the user’s mental processes (hence, cognitive) and adapt their behavior

accordingly. In conducting realistic testing and recording environment to produce

real-life data, a realistic driving simulator was used. We also needed to observe the

user during these interactions in a multimodal way to estimate the current user state

based on this data. This information is integrated with cognitive modeling

components that enrich the observational data. We finally needed a dialog manage-

ment system which is able to use this information for adapting its interaction

behavior accordingly. In this chapter, we report our progress in building these

components, give an overview over the challenges we identified during this work

and the solutions we aim for.

Keywords Cognitive dialog system • Cognitive model • Human machine

interaction • User state detection

8.1 Introduction

Spoken dialog systems have matured to a point where they find their way to many

real-world applications. However, their application in very dynamic scenarios remains

an open and very interesting task. Spoken dialog systems as an interface for in-car

services are very desirable and at the same time very challenging. On one hand, they

offer eyes-free and hands-free control without visual or manual distraction from the

primary driving task. On the other hand, this task uses the user’s cognitive capacity, so
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we can no longer assume to dealwith a fully attentive and perfect interaction partner as

in more static environments. Another important aspect is the adaptation to individual

preferences. As dialog sessions in driving scenarios may last for several hours, we

have to take into account both changing user states, i.e., cognitive workload or

emotions, as well as lasting user traits, e.g., gender or personality. Both types of

individual differences influence the optimal interaction behavior which the system

should use for maximizing user satisfaction, as user studies like [1] show. There is

potential for a large range of adaptation measures: One example is reacting to

increased cognitive workload by taking the initiative from the user, delaying noncriti-

cal information, or reducing its complexity. Another one is adjusting the system to the

user’s emotional state and personality by selecting appropriate wording, voice, and

turn-taking behavior. We propose to use systematic multimodal observation and state

classification of the user derived from a variety of different biosignals. This metadata

is augmented with a more detailed model-based representation of the user’s mental

processes and helps to select appropriate adaptation measures. Combining a global

model of the user’s cognition and affective states for the purpose of building adaptive

interaction strategies is new to the field of spoken in-car dialog systems.

After a review of related work, the following sections describe all components

which are necessary to develop and evaluate cognitive interaction systems for in-

car applications: a driving simulator to create a realistic environment for

recordings, an interaction system as a platform for human–machine interaction, a

recording setup to collect data for training and testing of systems, a recording

software to deal with the challenges of multiple input streams, and a user state

detection framework and components to model human cognition.

8.2 Related Work

In the last years, many approaches for user models for application in adaptive in-car

dialog systems exist. Like [2], most of them rely on heuristics and indirect user state

detection.

The authors of [3] describe a dialog system that bases its handcrafted dialog

strategy for a gaming interface on the user’s emotional state, derived from prosody,

language, and visual features. Together with the history of interaction, the current

user command, and other discourse features, the user state can be accessed by the

dialog strategy in the form of a decision tree.

Fatma Nasoz and Christin Lisetti [4] describe a user-modeling approach for an

intelligent driving assistant. This model is based on a Bayesian network which

allows to derive the most useful system action (in terms of driving safety) given

the estimated driver state, which consists of emotional state, personality, and other

features and is partially derived from physiological measurements like the user’s

heart rate. The score for each action is calculated using a utility node which measures

the probability of safety improvement given the current user state. Similar decision-

theoretic, user-model-based action evaluation approaches are used in [5], which
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also include an active sensor selection mechanism. Cristina Conati [6] presents an

educational dialog system that can decide for different user assistance options, given

the user’s emotional state (derived from different modalities). This work bases its

network on the cognitive OCC (by Ortony, Clore, and Collins) appraisal theory,

which relates the users’ emotions with their goals and expectations.

In the area of user state detection from biosignals, Liang, Reyes, and Lee [7]

developed a real-time workload classifier in the car using facial features, like pupil

diameter or gaze direction, extracted from videos of the driver. The ten participants

followed a car with varying speed while performing a secondary memory and

comparison task. Using support vector machines, the authors achieved a recognition

rate of 81.1% on average for the recognition of cognitive workload. Healey and

Picard [8] developed a classifier to monitor the stress levels in daily life car-driving

tasks. They collected data from 24 real-life drives of at least 50-min duration and

used the biosignals electromyography, electrocardiography, and skin conductance

for their system. Linear discriminant analysis (LDA) was used for dimensionality

reduction, and a classifier using a linear decision function was able to discriminate

the three classes with accuracies of 100% (low workload), 94.7% (medium

workload), and 97.4% (high workload).

8.3 Driving Simulator

Testing and evaluation of different interaction strategies requires a realistic experi-

mental environment which reproduces all important effects and distractions seen in

real-life applications. While recording in a real car in real traffic situations creates

the most authentic sessions, the downsides of this approach are safety concerns with

early prototypes, the lack of reproducibility, and the missing ability of reliably

provoking scenarios which are relevant for the current investigation. Therefore, we

decided to build a driving simulator which is designed to create a realistic driving

experience. The main focus was not to build a physically correct car test bed but to

simulate the most important influences and distractions that occur during real

driving tasks, especially in situations where the application of a dialog system

plays an important role. We based our driving simulator on a real car and kept the

interior fully intact and functional to provide a realistic in-car feeling. The car is

surrounded by a projection wall, covering the view of the frontal and lateral

windows. The simulator features acoustic feedback via engine sound and environ-

mental surround sound and haptic feedback in the seat (via tactile transducers)

and steering wheel (via force feedback).

The simulator software is based on a modified gaming engine1. It was extended

using amultiscreen display, steeringwheel support, and simple ambient traffic control.

1MTA:SA: http://www.mtasa.com
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Its support for scripting scenarios in LUA allows us to configure individual driving

stages:We can position the driver in awide artificial environmentwith realistic urban

and rural areas, where we define a route represented by navigation directions for the

system. It is possible to trigger events at defined points to generate specific traffic

situations, position new elements in the environment, or influence the position or

driving characteristics of the car (Fig. 8.1).

8.4 Interaction Setup

While the user is driving, they interact (via close-talking microphone to reduce

noise) with a dialog system. In our current scenario, this constitutes a virtual

co-driver which acts as interactive tour guide and navigation system for the virtual

environment. To investigate the phenomena we are interested in, e.g., different

levels of workload, we created several scenarios specially designed for studying

man–machine interaction. This includes the handling of a variety of secondary

tasks, urban and rural routes, and several triggered events.

The virtual co-driver is present on a screen in the cockpit on which it is displayed

using the ThinkingHead2, a morphable 3D avatar, and is equipped with a grammar-

based speech recognition system and a speech synthesis component to vocally

communicate with the driver. The co-driver is driven by a lightweight interaction

manager which was designed especially for the purpose of adaptive dialog systems.

The interaction manager uses a rule-based engine which executes one or more rules

with preconditions that match the current interaction state, according to the

Fig. 8.1 The CSL driving simulator in action

2 http://thinkinghead.edu.au
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Information State Update paradigm [9]. The interaction state also comprises

variables that describe the detected user state to allow adaptive selection of speech

acts based on the user’s current situation.

The system is also able to switch its behavior between different styles for the

realization of one selected speech act, depending on the user’s state. Different

behavior styles can change the processing of speech acts in many aspects.

For example, the content of a speech act realization can differ in its length and

complexity based on the user’s workload. It is also possible to adjust the speaking

speed, the volume of the voice, and the stress of certain key phrases according to

this parameter. Using those parameters, the co-driver realizes a verbose, chatty, and

entertaining behavior if it detects a state of low cognitive workload. It presents

much information, tells occasional jokes, and shows expressive mimic.

For situations with high cognitive workload, the co-driver switches to a different,

more concise, and unobtrusive behavior to use the limited available cognitive

resources for the transmission of the most critical information. In this style, the

system also takes more initiative in the interaction, taking most noncritical

decisions from the user.

A user study [10] showed that a behavior which adapts to the changing user’s

cognitive load is both more efficient and also more satisfying for the user than a

nonadaptive one. By changing the information throughput depending on the

workload level, the system can optimally use the available cognitive resources of

the user without risking overload. This behavior was evaluated as empathic and

desirable by the users in a satisfaction questionnaire. It is therefore critical for a

cognitive interaction system to provide this kind of adaptation.

8.5 Recording Setup

During the interaction, we employ a variety of signals to observe the user in the car.

This is done for multiple reasons. First, an adaptive dialog system needs online data

streams from which it can extract meaningful features describing the user’s state.

Second, to train automatic recognizers that perform this user state classification, we

need to provide large amounts of labeled training data. To that end, we installed

multiple biosignal sensors in the car to get a reliable, continuous data stream

without obstructing or distracting the user too much.

We employ the following equipment to observe the user:

• Small cameras to record videos of the face and the upper body of the driver to

catch facial expressions and body pose.

• A close-talking microphone to record the user’s utterances

• Brain activity is measured using electroencephalography (EEG) with one of two

possible alternatives:

– A 16-electrode EEG cap with active electrodes for optimal signal quality and

coverage of all brain regions

– A 14-electrode gaming device (Epoc Emotiv) with saline electrodes for

increased usability and reduced setup time
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• A light sensor glove which measures skin conductance and heart rate

• A respiration belt on top of the clothes to measure respiration frequency

• Two facial electromyography (EMG) electrodes to record facial activity which

is not captured by the cameras.

The last three items all use the same recording interface and are either attached

to a universal signal recorder3 or directly connected via Bluetooth, which reduces

obstruction to a minimum. In addition, we employ indirect motion monitoring by

continuously recording the angle of the steering wheel and the acceleration and

brake pedals in the car.

In this recording setup, we already collected more than 100 interaction sessions

in the tour guide scenario, interacting with a virtual co-driver controlled by a human

wizard. Each interaction session comes with a collection of recorded biosignals,

a manual transcription, and the results of several questionnaires on user personality,

satisfaction, and task performance. This large collection allows a systematic inves-

tigation of interaction behavior under changing workload conditions.

8.6 Recording Software

Metadata extraction for dynamic dialog systems is required to work in real time.

To this end, we need to record multiple biosignal streams in a robust, fast, and

convenient way, offering interfaces to read data from very different signal sources

and output it to very different receivers like recognizers or visualization

components. To fulfill all requirements, we developed a new recording software

called BiosignalsStudio [11]. BiosignalsStudio is designed in a modular fashion

and allows to connect arbitrary input modules for data collection from a specific

device with arbitrary output modules which write data to files, visualize the data,

or send it to an external recognizer software via sockets. All modules share a

common generic data format which stores multiple data channels and a meta-

information block which contains the sampling frequency, detected errors, etc.

Each module can be connected to several receivers, allowing data from one source

to be stored to disk and visualized in parallel. There exists a number of interme-

diate modules which can be installed between input and output modules to

augment, filter, or transform the data. Currently, input modules for all connected

biosignal recording devices and several others (like gyro and acceleration

sensors) are available (Fig. 8.2).

As we operate with very different and asynchronous data streams, it is important to

store timestamps with each data block to ensure that only data which belongs together

is merged in the multimodal fusion of the recognition engine. These timestamps are

3Varioport, Becker MediTec
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generated at the earliest point possible which is usually when receiving the data block

from the hardware interface (some devices are able to generate hardware timestamps,

which is preferable). Timestamps within blocks of data are linearly interpolated. They

are stored together with one data file for each modality and detailed log files in one

directory per session, allowing easy and standardized access for all components,

regardless of the specific recording setup. For distributed recording on multiple

machines, timestamps are automatically synchronized via the NTP protocol. In this

situation, the software is also able to remotely control the recording from one machine

which starts and monitors the recording on the others.

8.7 User State Detection

The collected biosignal streams are passed on to a generic biosignal classification

framework that performs the following steps. First, the data is filtered and cleaned

to remove technical and physiological artifacts from the signals. For this purpose,

we employ several source separation techniques, e.g., independent component

analysis (ICA) to remove eyeblinks from the EEG signal or canonical correlation

regression (CCR) to deal with EMG artifacts. From the cleaned signals, we then

calculate features to describe them. Features are extracted on overlapping

windows of varying length, depending on the signal type and on characteristics

of the user state in question. For the biosignals, we extract features both from the

time and the frequency domain. Typical time domain features are mean, variance,

or zero-crossing rate, calculated on the raw feature or on the first or second

derivative. Frequency domain features are especially relevant for EEG signals.

Classical features here describe the band power in the a-,b-,g-,d-, and y-bands

Fig. 8.2 (Part of) the recording setup with EEG cap, audio headset, and sensor glove in the driving

simulator
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(see [10, 13] for details), but other features, e.g., derived using the Wavelet

transform, are also available.

For the speech signal recorded during the interaction, we use the software Praat4

to extract prosodic features like pitch, jitter, or shimmer from the user’s voice. To

capture linguistic features, we use the Linguistic Inquiry and Word Count5 that

categorizes each word in its vocabulary in one or more groups, e.g., “negative

emotional word” or “self reference.” Active Appearance Models [12] are used to

capture information on the facial expression and activity of the user as recorded by

the camera in the car.

To arrive at a person-independent system, features are normalized using range

normalization or z-normalization. The normalization statistics are calculated on

additional holdout data which is not used for other steps of training and evaluation.

This kind of data can also be collected in an unsupervised fashion as enrolment data

to bootstrap the system for a new user.

As we generate a very large initial feature set, we employ Forward Feature

Selection during the training step to reduce the dimensionality of the feature space,

preceded by a correlation-based filtering to reduce the runtime of the selection.

For classification, the final feature vectors are then passed into a statistical

classifier of which multiple variants are available, e.g., a support vector machine

(SVM) using Radial Basis Function kernels or a classifier based on linear discrimi-

nant analysis (LDA). More exactly, there is one classifier for each modality as this

allows dynamic weighting of input channels, e.g., to account for noise or defective

sensors. To arrive at a final classification result, the output of all classifiers is

combined using majority voting.

One important application for user state detection is the recognition of cognitive

workload from multiple biosignals. In a large evaluation, we developed a

user-independent classification system that discriminates between low and high work-

load. For each participant, we record a number of different sessions in a driving

scenario. Relaxing phases or simple driving tasks are labeled as low workload while

driving sections with different secondary tasks (visual and auditive cognitive tests) are

labeled as high workload sessions. From a prestudy [13], we know, from evaluation of

subjective workload using the NASA TLX questionnaire, that this assignment

corresponds to experienced load levels. Figure 8.3 summarizes the recognition rates

achieved in the evaluation using a cross-validation scheme to classify data from

relaxing phases and high workload phases induced by driving with secondary task.

We see that a person-independent discrimination of the two conditions is possible, and

that a decision fusion approach yields the best results.

4 http://www.praat.org
5 http://www.liwc.net
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8.8 Cognitive Modeling

Cognitive architectures like ACT-R [14] aim to provide a general model of human

cognition for simulation or prediction. For the use in adaptive dialog systems, they

help to represent and estimate nonobservable user states and are also able to predict

future user behavior from a given state. This is very useful for two purposes. On one

hand, a cognitive model can support the empirical, biosignal-based classification of

user states by proving information derived from the evaluation of more formal

models of cognition which are backed with a priori knowledge from psychology

and cognitive science. On the other hand, a cognitive model is able to simulate

human behavior in situations where no real user is available; this is a typical use

case in evaluation and training situations in early phases of the development of a

new system.

As a first cognitive modeling component, we implement a memory and interest

model to represent the user’s activation of, and interest in, the actual and potential

discourse items. Our focus here is to reflect the fact that the user cannot remember

all discourse items correctly and with the same intensity. This is of special impor-

tance in situations where the dialog system interrupts an ongoing dialog for more

important information or during time-critical situations.

The memory model represents for each time slice an activation value for each

possible discourse item in the domain ontology, including relations between those

items. The activation determines how present each item currently is in the user’s

memory and how it can be used to derive the chance of successful retrieval of this

Fig. 8.3 Recognition rates of a multimodal biosignal classifier for discriminating two conditions

of low and high workload in a driving scenario. We show recognition rates for EEG, photoplethys-

mography (PPG), skin conductance (EDA), respiration (RESP), and decision fusion
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item and the time necessary to perform such a retrieval process. We based our

system on the connectionist approach presented in the LTMc model [15], which was

proposed to solve some issues with the memory model of ACT-R. Here, each item

is represented as a node, connected with edges to other items that are semantically,

linguistically, or hierarchically related. These edges are used to spread activation

between nodes when one becomes activated, e.g., through a system speech act. We

also extended the LTMc model to better reflect the dynamics of a memory system

which is important to model topic switches in an interaction.

The interest model reflects the user’s current interest in each item. This is a

dynamic variable that depends not only on the situational context (spatial proxim-

ity, expressed interest) but also on more general, static factors. To represent this

variety of influences, we employ a Bayesian network for the interest model.

Both models are currently used to determine a general value of importance of

giving additional information to the user. This value allows us to weigh the speech

act of information presentation against other goals like navigation pointers or

entertainment. We do this by summing up the negative activation for all items,

weighed by the interest values of each item. This score is called competence urge,
based on the more general concept of urges that describe the needs of an individual

and that influence its emotions and actions [16]. This score is also used to determine

the items the system will present next to the user as they maximize the reduction of

the competence urge.

In a user study in the tour guide scenario [17], we showed that it is possible to

simulate plausible interactions using cognitive models. Utterances of the user

where generated using the memory model which was stimulated from the percep-

tion of external stimuli and queried for the most highly activated items. The system

in those simulations generated its utterances using its own model of the user’s

memory with a similar structure than the generative model, but separate activation

scores to track what is going on in the user’s mind. The behavior of both the system

and the simulated user was learned in a Reinforcement Learning-based manner,

using the urge mechanism to weight the goals of the agents. The generated

interactions were played back to human judges and perceived as similar to a

handcrafted gold standard and as significantly better than the baseline behavior.

Future applications for the memory model comprise its influence on the user

understanding model, by making the chance for misunderstandings dependent on

the activation level of the relevant items and the application for coherent user

simulation in evaluation and training of interaction strategies.

8.9 Conclusions

The development of flexible, generic, and natural adaptation mechanisms for

cognitive interaction systems has seen great progress as reported in this chapter.

We implemented and tested a realistic driving simulator which will allow a large

number of experiments under controlled but nevertheless authentic conditions.
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We presented an adaptive dialog system that can change its behavior depending on

the state of its user. We have implemented a framework of biosignal recording

components and statistical classifiers that are able to determine the user’s current

state, for example his cognitive workload. We investigate cognitive modeling

architectures to structure the user’s adversarial desires and to model the user’s

memory. The next step will bring all components together to create a system which

uses both biosignal-based user state detection and predictive models to a dialog

strategy which can adapt flexibly to changes in the user’s state.
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