
Chapter 10

A Likelihood‐Maximizing Framework

for Enhanced In‐Car Speech Recognition

Based on Speech Dialog System Interaction

Tristan Kleinschmidt, Sridha Sridharan, and Michael Mason

Abstract Speech recognition in car environments has been identified as a valuable

means for reducing driver distraction when operating noncritical in-car systems.

Under such conditions, however, speech recognition accuracy degrades signifi-

cantly, and techniques such as speech enhancement are required to improve

these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech

enhancement algorithms based on recognized state sequences rather than traditional

signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks

typically require calibration utterances to generate optimized enhancement

parameters that are used for all subsequent utterances. Under such a scheme,

suboptimal recognition performance occurs in noise conditions that are signifi-

cantly different from that present during the calibration session – a serious problem

in rapidly changing noise environments out on the open road. In this chapter, we

propose a dialog-based design that allows regular optimization iterations in order to

track the ever-changing noise conditions. Experiments using Mel-filterbank noise

subtraction (MFNS) are performed to determine the optimization requirements for

vehicular environments and show that minimal optimization is required to improve

speech recognition, avoid over-optimization, and ultimately assist with semi-

real-time operation. It is also shown that the proposed design is able to provide

improved recognition performance over frameworks incorporating a calibration

session only.
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10.1 Introduction

With the increased desire from consumers to integrate electronic devices such as

MP3 players, navigation systems, and mobile phones for use in their vehicles comes

the need to provide more intuitive human–machine interfaces (HMI) than currently

seen in low- to midrange vehicles. Automatic speech recognition (ASR) can provide

a safe and easy-to-use HMI, and technological advancements have enabled low-cost

hardware implementations of ASR systems – a key requirement to widespread

adoption in the automotive industry.

Most ASR systems are trained for use in controlled scenarios (e.g., office

environments or telephone-based systems) and fail to produce satisfactory perfor-

mance under the continually changing noise conditions found in automotive

environments [1]. This is a key challenge to deployment of in-car ASR – drivers

demand high-accuracy recognition, but high levels of noise restrict recognition

performance of conventional ASR systems.

Speech enhancement is a common method for making ASR systems more robust

against noise. Enhancement techniques aim to reduce the noise levels present in

speech signals, allowing clean speech models (which are easily trained due to the

availability of large amounts of data) to be utilized by the recognizer. This is a

popular approach as enhancement algorithms are typically easily integrated with

existing ASR front-end processing, as well as requiring little-to-no prior knowledge

of the operating environment in order to achieve improvements in recognition

accuracy. Both of these aspects are particularly attractive for in-car applications

where hardware and software overheads must be minimized and where the system

is continually subjected to changes in acoustic conditions.

Popular speech enhancement algorithms such as filter-and-sum beamforming

(using multiple microphone speech acquisition) and spectral subtraction were

originally designed to improve intelligibility and/or quality of speech signals

without considering the effects on other speech processing systems such as recog-

nition [2]. Optimization of parameters in these algorithms focuses on signal-based

measures (e.g., maximizing signal-to-noise ratio or minimization of the mean-

squared signal error). Enhancement techniques operating in this manner may still

produce word accuracy improvements, but these improvements are by-products of

the optimization process rather than its objective [2].

Promising results have been shown in studies that use speech recognition

likelihoods as the optimization criteria as opposed to quality or intelligibility

measures [2–4]. Enhancement techniques are placed within likelihood-maximizing

(LIMA) frameworks, which attempt to jointly optimize both the recognized acous-

tic state sequence as well as enhancement parameters. There are three main types of

LIMA framework – calibrated, unsupervised, and supervised.

Calibrated LIMA frameworks require a known adaptation utterance in order to

optimize the enhancement parameters. Adaptation is typically performed using a

dedicated calibration session for each speaker, with the optimized enhancement

parameters kept constant for all other utterances for that speaker [2, 3]. This approach

assumes constant noise conditions and therefore has limited potential for achieving

optimal performance in rapidly changing vehicular environments.
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An unsupervised LIMA framework was also proposed in [2] whereby online

optimization takes place on an utterance-by-utterance basis using the hypothesized

transcription as opposed to the true transcription. Whilst this method removes the

restriction of a calibration session and showed considerable reductions in word

error rates [2], it is highly reliant on the initial accuracy of the speech recognizer.

Whilst the word error rate of the recognizer used in these experiments was

high (approximately 60%), the test recordings were obtained at relatively high

signal-to-noise ratios in a constant noise environment. Systems operating in the

nonstationary vehicular environment exhibit even higher word error rates, resulting

in reductions in accuracy of the hypothesized transcriptions. Optimization on

unreliable transcriptions should be avoided as it could lead to suboptimal parameter

estimation and therefore further reductions in recognition performance.

In this chapter, we consider the third alternative (i.e., a supervised LIMA

framework) and propose a dialog-based design that allows regular optimization

iterations in order to track the ever-changing noise conditions. The chapter reviews

LIMA frameworks employingMel-filterbank noise subtraction (MFNS) specifically

for in-car speech recognition. The analysis involves testing a number of calibrated

adaptation scenarios, as well as development of a novel online optimization frame-

work, based on speech dialog systems which exploit user confirmation of correctly

recognized voice commands to provide adaptation data for the LIMA framework.

10.2 LIMA Mel-Filterbank Noise Subtraction

for In-Car Environments

10.2.1 Likelihood Maximization

Speech enhancement algorithms aim to produce improvements in human intelligibility

of speech signals. Automatic speech recognition systems hypothesize themost likely

sequence of statistical models produced by the observed feature vectors. As a result,

traditional optimization of spectral subtraction algorithms based on waveform

criteria such as signal-to-noise ratio maximization [5, 6] does not necessarily trans-

late into improvements in ASR word accuracy [2]. With the primary aim of using

speech enhancement to improve speech recognition accuracy, Seltzer et al. [2]

proposed a likelihood-maximization framework for enhancement parameter optimi-

zation. This framework was originally proposed for filter-and-sum beamforming but

has since been applied to subtraction factors in multiband spectral subtraction [3].

In a recognition system incorporating speech enhancement, feature vectors are a

function of the speech enhancement process. The recognition hypothesis provided

by an optimal Bayes classifier regularly used in ASR systems is given by

ŵ ¼ argmax
w2W

PðZðxÞjwÞ � PðwÞ; (10.1)
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where dependence of the feature vectors Z on the enhancement parameters x is

clearly shown. The acoustic score PðZðxÞÞ is the measure of importance in LIMA

systems as the transcription on which the optimization takes place is assumed to be

known, and therefore, the language model score PðwÞ will not change. The aim of

likelihood maximization for MFNS is therefore to optimize the parameters to

maximize the acoustic score of the recognized word sequence ŵ.
An initial decode pass is performed using default enhancement parameters to

generate a state sequence s on which to optimize x. In order to find the optimal

values of x, gradient-based optimization is used on the total log-likelihood of the

observed features, which is defined by

LðxÞ ¼
X
i

logðPðziðxÞjsiÞÞ: (10.2)

For a Hidden Markov Model (HMM) speech recognizer using Gaussian mixture

state models (as used in this chapter), the gradient of the total log-likelihood is

given by [2]

rxLðxÞ ¼ �
X
i

XM
m¼1

gimðxÞ
@ziðxÞ
@x

X�1

im

ðziðxÞ � mimÞ; (10.3)

where gimðxÞ is the a posteriori probability of the mth mixture component in state

si given the observed feature vector ziðxÞ. The mean vector m and covariance matrixP
from the acoustic model are required for each state i and mixture component

m in order to calculate the gradient. The remaining term in Eq. 10.3 is the Jacobian

matrix, @ziðxÞ=@x, which consists of the partial derivatives of each element of the

feature vector with respect to each of the enhancement parameters. Each Jacobian

element is derived directly from the enhancement procedure (refer to Sect. 10.2.3).

Once the gradient-based optimization converges, the new enhancement parameters

are used to generate another set of feature vectors, and a subsequent decode pass is

performed. A new state sequence is generated, and the enhancement parameters are

further optimized for this new state sequence. The process continues until the

recognition likelihood (and state sequence) converges, ensuring joint optimization

of the recognized state sequence and the speech enhancement parameters.

10.2.2 Optimization Methods for In-Car ASR

10.2.2.1 Calibrated LIMA Framework

The simplest and most common approach for optimizing the enhancement

parameters is to use a calibration session with a known transcription wC. Previous

studies used a single known utterance for each speaker in order to determine
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optimal enhancement parameters for that particular speaker [2, 3]. Whilst this

procedure ensures that optimization takes place on a state sequence which is

correct, calibrated LIMA frameworks inherently assume that background noise

conditions do not change between the calibration and testing sessions. This is a

major challenge for in-car speech recognition since vehicular environments are

subjected to continually changing noise levels and conditions which mean calibra-

tion utterances would be required every time noise conditions changed significantly

from the previous optimization. To overcome this, optimized enhancement

parameters could be stored for each common noise condition; however, this still

requires a calibration utterance to be used at some point in the system. Since there is

a wide range of noise conditions, the user would be continually asked to repeat the

adaptation utterance in order to obtain the optimal set of parameters. This operation

is an unnecessary annoyance for the driver and is likely to lead drivers to become

frustrated with the speech dialog system; such emotions could lead to further

repercussions on ASR and driving performance [7].

An alternative solution is to calibrate once only for each driving session (e.g., a

common startup utterance such as “Start dialog” could be used for adaptation), but

this introduces the risk of inferior recognition in noise conditions significantly

different to those present during calibration.

The calibration framework is also reliant on the words contained in the adaptation

utterance; therefore, it is necessary for the adaptation utterance to be phonetically

balanced and sufficiently long enough to provide as much acoustic model coverage

as possible in order to generalize the optimized enhancement parameters. This is in

direct conflict with the majority of dialog systems which promote simpler linguistic

structures than human conversation and are therefore unlikely to be phonetically

balanced. Thus, a separate utterance unrelated to the dialog transaction is required

which is likely to be seen by the user as a further inconvenience and therefore

impractical for this particular application.

10.2.2.2 Unsupervised LIMA Framework

The unsupervised LIMA framework proposed in [2] may be a more appropriate

choice for in-car environments. Unsupervised adaptation removes the restriction of

a calibration utterance (thereby making the adaptation process transparent to the

user), and instead, optimization takes place on an utterance-by-utterance basis. The

major issue with the unsupervised operation is that it uses a hypothesized transcrip-

tion, w, rather than the true transcriptionwC. The hypothesis transcription is highly

reliant on the effectiveness of the underlying acoustic models and state sequence

generated by Viterbi alignment; therefore, the hypothesis transcription is likely to

be less than 100% correct.

Since the true transcription wC is unknown, it is possible that states in

the hypothesized transcription ŵ are incorrect due to misrecognition and frame

alignment errors (N.B. frame alignment errors will occur even when the transcrip-

tion is known a priori, but should be limited). These inaccurate states will lead to the
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resulting enhancement parameters being suboptimal since optimization is

performed on the wrong state models. In turn, suboptimal enhancement parameters

could lead to further decreases in accuracy in the subsequent decoding state. This

effect is particularly likely when the number of incorrectly labeled frames is greater

than the correctly labeled frames, as may be the case in high-noise conditions.

10.2.2.3 Proposed Dialog-Based LIMA Framework

Having identified problem with the existing LIMA frameworks, we propose to

exploit a confirmation-based speech dialog system to drive optimization. Dialog

systems requiring users to verify commands with simple “Yes/No” replies are a

well-established mechanism in voice recognition applications. A block diagram of

the proposed framework within the dialog exchange is shown in Fig. 10.1.

This system mimics the calibrated and unsupervised frameworks by performing

an initial decode using default enhancement parameter values in the feature extrac-

tion stage. This framework differs from previous work following the initial ASR

pass. Instead of immediately performing optimization, the hypothesized word

sequence is first verified through the grounding process which is required in the

dialog system in order to detect any misrecognition errors which need to be

corrected prior to executing a desired action such as determining route navigation.

Since it is cumbersome for the dialog manager to request confirmation from the

user after each response, grounding often occurs once the dialog systems have

gathered a number of pieces of information, for example the suburb, street name,

and number of a destination address. In the case where the user states the informa-

tion is incorrect, the dialog manager will attempt to recover from these errors by

either asking for corrections to specific information or restarting the dialog transac-

tion. In this instance, the enhancement parameters remain unaltered.

It is also possible to incorporate knowledge of the state of the car environment to

alter the enhancement parameters should the noise condition change drastically be-

tween optimizations. The purpose of this chapter is not to suggest how this should be

done but to analyze the performance of existing and proposed LIMA frameworks and

make recommendations on how these are best utilized in automotive environments.

When the user confirms the information to be correct, this affirmation is fed back

to the dialog manager for further processing (e.g., a call to an external information

source such as the navigation system) but also triggers the optimization of the

enhancement parameters. In order to interface the optimization process with

the grounding procedure, it is required to store the user responses as well as the

hypothesized state sequences – this is reflected in Fig. 10.1. On confirmation, this

stored information is used in the optimization process; if rejected, the stored state

sequence is therefore unreliable, and so, the memory can be cleared in preparation

for responses in the error-recovery stage.

The primary advantage of the proposed dialog-based LIMA framework is that

optimization never takes place on inaccurate transcription hypotheses, which

overcomes the limitation of the unsupervised framework. Another advantage is the
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Fig. 10.1 Proposed confirmation-based speech dialog system for in-car speech recognition using

LIMA speech enhancement
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ability to continually update the enhancement parameters as the noise conditions

inside the vehicle change. This is achieved by maintaining the previous enhance-

ment parameters until the next successful dialog transaction, by which time the noise

conditions may have changed. As a result, the dialog-based system is able to

overcome the need for matched noise conditions required for calibrated operation

to be fully effective.

10.2.3 Mel-Filterbank Noise Subtraction

In this chapter, we concentrate on spectral subtractive enhancement algorithms

for this application. Spectral subtraction for speech enhancement was originally

proposed by Boll in 1979 [8]. Enhancement is typically performed in the frequency

domain; however, subband subtraction techniques such as the Mel-filterbank noise

subtraction (MFNS) method proposed in [9] have become popular for use with

recognition systems. BabaAli et al. [7] recently utilized the framework introduced

in [2] to optimize the subtraction scaling factors in multiband spectral subtraction in

the frequency domain.

In a noisy environment, speech Sð f Þ is assumed to be corrupted by uncorrelated

additive background noise Dð f Þ to produce corrupted speech Yð f Þ:

Yið f Þ ¼ Sið f Þ þ Dið f Þ; (10.4)

where frequency spectra are obtained from the short-time Fourier transform of

frame i.
Generally, an estimate of the background noise magnitude spectrum is subtracted

from the magnitude spectrum of the noisy signal to give an estimate of the clean

speech magnitude. Noise estimates are calculated during nonspeech periods and are

typically kept constant throughout speech periods. In the following, the frame index

i has been removed from the noise estimate to reflect this operation.

In this chapter, however, we consider Mel-filterbank noise subtraction [9]. Using

the Mel-frequency scale commonly used in speech recognition, the frequency

spectrum is divided into a number of subbands with f kU and f kL being the upper

and lower cutoff frequencies for the kth Mel-filterbank, respectively. Using this

definition, Mel-filterbank noise subtraction is described by

Ei
YðkÞ ¼

ð f kU

f kL

jYið f Þjdf

ED̂ðkÞ ¼
ð f kU

f kL

jD̂ðf Þjd f

Ei
Ŝ
ðkÞ ¼ Ei

YðkÞ � aðkÞED̂ðkÞ Ei
YðkÞ> aðkÞ

1�bED̂ðkÞ
bEi

YðkÞ otherwise

(
(10.5)
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where Ei
YðkÞ, ED̂ðkÞ, and Ei

Ŝ
ðkÞ are the energies of the kth Mel-filterbank of the

noisy speech, noise estimate, and the clean speech estimate, respectively. The

scaling factor b enforces a maximum level of signal energy attenuation and ensures

that output filterbank energies remain positive. Filterbank-dependent subtraction

factors – aðkÞ – are included to compensate for estimation inaccuracies of the

instantaneous noise energy. In the experiments that follow, only the subtraction

factors are optimized, that is:

x ¼ ½a1; a2; :::; aK�: (10.6)

The expression for the Jacobian elements @ziðaðkÞÞ=@aðkÞ for each enhancement

parameter can be derived as per [10] to produce

@ziðaðkÞÞ
@aðkÞ ¼ � 1

2

XK�1

k¼0

FckE
i
D̂
ðkÞ

Êi
SðkÞ

� 1þ Ei
YðkÞð1� bÞ � aðkÞEi

D̂
ðkÞ

jEi
YðkÞð1� bÞ � aðkÞEi

D̂
ðkÞj

 !
; (10.7)

where Fck are elements of the DCT matrix for cepstral coefficient c.

10.3 Experimental Procedures

10.3.1 Experimental Data

Digit strings comprising the phone numbers task of the AVICAR database collected

by the University of Illinois [11] were used as the test data. The AVICAR database

contains real speech recorded in five different driving conditions: idle (IDL),

35 mph with windows up (35U) and down (35D), and 55 mph with windows up

(55U) and down (55D). All experiments utilized an altered version of the first five

experimental folds of the AVICAR evaluation protocol developed in [12]. The data

for this evaluation consists of 38 speakers, all of which have at least one utterance

available in all of the noise conditions.

10.3.2 Speech Recognizer

Utterance decodingwas performed using the HMMToolkit [13]. Speaker-independent,

context-dependent 3-state triphone HMM acoustic models were trained using the Wall

Street Journal 1 corpus. Each HMM state was represented using a 16-component

Gaussian mixture model.
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For each observation, 39-dimensional MFCC feature vectors were generated

consisting of 13MFCC (includingC0) plus 13 delta and 13 acceleration coefficients.

Cepstral mean subtraction was applied to each feature. The elements of the Jacobian

were derived from this feature representation as per Eq. 10.7.

The recognition task uses an open word loop grammar [12]; therefore, no

restrictions are made to ensure that exactly ten digits are recognized.

All speech recognition results quoted in this chapter are word accuracies (in %)

and are calculated as

Accuracy ¼ N � D� S� I

N
� 100; (10.8)

where N represents the total number of words, D the number of deletions, S the

number of substitutions, and I the number of insertions [13].

10.3.3 Optimization Iterations

Since LIMA is an optimization problem, over-optimization of the enhancement

parameters to a specific noise condition, speaker, or subset of acoustic state models

is highly possible and should be avoided. This suggests that the number of optimi-

zation iterations should not be large in order to maintain generality across

conditions, but too little iteration may result in the LIMA framework operating

less effectively than a standard enhancement system. Considering real-time opera-

tion (another important consideration for in-car ASR) also points to limited

iterations.

To address this issue, two experiments were designed to determine a suitable

balance between ASR performance and pseudo real-time operation using the noise-

only calibration framework described in Sect. 10.3.4. This framework was used

since the belief was that noise conditions have a greater effect on the resulting

enhancement parameters than individual speakers since speaker-independent

acoustic models are being used.

In the first experiment, the number of gradient-descent iterations was varied

whilst using a single joint optimization iteration (i.e., full recognition and parameter

optimization cycles). The second experiment varied the number of joint optimiza-

tion iterations whilst the gradient-descent iterations (determined from the former

experiment) were kept constant. The combined outcomes of these experiments

dictated the levels of optimization used for assessing the frameworks detailed in

Sect. 10.3.4.

For all experiments, the enhancement parameters were initialized to aðkÞ ¼ 1 for

all 26 Mel-filterbanks. These values were an appropriate initial guess since standard

MFNS using these values provides improvements in speech recognition accuracy

over a system without enhancement [10].
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10.3.4 Likelihood-Maximization Frameworks

The AVICAR database enables analysis of LIMA frameworks based on speaker or

noise calibration as well as a combination of both. The following LIMA frameworks

have been tested:

• Calibrated LIMA framework using optimization on a noise-by-noise basis

• Calibrated LIMA framework using optimization on a speaker-by-speaker basis

under a single, randomly chosen noise condition

• Calibrated LIMA framework using optimization for each speaker in each noise

conditions (i.e., matched conditions)

• Proposed dialog-based LIMA framework without calibration

• Proposed dialog-based LIMA framework with a single calibration utterance in a

random noise condition

• Proposed dialog-based LIMA framework with a single calibration utterance in

the idle noise condition

The unsupervised LIMA frameworks were not assessed in this chapter as the

overall performance of the speech recognizer is low (less than 50% average word

accuracy), making the hypothesis transcriptions (and therefore the optimized

parameters) unreliable.

Each calibrated LIMA framework used a single, randomly generated utterance

treated as adaptation session. For the noise-only calibration framework, a random

utterance from a random speaker was chosen for each experimental fold in the

evaluation protocol. For speaker-based calibration (applied in both calibrated and

dialog frameworks), a single utterance from a random noise condition was used for

each speaker, with the remaining utterances ordered randomly to simulate realistic

driving conditions.

The proposed dialog system was run using no prior calibration, and optimization

occurred every time the decoder correctly recognized all ten digits in the phone

number. Utterances which occur prior to the first optimization exhibit the same

performance as the static MFNS system and are therefore ignored in the final

evaluation (N.B. this is why baseline results differ across the experiments).

In order to simulate a priori knowledge relating to previously optimized

enhancement parameters, the dialog-based framework was also tested using an

initial adaptation utterance which was either randomly chosen or from the idle

condition. The idle condition was chosen as this is a likely scenario for users to first

communicate with the in-car speech dialog system – for instance, for entering a

destination address before setting off on the journey. Again, all utterances which

occurred prior to the first subsequent optimization (excluding calibration) were

ignored in the evaluation.
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10.4 Data Analysis and Recommendations

10.4.1 Gradient-Descent Iterations

The effect on ASR word accuracy as the number of gradient-descent iterations

increases is shown in Table 10.1. Recognition results with no enhancement (base-

line) and MFNS with static subtraction parameters (aðkÞ ¼ 1) are shown for

comparison.

Analysis of these results shows that the optimal number of gradient-descent

iterations is considerably different for each noise condition. For the more quiet

conditions (idle and 35 mph with windows up), best performance is obtained with

more than 20 iterations of gradient-descent optimization. For the noisier conditions,

less than five optimization iterations provide the best performance (particularly for

the 55-mph-with-windows-down noise condition). These three conditions also

show trends of decreasing word accuracy as the number of iterations is increased

above five. Since the noise conditions are approximately ordered by increasing

levels of noise, it can be concluded that as the noise levels in the vehicle increase

(i.e., higher speeds or open windows), the level of gradient-descent optimizations

needs to be reduced in order to avoid over-optimization of the enhancement

parameters.

The application of only one gradient-descent iteration provides a minimum of

0.3% improvement static MFNS, with both 35-mph scenarios improving by approx-

imately 1%. A single iteration shows the effectiveness of a LIMA framework for

improving ASR performance with minimal optimization.

The best overall performance across all five noise conditions is seen at three

iterations. At this level of optimization, the 55-mph conditions both exhibit maxi-

mum performance, with two other noise conditions being only 0.1% below their best

performance (IDL and 35D). The 35-mph-with-windows-up condition is the only

Table 10.1 ASR accuracies

for increasing gradient-

descent iterations used in

parameter optimization

# Iterations IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

a(k) ¼ 1 73.3 47.8 36.8 44.5 26.1

1 73.9 48.7 37.9 44.8 26.4

2 74.2 49.3 37.7 44.8 26.4

3 74.1 49.1 38.1 45.1 26.4

4 74.2 49.5 37.8 45.1 26.1

5 74.1 49.6 38.2 45.0 25.9

10 74.2 49.7 37.7 44.6 26.1

15 74.2 49.8 37.5 44.8 25.6

20 74.2 49.9 37.6 44.7 25.7

25 74.2 49.9 37.6 44.7 25.7
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one which is well below its best performance (0.8%) but still provides improvement

over the baseline and static MFNS systems. As a result, three gradient-descent

iterations have been used for the remainder of the experiments in this chapter.

10.4.2 Joint Optimization Iterations

Having established the most effective number of gradient-descent iterations, the

number of joint optimization iterations was analyzed. Table 10.2 shows these results

with the best performance across all noise conditions highlighted for clarity.

Apart from the 35-mph-with-windows-up noise condition, the results indicate

that only one joint optimization iteration is required for in-car speech recognition.

This result indicates that only minor changes are made to the decoded state

sequences and therefore appears to be no advantage in performing more than one

joint optimization iteration. Relating this observation to the results of the gradient-

descent iterations experiment, if the state sequence did not change at all, the

parameter optimization would continue from exactly the same position that it

finished previously, and therefore, over-optimization is likely to occur as the

number of joint optimization iterations increases.

This result combined with that of Sect. 10.4.1 indicates that over-optimization is a

serious issue for LIMA frameworks operating in vehicular environments. It is there-

fore suggested that optimization iterations be kept to a minimum in order to keep the

enhancement parameters generalized. The practical advantage of these findings is the

ability to achieve improved ASR using LIMA frameworks whilst creating minimal

processing delays due to the need for only a few optimization iterations.

10.4.3 LIMA Frameworks

The LIMA frameworks listed in Sect. 10.3.4 were tested using the results obtained

in the previous experiments. Table 10.3 presents the ASR results for all three

Table 10.2 ASR results for

increasing number of joint

optimization iterations

# Iterations IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

a(k) ¼ 1 73.3 47.8 36.8 44.5 26.1

1 74.1 49.1 38.1 45.1 26.4

2 74.1 49.4 37.7 44.8 26.1

3 73.9 49.9 37.2 44.8 26.0

4 74.0 50.1 37.2 44.5 26.3

5 74.0 50.3 37.1 44.4 26.1

10 74.1 50.2 37.5 44.1 25.9
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calibrated frameworks. The matched calibrate-test conditions for speaker-based

calibration are highlighted for clarity. Regardless of the calibration method used,

the results show a global improvement over an enhancement system which does not

utilize a LIMA framework.

Using matched conditions for speaker-based adaptation (i.e., employing calibra-

tion for each speaker in each noise condition) provides the best word accuracies in

all cases except idle. Whilst the idle noise condition shows a 0.5% absolute

decrease in word accuracy in its matched condition (as opposed to optimizing in

55U), the word accuracy performance is still an improvement over the static MFNS

case (73.7% versus 73.3%). As a result, this is not seen to be a significant issue at

this point in time.

In order to assess the effectiveness of the proposed dialog-based LIMA frame-

work, all utterances occurring prior to the first optimization (or first optimization

after calibration) for each speaker were ignored. This approach was required since

the proposed technique requires 100% word accuracy in order to trigger optimiza-

tion, a result which was achieved on only 3% of all utterances and mostly in the idle

noise condition. This low number of optimization instances is due to the relatively

low performance of the ASR system and nature of the recognition task which

requires all ten digits to be recognized correctly.

These results of this final evaluation are summarized in Table 10.4. It should be

noted that word accuracies in this table are better than in previous tables because

this analysis removed a lot of utterances exhibiting poor ASR performance.

Almost all comparisons in Table 10.4 show that the proposed dialog-based

LIMA framework for in-car ASR provides improved performance over the baseline

enhancement system. Applying this framework can also recover losses in word

accuracy incurred when using standard Mel-filterbank noise subtraction (e.g., in the

two 35-mph noise conditions).

The results of this evaluation also prove the effectiveness of the proposed dialog-

based framework when used with or without explicit calibration even though there

are a very low number of optimization instances. For the case without calibration –

which is the ideal operational behavior of such a framework since the user would be

completely unaware of adaptation – global improvements over both baseline

systems can be observed, with the best relative performance improvement over a

Table 10.3 ASR results for

the calibrated LIMA

frameworks

Adaptation

condition IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

a(k) ¼ 1 73.3 47.8 36.8 44.5 26.1

Noise 74.1 49.1 38.1 45.1 26.4

Speaker 73.6 49.5 38.2 44.9 26.5

IDL 73.7 49.3 37.8 44.6 26.8

35U 73.8 49.9 38.6 45.0 27.0

35D 73.0 49.4 39.2 45.1 26.7

55U 74.2 49.7 37.9 45.5 26.8

55D 73.1 49.1 38.2 44.7 27.1
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system without enhancement being 16.7% in the idle condition. This particular

result demonstrates the true potential of the framework to improve ASR accuracy,

since utterances spoken during idle are most likely to trigger the optimization

process. In comparison to the baseline enhancement system, the proposed frame-

work shows relative improvements of between 1.2% and 4.4% in this mode of

operation.

There are also noticeable improvements of the calibration-only LIMA frame-

work, particularly one performing calibration during idle. In this case, the relative

improvements range from 1.2% to 2.8% (excluding the marginal decrease in

performance in the 55D noise condition). Given that most users will first speak to

in-car dialog systems when entering their vehicle, this result verifies the potential of

the proposed framework to be incorporated with a calibration session to produce

further improvements in system performance.

Considering the operation of the proposed dialog-based system, there is potential

for a loss of generality if a particular noise condition is consecutively optimized

(as per the results in Table 10.2). The consistent improvements in Table 10.4,

however, indicate that this is not an issue as regular changes in noise conditions

seem to allow the optimization process to effectively track the internal noise

conditions and set the enhancement parameters appropriately.

10.5 Conclusions

This chapter has reviewed likelihood-maximizing frameworks using Mel-filterbank

noise subtraction for in-car speech recognition. A new LIMA framework based on a

user-confirmation speech dialog system has been proposed. This framework has been

evaluated against calibrated LIMA frameworks utilizing different adaptation scenarios.

Experiments have shown that with the proposed LIMA framework, minimal

optimization is required for the best average recognition performance in car

environments. This permits pseudo real-time operation of LIMA frameworks whilst

Table 10.4 ASR results for all LIMA frameworks

Framework IDL 35U 35D 55U 55D

Baseline 79.1 55.8 42.1 49.8 27.6

a(k) ¼ 1 81.8 53.9 41.6 51.7 30.1

Proposed dialog system 82.6 55.9 42.3 53.1 31.1

Baseline 80.7 55.5 43.3 49.5 28.6

a(k) ¼ 1 81.4 53.3 45.3 50.0 33.6

Calibrated system (random) 82.5 55.7 46.4 52.5 33.3

Proposed dialog (random) 82.3 57.7 45.5 52.7 32.3

Baseline 80.4 57.7 44.7 53.3 28.4

a(k) ¼ 1 82.2 52.5 42.9 53.9 30.3

Calibrated system (IDL) 82.4 55.4 44.6 54.9 31.0

Proposed dialog (IDL) 82.9 55.9 46.0 55.5 30.9
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still providing improvements over standard speech enhancement techniques.

The proposed dialog-based framework provides improved recognition performance

over calibration-only systems; this effect is attributed to the ability to continually

update enhancement parameters according to changes in noise conditions.
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