
Chapter 16

Integrated Pedestrian Detection
and Localization Using Stereo Cameras

Yu Wang and Jien Kato

Abstract Detecting and localizing other traffic participants, especially pedestrians,

from a moving vehicle have many applications in smart vehicles. In this work, we

address these tasks by utilizing image sensors, namely stereo cameras mounted on a

vehicle. Our proposed method integrates appearance-based pedestrian detection

and sparse depth estimation. To benefit from depth estimation, we map the prior

distribution of a human’s actual height onto the image to update the detection result.

Simultaneously, the depth information that contributed to correct pedestrians’

hypotheses is used for a better localization. The difference with other previous works

is that we take the trade-off between accuracy and computational cost in the first place

of consideration and try tomake themost efficient integration for onboard applications.

Keywords Histogram of Oriented Gradients (HOG) • INRIA data • Pedestrian

detection • Stereo cameras

16.1 Introduction

Pedestrian detection is a very fundamental component in many applications, such as

smart vehicles and robot navigation. In this chapter, we address this task by using

image sensor which has obvious advantages with regard to visibility and low setup

cost. In utilizing an image sensor, the common method of finding pedestrians is to

slide a window over all the scales and positions of the image, extract features from

each window to match with a pretrained model, and return a set of detections with

high-matching scores. Obviously, more distinctive features and more representative
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models will lead to better accuracy. However, improvement in this approach

sometimes comes with additional processing time which usually slows down the

entire system’s speed [1].

In most real-world applications, speed and accuracy are crucial issues and

should be addressed simultaneously. Of course, time-consuming methods are not

recommended. At the same time, the simplest and fastest methods are not robust

enough by themselves. An example is illustrated in Fig. 16.1. We apply a very

simple pedestrian detector described in [2] on the street view image. When

selecting the candidates using strict standards, as shown with continuous line

bounding boxes, many true occurrences for pedestrians were missed. As we make

the selection standard a little looser, some missed true occurrences were success-

fully found. But the second approach has a drawback. The false number increased.

This means that a detector using a simple feature and coarse model is not, by itself,

discriminative enough. The inadequacy, however, could be compensated to some

extent by using other cues from the image and background knowledge.

Several studies have tried to use other cues for pedestrian detection. Leibe et al. [3]

proposed the use of scene geometry to improve object detection. By assuming that

pedestrians can only be possibly supported by the ground plane, some false detection

results could be filtered out. In another work, Gavrila and Munder [4] presented a

system which involves a cascade of modules wherein each unit utilizes complemen-

tary visual criteria to narrow down the image searching space. These two were both

excellent works; however, additional cues aremainly used to get rid of false results but

unable to support a true one.

Fig. 16.1 Select candidates strictly (continuous line bounding boxes); use looser criterion, more

candidates were found (dashed line bounding boxes)
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In a more recent publication, Hoiem et al. [5] showed how to take advantage of

scene elements to jointly determine the camera’s viewpoint, object identities, and

surface geometry efficiently from a single image. By utilizing the probabilistic

relationship among the scene elements, their integration makes a simple detector

become much more discriminative. However, since the geometric estimation mod-

ule costs too much time, their method has limited usage.

In this chapter, we build upon these ideas and expand them by integrating a

simple appearance-based object detector with sparse depth estimation. By properly

modeling the interdependence between object hypotheses and their location, our

method could not only reject object hypotheses with unreasonable depth but also let

sensible depth information to support a true one. In addition, the way we use depth

is independent of prior assumptions and could be done quite fast.

16.2 Overall Strategy

Taking stereo images as input, our system mainly has two complementary modules

which are able to run in parallel. The first one is a pedestrian detector which

processes images from the left camera to find pedestrian hypotheses with image

features only. For every single pedestrian hypothesis in the image, the detector will

assign a bounding box around it and a detection score to indicate its confidence.

The second module is sparse depth estimation which utilizes the stereo images

together to estimate a sparse depth map of images from the left camera.

In order to integrate the two modules together, we use a probabilistic way. We

assume that an object’s imaged height is conditioned on the object category and its

distance with respect to the camera. But the object identity and their distance are

independent from each other. Using a graphical model, we can represent the

conditional independence over the object identities oi, their imaged height hi, and
the corresponding 3D distance di, as shown in Fig. 16.2. The I denotes the left

camera image, and D means sparse depth map which could be estimated using the

stereo image pair, both are observed evidences in our model. Typically, we have n
object hypotheses in an image, where n varies by image.

With this model, the overall joint probability of the scene elements could be

written in the following equation as

P o; d; h; I;Dð Þ ¼
Y
i

P oið ÞP dið ÞP Djdið ÞP Ijoið ÞPðhijoi; diÞ (16.1)

Fig. 16.2 Graphical model
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With observed evidences I andD, we can use Bayes rule to give the likelihood of
the scene elements conditioned on the evidences as

P o; d; hjI;Dð Þ /
Y
i

P hijoi; dið ÞP oijIð ÞP dijDð Þ (16.2)

The proportionality equation is with respect to I andDwhich is constant evidence

from stereo images. On the right-hand side, P oijIð Þ means the confidence of an

object hypothesis given image evidence, which could be estimated by our pedestrian

detector. P hijoi; dið Þ indicates the probability of a hypothesis observed with imaged

height hi, conditioned on its category and 3D depth. In our case, it could be estimated

by introducing a prior distribution of the pedestrians’ actual height. That P dijDð Þ is
the confidence of depth estimation given the depth evidence from a depth map.

In this work, we estimate depth in an explicit way wherein the depth for each

object hypothesis is exact and without any probabilistic description. This allows us

to margin out the d on both left- and right-hand sides; for a single object hypothesis,
we then get

P oi; hijI;Dð Þ / P hijoi; dið ÞP oijIð Þ (16.3)

where P oi; hijI;Dð Þmeans, given the image evidences I and D, the probability of an
object hypothesis oi with its imaged height hi. It is propagated with the P hijoi; dið Þ
and P oijIð Þ, and could be considered as an improved confidence estimation of

object hypothesis which not only takes into account the image evidence but also

the depth information. We get the improved detection result by sorting the score

of P oi; hijI;Dð Þ for each object hypothesis and selecting the high ones. In the

following paragraph, we will introduce the way we get P hijoi; dið Þand P oijIð Þ
from stereo images.

16.3 Pedestrian Detection

In order to obtain a set of pedestrian hypotheses, we built a baseline detector similar

to the one described in [6]. As classifier, the Histogram of Oriented Gradients

(HOG) feature and linear support vector machine was used. To distinguish this from

the original 36-dimensional HOG feature used in [6], we employed an alternative

31-dimensional implementation from [1] to replace it. Also, to simplify the training

process and speed up the runtime performance, a lower-dimensional feature set

which could make a classifier with less parameters was utilized.

While training our detector, we used an existing package SVMPerf [7], which is

highly optimized for training binary two-class classification SVMs with large data

set. For this study, the INRIA person data set which has been organized into 3,610

positive samples of pedestrian with the size 70 by 134 was utilized. The negative
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samples contain a fixed number of 15,000 patches that randomly selected from

1,239 person-free images of that data set. The training returns a 3,255-dimensional

linear classifier (the size of 70 by 134 patch image’s feature vector).

When a novel image emerges, we slide a window over the scales and positions to

find the hypotheses. For each subwindow, we evaluate a score by doing dot product

of the pretrained linear model and feature vector of the image patch. If the score is

larger than the threshold, we either take it as a hypothesis or discard it. Typically,

for an image portion that is likely to be a pedestrian instance, the score for the boxes

around it will be very high. In order to eliminate any overlapped bounding boxes for

the same instance, we perform non-maxima suppression to select only one box for

each instance.

In this way, we get a set of hypotheses which is expected to have a pedestrian

instance, each one with a bounding box and a classification score. However, the

classification score is within the interval �1;þ1ð Þ. Since our graphical model

wants a probabilistic input P oijIð Þ which should be in the interval (0, 1), we

therefore transform the SVM output into a probability form with logistic regression:

P ¼ 1

1þ eAxþB
(16.4)

where x is the classification score output from the dot product, P is the corres-

ponding probability form of the score, and A and B are parameters which could be

estimated by collecting a set of x and p. With novel classification score x0, we take
the corresponding p0 as P oijIð Þ.

16.4 Localization of Pedestrian Instance

The use of a descriptor-based matching approach to obtain a sparse depth map

distinguishes our work from the previous studies on how to estimate depth in a

dense way. Though it could only provide a sparse representation of the scene, it is

less ambiguous than dense matching which suffers from occlusion and nontexture

regions. To make the depth map not “too sparse,” we use two different kinds of key

points as in [8] to relate the stereo images (Fig. 16.3).

We extract scale-invariant key points using Difference-of-Gaussian operator [10]

and corner key point with Harris operator. For the scale-invariant key points, we

utilize a GPU implementation of SIFT to compute their descriptors and match them

by measuring the Euclidean distance. This implementation benefits from the

Nvidia’s CUDA technology and can get a speed of 25 Hz when processing images

with size 640 by 480, which we think is enough for general real-world applications.

The corner points are matched with a correlation window by normalized cross-

correlation. Using two kinds of key points could help establish sufficient raw

correspondences fast.
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With the raw matching result, we further refine them by enforcing Epipolar

constraint and perform linear triangulation to get their 3D coordinates through

precalibrated camera matrices. We set the left camera’s optical center as the

world origin, and then the z coordinate is the depth of each matched key point.

For each object hypothesis that we obtained, we collect all the matched key

points inside its bounding box and select one representative for that bounding box’s

depth. Here we use a simple way to select the representative point by finding the

nearest feature point around the diagonals’ intersection and take the depth as the

hypothesis’ depth di.
Despite its simplicity, this solution performs reasonably well compared with

other approaches such as using mean-shift to directly find the coordinates of the

mass center. The reason may be that a lot of matched point is found around the

object’s boundary, and the mean-shift stops at local maxima frequently.

16.5 Utilize a Prior Height Distribution

The probability for the imaged height of a pedestrian hypothesis P hijoi; dið Þ is

obtained by a product of the observed height of its bounding box hi and a distance-

conditioned height distribution P hijoi; dið Þ. The later one is obtained using depth di.
and a prior distribution of human’s actual height.

Given a class-conditioned object hypothesisoi, its distance di; and the camera’s

focal length f which we already know from the camera’s calibration, we further

model the height of an adult human using a simple Gaussian. The parameters of this

Gaussian could be estimated from statistical data. We follow [5] to use a mean of

1.7 m and a standard derivation of 0.085 m for the pedestrian height distribution;

therefore, we have the height distribution as H � N 1:7; 0:0852
� �

.

Given the prior distribution of pedestrian’s actual height H, by using similarity

relation, we can represent the imaged pedestrian’s height as h ¼ Hf jD. Because of
H � N 1:7; 0:0852

� �
, h is also a simple Gaussian with 1:7f=di as mean and

0:085f=di as standard derivation. Therefore, we get

Fig. 16.3 Key points (left) and their 3D coordinates
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P hjoi; dið Þ � N 1:7
f

di
; 0:085

f

di

� �2
 !

(16.5)

With this imaged height distribution and the observed height hi of each bounding

box, the confidence of every single hypothesis could be updated by taking the

product of the detector output P oijIð Þ and the Pðhjoi; diÞ. The updated confidence

obtained in this way has thus taken into account the depth information and is

expected to be more discriminative than the visual-features-only estimated result.

16.6 Experimental Results

We now present the experiment to show the performance of our method. The test

data we used is collected from the ETHZ pedestrians’ data set [9], which contains

5,235 pairs of stereo images that have been taken from either moving vehicles or

mobile robots. All these images are from precalibrated cameras, with pedestrians on

the left camera images annotated with bounding boxes as ground truth. The data

were taken as sequences, so there are some continuous frames with almost the same

scene. Since our work is only trying to evaluate the detection performance of single

frame, we rearrange the data set by picking out image pairs with different scene

structures. The final test set contains 133 pairs of stereo images with 798 annotations

as ground truth.

In our experiment, we test three detection systems. First is our baseline detector,

which uses HOG feature and linear support vector machine. The second is our

proposed system which integrates this baseline detector and sparse depth estima-

tion. The third one is UoCTTI detector [1], which employs mixtures of multiscale

deformable part models. This is one of the best detectors in the PASCAL object

detection challenge.

Some example detection results of the three systems on difficult images from our

133 stereo pairs’ data set are shown in Fig. 16.4. The three columns from left to

right show the output from our baseline detection system, proposed integration

system, and UoCTTI system, respectively, on the same image. For a fair compari-

son, only the detections within the top ten confidences of each system are treated as

output.

In general, the UoCTTI detector performed the best, as a result of more advanced

modeling. Besides robust low-level feature, this detector uses a hierarchical struc-

ture model called deformable part model to represent the object category. In general,

their detector finds pedestrians not only because they look like a person but also

because they have parts (such as head, hands, legs), and these parts have appropriate

positions. This makes the detector especially robust against occlusion. When

distinguishing different human parts in crowded scene and large pedestrian volume

conditions, the UoCTTI performs much better than our baseline detector system and

our integration.
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When compared to the raw output of our baseline detector, our integration

system did quite well and shows significant improvement in the different scenarios.

The reason is that we integrated the depth cue. Through it, the system could find

pedestrians better by taking into account the observed height of detections and

update the detection confidence to become more reasonable.

From the experiment, in some board scene images, as shown in the second row

of Fig. 16.4, our integration system could perform better than the UoCTTI detector.

We think the reason is the trade-off between different sources of information. While

the UoCTTI detector utilizes both a deformable part model and the position of body

parts to improve the detection, at the same time, there are drawbacks to this

approach. Because the final detection result is partially based on the parts and the

corresponding locations, in cases of low image resolution (parts are not visually

clear) or the pedestrian instance is small (parts are not distinguishable), their model

will penalize the detection and result in a low detection score. In contrast, our

integration system uses depth information which is not dependent on any kind of

condition (as long as the depth is accurately estimated). For the pedestrian instances

that are small in the image, depth will help more because depth information itself

does not depend on the resolution of the image.

Our quantitative experiment uses precision–recall (PR) curve to measure how a

detection system performs in practice. It says a big deal about how the objects are

Fig. 16.4 Experimental results: (left) baseline system, (middle) integration system, (right)
UoCTTI system
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detected in practice. For a fair comparison, we also take top ten ranked hypotheses

as system output. The comparison of the three systems’ performance on the 133

stereo pairs is plotted in Fig. 16.5.

In most cases, the detector with deformable-part-based model has maintained a

precision near 0.5. By integrating depth information, our proposed system

outperforms the baseline detector significantly and closes to the best one.

We also compute an average precision for the three methods to show the overall

performance. The results are 0.2325 (our method), 0.1738 (baseline), and 0.2530

(UoCTTI), respectively.

Without any optimization of speed, on a 2.83-G Intel Core 2 Quad CPU with 4 G

RAM, the average speed of the threemethods are 1.73 s (ourmethod), 1.7 s (baseline),

and 8.4 s (UoCTTI) on a single 640 by 480 image. TheUoCTTI detector is quite time-

consuming. It usesnearlyfive timesmore thanour baselinedetector. Since theUoCTTI

detector also uses HOG as low-level feature set, its disadvantage in runtime may

mainly boil down to the complicated model it uses. Therefore, even if it is powerful,

it could not be used in some applications before the runtime issue could be resolved.

By carefully selecting the efficient cues, our integration system could also be

very fast. Though this runtime performance is not good enough for some

applications, it still has room for improvement. Currently, in our system, the most

time-consuming part is the HOG feature pyramid computation and sliding window

searching. Since these two kinds of processing can be done much more faster by

using GPU programming, our integration system still have the potential to be used

in real-time applications.

Fig. 16.5 PR curve for the detection performance
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16.7 Conclusion

In this chapter, we proposed a method for pedestrian detection in traffic areas. We

integrate typical object detection method with sparse depth estimation. This enables

us to use 3D depth information naturally and improve detection accuracy by taking

into account the human knowledge that “things become smaller when they move

farther.”

The efficiency of our integration was shown in our experiment. Without adding

too much processing time, our method could improve the performance of our

baseline detection system to a significant level, even close to a state-of-the-art

detection system [1]. For the latter one, processing time for the detection with the

same image size will cost nearly five times. Besides efficiency, another thing that

we found out from the experiment is that the utilization of depth is independent of

image resolution and instance size. This leads to stable improvement over the

baseline system for all different kinds of scenes.

However, some issues still exist in the current system. First, the depth informa-

tion that we introduced is obtained in an explicit way. This will, in some level, make

the system sensitive against error in depth estimation. Secondly, our system is not

good in handling occlusion and therefore quite weak in some crowd scenes. In the

future work, we will mainly focus on robust depth estimation and occlusion

handling.
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