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Foreword

The automobile has been in existence for more than 100 years and has evolved

significantly during the past three decades. Early automobiles were designed to

move the driver and passengers from point A to point B. Performance, comfort,

style, and safety have all emerged to be core components in today’s automotive

market. The level of Digital Signal Processing contained within vehicles continues

to grow significantly. This is due in part to the rapid growth of sensor technology

within cars, as well as the motivation to make cars safer and more fuel efficient. In

recent years, the concept of a “Smart Car” has also emerged, in part due to the

advancements of artificial intelligence and computer design being introduced into

vehicles. In the United States, the DARPA Grand Challenge [1] represents an effort

which was started in 2004 to develop driverless vehicles. These vehicles would be

fully automated and allow GPS, multi-sensor fusion, and advanced decision direct-

ed and feedback controls/artificial intelligence to navigate as an autonomous

vehicle over long distances (i.e., 10–150 mi). To date, more than 195 teams from

36 US States and four countries have entered the competition. While the integration

of advanced intelligence for smart cars is an admirable goal to achieve, it is clear

that the majority of individuals who own their own car enjoy the freedom of

driving, and are not likely to want to give up the ability to control their vehicle

soon. As such, dealing with the introduction of new technologies into the vehicle

environment represents a major challenge in the field.
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As people spend more time in their vehicles, and commuting time to and from

work continues to increase as urban populations grow, drivers are attempting to

perform many more tasks than simply driving their vehicles. The introduction of

wireless technology, digital audio/music players, mobile Internet access, advanced

entertainment/multimedia systems, and smart navigation technologies into the car

has placed increased cognitive demands on drivers. Yet, the typical driving test in

countries continues to focus exclusively on the logistics of operating the vehicle

itself and does not consider the management of these outside technologies as part of

the driver assessment for a license. The United States [2] as well as many countries

[3] have therefore moved to pass laws that restrict the use of cell phones and text

messaging while operating a vehicle. The recent book Traffic: Why We Drive The
Way We Do, by Tom Vanderbilt [4], offers a number of perspectives on society,

culture, and government engagement on driving and drivers. Driver distractions

in the car are many and have been documented by countless research studies.

The average driver adjusts their radio 7.4 times/h of driving, turn their attention to

infants 8.1 times/h, and are generally searching for something (e.g., sunglasses,

coins, etc.) 10.8 times/h (p 78, [4]). The average driver looks away from the road

0.06 s every 3.4 s.Mobile devices with “intense displays” such the iPod require more

concentration to search for songs, pausing, or skipping a song. While there are some

differences of opinion, researchers have noted that any task that requires a driver to

divert his/her attention (typically visual) away from the road for more than 1.5 s
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(some believe this is up to 3.0 s) is viewed as a distraction. Irrespective of the exact

time threshold, such a guideline is important as a general rule, but it should be clear

that not all drivers are equally skilled, and even advanced/experienced drivers go

through periods of fatigue, or can be unfamiliar with a new vehicle, which change

their driving abilities and can impact safety, even if only during short periods.

The majority of driver-based vehicle research is based on (1) simulator studies,

(2) field test studies, and (3) naturalistic studies. Simulator studies can allow

research to consider high-risk conditions without putting test subjects at real risk;

however they may not completely reflect how drivers would actually respond in

such scenarios. Field test studies focus on vehicles which are outfitted with addi-

tional sensors/technology to record driver data on the streets; however, the driver

clearly knows or feels this is a recording platform and may not be as familiar with

the vehicle (i.e., their driving pattern would be different than if they were driving

their own car). Finally, naturalistic driving represents the next major effort in the

field, where miniaturization of data capture technology results in a recording

platform that is seamlessly embedded into the driver’s own vehicle, so it becomes

a continuous window into everyday driving. The U.S. Transportation Research

Board (TRB) is undergoing the SHRP2 [5] program, which would capture drivers

from +1,500 vehicles continuously for 2 years. This corpus clearly would provide

rich opportunities to integrate new digital signal processing advancements for built-

in safety monitoring in the future.

In 2009, the fourth Biennial Workshop for In-Vehicle Systems and Safety took

place in Dallas, Texas. This meeting served to bring together researchers from

diverse research areas to consider advancements in digital signal processing within

vehicles to improve safety and potentially contribute to reduce driver distraction.

A total of 34 peer-reviewed conference papers were presented with researcher

participation from universities, automotive and technology companies, as well as

government research laboratories. The workshop included three keynote presenta-

tions from internationally recognized leaders in the field, including:

l Bruce Magladry – National Transportation Safety board (NTSB), USA
l Jon Hankey – Virginia Tech Transportation Institute (VTTI), USA
l Gerhard Schmidt – SVOX and Darmstadt University, Germany
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As research involving advanced in-vehicle systems, smart-car technology, and

intelligent transportation systems continues to advance, care must be taken to

incorporate the skills and cognitive load and context of the driver, as well as the

tasks and challenges faced when operating a vehicle in today’s modern transporta-

tion network. Those authors of the fourth Biennial Workshop on DSP for In-

Vehicle Systems and Safety, including those authors who have contributed chapters

to this book, have dedicated themselves to advancements which will ultimately

improve driver experience and safety.

The answers to questions relating to improved in-vehicle systems for safety are

complex and require experts from diverse research fields. Significant advancements

that leverage knowledge from such areas as human factors, control systems, signal

processing, transportation engineering, artificial intelligence, machine learning,

telecommunications/mobile technologies, and automotive design will ultimately

lead to the next generation vehicles which continue to move drivers and their

passengers from point A to point B, but also contribute to a safer driver experience

as well as a more efficient transportation system.

Richardson, TX, USA John H.L. Hansen

Fourth Biennial Workshop on DSP for In-Vehicle Systems and Safety: (Closing Reception at the

Fort Worth Rodeo for participants)
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Preface

In June 2009, the fourth Biennial Workshop on DSP (Digital Signal Processing) for
In-Vehicle Systems and Safety took place in Dallas, Texas, USA. The workshop was
organized and hosted by the Center for Robust Speech Systems (CRSS): Speech/

Speaker Modeling and UTDrive In-Vehicle Groups from The University of Texas

at Dallas (UTDallas). This workshop follows a series of workshops organized first

in 2003 (Nagoya, Japan), 2005 (Sesimbra, Portugal), and 2007 (Istanbul, Turkey).

World-class experts from a diverse series of branches encompassing in-vehicle

signal processing participated and shared cutting edge studies on road safety,

in-vehicle technologies, and demos of state-of-art systems.

This workshop at UTDallas was broader in scope, with contributions from

various realms such as: signal processing, control engineering, multi-modal

audio-video processing, bio-mechanics, human factors, and transportation engi-

neering which opened doors for fruitful discussions and information exchange in

an exciting interdisciplinary area. The main focus areas were as follows:

l DSP technologies in adaptive automobiles
l Driver status monitoring and distraction/stress detection
l In-vehicle dialogue systems and human machine interfaces
l Challenges in video and audio processing for in-vehicle products
l Multi-sensor fusion for driver ID and robust driver monitoring
l Vehicle to vehicle, vehicle to infrastructure wireless technologies
l Human factors and cognitive science in enhancing safety
l Transportation engineering venues

The workshop included three keynote talks from internationally recognized

leaders. Bruce Magladry, Director of the Office of Highway Safety, U.S. National

Transportation Safety Board (NTSB), Washington, DC, USA, gave the opening

keynote talk entitled “Highway Safety, Where We Are and Where We Are Going.”

The second keynote address was from Jon Hankey from VTTI (Virginia Tech.

Transportation Institute), Blacksburg, Virginia, USA, with a presentation entitled

“Improving Transportation Safety – The Role of Naturalistic Driving Data”. VTTI
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has been a leader in this domain with their well-known 100 car study on naturalistic

driving. That work has been credited with motivating the SHRP2 Program from the

U.S. National Transportation Board which will have +1,500 vehicles recorded

continuously for 2 years. The third keynote speech was by Gerhard Schmidt,

from SVOX and Darmstadt University, Germany, which focused on “Recent

Trends for Improving Automotive Speech Communication Systems.” A panel

discussion was also organized which included Bruce Magladry (NTSB, USA),

Jon Hankey (VTTI, USA), Gerhard Schmidt (SVOX, Darmstadt Univ., Germany),

Hanseok Ko (Korea University, Korea), and Kazuya Takeda (Nagoya University,

Japan) and offered opportunities for participants to engage in discussion on future

directions for vehicle systems and safety. From this workshop, 21 papers and one

additional contribution stemming from the next workshop were selected to make up

the 22 chapters within this book. These chapters are grouped into four parts, each

addressing key areas within in-vehicle digital signal processing:

Part A: Driver Behavior and Modeling Systems

Part B: In-Vehicle Interactive/Speech Systems

Part C: Vehicle Dynamics, Vision, Active Safety, and Corpora

Part D: Transportation, Vehicle Communications, and Next Generation Vehicle

Systems

First, Part A consists of four chapters that consider driver behavior and modeling.

The first chapter considers multi-modal signal processing based on speech, video,

and CAN-Bus signals for robust stress detection in urban driving scenarios including

multitasking, dialog system conversation, and medium-level cognitive tasks. The

second chapter considers a classifier-based approach for assessing the emotion of a

driver using speech into three emotions of anger, sadness, and happiness. The third

chapter focuses on driving behavior signals stemming from vehicle control units such

as gas/brake pedal use, steering wheel, etc. which differ among various driving tasks.

Chapter 4 considers a hierarchical mode segmentation of observed driving behavioral

data based on multiple levels of abstraction as applied to driving behavioral on an

expressway.

The next nine chapters make up Part B of the textbook which focuses on

In-Vehicle Interactive Systems. Chapter 5 considers advancements for in-car com-

munication systems, and Chapter 6 focuses on wideband hands-free interaction in

the car. Chapters 7 and 8 consider novel ways to start speech dialogs in cars, and

cognitive dialog systems for dynamic environments respectively. Next, Chapter 9

considers corpus development for speech and vehicle noise for development of

advancements on in-vehicle human–machine interactions. The next two chapters

consider improved schemes for speech recognition in car environments, a necessary

challenge in order to reduce distraction. The last two chapters in Part B focus on

speech enhancement advancements for use in car environments. The next seven

chapters make up Part C, which considers vehicle dynamics, vision, and active

safety, and corpora. Chapter 14 develops advanced methods to generate reference

views of traffic intersections. Chapter 15 considers computer vision systems for

context-aware active safety and driver assistance. Chapter 16 investigates an
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emerging area for integrating pedestrian detection and depth location with stereo

cameras. Another safety area which is considered in Chapter 17 is driver overtaking

judgments based on human perceptual for driver-assistant advancement. Driver

emotional assessment based on multimedia using video/facial information is con-

sidered in Chapter 18. Meanwhile, Chapter 19 looks at modeling lane change

trajectories using probabilistic strategies. An alternative scheme for active safety

advancement is employing CAN-bus signal analysis based on stochastic models.

The last portion of the book is Part D, which considers transportation, vehicle

communications, and next generation vehicle systems. The highway driving infra-

structure in many countries is expanding and become “smart”, as well as vehicle to

vehicle and vehicle to infrastructure communications. Chapter 21 considers multi-

media streaming data over inter-vehicle communication networks. The final chapter

offers some unique perspectives of next generation intelligent transportation infra-

structures.MATISSE is a large-scale multi-agent system for simulating traffic safety

scenarios.

As co-editors, we hope this book provides an up-to-date perspective of vehicle-

based signal processing, with novel ideas for researchers with a comprehensive set

of references for engineers and scientists in the field. We wish to thank all those

who participated in the 2009 workshop. We wish to acknowledge support from a

number of groups, in particular NEDO in Japan, funding agencies both from the

USA, Turkey, Japan, and across all countries and from participating researchers

who recognize the importance of research advancements for in-vehicle systems and

safety. The co-editors would like to recognize and sincerely thank Rosarita Lubag,
University of Texas at Dallas, who served as publications coordinator for the book,

and assisted in layout, proof-reading, and ensuring quality control on each of the

chapters. Her tireless efforts significantly contributed to a final version of the book

which reflects the quality of the authors and presentations that took place in the

fourth Biennial Workshop. We wish to express our continued appreciation to

Springer Publishing for a smooth and efficient publication process for this book.

Specifically, we would like to thank both Alex Greene and Ms. Allison Michael

of Springer Publishing for their extensive efforts to work to enhance the structure

and content of this book, as well as providing our community a high-quality and

scholarly platform to stimulate public awareness, scientific research, and technology

development in this field.

Richardson, TX, USA John H.L. Hansen

Istanbul, Turkey Pinar Boyraz

Nagoya, Japan Kazuya Takeda

San Diego, CA, USA Hüseyin Abut
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Part A

Driver Behavior and Modeling Systems



Chapter 1

Towards Multimodal Driver’s Stress Detection

Hynek Bořil, Pinar Boyraz, and John H.L. Hansen

Abstract Non-driving-related cognitive load and variations of emotional state

may impact the drivers’ capability to control a vehicle and introduce driving errors.

The availability of stress detection in drivers would benefit the design of active

safety systems and other intelligent in-vehicle interfaces. In this chapter, we

propose initial steps towards multimodal driver stress (distraction) detection in

urban driving scenarios involving multitasking, dialog system conversation, and

medium-level cognitive tasks. The goal is to obtain a continuous operation-mode

detection employing driver’s speech and CAN-Bus signals, with a direct application

for an intelligent human–vehicle interface which will adapt to the actual state of

the driver. First, the impact of various driving scenarios on speech production features

is analyzed, followed by a design of a speech-based stress detector. In the

driver-/maneuver-independent open test set task, the system reaches 88.2% accuracy

in neutral/stress classification. Second, distraction detection exploiting CAN-Bus

signals is introduced and evaluated in a driver-/maneuver-dependent closed test set

task, reaching 98% and 84% distraction detection accuracy in lane keeping segments

and curve negotiation segments, respectively. Performance of the autonomous

classifiers suggests that future fusion of speech and CAN-Bus signal domains will

yield an overall robust stress assessment framework.

Keywords Active safety • CAN-bus signal processing • Distraction detection

• Stress

H. Bořil (*) • P. Boyraz • J.H.L. Hansen

Center for Robust Speech Systems, Erik Jonsson School of Engineering

& Computer Science, University of Texas at Dallas, Richardson, TX, USA
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1.1 Introduction

Recent advancements in the electronic industry have made access to information

and entertainment easier than ever before. While undoubtedly benefiting many

areas of our daily lives, there are situations where the presence of electronic gadgets

has the opposite effect. In a current study, the Virginia Tech Transportation Institute

(VTTI) reports that dialing on a handheld device while driving increases the risk of an

accident by a factor of 3, and communicating via hands-free set increases the risk by

one third. This suggests that performing secondary cognitive tasks while driving may

severely impact driving performance. Besides cognitive load, drivers’ emotions have

also been shown to adversely affect driving performance, e.g., by the means of larger

deviations of lane offset and steering wheel angle, and shorter lane crossing times in

anger and excitation situations – signs of reduced lane control capability. Availability

of an automated system assessing stress in drivers would benefit the design of active

safety systems and other intelligent in-vehicle interfaces, making them capable of

adapting to the driver’s current state (e.g., by decreasing the frequency of navigation

prompts when detecting high-cognitive-load situations).

A number of studies have analyzed the impact of emotions [1–4] and stress

(including cognitive load) on speech parameters [5–9]. However, relatively limited

attention has been paid to the impact of emotion, stress, or distraction on the speech

of car drivers [10, 11]. In [10], speech from subjects driving a simulator was

categorized into seven emotional states, using a classifier trained on a corpus of

emotional speech from professional actors. The emotional states in drivers were

evoked during conversation with a dialog system. Also, Jones and Jonsson [11]

used speech data collected in a driving simulator and categorized them into four stress

classes. Different stress levels were induced by requesting the driver to maintain a

certain speed (60 mph or 120 mph) and solve simple math tasks prompted at slow and

fast rates by a synthesizer over the phone. The obtained classification performance in

the driver-independent task was relatively low (~51%). We note that both studies

utilize simulated driving scenarios, and in the case of [10] also employ simulated

emotions from actors to establish classification categories. Acted emotions represent

exaggerated traits that are effective in convincing listeners of the individual speaker

state, but are not accurate representatives of natural emotions. Using driving

simulators also introduces differences from real driving scenarios since there is less

or no consequence for making errors in the primary task. In addition, a significant

drawback of approaches utilizing only speech is that the emotion or stress assessment

can be conducted only in time intervals when the driver is engaged in conversation.

To address these issues, the present study is conducted on the database

UTDrive [12] collected in real driving conditions and aims at utilizing both speech

and CAN-Bus signals in the stress assessment. The term stress here represents the

modality of the driver’s speech production or driving behavior conducted under

cognitive load. In the course of this chapter, the terms stress and distraction are used

interchangeably, where the primary task is driving.

The remainder of the chapter is organized as follows: First, the data acquisition

procedure and distraction/stress scenarios in UTDrive corpus are described.
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Second, an analysis of speech production parameters in three cognitive load

scenarios is conducted, and a speech-based stress classifier is introduced. Third, a

classifier operating on CAN-Bus signals is proposed and evaluated.

1.2 UTDrive Corpus, Data Subsets,

and Transcription Protocols

The data collection vehicle is a Toyota RAV4 equipped with the following sensors

(illustrated in Fig. 1.1):

• Two CCD cameras for monitoring the driver and the road scene through front

windshield

• Microphone array (five mics) to record driver’s speech as well as noise

conditions in the vehicle

• A close-talk microphone to obtain driver’s speech with reduced noise content

• Optical distance sensor to obtain headway distance between equipped vehicle

and other vehicles in traffic

• GPS for location tracking

• CAN-Bus OBD II port for collecting vehicle dynamics: vehicle speed, steering

wheel angle, gas and brake inputs from driver

• Gas/brake pedal pressure sensors to collect information concerning pressure

patterns in car-following and braking behavior

Fig. 1.1 Instrumented data collection vehicle: UTDrive
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The UTDrive corpus includes data from the above-mentioned sensor channels

(13 separate data streams: two video, six audio, one GPS, one optical distance, one

CAN-Bus, two pressure sensors on gas/brake). The corpus is organized to have a

balance in gender (37 males, 40 females), age (18–65), and different experience

level (novice–expert) in driving. In order to examine the effect of distraction

and secondary common tasks on these driver groups, a close-to-naturalistic data

collection protocol is used.

The routes taken during data collection are given in Fig. 1.2, comprising a

mixture of secondary, service, and main roads in residential (left-hand side map)

and business (right-hand side map) districts in Richardson, TX. Each driver

participating in the study is required to drive these two routes at least twice in

each session to obtain a baseline and a distracted version of the same route.

A session includes a mixture of several secondary tasks as listed in Table 1.1, taking

place in road segments depicted in Fig. 1.2. According to this protocol, a participant

performs 12 runs of data, with six being baselines for that day and that route, the other

half featuring several distraction conditions. Each session is separated at least by

2 weeks in order to prevent driver complacency with the route and vehicle. Almost

60% of the data in the corpus have a full session profile from drivers. The remaining

part contains incomplete sessions and data portions due to the consent of the partici-

pant not to continue data collection or several sensor failures. The secondary driver

tasks are low to medium level of cognitive load while driving.

In this study, cell phone dialog parts including interaction speech with automated

portals Tell-Me (information system) and American Airlines (reservation system)

are utilized and analyzed using driver’s speech and CAN-Bus signals. The cell phone

conversation takes place in route segment two which includes lane keeping and

lane curvature negotiation tasks while the driver is engaged in cell phone dialog.

In order to segment the data in terms of driving event and task timelines and find

overlapping portions, two different transcription protocols are applied. First, using the

audio and video, a task transcription is performed, having 13 labels to annotate the

segments of the data in terms of where the driver and passenger talk and where other

types of distractions occur. The second is called “event transcription” and performed

Fig. 1.2 Data collection: residential (left) and business (right) routes segmented according to

assigned tasks
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to have six labels to denote different maneuvers of the driver. A color-coded driving

timeline is developed to observe aligned task and event transcriptions to obtain more

insight into the data as well as to see the overlapping sections between tasks and

events. A detailed explanation is given in [13] for transcription labels and color-coded

driving timeline.

It should be noted that cell phone dialog includes different types of distractions:

manual (dialing and holding), cognitive (interaction and processing), and auditory

(listening). Therefore, the segment of the road containing the cell phone dialog can

be considered as the highest possibility of observing high levels of distraction and

divided attention. Although the cell phone in the car interfaces via a bluetooth

device and the manual tasks from the driver minimized, the initial dialing might

cause momentary distraction.

1.3 Stress Detection Using Speech Signal

This section focuses on the stress assessment from the driver’s speech. First, it

should be noted that the real level of stress in the driver caused by the cognitive load

is not known. To define stress levels in the speech segments, we apply a cause-type

Table 1.1 UTDrive data collection protocol

Part

Secondary tasks

A B C

Route1 1 Lane changing Common tasks (radio,

AC etc.)

Sign reading

2 Cell phone dialog Cell phone dialog Conversation

3 Common tasks Sign reading Spontaneous

4 Conversation Spontaneous Cell phone dialog

Route2 1 Sign reading Lane changing Common tasks (radio,

AC etc.)

2 Cell phone dialog Cell phone dialog Conversation

3 Common tasks (radio,

AC etc.)

Sign reading Lane changing

4 Spontaneous Conversation Sign reading

Session Route Task

1 1 Just drive

1 Secondary tasks A

2 Secondary tasks A

2 Just drive

2 1 Just drive

1 Just drive

2 Secondary tasks B

2 Secondary tasks C

3 2 Secondary tasks C

1 Secondary tasks C

2 Just drive

2 Just drive
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annotation of the data, as presented in [10]. Here, we hypothesize that a certain task

the driver is asked to perform has a potential to cause a deviation of the driver’s

speech production from neutral, and hence, represents a stress condition.

In particular, we expect that the interaction with the automated call centers

Tell-Me and American Airlines (AA) puts an extensive cognitive load on the driver

compared to the driver’s casual conversations with the passenger. This is expected

partly due to the high demands of the automated call center on clear articulation,

explicit formulation of the requests within a limited vocabulary of the system, and

frequent requests for reentering the query due to the automatic speech recognition

failure. For this reason, we denote spontaneous conversations with the passenger as

neutral speech and calls to Tell-Me and AA as stressed speech. It is noted that even

spontaneous communication with the passenger represents a certain level of cognitive

load on the driver compared to silent segments and that due to the variable level of car

noise, the driver is likely to exhibit various levels of Lombard effect [5, 14, 15].

In order to verify whether there are any measurable differences in the “neutral”

and “stressed” portions of speech data and, hence, whether our hypothesis concerning

the presence of stress in the higher-cognitive-load scenarios is reasonable, we first

analyze the distributions of speech production parameters and compare them across

hypothesized stress classes. Subsequently, we train separate Gaussian Mixture

Models (GMMs) for neutral and stressed classes and evaluate the class discrimi-

nability using maximum likelihood classification. The gender-independent training

and testing of the neutral/stress classifier is performed on disjunctive data sets from

different speakers in order to evaluate the generalizing properties of the classification

system.

1.3.1 Speech Production Analysis

Sessions from 15 drivers (seven females, eight males) are used in the speech

analysis and stress classification experiments. An inspection of the close-talk

microphone channel revealed a strong presence of “electric” noise completely

masking the driver’s speech. For this reason, a middle microphone channel from

the microphone array is used instead.

The following speech signal parameters are analyzed on the data down-sampled

from 25 kHz to 16 kHz: signal-to-noise ratio (SNR), mean noise and speech power

spectrum, fundamental frequency, first four formant frequencies and bandwidths, and

spectral slope of voiced speech segments. SNR was estimated from (1) segmental

SNR estimator [16], (2) average noise power spectrum, and (3) average noisy speech
power spectrum. The SNR distribution obtained from the first method is shown in

Fig. 1.3; the mean SNR reaches�2.7 dB, with the standard deviation of 4.4 dB. Note

that the SNR values in the distribution are quite low due to the distant microphone

placement from the driver.

To verify the estimate from the segmental detector, in the next step, SNR is

estimated directly from the average noise power spectrum (N) extracted from all

8 H. Bořil et al.



nonspeech segments, and the average noisy speech power spectrum (SN) is

estimated from all passenger conversation, Tell-Me and AA segments:

dSNR ¼ 10 � log
X
k

SNk � Nk

Nk
; (1.1)

where k denotes the power spectrum frequency bin index. The SNR estimate obtained

from the power spectra reaches �3.2 dB, confirming a reasonable accuracy of the

segmental SNR estimation. The average power spectrum of noisy segments without

speech and of clean speech estimated by subtracting N from SN is shown in Fig. 1.4.

It can be seen that the car noise spectrum dominates over speech at low frequencies

while speech becomes dominant, in spite of the low SNR, at frequencies higher

than 300 Hz.
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In the next step, speech production parameters are analyzed. Distributions of

fundamental frequency in passenger conversations (denoted Neutral), and Tell-Me

and AA conversations are depicted in Fig. 1.5, where M + F stands for mixed-

gender data sets. Both Tell-Me and AA samples display a consistent increase in

mean fundamental frequency (177 Hz and 161 Hz) compared to neutral (145 Hz).

Mean center frequencies and bandwidths of the first four formants were extracted

from voiced speech segments using WaveSurfer [17]. They are compared for neutral,

Tell-Me, and AA conversations in Table 1.2. The voiced segments were identified

based on the output of the pitch tracking algorithm implemented in [17] (RAPT [18]).

Mean center frequencies and standard deviations of F1 are displayed in Fig. 1.6.

A consistent increase in F1 can be observed for Tell-Me and AA data. In AA,
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Fig. 1.5 Distribution of fundamental frequency in neutral, Tell-Me, and AA sessions

Table 1.2 Formant center frequencies and bandwidths (in parentheses)

Gender Scenario

Formants and bandwidths (Hz)

F1 F2 F3 F4

F Neutral 555 1,625 2,865 4,012

(219) (247) (312) (327)

Tell-Me 703 1,612 2,836 3,855

(308) (276) (375) (346)

AA 710 1,667 2,935 4,008

(244) (243) (325) (329)

M Neutral 450 1,495 2,530 3,763

(188) (209) (342) (343)

Tell-Me 472 1,498 2,525 3,648

(205) (214) (341) (302)

AA 503 1,526 2,656 3,654

(188) (215) (330) (369)

10 H. Bořil et al.



also F2 and F3 increase in both genders while remaining relatively steady in

Tell-Me. Note that F1 and F2 increases have been previously reported for stressed

speech, including angry, loud, and Lombard speech modes [5, 14, 15]. Finally,

spectral slopes of the voiced speech segments were extracted by fitting a straight

line to the short-term power spectra in the log amplitude/log frequency plane by

means of linear regression [14]. The mean spectral slope reaches values around

�10.4 dB/Oct, displaying no significant differences across stress classes. Note that

the average slope is somewhat higher than that reported in the literature for clean

neutral speech, presumably due to the strong presence of background car noise, which

introduces additional spectral tilt.

The analysis conducted in this section revealed differences in fundamental

frequency, F1, and F2 center frequencies between the selected neutral and stressed

classes, confirming that the initial hypothesis about the presence of stress in Tell-Me

and AA segments due to increased cognitive load is valid.

1.3.2 Automatic Classification of Stress

In this section, speech-based neutral/stress classification is proposed and evaluated.

For the purposes of classifier training and testing, the data from 15 drivers were split

into a training set comprising of speech samples from two male and two female

drivers, and test set comprising six male drivers and five female drivers.

Gaussian Mixture Models (GMMs) are chosen to represent probability density

functions (PDFs) of the neutral and stressed classes. The probability of observation

vector ot being generated by the jth GMM is calculated as

bjðotÞ ¼
XM
m¼1

cjmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2pÞnjSjmj
p � e�1

2
ðot�mjmÞTS�1

jm ðot�mjmÞ; (1.2)
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where m is the index of the Gaussian mixture component, M is the total number of

mixtures, cjm is the mixture weight such that

XM
m¼1

cjm ¼ 1; (1.3)

n is the dimension of ot;Sjm is the mixture covariance matrix, and mjm is the mixture

mean vector. The GMM representing neutral speech was trained on the passenger

conversations and the stressed speech GMM on joint Tell-Me and AA conversations

from the training set. In the neutral/stress classification task, the winning model is

selected using a maximum likelihood criterion:

jwin ¼
1;

PT
t¼1

log b1ðotÞð Þ �PT
t¼1

log b2ðotÞð Þ� Th;

2;
PT
t¼1

log b1ðotÞð Þ �PT
t¼1

log b2ðotÞð Þ<Th;

8>><
>>: (1.4)

where t is the time frame index, T is the total number of frames in the classified

utterance, and Th is the decision threshold.

In our experiments, the frame length was set to 25 ms, skip rate 10 ms, and the

decision threshold to a fixed value Th ¼ 0. Depending on the feature extraction

scheme, the GMMs comprise 32–64 mixtures, and only diagonals are calculated in

the covariance matrices. Unless otherwise specified, c0–c12 form the static obser-

vation feature vector. In all evaluation setups, delta and acceleration coefficients are

extracted from the static coefficients and complete the feature vector. A variety of

features, including Mel Frequency Cepstral Coefficients (MFCC), are considered.

In the UTDrive sessions, the amount of neutral spontaneous conversation data

considerably exceeds the number of Tell-Me and AA samples. In this case, possible

misclassification of small amount of stressed samples would have little effect on the

overall classification accuracy, while classifying correctly only neutral data would

assure high overall accuracy. To eliminate the impact of different sizes of the

neutral and stressed sets, and to allow for accuracy-based selection of the optimal

front-end for both AA and Tell-Me conversation scenarios, the overall classification

accuracy is determined as

Acc ¼ 2AccN�N þ AccTellMe�S þ AccAA�S

4
(%), (1.5)

where AccN–N is the accuracy of neutral samples being classified as neutral,

AccTellMe–S is the accuracy of Tell-Me samples being classified as stressed, and

AccAA–S is the accuracy of AA samples being classified as stressed.

Efficiency of several feature extraction front-endswas evaluated in the neutral/stress

classification task. In particular, Mel Frequency Cepstral Coefficients (MFCC [19]),

Perceptual Linear Prediction (PLP) cepstral coefficients [20], Expolog cepstra [21],
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and cepstra extracted from a uniform filterbank of 20 non-overlapping rectangular

filters distributed on a linear frequency scale (20Bands) [15] were compared. MFCC

represent a common baseline front-end in speech/speaker recognition, and PLP has

been shown by numerous studies to provide comparable or better performance to

MFCC in various speech-related tasks [14].

Expolog is an outcome of studies on accent classification and stressed speech

recognition, and features based on 20Bands filterbank have shown superior

properties in noisy neutral and Lombard speech recognition [15].

In this study, Expolog and 20Bands filterbanks were used either as a replacement

for the triangular Mel filterbank in MFCC, yielding front-ends denoted Expolog

DCT and 20Bands DCT, or as a replacement for PLP trapezoid Bark filterbank,

yielding setups denoted Expolog LPC and 20Bands LPC. In order to reduce the

impact of strong background noise on classification, Full Wave Spectral Subtraction

(FWSS) utilizing Burg’s cepstral-based voice activity detector [14] was incorporated

in the feature extraction. The classification results are summarized in Table 1.3 and

Fig. 1.7. The first row of results in Table 1.3 represents the performance of a classifier

without noise subtraction (NS), denoted “none.”

It can be seen that in the majority of cases, FWSS considerably improves

performance. Among front-ends employing 13 static coefficients and their first-and

Table 1.3 Classification performance; normalized accuracy (%)

Front-end

NS MFCC PLP

Expolog

LPC

Expolog

DCT

20Bands

LPC

20Bands

DCT

20Bands

DCT11

None 83.7 83.1 81.4 81.9 84.2 84.1 83.6

FWSS 85.6 85.1 86.2 85.4 83.5 87.6 88.2
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Fig. 1.7 Front-end’s classification performance

1 Towards Multimodal Driver’s Stress Detection 13



second-order time derivatives, 20Bands DCT with FWSS provided the highest

classification accuracy (87.6%). In addition, it was observed that decreasing the size

of the static cepstral coefficients vector from 13 to 11 (c0–c10), denoted 20Bands

DCT11, provides further accuracy increase to 88.2%. In this setup, the individual

accuracies were AccN–N ¼ 91.4%, AccTellMe–S ¼ 70.0%, and AccAA–S ¼ 100.0%.

Note that the accuracy and intraclass confusability can be further balanced by adjusting

Th in Eq.1.4. However, for that, the availability of additional development data

is required.

1.4 Distraction/Stress Detection Using CAN-Bus Signals

In this part of the study, we develop a distraction detection module based on a

subset of CAN-Bus signals (mainly steering wheel angle and speed) using driver

performance metrics, signal processing tools, and statistics. A generic distraction

detection system without having the maneuver/context information and driver

baselines for that particular maneuver is very difficult to design simply because

the generic baseline for the nominal values of metrics/features has a wide range of

variation due to driver characteristics and route/maneuver/context dependency.

CAN-Bus signals can reveal the distraction level of the driver when the

variability due to maneuvers and driver characteristics are eliminated or dealt

with so that they do not cause false alarms. Therefore, a methodology using a baseline

for each individual driver and particular maneuver is proposed. A general flow

diagram of the methodology is given in Fig. 1.8. The variation in the signals due to

the maneuver/particular road segment is eliminated here by maneuver classification.

After the feature extraction process, distraction detection is performed by taking

the driver’s baseline for a given maneuver obtained from the same route segment

(marked by two in Fig. 1.2) as when the conditions were neutral. Since UTDrive

corpus includes multiple sessions collected from the same route and same driver

under different conditions, hence, baselines can easily be obtained. The algorithm

flow for distraction detection is shown in Fig. 1.9.

A normalized comparison ratio (a) is calculated for each element in the feature

vector. The comparison ratio is used in multiple interval thresholds. Each threshold

Fig. 1.8 Flow diagram of general methodology used for CAN-Bus-based analysis
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interval is assigned to a probability. For example, if the ratio is between 0.1 and 1,

the probability of distraction is 0.7, and if the ratio is larger than 20, it is 1.

This assignment approach allows for a probabilistic assessment of the distraction

or can give an idea of the distraction level.

Comparison values larger than 0.1 in magnitude are considered to indicate a

significant distraction. If the comparison value magnitude is below 0.1, the session is

assumed to be close enough to baseline to be considered neutral. As the comparison

ratio increases, the probability of being distracted increases, with the highest value

being 1 as shown in Fig. 1.9. At the end of this probability mapping, the prob-

abilities are summed along the feature vector (now comprised by comparison ratios)

and normalized by dividing the resultant likelihood value in the feature vector

dimension. The next section explains the feature extraction process and motivation

behind the feature vector elements selected.

1.4.1 CAN-Bus-Based Features

The features are selected based on their relevance to distraction and definition of the

maneuver. Using the color-coded driving timeline plots, it was observed that the

route segment two contains lane keeping and curve negotiation tasks in terms of

driving. For the lane keeping, several driver performance metrics are suggested in the

literature mostly using steering wheel angle (SWA) to calculate a metric indicating

the fluctuations or microcorrections in SWA input. Among these metrics, a widely

accepted method is the sample entropy [22] and standard deviation. If available,

the lane deviation measurements also give away if the driver is fully attentive and

in control. The reversal rate of steering wheel is also considered to be a reliable metric

to measure driver performance in a lane keeping task. Boer [23] recently updated

his previous work and suggested some adjustments, taking high-frequency terms

Fig. 1.9 Distraction detection algorithm flow based on features extracted from CAN-Bus signals
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into account. It was also pointed out in a thorough analysis [24] that the speed interval

for which the SWA-dependent metric is being calculated is important since the lower

speeds require more SWA inputs to achieve the same amount of lateral movement of

the car compared to a higher speed. For the curve negotiation, a constant input of an

angle required using the visual input of the road curvature.

The novice or distracted driver may have fluctuating inputs in the SWA, and the

general trend is that the speed should be reduced while taking the curves to balance

the centrifugal force. Although different in nature, lane keeping and curve negotia-

tion can be seen as regulatory control tasks from the driver’s point of view.

Therefore, we selected a seven-dimensional feature vector using available informa-

tion and observations about driver performance/behavior including: energies of

high-frequency components wavelet decomposition (WD), sample entropy, standard

deviation, and standard deviation of rate of change (R-STD). All features are

extracted for SWA, and speed channels except R-STD are only applied to SWA.

The time window length is taken as equal to the maneuver length, and the effect of the

signal length is eliminated in the calculation of features. The entries of the feature

vector are listed with their definitions in Table 1.4.

For the wavelet decomposition, Daubechies [25] wavelet kernel with fourth

order is used, and detail signal is taken at the sixth level. Daubechies wavelet is

chosen since it can approximate to signals with spikes and discontinuous attributes

well. The level and order is adjusted to be able to extract the high-frequency content

in the signal which is in the limitation of human control; the higher details are

ignored since they might be caused by other disturbances in the measurement rather

than driver. Scaling functions (a), wavelet function coefficients (b), scaling function

(c), and wavelet function (d) for DB4 are given in equation group (1.6):

h0 ¼ 1þ ffiffiffi
3

p

4
ffiffiffi
2

p ; h1 ¼ 3þ ffiffiffi
3

p

4
ffiffiffi
2

p ; h2 ¼ 3� ffiffiffi
3

p

4
ffiffiffi
2

p ; h3 ¼ 1� ffiffiffi
3

p

4
ffiffiffi
2

p ; (1.6a)

g0 ¼ h3; g1 ¼ �h2; g2 ¼ h1; g3 ¼ �h0; (1.6b)

ai ¼ h0s2i þ h1s2iþ1 þ h2s2iþ2 þ h3s2iþ3; (1.6c)

ci ¼ g0s2i þ g1s2iþ1 þ g2s2iþ2 þ g3s2iþ3: (1.6d)

Table 1.4 Feature vector and definitions

Notation Definition

WDE_SWA Wavelet decomposition detail signal energy for SWA

WDE_speed Wavelet decomposition detail signal energy for speed

SampEnt_SWA Sample entropy of SWA

SampEnt_speed Sample entropy of SWA

STD_SWA Standard deviation of SWA

STD_speed Standard deviation of SWA

STD_SWAR Standard deviation of SWA rate
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Sample entropy (SampEnt), which is used as a measure to quantify regularity

and complexity of the signal, is a perfect match measuring the regularity of SWA

signal. It is known that the measures based on entropy have long been employed in

biosignal processing such as EEG, ECG, and EMG to measure regularity and detect

abnormality. The method to calculate the sample entropy follows the work described

in [26]. The standard deviation is calculated in a canonical form with statistics.

1.4.2 Distraction Detection Performance

Using the algorithm flow depicted in Fig. 1.9 and feature vectors explained in

Table 1.4, 96 comparison cases for lane keeping and 113 cases for curve negotiation

were examined using 14 drivers’ (20 sessions, seven female and seven male drivers)

data. As an insight, WDE_SWA feature member is given for lane keeping

maneuvers in Fig. 1.10. It can be easily seen that the distracted sessions are

generally greater than the baseline for this metric. The accuracy of the distraction

detection is given in Table 1.5 using seven-dimensional feature vector (LKS) and

using four-dimensional feature vector subset containing only SWA-related features

(LKC) with threshold values of 0.2, 0.1, and 0 for the final classification result.

From Table 1.5, it can be seen that if any probability value higher than zero is

taken into account, the distraction can be detected with 98% accuracy using lane

keeping segments (LKS) and by 84% accuracy using curve negotiation segments

(LKC) during Tell-Me/AA conversations.
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The system offers a low-cost, driver-dependent, and reliable distraction detection

submodule. Future work will focus on generic distraction detection using sums within

the same feature space.

1.5 Conclusions

In this study, the impact of cognitive load on drivers was analyzed using the

UTDrive database that comprises real-world driving recordings. In particular,

driver’s speech signal and CAN-Bus signals were studied and subsequently utilized

in the design of autonomous speech and CAN-Bus domain neutral/stress (distraction)

classifiers. The speech-based neutral/stress classification reached an accuracy

of 88.2% in the driver-/maneuver-independent open test set task. The distraction

detector exploiting CAN-Bus signals was evaluated in a driver-/maneuver-dependent

closed test set task, providing 98% and 84% distraction detection accuracy in lane

keeping segments and curve negotiation segments, respectively. The results suggest

that future fusion of speech and CAN-Bus-based classifiers could yield a robust

continuous stress (distraction) assessment framework.
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Chapter 2

Driver Emotion Profiling from Speech

Norhaslinda Kamaruddin, Abdul Wahab, and H€useyin Abut

Abstract Humans sense, perceive, and convey emotion differently from each other

due to physical, psychological, environmental, cultural, and language differences.

For example, as recognized and studied by psychologists more than a century, it is

easier for someone of the same culture to judge and recognize emotion correctly

compared to those from different culture. In this chapter, we attempt to study the

speech emotion recognition problem by using two speech corpora from the Berlin

dataset and the NAW datasets. We have investigated the universality as well as

diversity of two different cultural speech datasets recorded by German and American

speakers, respectively. Experiments were conducted for identifying three basic

emotions, namely, angry, sad, and happy with neutral as emotionless state from

these datasets. MFCC coefficients were used as feature sets in the experiments, and

MLP was employed as classifiers to compare the performance of these datasets. In

addition, real-time recorded speech from drivers was also tested to see the perfor-

mance in a vehicular setting. Finally, speech emotion profiling approach was

introduced to explore the universality and diversity of the speech emotion features.
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Keywords Berlin dataset • Mel frequency cepstral coefficients (MFCC) •

Multilayer perceptron (MLP) • NAW dataset • Speech emotion profiling • Speech

emotion recognition

2.1 Introduction

During the last century, many researchers from different disciplines have tried to

postulate a few basic emotions out of the entire range of emotions that are tinged

and enlivened. One of the models suggests that every emotion is composed of

different levels of certain basic components including arousal, intensity, aversion,

self-directedness, and others. Among many models, the prevailing one conjectures

that emotions arise much the same way as colors do – presenting a myriad of hues

out of the basic few constituents [7] To date, cognitive science does not possess a

test to decide between various competing models of the basic emotion. However,

researchers in various disciplines agree that some emotions are universally accepted

as basic and many others as secondary. Cornelius has labeled six emotions as the

“Big Six” [11], which are angry, happy, sad, fear, surprise, and disgust. These were
chosen in this study. However, we focus only on angry, sad, and happy emotions

with neutral as emotionless state in this chapter.

Emotion recognition from engineering perspective is a fairly new field of

research compared to the psychologists’ community. With the understanding that

human convey and perceive underlying emotion in the interaction, scientists and

researchers are able to analyze massive amount of information transmitted from a

speaker to the listener using the tools of signal processing today. Yet, we are

struggling to understand emotion and, more critically, capture and/or process it in

a form that is useful for technical purposes.

In 2001, Sherer et al. have conducted a study in nine different countries in

Europe, United States, and Asia on vocal emotion portrayals using content-free

sentences containing anger, sadness, fear, joy, and neutral voice [9]. They found

that generally the accuracy decreased with increasing language dissimilarity in

spite of the use of language-free speech samples. It is concluded that culture-and

language-specific paralinguistic patterns may influence the emotion recognition

process.

In this chapter, we address this issue by proposing Mel Frequency Cepstral

Coefficients (MFCC) as our features for speech emotion recognition. Our feature

extractionmethod based on Slaney’s [8] approach coupledwith theWEKAmultilayer

perceptron (MLP) [12] classifier. These are adopted to identify the three basic

emotions, namely, angry, sad, and happy emotional states. Initially, two different

speech emotion datasets – using the NAW dataset (American actors) and Berlin

dataset (German actors) –were employed to train and test the accuracy of the proposed

systembased on theK-fold validation technique.Next, we have extended our scope by

using speech data recorded while driving in real time, to analyze and understand the

driver behavior [6]. The driver was asked to interact with the passenger as well as
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talking to a caller using a mobile phone equipped with a hands-free module as a safety

precaution while driving. Three different scenarios were recorded based on:

• Driver under stress when talking on the mobile phone while driving

• Laughing while driving

• Driver feeling very sleepy

Data from these three driving scenarios were then compared with the two

standard datasets, i.e., NAW and Berlin datasets.

In addition to the speech emotion recognition system under study, we also

explore speech emotion profiling as an alternative tool to better understand speech

emotion and in analyzing inter-and intra-cultural behavior. Such tool seems to

provide a deeper insight to the hidden characteristics of speech emotion.

This paper is organized as follows: In Sect. 2, we present the theoretical and

experimental framework for the proposed speech emotion recognition system based

on a feature extraction method using Mel Frequency Cepstral Coefficients (MFCC)

as features and MLP as classifier. In Sect. 3, experiments for the proposed speech

emotion profiling system will be presented with some analysis of the driving dataset

as compared to those using the NAW and Berlin datasets. Section 4 discusses the

findings and conclusion of the study with some future work that can help extend the

idea of profiling to its next level.

2.2 MFCC-MLP Speech Emotion

During the past couple of decades,MFCC feature has been successfully used for high-

end speech recognition and speaker identification problems. However, there are many

variations in applications in terms of number of filters, shape of filters, bandwidths,

and the manner in which the spectrum is warped. In classification experiments,

Slaney’s approach [8] – founded on a study by Ganchev et al. [3] – gives a slightly

better performance than many earlier works. Hence, we have adopted the approach

described in Slaney’s Auditory Toolbox for Matlab [8] in this study.

Once the MFCC features from the speech are extracted, the speech emotion is

then classified/recognized using a multilayer perceptron (MLP) technique which is

based on Bishop’s work [1] wherein the preliminary experiments sought to deter-

mine the initial accuracy of the speech emotion recognition system. MLP uses a

combination of several perceptron layers that are interconnected to each other and

exhibit a high degree of connectivity, which is determined by the synapses of the

network. It consists of three main layers which are the input layer, the hidden layer,

and the output layer. In the input layer, the data is given to the network, thus the

number of input neurons must be equivalent to the number of features for the data.

Each data entry is given a weight by the network to be passed to the hidden layer

where a nonlinear calculation will be carried out with the activation function.

The output layer is the sum of the entire hidden layer outcomes. MLP uses the

ubiquitous back-propagation algorithm as its learning procedure.
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Figure 2.1 shows the proposed speech emotion recognition system where the

emotional speech is first filtered and framed. Forty MFCC features were then

extracted and later classified using the MLP. The other additional module on speech

emotion profiling and learning system is meant to enhance the speech emotion

recognition system to cater for inter-and intra-cultural differences. In this chapter,

only the emotion classification and some preliminary work on emotion profiling are

presented next.

2.2.1 Berlin Dataset

The Berlin Emotional Speech Database [2] contains ten sentences that have little

emotional content textually. It is in German and covers seven emotion classes,

namely, anger, fear, happy, sad, disgust, boredom, and neutral. The content of the

spoken material is predefined and presented to five male and five female profes-

sional actors, respectively. The recording was done under studio conditions using a

high-quality recording equipment and saved in mono wave format with an 8.0 kHz

sampling rate. The complete database has been pre-evaluated through a manual

perception test by 20 human subjects.

2.2.2 NAW Dataset

The NAW dataset [13] was collated using some video clips from movies and

television sitcoms obtained from the Internet. The participants are native speaker of

American English. The emotions portrayed by the speakers have been analyzed and

Fig. 2.1 Shows the proposed

speech emotion recognition

system
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identified based on speech semantics, facial expression of the speaker, as well

as basic understanding of the situations of the video clips occurrences. These video

clips were converted to MP3 audio files at a sampling rate of 8.0 kHz, mono stream,

and their amplitudes were scaled in the range (�1,þ1) V. A number of findings using

this dataset have been reported earlier in [4, 5, 13].

2.2.3 Human Perception Test

In order to ensure that the video clips obtained for the NAW dataset were correctly

perceived, manual perception test were subsequently carried out. In this test, a total

of 40 human subjects – 11 from Nanyang Technological University, Singapore

(nine males and two females), and 29 from International Islamic University,

Malaysia (15 male and 14 female), with an age mean of 23 years – have volunteered

to provide their perceived assessment of the speech emotion audio files presented.

The participating subjects have reported that they have experienced neutral

emotion prior to the commencement of the human perception test. The survey

was conducted in a laboratory environment where the judges can listen to the

speech emotion audio files with minimal distraction. They sat in front of a computer

and listened to the speech emotion audio files via a headphone to ensure that judges

can hear audio files without interruption. For each speech emotion audio file, they

indicated the perceived emotion on a six-force-choice format representing the

emotion classes with neutral as shown in Table 2.1.

In order to avoid any misled perception, each speech emotion audio file’s name

was labeled using a file number that has no relation to the respective emotion. In

addition, the file numbering was also randomized to avoid any prediction of the

emotion pattern. The human judges were allowed to listen to any of the speech

emotion audio files repeatedly prior to making an appropriate decision.

Table 2.1 shows the confusion matrix for human recognition performance for the

NAW dataset. Here, it can be seen that most judges were able to identify sad, angry,
neutral, and happy quite easily with at least 76% accuracy. This is followed by

surprised with 64% accuracy and disgust with only 34% accuracy, respectively.

Disgust yielded very low recognition, which shows that the judges were not clear

with its definition that they might have perceived disgust as mild anger thus

resulting in higher percentage of anger being perceived. Similarly, surprised

Table 2.1 Confusion matrix for human recognition performance for NAW dataset

Happy Angry Disgust Surprised Sad Neutral

Happy 76.5 0.0 1.5 12.0 0.0 10.0

Angry 0.0 90.0 5.0 0.0 4.0 1.0

Disgust 2.0 32.5 34.5 6.5 3.0 21.5

Surprised 9.0 2.0 8.0 64.5 1.5 15.0

Sad 0.0 0.0 0.5 0.0 98.0 1.5

Neutral 1.0 0.0 2.5 0.0 0.0 96.5
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emotion also scored fairly low perception performance due to the judges’ mixed

perception that most of them categorized surprised as happy for positive surprised

or disgust for negative surprised. Sad is the highest correctly perceived emotion

with 98% recognition accuracy performance since it was observed from features

that it has the most acoustically distinct features.

2.3 Speech Emotion Recognition and Profiling Experiments

2.3.1 Emotion Identification Experiments

Identification experiments were carried out to investigate the performance of our

proposed system in determining the emotion for a given speech segment. As shown

in Fig. 2.2, our proposed system can yield accuracy ranging from 47.9% to 75.4%

for Berlin dataset and 61.4–71.2% for NAW dataset, respectively.

As it can be seen from Fig. 2.2, themaximum andminimum accuracy percentages

for both datasets are consistent wherein sad emotion resulted in the highest accuracy

and the happy emotion the lowest accuracy. Based on these results, we can see that

NAW dataset result is comparable to the Berlin dataset, and the combination of

MFCC as feature extraction coupled with MLP can achieve reasonable accuracy

performance. This indicates that our proposed approach has potential to recognize

emotion in speech.

2.3.2 Understanding Driver’s Emotion

The approach was next applied to a pre-recorded driving data to identify emotional

state of drivers while driving under varying scenarios. There were four scenarios for

the driver emotional state, namely, stress, laughing, neutral, and sleepy, which
were tested in these set of experiments. Stress data is taken while the driver was

talking through a mobile phone while driving with the assumption that he/she
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Fig. 2.2 Identification result for Berlin and NAW dataset
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needed to multitask between concentrating on his/her driving and at the same time

providing appropriate responses to the caller prompts. The results are tabulated in

Table 2.2.

From Table 2.1, we could see that the proposed system can identify at least 55.6%

and can reach up to 74.5% of the driver emotional state using the same driving dataset.

Neutral yielded the highest accuracy, and stress obtained the lowest accuracy.

In order to have better understanding of the proposed system performance, we

have combined the three datasets consisting of Berlin, NAW, and the driving

datasets, and have conducted identification experiments. Since laughing is a reac-

tion when the driver is happy, we assumed that laughing is a subset of happy

emotion. The identification results are provided in Table 2.3. It is clearly seen that

the lowest accuracy yielded for stress data with only 39.3% accuracy while the

maximum accuracy obtained by neutral with 62.3%.

The accuracy of such system can be improved if the neutral state is removed

from the dataset. From the understanding of Schlosberg’s affection space model

[10], the neutral state is the speech emotion basis regardless of their emotion

primitives’ axes. Thus, pure emotion can be extracted from the processed speech

if we can remove neutral from our findings. Confusion matrix of Table 2.4 shows a

rather interesting result when the neutral is removed. The accuracy of the proposed

system is increased by approximately 10%.

Table 2.2 Confusion matrix for identification results for real-time driving dataset

Stress (%) Laugh (%) Neutral (%) Sleepy (%)

Stress 55.6 19.9 13.3 11.2

Laugh 22.3 57.0 12.1 8.6

Neutral 5.4 6.9 74.5 13.2

Sleepy 8.5 7.4 17.6 66.5

Table 2.3 Confusion matrix for identification results from combination of Berlin,

NAW, and real-time driving datasets

Happy (%) Sad (%) Neutral (%) Stress (%) Angry (%) Sleepy (%)

Happy 50.6 11.5 14.9 4.9 15.4 2.8

Sad 12.7 59.5 15.4 1.0 9.4 2.1

Neutral 13.5 10.5 62.3 1.8 6.5 5.5

Stress 22.0 6.1 22.4 39.3 2.5 7.7

Angry 22.4 9.2 9.2 1.0 56.1 2.2

Sleepy 12.9 4.8 21.4 2.8 1.2 56.9

Table 2.4 Confusion matrix for identification result of combination Berlin, NAW,

and real-time driving dataset without neutral

Happy (%) Sad (%) Stress (%) Angry (%) Sleepy (%)

Happy 59.4 13.5 5.8 18.1 3.2

Sad 15.0 70.3 1.2 11.1 2.5

Stress 28.4 7.9 50.6 3.2 9.9

Angry 24.6 10.1 1.0 61.8 2.4

Sleepy 16.4 6.1 3.6 1.5 72.4
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2.3.3 Speech Emotion Profiling

Based on the results presented in Sect. 2, we apply speech emotion profiling method

to the data in order to visualize the correlation between speech emotion signal and

the neutral state. It is interesting to note from Fig. 2.3a–i that even though the data

used is different, the pattern is similar for the same emotion across datasets, and yet

the distinction is clearly observable for different emotion within a given dataset.

The most obvious example is the profile plot of happy emotion which has a cross

pattern for all three dataset, although the data is completely different. Figure 2.3

also indicates that it is possible for us to visualize the inter- and intra-cultural

variations of the speech emotion, which can lead us to better understand the effect

of these cultural artifacts to improve speech emotion recognition globally.

Fig. 2.3 Speech emotion profiling for Berlin, NAW, and driving datasets: (a) Berlin – angry; (b) Berlin

– sad; (c) Berlin – happy; (d) NAW – angry; (e) NAW – sad; (f) NAW – happy; (g) Driving – stress;

(h) Driving – sleepy; (i) Driving – laugh
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2.4 Summary, Conclusion, and Future Work

Speech emotion profiling can be an effective tool for investigating intra- and

inter-cultural variations from various perspectives. It enables one to visualize the

interaction of the emotion that may give important information which is not

observable using normal signal analysis tools, namely, the speech recognition and

speaker identification. More work in understanding the profile especially in

extracting the relevant features as well as the appropriate data processing are

needed to benefit from such visualization tool. The speech emotion profile coupled

with a three-dimensional affective-space model may be able to provide a better

understanding of the dynamics of driver behavior. This work also illustrated that

there are strong correletions between driver behavior and emotion which can be

emperically measured using speech signals.
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Chapter 3

Driver Status Identification from Driving

Behavior Signals

Emre Özt€urk and Engin Erzin

Abstract Driving behavior signals differ in how and under which conditions the

driver uses vehicle control units, such as pedals, driving wheel, etc. In this study, we

investigate how driving behavior signals differ among drivers and among different

driving tasks. Statistically significant clues of these investigations are used to define

driver and driving status models. Experimental results over the UYANIK database

are presented. Driver identification over 23 drivers achieves a 57.39% identification

rate with the fusion of gas and brake pedal pressure classifiers. Driver identification

system with reduced number of drivers fits better on real-life scenarios. Driver

identification rate within groups of three drivers is computed as 85.21%. Driver

status identification over ten drivers with task and no-task classes yields a

promising 79.13% task identification rate. Driving behavior is strongly related to

past actions of drivers. In this study, we investigate driving behavior prediction

from past driving signals. We propose a behavior prediction system, which

performs temporal clustering of behavior signals and computes linear estimators

for each temporal cluster. The temporal clustering is performed with hidden

Markov model (HMM). Experimental evaluations show that distractive conditions

have a certain effect on driving behavior, where the prediction errors are signifi-

cantly increasing in these conditions. Road conditions are also influential on driving

behavior prediction.

Keywords Driver status identification • Drive-safe • Driving behavior prediction

• Driving behavior signal • Driving distraction

E. Özt€urk • E. Erzin (*)

Multimedia, Vision and Graphics Laboratory, Koç University, Sar{yer, Istanbul, Turkey
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3.1 Introduction

Recent developments in man–machine interaction have created a wide range of

applications. Among those applications, human–vehicle interfaces have been stud-

ied extensively in the recent literature. Next-generation human–vehicle interfaces

will likely incorporate biometric person recognition using speech, video, images,

and analog driver behavior signals to provide more efficient and safer vehicle

operation. Furthermore, driving behavior signals, such as pedal signals, velocity,

and car-following distance, yield important clues on driving behavior status and

driver’s cognitive stress/distraction.

There have been significant efforts on the investigation of driving behavior patterns

using driving behavior signals. Kurahashi et al. used driving behavior signals to

quantify workload factors for driving behavior modeling [1]. The Center for Acoustic

Information Research at Nagoya University has been collecting multimodal driving

behavior signals since 1999 [2]. Their early studies investigate cepstral analysis of

driving behavior signals [3] andmodeling driver behavior as car-following and pedal-

operation patterns [3, 4]. Recently, they investigate near-miss accidents by conducting

interviews to determine driver behavior and cognitive state immediately before the

incident [5]. Driver identification from biometric and driving behavior signals have

been investigated within a multimodal decision fusion system [6].

Car-following data collection and modeling have also been investigated across

different research centers [4, 7]. Predicting driver’s future actions with the resultant

behavior and past observations have been studied with implications to model the

impact of Intelligent Transport Systems (ITS) [5, 8]. Tezuka et al. investigate predic-

tion of driving behavior signals by capturing time-series steering angle data at the time

of lane change with conditional Gaussian models and Bayesian networks [8].

Kishimoto and Oguri applied to Dynamic Bayesian Networks to construct a behavior

model for inference of stop behavior [14]. They have revealed that using past

movements has a great influence for predicting stop probability. A multimodal signal

processing system for robust stress detection in urban driving scenarios has been

proposed in [9]. Marinova, Devereaux, and Hansman have studied the effects of cell-

phone conversations on driver reaction time and situation awareness at different levels

of cognitive with hands-free and hand-held cell-phone configurations [10]. Cognitive

workload and driver experience, using a secondary task method, the peripheral

detection task (PDT) in a field study, has also been explored [11].

The Nagoya University CIAIR center leads the effort on international research

coordination of driving behavior signal processing based on large-scale real-world

database [2]. Within this research coordination, UTDrive of University of Texas at

Dallas collects multimodal driving behavior data [12]. UTDrive investigates

driver’s cognitive stress/distraction to adapt interactive systems for improved

safety. Similarly, the Drive-Safe consortium, which has partners from the academia

and industry in Turkey, collects a similar multimodal driving behavior corpus to

create conditions for prudent driving in [13].

In this chapter as a partner of the Drive-Safe consortium, we investigate driver

identification, driving status identification, and driver behavior prediction under
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different cognitive stress/distraction conditions using driving behavior signals.

Our objective is to search out and examine the effects of cognitive distraction

conditions on driving behavior and inquire whether driving behavior signals are

characteristic information for every driver. We investigate task identification

performances, where our earlier findings are presented in [17].

In this chapter, we present our contributions on the following three major

problems:

• Driver Identification: Identification of a driver using behavioral signals is one

the most interesting in-vehicle signal-processing problems. In this study, we use

driving behavior signals such as vehicle speed, gas pedal pressure, brake pedal

pressure, and distance from the vehicle in front for driver identification. First, we

investigate the characteristics of these signals and present a selected set of

driving statistics. Then we define a statistical driver identification system and

evaluate this system experimentally.

• Driver Status Identification: Distractive conditions cause important safety

problems to drivers. Studies have shown that nearly 80% of traffic accidents

occur due to driver inattention, which are commonly results of distractive

conditions. Navigation systems and other services in vehicles introduce many

secondary driving tasks that can increase accident risk. Thus, developing a distrac-

tion detection method would be very beneficial for in-vehicle system to reduce the

effects of distraction. In this study, driving experiments were done under some

distractive conditions, which can be considered as the secondary driving tasks

stated above. These tasks are dialog on cell phone, including route navigation and

online banking, conversation with passenger on-board, and signboard and license

plate reading.We investigate the statistical nature of driving behavior signals under

different driving tasks, which are defined as distractive conditions. Then we

attempt to detect distractive conditions using statistical classifiers.

• Driver Behavior Prediction: Human factors play a big role in traffic accidents.

Predicting driving behavior is an important issue since it has a significant effect

on decreasing human-caused accidents. Drivers’ behavior is strongly related to

their past actions, so in this study, we construct a driver behavior prediction

model using drivers’ past behavior signals. The driver behavior prediction model

consists of temporal clustering with hidden Markov models (HMM) and mini-

mum mean-square error (MMSE) estimation within each temporal segment. We

also investigate the influence of road conditions and distractive conditions on our

prediction model.

3.2 Driving Behavior Signal Characteristics

Driving signals differ in how and under which conditions the driver use vehicle

control units, such as pedals, driving wheel, etc. We aim to model individual

differences among the selected drivers and identify the drivers by using gas

3 Driver Status Identification from Driving Behavior Signals 33



pedal pressure, brake pedal pressure, vehicle velocity, and fusion of these signals.

We also benefit from car-following distances. Driving behavior characteristics

differ from person-to-person under different distractive conditions. In order to

examine the effects of these distractive conditions, we investigate how driving

behavior signals differ across driving tasks. Statistically significant clues of this

investigation are used to define a driving status model. This section presents general

characteristics and statistics of the driving behavior signals from the UYANIK

database, feature representation of these driving behavior signals, and the statistical

clustering, identification framework for the driver and driving status and predicting

driver behavior.

3.2.1 Data Collection

Driving behavior data was supplied by the Drive-Safe Consortium in Turkey with

the test vehicle, UYANIK, which is a sedan car equipped with various sensors. The

UYANIK database includes synchronous audio-visual recordings, CAN-Bus

readings, pedal-sensor recordings, 180� laser range finder, and XYZ accelerometer

recordings [13].

The data collection route is around 25 km at about 40 min, starting and ending at

the OTAM Research Center in the ITU Campus in Ayazaga. It consists of two

1.5 km-very-busy city sections, followed by the TEM highway with much less

traffic. Next, the route goes through the city, and then it goes back to the OTAM at

ITU campus. The last segment is very busy with local traffic. The route is the same

for all drivers. However, road conditions may differ depending on traffic jam and

weather in Istanbul. We use a subset of the UYANIK database including driving

behavior signal recording sessions of 20 male and 3 female drivers.

There are four primary tasks in the UYANIK database: (1) reference driving
which includes no specific driving task, (2) dialog on cell phone which includes

online banking application and navigational dialog, (3) signboard reading in which
driver reads road-by signs and license plates aloud, and (4) dialog with passenger
where driver talks with the on-board passenger.

3.2.2 Driving Behavior Signals

We consider gas and brake pedal pressure signals, velocity from CAN-Bus, and car-

following distance from the laser range finder as driving behavior signals. The gas,

brake, and velocity signals are all sampled at 32 Hz, and the laser range finder

sweeps 180� at every 2 s. Samples of driving behavior signals are given in Fig. 3.1.

The laser range finder in front of the vehicle records two-dimensional (x, y) data

consisting of horizontal and vertical distances. Figure 3.2 shows the Laser Scan

Reading and the photo for a selected driver recorded at 12:56 PM on April 6, 2007.
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The truck on the right is between �200 cm and +800 cm, the white truck is 22 m

away, and the vehicle on the next lane (left) is about 23 m ahead [13].

The histograms of the driving behavior signals for all 23 drivers driving under

highway and city traffic conditions are shown in Fig. 3.3. It shows that on the

highway, drivers rarely use the brake pedal and steps on the gas pedal much more.

The maximum range that the laser can sweep is about 80 m and generally most of

the drivers exceed this distance on the highway.

Meanwhile, histograms of the driving behavior signals, taken from two randomly

selected drivers, are shown in Fig. 3.4. The driver on the left side of the figure prefers

driving faster and rarely uses the brake pedal. Also, he or she generally keeps distance

from the vehicle in front for all road conditions, while the other driver prefers

following a vehicle with closer distances where he or she faces traffic jam, and uses

the brake pedal much more. Such differences are clear indications that driving

behavior signals differ among drivers.

3.3 Driver Behavior Modeling

Modeling driver behavior is very important in enhancing the safety of drivers

and pedestrians. Driver authentication, early warning systems for vehicles, and

other technologies for security purposes can be given as the application areas of

driver behavior modeling. Driving behavior, in itself, is a cyclic process [16].

Fig. 3.1 Driving behavior signals of a driver from the UYANIK database
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A driver determines the action to take by considering the road environment and

operates the gas or brake pedal. The velocity of the vehicle changes according to the

driver’s operation and the distance from the vehicle in front (road environment),

and it also changes according to the vehicle’s status.

Fig. 3.2 Laser scan reading and the photo for a selected driver
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In this section, we discuss feature extraction, driver identification, and driver

behavior signal prediction, and their role for driver behavior modeling. Driver

identification is based on recognition of driving feature vectors using a statistical

model. Our model is designed using a training and test procedure. In the training

part, our algorithm learns the statistical nature of the data from a training set

constructed by extracting the driver behavior features. In the testing part, the

algorithm’s accuracy is measured on a testing set, which is completely different

from a training set.

3.3.1 Feature Extraction

A preprocessing step, which is the high-pass filtering of the driving signals including

gas pedal pressure, brake pedal pressure, and vehicle velocity, is applied to remove the

DC component. Then, we apply cepstral analysis, which is a known source/filter

Fig. 3.3 Histograms of the driving behavior signals from highway (top) and city (bottom) traffic
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separation method, and it has been used for driving behavior signals. Cepstral analysis

captures significant information from driving behavior signals. In driver modeling,

hitting a gas or brake pedal is filtered with a driver model represented as the spectral

envelope. Spectral envelopes of pedal-operation signals represent the differences in

pedal-operation patterns. These spectral envelopes are similar in the same driver and

vary across different drivers.

In this study, we extract cepstral features for the gas and brake pedal pressure

and velocity signals, which are sampled at 32 Hz. The cepstral features are

extracted over 800-ms windows for every 96-ms frames. The cepstral feature is

defined as the first K coefficients of the discrete cosine transform of band-pass

filtered log-magnitude spectra,

fk ¼ DCTfBPFflog jFfxwðnþ kTÞgjgg (3.1)

where k is the frame index, xwðnþ kTÞ is the windowed signal of duration T.
In order to eliminate high-frequency noise, we apply band-pass filtering with

1–13 Hz cutoffs for brake signal and with 1–6.5 Hz cutoffs for gas and velocity

signals. The dimension of the feature vector is set as K ¼ 10.

Fig. 3.4 Driving behavior signal histograms of two drivers: driver one on the left, driver two on

the right columns
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3.3.2 Driver Identification Model

The ability to identify a driver and his/her driving behaviors is related with how

he/she hits the gas and brake pedals. We model the statistical nature of these pedal-

operation patterns with Gaussian mixture models (GMM). The maximum posteriori

probability approach to the N-class identification problem requires computation

of conditional probability Pðlnjf Þ for each class ln, n ¼ 1,. . .,N, given a feature

vector f representing the sample data of an unknown class. An alternative is to

employ the maximum likelihood solution, which maximizes the class-conditional

probability,

l� ¼ argmax
ln

logPð f jlnÞ: (3.2)

Furthermore, the likelihood scores coming from different classifiers can be

combined at decision level (decision fusion) using weighted summation rule,

l� ¼ argmax
ln

X
k

akPð fkjlnÞ; (3.3)

where 0 � ak � 1 is the weight of the k-th classifier and
P

k ak ¼ 1 .

The computation of class-conditional probabilities needs a prior modeling step,

through which we estimate a probability density function of feature vectors for each

class ln, n ¼ 1,. . .,N from available training data. The class-conditional probability

density functions are modeled using the Gaussian mixture densities,

Pð f jlnÞ ¼
XM
k¼1

okNð f ;mk;CkÞ; (3.4)

where mk and Ck are respectively mean vector and covariance matrix of the k-th
mixture, and M is the total number of mixtures.

3.3.3 Driver Behavior Prediction

We propose a driver behavior prediction system, which performs temporal clustering

of behavior signals and computes linear estimators for each temporal cluster, based

on the work in [15]. The temporal clustering is performed with hiddenMarkov model

(HMM). Within each temporal segment linear estimators predict current driving

behavior sample from N recent samples of all behavior signals. The consistency of

the predicted signal and the actual signal is expected to give us an idea about driving

quality. We employ brake, gas pedal strokes, and velocity for our prediction model.

Flowchart of predicting driver behavior is shown in Fig. 3.5.
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First we build a temporal clustering model for all driving signals using HMM

structure. Then we apply linear prediction to predict the desired driving behavior

signal within temporal segments. The state sequence, which defines segment

boundaries, is determined using the Viterbi algorithm. In each segment, we perform

a linear prediction analysis to estimate current driving behavior sample fromN recent

driving behavior samples. We construct the feature vector dðnÞ ¼ bðnÞ; gðnÞ; vðnÞ½ �;
where b, g, and v denote the direct samples taken from brake pedal pressure signal, gas

pedal pressure signal, and velocity signal of the corresponding segment, respectively.

We construct a temporal feature vector xn by combining p past samples of the driver

behavior samples:

xn ¼ dðn� 1Þ; dðn� 2Þ; :::; dðn� pÞ½ �: (3.5)

The optimal MMSE predictor to estimate the driving behavior signal at time

instant n can be given as,

ŷðnÞ ¼ �yþ CYXC
�1
XXðxn � �xÞ; (3.6)

where ŷðnÞ is the driving behavior signal sample to be estimated, �y is the mean

driving behavior signal, �x is the mean temporal feature vector, and CYX and CXX are

the cross- and autocorrelation functions. The driving behavior signal yðnÞ can be

taken as any one of the brake pedal pressure, gas pedal pressure, and velocity

signals. Note that the minimum mean squares error (MSE) is calculated as:

MSE ¼ Efjjyn � ŷnjj2g; (3.7)

where yn is a sequence of driving behavior signal.

3.4 Experimental Results

In the experimental evaluations, we use two subsets from the UYANIK database.

The first subset, U-DRIVER, includes 23 drivers to be used for the driver identifi-

cation evaluation (three of these drivers are not used for the car-following task since

Fig. 3.5 Flowchart of the driving behavior prediction system
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they miss laser range information). The second subset, U-TASK, includes ten

drivers to be used for the driving task identification. Driver identification performance

for a particular task domain depends on the selection of accurate training database of

interest in that domain. So, in order to achieve more realistic identification results, we

divide the U-DRIVER into three groups. Assuming that a vehicle is generally used by

a limited number of different drivers, each of these groups is arranged in 20 subgroups

including three, four, and five drivers respectively. Driver identification is performed

for all these 60 subgroups independently. Also, we benefit from this subset in order to

predict driver behavior signals. The four primary tasks are transcribed on the U-TASK

subset. In all driver and task identification evaluations, we use fivefold cross valida-

tion, where the available database is divided into five equal-length segments (the first

segment starts with the beginning of the driving session, the second one starts with the

end of the first segment, and the others follow the same procedure), and evaluations are

performed over leave-one-segment-out train and test scheme. In driver behavior

prediction evaluations, we use four-fold cross validation.

3.4.1 Results on Driver Identification

Every driver has different driving behavior characteristics. Drivers vary in how they

use the gas and brake pedals and how much distance they keep when following a

vehicle. As described earlier, the gas, brake, and velocity signals are all sampled at

32 Hz, and the cepstral features are extracted over 800 ms (25 samples) of windows

for every 96 ms (three samples) of frames. Figure 3.6 shows the driver identification

performance of a GMM classifier on the U-DRIVER database including 23 drivers

for brake pedal pressure, gas pedal pressure, and velocity signals using cepstral

coefficients with varying number of mixture components. For identification pur-

pose, we use different decision-window lengths and calculate the features for every

30 s of frames. Since brake pedal is not used frequently on highway, driver

identification using brake pedal is performed only on city driving recordings.

As shown in Fig. 3.6, the gas pedal pressure signal yields better performance

than the brake pedal pressure signal. This is possibly due to the more frequent use of

gas pedal by drivers. The best identification results for all behavior signals are

obtained by using GMM classifiers with 16 mixtures over 8–10 min of decision

windows. The unimodal driver identification rates are all below 60%, which

presents a fair driver identification system with possible room for improvement.

Decision fusion of classifiers with different driver behavior signals can improve

unimodal identification rates. We investigate the fusion of classifiers with gas,

brake, and velocity signals, and identify fusion structures with improved identifica-

tion rates. Figure 3.7 presents decision fusion results of the driver identification

system over different decision-window sizes. The optimal weights of the classifiers

in the decision fusion are set experimentally over a partition of the training data.

The resulting weights are set as ag ¼ 0.77 in the brake (B) and gas (G) fusion,

ag ¼ 0.79 in the velocity (V) and gas (G) fusion. The best identification result is
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Fig. 3.6 Driver identification rates with the (a) gas pedal pressure, (b) brake pedal pressure, and

(c) velocity signals
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obtained as 69.5% with the fusion of gas (G) and brake (B) pedal pressure signals

by using 16 mixtures of GMM. The best scenarios for all modalities are

summarized in Fig. 3.8. We can observe from these results that decision fusion

method significantly increases our system performance.

We also investigate the car-following distance measurements for the driver

identification problem. Car-following distance measurements are collected using

a laser range finder which sweeps 180� at every 2 s and measures the distance to the

nearest object at each angle. The distance from the vehicle in front is acquired when

the laser range finder is at 90�. Since the maximum range that the laser can sweep is

about 80 m and most of the drivers exceed this distance on both highway and two-

way roads, we only employ car-following distance signals on one-way roads. For

one-way roads, the car-following task is around 4�min long for each driver.

Figure 3.9 shows the identification results for the car following distance signals

over the U-DRIVER database including 20 drivers at different test lengths. Since the

length of the task is rather short, selecting the decision window size is very crucial.

Fig. 3.7 Driver identification rates with the decision fusion of (a) gas pedal pressure + brake

pedal pressure, (b) gas pedal pressure + velocity
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The best performance is achieved as 45% with the 16 mixture GMM classifier with

150 seconds decision windows.

As the accelerator pedal is operated directly by the driver, it yields us the best

feature to identify driver characteristics. Since the distance from the vehicle in front

and vehicle velocity are the results of the driver’s pedal operations, we achieve poor

results by using only these features.

In a real-life scenario, typically a car is used by several drivers. Hence we

investigate the performance of the driver identification system with reduced number

of drivers. The dataset is divided into three groups, which are made up of 20

different subgroups including 3, 4 and 5 drivers respectively. We employ the

same 16 mixture GMM classifier with 8 minutes decision window, which have

been observed to achieve better identification rates in the earlier experiments.
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Fig. 3.8 Comparison of driver identification rates for unimodal and multimodal classifiers

Fig. 3.9 Driver identification rates with the car-following distance signals

44 E. Özt€urk and E. Erzin



We employ the driver identification task for each subgroup by using a fivefold

cross validation and evaluate an average driver identification rate for all three

groups. Figure 3.10 shows the average identification performances for each

group, using different features. We achieve 85.21% of success with the fusion of

gas (G) and brake (B) pedal pressure signals among the three drivers.

3.4.2 Results on Driving Status Identification

In this section, we investigate the influence of distractive conditions on driving

performance and develop a technique for quantifying driver stress levels under various

conditions with different tasks. In the UYANIK database, nearly half of the driving

sessions include driving under specific tasks. Driving tasks include dialog on cell

phone, dialogwith passenger, and signboard reading,which are expected to cause lack

of cognitive engagement. The details of the tasks are described as follows:

• No-Task: A driver drives without any task.

• Signboard Reading: A driver reads aloud the words on signboards/plates during

driving.

• Dialoge on Cell phone: A driver heads to an unfamiliar place while being guided

by a navigator over cell phones. Also, online banking application is done by cell

phone.

• Conversation with Passenger: A driver talks with the on-board passenger.

In order to investigate the use of driving behavior signals to classify different

driving tasks, we build a driving task identification system and perform identifica-

tion performance analysis over the U-TASK database. For task identification, the
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Fig. 3.10 Comparison of driver identification rates for different group of drivers
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cepstral features are calculated for every 1-s frame. Figure 3.11 shows the

histograms of the gas pedal pressure signal under different driving task conditions.

Statistical differences between reference driving and driving under a task are

observable. However, driving-task-specific histograms, especially dialog on cell

phone and with passenger, are close to each other.

We first consider a two-class classification system to identify reference driving

and driving with a task. The two-class identification system is expected to show

whether distractive conditions are influential on driving performance. Among

U-TASK dataset reference, driving lasts 190 min (47.8% of all data) and driving

under a task lasts 207.5 min (52.2% of all data) totally. To evaluate the task

identification, we use 16-mixture Gaussian classifiers and fivefold cross validation

for classification.

The average identification rates of the classifiers using gas and brake pedal

pressure signals, and their decision fusion with different decision-window sizes

are given in Fig. 3.12. The best scenario is achieved by using 360 s of decision

windows.

Table 3.1 shows the identification rates of each class for this scenario. In this

table, the last column presents the prior reference distribution of events in the

database. We identify a reference driving session with 93.2% of success and

identify a driving session under a specific task with 72.5% of success by using

the fusion of gas and brake pedal signals. The average task vs. no-task identification

result is obtained as 83.3% with the fusion of 16-mixture GMM classifiers of gas

and brake signals. Note that, these identification rates are significantly higher than

random classifier performances with possible uniform distributions.

We also consider identification of individual tasks from driving behavior signals.

Among all driving sessions under a specific task, dialog on cell phone lasts 97.5 min

Fig. 3.11 Histograms of gas pedal pressure signals under reference driving (top left), dialog on

cell phone (top right), signboard reading (bottom left), and dialog with passenger (bottom right)
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(47.56% of all driving with a task data), conversation with passenger lasts 87.5 min

(42.68% of all driving with a task data), and signboard and license plate reading

lasts 20 min (9.76% of all driving with a task data) totally. To evaluate task

identification, we use 16-mixture Gaussian classifiers and fivefold cross validation

for classification.

Table 3.2 shows the identification rates of each class for the best scenario. Dialog

on cell phone task is identified with 58.5%, signboard reading with 25%, and

conversation with passenger with 52.6% of success by using the fusion of gas

and brake pedal signals. The average task identification result is obtained as 52.7%

Fig. 3.12 Average task identification rates of the classifiers using gas and brake pedal pressure

signals and their decision fusion with different decision-window sizes

Table 3.1 Task vs. no-task identification rates (%) of 16 mixture GMM

classifiers with 360 s decision window for gas (G), brake (B), gas and brake

(G + B) fusion, and reference random (R) classifier

G B G + B R

No-Task 91.1 76.6 93.2 52.2

Task 71.6 61.9 72.5 47.8

Avg. 81.8 69.6 83.3 50.1

Table 3.2 Task identification rates (%) of 16 mixture GMM classifiers with 60 s

decision window for gas (G), brake (B), gas and brake (G + B) fusion and

reference random (R) classifier

G B G + B R

Dialog on cell phone 56.4 49.7 58.5 47.6

Signboard reading 17.5 32.5 25.0 9.7

Conversation with passenger 50.3 44.1 52.6 42.7

Avg. 50.0 45.7 52.7 41.8
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with 60 s of decision windows and the fusion of 16-mixture GMM classifiers of

gas and brake signals. Identification rates are observed to be higher than random for

all task classes.

3.4.3 Results on Driving Behavior Prediction

We use the U-DRIVER database to evaluate driver behavior prediction. Also, we

analyze the effects of cognitive distraction conditions on predicting driver behavior.

For this purpose, we use the transcribed U-TASK database. In driving behavior

prediction, we use a fourfold cross validation for all estimation experiments. The

four partitions in the fourfold cross validation are made up of equally numbered

segments constructed by the HMM clustering. Since the lengths of these segments

are not equal, the ratio of test/training data over time is different for all drivers.

In each temporal segment, which is constructed by HMM clustering, we perform

an MMSE estimate of the current driving behavior sample from N recent driving

behavior samples. The optimal number of recent samples for the estimation is found

experimentally as six samples from velocity signal, one sample from gas signal, and

one sample from brake signal. Then we investigate the effect of the number of states

for HMM clustering. Figure 3.13 plots how the prediction error changes as a

function of number of states in the HMM structure for training and test data. The

three-state HMM structure is chosen as an adequate model for the classification of

driving behavior signals.

Fig. 3.13 HMM structure for

temporal clustering

48 E. Özt€urk and E. Erzin



The MMSE estimation for each temporal segment is performed under two

different scenarios. In the first scenario, we use direct samples of behavior signals

that are actual recent readings from sensors, at each estimation step. In the second

scenario, within each temporal cluster we start using recent actual samples but

continue with the estimated samples to estimate upcoming samples. Hence, in the

second scenario, estimation looks forward based on the current actual signal

readings. The second scenario creates a more realistic system to foresee expected

driving behavior characteristics.

The driving behavior signals are predicted using a window of past behavior

samples. All behavior signals are decimated by four for the driving behavior

prediction experiment. The cepstral features for the HMM clustering are extracted

over 800 ms windows (25 samples) for every 96 ms frames (three samples). First,

we build a temporal correlation between all three signals using HMM structure

shown in Fig. 3.14. This structure is specified by the following parameters:

• Set of discrete states S ¼ {Si, i ¼ 1, 2, . . ., M}

• State transition probability aij, i ¼ 1, 2, . . ., M; j ¼ 1,2,. . .,M

where M denotes the number of states. Transition probabilities from one state to

another are set equal initially, and system starts with probability 1 at the first state.

The HMM model is then trained using EM algorithm with the training data. In the

testing phase, the Viterbi decoding algorithm determines the state sequence of the

test data. A sample state sequence using eight-state HMM clustering is given in

Fig. 3.15.

Figures 3.16 and 3.17, respectively, present samples of driving behavior signal

prediction based on the first and second scenarios for a randomly selected driver.

Fig. 3.14 State sequence of a test data
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Fig. 3.15 Driving behavior prediction error plots for (a) training and (b) test data

Fig. 3.16 Driving behavior prediction for the first scenario
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In these figures, signal plotted in blue (darker) represents the actual signal, and the

red (lighter) one represents the estimated signal.

We also perform driver-independent experiments for the driving behavior predic-

tion problem. From the database, we select 20 drivers for training and the remaining

three drivers for testing. Test data for each three drivers is the same with the one that

we used in driver-dependent experiment. In both driver-dependent and independent

experiments, classifiers are maintained with the same parametric settings. We calcu-

late the average prediction error for each test driver within the second estimation

scenario. Figure 3.18 plots the prediction errors for driver-independent experiment

Fig. 3.17 Driving behavior prediction for the second scenario
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with comparison to driver-dependent one. As expected, driver behavior prediction in

driver-independent experiments is more difficult than driver-dependent experiments.

Figure 3.19 plots a set of sample prediction error signal for a randomly selected

driver. In Fig. 3.19 some segments contain high level of prediction errors. To

investigate the driving conditions where these errors appear, it is necessary to

determine and transcribe high erroneous parts clearly. We select the 20% of the

highest prediction error as the threshold value and define the segments higher than

this threshold as high erroneous parts. The correlation between erroneous parts and

the driving conditions can yield important findings. Hence, we calculate the ratio of

change of driving task and road type durations over erroneous parts to the whole

durations. The percentage of change is shown in Figs. 3.20 and 3.21 for driving tasks

and road conditions, respectively.

Fig. 3.19 Prediction errors for one driver’s (brake, gas, velocity) behavior signals
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52 E. Özt€urk and E. Erzin



In Fig. 3.20, we can observe that the prediction of behavior signals under

distractive conditions is more erroneous than prediction under no secondary task.

The experiments show that the ratio of all task lengths over erroneous parts is

higher than the ratio of all task lengths over all segments. Hence, distractive

conditions have a certain observable effect on driving behavior. Figure 3.20 also

shows that among driving tasks, the dialog on cell phone is amore effective indicator

of driving behavior than the other tasks. Figure 3.21 shows that road conditions are

also effective on predicting driver behavior. It is hard to predict driver behavior on

U-Turns, where the highway connects to driveway. Suddenmaneuvers and unsteady

use of pedal operations creates high prediction errors at U-Turns.

3.5 Conclusions

In this study, we consider the problem of driver and driver status identification

under different cognitive stress/distraction conditions. Also, we try to predict

driving behavior signals by using the past movements of the drivers. Our objective

is to construct a system to facilitate driver–vehicle interaction by analyzing driving

behaviors. To study and determine the nature of driving behavior, we benefit from

the characteristic driving signals including brake pedal pressure, gas pedal pressure,

vehicle velocity, and the distance from the vehicle in front signals. The system is

expected to be more reliable due to the availability of sufficient amounts of driving

behavior signals.

In driver identification experiments, test results show that the decision fusion

method significantly increases our system performance.We achieve 69.5% of success

with the fusion of gas and brake pedal pressure signals, while these signals can reach

up to 58% of success at most, individually, among 23 drivers. Driver identification

results of the car-following task is lower than the pedal operation models; however,

it is feasible to use them to recognize a driver. We also investigate the driver
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identification problem for a reduced number of drivers to achieve more realistic

results. The best identification result is obtained as 85.21% with the fusion of gas

and brake pedal pressure signals among the three drivers.

Distraction detection is an important issue because cognitive/stress conditions have

a great influence on driving behavior.We achieve 93.2% of success in detecting driver

behavior signals under no specific task while the random rate is about 52% for ten

drivers. In our database, nearly half of the driving sessions are done under specific task.

Among these tasks, dialog on mobile phone, conversation with passenger on-board,

sign reading, and license plate reading are the most effective ones.

Warning drivers about future incidents is an important application area because

many of the traffic accidents are caused by drivers. In this study, we propose a

method of predicting driving behavior based on gas pedal pressure, brake pedal

pressure, and vehicle velocity signals. Predicting driving behavior signal using past

samples yields encouraging results. We performed driver-dependent and indepen-

dent driving behavior prediction experiments. Although prediction error profiles for

the driver-independent experiment are higher than the driver-dependent experi-

ment, driver-independent driving behavior prediction attains sufficiently low error

rates. Distractive conditions are expected to have a great influence on driving

behavior. Our driving behavior prediction results are also supporting this finding.

Prediction of driving behavior signals under distractive conditions is 20% more

erroneous than prediction under no secondary task.
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Chapter 4

Multilayer Modeling of Driver Behavior Based

on Hierarchical Mode Segmentation

Hiroyuki Okuda, Ato Nakano, Tatsuya Suzuki, Soichiro Hayakawa,

and Shinkichi Inagaki

Abstract This chapter presents a new hierarchical mode segmentation of the

observed driving behavioral data based on the multiple levels of abstraction of

the underlying dynamics. By synthesizing the ideas of a feature vector definition

revealing the dynamical characteristics and an unsupervised clustering technique,

the hierarchical mode segmentation is achieved. The identified mode can be

regarded as a kind of symbol in the abstract model of the behavior. Some

applications of the proposed model are also discussed.

Keywords Driver behavior • Formal grammar • Hierarchical clustering • Hybrid

system

4.1 Introduction

Recently, several ideas about driver modeling from the viewpoint of control

technology and information processing have been explored. The common goal of

which is to attain driving safety and develop human-friendly cars [1–4].

In studies about driving behavior, it is often found that a driver appropriately

switches from complex nonlinear control law to simple control laws. This idea can

be verified by executing “mode segmentation” of the observed driving data. Mode

segmentation is based on the classification of a behavioral data’s dynamical

characteristics [5–7]. Assigning each obtained mode to each symbol can be regarded

as one of the solutions for “symbolic grounding” problem. Furthermore, the transi-

tion between modes can be viewed as a form of driver decision making involving
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complex driving tasks [7]. Thus, the introduction of the mode segmentation leads

to higher level of understanding of driving behavior whereby motion control and

decision-making aspects are synthesized.

Another important characteristic of driving behavior is described by its hierar-

chical structure. Many behaviors can be understood using hierarchical modeling or

characterization based on different levels of abstraction of dynamics. From this

perspective, it is quite natural to introduce the “hierarchical mode segmentation” in

analyzing human behavior. As a consequence, the hierarchical symbolization of

human behavior can be realized solely on observed behavioral data (without any

prior knowledge). The hierarchical symbolization is expected to play an essential

role in the design of intelligent human support system; thanks to its high

describability and understandability of complex behavior.

Based on abovementioned considerations, we propose a new hierarchical mode

segmentation of the observed driving behavioral data based on multiple levels of

abstraction of the underlying dynamics. In order to realize this idea, a PieceWise

AutoRegressive eXogenous (PWARX) model is being introduced. This approach

is often used as the identification model of hybrid dynamical systems [8,9] wherein

each ARX model represents the corresponding dynamics of each mode. In our

problem setting, the number of modes (number of symbols) is supposed to be

controllable in order to obtain the hierarchical structure. Of course, the number of

modes is assumed to be fixed in the standard framework of hybrid system identifi-

cation. By synthesizing the ideas of definition of the feature vector revealing the

dynamical characteristics [8] and an unsupervised clustering technique, the hierar-

chical mode segmentation is achieved.

All in all, the usefulness of both the hierarchical mode segmentation and

symbolized human behavior from the viewpoint of the symbolic grounding are

demonstrated by applying them on highway-driving behavioral data.

4.2 Hierarchical Mode Segmentation

In this section, we discuss how to define “mode” in driving behavioral data and how

to obtain the hierarchical structure. We begin by defining driver input and output.

4.2.1 Definition of Input and Output

Throughout this chapter, we focus on the driving behavior on the highway which

consists of “following the leading vehicle,” “lane changing,” “overtaking,” and so

on. The driver input, i.e., the sensory information of the driver, is defined as follows

(Fig. 4.1):

• Range from the leading car: u1
• Range rate between the leading and examinee’s cars: u2
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• Lateral displacement from the leading car: u3
• Yawing angle of examinee’s car: u4
• Index for approaching (KdB): u5
• Amount of time duration that the examinee looks at the left side mirror in the

latest 10 s (TL): u6
• Amount of time duration that the examinee looks at the right side mirror in

the latest 10 s (TR): u7

KdB is an index which represents the logarithm of a time derivative of the area

behind the leading car as projected on a driver’s retina [10]. The KdB can be

expressed by using u1 and u2 as follows:

KdB ¼ �10� logðj � 2� u2
u1
� 1

5�10�8 jÞ if u2>0

10� logðj � 2� u2
u1
� 1

5�10�8 jÞ if u2<0

(
(4.1)

The large KdB implies that the driver is facing dangerous situation. Also, the

driver output is defined as follows:

• Steering angle: y1
• Pedal operation: y2

These input and output variables are chosen so that the resulting model can

express the behavioral characteristics underlying the observed data. Furthermore,

they can be observed in real driving situations using existing sensors.

4.2.2 PWARX Model as Mathematical Representation
of Multimode Driving Behavior

In this subsection, the PWARX model is introduced as a mathematical model of

driving behavior. It consists of the several ARX models, i.e., modes, and can

appropriately control the number of modes. We consider the following first-order

PWARX model which has s modes:

yðkÞ ¼ f ðrðkÞÞ þ eðkÞ (4.2)

Fig. 4.1 Definition of input signals
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f ðrðkÞÞ ¼

y1rðkÞ if rðkÞ 2 R1

y2rðkÞ if rðkÞ 2 R2

..

.

ysrðkÞ if rðkÞ 2 Rs

8>>>>>><
>>>>>>:

(4.3)

where y(k) and r(k) are defined as follows:

yðkÞ ¼ ðy1ðkÞ y2ðkÞÞT (4.4)

rðkÞ ¼ ðu1ðk � 1Þ u2ðk � 1Þ � � �
u7ðk � 1Þ y1ðk � 1Þ y2ðk � 1ÞÞT (4.5)

The subscript k denotes the sampling index (k ¼ 1, 2, . . ., n). Furthermore,

yi (i ¼ 1, 2, . . ., s) is a (2 � 9) unknown matrix to be identified from the data

and is supposed to have a form:

yi ¼
yi T

;1

yi T
;2

 !
(4.6)

In the PWARX model, not only parameters yi but also the partitions of the

subspaces R1, . . ., Rs are unknown. Therefore, it is not straightforward to assign

each observation ( y(k), r(k)) at sampling instant k to the corresponding mode. To

resolve this problem, a clustering-based technique is developed in [8] under the

definition of interesting feature vector which represents the local dynamical

characteristics underlying (y(k), r(k)). In the next subsection, this feature vector is

introduced.

4.2.3 Definition of Input and Output

1. Assume that the set of sample data {(y( j), r( j))}(j ¼ 1, 2, . . ., n) is given. For
each sample data (y(j), r(j)), collect the neighboring c data in the (y, r) space,
generate the local data set LDsj, and calculate the feature vector xj (Fig. 4.2). Note
that the index j indicates the order not in the time space but in the data space. The

feature vector xj consists of the local parameters ððyLDsj1 ÞT ; ðyLDsj2 ÞTÞT in the local
ARX model for the LDsj and the mean value mj of the data r in the LDsj. ðyLDsjl ÞT
(l ¼ 1, 2) and mj are calculated as follows:

yLDsjl ¼ ðFj
TFjÞ�1Fj

Ty
LDsj
l (4.7)
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where y
LDsj
l (c � 1; l ¼ 1, 2) is the output samples in the LDsj, andFj is given by

Fj ¼ ðr1 r2 � � � rcÞT ðr 2 LDsjÞ: (4.8)

As the result,

xj ¼ ððyLDj;1ÞT ; ðyLDj;2ÞT ; mj
TÞT : (4.9)

2. For each feature vector xj, the following covariance matrix Rj is calculated:

Rj ¼
Vj;1 0 0

0 Vj;2 0

0 0 Qj

0
@

1
A (4.10)

where

Vj;l ¼ SSRj;l

c� ð9þ 1Þ ðFj
TFjÞ�1

(4.11)

SSRj;l ¼ y
LDsj
l

TðI � FjðFj
TFjÞ�1Fj

TÞyLDsjl (4.12)

Qj ¼
X
r2LDsj

ðr � mjÞðr � mjÞT : (4.13)

The feature vector xj represents the combination of the local dynamics and data.

By this definition, the data is classified based not only on the value of data but

also on the similarity of the underlying dynamics. Furthermore, the covariance

matrix Rj represents the confidence level of the corresponding feature vector xj.
Rj is used as the weighting matrix in the calculation of the dissimilarity between

feature vectors in the clustering procedure.

Fig. 4.2 Transformation from data space to feature vector space
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4.2.4 Clustering Procedure

The unsupervised hierarchical clustering is applied to the feature vectors xj (j ¼ 1,

2, . . . , n). The clustering algorithm is listed below:

3. Regard each feature vector xj as each cluster Cj, i.e., each cluster consists only

of one feature vector. Calculate the dissimilarity Dp,q between any two clusters

Cp and Cq by using the following dissimilarity measure:

Dp; q ¼ xp � xq
�� ��2

Rp;q
�1 ¼ ðxp � xqÞTRp;q

�1ðxp � xqÞ (4.14)

Where

Rp; q
�1 ¼ Rp

�1 þ Rq
�1
: (4.15)

4. Unify two clusters Cx and Cy which shows the smallest Dx,y. The unified cluster

is denoted by Cr. If all clusters are unified, terminate the algorithm. Otherwise,

go to step 3.

5. Calculate the dissimilarity Dx,y between Cr and Ct for all t(t 6¼ r) by using the

following dissimilarity measure:

Dr;t ¼ nrnt
nr þ nt

X
xir2Cr

X
xit2Ct

xir � xit
�� ��2

Rir ;it
�1

:
(4.16)

6. Where nr and nt are numbers of feature vectors belonging to clusters Cr and Ct,

respectively. Go to step 2.

After this clustering procedure, the classification of the feature vector space is

achieved together with a dendrogramwhich shows the hierarchical classification for

different number of modes. Since the transformation from the feature vector (x)
space to the original observed data (y, r) space is straightforward, the mode segmen-

tation of the observed data is obtained together with the hierarchical structure.

Note that once mode segmentation of the data is achieved, the identification of

the parameters yi and the partitions of the subspaces R1, . . ., Rs in the PWARX

model [2] is straightforward.

4.3 Analysis of Driving Behavioral Data

4.3.1 Driving Environment

In this chapter, the following driving environment on the highway was designed on

the driving simulator which provides a stereoscopic immersive vision [7].
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• The expressway is endless and has two lanes – the cruising lane and passing lane.

• There are ten cars on the cruising lane. Five of them are in front of the examinee’s

car. The remaining five are behind the examinee’s vehicle. Their velocities vary

from 70 to 85 km/h. Once the examinee’s car overtakes the lead vehicle, then the

tail-end car is moved in front of the lead car. The examinee is not aware of the

switch.

• There are ten cars on the passing lane. Five of them are ahead of the examinee’s car.

The remaining five cars are behind the examinee’s vehicle. Their velocities vary

from 90 to 110 km/h. Once the lead car passes the examinee’s car, then the tail end

is moved in front of the lead car. The examinee is not aware of this change.

• The range between cars is set at 50–300 m, and there is no collision between cars

except the examinee’s car.

• The examinee’s car change lanes while the other vehicles stay on their lanes.

Five examinees performed the test driving using the driving simulator. Note

that the examinees were provided with the instruction “Drive the car according to

your usual driving manner.” Since this instruction is “broad,” the examinees did not

concern themselves much with the environmental information. As a result, each

examinee drove his/her usual way.

4.3.2 Observed Behavioral Data and Clustering Results

The unsupervised clustering based on the feature vector shown in the previous

section has been applied to the observed driving behavioral data. The dendrogram

obtained from the proposed strategy is shown in Fig. 4.3 wherein the vertical axis

represents the dissimilarity between clusters.

Fig. 4.3 Dendrogram of clustering (Examinee A)
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Figure 4.3 shows that when the two clusters are unified, the corresponding

dissimilarity is designated by the horizontal bar. The horizontal axis represents

the data which has been rearranged after clustering to indicate the hierarchical

structure. From this figure, we can clearly understand the hierarchical structure of

driving behavior. Two dashed horizontal lines are superimposed. The upper line

indicates the number of modes (clusters) s, i.e., the number of the ARXmodels in [2]

is set at two. Meanwhile, the lower line shows that s is set at five.
In Figs. 4.4 and 4.5, the observed driving (input–output) profiles of examinee

A are shown. All profiles are normalized before clustering. In the profile of the

lateral displacement, it takes positive value when the examinee’s vehicle is on

the right side of the lead car. The steering angle takes positive value when the

examinee steers it clockwise. Also, the pedal operation takes positive value when

the accelerator is stepped on, and takes negative value when the examinee hits

the braking pedal. Note that the range, range rate, and lateral displacement

profiles demonstrate discontinuity. Since these variables are defined by relative
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Fig. 4.4 Observed profiles and mode segmentation result (Examinee A, two modes)
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displacement from the lead car, if the examinee’s car changes the driving lane,

these variables change discontinuously.

The clustering results for the two modes modeling are indicated by colors in

Fig. 4.4, while the clustering results in the case of five modes modeling are indicated

in Fig. 4.5. Thus,mode segmentationworks well. In order to investigate the behavioral

meaning of eachmode, profiles of the lateral displacement are enlarged in Figs. 4.6(a),

4.7(a), and 4.8(a). In addition, data distributions in range – range rate space – are

shown in Figs. 4.9(a), 4.10(a) and 4.11(a). The horizontal axis highlights the range,

while the vertical axis features the range rate. It is evident in these figures that the two

modes of examinees A and B can be understood as “Following on Cruising Lane +

Passing” (Mode 1: FC + P mode) and “Following on Passing Lane + Returning”

(Mode 2: FP + R mode), respectively. This result implies that symbolization of

behavior can be achieved based on the “dissimilarity” of the underlying dynamics.
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Fig. 4.6 Enlarged profile of lateral displacement (Examinee A) (a) In the case of two modes

(b) In the case of five modes
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Fig. 4.11 Observed data distribution and mode segmentation result (Examinee C) (a) In the case

of two modes (b) In the case of five modes



Meanwhile, Fig. 4.8(a) shows the different tendency of the mode segmentation in the

case of examinee C. The meaning of two modes can be understood as FC and

P + FP + R in the case of examinee C, respectively.

4.4 Discussion

In order to analyze the hierarchical structure of the behavior, note the clustering results

for five-mode modeling of examinee A as shown in Fig. 4.5, the enlarged lateral

displacement of three examinees as illustrated in Figs. 4.6(b), 4.7(b) and 4.8(b),

as well as the data distributions in range – range rate space as indicated in Figs. 4.9

(b), 4.10(b) and 4.11(b), respectively. From these figures, we can see that the two-

mode model is further decomposed into several local behaviors which are:

• “Long Range Following on Cruising Lane” (Mode 1: LRFC mode)

• “Short Range Following on Cruising Lane” (Mode 2: SRFC mode)

• “Passing” (Mode 3: P mode)

• “Following on Passing Lane” (Mode 4: FP mode)

• “Returning” (Mode 5: R mode)

We could find similar symbolization for all examinees. The switching between

these modes is caused by the driver’s decision making. Figs. 4.12 and 4.13 illustrate

the hierarchical relationship between the modes on the dendrogram. Thus, the hierar-

chical structure of the driving behavior can be obtained in a quite consistent manner.

One of the significant contributions of this work is that this hierarchical structure

is obtained automatically based only on observation (including the definition of the
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input and output signals) and data processing. Since this hierarchy clearly expresses

multiple abstraction levels of human behavior, the proposed framework is expected to

serve as basis for the design of several human-centric systems.

4.4.1 Development of Symbolic Behavior Model
and its Application to Behavior Prediction

In this section, some applications using proposed human behavior model is discussed.

As already mentioned, this hybrid system modeling is considered as a solution to

“symbolic grounding” using symbolization. With this approach, the human behavior

can function as an entity (linguistic source) capable of generating a specific language

(set of symbol strings). This assumption makes it possible to analyze and model the

human behavior along with formal behavioral grammar such as Production Rule.

Furthermore, the grammatical modeling of higher human behavior based on hybrid

system symbolization will make long-term prediction of human behavior possible.

4.5 Conclusions

This chapter has presented a new hierarchical mode segmentation of the observed

driving behavioral data based on multiple levels of abstraction of the underlying

dynamics. By synthesizing the ideas of the feature vector definition revealing the

dynamical characteristics and unsupervised clustering technique, the hierarchical
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mode segmentation has been achieved. The identified mode can be regarded as a

kind of symbol in the abstract model of the behavior. The proposed framework

enables us to make a bridge between signal space and the symbolic space towards

understanding human behavior. The construction of higher human behavior model

based on some formal grammatical framework and its application towards the

prediction of human behavior are our future works.
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Chapter 5

Evaluation of In-Car Communication Systems

Gerhard Schmidt, Anne Theiß, Jochen Withopf, and Arthur Wolf

Abstract Due to high background noise and sound absorbing materials, commu-

nication between front and rear passengers inside a vehicle is often difficult. In-car

communication (ICC) systems distribute the seat-dedicated microphone signals via

the car’s sound system in order to improve speech intelligibility and communica-

tion quality. Due to interfering signals and the closed loop operation of ICC

systems, various signal processing techniques are required to reduce feedback,

echo, and noise, as well as, to prevent system instability.

In this chapter, a basic overview about the involved signal processing schemes

and some ideas for a methodical evaluation of the processing units as well as of the

overall ICC system are presented. The evaluation considers different requirements

for both talking and listening passengers. The evaluation is performed using four

different types of systems and setups. The first one is an ideal ICC system. Here, a

simulated system without any noise or feedback problems is computed in real time

and is presented to listeners and to the measurement equipment. This ideal system is

used to obtain upper performance levels or thresholds such as the maximum desired

gain. Furthermore, a real ICC system is evaluated in order to analyze the achieved

speech intelligibility and system quality. Some measurements are based on the

assumption of linear time-invariant systems. This assumption is usually violated by

real ICC systems. For that reason, ICC systems should freeze some of their

algorithmic components to allow LTI-based measures to obtain suitable results.

Usually, this is possible only for research ICC systems but not for commercially

available ones. Finally, the measurements should be performed without any ICC

system to obtain a basis for comparison.
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Keywords In-car communication • SNR improvement • Speech transmission

index • System evaluation

5.1 Introduction

When a car is driven atmediumor high speed, the communication between passengers

in the front and in the rearmay be difficult. This is because of low signal-to-noise ratios

(SNRs) due to engine, tire, and wind noise which lead to an increased noise level.

Another reason is that the received speech level is decreased by sound absorbing

interior materials. Furthermore, the driver and front passenger speak toward the

windshield (see Fig. 5.1). Thus, their speech is hardly intelligible for the rear

passengers in the noisy environment of a car driven at high speed. Figure 5.2

schematically shows the passenger compartment of a car with two front passengers

and three rear passengers. As an example, a communication between the front

passengers and the rear passenger sitting behind the driver is depicted. To improve

the speech intelligibility, the passengers start speaking louder and lean or turn toward

the listening communication partners, which increases the SNR by up to 20 dB. For

longer conversations, this is usually tiring and uncomfortable. If the driver starts also

to turn around, road safety becomes a concern as well.

The speech quality and intelligibility within a passenger compartment can be

improved by an ICC system [1–6].1 In Fig. 5.1, the passenger compartment of a car

that is equipped with a commercially available ICC system is depicted. Since several

Fig. 5.1 Communication with a passenger

1 In the literature also the terms in-vehicle communication (IVC) system and digital voice
enhancement (DVE) system are used.
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of the results described in the remainder of this chapter are based on this system, we

will show some more details about that system in the next few sections.

To improve the communication, the speech of the talking passengers is recorded

by microphones and played back via those loudspeakers that are located close to the

listening passengers. The positions of the microphones and of the loudspeakers of

the system that we used for evaluation can be seen in Fig. 5.3. Four microphones are

placed at the driver position; the loudspeakers for the rear seat passenger behind

him are placed in the doors and on the hat rack.

Fig. 5.2 Schematic communication in a passenger compartment

Fig. 5.3 Positioning of loudspeakers and microphones (With permission from SVOX)
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Figure 5.4 sketches the structure of an ICC system with several microphones and

loudspeakers for both front and rear passengers. The ICC systems operate in a

closed electroacoustic loop since the microphones pick up at least a portion of the

loudspeaker signals. If this portion is not sufficiently small, sustained oscillations

appear which can be heard as howling or whistling. The howling margin depends on

the output gain of the ICC system, on the gains of the analog microphone and

loudspeaker amplifiers, as well as on the acoustic properties of the passenger

compartment. For this reason, all gains within an ICC system need to be adjusted

carefully.

Since ICC systems are usually incorporated into the audio system of a vehicle, not

only several restrictions but also additional possibilities arise. Cars that are equipped
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Fig. 5.4 Structure of an ICC system embedded in the sound system of a vehicle
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with ICC systems usually also have hands-free and speech dialog systems installed. If

these systems operate together, special care has to be taken. For example, if the ICC

system adapts the playback volume in dependence of the background noise level, an

echo cancellation unit that is included in hands-free or speech dialog systems will

have to reconverge. Some details about those restrictions can be found in [3, 32].

The connection and interaction with other subsystems of the vehicle also leads to

several advantages that can be exploited beneficially. External signals2 such as

music, navigation prompts, or warning signals can be used not only to identify the

feedback paths in terms of the critical frequencies (those where howling would

start) or the delay but also to estimate the impulse or frequency responses between

all loudspeakers and all microphones. Furthermore, information that can be

extracted from the automotive bus systems such as the CAN3 bus also can help to

improve the operation of ICC systems. For example, the results of weight sensors

that are installed in seats in order to warn the passengers about not having fastened

their seat belts can be used to deactivate the ICC processing for seats that are not

occupied. However, going into the details of the interaction between ICC systems

and other subsystems of a car is beyond the scope of this chapter. In the following,

we will give a brief description of those signal processing components that are

necessary for ICC systems.

To improve the stability margin, signal processing such as beamforming, feed-

back and echo cancellation, adaptive notch filtering, noise suppression, adaptive

gain adjustment, equalization, and nonlinear processing can be applied. We will

describe these components briefly in Sect. 5.3. In this section, we will focus on the

general concept of ICC systems as depicted in Fig. 5.4.

Even if most automotive signal and data transfer options such as the MOST4 bus

are able to transport audio signals on a sample-by-sample basis, virtually all audio

signals are transported and processed as blocks of samples, mostly using a minimal

block size of 64 samples in today’s cars. For that reason, it is of advantage since

signal enhancement units such as ICC systems use block-based algorithmic

approaches, but it leads, as a side effect, to a lower computational complexity

compared to sample-by-sample processing. As a result, the very left and the very

right signal processing blocks in Fig. 5.5 are transformations such as FFTs or more

sophisticated filter banks that transform a block of signals into the subband domain

and vice versa, respectively. As we will highlight later on, delay is a very critical

issue for ICC systems. As a result, low-delay filter bank approaches are of special

importance here. In addition, some pre- and postprocessing such as preemphasis or

de-emphasis filters are usually performed. More details are described in Sect. 5.3.1.

After changing the signal representation from the time domain to the subband

(or frequency) domain, some algorithmic components are applied to all input

2 In this case, external is meant to be from the point of view of the ICC system.
3 CAN stands for controller area network.
4MOST is the abbreviation formedia oriented systems transport. This bus system is often used for

the transport of audio data.

5 Evaluation of In-Car Communication Systems 77



(e.g. noise suppression) and to all output spectra (e.g. equalization). Thus, we have

inserted two appropriate signal processing blocks in Fig. 5.5. Some further infor-

mation about these two signal processing parts is presented in Sects. 5.3.2 and 5.3.5.

All signal components involved in between the microphone and the loudspeaker

signal enhancement units can be grouped into two conversion parts. One group has

to extract a dedicated signal for each seat that is occupied by a talking passenger.

This can be done simply by selecting one of the microphones or by combining

several of them (e.g. by means of beamforming). The outputs of this first signal

processing group will be called the seat-specific signals and parameters of the

talking passengers. The second group takes these talker signals and maps them

onto signals that are specifically designed for the individual listeners. This includes

a mixing process as well as gain adjustments in dependence of the noise level

estimated at each listener seat. Finally, each listener signal is mapped onto the

loudspeakers that are assigned to the listener seat using appropriate gain and delay

settings.

In comparison to hands-free telephones or speech recognition engines, no

methods for evaluating the quality of ICC systems have been standardized yet,

and only a few have been published (e.g. [6, 7]). Thus, evaluation is more challeng-

ing as in most other speech and audio applications. Considering a basic ICC system,

we focus on the analysis of ICC systems and give a general idea of how automatic

evaluations can be performed.

Before we start with the evaluation, the restrictions and the boundary conditions of

ICC systems as well as their consequences are discussed in the next section. Since a

basic understanding of the involved signal processing units of a system is necessary

in order to be able to design appropriatemeasurements and tests, wewill continuewith

brief summaries of the individual processing units shown in Fig. 5.5 in Sect. 5.3.

When evaluating ICC systems, usually comparisons between the communication

with and without the support of ICC systems are investigated. In addition, evaluation
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results of an optimally operating ICC system (e.g. noise can be removed without any

distortions for the remaining speech, and feedback can be suppressed ideally) can be

used as an upper bound to benchmark the achieved communication improvement.

Furthermore, it would be desirable if the well-understood theory of linear time-

invariant systems could be applied in at least a few of the measurements. Since a lot

of time-variant processing is involved in ICC systems, some sort of freezing mode
would be helpful in some measurements and investigations. A detailed explanation

about these system types used for the evaluation is given in Sect. 5.4.

In Sect. 5.5, we describe several aspects of the evaluation of ICC systems. We

differentiate between subjective and objective schemes on one hand and between

the quality perception of the talking and the listening passengers on the other hand.

The chapter closes with a summary.

5.2 Boundary Conditions

During the design process of the ICC system, limiting conditions and certain system

requirements must be considered. These are given by the physical behavior of the

system itself, as, e.g. the electroacoustic feedback, and of course by the passenger’s

expectations on the ICC system.

Since not only one person is interacting in a conversation, the requirements of

both the talking and the listening passenger have to be found to determine all

boundary conditions. These conditions resulting from physical effects which are

occurring during the operation, and the requirements of the passengers, restrict the

system in terms of its adjustment.

The following section is therefore separated in three main parts that will give a

closer look at the occurring effects and the resulting boundary conditions.

5.2.1 Physical Effects

The main physical effect, which restricts the system in the practicable gain, is the

closed electroacoustic loop or rather the resulting feedback. This feedback may lead

to an instable overall system, if the system gain is chosen too high or if the applied

countermeasures do not work properly. Therefore, the maximum amplification

has to be defined in such a way that no howling due to the feedback arises. As

mentioned before, this maximum allowed amplification can be increased by

implementing some adequate signal processing techniques, for example, feedback

suppression or equalization.

All the signal processing algorithms that should be applied are limited in their

computational complexity by the signal processing power that is available. Fortu-

nately, the computational power of the signal processing unit in cars is constantly
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increasing and nowadays clearly higher than during the development of the first

hands-free systems. This allows higher sampling rates and thus a larger signal

bandwidth, which is essential for natural-sounding speech output. But still

limitations in the algorithmic complexity are given and lead to additional boundary

conditions that need to be considered during the design of an ICC system. In

addition, limitations due to the characteristic of the electroacoustic transducers

such as the bandwidths and the positions of the utilized microphones have to be

considered for the design of ICC systems.

5.2.2 Listening Passenger

The main objective of ICC systems is to increase the speech intelligibility for the

listening passenger. This is done by amplifying the speech signal of the talking

passenger and thereby increasing the SNR at the ear of the listening passenger. This

amplification cannot be increased to an arbitrarily high gain, due to the already

mentioned physical limits. But how much improvement in terms of amplification is

actually desired by the listening passenger? In most cars, the communication from

the rear to the front passengers is marginally impaired, even at medium or high

velocities. The usage of an ICC system would make the car unreasonably more

reverberant and thus decrease the communication quality from front to rear. How-

ever, the opposite direction (from rear to front) behaves differently. The communi-

cation quality is impaired much more, especially at higher velocities.

The reason for the quality difference between both communication directions

originates from the directionality of the human mouth. Figure 5.6 shows the average

directionality for two frequency ranges when the driver is speaking [8]. In addition,

the sound propagation to the other passengers is shown schematically.5 For

frequencies between 1,400 and 2,000 Hz, an attenuation of more than 10 dB

between the front side (at 0�) and the back of the head (at 180�) can be measured.

Due to this directionality and the arrangement within the passenger compartment,

the rear passengers (especially the one directly behind the talking passenger) have

problems to understand the front passengers.

Another effect that influences the boundary conditions of the amplification is the

background noise level. As alreadymentioned above, the background noise consists of

different sources, for example, engine noise, wind noise, and tire noise. Due to the fact

that at standstill or low velocities the noise level is very low, the SNR is quite high, and

therefore, there is no need to use an ICC system.6 But if the car accelerates to higher

velocities, the background noise level increases by more than 30 dB at all relevant

frequencies, and the usage of ICC systems can improve communication quality.

5 Effects due to the boundaries of the passenger compartment are not mentioned here.
6 This may not be true for vans with more than two seat rows or even for buses.
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Hence, depending on the level of the background noise, different amplification values

are needed to improve speech intelligibility.

Fortunately, the ICC system does not have to compensate the whole degradation

of the SNR due to the increased background noise. Because of the Lombard effect,

any person speaking in a noisy environment automatically will raise his voice in

order to increase the efficiency of the communication [9]. This leads to an increased

overall speech level while increasing the noise level. In literature rates of about

0.3–0.7 dB, speech power increment per 1 dBA increase of the background noise

level (A-weighted) has been published [6, 10]. Due to the increased background

noise as well as the higher speech level (Lombard effect), the system has to exceed

an amplification of about 6–12 dB higher (dependent on the vehicle) in comparison

to the standstill case [6].

All these boundary conditions enforce a trade-off between sufficient amplifica-

tion for increasing the speech intelligibility and disturbances for the talking and

listening passengers. This compromise has to be found independently for every type

of vehicle.
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In order to decrease the computational complexity, often block-based signal

processing is applied, which leads to the insertion of a delay of a few milliseconds.

Further delay is caused by the AD and DA converters,7 by the signal transport

between the processing units,8 by the amplifiers for loudspeakers and microphones,

and by the acoustical paths.9 If the overall delay exceeds 15–20 ms, then the

listening passengers are able to separate the two sound sources (direct wave front

from the talking passengers and second wave front originating from the ICC

system), which sounds very annoying [7]. Therefore, it is desirable to keep the

delay as low as possible.

Because of the delay, another undesirable effect is created: the localization

mismatch between visually and acoustically defined sources. In particular, this is

a problem of the listening passengers located at the rear. The reason for this is the

location of the rear loudspeakers, which are often behind the listening passenger,

e.g. back shelf. If the reproduced speech signal is highly amplified, the listening

passengers have the (acoustic) impression that the talking persons are located

behind them. This mismatch of acoustical sensation and knowledge about the actual

position of the talker causes a very unnatural impression of the communication. To

solve this problem, the gain of the rear loudspeakers has to be limited dependent on

the delay between the two sources. The amount of amplification until the localiza-

tion mismatch effect appears is given by the so-called precedence effect [11]. The
maximum amplification of the ICC system can be achieved at a delay of about

10–12 ms. Very small delays do not allow the second signal to be louder than the

first one without affecting the spatial localization. As a result, the delay introduced

by low-order (low-delay) block processing can be tolerated, and the advantages

offered by this processing structure can be exploited.

However, in very high noise scenarios, the localization mismatch may not

concern the listening passengers that much due to the fact that an improvement of

the whole communication situation can be achieved by the higher gain. This raises

the question, if small violations of the precedence curves can be tolerated and still a

“good” communication can be achieved. The question to ask and to answer is: does

the listening passenger prefer a higher system gain without the correct localization

but with increased speech intelligibility? Up to now there is no detailed information

or publication about this topic.

Another important issue is the increase of the overall noise level due to the

reproduction of the recorded speech signal via the ICC system. The microphones

record the talker’s speech signal which is of course corrupted with background

noise. Even though noise reduction methods are applied to enhance the signal

7Often delta-sigma converters are used in audio processing. This type of converter usually causes

a delay of 0.3–0.7 ms, both for the DA as well as for the AD case.
8 The delay is caused by waiting until enough samples are available in order to move them as a

block. This helps to reduce the processing load of interrupt handling.
9 A distance of 1 m between a loudspeaker and the ears of listening passengers results in a delay of

about 3 ms (assuming 340 m/s for the speed of sound).
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quality, potentially remaining noise components are amplified and played back over

the loudspeakers. This may lead to an undesirable SNR reduction. In the worst case,

the residual noise components are fluctuating, and the listening passengers are

disturbed by the noise level changes while the ICC system is activated. As a result,

the gain of the ICC system and the maximum attenuation of the noise suppression

have to be adjusted such that neither a noise level increase nor noise level

fluctuations due to the ICC system can be perceived by the listening passengers.

5.2.3 Talking Passenger

The talking passenger has one main requirement for the ICC system: He simply

does not want to be aware of the system.10 The ideal case for the talking passenger

would be if the situation within the compartment is the same whether with or

without an ICC system. But since the speech signal is amplified by the ICC system

and reproduced via the loudspeakers, it may occur that he hears himself while

speaking. This effect is highly correlated with the gain and the delay of the ICC

system. If the delay is too high, the talking passenger hears his own speech even at

low gain levels as an echo.

Finally, it should be mentioned that ICC systems increase the degree of reverber-

ation. This increase also depends on the delay and the gain of the system. The larger

both are, the more the reverberation increases. This effect is tolerated up to a certain

degree if the communication quality increases at the same time. However, if the

reverberation time is increased up to more than 80–140 ms (depending on the type of

car), passengers start complaining about the reverberant character of the vehicle [7].

5.3 Signal Processing for In-Car Communication Systems

As mentioned during the introduction of this chapter, some basic knowledge of the

involved signal processing units of ICC systems is necessary if appropriate evalua-

tion procedures should be investigated. For that reason, we will present brief

descriptions of the individual signal processing blocks shown in Fig. 5.5 in this

section before starting with details about the evaluation in the upcoming sections.

10 This statement can be slightly modified for the listening passengers: The listening passengers

should not be aware of a proper operating ICC system (in terms of localization, reverberation,

noise increment, etc.) unless the system is switched-off.
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5.3.1 Analysis and Synthesis Filter Banks

Since typical background noise in automotive environments is dominating over

speech components in the low-frequency range, high-pass filtering is applied as a

first processing stage applied to all microphones – see Fig. 5.7. The cutoff fre-

quency of the high-pass filters should be chosen between 80 and 300 Hz depending

on the preferences of the user and on the type of vehicle (higher frequencies for

sports cars, lower frequencies for sedans and vans).

A few signal processing components such as feedback and echo cancellation or

adaptive beamforming (these units will be described in the following sections)

assume a linear transmission between the loudspeakers and the microphones

installed in the vehicle. If a microphone clips, this assumption is definitely violated.

In order to exclude these periods, e.g. during the adaptation phase of cancellation

filters, each microphone is analyzed not only in terms of a clipping detection but

also in terms of a complete failure as caused, for example, by a breakdown of the

power supply for the microphone amplifier. If the failure of a microphone is

detected, the sensor is excluded from the succeeding processing.

A preemphasis filter and a low-delay analysis filter bank follow the high-pass

filter. The preemphasis stage can be realized, e.g. as a fixed prediction-error filter

that operates in the time domain. Its coefficients are adjusted to whiten the signal,

leading to a smooth high-pass characteristic. The inverse filter will be applied

behind the corresponding synthesis filter bank. Preemphasis and corresponding

de-emphasis filters help to utilize the limited spectral resolution of filter banks

(due to aliasing effects) in the best way.

Finally, the spectra of themicrophone signals are grouped into two classes: Spectra

of the first class are used by those processing units that enhance the signals of the

talking passengers. Spectra of the second class are utilized for adjusting algorithmic
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Fig. 5.7 Preprocessing and analysis filter bank
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components for improving the playback for the listening passengers. If, for example,

a setup with seven microphones, as depicted in Fig. 5.4, is used and only front-to-rear

communication should be supported, then the four front microphones would be

grouped as microphones used for the talking passengers. The three rear microphones

could be used, e.g. for estimating the background noise level at each rear seat. These

estimated noise levels can be utilized for determining appropriate playback volumes.

Thus, the three rear microphones would be grouped as microphones used for the
listening passengers.

Figure 5.8 depicts the synthesis part of ICC systems. In a first step, the spectra of

the loudspeakers signals are transformed back into the time domain by an appro-

priate filter bank. As mentioned before, special emphasis should be placed on using

low-delay approaches, e.g. as described in [12, 13].

If a preemphasis filter has been applied before the analysis filter bank, its inverse

has to be computed after the corresponding synthesis filter bank. Furthermore, each

loudspeaker might be equalized, either in terms of correcting undesired ripple in its

frequency response or in terms of attenuating those frequencies where the feedback

to the microphones is largest. Equalization can be applied either in the time domain,

e.g. by means of allpass-based structures [14], in the subband domain by means of

weighting factors, or as a combination of both. Usually, time-domain approaches

are used to realize sharp notch or peak filters, and frequency domain approaches are

used for smooth corrections. If spatial effects that require a certain delay for each

loudspeaker should be exploited, also the delays might be adjusted individually for

each loudspeaker.

Finally, signal processing that reduces the mutual correlation between loud-

speaker signals can be applied. This is of special importance if the feedback and

echo paths from the loudspeakers to the microphones are to be identified individu-

ally. The solution of this MIMO11 system identification problem is not unique if the

11MIMO is the abbreviation for multiple input multiple output.
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loudspeaker signals are fully correlated (measured in terms of coherence values

close to one). In order to reduce the correlation, nonlinear or time-variant processing

can be applied as known from stereo or multichannel echo cancellation [15]. For this

type of postprocessing, usually a compromise between audible signal distortions

on the one hand and a significant reduction of correlation, on the other hand, has to

be found.

The synthesis filter bank and postprocessing unit produces two types of output

signals: those that contain the entire signal components and those that contain only

the uncorrelated signal parts (computed, e.g. by subtraction of the input and output

of the nonlinear processing unit). The outputs first mentioned are designated for

playback via the loudspeakers installed in the vehicle. The uncorrelated signals are

used for computing the update terms of system identification algorithms as used in

feedback or echo cancellation. Since both output types are required in the subband

domain, analysis filter banks are applied afterward (see Fig. 5.5).

5.3.2 Processing Applied to All Microphones

After being transformed into the subband (or frequency) domain, all microphone

signals are enhanced by means of echo and feedback cancellation. We will denote

the cancellation of those loudspeaker signals that are located in the direct vicinity

of the microphone as echo cancellation. These loudspeakers usually do not play

back the signal of the talking passenger that dominates the microphone signal.

Signals that are emitted by loudspeakers being assigned to the other seats usually

contain this signal component – as a consequence, we will call the compensation of

such signals feedback cancellation. An overview about the subband-domain signal

processing that is applied to all microphones is depicted in Fig. 5.9.

Since echo and feedback cancellation cannot guarantee a certain amount of

distortion reduction, a Wiener-like suppression filter is usually applied [16, 17]

after the cancellation units. For adjusting the filter weights, estimations of the

residual echo and the residual feedback components in terms of their short-term

power spectral densities are required. This can be implemented using the same

methods as known from dereverberation of audio signals [18, 19].

In addition, stationary background noise [20, 21] as well as so-called wind

buffets (distortions caused by turbulent air flow on the microphones) [22, 23] can

be suppressed by spectral weighting. The weighting factors can be adjusted indi-

vidually for each microphone if only a signal combination according to the criterion

“best SNR wins” is applied (for details, see the next section). However, if

beamforming is applied afterward, one has to make sure that the same weighting

factors are applied to all microphone signals or the weighting has to be applied to

the output spectra of the beamformer.
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5.3.3 Seat-Specific Processing for the Talking Passengers

The enhanced microphone spectra are assigned to the individual seats in a next

processing stage. This could be also implemented in an overlapped manner. For

example, all of the three rear microphones which are depicted in Fig. 5.4 could be
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Fig. 5.10 Seat-specific processing for the talking passengers
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assigned to all of the three rear seats. In a next processing stage, three beamformers

can be computed; each steered to one of the rear passengers (Fig. 5.10).

Since only the approximate position of each passenger is known a priori,

a refinement of the steering directions of the beamformers can be achieved by using

appropriate localization approaches [24]. However, also single microphone selection

can be utilized. Here, in most cases, the sensor with the best SNR among all assigned

microphones is selected. This is usually themicrophone located closest to themouth of

the assigned passenger. However, if this microphone signal is disturbed by local noise

(e.g. due to an openwindowor air condition), a wind buffet, or by signals emitted from

a loudspeaker, it might be beneficial not to use the closest microphone but the one with

the best SNR.

After combining all microphones that are assigned to one specific seat to a single

signal, voice activity can be detected individually for each seat. To achieve this,

the current background noise level as well as the short-term SNR is estimated. By

comparing the individual SNRs as well as the noise and speech levels separately,

robust voice activity detection can be achieved. The result of this detection unit is

used in the following signal processing stages. For the sake of clarity, this signal

is not shown in the overview diagram depicted in Fig. 5.5.

5.3.4 Seat-Specific Processing for the Listening Passengers

The processing unit entitled “seat-specific processing (for listening passengers)” in

Fig. 5.5 contains a two-stage signal mapping. In a first stage, the signals of the talking

passengers are mapped onto the signals that are played back for the listening

passengers. Usually, the signal of a talking passenger is not coupled back into those

channels that are assigned to his seat for playback. Furthermore, the signals of talking

passengers located closer to listening passenger are mapped with a much lower gain

compared to signals of passengers being further away. As a last rule, nonactive talking

passengers are attenuated by several decibels in order to keep the reverberation as

small as possible. For that reason, the first mapping unit is also connected to the voice

activity detection described in the previous section (Fig. 5.11).

The second mapping unit has the objective to distribute the playback signal

of the individual seats onto the assigned loudspeakers. This mapping can (and

should) be implemented for each loudspeaker individually since the individual

loudspeaker-microphone paths differ in terms of their robustness against feedback.

In addition, for each seat and the assigned loudspeakers, a dedicated playback

volume is computed by analysis of the seat-specific noise levels (which are also

estimated within this processing unit). It is advantageous to compute this noise-

dependent gain control individually for each seat, since the noise level can vary

significantly from seat to seat, e.g. due to open windows or different adjustment of
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background music playback.12 The gain adjustment is usually applied between the

two stages of the signal mapping or in the second signal mapping stage if realized in

a loudspeaker-specific manner. For reliable estimation of the background noise,

those microphones that are located close to the listening positions should be used.

In case of nonsymmetric setups, e.g. if only front-to-rear communication should be

supported, these microphones can be operated at a much lower sample rate since

only a rough estimate of the low-frequency part of the background noise is required.

5.3.5 Loudspeaker-Specific Processing

As a last processing unit, loudspeaker-specific processing is described (see Fig. 5.12).

Asmentioned before, zero-phase equalization in terms of real-valued weighting in the

subband domain is applied before playing back the loudspeaker signals. This type of

equalization usually has lower complexity than equivalent time-domain structures if

the complexity of the necessary analysis and synthesis filter banks is neglected. The

objective of loudspeaker equalization is manifold:

12 CD or radio playback is usually allowed during the operation of ICC systems. The overall

playback level of the audio components, however, is often reduced in order to allow a comfortable

voice communication.
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• Midrange loudspeaker and tweeters should be driven only in the appropriate

frequency range.

• Corrections for a better sound impression can be performed.

• Optimization of the feedback properties (reducing the gain at those frequencies

that exhibit the largest coupling to the microphones).

If spatial effects based on appropriate delay adjustments are to be realized

in high precision, the time-domain delay of Sect. 3.1 can be combined with a

frequency selective phase shift in the subband domain: The rounded amount of

delay in terms of samples is introduced in the time domain; the remaining fraction

of samples is realized as a phase shift.

5.4 Types of ICC Systems Relevant for the Evaluation

When ICC systems are evaluated in an objective way, often the SNR or other

measures are compared for different situations with an activated system and

without any system support at all. This is usually a convenient comparison in

order to highlight the advantages of ICC systems. However, to evaluate other

properties of the system, for example, reverberation time, another system type

besides the activated and deactivated one is necessary.

Some objective measures can be derived from the impulse response of the ICC

system. However, an impulse response is defined only for a linear and time-

invariant system, which the ICC system certainly is not. Therefore, we introduce

the frozen system where all the nonlinear and adaptive (i.e. time-variant) elements

of ICC systems have to be deactivated or stopped in terms of their adaption. Of

course, such a system does not reflect the complete achievable improvement due to

the usage of an ICC system, but it allows to classify the current state in which the

system is and to calculate some properties of this snapshot. These measures then

can be compared to other time instances or to other ICC systems.

One other interesting question during the evaluation process is how far away

the real system from the optimal one is. To answer this question, the ideal system
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must be defined first. The idea behind the ideal system is to excite the ICC systemwith

perfect microphone signals as input, i.e. without any feedback and noise components.

In Fig. 5.13, the realization of this ideal system is depicted. The talking passenger

is simulated by an artificial mouth loudspeaker13 which is fed by a speech signal.

To achieve nearly the same speech spectrum as if passengers within the compartment

would have spoken, a speech signal from an appropriate database has to be equalized

vehicle specifically in order to create a natural artificial speech signal. In addition, the

speech database should contain speech which reproduces the Lombard effect if the

playback is used while driving the car. This signal will be reproduced via the artificial

mouth in order to simulate the talking passenger on the front passenger’s seat and is

passed also to a simulation of the passenger compartment. This simulation is capable

13A loudspeaker with the same radiation patterns as a human head

Equalization

In-car
communication

system

Speech data base
with Lombard

data

Real-time
simulation

of the
passenger

compartment

Micro-
phones

Passenger
compartment

Loud-
speakers

Rear
passengers

“Artificial mouth”
loudspeaker

Fig. 5.13 Ideal ICC system: the microphone signals are replaced by a clean speech signal

convolved with appropriate impulse responses

5 Evaluation of In-Car Communication Systems 91



of simulating the transmission from an artificial mouth loudspeaker via the

microphones to the input of the ICC system. In addition, this device also allows

adding characteristic car noise to ensure that algorithmic components that depend

on the background noise level, such as the noise-dependent gain control, operate as in

real scenarios. The output of the compartment simulation replaces the original

microphones and is used as the input of the ICC system. In the end, the in this way

designed system does not have any feedback and an adjustable noise level. Therefore,

it reflects the upper boundary of the achievable improvement of the speech intelligi-

bility. In the same way, the turned-off system equals the lower boundary.

5.5 Evaluation of In-Car Communication Systems

A first and intuitive approach to evaluate ICC systems would be to simply let

subjects test and evaluate such systems. Tests carried out like this are called

subjective methods. These tests are quite expensive since a large number of test

subjects have to evaluate the system in order to obtain a representative result. In

addition, the evaluation process after the experience phase has to be defined in an

appropriate way. Such subjective tests have one big advantage: If the group of test

subjects is well chosen with a sufficient number of subjects and an adequate

questionnaire is designed, these tests give a meaningful assessment of the commu-

nication situation.

However, other methods, which are less expensive, easier to reproduce, and

more reliable, would be desirable. Such methods are grouped under the generic

term objective test methods. In order to evaluate an ICC system by means of

objective methods, two main questions should be examined at the beginning:

• What does improve the communication between the passengers?

• What does impair the communication between the passengers?

Due to the fact that in a communication, at least two persons are necessary, the

evaluation of the ICC system should not only be done for the listening passenger but

also for the talking one. Of course, both communication partners do have different

requirements on the system, and therefore, different factors have to be examined.

As mentioned in Sect. 5.1, up to now, there are no defined standards for

evaluating an ICC system as they exist, for example, for speech or audio codecs

or for hands-free systems [25, 26]. In [27] some first investigations about the

analysis of the performance of an ICC system in an objective way were carried

out. Therefore, in the following section, some first approaches and ideas of how to

evaluate the here introduced ICC system are described. For that purpose, three main

topics will be considered:

• First, the improvement for the listening passenger is evaluated by subjective

methods.

• Secondly, objective approaches for listening quality evaluation are investigated.
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• Finally, an approach for determining the degradation of the communication

for the listening and the talking passenger due to the utilization of an ICC system

is described.

5.5.1 Quality Improvement for the Listening Passengers

The auditory impression of the listening passenger has the greatest influence on the

quality evaluation of an ICC system. This is founded in the fact that the system was

designed for increasing the communication quality for this passenger. Because of

this, the evaluation is more widely diversified for this passenger as compared to the

talking passenger (see Sect. 5.3).

5.5.1.1 Subjective Methods

To determine the quality improvement for the listening passenger with respect to

speech quality and speech intelligibility, at least two subjective methods may be

utilized:

• Changes in the speech intelligibility can be measured by diagnostic or modified
rhyme tests [28]. These tests are using a list of rhyming words, such as game and
name, to focus on the intelligibility of each syllable.

• The speech quality can be derived using so-called comparison mean opinion
score (CMOS) tests [29]. Here, well-known phrases are used as test sentences.

This allows the listening subjects to focus on factors such as artifacts, reverber-

ation, or naturalness of speech which are influencing the speech quality.

To create a comparable test situation which is identical for every test subject, the

test phrases or words are played back within the passenger compartment via an

artificial mouth loudspeaker located on the passenger’s seat. This situation is

recorded by binaural microphones mounted in the ears of the passenger sitting

behind the artificial mouth loudspeaker, as shown in Fig. 5.14. The vehicle was

driven at several speeds during the recording sessions. This allows the reproduction

of the same hearing impression for every test subject by presenting the recorded

binaural signal via a pair of calibrated headphones.14

The results of subjective tests depend on various boundary conditions. For

example, a group of well-educated (in terms of acoustical analyses) test subjects

will lead to a different result than a group of nonexperts. Other influences are

gender and age of the subjects.

14 If the test subjects would be sitting inside the car during the test, it would be complicated to

ensure that the same amount of background noise is present in all tests. For that reason, it was

decided to make recordings and using calibrated playback equipment instead of in situ tests.
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A rhyme test and a CMOS test were performed using four different scenarios [6]:

tests with an activated ICC system and without any support of the system, both at

standstill and at a speed of about 130 km/h.15 The ideal system and the frozen
system are not considered in this particular case.

For carrying out the rhyme test, first the rhyming word pair is visualized (with a

computer screen) and then one of the words is randomly chosen and played back via

the headphones. Afterward, the test subjects have to decide which word was

reproduced acoustically.

Since the ICC system that was tested adjusts its amplification in dependence of

the current background noise level, it can be assumed that there is no improvement in

terms of speech intelligibility during standstill. This can also be concluded from the

results of a rhyme test. Analyzing the results of 12 test subjects, each has voted on 40

pairs of rhyming words, showed no significant difference with and without the ICC

system during standstill of the vehicle. However, at a speed of 130 km/h, the number

of correctly understoodwords increased drastically by activating the ICC system [6].
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Fig. 5.14 Measurement and evaluation of in-car communication systems

15 The subjective tests described here were executed using a different ICC system and not the one

that is described in this chapter and has been used for the objective tests.
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The CMOS test is carried out similar to the rhyme test. First, the test phrases are

recorded within the vehicle at the different scenarios and afterward played back to

the test subjects via a pair of calibrated headphones. To obtain a direct comparison

between, e.g. a turned-on and turned-off ICC system, the playback of the audio

files is performed in pairs of signals. In this case, the test subjects have to grade

the two heard scenarios on a seven level grading scale ranging from much

worse, worse, slightly worse, about the same, slightly better, better to much better.

Again, this kind of test also reflects that an ICC system is not necessary during

standstill, and in addition, it may disturb the passengers within the passenger

compartment. However, at higher speeds, the result shows that the test subjects

would prefer the activation of the ICC system. Nearly 90% preferred the ICC

system to be activated at a speed of 130 km/h. Further and more detailed informa-

tion about subjective tests and additional results can be found in [6].

5.5.1.2 Objective Methods

After evaluating the system by two subjective methods, the quality improvement

achieved by the ICC system should also be defined by objective methods.

At the beginning of this section, the ICC systems are evaluated by analyzing

the impulse responses; the second part is the examination of the SNR improvement

for the listening passenger. The last topic is the determination of the speech

transmission index.

Analysis of the Impulse Response

The impulse response or rather the frequency response can be used as a first

indication for the improvement or the degradation of the speech quality due to

ICC systems. For this purpose, the impulse response from the mouth of the talking

passenger to the ears of the listening one has to be measured with and without the

ICC system.

To measure the impulse responses, the frozen system mentioned in Sect. 5.4 is

excited by a test signal, e.g. white noise, and the output at the binaural microphones

is recorded [8]. Due to the stopped and deactivated elements, it is important to

create a well-suited test signal, which excites all relevant frequencies and does not

stress the microphones of the ICC system which might produce nonlinear effects.

Once the impulse response is identified, parameters such as system delay,

reverberation time, and frequency response can be extracted. In Fig. 5.15, the

frequency responses measured with an activated and a deactivated ICC system

are depicted. These frequency responses were measured between the artificial

mouth located on the passenger’s seat and the right ear of the listening passenger

sitting directly behind the artificial mouth.

Assuming the arising background noise is suppressed by the ICC system and,

therefore, not amplified, the difference between the frequency responses of a
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turned-on ICC system and the turned off one shows the accomplished frequency-

selective SNR improvement of the ICC system. By comparing the frequency

responses of the ideal system, it can be identified how close the real system is to

the ideal case.

SNR Improvement

Another objective possibility to determine the quality improvement for the listening

passenger is to measure the different SNRs with an activated ICC system and a

deactivated one directly. These two measurements related to each other give a

statement about the improvement in terms of the SNR achieved by the ICC system.

Using this direct method, the LTI assumption is not necessary any more, and more

realistic conditions (in terms of not only the measured signal but also of the ICC

system [no usage of the frozen system]) can be applied.

To determine the SNR at the ears of the listening passenger, a predefined speech

signal is used as a test signal. The test signal contains speech passages of female and

male subjects and also speech pauses. The overall system is excited by means of the

test signal using an artificial mouth at the passenger’s position. This signal is again

recorded by the binaural microphones located in the ears of the listening passenger

sitting directly behind the passenger’s seat, as shown in Fig. 5.14.

Fig. 5.15 Frequency response (magnitude) at the listening person’s right ear
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By using the predefined test signal sðnÞ, the speech and silent passages within

this signal can be detected. Therefore, the squared magnitude of sðnÞ is calculated
and smoothed over the time:

sðnÞj j2 ¼ a � jsðnÞj2 þ ð1� aÞ � jsðn� 1Þj2: (5.1)

The smoothing factor is chosen as a 2 0:001; 0:01½ �. By means of this smoothed

discrete signal, the set of the sampling points for the speech and pause passages can

be derived by

Tspeech ¼ n sðnÞj j2 > S0

���n o
; (5.2)

Tpause ¼ n sðnÞj j2
��� <N0

n o
; (5.3)

where S0 gives the threshold for the speech passage detection and N0 for the pause

passages; in addition, S0 � N0 must hold. It is assumed that the signal recorded by

the binaural microphones is defined as

yiðnÞ ¼ hiðnÞ � sðnÞ þ bðnÞ ¼ uiðnÞ þ bðnÞ; (5.4)

where bðnÞ indicates the additive noise, hiðnÞ the impulse response between the

artificial mouth and the corresponding i-th binaural microphone, and uiðnÞ is equal to
the convolution of the impulse response and the test signal. By combining these

definitions, the noise power PB;i and the noisy speech power PY;i can be estimated by

PB;i ¼ 1

#Tpause
�

X
n2Tpause

jyiðnÞj2 (5.5)

and

PU;i ¼ 1

#Tspeech
�

X
n2Tspeech

jyiðnÞj2
0
@

1
A� PB;i; (5.6)

where # defines the cardinality of a given set. Hence, the logarithmic SNR in

dependence of the ear is defined as

SNRi ¼ 10 � log10
PU;i � PB;i

PB;i

��

¼ 10 � log10
PU;i

PB;i
� 1

�
:

�
(5.7)
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To obtain a frequency-selective observation, the SNR is determined in seven

different octave bands. In Fig. 5.16, the corresponding octave filters are depicted.

These octave bands are the same ones as used for calculating the speech transmis-

sion index as described in the next section. The test signals recorded using the

binaural microphones have to be filtered by octave filters before the SNR is

calculated according to the same approach as explained before in Eqs. 5.1–5.7.

In Table 5.1, the center frequencies of the octave filters are depicted.

To compare the results, the SNR determination was done for the activated and

the deactivated ICC system. Figure 5.17 shows the results for the right ear of the

listening passenger. A significant increase of the SNR, especially in the octave

bands 5–7, is observed.

At this point, only the SNR improvement achieved at the ears of the listening

passenger is determined. Another interesting issue is the increase of the noise power

inside the passenger compartment caused by the ICC system. The desirable situa-

tion in this case would be to avoid an increase in the noise power. Therefore, a

measurement of the noise power difference between an activated and a deactivated

ICC system measured at the listening passenger’s ears gives also an indication

about the quality of the ICC system.

Fig. 5.16 Frequency response (magnitude) of the octave filters

Table 5.1 Center frequencies of the octave filters

Octave band 1 2 3 4 5 6 7

Center frequency 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz
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Speech Transmission Index

The basic idea behind the speech transmission index (STI) is that the quality of

a speech transmission can be described by the change in the modulation index.

For that purpose, a special test signal is designed, and the reduction of the modulation

index due to the transmission of this test signal is measured [30, 31].

In this particular case, we restrict ourselves to transmission channels with only

linear and additive distortions, i.e., reverberation, noise, and echoes. In Fig. 5.18,

the basic concept for measuring the modulation index is depicted.

Fig. 5.17 SNR improvement of the ICC system at 150 km/h
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Fig. 5.18 Basic concept for determining the modulation index
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The test signal is generated by a carrier signal eðnÞ, whose spectrum is similar to

the long-term spectrum of speech. This carrier signal is then amplitude modulated

which leads to the following definition of the test signal.

slðnÞ ¼ eðnÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosð2 pFl n TÞ

p
: (5.8)

The received signal, in the following denoted by ylðnÞ, is divided into seven

bands by applying an octave filter bank – see Fig. 5.18. The different center

frequencies of these filters are already mentioned in Table 5.1. The received signals

depending on the octave band k can be denoted as

yk;lðnÞ ¼ ~eðnÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mk;l � cosð2 pFl n TÞ

q
; (5.9)

where ~eðnÞ corresponds to the carrier signal changed by the transmission.

Due to this approach, the envelope of each signal and, hence, the modulation

index mk;l can be found. Up to this point, only one modulation frequency is

considered. In order to investigate the influence of linear distortions in more detail,

the number of modulation frequencies is extended up to 14 different frequencies

which is indicated by the index l. These frequencies are distributed between 0.63

and 12.5 Hz in 1/3-octave steps [30].

To generate a test signal, the individual frequencies are excited sequentially over

time. Afterward, the modulation index mk;l depending on the octave band and the

modulation frequency can be estimated.

Using these modulation indices, the speech transmission index (STI) can be

determined. Therefore, first the so-called equivalent SNR for the octave band k has
to be calculated as

SNRk;l ¼ 10 � log10 mk;l

1� mk;l

� �
dB : (5.10)

This equivalent SNR is limited to a certain range R and normalized in order to

generate a scale between zero and one. The resulting transmission index (TI) is

defined as

TIk;l ¼ min 1; max 0;
SNRk;l � S

R

� �� �
; (5.11)

where S indicates the shift for the normalization. The values S and R are usually

chosen as R ¼ 30 dB and S ¼ �15 dB [31]. Subsequently, the modulation trans-
mission index (MTI) can be calculated as

MTIk ¼ 1

N

XN
m¼1

TIk;l ; (5.12)
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where N represents the number of used modulation frequencies. Finally, the STI

can be derived by a weighted sum of the transmission indices

STI ¼
X7
k¼1

Wk �MTIk ; (5.13)

where Wk represents the octave band–weighting factor. The weighting factors are

chosen due to the psychoacoustic importance of each octave band. Octave bands,

which are essential for the hearing impression, get a larger weight than others. In this

particular case, theweights were chosen as referred in Table 5.2 corresponding to [30].

Using this approach, the single STI values were measured within different

scenarios. Tomeasure the necessary signals, the same configuration as shown before

in Fig. 5.14 was utilized. In addition, breaks were inserted into the test signal in order

to prevent that the ICC system changes too much in its characteristics, e.g. the gain,

by detecting the test signal as noise. During the pauses, the ICC system can adjust

back to the initial settings. The test signal was transmitted via the artificial mouth

loudspeaker and again recorded the binaural ear microphones. This was carried

through different velocities and with an activated and a deactivated ICC system in

order to compare the obtained results.

Figure 5.19 depicts the results for the right ear of the listening passenger. The

measuring shows that the STI values, due to the activation of an ICC system,

are increased by about 0.15 due to the usage of an ICC system. In addition, the STI

decreases in the case of the deactivated ICC system by accelerating to higher speed.

If the ICC system is turned on, the STI values for 90 km/h and 120 km/h are nearly

the same. In this case, the ICC system compensates the decreased SNR by using a

higher amplification. The reduction of the STI from 120 to 150 km/h can be justified

by the maximum amplification of the ICC system which is obtained in between these

two velocities. Therefore, no further amplification is provided by the ICC system, and

the STI decreases due to the increased background noise level. Further evaluation

results of a similar ICC system by deriving the STI can be found in [27].

5.5.2 Quality Degradation for the Listening Passenger

The quality degradation for the listening passenger has two main reasons. The first

one is the increase of reverberation through the ICC system. The second is the

mismatch in the localization of the acoustical and visual sources of the speech

Table 5.2 Weighting factors of the octave bands corresponding to [30]

Octave band k 1 2 3 4 5 6 7

Wk 0.129 0.143 0.114 0.114 0.186 0.171 0.143

Center frequencies 125 Hz 250 Hz 500 Hz 1,000 Hz 2,000 Hz 4,000 Hz 8,000 Hz
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signal. As mentioned in Sect. 5.2, the amount of reverberation is dependent on the

gain and the delay of the ICC system, but also the localization is influenced by these

two factors.

5.5.2.1 Reverberation Time

The degree of reverberation can be expressed, e.g. by the reverberation time T60,
which can be derived from the energy decay curve (EDC) of the corresponding

impulse response hn [8]. The normalized EDC is defined as

DðiÞ ¼ 10 log10

P1
n¼i

h2n

P1
n¼�1

h2n

9>>=
>>;:

8>><
>>: (5.14)

The gradient of the EDC gives the reverberation time, which is defined as the

time it takes the EDC (or equivalently the impulse response) to decay by 60 dB.

Figure 5.20 illustrates the EDCs of an activated ICC system and a deactivated

one as an example. It can be seen that the activated ICC system increases the

reverberation time in comparison to the deactivated case.

Fig. 5.19 Measurement of the speech transmission index for the right ear of the listening

passenger
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The ratio between the reverberation time of the turned-off and the activated system

describes the increase of the reverberation caused by the ICC system. The less the

reverberation time is increased, the better the quality of the system is. The reverbera-

tion time with an activated ICC system should not exceed a certain threshold which is

also depending on the type of the car. For example, a vehicle with only two seat rows

should not exceed a reverberation time of 80–150 ms (depending on the type of car).

5.5.2.2 Localization

The localization mismatch of the acoustical source is also one factor, which may

decrease the communication quality of the listening passenger. As mentioned before

in Sect. 2.2, this is correlated with the gain and the delay of the system as well as with

the location of the loudspeakers. Therefore, in any case, the loudspeakers which

support the correct localization of the acoustical source (e.g. loudspeakers located in

the rear side of the front seat) should be utilized by an ICC system.

Up to now, the evaluation of the localization quality can only be done by

subjective test methods. To perform an evaluation, a group of test subjects who

are educated in terms of acoustical analysis should experience the ICC system and

grade the localization impression.

Fig. 5.20 Energy decay curves of the impulse responses at the listening person right ear
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5.5.3 Quality Degradation for the Talking Passenger

Because of the reproduced speech signal, the reverberation within the passenger

compartment is increased. This disturbs not only the listening passenger but also

the talking passenger. Therefore, the determination of the reverberation time can

be utilized to define the quality degradation for the talking passenger as well.

If the delay is too large, the acoustic wave fronts (the one of the talking

passenger and the playback of the ICC system) are perceived separately which

impairs the communication for the talking passenger. Therefore, also the delay is an

interesting quality measure.

However, if the delay is sufficiently small but the gain is too large, the talking

passengers perceive their voices as echoes. To evaluate this phenomenon, the

impulse responses between the mouth and the ears of the talking passenger are

measured. By means of these impulse responses, the corresponding frequency

responses can be calculated and evaluated. The difference between the frequency

responses of an activated ICC system and a deactivated one gives a measure of the

frequency-selective amplification of the speech signal. If this amplification is too

large, there is a high probability that the talking passengers hear themselves. In

addition, arising echoes due to the feedback can be detected by an inspection of the

impulse response. Therefore, a masking envelope can be defined and compared

with the impulse response. If the impulse response exceeds, this masking envelope

echoes should be audible [6].

5.6 Some Ideas for an Automatic Evaluation of ICC Systems

Even if we have explained a range of different objective measures which are

necessary to obtain an automatic evaluation of the ICC system, a complete defini-

tion of such an evaluation process is difficult. However, some first approaches and

some ideas for further considerations will be given in this section.

As seen in the previous sections, there are two main questions which have to be

answered when evaluating an ICC system:

1. Does the ICC system improve the speech quality for the listening passenger?

2. Is the communication quality reduced for the talking passenger by the ICC

system?

By answering these questions, a statement about the quality of the complete ICC

system can be made.

The first question can be answered by dividing this into two partial answers. The

first considers measures which indicate the improvement for the listening passen-

ger. The second partial answer deals with the factors which impair the communica-

tion quality for the listening passenger. For example, the speech intelligibility

improvement can be identified by determining the SNR improvement in the ears
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of the listening passenger. One advantage of measuring the SNR improvement is

that it takes also the increase of the noise level within the passenger compartment

into account. Also, the STI is a measure that helps to answer this question. This

measure has a further advantage: It accounts for linear distortions such as reverber-

ation. Other objective methods like the analyses of the transfer function or even new

methods and indices would be conceivable at this point. The degree of speech

quality degradation can be defined by determining, for example, the reverberation

time. If this time exceeds a certain value, it can be concluded that the listening

passenger senses an impaired communication. Further indicators are the delay

induced by the ICC system and the loudness of the reproduced speech signal. By

combining these two indicators, the localization mismatch of the acoustical source

and the visual source can be analyzed. However, not all factors creating the

subjective hearing impression for the listening passenger can be measured in an

objective way. Therefore, in this particular case, some new objective methods have

to be found first in order to design an automatic evaluation.

The second question can be answered by analyzing the transfer functions or the

impulse responses from the mouth to the ears of the talking passenger with and

without an ICC system. The increase of the transfer functions gives a first indication

of how much the talking passenger hears the feedback of his speech signal. By

analyzing the impulse response, appearing echoes can be discovered. However, also

in this case, new objective measures have to be found in order to reproduce

subjective hearing impressions like, for example, naturalness of speech.

To achieve a comprehensive evaluation of the ICC system, our suggestion would

be to create some sort of weighted measure of at least one of the objective measures

within each question. Thus, all important factors concerning the communication

quality are mapped and evaluated in this measure. To overcome the problem with

the up to now hardly measureable factors (e.g. naturalness of speech), a correlation

between subjective and objective evaluations would be conceivable. Therefore,

subjective and objective methods are carried out in the same scenario and related to

each other. In addition, by this correlation, the reliability of the objective measures,

in terms of the capability to reflect the actual communication quality, can be

estimated. All these approaches are only suggestions from the authors. In any

case, further research on the topic of automatic evaluation is required.

5.7 Conclusions

In this chapter, an overview of ICC systems and their evaluation has been given.

There are several boundary conditions that have to be taken into account when an

ICC system is designed, and it has been argued that the gain and also the delay

introduced by the system are two factors that largely influence the quality of such a

system.

Listening tests showed that ICC systems are able to improve the communication

quality in cars significantly if the car is moving at moderate or high speed. Several
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of these subjective methods have been suggested for describing the quality

improvement or degradation for the listening passenger. Similar evaluations can

be carried out for the talking passenger.

Since subjective tests are rather time-consuming, the aim is to develop an

automatic system evaluation based on objective criteria. Examples for these

measures are the SNR and the STI, which also proved to be capable of reproducing

the results of some of the subjective tests. However, in some cases, it is difficult to

find appropriate indicators, e.g. for judging on localization effects. An approach for

the design of an automatic evaluation scheme has been presented by pointing out

which questions should be answered by such a system. Even though some mean-

ingful objective measures have been found, further research in this particular field is

necessary to obtain more indicators that are correlated to the auditory perception of

humans.

Since ICC systems are starting to enter the market, the demand for

standardization of quality evaluation procedures arises. Evaluation systems could

not only help to compare different ICC systems but also assist during the design and

parameterization process.
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Chapter 6

Wideband Hands-Free in Cars – New

Challenges for System Design and Testing

Hans W. Gierlich and Frank Kettler

Abstract Wideband hands-free technology in cars provides the capability to

substantially improve the quality of the perceived speech for the driver as well as

for the far-end communicational partner. However, in order to achieve a superior

wideband speech quality, a variety of requirements – different from narrowband

telephony – have to be taken into account. A few important parameters most critical

for the success of wideband in cars are discussed. Since wideband transmission is at

least partially IP-based, a higher delay can be expected as compared to narrowband

calls. The impact of higher delay on the communicational quality is shown, and the

different elements contributing to the delay in car hands-free systems are shown.

Also, the impact of delay on conversational quality is discussed. The other aspects

of wideband communication include speech sound quality in sending and receiving

direction. A new objective test procedure 3QUEST for speech quality with back-

ground noise and its application to wideband car hands-free is introduced. For

echo performance in wideband, new subjective test results are shown, and results

of a new objective echo analysis method based on the hearing model “Relative

Approach” are shown.

Keywords Human perception • System design • Wideband hands-free technology

6.1 Introduction

The deployment of wideband hands-free technology in cars provides the capability

to substantially improve the quality of perceived speech for the driver as well as for

the far-end communicational partner. In-vehicle hands-free terminals would benefit

from wideband than traditional communication terminals. The difference in sound
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quality would immediately be noticeable to the driver since she/he will always have a

perceptual comparison of the high-quality audio playback in the car for other media.

Speech intelligibility in the car will be significantly increased, which is highly benefi-

cial, especially in background noise situations while driving. As a consequence, the

listening effort for the driver is reduced, the distraction from the primary task (driving)

will be reduced as well. Thus, the driver’s distraction may be reduced substantially if

wideband technology is implemented properly. However, in order to achieve a

superior wideband speech quality, a variety of requirements different from narrow-

band telephony have to be taken into account. This includes careful system design of

all components involved in the transmission. The impact of delay and the components

contributing to delay are described in Sect. 6.2. The listening speech quality analyses

for wideband car hands-free systems are described in Sect. 6.3, and the special

requirements on echo performance are given in Sect. 6.4.

6.2 Transmission Delay

Since wideband transmission is most likely IP-based when connecting to a fixed line

network, a higher delay can be expected as compared to narrowband calls. The higher

delay not only contributes to a degraded communicational quality but also requires a

more thorough investigation of the echo loss required for wideband systems. This

concerns spectral as well as temporal characteristics and is discussed in Sect. 6.4.

An overview of the components of a typical hands-free system and their effect

on delay is given in Fig. 6.1.

Fig. 6.1 Typical components of a car hands-free system and their contribution to transmission

delay
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While the microphone and its connection to the in-car audio or in-car bus system

typically introduces low delay, the hands-free algorithm in the uplink (sending

direction) may introduce a significant transmission delay. In uplink, the most

important signal processing is active: echo cancelation and noise cancelation.

Both require substantial signal processing capacity, and in wideband systems, it is

likely that these algorithms are realized in the frequency domain and/or in

sub-bands. These technologies are known not only to provide good performance

[1] but also to introduce higher delay – compared to simple LMS-type algorithm.

Signal processing in downlink may also introduce more delay than known in

narrowband systems. This is caused, e.g. by advanced adaptive signal enhancement

techniques, such as adaptive equalization or compression, and especially bywideband

extension techniques. Such techniques can be used to generate a pseudowideband

signal from narrowband speech and would help to minimize the perceived speech

sound quality between wideband and narrowband calls (see [2, 3]). An additional

source of delay might be the audio processor which is used to enhance the audio

presentation of other audio sources in the car.

The Bluetooth® connection is the most typical link between the hands-free

system and the mobile phone today. Currently, the Bluetooth® wideband specifica-

tion is not yet available. In order to achieve a superior speech sound quality in

conjunction with a low delay, tandem-free coding would be desirable. This would

require the support of the AMR wideband transmission over the Bluetooth® link

and the realization of speech coding and decoding in the hands-free system.

However, an additional coder for the Bluetooth® link is in discussion. This would

introduce additional distortion to the speech signal and increase significantly the

overall delay in a connection. For a superior wideband service, such implementa-

tion is not desirable.

Summing up the delays assumed from Fig. 6.1, the transmission delay would be

around 200 ms from car to car in the best case. Assuming an average Bluetooth®

delay of about 30 ms and a fixed network delay of 50 ms, it is quite likely that the

transmission delay in such a connection exceeds 400 ms.

The effect of delay in transmission systems is well known and described in

ITU-T Recommendation G.131 [4] and G.107 [5]. While in [4], the impact of delay

on the required echo loss is described, ITU-T Recommendation G.107 [5] gives

an insight of delay on users’ satisfaction. Although these investigations are still

based on narrowband transmission, a similar impact can be expected in wideband

systems. Figure 6.2 shows the impact of delay on user satisfaction [5], assuming

ideal performance of all components in a connection except echo loss.

It can be seen that even with perfect echo loss, many users will be dissatisfied

when exposed to a transmission delay of 400 ms or more. This is clearly not

advisable for a superior service. But even with lower transmission delays, an

excellent echo loss is required in order to achieve good users’ satisfaction.

As a consequence, any component in a car hands-free system should be designed

in such a way that only a minimum of delay is inserted.
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6.3 Listening Speech Quality

The performance requirements for the speech quality in receiving are probably

easiest to fulfill due to the high quality of built-in car audio systems. For aftermarket

hands-free systems, this is much more challenging. The extension of the frequency

range in sending direction not only provides better representation of the low-

frequency components of the transmitted speech but also increases the amount of

noise transmitted by the microphone. This is of particular importance because the

in-car noise is dominant in the low-frequency range. It imposes additional quality

requirements on all speech enhancement techniques such as beamforming for

microphones, noise cancelation, and others.

An objective measure 3QUEST according to ETSI EG 201 396-3 [6] is capable

of determining the speech, noise, and overall quality, and such can be used in the

optimization of wideband hands-free systems. The algorithm calculates correlation

between the processed signal – typically recorded in sending direction of a hands-free

system (uplink) – and two references, the original clean speech signal and the signal

recorded close to the hands-free microphone. This signal consists of the near-end

speech and the overlapped in-car noise. The algorithm is described in [6] and [7]

in detail. Statistical analyses lead to a one-dimensional speech quality score (S-MOS),

a noise quality score (N-MOS), and an overall quality score representing the general

impression (G-MOS). The algorithm is narrowband and wideband capable and

provides correlations in the range of >0.91 to the results of subjective tests.

Fig. 6.2 Users’ satisfaction depending on delay and TELR (TELR ¼ SLR + RLR + Echo Loss)

from [5]
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Themodel was developed and trained with a certain amount of given randomized

data (179 conditions). The rest of the databases were used for own validation only.

During the development of the algorithm in the STF 294 project [8], the subjective

S-, N-, and G-MOS results of 81 conditions remained unknown until the end of

the algorithm development.

The 179 different test conditions included existing hands-free terminals and

hands-free simulations in combination with different background noise scenarios

such as in-car noise and outdoor road noise. The following plots show a very small

amount of these data comparing subjective and objective results for the narrowband

and wideband test case in hands-free conditions.

The subjective and objective results (S-MOS, N-MOS, and G-MOS) do not

differ by more than 0.5 MOS in the narrowband case (see Figs. 6.3–6.5). This can

be regarded as very reliable, especially when considering the complexity of this

listening situation and amount of signal processing typically involved. The same

can be analyzed for wideband scenarios, as shown in Figs. 6.6–6.8.

The correlation coefficient and root mean square error (RMSE) between the

subjective and objective MOS data are shown in Table 6.1 for the entity of all 179

wideband test conditions.

This analysis method provides comprehensive quality scores for uplink trans-

mission quality. It needs to be combined with further detailed parameter analyses

like measurements of loudness ratings, frequency responses, signal-to-noise ratio,

and others in order to provide the “whole picture” for a given implementation.

Furthermore, the combination of comprehensive quality scores, on one hand,

and detailed parameter analyses, on the other, may provide important hints for

quality improvement and tuning, if necessary.

6.4 Echo Performance

Conversational aspects of wideband communication are important as well for the

success of wideband services. Therefore, the requirements for conversational

parameters such as double-talk capability and echo performance are to be revisited

with respect to different perceptions between narrowband and wideband telephony.

As seen before, the delay plays a crucial role for echo perception. Furthermore,

the extended transmission range in wideband scenarios and the spectral content of

echoes strongly influence echo perception. This also demands new analysis

techniques and requirements for wideband echo perception.

Current echo analyses combine various single measurements like echo attenuation

or spectral echo loss and verify the compliance to requirements and tolerances. These

parameters are incomplete, neither perception-oriented nor aurally adequate. They do

not appropriately consider wideband-specific aspects. New investigations on wide-

band echo perception further point out that the spectral echo content in the frequency

range between 3.1 and 5.6 kHz is especially crucial for echo disturbance [9]. New

tolerances for the spectral echo attenuation have therefore been introduced in [9].
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Fig. 6.4 N-MOS,

narrowband HFT

Fig. 6.3 S-MOS,

narrowband HFT

Fig. 6.5 G-MOS,

narrowband HFT



Fig. 6.6 S-MOS, wideband

HFT

Fig. 6.8 G-MOS, wideband

HFT

Fig. 6.7 N-MOS, wideband

HFT



A consequent next step in the field of analysis techniques is the development of

an objective model providing one-dimensional values with high correlation to the

MOS results from subjective tests. Models providing good correlations for echo

assessment have already been evaluated for narrowband telephony, distorted

sidetone, and room reverberations [10]. A new model based on the Relative

Approach [11] may be applicable for narrowband and wideband telephony and

may deliver hints for improvement of devices under test such as acoustic or network

echo cancellers. The Relative Approach method is especially sensitive to detect

unexpected temporal and spectral components and can be used as an aurally

adequate analysis to assess temporal echo disturbances [12–14].

The Third-Party Listening Tests were carried out with 20 subjects in total, 14

naı̈ve and 6 expert listeners. The speech material consists of male and female voices.

The basis for a new echo model – like for all other objective analyses – must be

the subjective impression of test subjects. Therefore, subjective echo assessment

tests were carried out first under wideband conditions. In principle, these tests can be

conducted as so-called Talking-and-Listening Tests according to ITU-T P.831 [15]

or as Third-Party Listening Tests based on artificial head recordings (ITU-T P.831,

Test A [15, 16]). The principle of the recording procedure is shown in Fig. 6.9.

A wideband-capable handset was simulated at the right ear of the HATS [17].

Besides the more efficient test conduction – a group of test subjects can perform

the tests at the same time – the listening tests provide the advantage that the same

audio files, as assessed in the subjective test, can be used for the objective analyses.

Table 6.1 Correlation and RMSE of prediction for wideband database

Training Validation

corr. RMSE corr. RMSE

S-MOS 91.2% 0.37 93.0% 0.33

N-MOS 94.3% 0.27 92.4% 0.32

G-MOS 94.6% 0.25 93.5% 0.28

Fig. 6.9 Principle of binaural recordings for third-party listening tests (Type A [15, 16])
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A total number of 33 test conditions, including the reference scenarios (infinite

echo attenuation) and different combinations of delay, echo attenuation, and spec-

tral shaping, were included:

• Round-trip delays between 100 and 500 ms

• Echo attenuation between 35 and 55 dB

• Simulation of nonlinear residual echoes

The spectral echo content was realized by the following filter characteristics

(subset of test conditions):

• NB: narrowband filter, 300–3.4 kHz

• HF1: 3.1–5.6 kHz

• HF2: 5.2–8 Hz

• 1/3 oct.no 1: 900–1,120 Hz

• 1/3 oct.no 5: 2.24–2.8 kHz

• 1/3 oct.no 7: 3.55–4.5 kHz

• 1/3 oct.no 8: 4.5–5.6 kHz

The 1/3 octave filter characteristics are shown in Fig. 6.10 together with the

hearing and speech perception threshold. These filters seek a more detailed analysis

of the critical frequency range between 1 and 5 kHz which provides the highest

sensitivity for sound and speech perception.

A 5-point annoyance scale was used (5 points: Echo is inaudible, . . ., 1 point:

Echo is very annoying [18]). The stimuli were presented without pair comparison.

The results were analyzed on a MOS basis together with confidence intervals based

Fig. 6.10 Filter characteristics (subset of test conditions)
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on a 95% level. Its first analysis pointed out that the quality rating for both groups

(naı̈ve, expert listeners) was very similar. The results were therefore combined.

A small subset of results from the listening-only test is shown in Fig. 6.11. The

blue bar indicates the echo-free test condition. The rating of 4.8 MOS must be

expected under this condition.

One example proving the importance of spectral content on echo perception is

given by the red bars in Fig. 6.11. Both conditions represent a 200-ms round-trip

delay in combination with a 40-dB echo attenuation. The two different filter

characteristics “1/3 oct.1” and “1/3 oct.7” are introduced in Fig. 6.10. The results

differ by approximately 1 MOS and point out the strong influence of spectral echo

shaping on subjective assessment.

Figure 6.12 shows an example of a D 3D Relative Approach between the echo

signal e and the reference ear signal r. The echo signal is recorded at the artificial

ear of the HATS. The reference signal r represents the sidetone signal in the

artificial ear as a combination of acoustical sidetone from mouth to ear and

electrical sidetone via microphone and loudspeaker of a wideband-capable handset.

In the first approach, the two-dimensional mean value mDRAe-r is calculated
according to formula:

mDRAe�r ¼ 1

KM

XK
k¼1

XM
m¼1

DRAe�rðk; mÞ (6.1)

where K ¼ no. of freq. bands and M ¼ no. of samples per band.

Fig. 6.11 Subset of test results [14]
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The parameters echo loss, echo delay, and mDRAe-r are used as input signal for
a linear regression in order to correlate the objective results to the subjective MOS

for the echo model.

In the first step, only the two parameters echo loss and echo delay were used in the

regression. The result is shown in the left-hand scatterplot in Fig. 6.13. A correlation

of r ¼ 0.80 is achieved, but the comparison of auditory MOS and objective MOS

shows systematical errors: clusters of identical objective MOS occur in Fig. 6.13

(see arrows), which spread over a wide range of auditory MOS (between approxi-

mately 1.7 and 3.7 MOS). This can be explained by the different spectral content of

these echo signals leading to significant different echo ratings in subjective tests –

although the objective parameters (echo delay, echo attenuation) are identical.

The plot on the right-hand side in Fig. 6.13 shows the correlation between the

auditory MOS and the objective results based only on the two-dimensional mean

valuemDRAe-r. The correlation factor increases to r ¼ 0.84. The systematical error

is implicitly solved using the Relative Approach–based analysis. In principal, this

could be expected because the Relative Approach considers the sensitivity of

human hearing, especially for different frequency characteristics of transmitted

sounds.

The combination of the three parameters mDRAe-r, echo loss, and echo delay to

the objective MOS further increases the correlation (r ¼ 0.90). The scatterplot is

shown in Fig. 6.14 (left-hand side) together with the error distribution in the right-

hand picture. The residual error between objective and auditory MOS is below 0.5

MOS in 84% of test conditions.

Fig. 6.12 D 3D Relative Approach DRAe-r(t,f) between the echo signal e and the reference ear

signal r
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Next steps during the development of the echo model are the further adaptation

of the Relative Approach on speech characteristics and the application of

postprocessing on the resulting D 3D Relative Approach DRAe-r(t,f ).

6.5 Conclusions

This chapter introduces several parameters critical to the success of wideband

hands-free communication in cars. The impact of delay is shown and discussed.

New test results and analysis techniques based on hearing model approaches are

Fig. 6.13 Objective vs. auditory MOS; left: input echo loss and echo delay right: input mDRAe-r

Fig. 6.14 Objective vs. auditory MOS and residual error distribution; input parameter mDRAe-r,
echo loss, and echo delay
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given for the speech quality analysis in background noise as well as for echo

performance.

Further work is required to derive new analysis techniques and performance

criteria for double-talk in wideband systems. It is also clear that the narrowband

performance requirements and testing techniques would benefit from such work.
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Chapter 7

A Novel Way to Start Speech Dialogs

in Cars by Talk-and-Push (TAP)

Balázs Fodor, David Scheler, and Tim Fingscheidt

Abstract The obligation to press a push-to-speak button before issuing a voice

command to a speech dialog system is not only inconvenient but it also leads to

decreased recognition accuracy if the user starts speaking prematurely. In this

chapter, we investigate the performance of a so-called talk-and-push (TAP) system,

which permits the user to begin an utterance within a certain time frame before or

after pressing the button. This is achieved using a speech signal buffer in conjunc-

tion with an acoustic echo cancelation unit and a combined noise reduction

and start-of-utterance detection. In comparison with a state-of-the-art system

employing loudspeaker muting, the TAP system delivers significant improvements

in the word error rate.

Keywords Acoustic echo cancellation • Frequency-domain adaptive filter

(FDAF) • Noise reduction • Automatic speech recognition • In-car speech

dialog • Push-to-speak

7.1 Introduction

Modern in-car speech dialog systems require the user to press a push-to-speak

(PTS) button to initiate a dialog. The button press is normally followed by an

acoustic acknowledgment tone indicating that the user may start speaking.

In practice, this procedure often causes degraded system performance due to

nonconforming user behavior. For example, an inexperienced user cannot be

expected to wait for the acknowledgment tone before they start speaking. Instead,

the start of utterance (SOU) is likely to occur before the beep or, even worse, before
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the PTS button has been pressed. Similarly, even experienced users may not always

conform to the required sequence simply for impatience or because they are

concentrating on the driving task. As a consequence, the portion of speech uttered

prematurely will not be processed by the system, resulting in recognition errors.

Another source of degradation is acoustic leaking of music or speech being

presented via the car audio system into the hands-free microphone. Since the

automatic speech recognition (ASR) engine generally cannot distinguish such

signal components from the user’s voice commands, the result will be recognition

errors. In many commercial systems, this problem is approached by muting the

loudspeakers upon PTS button actuation. However, muting cannot be performed

instantaneously, thus leaving some disturbances in the microphone signal. More-

over, it is not always advisable to mute the loudspeaker signal. For example, the car

computer may need to deliver urgent voice notifications at any time, regardless of

whether the system is engaged in a speech dialog.

Instead of muting, some state-of-the-art systems employ acoustic echo cancel-

ation (AEC) methods [1, 2], which strive to estimate and remove the acoustic signal

component captured by the hands-free microphone originating from the car

loudspeakers. While AEC makes muting unnecessary, this method alone still

does not provide for intuitive dialog initiation. An extended and more flexible

solution, the so-called talk-and-push (TAP) system, has been proposed in [3].

It allows the user to start speaking within a certain time frame before or after

PTS button actuation. This is achieved by employing a look-back speech buffer in

conjunction with an AEC unit and a robust SOU detection. The experiments in [3]

were conducted at a sampling frequency of 8 kHz and using the normalized least-

mean-square (NLMS) algorithm for AEC.

In this chapter, we investigate the performance of a TAP system operating at

16 kHz sampling frequency and employing the frequency-domain adaptive filter

(FDAF) as proposed in [4] for AEC. While the higher sampling rate was chosen to

open the prospect of more complex ASR tasks, the FDAF offers lower computa-

tional complexity than a 16 kHz NLMS algorithm, as well as a built-in postfilter for

residual echo suppression.

The remainder of this chapter is organized as follows: Section 7.2 outlines the

TAP system architecture. The implementation of the system components—AEC,

noise reduction, and SOU detection—is described in Sects. 7.3 and 7.4. Section 7.5

then summarizes the experimental setup, followed by a discussion of the simulation

results in Sect. 7.6.

7.2 The Talk-and-Push System

We assume the typical setup of an in-car speech dialog system: It consists of

a speaker (e. g., the driver) seated in a vehicle, a hands-free microphone for voice

control, and an in-car loudspeaker system reproducing voice prompts or music from

the FM radio. In the microphone, the speaker’s speech signal s is disturbed by

additive background noise n and the reverberated loudspeaker signal d. In the
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discrete-time domain, using n as discrete-time index at sampling frequency fs¼ 16 kHz,

the microphone signal can thus be expressed as the sum:

yðnÞ ¼ sðnÞ þ dðnÞ þ nðnÞ (7.1)

This relation is depicted on the bottom left of Fig. 7.1.

To model the acoustic leaking from the loudspeaker into the microphone, we

assume that the echo signal d(n) results from the loudspeaker source signal x(n) by
convolution with a discrete-time, time-variant impulse response

hðnÞ ¼ h0ðnÞ; h1ðnÞ; . . . ; hN�1 ðnÞ½ �T; (7.2)

where N denotes the finite impulse response length and (·)T is the transpose.

For simplicity, a mono source signal x(n) is assumed. The impulse response h(n)
models the entire loudspeaker–enclosure–microphone (LEM) system—i. e., the

path from the digital–to–analog converter before the loudspeaker via the acoustic

enclosure to the analog–to–digital converter after the microphone.

Hence, the reverberated loudspeaker signal can be written as

d nð Þ ¼ hT ðnÞ � xðnÞ; (7.3)

where � denotes the scalar product and x(n) ¼ [x(n), x(n–1), . . ., x(n-N + 1)]T is a

time-inverted segment of the loudspeaker signal of length N.
As shown in Fig. 7.1, the first stage of the TAP system is an acoustic echo

cancelation (AEC) unit. It computes an estimate d̂ðnÞ of the echo component

according to [4] and subtracts it from the microphone signal.

For this purpose, the LEM system transfer function is estimated using the FDAF

described in Sect. 7.3. The FDAF furthermore contains a postfilter, which reduces

residual echo components as well as some background noise n(n) present in the

microphone signal.

ASRTAP SystemLEM System
Model

VAD Control

h(n)

PTS

s(n)

n(n)

e(n)

x(n)

d(n)
y(n)

FM radio signal

v( )

Robust ASR

initialization,
SOU trigger

hands-free
microphone

AEC,
Postfilter

Notch Filter,
Noise Reduction,

VAD

Fig. 7.1 Block diagram of the talk-and-push (TAP) system
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The resulting error signal e(n) is processed in two different branches: As shown

at the bottom of Fig. 7.1, it is stored in a circular buffer to be fed into the ASR

engine without further processing. In the upper branch of the TAP system, it is

analyzed by an integrated additional noise reduction and voice activity detection

(VAD) as described in Sect. 7.4. The latter’s output is a voice activity signal which

is buffered and evaluated by a control unit. Upon receiving a PTS event, the control

unit locates the speech onset using buffered voice activity signal both from the past

and present. The control unit also initializes and triggers the ASR engine, which is

then supplied with a correct portion of the error signal from the lower buffer,

depending on the detected SOU.

7.3 Acoustic Echo Cancelation and Postfilter

The AEC stage of our system employs the FDAF as described in [4], which unifies

AEC and a postfilter for residual echo and noise suppression in the frequency

domain. While most echo cancellers model the impulse response h(n) of the

LEM system—or its transfer function—deterministically, the FDAF is based on a

statistical model.

As proposed in [4], the impulse response h(n) is modeled as a random process

with the expectation h0(n) and covariance vector FhhðnÞ.
Actual estimation is performed in the frequency domain. Assuming that

variations of the LEM path over time are gradual, the LEM system transfer function

estimate bH‘ðkÞ is updated recursively according to

bH‘þ1ðkÞ ¼ A bH‘ðkÞ þ DH‘ðkÞ; (7.4)

where ‘ is the time frame index, k is the frequency bin index, A ¼ 0.9995 is the

transmission factor, and DH‘(k) is the echo path update as computed according to [4].

Multiplying the estimated LEM transfer function bH‘ðkÞwith a short-time Fourier

transform (STFT) X‘(k) of the loudspeaker source signal yields the estimated echo

component D̂‘ðkÞ in the short-time spectral domain. This estimate is then subtracted

from the STFT Y‘(k) of the microphone signal, resulting in an error signal ~E‘ (k).
Note that before applying the STFT to the signals x(n) and y(n), they are subject to a
high-pass filter with a cutoff frequency fc ¼ 200 Hz to remove low-frequency noise.

To reduce the noise component and to suppress the residual echo that is still

present in the error signal ~E‘ (k), the FDAF includes an additional frequency-

domain postfilter. Its application to the error signal yields an improved estimate

of the desired speech signal as

E‘ðkÞ ¼ ~E‘ðkÞ �W‘ðkÞ; (7.5)
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where the postfilter is given by the generalized Wiener filter

W‘ðkÞ ¼ Fss;‘ðkÞ
Fss;‘ðkÞ þ X‘ðkÞj j2 � Fhh;‘ðkÞ þ Fnn;‘ðkÞ

; (7.6)

with Fss;‘ðkÞ, Fhh;‘ðkÞ, and Fnn;‘ðkÞ denoting the power spectral density (PSD) of

the desired speech signal s(n), the echo path covariance in the frequency domain,

and the PSD of the background noise n(n), respectively. Since the covariance

Fhh;‘ðkÞ can be taken as an uncertainty measure of the LEM system identification,

the product X‘ðkÞj j2 � Fhh;‘ðkÞ represents the PSD of the residual echo. The PSDs

Fss;‘ðkÞ and Fnn;‘ðkÞ are estimated according to [4]. Finally, the postfilter gain

W‘ (k) is floored to Wmin ¼ �12.6 dB.

7.4 Integrated Noise Reduction and Voice Activity Detection

Subsequent to echo cancelation, residual vehicle noise n(n) as well as some remains of

the beep may still be contained in the error signal e(n). In the upper path of the TAP
system, robust detection of the speech onset therefore requires these disturbances to

be distinguished from the desired speech component s(n). This problem is here

approached with a combined additional noise reduction and VAD operating on the

short-time spectrum E‘(k) of the error signal.
For the removal of the beep, all frequency bins corresponding to the frequency

range fromabout 1.83 to 2.45 kHz are set to zero. For each frame ‘ and frequency bin k,
the estimated clean speech spectrum Ŝ‘ðkÞ is obtained from the error signal E‘(k) by
applyingaWienerfilter basedon the apriori signal-to-noise ratio (SNR)asdescribed in

[5] and [6]. For the computation of this SNR, the power spectral density of the noise is

estimated by employing a 3-state time- and frequency-dependent VAD [3].

The output of the VAD is transformed into a per-frame voice activity signal v 2
[0, 1] by averaging over relevant frequency bins (see [3]) and then stored in the

upper circular buffer as shown in Fig. 7.1. The final decision about the time of the

speech onset is made by the VAD control unit: The hypothesized speech onset

frame ‘SOU is the latest nonspeech frame (i. e., v(‘SOU) � 0) before v(‘) exceeds an
empirical threshold [3].

7.5 Experimental Setup

For experimental evaluation, we performed an offline batch simulation of the TAP

system using the CambridgeHiddenMarkovModel Toolkit (HTK) for ASR. Instead

of a physical LEM system, we used a digital LEM impulse response measured inside

a vehicle. In the next two subsections, the near-end speech files as well as the noise

and echo signals are described.
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For reference, we performed a similar experiment where the TAP system is

replaced by the state of the art: Upon PTS button actuation, the in-car audio system

is muted—i. e., no echo component is added at the microphone—and the unpro-

cessed microphone signal is passed to the ASR engine. Any speech parts preceding

the PTS event are discarded because there are no look-back buffers.

7.5.1 Test Speech Data

The test speech data consisted of a subset of the US-English SpeechDat-Car

connected-digit corpus [7]. The set comprised 210 utterances spoken by 35

speakers, each utterance containing four to sixteen digits. Since the test files were

artificially degraded with background noise (see next section), we used close-talk

recordings only, which approximately represent clean speech.

As described in [3], PTS actuation was assumed to occur 0.83 s relative to the

beginning of each test speech file. Since the actual time of the speech onset varied

from file to file, a probabilistic displacement of the SOU with respect to the PTS

event was achieved. The histogram in Fig. 7.2, which was generated by forced

Viterbi alignment, visualizes the distribution of the speech onset we found in the

test speech files. By assuming the PTS event at the median of the SOUs, both

premature and delayed speech were simulated.

7.5.2 Artificial Degradation with Echo and Noise

Weused different loudspeaker source signals to excite the LEM system aswell as a set

of vehicle noise files to simulate the disturbance of the desired speech on the

microphone. Two different simulations were performed: In one case, the loudspeaker

Start of utterance [s]
0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25Fig. 7.2 Normalized

histogram of the start of

utterance (SOU) with respect

to the beginning of the speech

file; the thick black line marks

the median of 0.83 s [3]
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signal x(n) contained onlymusic, whichwas randomly chosen from six files of varying

musical styles. In the other case, x(n) consisted of speech files, which were randomly

chosen from 96 speech files taken from the English subset of the NTT-AT Multilin-

gual database; the files were spoken by four female and four male speakers. In

addition, a beep signal at 2.1–2.4 kHz was added to all loudspeaker source signals

0.25 s after the virtual PTS event. In the baseline reference case, however, no beepwas

added because we assumed strict muting of the loudspeakers. To obtain the simulated

echo signals d(n), the loudspeaker source signals were convolved with a time-invari-

ant LEM system impulse response measured in a Volkswagen Passat car type.

For simulating the background noise component n(n), four different vehicle

noise files recorded in two different cars at two different velocities were used

randomly.

Noise and echo components were added to the test speech signals at different

signal-to-noise ratios (SNRs) and signal-to-echo ratios (SERs), respectively. By

this means, we were able to investigate the system behavior under varying distur-

bance conditions. As in [3], we performed the SNR and SER adjustment based on

the active speech level (ASL) according to ITU-T recommendation P.56 [8].

However, all signals were subject to a 50–7,000 Hz band-pass filter prior to the

P.56 level measurement to eliminate speech-irrelevant frequency components.

7.5.3 Automatic Speech Recognition Setup

The ASR experiments were conducted using a feature extraction frontend for mel-

frequency cepstral coefficients (MFCCs) and a set of hidden Markov models

(HMMs) trained on American English connected-digit strings.

The frontend settings were as follows: A pre-emphasis value of 0.9, a frame shift of

10ms, a frame length of 25.6ms, a Hammingwindow, and a 512-point FFT. No noise

reduction was applied in the frontend, but the HMMs were trained on recordings

containing slight vehicle noise. For each frame, twelve MFCCs (without the zeroth

coefficient) were computed using 26 uniform, triangular filterbank channels on the

mel scale and ignoring frequencies below 50 Hz and above 7 kHz. A log energy

coefficient as well as first and second order time derivatives were appended. Cepstral

mean normalization was performed separately for each utterance.

For acoustic modeling, we employed 42 tied-state HMMs representing

acoustic–phonetic units, differentiating also by the immediate left and right context

via triphone modeling within words. Each HMM consisted of one to three emitting

states, each of which was assigned a continuous output probability density function

modeled by a Gaussian mixture model with 32 components each. Diagonal covari-

ance matrices were assumed. The training material consisted of 3,325 utterances

spoken by 245 speakers and was taken from the connected-digit corpus of the

US-English SpeechDat-Car database [7]; to ensure speaker independence, two

disjunct sets of speakers were used for training and testing.
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Recognizing the undegraded set of test utterances with the trained HMM set

yielded a word error rate (WER) of 0.59%, which posed a lower bound to the

remaining recognition experiments.

7.6 Results

Our experimental results are summarized in Table 7.1, which lists the obtainedWERs

in % for different disturbance conditions. In case (a), the echo signal was music,

whereas in case (b), the echo signal was speech. For reference, the lines labeled

“Muting” contain the results obtained with the baseline system. Since this system

was assumed to mute the car loudspeakers instantly upon receiving a PTS event, its

performance is independent of echo type and SER. Note that the baseline results must

be interpretedwith care as they strongly depend on the timing of the PTS event relative

with the SOU. If, in practice, more speakers than the assumed 50% start speaking after
PTS actuation, better baseline performance will result. Nevertheless, an actual state-

of-the-art system may suffer from additional impediments not considered here: For

example, the muting of the loudspeakers will occur with additional delay; moreover,

the beep would not be omitted in practice.

The results in Table 7.1 show that the TAP system outperforms the reference

system under all test conditions. In the absence of noise SNR ! 1, the TAP

system yields WERs of 0.73–2.29%, which is much closer to the limit of 0.59%

than the 4.20% WER obtained in the reference case. Moreover, the dependence on

the SER is negligible for SER < 1, indicating that the AEC works reliably even

when there is noise. This seems to be a major advantage over the NLMS algorithm

whenconsidering the results obtained in [3] andmight be attributed to the residual echo

Table 7.1 WER in % achieved with the TAP system under different SNR and SER conditions.

For comparison, the performance of a state-of-the-art system employing muting is included

SNR [dB]

�5 0 5 10 15 20 1
Muting 73.41 37.90 14.93 7.17 5.02 4.54 4.20

(a) Echo signal is music

0 43.22 22.83 10.29 5.02 2.88 2.24 1.90

SER [dB] 5 42.83 22.83 10.44 4.83 2.98 2.34 1.95

10 42.73 22.49 10.59 4.88 2.88 2.29 1.95

1 43.85 24.63 11.71 6.10 3.27 2.68 0.73

(b) Echo signal is speech

0 43.02 22.39 10.63 5.32 3.17 2.39 2.29

SER [dB] 5 43.46 22.39 10.68 4.88 3.02 2.34 2.10

10 42.98 22.54 10.78 5.12 2.93 2.20 2.49

1 43.85 24.63 11.71 6.10 3.27 2.68 0.73
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suppression of the postfilter. However, the TAP system exhibits decreased perfor-

mance when there is background noise but no echo signal (SNR < 1, SER ! 1);

thismay indicate that in the absence ofLEMexcitation, the operation of the postfilter is

suboptimal.

When judging the SNR dependence of the TAP system, note the following: Since

the test speech fileswere close-talk recordingsmade in a vehicle environment, they are

not entirely cleanwith respect to background noise. As a consequence, the SNRvalues

shown in Table 7.1 are biased towards higher values as they only reflect the amount of

noise added artificially.

7.7 Conclusion

We have investigated the performance of a so-called TAP system, which tolerates

imperfect user behavior when initiating a speech dialog. As in [3], we have

demonstrated that the TAP system significantly improves recognition performance

assuming that half of the users actuate the push-to-speak button shortly after they

start speaking. This is achieved by means of two synchronized circular buffers

providing a look-back capability and a robust speech onset detection. We have

included an AEC and noise reduction unit operating in the frequency domain to

eliminate loudspeaker signal as well as background noise leaking into the micro-

phone. Further investigations will include AEC for multichannel source signals as

well as improved methods to measure the SNR and SER. In addition, more complex

ASR tasks will be evaluated using the TAP system.
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Chapter 8

Cognitive Dialog Systems for Dynamic

Environments: Progress and Challenges

Felix Putze and Tanja Schultz

Abstract In this chapter, we present our existing setup and ongoing research on the

development of cognitive dialog systems for dynamic environments like cars,

including the main components that we consider necessary to build dialog systems

to estimate the user’s mental processes (hence, cognitive) and adapt their behavior

accordingly. In conducting realistic testing and recording environment to produce

real-life data, a realistic driving simulator was used. We also needed to observe the

user during these interactions in a multimodal way to estimate the current user state

based on this data. This information is integrated with cognitive modeling

components that enrich the observational data. We finally needed a dialog manage-

ment system which is able to use this information for adapting its interaction

behavior accordingly. In this chapter, we report our progress in building these

components, give an overview over the challenges we identified during this work

and the solutions we aim for.

Keywords Cognitive dialog system • Cognitive model • Human machine

interaction • User state detection

8.1 Introduction

Spoken dialog systems have matured to a point where they find their way to many

real-world applications. However, their application in very dynamic scenarios remains

an open and very interesting task. Spoken dialog systems as an interface for in-car

services are very desirable and at the same time very challenging. On one hand, they

offer eyes-free and hands-free control without visual or manual distraction from the

primary driving task. On the other hand, this task uses the user’s cognitive capacity, so
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we can no longer assume to dealwith a fully attentive and perfect interaction partner as

in more static environments. Another important aspect is the adaptation to individual

preferences. As dialog sessions in driving scenarios may last for several hours, we

have to take into account both changing user states, i.e., cognitive workload or

emotions, as well as lasting user traits, e.g., gender or personality. Both types of

individual differences influence the optimal interaction behavior which the system

should use for maximizing user satisfaction, as user studies like [1] show. There is

potential for a large range of adaptation measures: One example is reacting to

increased cognitive workload by taking the initiative from the user, delaying noncriti-

cal information, or reducing its complexity. Another one is adjusting the system to the

user’s emotional state and personality by selecting appropriate wording, voice, and

turn-taking behavior. We propose to use systematic multimodal observation and state

classification of the user derived from a variety of different biosignals. This metadata

is augmented with a more detailed model-based representation of the user’s mental

processes and helps to select appropriate adaptation measures. Combining a global

model of the user’s cognition and affective states for the purpose of building adaptive

interaction strategies is new to the field of spoken in-car dialog systems.

After a review of related work, the following sections describe all components

which are necessary to develop and evaluate cognitive interaction systems for in-

car applications: a driving simulator to create a realistic environment for

recordings, an interaction system as a platform for human–machine interaction, a

recording setup to collect data for training and testing of systems, a recording

software to deal with the challenges of multiple input streams, and a user state

detection framework and components to model human cognition.

8.2 Related Work

In the last years, many approaches for user models for application in adaptive in-car

dialog systems exist. Like [2], most of them rely on heuristics and indirect user state

detection.

The authors of [3] describe a dialog system that bases its handcrafted dialog

strategy for a gaming interface on the user’s emotional state, derived from prosody,

language, and visual features. Together with the history of interaction, the current

user command, and other discourse features, the user state can be accessed by the

dialog strategy in the form of a decision tree.

Fatma Nasoz and Christin Lisetti [4] describe a user-modeling approach for an

intelligent driving assistant. This model is based on a Bayesian network which

allows to derive the most useful system action (in terms of driving safety) given

the estimated driver state, which consists of emotional state, personality, and other

features and is partially derived from physiological measurements like the user’s

heart rate. The score for each action is calculated using a utility node which measures

the probability of safety improvement given the current user state. Similar decision-

theoretic, user-model-based action evaluation approaches are used in [5], which
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also include an active sensor selection mechanism. Cristina Conati [6] presents an

educational dialog system that can decide for different user assistance options, given

the user’s emotional state (derived from different modalities). This work bases its

network on the cognitive OCC (by Ortony, Clore, and Collins) appraisal theory,

which relates the users’ emotions with their goals and expectations.

In the area of user state detection from biosignals, Liang, Reyes, and Lee [7]

developed a real-time workload classifier in the car using facial features, like pupil

diameter or gaze direction, extracted from videos of the driver. The ten participants

followed a car with varying speed while performing a secondary memory and

comparison task. Using support vector machines, the authors achieved a recognition

rate of 81.1% on average for the recognition of cognitive workload. Healey and

Picard [8] developed a classifier to monitor the stress levels in daily life car-driving

tasks. They collected data from 24 real-life drives of at least 50-min duration and

used the biosignals electromyography, electrocardiography, and skin conductance

for their system. Linear discriminant analysis (LDA) was used for dimensionality

reduction, and a classifier using a linear decision function was able to discriminate

the three classes with accuracies of 100% (low workload), 94.7% (medium

workload), and 97.4% (high workload).

8.3 Driving Simulator

Testing and evaluation of different interaction strategies requires a realistic experi-

mental environment which reproduces all important effects and distractions seen in

real-life applications. While recording in a real car in real traffic situations creates

the most authentic sessions, the downsides of this approach are safety concerns with

early prototypes, the lack of reproducibility, and the missing ability of reliably

provoking scenarios which are relevant for the current investigation. Therefore, we

decided to build a driving simulator which is designed to create a realistic driving

experience. The main focus was not to build a physically correct car test bed but to

simulate the most important influences and distractions that occur during real

driving tasks, especially in situations where the application of a dialog system

plays an important role. We based our driving simulator on a real car and kept the

interior fully intact and functional to provide a realistic in-car feeling. The car is

surrounded by a projection wall, covering the view of the frontal and lateral

windows. The simulator features acoustic feedback via engine sound and environ-

mental surround sound and haptic feedback in the seat (via tactile transducers)

and steering wheel (via force feedback).

The simulator software is based on a modified gaming engine1. It was extended

using amultiscreen display, steeringwheel support, and simple ambient traffic control.

1MTA:SA: http://www.mtasa.com
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Its support for scripting scenarios in LUA allows us to configure individual driving

stages:We can position the driver in awide artificial environmentwith realistic urban

and rural areas, where we define a route represented by navigation directions for the

system. It is possible to trigger events at defined points to generate specific traffic

situations, position new elements in the environment, or influence the position or

driving characteristics of the car (Fig. 8.1).

8.4 Interaction Setup

While the user is driving, they interact (via close-talking microphone to reduce

noise) with a dialog system. In our current scenario, this constitutes a virtual

co-driver which acts as interactive tour guide and navigation system for the virtual

environment. To investigate the phenomena we are interested in, e.g., different

levels of workload, we created several scenarios specially designed for studying

man–machine interaction. This includes the handling of a variety of secondary

tasks, urban and rural routes, and several triggered events.

The virtual co-driver is present on a screen in the cockpit on which it is displayed

using the ThinkingHead2, a morphable 3D avatar, and is equipped with a grammar-

based speech recognition system and a speech synthesis component to vocally

communicate with the driver. The co-driver is driven by a lightweight interaction

manager which was designed especially for the purpose of adaptive dialog systems.

The interaction manager uses a rule-based engine which executes one or more rules

with preconditions that match the current interaction state, according to the

Fig. 8.1 The CSL driving simulator in action

2 http://thinkinghead.edu.au
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Information State Update paradigm [9]. The interaction state also comprises

variables that describe the detected user state to allow adaptive selection of speech

acts based on the user’s current situation.

The system is also able to switch its behavior between different styles for the

realization of one selected speech act, depending on the user’s state. Different

behavior styles can change the processing of speech acts in many aspects.

For example, the content of a speech act realization can differ in its length and

complexity based on the user’s workload. It is also possible to adjust the speaking

speed, the volume of the voice, and the stress of certain key phrases according to

this parameter. Using those parameters, the co-driver realizes a verbose, chatty, and

entertaining behavior if it detects a state of low cognitive workload. It presents

much information, tells occasional jokes, and shows expressive mimic.

For situations with high cognitive workload, the co-driver switches to a different,

more concise, and unobtrusive behavior to use the limited available cognitive

resources for the transmission of the most critical information. In this style, the

system also takes more initiative in the interaction, taking most noncritical

decisions from the user.

A user study [10] showed that a behavior which adapts to the changing user’s

cognitive load is both more efficient and also more satisfying for the user than a

nonadaptive one. By changing the information throughput depending on the

workload level, the system can optimally use the available cognitive resources of

the user without risking overload. This behavior was evaluated as empathic and

desirable by the users in a satisfaction questionnaire. It is therefore critical for a

cognitive interaction system to provide this kind of adaptation.

8.5 Recording Setup

During the interaction, we employ a variety of signals to observe the user in the car.

This is done for multiple reasons. First, an adaptive dialog system needs online data

streams from which it can extract meaningful features describing the user’s state.

Second, to train automatic recognizers that perform this user state classification, we

need to provide large amounts of labeled training data. To that end, we installed

multiple biosignal sensors in the car to get a reliable, continuous data stream

without obstructing or distracting the user too much.

We employ the following equipment to observe the user:

• Small cameras to record videos of the face and the upper body of the driver to

catch facial expressions and body pose.

• A close-talking microphone to record the user’s utterances

• Brain activity is measured using electroencephalography (EEG) with one of two

possible alternatives:

– A 16-electrode EEG cap with active electrodes for optimal signal quality and

coverage of all brain regions

– A 14-electrode gaming device (Epoc Emotiv) with saline electrodes for

increased usability and reduced setup time
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• A light sensor glove which measures skin conductance and heart rate

• A respiration belt on top of the clothes to measure respiration frequency

• Two facial electromyography (EMG) electrodes to record facial activity which

is not captured by the cameras.

The last three items all use the same recording interface and are either attached

to a universal signal recorder3 or directly connected via Bluetooth, which reduces

obstruction to a minimum. In addition, we employ indirect motion monitoring by

continuously recording the angle of the steering wheel and the acceleration and

brake pedals in the car.

In this recording setup, we already collected more than 100 interaction sessions

in the tour guide scenario, interacting with a virtual co-driver controlled by a human

wizard. Each interaction session comes with a collection of recorded biosignals,

a manual transcription, and the results of several questionnaires on user personality,

satisfaction, and task performance. This large collection allows a systematic inves-

tigation of interaction behavior under changing workload conditions.

8.6 Recording Software

Metadata extraction for dynamic dialog systems is required to work in real time.

To this end, we need to record multiple biosignal streams in a robust, fast, and

convenient way, offering interfaces to read data from very different signal sources

and output it to very different receivers like recognizers or visualization

components. To fulfill all requirements, we developed a new recording software

called BiosignalsStudio [11]. BiosignalsStudio is designed in a modular fashion

and allows to connect arbitrary input modules for data collection from a specific

device with arbitrary output modules which write data to files, visualize the data,

or send it to an external recognizer software via sockets. All modules share a

common generic data format which stores multiple data channels and a meta-

information block which contains the sampling frequency, detected errors, etc.

Each module can be connected to several receivers, allowing data from one source

to be stored to disk and visualized in parallel. There exists a number of interme-

diate modules which can be installed between input and output modules to

augment, filter, or transform the data. Currently, input modules for all connected

biosignal recording devices and several others (like gyro and acceleration

sensors) are available (Fig. 8.2).

As we operate with very different and asynchronous data streams, it is important to

store timestamps with each data block to ensure that only data which belongs together

is merged in the multimodal fusion of the recognition engine. These timestamps are

3Varioport, Becker MediTec
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generated at the earliest point possible which is usually when receiving the data block

from the hardware interface (some devices are able to generate hardware timestamps,

which is preferable). Timestamps within blocks of data are linearly interpolated. They

are stored together with one data file for each modality and detailed log files in one

directory per session, allowing easy and standardized access for all components,

regardless of the specific recording setup. For distributed recording on multiple

machines, timestamps are automatically synchronized via the NTP protocol. In this

situation, the software is also able to remotely control the recording from one machine

which starts and monitors the recording on the others.

8.7 User State Detection

The collected biosignal streams are passed on to a generic biosignal classification

framework that performs the following steps. First, the data is filtered and cleaned

to remove technical and physiological artifacts from the signals. For this purpose,

we employ several source separation techniques, e.g., independent component

analysis (ICA) to remove eyeblinks from the EEG signal or canonical correlation

regression (CCR) to deal with EMG artifacts. From the cleaned signals, we then

calculate features to describe them. Features are extracted on overlapping

windows of varying length, depending on the signal type and on characteristics

of the user state in question. For the biosignals, we extract features both from the

time and the frequency domain. Typical time domain features are mean, variance,

or zero-crossing rate, calculated on the raw feature or on the first or second

derivative. Frequency domain features are especially relevant for EEG signals.

Classical features here describe the band power in the a-,b-,g-,d-, and y-bands

Fig. 8.2 (Part of) the recording setup with EEG cap, audio headset, and sensor glove in the driving

simulator
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(see [10, 13] for details), but other features, e.g., derived using the Wavelet

transform, are also available.

For the speech signal recorded during the interaction, we use the software Praat4

to extract prosodic features like pitch, jitter, or shimmer from the user’s voice. To

capture linguistic features, we use the Linguistic Inquiry and Word Count5 that

categorizes each word in its vocabulary in one or more groups, e.g., “negative

emotional word” or “self reference.” Active Appearance Models [12] are used to

capture information on the facial expression and activity of the user as recorded by

the camera in the car.

To arrive at a person-independent system, features are normalized using range

normalization or z-normalization. The normalization statistics are calculated on

additional holdout data which is not used for other steps of training and evaluation.

This kind of data can also be collected in an unsupervised fashion as enrolment data

to bootstrap the system for a new user.

As we generate a very large initial feature set, we employ Forward Feature

Selection during the training step to reduce the dimensionality of the feature space,

preceded by a correlation-based filtering to reduce the runtime of the selection.

For classification, the final feature vectors are then passed into a statistical

classifier of which multiple variants are available, e.g., a support vector machine

(SVM) using Radial Basis Function kernels or a classifier based on linear discrimi-

nant analysis (LDA). More exactly, there is one classifier for each modality as this

allows dynamic weighting of input channels, e.g., to account for noise or defective

sensors. To arrive at a final classification result, the output of all classifiers is

combined using majority voting.

One important application for user state detection is the recognition of cognitive

workload from multiple biosignals. In a large evaluation, we developed a

user-independent classification system that discriminates between low and high work-

load. For each participant, we record a number of different sessions in a driving

scenario. Relaxing phases or simple driving tasks are labeled as low workload while

driving sections with different secondary tasks (visual and auditive cognitive tests) are

labeled as high workload sessions. From a prestudy [13], we know, from evaluation of

subjective workload using the NASA TLX questionnaire, that this assignment

corresponds to experienced load levels. Figure 8.3 summarizes the recognition rates

achieved in the evaluation using a cross-validation scheme to classify data from

relaxing phases and high workload phases induced by driving with secondary task.

We see that a person-independent discrimination of the two conditions is possible, and

that a decision fusion approach yields the best results.

4 http://www.praat.org
5 http://www.liwc.net
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8.8 Cognitive Modeling

Cognitive architectures like ACT-R [14] aim to provide a general model of human

cognition for simulation or prediction. For the use in adaptive dialog systems, they

help to represent and estimate nonobservable user states and are also able to predict

future user behavior from a given state. This is very useful for two purposes. On one

hand, a cognitive model can support the empirical, biosignal-based classification of

user states by proving information derived from the evaluation of more formal

models of cognition which are backed with a priori knowledge from psychology

and cognitive science. On the other hand, a cognitive model is able to simulate

human behavior in situations where no real user is available; this is a typical use

case in evaluation and training situations in early phases of the development of a

new system.

As a first cognitive modeling component, we implement a memory and interest

model to represent the user’s activation of, and interest in, the actual and potential

discourse items. Our focus here is to reflect the fact that the user cannot remember

all discourse items correctly and with the same intensity. This is of special impor-

tance in situations where the dialog system interrupts an ongoing dialog for more

important information or during time-critical situations.

The memory model represents for each time slice an activation value for each

possible discourse item in the domain ontology, including relations between those

items. The activation determines how present each item currently is in the user’s

memory and how it can be used to derive the chance of successful retrieval of this

Fig. 8.3 Recognition rates of a multimodal biosignal classifier for discriminating two conditions

of low and high workload in a driving scenario. We show recognition rates for EEG, photoplethys-

mography (PPG), skin conductance (EDA), respiration (RESP), and decision fusion
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item and the time necessary to perform such a retrieval process. We based our

system on the connectionist approach presented in the LTMc model [15], which was

proposed to solve some issues with the memory model of ACT-R. Here, each item

is represented as a node, connected with edges to other items that are semantically,

linguistically, or hierarchically related. These edges are used to spread activation

between nodes when one becomes activated, e.g., through a system speech act. We

also extended the LTMc model to better reflect the dynamics of a memory system

which is important to model topic switches in an interaction.

The interest model reflects the user’s current interest in each item. This is a

dynamic variable that depends not only on the situational context (spatial proxim-

ity, expressed interest) but also on more general, static factors. To represent this

variety of influences, we employ a Bayesian network for the interest model.

Both models are currently used to determine a general value of importance of

giving additional information to the user. This value allows us to weigh the speech

act of information presentation against other goals like navigation pointers or

entertainment. We do this by summing up the negative activation for all items,

weighed by the interest values of each item. This score is called competence urge,
based on the more general concept of urges that describe the needs of an individual

and that influence its emotions and actions [16]. This score is also used to determine

the items the system will present next to the user as they maximize the reduction of

the competence urge.

In a user study in the tour guide scenario [17], we showed that it is possible to

simulate plausible interactions using cognitive models. Utterances of the user

where generated using the memory model which was stimulated from the percep-

tion of external stimuli and queried for the most highly activated items. The system

in those simulations generated its utterances using its own model of the user’s

memory with a similar structure than the generative model, but separate activation

scores to track what is going on in the user’s mind. The behavior of both the system

and the simulated user was learned in a Reinforcement Learning-based manner,

using the urge mechanism to weight the goals of the agents. The generated

interactions were played back to human judges and perceived as similar to a

handcrafted gold standard and as significantly better than the baseline behavior.

Future applications for the memory model comprise its influence on the user

understanding model, by making the chance for misunderstandings dependent on

the activation level of the relevant items and the application for coherent user

simulation in evaluation and training of interaction strategies.

8.9 Conclusions

The development of flexible, generic, and natural adaptation mechanisms for

cognitive interaction systems has seen great progress as reported in this chapter.

We implemented and tested a realistic driving simulator which will allow a large

number of experiments under controlled but nevertheless authentic conditions.
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We presented an adaptive dialog system that can change its behavior depending on

the state of its user. We have implemented a framework of biosignal recording

components and statistical classifiers that are able to determine the user’s current

state, for example his cognitive workload. We investigate cognitive modeling

architectures to structure the user’s adversarial desires and to model the user’s

memory. The next step will bring all components together to create a system which

uses both biosignal-based user state detection and predictive models to a dialog

strategy which can adapt flexibly to changes in the user’s state.
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Chapter 9

In-Vehicle Speech and Noise Corpora

Nitish Krishnamurthy, Rosarita Lubag, and John H.L. Hansen

Abstract As in-vehicle speech systems become prevalent, there is a need for

specific compilation of data in vehicle scenarios to develop/benchmark algorithms

for speech systems. This paper describes the collection efforts and analysis of two

corpora: (1) the UT-Dallas Vehicle Noise (UTD-VN) corpora and (2) the CU-Move

in-car speech and noise corpora. The UTD-VN corpus is focused on addressing the

variability of in-car noise environments. This corpus includes compilation of

unique noise scenarios within the car (Engine idling, AC windows closed, etc.) as

well as variability of these scenarios across different makes and models. Another

aspect that in-car speech systems need to address along with noise is the emotional

and task stress of the driver while performing the driving task. The CU-Move

corpus focuses on collection of data to describe the variability of conversational

speech in an in-car environment. A sample study is carried out where it is shown

that these environments are unique across different vehicles using the UT-Dallas

Vehicle Noise corpora. This shows that a detailed analysis of variability across

vehicle platforms is necessary for successful deployment of speech systems. In our

opinion, these corpora are the first to describe the environment variability along

with conversational speech in an in-car environment.
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9.1 Introduction

Car environments are becoming a standard/core location for conducting voice-based

commerce in dialog systems, message or information exchange, and other business

or entertainment exchanges. However, one of the main challenges faced by speech

and audio systems today is maintaining performance under varying acoustic envi-

ronmental conditions caused by different driving conditions, car make and models,

along with speech variability due to task-induced and emotional stress caused during

driving. Efficient use of speech systems in cars require technology to be robust

across variations in vehicle environments encountered. In fact, the diversity and rich

structure of noise and speech in car acoustic environments create the need for

application-specific speech solutions. This is a challenging task since effective

communications systems in the car need to address the issue of diversity in transpor-

tation platforms and operating conditions. Another aspect along with the environ-

ment is the emotional and task stress caused due to task variability and distraction

within typical car environments. These factors lead to significant acoustical

variations in speech and noise encountered within vehicle environments. The

focus here is not the social or legal issues associated with speech system deployment

in car environments, but the description of corpora development to address the

variability encountered in car environments.

The environment in transportation platforms varies due to the different makes

and models of transportation platforms along with the changing operating

environments encountered. Examples of the changes in acoustic variations include

road characteristics, weather, and the state of the car. Road characteristics are a

significant source of noise variation in cars, and the surface properties of the road can

change the properties of noise encountered (e.g., asphalt versus concrete, and smooth

vs. cracks or potholes). Also, noise changes are dictated byweather conditions such as

rain, snow, winds, etc. Depending on the severity, these conditions can sometimes

mask other noise events/types in cars. The focus here is to study the variability in

normal weather conditions.

Even though significant efforts have been made in the past to study the impact

of car noise on speech, there remains a need for a corpus to enable the study of

noise events across vehicles and their impact on speech systems. The UT-Dallas

Vehicle Noise (UTD-VN) corpus aims to compile the variability observed across

vehicles and driving conditions for a fixed set of environmental conditions. This

collection is unique as it contains a comprehensive collection of noise events

across different vehicle platforms. A sample analysis here formulates noise in a

car environment and shows that the noise types are distinguishable across differ-

ent vehicle makes and models demonstrating the necessity for noise-specific

corpora. This corpus opens up new research opportunities where the knowledge

gathered from studying car noise events can be exploited by in-vehicle speech

systems.

Another aspect of variability in car environments is the speech variability due to

task and emotional stress. The CU-Move corpus is a compilation of speech
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data collected during natural conversational interaction between the user and an

in-vehicle system. In the past, studies have analyzed the impact of in-vehicle noise

on speech systems including use of fixed noise and speech collection in lab

environments without the variability induced in either speech or noise. Recently,

some studies like [1] by Kawaguchi et al. have incorporated these variations.

Their corpus focuses on spontaneous conversational Japanese where the speech

data was collected under car idling and driving conditions. This study does

not include the environment variability of the speech due to the task-induced

stress. CU-Move focuses on compiling these variations in speech under diverse

acoustic conditions in the car environment along with various environments

encountered in realistic driving task. This data was collected from six different

vehicles. The core of this corpus includes over 300 speakers from six US cities, with

five speech style scenarios including route navigation dialogs. The noise collected

during this corpus identified over 14 different unique noise scenarios observed in

the car environment.

The goal of CU-Move is to enable the development of algorithms and technology

for robust access and transmission of information via spoken dialog systems in

mobile, hands free environments. The novel aspects of CU-Move include

corpora collection using microphone arrays on corpus development on speech

and acoustic vehicle conditions. This setup enables research utilizing environ-

mental classification for changing in-vehicle noise conditions and back-end

dialog navigation information retrieval subsystem connected to the WWW.

While previous attempts at in-vehicle speech systems have generally focused

on isolated command words to set radio frequencies, temperature control, etc.,

the CU-Move system is focused on natural conversational interaction between

the user and in-vehicle system. Since previous studies in speech recognition

have shown significant losses in performance when speakers are under task or

emotional stress, it is important to develop conversational systems that minimize

operator stress for the driver. System advances using CU-Move include intelligent

microphone arrays, auditory- and speaker-based constrained speech enhancement

methods, environmental noise characterization, and speech recognizer model adap-

tation methods for changing acoustic conditions in the car.

Here, the focus will be on the UTD-VN corpus with mention of relevant aspects in

the CU-Move corpus. In conjunction, these corpora address most of the variations

in the environment and speech encountered for holistic development of in-car speech

and communication systems.

9.2 The UT-Dallas Vehicle Noise Corpora

In the UTD-VN corpus, noise data samples were collected from 20 cars, five trucks,

and five SUVs across 10 different noise events. To enable portable recording across

vehicles, a portable, lightweight, high-fidelity data collection setup was used
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to obtain accurate recording of the noise data. The equipments used for in-vehicle

data collection were:

(a) Shure SM10A close talk microphone

(b) Shure MX 391S omni-directional microphone

(c) Edirol R-09 recorder

Figure 9.1 shows the recording setup. The close-talk microphone (marked as (a))

is worn by the driver during the data collection to record the noise data observed in

the closed-talking microphone under different conditions. The far field microphone

(b) has been secured onto the sun visor located above the driver’s seat. Meanwhile,

the data collector (not in the picture) managed the recording setup.

Data is collected under the following events within the vehicle acoustic

environment:

(a) NAWC: No air-conditioning with windows closed

(b) ACWC: Air-conditioner engaged with windows closed

(c) NAWO: No air-conditioning with windows open

(d) HNK: Windows closed with car horn

(e) TRN: Turn signal engaged

(f) IDL: Engine idling

(g) REV: Engine revving

(h) LDR/RDR: Left/right door opening and closing

For these fixed events, the noise varies due to weather and road conditions. To

minimize the number of independent variables, such as external noise and road

characteristics, the driving routes were fixed for all recordings. The average speed

Fig. 9.1 In-vehicle portable recording setup. (a) Shure SM10A close talk microphone and

(b) Shure MX 391S omni-directional microphone.
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of the car during the recordings was 40 mph, and data was collected on a 4-mile

route of concrete roads. The route was selected so as to consist of a combination of

6-lane city roads with higher traffic density and 2-lane concrete community roads

with lower traffic density. The car noise data recording was timed so as to minimize

external traffic noise due to peak hours.

The data collection consisted of two parts. The first set of in-vehicle noise events

were recorded in the University of Texas at Dallas parking lot. For these recordings,

the vehicle was stationary, the windows were closed, and the AC was turned off.

Under these vehicle conditions, the following sound events were collected:

(a) Turn signals (TRN)

(b) Horn (HNK)

(c) Front doors opening and closing (LDR/RDR)

(d) Engine idling (IDL)

(e) Revving (REV)

The average total recording time for these conditions was about 6 min.

The second set of recordings took place on roads around the University of

Texas at Dallas campus. The data was collected only in dry weather conditions,

where the vehicles completed the route twice. The route was 2 mi. long, with

two-to-three lane roads and speed limits ranging from 30 to 40 mph. For this corpus,

the route was divided into seven sections, and a particular noise condition was

assigned to each section.

Figures 9.2 and 9.3 show the designated route. The seven sections of the route are

also shown in the figures. As shown in Fig. 9.2, two noise conditions (ACWC,

NAWC) were collected in the first loop. During sections A to D of the route, the

windows and AC remained closed. In sections E to G of the route, the windows were

closed and the AC was turned on with blower at full capacity. Meanwhile, Fig. 9.3

shows the four noise conditions recorded during the second loop. Section K of the

route included a speech exercise. Here, the driver was asked to count out aloud from

0 to 9, three times, with the windows closed and AC turned off. Data for NAWC

condition was recorded again in sections L and N. The final recording condition was

ACWC in section H. The average on-the-road recording time was about 21:25 min.

The priorities of this exercise were the NAWC and ACWC conditions as speech

systems encounter these conditions frequently in car environments. Collection setup

was designed to allow for data collection inmultiple sessions to ensure that the audio

recording of the car events contained variability due to different road/traffic

conditions. The corpus contains a total of 8 h of car noise data.

9.3 CU-Move

The UTD-VN corpus deals with variability in fixed environments across car makes

and model. Another aspect of in-car acoustics as mentioned in sect. 1 includes

speech variability due to stress along with noise. These are the major causes of

acoustic mismatch in a car environment. The CU-Move corpus focuses on
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Fig. 9.2 Loops for data collection. The dotted lines indicate unique recording conditions

Fig. 9.3 Loops for data collection. The dotted lines indicate unique recording conditions



compiling speech variability for an in-car task along with the environment

variability encountered for different task scenarios. This corpus consists of

2 phases:

• Phase I: Speech & speaker data collection

• Phase II: Acoustic noise data collection (CU-Move Noise)

9.3.1 Phase I: Speech and Speaker Data Collection

The speech and speaker data collection is divided in two sections. First (part 1) is

structured text where the user is prompted to utter text and numbers similar to what

is observed in a command and control application. The second section (part 2) is a

dialog system scenario with a real person on the other end.

9.3.1.1 Part 1: Structured Text Prompts

The driver performs a fixed route that includes a combination of several driving

conditions (city, highway, traffic noise, etc.). For each speaker, prompts were given

for specific tasks listed below from a laptop display situated around the glove

compartment of the vehicle. This portion is 30 min long. There are four subsections

that include:

• Navigation direction phrases section: a collection of phrases which are deter-

mined to be useful for in-vehicle navigation interaction (prompts fixed for all

speakers)

• Digits prompts section: strings of digits for the speaker to say (prompts

randomized)

• Streets/address/route locations section: street names or locations within the city;

some street names will be spelled, some just spoken (prompts randomized)

• Sentences – general phonetically balanced sentences section: collection of phonet-

ically balanced sentences for the speaker to produce (prompts randomized)

9.3.1.2 Part 2: Dialog Wizard of Oz Collection

Here, the user calls a human “wizard” (WOZ) who guides the subject through

various routes determined for that city. More than 100 route scenarios particular to

each city were generated so that users would be traveling to locations of interest for

that city. The human WOZ had access to a list of establishments for that city where

subjects would request route information (e.g., “How do I get to the closest police

station?”, “How do I get to the Hello Deli?”). The user would call in with a modified

cell phone in the car, which allows for data collection using one of the digital

channels from the recorder.
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9.3.2 Phase II: Acoustic Noise Data Collection (CU-Move Noise)

One of the primary goals of the CU-Move corpus is to collect speech data within

realistic automobile driving conditions for route navigation and planning. Prior to

selection of the vehicle used for phase II data collection across the United States, an

in-depth acoustic noise data was collected on six vehicles in Boulder, Colorado.

This section briefly summarizes the noise data collection scenarios.

9.3.2.1 Vehicles

A set of six vehicles were selected for in-vehicle noise analysis. These vehicles

were from model years of 2000 or 2001 (all had odometer mileage readings which

ranged between 11 and 8,000 mi.). The six vehicles were:

• [Cav] Chevy Cavalier compact car

• [Ven] Chevy Ventura minivan

• [SUV] Chevy SUV Blazer

• [S10] Chevy S10 extended pickup truck

• [Sil] Chevy Silverado pickup truck

• [Exp] Chevy Express cargo van

All acoustic noise conditions are collected across six vehicles: Blazer, Cavalier,

Venture, Express, S10, and Silverado. The noises were labeled into 14 categories

which include:

1. Idle noise: the sound of the engine after starting and not moving, windows

closed

2. Noise at 45 mph, window opened 100

3. Noise at 45 mph, window closed

4. Noise at 45 mph, window opened half way down

5. Noise at 65 mph, window opened 100

6. Noise at 65 mph, window closed

7. Acceleration noise, window closed

8. Acceleration noise, window opened half way down

9. AC (high) noise, window closed

10. Deceleration noise, window opened 100

11. Turn signal noise at 65 mph, window closed

12. Turn signal noise, window opened 100

13. Turn signal noise, window closed

14. Wiper blade noise, window closed

A total of 14 noise conditions were extracted from the same environment and

locations for each of the 6 GM vehicles. This noise corpus focused on describing the

unique variations in noise scenarios encountered in a car environment as opposed to

focusing on variations across cars. This is described in Fig. 9.4. The CU-Move

152 N. Krishnamurthy et al.



corpus is a compilation of events encountered in a car-driving scenario as described

earlier whereas the UTD-VN is a compilation of a few events across various cars

and conditions.

9.4 Noise Analysis and Modeling

The car noise–environment noise samples in both the corpora can be described as a

combination of noise sources active in the car, as well as the acoustic environment

of the vehicle itself. In other words, the resultant car noise is a function of car-

independent noise neð Þ and car-dependent noise nceð Þ. Here, an additive model for

n̂ceð Þ is assumed. This is illustrated in Fig. 9.5. Depending on the relative domi-

nance of the constituent noises, the overall resultant noise observed can be of three

primary types.

• Car Internal Dominant Noise: If car-dependent sounds such as air conditioning,

horn, and engine sounds dominate, then the resulting noise neis unique to the

specific car producing the sound (i.e., if ne<<nce then n̂ceð Þ � nceð Þ). For

purposes of car verification/platform identification, this forms the most condu-

cive scenario. For speech systems, it means that car specific models might be

optimal for the best performance in specific car environments.

• Car–Environment Dominant Noise: If the observed sound is the sound of the car
interacting with its environment, such as the sound of wheels on the road or wind

Fig. 9.4 The Scope of UTD-VN vs. CU-Move
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noise, then the resulting car noise is less car specific/dominant (i.e., ne>nce).
This scenario is less favorable for car verification than the previous case.

• Environment Dominant Noise: Finally, noise sources external to the car such as

horn from a nearby car or engine sounds from a passing truck are considered

outside the scope of this study. This is because these sounds are least car specific

(if ne<<nce then n̂ceð Þ � nceð Þ). This would cause increased confusability in

acoustic vehicle platform identification. This case would require the most

generic noise models for speech systems.

In practice, it is very difficult to obtain these noise types in isolation since all

noise sources cannot be controlled simultaneously in naturalistic driving. However,

in the process of car noise data collection, we have minimized external noise by

carefully choosing the recording conditions.

For analysis, three noise conditions in the same vehicle are analyzed for their

spectral content and variability. These conditions consist of NAWC, ACWC, and

NAWO, as shown in Fig. 9.6. These environments were chosen because of their

high probability of occurrence. Furthermore, these noise scenarios represent unique

environments because the dominant sounds in each case are different (e.g., in

ACWC, AC noise is dominant).

The spectral content of the vehicle acoustic environments under ACWC,

NAWC, and NAWO conditions are shown in Fig. 9.6. As seen in Fig. 9.6b when

the AC is on and the windows are closed, the car noise is least time varying. The

main noise sources in this environment are AC, car engine, and road noise, but the

AC is the dominant source of noise. The spectral slopes indicate that the ACWC

scenario has the most high-frequency content compared to the other two noise

types. Also, this condition is the most conducive for car verification since the AC

and the fan/air blower are the most dominant noise sources. In the other two cases,

wind noise and road noise are the main noise sources. When AC is turned off, as

seen in Fig. 9.6a, the car noise is a mixture of road and engine noises. The only car-

dependent noise type when the AC is off and windows closed is the car engine noise

which is masked by the road noise. Finally, the last plot shows NAWO condition,

where the main noise sources are wind noise, road noise, and engine noise. NAWO

Fig. 9.5 Model of acoustic environment in the car
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has the least car-dependent information as compared to the other two environments

since the wind noise is external to the car and masks all car-dependent information.

As seen here, car-dependent noise types are the best indicators of car types and the

car-dependent AC noise, which can be viewed as a potential excitation source for

the interior vehicle compartment, enables the noise to carry more car-dependent

information. To study the uniqueness and the variability in different acoustic

conditions across cars, the acoustic data was modeled using 13 dimensional

Gaussians and the Kullback–Leibler distance was employed to analyze the in-

class and across-car differences. This is illustrated in Fig. 9.7, where solid areas

represent the acoustic space for a single car in a particular environment, and the

smaller shaded areas represent models of the session-to-session variability in the

same acoustic event.

To estimate the separation across different vehicles, the in-class and across-

class KL distances are measured. If the vehicle sound events are separable within

this framework, the average in-class distances will be much lower than the out-of-

class distances. These distances are evaluated for three vehicles, and box plots of

these distances are presented in Fig. 9.8. As seen for each of these vehicle

conditions, the in-class (IS) distances are clearly separable from the out-of-class

(OS) distances, indicating that under the ACWC are spectrally unique and differ-

entiable from each other.

As evident from this discussion, car noise environment is a unique environment

with a mix of car-dependent and independent noise sources. Depending on the

driving conditions and road scenarios, the environments may rapidly change from

one condition to the next. The analysis also reinforces the need to collect data under

different scenarios as the intervehicle variations might be a significant factor to

normalize for generic speech systems.

Fig. 9.6 Vehicle acoustic environments: (a) road and engine noise is predominantly low

frequency, (b) road, engine, and air-conditioning shows structure in higher frequencies, and

(c) wind noise wipes out all structure and only the aggregate remains
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The CU-Move corpus has been used extensively to understand the noise

properties in car environments and leveraging these properties for speech systems.

Examples of these studies include [3, 4], and [5] by Akbacak and Hansen to

“environmental sniffing” of variations in environment to use most appropriate

models using the Rover scheme. In [6], the authors used the CU-Move corpus for

advancing voice-activated route navigation in car systems. Hansen [7] includes a

detailed description of the corpus along with the usage scenarios of CU-Move.

Fig. 9.7 Illustration of in-class vs. out-of-class distances for each noise event in a car. Each dotted
region denotes a car and it encloses solid regions that denote session instances

Fig. 9.8 Inset and out-of-set distances for ACWC in three cars

156 N. Krishnamurthy et al.



9.5 Conclusion

This paper summarizes collection efforts of the UTD-VN corpus and the CU-Move

corpus. The UTD-VN corpus includes a rich variety of noise types that are

frequently encountered in car environments. The UTD-VN corpus contains noise

data that reflects the variability in vehicle noise events across different makes and

models of cars, whereas the CU-Move corpus includes the diversity in the car

environments with variations in speech due to task and driving stress. Using the

UTD-VN corpus, a model for car noise was formulated and used to demonstrate the

uniqueness of noise types across different vehicles. The volume, diversity, and real-

world nature of these corpora make it very valuable for researchers exploring in-

vehicle speech technology. The next stage of data collection would be ubiquitous

data collection for in-car environments that would use multiple sensors for aiding

development of integrated multi-input systems that are most suited for in-car

environments.
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Chapter 10

A Likelihood‐Maximizing Framework

for Enhanced In‐Car Speech Recognition

Based on Speech Dialog System Interaction

Tristan Kleinschmidt, Sridha Sridharan, and Michael Mason

Abstract Speech recognition in car environments has been identified as a valuable

means for reducing driver distraction when operating noncritical in-car systems.

Under such conditions, however, speech recognition accuracy degrades signifi-

cantly, and techniques such as speech enhancement are required to improve

these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech

enhancement algorithms based on recognized state sequences rather than traditional

signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks

typically require calibration utterances to generate optimized enhancement

parameters that are used for all subsequent utterances. Under such a scheme,

suboptimal recognition performance occurs in noise conditions that are signifi-

cantly different from that present during the calibration session – a serious problem

in rapidly changing noise environments out on the open road. In this chapter, we

propose a dialog-based design that allows regular optimization iterations in order to

track the ever-changing noise conditions. Experiments using Mel-filterbank noise

subtraction (MFNS) are performed to determine the optimization requirements for

vehicular environments and show that minimal optimization is required to improve

speech recognition, avoid over-optimization, and ultimately assist with semi-

real-time operation. It is also shown that the proposed design is able to provide

improved recognition performance over frameworks incorporating a calibration

session only.
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10.1 Introduction

With the increased desire from consumers to integrate electronic devices such as

MP3 players, navigation systems, and mobile phones for use in their vehicles comes

the need to provide more intuitive human–machine interfaces (HMI) than currently

seen in low- to midrange vehicles. Automatic speech recognition (ASR) can provide

a safe and easy-to-use HMI, and technological advancements have enabled low-cost

hardware implementations of ASR systems – a key requirement to widespread

adoption in the automotive industry.

Most ASR systems are trained for use in controlled scenarios (e.g., office

environments or telephone-based systems) and fail to produce satisfactory perfor-

mance under the continually changing noise conditions found in automotive

environments [1]. This is a key challenge to deployment of in-car ASR – drivers

demand high-accuracy recognition, but high levels of noise restrict recognition

performance of conventional ASR systems.

Speech enhancement is a common method for making ASR systems more robust

against noise. Enhancement techniques aim to reduce the noise levels present in

speech signals, allowing clean speech models (which are easily trained due to the

availability of large amounts of data) to be utilized by the recognizer. This is a

popular approach as enhancement algorithms are typically easily integrated with

existing ASR front-end processing, as well as requiring little-to-no prior knowledge

of the operating environment in order to achieve improvements in recognition

accuracy. Both of these aspects are particularly attractive for in-car applications

where hardware and software overheads must be minimized and where the system

is continually subjected to changes in acoustic conditions.

Popular speech enhancement algorithms such as filter-and-sum beamforming

(using multiple microphone speech acquisition) and spectral subtraction were

originally designed to improve intelligibility and/or quality of speech signals

without considering the effects on other speech processing systems such as recog-

nition [2]. Optimization of parameters in these algorithms focuses on signal-based

measures (e.g., maximizing signal-to-noise ratio or minimization of the mean-

squared signal error). Enhancement techniques operating in this manner may still

produce word accuracy improvements, but these improvements are by-products of

the optimization process rather than its objective [2].

Promising results have been shown in studies that use speech recognition

likelihoods as the optimization criteria as opposed to quality or intelligibility

measures [2–4]. Enhancement techniques are placed within likelihood-maximizing

(LIMA) frameworks, which attempt to jointly optimize both the recognized acous-

tic state sequence as well as enhancement parameters. There are three main types of

LIMA framework – calibrated, unsupervised, and supervised.

Calibrated LIMA frameworks require a known adaptation utterance in order to

optimize the enhancement parameters. Adaptation is typically performed using a

dedicated calibration session for each speaker, with the optimized enhancement

parameters kept constant for all other utterances for that speaker [2, 3]. This approach

assumes constant noise conditions and therefore has limited potential for achieving

optimal performance in rapidly changing vehicular environments.

160 T. Kleinschmidt et al.



An unsupervised LIMA framework was also proposed in [2] whereby online

optimization takes place on an utterance-by-utterance basis using the hypothesized

transcription as opposed to the true transcription. Whilst this method removes the

restriction of a calibration session and showed considerable reductions in word

error rates [2], it is highly reliant on the initial accuracy of the speech recognizer.

Whilst the word error rate of the recognizer used in these experiments was

high (approximately 60%), the test recordings were obtained at relatively high

signal-to-noise ratios in a constant noise environment. Systems operating in the

nonstationary vehicular environment exhibit even higher word error rates, resulting

in reductions in accuracy of the hypothesized transcriptions. Optimization on

unreliable transcriptions should be avoided as it could lead to suboptimal parameter

estimation and therefore further reductions in recognition performance.

In this chapter, we consider the third alternative (i.e., a supervised LIMA

framework) and propose a dialog-based design that allows regular optimization

iterations in order to track the ever-changing noise conditions. The chapter reviews

LIMA frameworks employingMel-filterbank noise subtraction (MFNS) specifically

for in-car speech recognition. The analysis involves testing a number of calibrated

adaptation scenarios, as well as development of a novel online optimization frame-

work, based on speech dialog systems which exploit user confirmation of correctly

recognized voice commands to provide adaptation data for the LIMA framework.

10.2 LIMA Mel-Filterbank Noise Subtraction

for In-Car Environments

10.2.1 Likelihood Maximization

Speech enhancement algorithms aim to produce improvements in human intelligibility

of speech signals. Automatic speech recognition systems hypothesize themost likely

sequence of statistical models produced by the observed feature vectors. As a result,

traditional optimization of spectral subtraction algorithms based on waveform

criteria such as signal-to-noise ratio maximization [5, 6] does not necessarily trans-

late into improvements in ASR word accuracy [2]. With the primary aim of using

speech enhancement to improve speech recognition accuracy, Seltzer et al. [2]

proposed a likelihood-maximization framework for enhancement parameter optimi-

zation. This framework was originally proposed for filter-and-sum beamforming but

has since been applied to subtraction factors in multiband spectral subtraction [3].

In a recognition system incorporating speech enhancement, feature vectors are a

function of the speech enhancement process. The recognition hypothesis provided

by an optimal Bayes classifier regularly used in ASR systems is given by

ŵ ¼ argmax
w2W

PðZðxÞjwÞ � PðwÞ; (10.1)
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where dependence of the feature vectors Z on the enhancement parameters x is

clearly shown. The acoustic score PðZðxÞÞ is the measure of importance in LIMA

systems as the transcription on which the optimization takes place is assumed to be

known, and therefore, the language model score PðwÞ will not change. The aim of

likelihood maximization for MFNS is therefore to optimize the parameters to

maximize the acoustic score of the recognized word sequence ŵ.
An initial decode pass is performed using default enhancement parameters to

generate a state sequence s on which to optimize x. In order to find the optimal

values of x, gradient-based optimization is used on the total log-likelihood of the

observed features, which is defined by

LðxÞ ¼
X
i

logðPðziðxÞjsiÞÞ: (10.2)

For a Hidden Markov Model (HMM) speech recognizer using Gaussian mixture

state models (as used in this chapter), the gradient of the total log-likelihood is

given by [2]

rxLðxÞ ¼ �
X
i

XM
m¼1

gimðxÞ
@ziðxÞ
@x

X�1

im

ðziðxÞ � mimÞ; (10.3)

where gimðxÞ is the a posteriori probability of the mth mixture component in state

si given the observed feature vector ziðxÞ. The mean vector m and covariance matrixP
from the acoustic model are required for each state i and mixture component

m in order to calculate the gradient. The remaining term in Eq. 10.3 is the Jacobian

matrix, @ziðxÞ=@x, which consists of the partial derivatives of each element of the

feature vector with respect to each of the enhancement parameters. Each Jacobian

element is derived directly from the enhancement procedure (refer to Sect. 10.2.3).

Once the gradient-based optimization converges, the new enhancement parameters

are used to generate another set of feature vectors, and a subsequent decode pass is

performed. A new state sequence is generated, and the enhancement parameters are

further optimized for this new state sequence. The process continues until the

recognition likelihood (and state sequence) converges, ensuring joint optimization

of the recognized state sequence and the speech enhancement parameters.

10.2.2 Optimization Methods for In-Car ASR

10.2.2.1 Calibrated LIMA Framework

The simplest and most common approach for optimizing the enhancement

parameters is to use a calibration session with a known transcription wC. Previous

studies used a single known utterance for each speaker in order to determine
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optimal enhancement parameters for that particular speaker [2, 3]. Whilst this

procedure ensures that optimization takes place on a state sequence which is

correct, calibrated LIMA frameworks inherently assume that background noise

conditions do not change between the calibration and testing sessions. This is a

major challenge for in-car speech recognition since vehicular environments are

subjected to continually changing noise levels and conditions which mean calibra-

tion utterances would be required every time noise conditions changed significantly

from the previous optimization. To overcome this, optimized enhancement

parameters could be stored for each common noise condition; however, this still

requires a calibration utterance to be used at some point in the system. Since there is

a wide range of noise conditions, the user would be continually asked to repeat the

adaptation utterance in order to obtain the optimal set of parameters. This operation

is an unnecessary annoyance for the driver and is likely to lead drivers to become

frustrated with the speech dialog system; such emotions could lead to further

repercussions on ASR and driving performance [7].

An alternative solution is to calibrate once only for each driving session (e.g., a

common startup utterance such as “Start dialog” could be used for adaptation), but

this introduces the risk of inferior recognition in noise conditions significantly

different to those present during calibration.

The calibration framework is also reliant on the words contained in the adaptation

utterance; therefore, it is necessary for the adaptation utterance to be phonetically

balanced and sufficiently long enough to provide as much acoustic model coverage

as possible in order to generalize the optimized enhancement parameters. This is in

direct conflict with the majority of dialog systems which promote simpler linguistic

structures than human conversation and are therefore unlikely to be phonetically

balanced. Thus, a separate utterance unrelated to the dialog transaction is required

which is likely to be seen by the user as a further inconvenience and therefore

impractical for this particular application.

10.2.2.2 Unsupervised LIMA Framework

The unsupervised LIMA framework proposed in [2] may be a more appropriate

choice for in-car environments. Unsupervised adaptation removes the restriction of

a calibration utterance (thereby making the adaptation process transparent to the

user), and instead, optimization takes place on an utterance-by-utterance basis. The

major issue with the unsupervised operation is that it uses a hypothesized transcrip-

tion, w, rather than the true transcriptionwC. The hypothesis transcription is highly

reliant on the effectiveness of the underlying acoustic models and state sequence

generated by Viterbi alignment; therefore, the hypothesis transcription is likely to

be less than 100% correct.

Since the true transcription wC is unknown, it is possible that states in

the hypothesized transcription ŵ are incorrect due to misrecognition and frame

alignment errors (N.B. frame alignment errors will occur even when the transcrip-

tion is known a priori, but should be limited). These inaccurate states will lead to the
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resulting enhancement parameters being suboptimal since optimization is

performed on the wrong state models. In turn, suboptimal enhancement parameters

could lead to further decreases in accuracy in the subsequent decoding state. This

effect is particularly likely when the number of incorrectly labeled frames is greater

than the correctly labeled frames, as may be the case in high-noise conditions.

10.2.2.3 Proposed Dialog-Based LIMA Framework

Having identified problem with the existing LIMA frameworks, we propose to

exploit a confirmation-based speech dialog system to drive optimization. Dialog

systems requiring users to verify commands with simple “Yes/No” replies are a

well-established mechanism in voice recognition applications. A block diagram of

the proposed framework within the dialog exchange is shown in Fig. 10.1.

This system mimics the calibrated and unsupervised frameworks by performing

an initial decode using default enhancement parameter values in the feature extrac-

tion stage. This framework differs from previous work following the initial ASR

pass. Instead of immediately performing optimization, the hypothesized word

sequence is first verified through the grounding process which is required in the

dialog system in order to detect any misrecognition errors which need to be

corrected prior to executing a desired action such as determining route navigation.

Since it is cumbersome for the dialog manager to request confirmation from the

user after each response, grounding often occurs once the dialog systems have

gathered a number of pieces of information, for example the suburb, street name,

and number of a destination address. In the case where the user states the informa-

tion is incorrect, the dialog manager will attempt to recover from these errors by

either asking for corrections to specific information or restarting the dialog transac-

tion. In this instance, the enhancement parameters remain unaltered.

It is also possible to incorporate knowledge of the state of the car environment to

alter the enhancement parameters should the noise condition change drastically be-

tween optimizations. The purpose of this chapter is not to suggest how this should be

done but to analyze the performance of existing and proposed LIMA frameworks and

make recommendations on how these are best utilized in automotive environments.

When the user confirms the information to be correct, this affirmation is fed back

to the dialog manager for further processing (e.g., a call to an external information

source such as the navigation system) but also triggers the optimization of the

enhancement parameters. In order to interface the optimization process with

the grounding procedure, it is required to store the user responses as well as the

hypothesized state sequences – this is reflected in Fig. 10.1. On confirmation, this

stored information is used in the optimization process; if rejected, the stored state

sequence is therefore unreliable, and so, the memory can be cleared in preparation

for responses in the error-recovery stage.

The primary advantage of the proposed dialog-based LIMA framework is that

optimization never takes place on inaccurate transcription hypotheses, which

overcomes the limitation of the unsupervised framework. Another advantage is the
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Fig. 10.1 Proposed confirmation-based speech dialog system for in-car speech recognition using

LIMA speech enhancement
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ability to continually update the enhancement parameters as the noise conditions

inside the vehicle change. This is achieved by maintaining the previous enhance-

ment parameters until the next successful dialog transaction, by which time the noise

conditions may have changed. As a result, the dialog-based system is able to

overcome the need for matched noise conditions required for calibrated operation

to be fully effective.

10.2.3 Mel-Filterbank Noise Subtraction

In this chapter, we concentrate on spectral subtractive enhancement algorithms

for this application. Spectral subtraction for speech enhancement was originally

proposed by Boll in 1979 [8]. Enhancement is typically performed in the frequency

domain; however, subband subtraction techniques such as the Mel-filterbank noise

subtraction (MFNS) method proposed in [9] have become popular for use with

recognition systems. BabaAli et al. [7] recently utilized the framework introduced

in [2] to optimize the subtraction scaling factors in multiband spectral subtraction in

the frequency domain.

In a noisy environment, speech Sð f Þ is assumed to be corrupted by uncorrelated

additive background noise Dð f Þ to produce corrupted speech Yð f Þ:

Yið f Þ ¼ Sið f Þ þ Dið f Þ; (10.4)

where frequency spectra are obtained from the short-time Fourier transform of

frame i.
Generally, an estimate of the background noise magnitude spectrum is subtracted

from the magnitude spectrum of the noisy signal to give an estimate of the clean

speech magnitude. Noise estimates are calculated during nonspeech periods and are

typically kept constant throughout speech periods. In the following, the frame index

i has been removed from the noise estimate to reflect this operation.

In this chapter, however, we consider Mel-filterbank noise subtraction [9]. Using

the Mel-frequency scale commonly used in speech recognition, the frequency

spectrum is divided into a number of subbands with f kU and f kL being the upper

and lower cutoff frequencies for the kth Mel-filterbank, respectively. Using this

definition, Mel-filterbank noise subtraction is described by

Ei
YðkÞ ¼

ð f kU

f kL

jYið f Þjdf

ED̂ðkÞ ¼
ð f kU

f kL

jD̂ðf Þjd f

Ei
Ŝ
ðkÞ ¼ Ei

YðkÞ � aðkÞED̂ðkÞ Ei
YðkÞ> aðkÞ

1�bED̂ðkÞ
bEi

YðkÞ otherwise

(
(10.5)
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where Ei
YðkÞ, ED̂ðkÞ, and Ei

Ŝ
ðkÞ are the energies of the kth Mel-filterbank of the

noisy speech, noise estimate, and the clean speech estimate, respectively. The

scaling factor b enforces a maximum level of signal energy attenuation and ensures

that output filterbank energies remain positive. Filterbank-dependent subtraction

factors – aðkÞ – are included to compensate for estimation inaccuracies of the

instantaneous noise energy. In the experiments that follow, only the subtraction

factors are optimized, that is:

x ¼ ½a1; a2; :::; aK�: (10.6)

The expression for the Jacobian elements @ziðaðkÞÞ=@aðkÞ for each enhancement

parameter can be derived as per [10] to produce

@ziðaðkÞÞ
@aðkÞ ¼ � 1

2

XK�1

k¼0

FckE
i
D̂
ðkÞ

Êi
SðkÞ

� 1þ Ei
YðkÞð1� bÞ � aðkÞEi

D̂
ðkÞ

jEi
YðkÞð1� bÞ � aðkÞEi

D̂
ðkÞj

 !
; (10.7)

where Fck are elements of the DCT matrix for cepstral coefficient c.

10.3 Experimental Procedures

10.3.1 Experimental Data

Digit strings comprising the phone numbers task of the AVICAR database collected

by the University of Illinois [11] were used as the test data. The AVICAR database

contains real speech recorded in five different driving conditions: idle (IDL),

35 mph with windows up (35U) and down (35D), and 55 mph with windows up

(55U) and down (55D). All experiments utilized an altered version of the first five

experimental folds of the AVICAR evaluation protocol developed in [12]. The data

for this evaluation consists of 38 speakers, all of which have at least one utterance

available in all of the noise conditions.

10.3.2 Speech Recognizer

Utterance decodingwas performed using the HMMToolkit [13]. Speaker-independent,

context-dependent 3-state triphone HMM acoustic models were trained using the Wall

Street Journal 1 corpus. Each HMM state was represented using a 16-component

Gaussian mixture model.

10 A Likelihood‐Maximizing Framework for Enhanced. . . 167



For each observation, 39-dimensional MFCC feature vectors were generated

consisting of 13MFCC (includingC0) plus 13 delta and 13 acceleration coefficients.

Cepstral mean subtraction was applied to each feature. The elements of the Jacobian

were derived from this feature representation as per Eq. 10.7.

The recognition task uses an open word loop grammar [12]; therefore, no

restrictions are made to ensure that exactly ten digits are recognized.

All speech recognition results quoted in this chapter are word accuracies (in %)

and are calculated as

Accuracy ¼ N � D� S� I

N
� 100; (10.8)

where N represents the total number of words, D the number of deletions, S the

number of substitutions, and I the number of insertions [13].

10.3.3 Optimization Iterations

Since LIMA is an optimization problem, over-optimization of the enhancement

parameters to a specific noise condition, speaker, or subset of acoustic state models

is highly possible and should be avoided. This suggests that the number of optimi-

zation iterations should not be large in order to maintain generality across

conditions, but too little iteration may result in the LIMA framework operating

less effectively than a standard enhancement system. Considering real-time opera-

tion (another important consideration for in-car ASR) also points to limited

iterations.

To address this issue, two experiments were designed to determine a suitable

balance between ASR performance and pseudo real-time operation using the noise-

only calibration framework described in Sect. 10.3.4. This framework was used

since the belief was that noise conditions have a greater effect on the resulting

enhancement parameters than individual speakers since speaker-independent

acoustic models are being used.

In the first experiment, the number of gradient-descent iterations was varied

whilst using a single joint optimization iteration (i.e., full recognition and parameter

optimization cycles). The second experiment varied the number of joint optimiza-

tion iterations whilst the gradient-descent iterations (determined from the former

experiment) were kept constant. The combined outcomes of these experiments

dictated the levels of optimization used for assessing the frameworks detailed in

Sect. 10.3.4.

For all experiments, the enhancement parameters were initialized to aðkÞ ¼ 1 for

all 26 Mel-filterbanks. These values were an appropriate initial guess since standard

MFNS using these values provides improvements in speech recognition accuracy

over a system without enhancement [10].
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10.3.4 Likelihood-Maximization Frameworks

The AVICAR database enables analysis of LIMA frameworks based on speaker or

noise calibration as well as a combination of both. The following LIMA frameworks

have been tested:

• Calibrated LIMA framework using optimization on a noise-by-noise basis

• Calibrated LIMA framework using optimization on a speaker-by-speaker basis

under a single, randomly chosen noise condition

• Calibrated LIMA framework using optimization for each speaker in each noise

conditions (i.e., matched conditions)

• Proposed dialog-based LIMA framework without calibration

• Proposed dialog-based LIMA framework with a single calibration utterance in a

random noise condition

• Proposed dialog-based LIMA framework with a single calibration utterance in

the idle noise condition

The unsupervised LIMA frameworks were not assessed in this chapter as the

overall performance of the speech recognizer is low (less than 50% average word

accuracy), making the hypothesis transcriptions (and therefore the optimized

parameters) unreliable.

Each calibrated LIMA framework used a single, randomly generated utterance

treated as adaptation session. For the noise-only calibration framework, a random

utterance from a random speaker was chosen for each experimental fold in the

evaluation protocol. For speaker-based calibration (applied in both calibrated and

dialog frameworks), a single utterance from a random noise condition was used for

each speaker, with the remaining utterances ordered randomly to simulate realistic

driving conditions.

The proposed dialog system was run using no prior calibration, and optimization

occurred every time the decoder correctly recognized all ten digits in the phone

number. Utterances which occur prior to the first optimization exhibit the same

performance as the static MFNS system and are therefore ignored in the final

evaluation (N.B. this is why baseline results differ across the experiments).

In order to simulate a priori knowledge relating to previously optimized

enhancement parameters, the dialog-based framework was also tested using an

initial adaptation utterance which was either randomly chosen or from the idle

condition. The idle condition was chosen as this is a likely scenario for users to first

communicate with the in-car speech dialog system – for instance, for entering a

destination address before setting off on the journey. Again, all utterances which

occurred prior to the first subsequent optimization (excluding calibration) were

ignored in the evaluation.
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10.4 Data Analysis and Recommendations

10.4.1 Gradient-Descent Iterations

The effect on ASR word accuracy as the number of gradient-descent iterations

increases is shown in Table 10.1. Recognition results with no enhancement (base-

line) and MFNS with static subtraction parameters (aðkÞ ¼ 1) are shown for

comparison.

Analysis of these results shows that the optimal number of gradient-descent

iterations is considerably different for each noise condition. For the more quiet

conditions (idle and 35 mph with windows up), best performance is obtained with

more than 20 iterations of gradient-descent optimization. For the noisier conditions,

less than five optimization iterations provide the best performance (particularly for

the 55-mph-with-windows-down noise condition). These three conditions also

show trends of decreasing word accuracy as the number of iterations is increased

above five. Since the noise conditions are approximately ordered by increasing

levels of noise, it can be concluded that as the noise levels in the vehicle increase

(i.e., higher speeds or open windows), the level of gradient-descent optimizations

needs to be reduced in order to avoid over-optimization of the enhancement

parameters.

The application of only one gradient-descent iteration provides a minimum of

0.3% improvement static MFNS, with both 35-mph scenarios improving by approx-

imately 1%. A single iteration shows the effectiveness of a LIMA framework for

improving ASR performance with minimal optimization.

The best overall performance across all five noise conditions is seen at three

iterations. At this level of optimization, the 55-mph conditions both exhibit maxi-

mum performance, with two other noise conditions being only 0.1% below their best

performance (IDL and 35D). The 35-mph-with-windows-up condition is the only

Table 10.1 ASR accuracies

for increasing gradient-

descent iterations used in

parameter optimization

# Iterations IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

a(k) ¼ 1 73.3 47.8 36.8 44.5 26.1

1 73.9 48.7 37.9 44.8 26.4

2 74.2 49.3 37.7 44.8 26.4

3 74.1 49.1 38.1 45.1 26.4

4 74.2 49.5 37.8 45.1 26.1

5 74.1 49.6 38.2 45.0 25.9

10 74.2 49.7 37.7 44.6 26.1

15 74.2 49.8 37.5 44.8 25.6

20 74.2 49.9 37.6 44.7 25.7

25 74.2 49.9 37.6 44.7 25.7
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one which is well below its best performance (0.8%) but still provides improvement

over the baseline and static MFNS systems. As a result, three gradient-descent

iterations have been used for the remainder of the experiments in this chapter.

10.4.2 Joint Optimization Iterations

Having established the most effective number of gradient-descent iterations, the

number of joint optimization iterations was analyzed. Table 10.2 shows these results

with the best performance across all noise conditions highlighted for clarity.

Apart from the 35-mph-with-windows-up noise condition, the results indicate

that only one joint optimization iteration is required for in-car speech recognition.

This result indicates that only minor changes are made to the decoded state

sequences and therefore appears to be no advantage in performing more than one

joint optimization iteration. Relating this observation to the results of the gradient-

descent iterations experiment, if the state sequence did not change at all, the

parameter optimization would continue from exactly the same position that it

finished previously, and therefore, over-optimization is likely to occur as the

number of joint optimization iterations increases.

This result combined with that of Sect. 10.4.1 indicates that over-optimization is a

serious issue for LIMA frameworks operating in vehicular environments. It is there-

fore suggested that optimization iterations be kept to a minimum in order to keep the

enhancement parameters generalized. The practical advantage of these findings is the

ability to achieve improved ASR using LIMA frameworks whilst creating minimal

processing delays due to the need for only a few optimization iterations.

10.4.3 LIMA Frameworks

The LIMA frameworks listed in Sect. 10.3.4 were tested using the results obtained

in the previous experiments. Table 10.3 presents the ASR results for all three

Table 10.2 ASR results for

increasing number of joint

optimization iterations

# Iterations IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

a(k) ¼ 1 73.3 47.8 36.8 44.5 26.1

1 74.1 49.1 38.1 45.1 26.4

2 74.1 49.4 37.7 44.8 26.1

3 73.9 49.9 37.2 44.8 26.0

4 74.0 50.1 37.2 44.5 26.3

5 74.0 50.3 37.1 44.4 26.1

10 74.1 50.2 37.5 44.1 25.9
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calibrated frameworks. The matched calibrate-test conditions for speaker-based

calibration are highlighted for clarity. Regardless of the calibration method used,

the results show a global improvement over an enhancement system which does not

utilize a LIMA framework.

Using matched conditions for speaker-based adaptation (i.e., employing calibra-

tion for each speaker in each noise condition) provides the best word accuracies in

all cases except idle. Whilst the idle noise condition shows a 0.5% absolute

decrease in word accuracy in its matched condition (as opposed to optimizing in

55U), the word accuracy performance is still an improvement over the static MFNS

case (73.7% versus 73.3%). As a result, this is not seen to be a significant issue at

this point in time.

In order to assess the effectiveness of the proposed dialog-based LIMA frame-

work, all utterances occurring prior to the first optimization (or first optimization

after calibration) for each speaker were ignored. This approach was required since

the proposed technique requires 100% word accuracy in order to trigger optimiza-

tion, a result which was achieved on only 3% of all utterances and mostly in the idle

noise condition. This low number of optimization instances is due to the relatively

low performance of the ASR system and nature of the recognition task which

requires all ten digits to be recognized correctly.

These results of this final evaluation are summarized in Table 10.4. It should be

noted that word accuracies in this table are better than in previous tables because

this analysis removed a lot of utterances exhibiting poor ASR performance.

Almost all comparisons in Table 10.4 show that the proposed dialog-based

LIMA framework for in-car ASR provides improved performance over the baseline

enhancement system. Applying this framework can also recover losses in word

accuracy incurred when using standard Mel-filterbank noise subtraction (e.g., in the

two 35-mph noise conditions).

The results of this evaluation also prove the effectiveness of the proposed dialog-

based framework when used with or without explicit calibration even though there

are a very low number of optimization instances. For the case without calibration –

which is the ideal operational behavior of such a framework since the user would be

completely unaware of adaptation – global improvements over both baseline

systems can be observed, with the best relative performance improvement over a

Table 10.3 ASR results for

the calibrated LIMA

frameworks

Adaptation

condition IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

a(k) ¼ 1 73.3 47.8 36.8 44.5 26.1

Noise 74.1 49.1 38.1 45.1 26.4

Speaker 73.6 49.5 38.2 44.9 26.5

IDL 73.7 49.3 37.8 44.6 26.8

35U 73.8 49.9 38.6 45.0 27.0

35D 73.0 49.4 39.2 45.1 26.7

55U 74.2 49.7 37.9 45.5 26.8

55D 73.1 49.1 38.2 44.7 27.1
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system without enhancement being 16.7% in the idle condition. This particular

result demonstrates the true potential of the framework to improve ASR accuracy,

since utterances spoken during idle are most likely to trigger the optimization

process. In comparison to the baseline enhancement system, the proposed frame-

work shows relative improvements of between 1.2% and 4.4% in this mode of

operation.

There are also noticeable improvements of the calibration-only LIMA frame-

work, particularly one performing calibration during idle. In this case, the relative

improvements range from 1.2% to 2.8% (excluding the marginal decrease in

performance in the 55D noise condition). Given that most users will first speak to

in-car dialog systems when entering their vehicle, this result verifies the potential of

the proposed framework to be incorporated with a calibration session to produce

further improvements in system performance.

Considering the operation of the proposed dialog-based system, there is potential

for a loss of generality if a particular noise condition is consecutively optimized

(as per the results in Table 10.2). The consistent improvements in Table 10.4,

however, indicate that this is not an issue as regular changes in noise conditions

seem to allow the optimization process to effectively track the internal noise

conditions and set the enhancement parameters appropriately.

10.5 Conclusions

This chapter has reviewed likelihood-maximizing frameworks using Mel-filterbank

noise subtraction for in-car speech recognition. A new LIMA framework based on a

user-confirmation speech dialog system has been proposed. This framework has been

evaluated against calibrated LIMA frameworks utilizing different adaptation scenarios.

Experiments have shown that with the proposed LIMA framework, minimal

optimization is required for the best average recognition performance in car

environments. This permits pseudo real-time operation of LIMA frameworks whilst

Table 10.4 ASR results for all LIMA frameworks

Framework IDL 35U 35D 55U 55D

Baseline 79.1 55.8 42.1 49.8 27.6

a(k) ¼ 1 81.8 53.9 41.6 51.7 30.1

Proposed dialog system 82.6 55.9 42.3 53.1 31.1

Baseline 80.7 55.5 43.3 49.5 28.6

a(k) ¼ 1 81.4 53.3 45.3 50.0 33.6

Calibrated system (random) 82.5 55.7 46.4 52.5 33.3

Proposed dialog (random) 82.3 57.7 45.5 52.7 32.3

Baseline 80.4 57.7 44.7 53.3 28.4

a(k) ¼ 1 82.2 52.5 42.9 53.9 30.3

Calibrated system (IDL) 82.4 55.4 44.6 54.9 31.0

Proposed dialog (IDL) 82.9 55.9 46.0 55.5 30.9
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still providing improvements over standard speech enhancement techniques.

The proposed dialog-based framework provides improved recognition performance

over calibration-only systems; this effect is attributed to the ability to continually

update enhancement parameters according to changes in noise conditions.
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7. Kleinschmidt T, Boyraz P, Bořil H, Sridharan S, Hansen JHL (2009) Assessment of speech

dialog systems using multi-model cognitive load analysis and driving performance metrics. In:

Proceedings of IEEE international conference on vehicular electronics & safety, Pune,

pp 167–172

8. Boll S (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans

Acoust Speech Signal Process 27(2):113–120

9. Nasersharif B, Akbari A (2006) A framework for MFCC feature extraction using

SNR-dependent compression of enhanced Mel-filter bank energies. INTERSPEECH,

1632-Mon1A20.3

10. Kleinschmidt T (2010) Robust speech recognition using speech enhancement. PhD thesis,

Queensland University of Technology

11. Lee B, Hasegawa-Johnson M, Goudeseune C, Kamdar S, Borys S, Liu M, Huang T (2004)

AVICAR: audio-visual speech corpus in a car environment. In: Proceedings of

INTERSPEECH, Jeju Island, pp 2489–2492

12. Kleinschmidt T, Dean D, Sridharan S, Mason M (2007) A continuous speech recognition

protocol for the AVICAR database. In: Proceedings of ICSPCS, Gold Coast, pp 339–344

13. Young S, Evermann G, Gales M, Hain T, Kershaw D, Liu X, Moore G, Odell J, Ollason D,

Povey D, Valtchev V, Woodland P (2006) The HTK Book. Cambridge University: Engineer-

ing Department, Cambridge

174 T. Kleinschmidt et al.



Chapter 11

Feature Compensation Employing Variational

Model Composition for Robust Speech

Recognition in In-Vehicle Environment

Wooil Kim and John H.L. Hansen

Abstract This chapter proposes a novel model composition method to improve

speech recognition performance in time-varying background noise conditions. It is

suggested that each order of the cepstral coefficients represents the frequency

degree of changing components in the envelope of the log-spectrum. With this

motivation, in the proposed method, variational noise models are generated by

selectively applying perturbation factors to a basis model, resulting in a collection

of various types of spectral patterns in the log-spectral domain. The basis noise

model is obtained from the silent duration segments of input speech. The proposed

Variational Model Composition (VMC) method is employed to generate multiple

environmental models for our previously proposed feature compensation method.

Experimental results prove that the proposed method is considerably more effective

at increasing speech recognition performance in time-varying background noise

conditions with +20.80% relative improvement in word error rates for the CU-

Move real-life in-vehicle corpus, compared to an existing single model–based

method.

Keywords Feature compensation • In-vehicle environment • Multiple model

• Robust speech recognition • Variational model composition (VMC)

11.1 Introduction

Acoustic difference between training environments and conditions where actual

speech recognition systems operate is one of the primary factors that degrade

speech recognition accuracy, and the presence of background noise is one major
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factor. This is typically true for in-vehicle speech systems which face the problem of

robust speech recognition in order to address a range of severe changing background

noise conditions.

To minimize this mismatch, extensive research has been conducted in recent

decades with the goal of achieving successful results for slowly changing back-

ground noise, including many types of speech/feature enhancement methods and

model adaptation techniques [1–10]. However, these methods continue to suffer

from ineffectiveness in time-varying background noise conditions, where the noise

characteristics need to be effectively estimated as time elapses. Recently, missing-

feature methods have shown promising results [11, 12], which utilize no prior

knowledge of the background noise [13]. Unfortunately, they are highly dependent

on the ability of reliable component estimation, still resulting in performance

degradation in time-varying noise conditions.

In this study, a novel model composition method is proposed to address time-

varying background noise such as in-vehicle environments for improved speech

recognition. Our motivation is that each order of the cepstral coefficients represents

a frequency degree of the changing components in the log-spectrum envelope [14].

In the proposed method, variational noise models are generated by selectively

applying perturbation factors to a basis model in the cepstral domain to obtain

various types of spectral patterns. The proposed variational model composition

method is employed to generate multiple environmental models for our previously

proposed feature compensation method [9, 10]. The proposed method will be

evaluated on the CU-Move corpus which contains a range of acoustic signals

expected to be observed during real-life car driving.

This chapter is organized as follows. We first review the CU-Move [15] corpus

used for this study in Sect. 11.2. In Sect. 11.3, the motivation of the proposed

variational model composition method is presented and the detailed procedure

described. A multiple model–based feature compensation method as an application

of the proposed study is presented in Sect. 11.4, which has been developed in our

previous study. Representative experimental results are presented and discussed in

Sect. 11.5. Finally, in Sect. 11.6, we conclude our work.

11.2 CU-Move Corpus

The CU-Move project [15] was designed to develop reliable car navigation systems

employing a mixed initiative dialog. This requires robust speech recognition across

changing acoustic conditions. The CU-Move database consists of five parts: (1)

command and control words, (2) digit strings of telephone and credit card numbers,

(3) street names and addresses, (4) phonetically balanced sentences, and (5) Wizard

of Oz interactive navigation conversations. A total of 500 speakers, balanced across

gender and age, produced over 600 GB of data during a 6-month collection effort

across the United States. The database and noise conditions are discussed in detail

in [15]. We point out that the noise conditions are changing with time and are quite

different in terms of SNR, stationarity, and spectral structure. The challenge in
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addressing these noise conditions is that they might be changing depending on the

specific car and road conditions. In this study, we select 20 speakers from approxi-

mately 100 speakers in Minneapolis, Minnesota (i.e., Release 1.1A) and employ the

connected single digits portion that contains speech under a range of varying complex

in-vehicle noise events/conditions.

11.3 Variational Model Composition

In this section, a novel method is proposed to effectively estimate the time-varying

background noise contained in a speech utterance by using information contained in

non-speech segments. As initial knowledge for our discussion, the effect on log-

spectral coefficients caused by adding a gain to the cepstral coefficients is

presented. From fundamentals of the cepstrum, which is obtained by a discrete

cosine transformation (DCT) of the log-spectrum, each order of the obtained

cepstral coefficients represents a frequency of the log-spectrum envelope changes

(i.e., frequency [14]). For example, the lower-order cepstral coefficients indicate a

measure of the slowly changing components in the envelope of the log-spectrum,

having the 0th cepstral coefficient represent a DC component (i.e., energy) of the

log-spectrum at a frame. Therefore, applying a weight to each order of the cepstral

coefficients could generate a variation of the original cepstrum in terms of the

frequency of envelope change along the log-spectral axis.

Assume that a vector of cepstral coefficients x consists of 0th to (N � 1)th

coefficients. A variation of the cepstrum vector can be obtained by adding a gain

vector g as follows:

~x ¼ xþ g (11.1)

If the gain is applied only on the 0th coefficient such as g ¼ [�g, 0, 0, . . ., 0], the

log-spectral coefficients of the obtained variation will have a different energy level

from the original log-spectrum, which can be obtained by an inverse DCT of the

cepstral coefficients. Figure 11.1, (a) shows log-spectra of the variations which are

generated by weighting the zeroth cepstral coefficient. The plain solid line indicates

the original log-spectral coefficients, and the lines with solid or empty circles

indicate the resulting log-spectrum by weighting + g and � g at the zeroth cepstral

component, respectively. We can see the two variations have different energy levels

while maintaining an identical spectral envelope shape with the original

coefficients. Plots (b) and (c) present the log-spectra of the variations generated

by applying weights only to the first and fourth cepstral components, respectively.

The variations in (b) show a smooth change of the envelope, and plots of the

variations in (c) are varying relatively faster.

With this motivation, we believe that a range of models could be generated by

applying a combination of weights to an original model in the cepstral domain. In our

proposed method, it is assumed that (1) a basis noise model can be obtained from

periods of “silence” (e.g., non-speech) within the speech stream and (2) the target
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time-varying noise included in the speech duration would reflect variations of the

estimated basis model. The variational models are generated by selectively applying

weights to each component of the mean vector of the basis model in the cepstral

domain. Here, we propose a novel algorithm to generate a collection of variational

noise models as follows:

Step 1 – Basis Model Estimation

A basis noise model is obtained from silent segments within the input speech, which

generally exists at the beginning and end parts of an utterance. The model is

estimated as a Gaussian pdf (m,s2) in the cepstral domain.

Step 2 – Variational Component Determination

The V largest components {v1,v2,. . .,vV} in the variance vector s2 are selected.

These are named variational components, which are considered highly variable

components and are size-ordered ranked as follows:

sv1 � sv2 � � � � � svV (11.2)

Fig. 11.1 Example of variations of log-spectral coefficients generated by applying a weight to the

(a) zeroth, (b) first, and (c) fourth cepstral coefficients
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Step 3 – Model Composition by Mean Perturbation

A variation of the mean vector is generated by selectively applying the perturbation
factor fp to the determined variational components of the cepstral coefficients v1 to
vV as follows:

~mi ¼ mið1þ fpÞ
mi

�
if i 2 fv1; v2; . . . ; vVg
otherwise

; (11.3)

where fp ¼ � a, 0, or þ a and the a is a small positive value which we determine

heuristically. The obtained model collection {~l¼ (m_, s2)} consists of a total

3V number of generated variational models as a result of combinations of the 3-

type gains of the V variational components.

In this study, we employed four variational components for the proposed model

compositionmethod. Figure 11.2 demonstrates several representative variational noise

models (i.e., mean parameters in the log-spectral domain) obtained by the proposed

model composition algorithm, showing various types of spectral patterns generated by

Fig. 11.2 Mean parameters of variational models in log-spectral domain generated by the

proposed model composition methods. Four-digit symbol of each plot indicates a combination

of perturbation factors (i.e., � a, 0, or þ a) for the selected four variational components
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applying combinations of weights to the selected variational cepstral components

using a basis model which is presented as the dashed line in each figure. Here, after

selecting the four coefficients with heist variance from Eq. 10.2, we apply a trilevel

perturbation factor (i.e., either � a, 0, or þ a). The figure clearly illustrates the effect
of perturbation of the original basis model (i.e., (0, 0, 0, 0)) in the upper left corner.

11.4 PCGMM-Based Feature Compensation Employing

Variational Model Composition

In this section, to address time-varying background noise for speech recognition,

the Parallel Combined Gaussian Mixture Model (PCGMM)–based feature compen-

sation algorithm [9, 10] employing the proposed variational model composition

method is presented. In the PCGMMmethod, the parameters of the noise-corrupted

speech model are obtained through a model combination procedure using clean

speech and noise models independently. A constant bias transformation of the

mean parameters of the clean speech model is assumed in the cepstral domain

under an additive noisy environment as follows:

my;k ¼ mx;k þ rk; (11.4)

where my;k and mx;k denote mean vectors of the kth component of GMMs for noise-

corrupted speech y and clean speech x, respectively. The bias term rk is estimated

with Eq. 11.4 once the mean parameters of the clean speech model and

corresponding noise-corrupted speech model are obtained.

Utilizing multiple numbers of environmental models is considered to be effec-

tive for compensating input features adaptively under time-varying noisy

conditions [10]. In the multiple model method, a sequential posterior probability

of each possible environment is estimated over the incoming noisy speech. Given

the input noisy-speech feature vectors Yt ¼ [yt�d+1, yt�d+2, . . ., yt]
T over a d

interval, the sequential posterior probability of a specific environment GMM Gi

among all models can be written as:

pðGijYtÞ ¼ PðGiÞpðYt�1jGiÞpðytjGiÞPE
e¼1 PðGeÞpðYt�1jGeÞpðytjGeÞ

; (11.5)

where pðYt�1jGiÞ ¼
Qt�1

t¼1�dþ1 pðytjGiÞ and PðGiÞ is the a priori probability of each
environment i, represented as a GMM. Based on Eq. 11.5, the clean feature at frame

t is reconstructed as the weighted combination of the compensation terms obtained

from a set of E multiple environments as follows:

x̂t;MMSE ffi yt �
XE
e¼1

pðGejYtÞ
XK
k¼1

re;kpðkjGe; ytÞ; (11.6)
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where re;k is a constant bias term from the kth Gaussian component of the eth
environment model, and pðkjGe; ytÞ is the posterior probability for environment Ge.

The variational noise models obtained by the proposed variational model com-

position method in this study are used to generate the environmental models {Ge},

which are estimated through the model combination procedure using the clean

speech GMM and the obtained variational noise models. A uniform prior probabil-

ity is set on all obtained noise models in this study. Figure 11.3 demonstrates the

resulting block diagram of PCGMM-based feature compensation employing the

proposed new variational model composition method.

11.5 Experimental Results

As test data for performance evaluation, connected single digits portions from CU-

Move corpus were selected. We established an experiment setup which is identical

to the Aurora2 evaluation framework [16]. The task is connected English-digits

consisting of 11 words. Each whole word is represented by a continuous density

HMM with 16 states and three mixtures per state. In addition to the digits, two

silence models (i.e., normal silence and short pause) are used.

The feature extraction algorithm suggested by the European Telecommunication

Standards Institute (ETSI) was employed for the experiments [17]. The zeroth

cepstral coefficient was used instead of log energy for the sake of convenience in

model combination implementation. After extracting the 13th order cepstrum, the

first and second order time derivatives are included during the decoding procedure

(a total of 39 dimensional feature vector). The HMM parameters were estimated

using 8,840 clean speech training samples included in Aurora2, and performance

was evaluated on the selected test set of CU-Move corpus. The test set consists

of 464 utterances (length of 50 min) spoken by ten different speakers (five males

Fig. 11.3 Block diagram of the PCGMM method employing the proposed variational model

composition
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and five females) in real-life in-vehicle conditions, which were collected in

Minneapolis, Minnesota [15]. Data was down-sampled to 8 kHz and reflected a

9.50 dB SNR on average which was obtained using NIST Speech Quality Assur-

ance software [18].

The performance of the baseline system (no compensation) is examined with

comparison to several existing preprocessing algorithms in terms of environmental

robustness for speech recognition. Spectral Subtraction (SS) and Cepstral Mean

Normalization (CMN) were selected as conventional algorithms. These represent

the most commonly used techniques for additive noise suppression and removal of

channel distortion, respectively. In spectral subtraction [19], the subtraction factor

and flooring factor are set at 4.0 and 0.2, respectively, and background noise is

estimated using the minimum statistics method with a time delay of approximately

250 ms. For cepstral mean normalization, the average value of the cepstrum over the

current input utterance was subtracted from each frame. AFE (Advanced Front-End)

algorithm developed by ETSI was also evaluated as one of state-of-the-art methods

which contains an iterative Wiener filter and cepstral histogram equalization [20].

We also evaluated another feature compensation method, the VTS (Vector Taylor

Series) algorithm, for performance comparison where the noisy speech GMM is

adaptively estimated using the EM algorithm over each test utterance [7]. Table 11.1

demonstrates performance of the baseline system and existing algorithms.

Next, we discuss the determination of perturbation factor for the proposed

variational model composition by showing performance versus a change in the

perturbation factor. Performance was evaluated using the speech recognition ability

of the reconstructed speech by the PCGMM method which employs the variational

model composition method. To see the performance in various types of background

noise conditions, Aurora2 test database [16] was used. Here, we employed Subway,

Babble, Car, and Exhibition noise conditions which were included in “Set A” of

Aurroa2 database. Figure 11.4 presents the performance dependency on the pertur-

bation factor fp. The WER performance was plotted as a function of a from 0 to 0.1

for fp over four kinds of background noise conditions. Here, the WER is an average

value of all SNR conditions (i.e., 0, 5, 10, 15, and 20 dB) for each background noise,

and the plot with the solid circle presents the average performance of four kinds of

noise conditions. The performance of the case with a ¼ 0 indicates the basic

PCGMM method employing only a basis model without the variational model

composition method, which is a target system for performance comparison of the

proposed VMC-PCGMM. It is interesting to note that each plot shows a concave

shape formulating a local minimum around 0.05–0.07 of a values. These results

suggest that a suitable value for a needs to be determined to bring an effective

performance to the proposed variational noise model composition method.

Table 11.1 Performance of

baseline system and existing

methods on CU-Move corpus

(WER,%)

Baseline 70.02

SS + CMN 39.90

ETSI AFE 48.31

VTS 31.45
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Fig. 11.4 Recognition performance of VMC-PCGMM versus change of a for perturbation factor

on Aurora2 database (WER,%)

Fig. 11.5 Recognition performance of VMC-PCGMM versus change of a for perturbation factor

on CU-Move corpus (WER,%)
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Figure 11.5 shows the recognition performance of the reconstructed speech by

the proposed VMC-PCGMM method as a change in the perturbation factor on the

CU-Move corpus. Results here are similar to the Aurora2 database (i.e., Fig. 11.4)

with the lowest WER at a¼0.06 for the perturbation factor fp. This result indicates
that our experiments using Aurora2 database would have suggested a guideline

for determining the perturbation factor when applying the proposed VMC method

to real-life in-vehicle environments. Table 11.2 shows a performance comparison

of the proposed VMC-PCGMM (a¼0.06) to the basic PCGMM over the CU-Move

corpus with a +20.80% relative improvement in WER. These results demonstrate

that VMC-PCGMM method brings a significant improvement compared to the

basic PCGMM and other conventional methods on real-life in-vehicle conditions.

11.6 Conclusion

In this study, a novel model composition method was proposed to improve speech

recognition in time-varying background noise conditions such as in-vehicle

environments. In the proposed method, a basis noise model was estimated from

non-speech segments, and variational noise models were generated by selectively

applying the perturbation factors on the variational cepstral components which are

determined by the variance of the basis model. The proposed model composition

method was employed to generate multiple environmental models for the PCGMM

algorithm. Experimental results demonstrated that the proposed method is consider-

ably more effective at increasing speech recognition performance in time-varying

background noise conditions. We obtained a +20.80% relative improvement in WER

for CU-Move real-life in-vehicle corpus compared to the single-model PCGMM

method. This proves that the variational noise model composition generates a noise

space that can effectively address the time-varying nature of background noise.
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Chapter 12

Dual-Channel Speech Enhancement Using

a Perceptual Filterbank for Hands-Free

Communication

Jongsung Yoon, Kihyeon Kim, Jounghoon Beh, Robert H. Baran,

and Hanseok Ko

Abstract We investigate a dual-channel speech enhancement method using

perceptual adaptive noise suppressor, which improves perceptual quality of speech

in automobile environment for hands-free communication. In particular, the per-

ceptual adaptive noise suppressor, which is composed of a Mel-based perceptual

filterbank, an adaptive filter, and a speech modification block, estimates the enve-

lope of the desired speech by suppressing the nonspeech components. Experiments

indicate that the proposed scheme shows 8.06 dB of NR improvement and 0.70 of

PESQ score improvement compared to the Transfer Function Generalized Sidelobe

Canceller structure alone.

Keywords Driver assistance • Dual-channel speech enhancement • Hands-free

communication • In-vehicle speech technology

12.1 Introduction

Recently, the significance of multi-microphone-based speech enhancement has

increased as the needs of hands-free communication systems grow, especially in

in-vehicle situations. In this chapter, an efficient multichannel speech enhancement

algorithm is presented, which improves the speech quality while minimizing the

directional interference and ambient noise.
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The conventional beamformingmethods, such as the linearly constrained minimum

variance (LCMV) [1] and the generalized sidelobe canceller (GSC), can reduce

interference from undesired directions by exploiting the correlation among the

noise signals of different sensors [2]. However, the beamformer cannot avoid

suffering from high computational burden when the adaptive filter must be long

enough to effectively suppress the noise. Hence, this aspect is not favorable for the

system to be embedded on vehicular communication devices.

To solve this problem, we propose a novel algorithm which is based on spectral

magnitude modification using the structure of the generalized sidelobe canceller.

The envisioned algorithm applies an auditory filterbank on the primary signal, output

of the fixed beamformer, and the noise reference signal, output of the blockingmatrix,

in order to estimate the spectral samples of noise components. Then, these samples are

fed to the gain filter for spectral modification so that the optimal spectral envelope of

the desired signal can be obtained. This structure provides unique advantages over

traditional beamforming methods including improvement of the perceptual quality of

speech, robustness against the stationary ambient noise, and high computational

efficiency. We develop the envisioned algorithm on the basis of a dual-microphone

array structure. In order to obtain the improved performance, we consider the optimal

combination using conventional adaptive noise cancellation which is executed in

general short-time Fourier transform domain.

12.2 Dual-Channel Speech Enhancement

12.2.1 Transfer Function Generalized Sidelobe
Canceller (TFGSC)

The basic GSC structure is composed of a fixed beamformer (FBF), a blocking

matrix (BM), and a noise canceller filter (NC). The FBF forms a beam in the look

direction so that the acoustic signal from the desired speaker is passed while

interfering noises are suppressed. Then, the BM blocks the desired signal and

produces a noise reference signal. The NC generates a replica of the component

which is included in the FBF output and is correlated with the interference.

An enhanced speech signal is obtained by subtracting the replica from the output

of the FBF. Conventionally, these processes are often described in terms of sampled

data representation. The broadband GSC expression, which is based on general

transfer functions (TF) of room impulse responses (RIR), has recently been

introduced [3]. Compared with the simple attenuation-and-delay assumption on

RIRs, the TF-based BM forms a sharp null in the look direction so that the leakage

signal of desired speech is more favorably attenuated. Ideally, the BMwould convey

a pure noise reference input to the NC. Moreover, use of TFs in the FBF provides

the ability to keep the desired signal free from distortion in a highly reverberant

room condition. Gannot et al. developed this concept based on the transfer function

ratio (TFR) and constructed an adaptive GSC, so-called TFGSC [2]. In Fig. 12.1,
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a schematic diagram of the dual-channel TFGSC is shown with the signal propaga-

tion model in the frequency domain.

The transfer function ratio H is defined by

H ¼ A2

A1

: (12.1)

Through the FBF, primary signal is given by

Y ¼ WH
CZ ¼ 1

1þ Hj j2 1 H�½ � Z1
Z2

� �
¼ A1Sþ 1

1þ Hj j2 N1 þ H�N2½ �: (12.2)

The FBF forms a beam in the look direction to pass speech and outputs a signal

consisting of the distortionless speech and noise components including both the

directional interference and the in-vehicle ambient noise. Next, BM forms a null

beam to block speech and produces the noise reference signal:

U ¼ BHZ ¼ �H 1½ � Z1
Z2

� �
¼ �HN1 þ N2: (12.3)

The noise reference signal generated goes to an NC block, and it constructs a

filter, Ĝ�
B, to estimate and eliminate the noise component in FBF output via the

general wiener filter solution as [4]

Ĝ�
B ¼ E½UYc�H

E½UUH� ¼
F�

UY

FUU
(12.4)

Yo ¼ Y � Ĝ�
BU: (12.5)

Fig. 12.1 Schematic diagram of TFGSC
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Normalized least mean squares (NLMS) algorithm is implemented for adaptive

noise canceller [5, 6]:

ĜB k; tþ 1ð Þ ¼ ĜB k; tð Þ þ m
U k; tð ÞYo k; tð Þ

Pest k; tð Þ ; (12.6)

in which the time–frequency index returns to describe the update in short-time

Fourier transform domain. In (12.6), the adaptation term is controlled by the power

estimate of the input sensor signals:

Pest k; tð Þ ¼ aP k; t� 1ð Þ þ 1� að Þ
X2
i¼1

Zij j2; (12.7)

where ais a forgetting factor. Then, the resulting system output is given by

Y k; lð Þ ¼ YC k; lð Þ � Ĝ�
B k; lð ÞU k; lð Þ: (12.8)

A high computational burden occurs in the TFGSC when the number of adaptive

filter coefficients is large enough to cover the signal path in a reverberant chamber.

A save/add method is applied to perform a linear convolution using FFT. It

necessitates a computationally efficient adaptive noise suppression filter while

keeping the advantage of TFGSC.

12.2.2 Perceptually Adaptive Noise Suppressor (PANS)
Based on TFGSC

The structure of the PANS based on TFGSC is shown in Fig. 12.2. The PANS is

composed of three blocks: a fixed beamformer (FBF), a blocking matrix (BM),

and a perceptually adaptive noise suppressor (PANS). It is used to estimate the

spectral envelope (SE) of the desired speech signal. As shown in Fig. 12.3, an

auditory filterbank such as the Mel-filterbank or the equivalent rectangular bandwidth

characterizes the PANS [7, 8]. The filterbank is composed of band-pass filters

imaging the effect of auditory masking. Accordingly, specific frequency resolution

of a human auditory system is provided. As shown in Fig. 12.2, the filterbank outputs

the auditory SE of the primary signal ~Y and that of the reference noise ~U. Then, an

adaptive filter estimates the noise SE ~N of the primary signal with the input ~U: Given
the estimate ~̂N; the spectral modification is executed to obtain the desired speech as

Ŝ ¼ Fitp 1� ax̂
h i0:5� �

Y; (12.9)
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where a is a parameter to control the noise suppression, and the power ratio x̂ is

defined by ~̂N= ~Y. Since the SE samples only appear at center frequencies of the

filterbank, the function Fitp is used to interpolate the power ratio samples x̂ in the

frequency domain. With the auditory filterbank and spectral modification, the

proposed structure has the improved perceptual quality of an enhanced speech

while minimizing the number of coefficients in the adaptive filter. Moreover, the

system also promises to have the robustness against the in-vehicle ambient noise.

This is based on the fact that the adaptive filter provides an SE estimate including

overall noise components.

Fig. 12.2 Schematic diagram of PANS based on TFGSC

Fig. 12.3 Frequency response of an ERB filterbank [10]
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However, this approach cannot avoid speech distortion due to the interpolation

process and the adaptive power estimation without using any phase information.

Speech distortion becomes notable, especially, in a low frequency range where the

energy of the speech is concentrated.

To overcome this degradation, a combination of PANS and the conventional

adaptive noise canceller (ANC) is also considered. In a low frequency range, the

ANC filter is applied to produce an accurate power estimate of the directional

interference. Then, the spectral modification uses the noise estimate in order to

enhance the speech without distortion. In a high frequency range, however, the

PANS still applies the spectral modification with the auditory SE.

12.2.3 Combination of the PANS with Adaptive Noise
Canceller (ANC)

The structure of the PANS based on TFGSC is shown in Fig. 12.4. At low frequency

range, noise is estimated by a conventional ANC filter. At high frequency range, the

noise is estimated by the PANS filter. Enhanced speech is obtained by spectral

modification. Since the energy of voiced speech is concentrated in low frequency

range, in order to prevent the speech distortion, the spectral power of directional

interference is estimated for each frequency bin rather than using filterbank. The

PANS is applied to high frequency range so that the perceptual quality of speech is

preserved and it also saves the computational load compared to the conventional

ANC approach as well.

Fig. 12.4 Schematic diagram of combination of the PANS and ANC
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12.3 Experiments

To generate dual-channel speech signal and nonstationary interference signals,

room impulse responses (RIRs) were measured in a vehicular chamber which has

a reverberation time, T60 ¼ 250 ms. The desired speech source was modeled to be

located 50 cm from the microphone array along the broadside direction (90�) and
the nonstationary interference source to be 75 cm along the 45� line. The array was
located in front of the speech source with a 10-cm aperture. Figure 12.5 describes

the experimental setup for signal generation.

Each RIR was convoluted with a single-channel clean speech signal to produce a

dual-channel speech signal, and with an interfering human voice for a dual-channel

nonstationary interference noise at a sampling rate of 8 kHz. Brownian noise was

added as the in-vehicle ambient noise. Next, the interference plus the ambient noise

was combined with the speech signal to simulate various signals with interference

and noise ratios (SINR) ranging from �5 to 20 dB. The speech signal in

experiments was formed from Korean digit strings and a nonstationary interference

noise generated by using arbitrary Korean words.

To evaluate the performance of the noise suppression and the perceptibility of

the enhanced speech signal, the noise reduction (NR) in log-domain and the

perceptual evaluation of the speech (PESQ) are used as measures [9], respectively.

Table 12.1 shows the performance of the proposed dual-channel speech enhance-

ment system, where “PANS” and “PANS+ANC” denote the usage of PANS only

and PANS with the ANC to estimate the desired spectral envelopes, respectively.

The findings of the proposed algorithms is compared with the conventional transfer

function–based GSC (TFGSC) method [2].

As shown in Table 12.1, the proposed PANS and PANS with ANC show superior

performance over that of the TFGSC. Although PANS shows similar speech quality

with TFGSC in adverse noise environment, this problem is solved by combining it

with an ANC.

Fig. 12.5 Microphone array aperture and location of signal sources for the RIR measurement
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12.4 Conclusions

We have proposed a dual-channel speech enhancement method using perceptual

adaptive noise suppressor, which has improved the perceptual quality of speech for

hands-free communication inside the auto chamber. The proposed method used an

auditory filterbank based adaptive filter to estimate the noise SE and combined it with

the ANC. This method resulted in reduced number of adaptive filter coefficients and

has improved perceptual quality of speech. The usage of auditory SE was

demonstrated to ensure robust noise suppression in the presence of in-vehicle ambient

noise without additional postprocessing as demonstrated by the experimental results.
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Table 12.1 Experimental results of proposed algorithm

Input SINR (dB) �5 0 5 10 Avg

NR (dB) TFGSC 13.74 13.74 13.73 13.70 13.73

PANS 22.45 22.43 22.23 21.72 22.21

ANC+PANS 22.00 21.94 21.79 21.43 21.79

PESQ TFGSC 2.02 2.44 2.64 3.02 2.53

PANS 2.05 2.51 3.04 3.45 2.76

ANC+PANS 2.76 3.12 3.41 3.62 3.23
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Chapter 13

Optimal Multi-Microphone Speech

Enhancement in Cars

Lae-Hoon Kim* and Mark Hasegawa-Johnson

Abstract Hands-free speech telephony and speech recognition in cars suffer from

additive noise and reverberation. We propose an iterative blind room impulse

response (RIR) estimation algorithm based on an analysis-by-synthesis loop closed

around a multi-path generalized sidelobe canceller (GSC). By combining a post-

filter with the proposed scheme, optimal speech enhancement in practical situations

can be achieved. The algorithm is tested using simulated data and real speech

recordings from the AVICAR database.

Keywords Hands-free communication • In-car speech recognition • Multi-path

generalized sidelobe canceller (GSC) • Room impulse response (RIR)

13.1 Introduction

In recent years, although many systems have used multi-microphone arrays for

speech enhancement [1, 2] and robust speech recognition [3], few approaches

have presented a theoretical basis for multi-microphone speech signal processing

under the assumed statistical model of source speech signal, room impulse

response (RIR), and noise. One of the few published systems considering a

theoretical basis for speech enhancement is that of Balan and Rosca [1], which

showed that multi-microphone MMSE spectral amplitude estimation can be
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factored into a sufficient statistics followed by a single-microphone post-filter.

As a straightforward extension of [1], if we know the RIRs, optimal estimation

of the speech signal can be achieved using the simple two-step method. How-

ever, it is actually not easy to satisfy the assumption of the known RIRs. In this

chapter, we address a realistic implementation of the sufficient statistics with

unknown RIRs.

If we know the source signal, we can adaptively estimate the RIRs based on an

acoustic echo cancelation scheme [4]. Because more correctly beamformed output

is nearer to the original source signal, we might be able to use the beamformed

output as a reference signal to estimate the RIRs [5]. In this chapter we propose

using a delay-and-sum beamformer (DSB) to provide the information necessary for

an initial constrained estimate of the RIR, which is then updated iteratively using

a multi-path generalized sidelobe canceller (GSC) based on the evolving RIR

estimate. Good RIR estimation makes the multi-path GSC more accurate, and

this again guarantees better RIR estimation. We demonstrate that, with a reasonable

constraint on the sparsity of the room impulse response, the algorithm converges to

a useful approximate RIR. Even though we may not get perfect RIR identification,

the converged RIR is nevertheless sufficient to compute coefficient vectors for a

multi-path fixed beamformer (FBF) which outperforms the naive DSB. By

leveraging the converged RIR, we are able to mitigate the common practical

problem of multi-path GSC, namely, its tendency to cancel the target signal due

the indistinguishability of signal from reverberation at the beamformer.

To visualize the situation in a tractable way, we first show the convergence of a

simplified version of the proposed scheme. A simple simulation test shows that this

method achieves sufficient blind deconvolution at the output of FBF. We then

evaluate the proposed algorithm using real-world moving-car recordings [6].

13.2 Proposed Method

13.2.1 Multi-path GSC

Multi-path GSC can be formulated as an optimization problem as shown in (13.1),

which is a generalized version of GSC [7] under a known multi-path environment,

represented by the RIR as coded into a constraint matrix C:

argmin
~w

E ~wT~yðnÞ~yðnÞT~w
n o

subject to CT~w ¼ ~f ; (13.1)

where ŝðnÞ ¼ ~wT~yðnÞ is an estimated source signal at the current time n, ~f ¼
1 0 � � � 0½ �T . ~yðnÞ is a noisy signal vector measured by the microphone array,

the array of filter coefficients is ~w ¼ w1 w2 � � � wNL½ �T encoding the estimated

L-tap inverse RIR filters for all of the N recorded signals, and
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~yðnÞ ¼ y
1:L½ �
1 ðnÞ y

1:L½ �
2 ðnÞ � � � y

1:L½ �
N ðnÞ

h i
; (13.2)

y
1:L½ �
i ðnÞ¼ yi n� i�1ð Þn0ð Þ yi n� i�1ð Þn0�1ð Þ � � � yi n� i�1ð Þn0ð Þ�Lþ1½ �;

(13.3)

where i ¼ 1, 2, . . . N, steered to a look direction of y ¼ arcsinð�n0
c

Fsd
Þ for uniform

microphone spacing d, sampling rate Fs, and speed of sound c. Note that n0 is

introduced in (5) to compensate the inter-microphone channel delay so that

the signal from all microphone channels can be aligned. However, n0 may not

be an integer number; therefore we may need to deal with non-integer delay

compensation [3].

To derive multi-path GSC, we need to manipulate the constraint part in (1).

The constraint part has the following convolution form:

CT~w ¼ Ch1 Ch2 � � � ChN½ � �
w1

w2

..

.

wNL

2
6664

3
7775 ¼

1

0

..

.

0

2
664

3
775; (13.4)

where lh (length of the RIR) + L-1 by L matrix Chi is constructed from the response
~hi ¼ hi 0ð Þ hi 1ð Þ � � � hi lh � 1ð Þ½ �,

Chi ¼

hi 0ð Þ 0 � � � 0

hi 1ð Þ hi 0ð Þ . .
. ..

.

..

.
hi 1ð Þ . .

.
0

hi lh � 1ð Þ ..
. . .

.
hi 0ð Þ

0 hi lh � 1ð Þ ..
.

hi 1ð Þ
..
. . .

. . .
. ..

.

0 � � � � � � hi lh � 1ð Þ

2
66666666666664

3
77777777777775

; (13.5)

i ¼ 1, 2, . . ., N. Chi is a typical linear convolution matrix, which has Toeplitz

structure. The solution to Eq.13.5 is a channel deconvolution filter, ~w [8].

In standard multi-path GSC, the solution to (1) is computed by projection of ~w
onto a blocking matrix, which can be constructed as the null space of the multichan-

nel convolution matrix, C. Now, the problem of identifying the FBF coefficient

vector ~w can be regarded as a general multichannel deconvolution problem;

therefore it need not be computed directly as the least-squares solution of Eq.13.1;

instead, if desired, we can apply any kind of multichannel deconvolution

scheme [8–10]. The blocking matrix can also be constructed by using an echo

cancelation scheme as in [5], because ideally the output of the fixed beamformer is
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the deconvolved and beamformed source signal. Although wemight be able to apply

any kind of multichannel deconvolution scheme for FBF, in the subsequent sections

we propose a blind multichannel RIR identification algorithm, which is in fact based

on the unique structure of the multi-path GSC.

13.2.2 Iterative Blind Estimation of RIR Based
on Multi-path GSC

13.2.2.1 Problem Formulation

The channel response estimation follows the optimization process below:

ĥi ðnÞ¼ argmin
ĥiðnÞ

sðnÞ� h1ðnÞ�w1ðnÞþ���þhNðnÞ�wNðnÞð Þ� ĥiðnÞ� sðnÞ�hiðnÞ
�� ��2;

(13.6)

where * stands for a convolution, and (7) can be represented in the following with

vector notation ~h
_

i:

~̂hi ¼ argmin
~̂hi

Ĉ~̂hi � ~hi

��� ���2 ¼ Ĉ
T
Ĉ

� ��1

ĈT~hi; (13.7)

where Ĉ ¼ CT~w is the convolution matrix obtained with the beamformed outputs of

RIRs. Ideally, if Ĉ ¼ I, in other words, if the FBF of RIRs produces perfectly

deconvolved output, then we can obtain the real RIRs. In addition to (13.7), the

estimated RIRs are obtained with the constraint of forcing the magnitude to be zero

values except at the estimated time stamps of each dominant reflection in RIRs.

This constraint can be interpreted as a sparseness constraint of RIRs.

13.2.2.2 Algorithm

The proposed algorithm is introduced below step by step based on the assumption

that we know the time stamps ri;d of the dominant echo paths occurring in impulse

response~hi,where i ¼ 1, . . .,N and thenumberofdominant echopaths d ¼ 1,2, . . .,D.
Here,we focus on theRIR estimation and deconvolution, because the noise suppression

after the deconvolution is straightforward. Estimation of the time stamps for the

dominant echo paths will be discussed in Sect.13.2.2.3:

1. Initialize estimated impulse response.

2. hiðnÞ ¼ 1þ edðn� ri;1Þ þ � � � þ edðn� ri;DÞ:
3. Perform multi-path GSC using (13.6) and update hiðri;dÞ with the solution of

(13.7). Enforce hiðnÞ ¼ 0 for other n.
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4. Iterate 2 until there is no more significant change in the magnitude of the

reflection.

If you follow the first iteration, you will get the first update at the time stamp for

the dominant echo paths,

ĥi ri;d
� � � hi ri;d

� �� 1

N
h1 ri;d
� �þ � � � þ hi ri;d

� �� eþ � � � þ hN ri;d
� �� �

(13.8)

(13.8) can be illustrated by the situation in which there is only one dominant

reflection, with magnitude e. Then, the deconvolution filter coefficient for the

channel at time ri;1 becomes near to �e, if the deconvolution filter is long enough,

to meet the following condition:

1þ ed t� ri;1
� �� � � 1� ed t� ri;1

� �� �� �ðrÞ ¼ 0: (13.9)

Under this circumstance the deconvolution output at ri;1 with RIR as input

becomes hi ri;1
� �� e, and the beamformed output with this deconvolution output

becomes 1
N h1 ri;1

� �þ � � � þ hi ri;1
� �� eþ � � � þ hN ri;1

� �� �
. Note that hiðnÞ ¼ 0 for

every n except n ¼ 0 and n¼ri;1. Now, by applying (13.7) for the channel estima-

tion at channel i, (13.8) is obtained and ĥi ri;1
� �

can be considered as an updated e;
therefore

ekþ1 ¼ hi ri;1
� �� 1

N
h1 ri;1
� �þ � � � þ hi ri;1

� �� ek þ � � � þ hN ri;1
� �� �

(13.10)

at the kth iteration, which can be expressed as follows:

ekþ1�hi ri;1
� �þ 1

N�1
h1 ri;1
� �þ�� �þhi�1 ri;1

� �þhiþ1 ri;1
� � � � �þhN ri;1

� �� �
1

N

� �n

ek�hi ri;1
� �þ 1

N�1
h1 ri;1
� �þ�� �þhi�1 ri;1

� �þhiþ1 ri;1
� � � � �þhN ri;1

� �� �� �

(13.11)

By induction,

e1 ¼ ĥi ri;1
� �¼ hi ri;1

� �� 1

N� 1
h1 ri;1
� �þ �� �þ hi�1 ri;1

� �þ hiþ1 ri;1
� � � � �hN ri;1

� �� �
(13.12)

which can be interpreted as follows: If ĥiðri;1Þ is bigger than e, it will be updated

until there is no change of ĥiðri;1Þ. In the early part of the RIR, echo paths

are infrequent, typically h1ðri;1Þ; � � � ; hi�1ðri;1Þ; hiþ1ðri;1Þ; � � � ; hNðri;1Þ�hiðri;1Þ;
therefore ĥi ri;1

� � � hi ri;1
� �

in (13.12). Even with background noise in a real

situation, ĥi ri;1
� � � hi ri;1

� �
still holds, since we can easily assume that the noise
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process is zeromeanandwe take ameanof iterationmeasurements in (13.12).This one

dominant reflection scenario can be extended to the case of multiple reflections,

because after deconvolving the most dominant reflection path, the next dominant

path can be deconvolved. Note that by specifying all the time stamps for the dominant

echo paths, this sequential deconvolution can be performed implicitly. However, also

note that due topractical issues such as low-passfiltering (due to samplingof the signal,

and/or frequency-dependent reflection coefficients at the walls of the room), the

response may not contain perfect impulses.

Such imperfection may produce some errors in estimation of the channel, since

the assumption of sparse RIRs will no longer hold with precision. In particular, echo

paths with similar direction of arrival (DOA) may not be estimated exactly using

this scheme. In most cases, the restriction of channel estimation to sources with

DOA different from those of the dominant echoes is not as difficult to meet as the

restrictions imposed by other channel estimation algorithms, and in practice, even

the imperfections of overlapping and negative-valued echoes seem not to harm

channel estimation results using the proposed algorithm.

Figure 13.1 shows the converged result of a two-channel measurement with a

seven dominant reflection paths in RIRs, including one negative component and

one overlapped component as follows:

h1 ¼ 1 0 0 0 0:5 0 0 0:4 0 0:05 0:3 0 0 �0:1 0:09 0 0 0:04½ �T
h2 ¼ 1 0 0 0 0 0 0:5 0 0:45 0 0 0:3 �0:1 0 0 0:09 0:04 0½ �T

(13.13)

The first three reflection time stamps are assumed to be known and the others are

set as zero. We can confirm that with the correct time stamps for a few of the

dominant early echo paths (not all), we can estimate the channel responses and

perform deconvolution.

13.2.2.3 Algorithm with Reflection Time Stamp Estimation

In this section, we propose a heuristic method for estimating dominant reflection

time stamps. The algorithm is as follows:

1. Initially we choose DSB as a first FBF and perform normalized least mean

square algorithm to estimate the RIR FIR coefficients using the output of DSB.

2. Select the time stamps, in which the estimated RIR magnitudes are above a

predefined threshold, which determines the significance level of the reflection.

3. Perform the proposed algorithm presented in Sect. 13.2.2.2.

4. Iterate 2 and 3 until there is no significant increase on the selected time stamps.

Figure 13.2 shows the converged result, where the simulated output of two

channels has been obtained by convolving the channel response with a white

Gaussian-noise source and the threshold has been set to 0.08. Note that most of the

significant reflection points above the threshold can be estimated almost correctly.
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Fig. 13.1 (a) FBF output: Blue dotted line is DSB output, black dotted lines are updated FBF

output: Red line is the final FBF output after 20 iteration. Updated FBF output produces more

impulse-like output by eliminating the effect of the designated echo paths, in other words, more

deconvolved output. (b) Estimated channel h1. (c) Estimated channel h2: Red dots show the

converged channel response after 20 iteration, and the blue dotted lines are updated responses.

The black line is for original RIR. The designated channel responses are almost perfectly identified
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Fig. 13.2 (a) Estimated channel h1. (b) Estimated channel h2: Red dots show the converged

channel response after 20 iteration, and the black line is for the original RIR. The designated

channel responses above the predefined threshold are almost correctly identified
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13.3 Experiment with Real Car Data

In this section, we test the proposed algorithm using real multichannel sources

measured in cars. Before running the algorithm, inter-channel delays are estimated

using GCC-PHAT [11] to formulate the DSB. Figure 13.3 shows the two-channel

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (samples)

M
ag

ni
tu

de

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (samples)

M
ag

ni
tu

de

a

b

Fig. 13.3 (a) Estimated channel hl. (b) Estimated channel h2

202 L.-H. Kim and M. Hasegawa-Johnson



identification results using one of the single-digit utterances from the AVICAR

database [6], and no distinctive reflection other than direct path has been estimated.

Possible explanation about the result is that the space inside of a car is too small to

have sparsely separable, distinctive echo paths. However, because this result also

means that there is no significantly correlated reflection in the original signals with

the beamformed output using the direct path information as in DSB, we can avoid

the signal canceling problem when we use conventional GSC structure only with

DSB as FBF. Optimal signal enhancement and isolated digit recognition results

with conventional GSC followed by MMSE spectral amplitude estimation have

been already reported in [12].

13.4 Conclusion

In this chapter, we propose a multi-path GSC–based blind channel identification

method, which can be plugged in as a realistic replacement of the sufficient statistic

for optimal speech enhancement. The simulation with artificially generated sparse

channels demonstrates that the proposed algorithm can converge to good estimates

of all components in the original channel responses that are above a predefined

threshold. Channel estimation experiments with real data measured in a car show

that there exists no distinctive significant reflection and support that a conventional

GSC followed by a post-filter can produce optimal speech estimation.
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Chapter 14

Generating Reference Views of Traffic

Intersection for Safe Driving Assistance

Jien Kato and Yu Wang

Abstract In this chapter, we address the problem of driving assistance along traffic

intersections by providing drivers with additional visual information to expand their

visual field. Our goal is to generate image stream of a virtual viewpoint which

follows the host vehicle from a higher position, using images from multiple

roadside cameras. Our approach is based on view morphing, but we extend it by

integrating robust fundamental matrix estimation and sparse key point matching.

This enables some tasks which previously rely on manual operation to be done

automatically.

Keywords Driver visual field • Driving assistance • Image-based rendering (IBR)

• Intersection assistance • Reference view • Vehicle blind spots

14.1 Introduction

Driving is becoming more and more stressful due to increasing traffic density.

The situation seems to be more serious at intersections. According to the Annual

Report 2007 from the National Police Agency of Japan, 46.3% of all traffic

accidents in Japan occurred near intersections. In addition, a very large percentage

of them happened either because of blind spots in the vehicles or inter-object

occlusion due to traffic density at the intersections. These issues limit a driver’s

visual field. As a result, drivers find it more challenging to monitor their surround-

ings and forthcoming situations.

In the context of intersection assistance, Benmimnoun et al. presented a system [1]

that utilizes intervehicle communication which updates the position measurements

received from the onboard GPS and transmits all warning information to vehicles via
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roadside-vehicle communication. With the use of a well-designed human–machine

interface, their system could improve traffic safety to some extent by providing

resulted warning signals to drivers. However, the final information which the driver

receives is that of danger warning. Such information is helpful, but it is not easily

accessible compared to what drivers directly obtain using their eyesight. Also, it is

difficult and awkward to handle at times. In another work that pertains to image

processing, Ichihara et al. extended their NaviView [2] to suit the environment at the

intersections. But a simple affine transformation can only provide drivers with mirror

image of views from a roadside camera. Though that system could extend the driver’s

visual field to the next intersection, it is still power-limited, and the information

obtained is difficult to handle.

We believe that visual information is intuitive. It enhances the driver’s ability in

handling the surrounding situation. Note that a driver’s visual field is limited by the

vehicle’s structure and inter-object occlusion. Broadening it will make it more

efficient. With this in mind, we propose a method for generating a reference view

(Fig. 14.1) which follows the vehicle’s movement from a higher ground.

The resulted view not only extends the driver’s visual field but also provides

information about the vehicle itself. This leads to the strengthening of robustness

against forthcoming occlusions. Since this viewpoint is aligned with the vehicle’s

direction, then it has a direct relation with what the driver could see. Also, it is

natural for the driver to handle such view as reference information.

To generate such kind of view, we expect to use roadside cameras located at the

intersections. Nowadays, roadside cameras have been installed in places where

traffic accidents occur frequently, especially at intersections. Using image data

from those cameras will be cost-effective.

We choose image-based rendering (IBR) method to achieve our goal because it

could provide a realistic novel view. Since the shapes in novel view have to be

preserved, the IBR method based on implicit geometry, such as view morphing [3],

needs to be adopted. The accuracy of these methods has increased in the last decades.

But they have not been widely used in real applications due to their excessive

dependence on manual operations and need for prior knowledge of scene geometry.

In this work, we extend and apply view morphing in a real application by integrating

robust fundamentalmatrix estimation and featurematching. Ourmethod only requires

a slight adjustment of existing camera settings to make it amenable for practical use.

Fig. 14.1 Reference view
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14.2 Approach

We assume that plural cameras have already been set around the given intersec-

tion. Obviously, the more cameras there are, the better reference view could be

generated. In our work, evaluation was done by positioning six cameras at

uniform heights. The detailed arrangement is shown in Fig. 14.2 (left). Our

method does not restrict the detail position of cameras technically. Such a

symmetrical setting is used only for an easy explanation. Each camera and its

clockwise neighboring camera form a pair which are denoted as Cn0 and Cn1.

Here, n is the number of the pair. Like most actual situations, cameras are not

calibrated in advance.

Our onboard system is supposed to receive image streams that are generated by

each roadside camera while approaching the intersection. The camera pair which

produces an orientation closest to the host vehicle is selected. The two images are

then prewarped to make their image planes become parallel without changing the

optical center of the cameras. Afterwards, we produce a novel view by linearly

interpolating the positions and color of the two prewarped images. The resulting

image is parallel with the prewarped two images, and it is shape-preserved.

The position of the perspective view is determined by the angle between the

vehicle’s direction and directions of two selected cameras. Then, the images are

again warped to align with the host vehicle’s direction. In this way, we generate a

view for the virtual camera as Cs shown in Fig. 14.2. After a zooming stage via

driver interaction, the final output of the system is the approximate view following

the host vehicle’s motion.

Viewmorphing [3] is the inspiration for our method here. It could generate image

from any viewpoint by linking two original cameras together. Note that the original

method requires prior knowledge of the camera’s projection matrices and excessive

reliance on manual operation. Our team broadened it by integrating robust funda-

mental matrix estimation and sparse key point matching. The following paragraph

further describes this method.

Fig. 14.2 Actual and virtual cameras
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14.3 Actual and Virtual Cameras

As mentioned previously, the detailed position of roadside cameras is not restricted.

We made it a precondition because the existing roadside cameras in many

intersections are not set for our purposes. The number may not be enough, and

the settings may not suit our needs. Adding one or two cameras or adjusting the

existing settings will make it convenient to use. At the same time, a robust way is

needed to combine the images in a direct way. Moreover, to be able to align it with

the host vehicle’s direction, the virtual camera’s position and direction should also

be determined via the online measurement of the host vehicle’s motion.

14.3.1 Estimate Fundamental Matrix

For the camera pair n, its fundamental matrix Fn is invariable and only needs to be

computed once. The first step we perform is to take two images I00 and I01 from two

cameras Cn0 and Cn1 and establish correspondence between them. Since I00 and I01
are from disparate viewpoints, such feature matching across a wide baseline is an

error-prone task.

To achieve good estimation of the Fn, we first use SIFT key point detector [4] to

select a set of key points from each image. We choose SIFT key point because it is

robust against image transformation, and with a descriptor associate with each key

point, we can easily establish potential correspondence with high confidence. Then,

we match the key points between the image pair by finding the nearest neighbor of

their descriptors in Euclidean distance. Since it may still contain many outliers of

the matching, we adapt RANSAC [5] to estimate the Fn. During each RANSAC

loop, eight corresponding pairs are randomly selected, and associated fundamental

matrix is estimated using eight-point algorithm [6]. The quality of the estimated

fundamental matrix in each loop is assessed by counting the number of inliers.

A match is treated as inlier when there is reprojection error under a threshold. After

many iterations of RANSAC for each camera pair, we get consistent results of Fn.

14.3.2 Virtual View Point

Since our goal is to generate a view that dynamically follows the host vehicle, the virtual

viewpoint’s direction should be the same as that of the host vehicle. In this chapter, we

assume that the online direction of the host vehicle is known asot (Fig. 14.2 left), where

t is the time index. Based on it, we take the camera pair Ct0 and Ct1, which has the

closest direction with ot, and compute the corresponding angles ot0 and ot1. In order

to produce the view of the virtual camera Cs, the s and the camera tilt g (Fig. 14.2 right)
are needed. The s determines the morphing rate when producing the intermediate
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parallel view by interpolation, while the g is needed when rotating the interpolated

image to align the host vehicle’s direction. We treat the position of Ct0 ¼ 0 and

Ct1 ¼ 1; then, the s could be worked out approximately via S ¼ ot0=ðot0 þ ot1Þ
while g ¼ ot1 � ot0ð Þ=2.

14.4 Generating Reference View

In this section, we will introduce our method of generating the reference view. In

each time step, one camera pair is selected, and the images I0 and I1 from C0 and C1

are used as source. Our method is an extension of view morphing [3]. We integrate

a feature-matching procedure to avoid manual operations. Our method could be

summarized as a four-step procedure as described in the following section.

14.4.1 Feature Correspondence

In order to produce a morph, the complete correspondence maps between each pixel

of two source images should be specified. Previously, the user manually determines

correspondences by specifying a sparse set of matching features. The remaining

correspondences are then ascertained based on these matches by interpolation [7].

Excessive reliance on manual operation makes the process ambiguous and not easy

to manipulate [8].

In our work, it is also necessary to obtain the correspondence maps to synthesize

a shape-preserved novel view. To ensure the quality of the novel view, a sufficient

number of matches and ample distribution of the images should be guaranteed. In

this situation, again comes the issue of establishing correspondence between images

across a wide baseline. Differences in estimation of the fundamental matrix arise.

Here, the quality of potential matches is more important. At the same time, there is

additional need for quantity and distribution concerning such matches.

We apply SIFT detector [4] and Harris Corner Detector [9] on both I0 and I1, and
collect responses from the image pair. We again use the descriptor of SIFT key

points to establish potential correspondence as we have done in Sect. 14.3.1.

For each corner key point, we use the normalized cross-correlation criterion to

find its best match [6]. The reason we use two detectors is that they have different

properties. With a local descriptor, SIFT key point is efficient in establishing

correspondence with high confidence. Beside SIFT, using Harris corner key point

could ensure that sufficient shape-related correspondence can be found. We then

collect the matches generated in this manner. In order to eliminate false matches,

we further use the precomputed fundamental matrix to remove outliers by enforcing

Epipolar constraint. This way, we obtained a set of sufficient correspondence with

high confidence. These correspondences will then be used in the following view

synthesis procedure.

14 Generating Reference Views of Traffic Intersection for Safe Driving Assistance 211



14.4.2 Prewarping

In order to produce a shape-preserved morph, the two images should be rotated

twice to align the image planes and scan lines. Then, the linear interpolation on the

warped image could produce new perspective views as the camera moves along the

line linking two cameras together. Therefore, in each time step, we need to perform

projective transformations H0 and H1 on both I0 and I1.
We denote Rdi

yi
and Rfi

(i ¼ 0, 1) are both 3 by 3 matrix. Rdi
yi
is a rotation of angle

yi about axis di in depth, which makes the two image planes become parallel, while

Rfi
corresponds to an affine warping to align the scan lines. Given the fundamental

matrix F of I0 and I1, the four matrixes could be determined by choosing a rotation

axis d0.
The first thing we do is to factorize the precomputed F with singular value

decomposition and obtain two unit eigenvectors (epipoles) e0 ¼ ex0; e
y
0; ez0

� �T
and

e1 ¼ ex1; e
y
1; e

z
1

� �T
of F and FT respectively. We follow the recommended choice in [3]

and select the rotation axis asd0 ¼ ½�ey0; e
x
0; 0�T . Then, we compute a vector

x; y; z½ �T ¼ Fd0, and take d1 ¼ �y; x; 0½ �T . The angles of rotation in depth about

di could be computed via

yi ¼ � p
2
� tan�1 dyi e

x
i � dxi e

y
i

ezi

� �
: (14.1)

In this way, the two rotations in depth are determined.

Following the depth rotation is another affine warp Rfi
to make the Epipolar

lines parallel. After the first rotation, the new epipoles become ~exi ; ~e
y
i ; 0

� �T ¼ Rdi
yi
ei.

Then, the angles of rotation f0 and f1 could be obtained via

f1 ¼ �tan�1 ~eyi ~exi
�� �

: (14.2)

After each image has been rotated twice, the original fundamental matrix is

formed:

~F ¼ Rf1
Rd1
y1
FnR

d0
�y0

R�y0 ¼
0 0 0

0 0 a
0 b c

2
4

3
5: (14.3)

To make sure F is in the form:

H�1
1

� �T
FH�1

0 ¼
0 0 0

0 0 �1

0 1 0

2
4

3
5: (14.4)
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Another translation is then applied on I1 as

T ¼
0 0 0

0 �a �c
0 0 b

2
4

3
5 (14.5)

Now, two prewar transforms can be computed via H0 ¼ Rf0
Rd0
y0

and

H1 ¼ TRf1
Rd1
y1
.

With the obtained H0 and H1, we perform the projective transformations on the

two images I0 and I1, and obtain Î0 and Î1. In the previous step, we have obtained a

set of feature matches. For the following interpolation step, we also perform the

same projective transformation on their coordinates.

14.4.3 Image Interpolation

We have shown that in view morphing [3], the linear interpolation of parallel

images is another parallel view. After the prewarping, both images Î0 and Î1 are

capable for such kind of interpolation. In addition, during the transformation of a

coordinate, the matching point’s coordinates changed as well. The correspondence

of the original images is preserved and represented as the new coordinate of the

warped images. We then determine the maps of non-key points between two

warped images using MATLAB 4 griddata method. This method could produce

smooth surfaces for all pixels between Î0 and Î1 from a set of correspondence,

namely two mapping function T0 : Î0 ! Î1 and T1 : Î1 ! Î0.
Using the morphing rate s, what we have estimated previously, and the two

mapping functions in our hand, we then compute the displacement of each pixel

P0 2 Î0 and P1 2 Î1via :

W0 p0; sð Þ ¼ 1� sð Þp0 þ sT0 p0ð Þ; (14.6)

W1 p1; sð Þ ¼ 1� sð ÞT1 p1ð Þ þ s p1ð Þ: (14.7)

Then, we integrate their colors by cross-dissolve procedure.

14.4.4 Postwarping and Zooming

After the interpolation, we have produced a novel view of the intersection. Since

such view is parallel with the line linking two cameras together, we then perform a

postwarp to make it align along the host vehicle’s direction. The warping is a plane

rotation of angle g in depth. After postwarping, the driver may need to zoom to

finally approximate or obtain the reference view he/she will use during decision

making while driving through an intersection.
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14.5 Experimental Result

Our evaluation experiment is done by using an intersection model at 1:38 scale. We

use six cameras with resolution 640 by 480. The camera setting is approximately

the one shown in Fig. 14.2 (left). Remote toy cars and bikes are used to obtain test

image sequences. Figure 14.3 (top left and middle) shows a pair of our sample input

from the left and right cameras respectively.

First of all, the fundamental matrices are estimated in the way mentioned in

Sect.14.3.1. The prewarping transformations H0 and H1 are then calculated based

on F.We take a pair of cameras’ images as examples as shown in Fig. 14.3 (top left

and middle). By jointly using SIFT and Harris detectors, about two thousand key

points were selected in each image, and the distribution is normalized as shown in

Fig. 14.3 (top right, green: SIFT, red: Harris). Using the matching criterion in

Sect. 14.4.1 and followed with a manually operated refining step, two hundred and

ten features were finally selected as correspondence. We then make the projective

transformations on the two images (Fig. 14.3 bottom left and middle) as well as the

matching points’ coordinates. Without automatic estimation of vehicle’s direction,

we then produce a reference image by manually assigned morphing rate s and the

camera tilt angle g. The resulting image is shown in Fig. 14.3 (bottom right). Even

though the resulting image contains some ghost effect, it is evident that the

proposed method works well.

14.6 Conclusion

In this chapter, we proposed a method to generate the reference view of traffic

intersection for safe driving assistance. We adapted the view morphing approach

and broadened it using robust fundamental matrix estimation and automatic feature

Fig. 14.3 Experimental results
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matching. This allows us to achieve the goal without any prior knowledge of scene

geometry and excessive manual operation, which were crucial obstacles under the

original model. Our experiment shows that our method works fine even for the

images from large baseline disparate viewpoints.

During the processing, since the original images were resampled many times and

occlusion exists, the resulted novel view contains some ghost effect. In order to

solve these effects, we will optimize the raw output by introducing smoothness

prior to the future work.
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Chapter 15

Computer Vision Systems for “Context-Aware”

Active Vehicle Safety and Driver Assistance

Pinar Boyraz*, Xuebo Yang, and John H.L. Hansen

Abstract Recent developments of information technology and mobile lifestyle

have forced drivers to multitask while they drive. The in-vehicle “infotainment”

technology is already taking its place in the transformation of vehicles towards

more intelligent and interactive devices rather than staying as mere transportation

convenience. This transformation has several advantages such as easy route navi-

gation, real-time traffic information, and staying connected with work or people

while traveling. However, it has several drawbacks concerning the impact on driver

cognitive load and attention sources. Therefore, it is crucial to take advantage of

state-of-the-art in-vehicle technology to produce counter-measure systems that

monitor the driver status and reduce driver workload adaptively depending on the

context. In recognition and analysis of the driving context together with driver

status monitoring, computer vision applications supply crucial information both in

the vehicle (i.e., driver head and eye tracking) and out of the vehicle (i.e., lane,

pedestrian, and vehicle detection and tracking, and road sign recognition). In this

chapter, we provide a broad range of computer vision applications for CA-IVS from

the literature and our previous studies, and we report our current research efforts.
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Keywords Computer vision • Context aware • Lane tracking

15.1 Introduction

In their brief report, Fletcher et al. [1] provide an overall summary of promising

computer vision systems applied in the vehicle. They determine areas where vision

systems could be useful such as driver fatigue or inattention detection, pedestrian

spotting, blind-spot checking, lane keeping, traffic sign recognition, and human

factors aids. These applications are built based on several computer vision systems

which are surveyed and/or presented here in this chapter as well. Building on what

is already achieved in this area, we provide a systems engineering survey of

computer vision systems for in-vehicle applications together with our previous

and current findings. This study also presents a system utility analysis that ties all

systems in a mechatronics integration approach, reducing complexity and cost of

the final in-vehicle computer vision system, while maximizing the utility factor of

the resultant design. In Sect. 15.2, applications are grouped into two main areas:

driver status monitoring (inside the vehicle) and vehicle peripheral monitoring

(outside the vehicle). These systems can be thought of as the eyes of the cyber
copilot in the vehicle which (or who) is aware of driver’s condition as well as the

environment and the current situation (i.e., situation/context awareness). Next, in

Sect. 15.3, all systems are analyzed from the perspective of utility in their projected
impact on reducing the number of accidents or fatality rates. After determining

the utility factors of systems, an example of mechatronics system integration

for in-vehicle systems is presented. Finally, conclusions are drawn in Sect. 15.4

pointing to future research directions in this area.

15.2 Computer Vision Systems for In-vehicle Applications

In this section, we briefly survey different CV systems, reporting our progress in

some areas with focus on the UTDrive research team. CV systems are seen as

crucial components of future DAS and AVS systems; however, there is still a need

for further development to achieve robust operation on board. Before providing

details on each system, a list of requirements from onboard CV systems are

presented here to emphasize the challenges in this area, some of which require

hardware solutions and development of novel systems:

• Robust against illumination change

• Reliable in vibration and high accelerations

• Durable to low/high temperatures and weather conditions (especially cabling

and mounting parts)

• Nonintrusive to the driver

• Compact/mobile

• Minimal power and computing source use

218 P. Boyraz et al.



Here, the CV systems are grouped under two main groups focusing on driver and on

the environment covering all aspects of the driving context.

15.2.1 Eye and Head Tracking

Eye-tracking applications are originally motivated by research in human–computer

interface development to create novel ways of interfacing [2] or helping people

with motor disabilities [3]. In [4], an extensive survey of eye-tracking applications

is given. For particular applications of eye tracking in driver monitoring systems,

the systems can have a wide range from bright-pupil technique [5] utilizing

co-centric near-infrared lights around the camera lens with active illumination to

systems using an off-the-shelf webcam and visible light [6] and head-mounted

systems [7]. There are also commercial eye-tracking applications already being

used in studies utilizing eye-gaze information [8–10]. For head tracking, several

applications using eye location, skin color, or motion in the image can be found

[11,12]. A recent real-time system for monitoring driver vigilance is reported in

[13]. In our previous study [14], an evolutionary computational approach was used

to obtain an adaptive eye-tracking system to provide robustness in illumination

changes. The system used bright-pupil technique which is based on retro-reflection

property of the eye retina. The components of the system can be seen in Fig. 15.1,

comprising a CMOS camera, co-centric ring of NIR LEDs to create bright-pupil

effect, and optical absorption filters to block daylight.

Fig. 15.1 NIR eye tracker designed as a part of driving monitoring system
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Using the CV system in Fig. 15.1, eye tracking was performed to measure the

pupil area as an indirect measurement of eyelid closure, eye gaze in x–y coordinate

system, and head motion in 2-D image plane. The system can measure these three

important indicators revealing drowsiness (i.e. PERCLOS [21] and [22]), attention

level, as well as driver activity.

15.2.2 Affective Computing: Emotion Recognition

Emotion recognition can be multimodal using speech and video/image. The emotion

recognition task is verydifficult to achieve. It has been reported that evenhumancoders

are able to recognize the universal six archetypal emotions with accuracy of between

40% and 60%, especially when they are given the cues in single modality (i.e., only

audio or only visual) [15], visible light [6], and head-mounted systems [7].

Although a tremendous amount of work exists in the face recognition area,

emotion recognition remains a challenge since it has a temporal dimension as

well and deals with nonrigid motion of the face. It is also a very young area

which needs substantial work to reach the maturity of face recognition. However,

there have been efforts to develop real-time and automatic units for emotion

recognition using video modality. Anderson et al. [16] designed a fully automated

multistage system for real-time recognition of facial expression. First, the faces are

located using a spatial ratio template tracker algorithm, and optical flow of the face

is subsequently determined using a real-time implementation of a robust gradient.

The head motion is dealt with averaging and was canceled. The motion signatures

from optical flow algorithm were classified using an SVM into non-expressive or

six basic emotion types, as most of the work action units (AUs) were used. Shan

et al. [17] investigated new subspace methods for reducing the features for facial

expression analysis. Pantic et al. [18] especially emphasized the temporal charac-

teristic of emotion sequences and had a detailed analysis of motion sequences using

the profile face videos. However, they commented that this area needs to have a

possible multi-camera system to deal with different viewing angles of the face and

dynamic head motion cancelation. A survey of state-of-the-art automatic facial

expression analysis can be found in Pantic et al. [19].

15.2.3 Vehicle Peripheral Monitoring

In this category, all road object detection and tracking systems can be included.

Among them, the most promising systems are lane detection and tracking, road sign

recognition, vehicle detection tracking, and finally pedestrian detection and track-

ing. Under the UTDrive research project, lane detection/tracking and road sign

recognition systems are currently being developed with a context-aware framework.
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15.2.4 Road Object Detection and Tracking

Video streams, whether processed online or off-line, contain rich information

content regarding road scene. It is possible to detect and track vehicle, lane

markings, and pedestrians and recognize road signs using a frontal camera and

some additional sensors such as radar.

It is of crucial importance to be able to detect, recognize, and track road objects

for effective collision avoidance or driver assistance system. In this chapter, we

present our current progress in lane tracking and road sign recognition also reported

in [22], adding a system utility analysis here.

15.2.5 Lane Detection and Tracking

There has been extensive work in developing lane tracking systems in the area of

computer vision. These systems can be potentially utilized in driver assistance

systems related to lane keeping and lane change. In [23], a comprehensive compar-

ison of various lane-position detection and tracking techniques is presented. From

that comparison, it is clearly seen that most lane tracking algorithms do not perform

adequately so as to be employed in actual safety-related systems; however, there are

encouraging advancements towards obtaining a robust lane tracker. A generic lane

tracking algorithm has the following modules: a road model, feature extraction,

post-processing (verification), and tracking. The road model can be implicitly

incorporated as in [24] using features such as starting position, direction, and

gray-level intensity. Model-based approaches are found to be more robust com-

pared to feature-based methods. For example, in [25], a B-snake is used to represent

the road. Tracking lanes in real traffic environment is an extremely difficult

problem due to moving vehicles, unclear/degraded lane markings, and variation

of lane marks, illumination changes, and weather conditions. In [26], a probabilistic

framework with particle filtering was suggested to track the lane candidates

selected from a group of lane hypotheses. A color-based scheme is used in [27];

shape and motion cues are employed to deal with moving vehicles in the traffic

scene as well.

15.2.6 Road Sign Recognition

Methods used for automatic road sign recognition can be classified into three groups:

color based, shape based, and others. The challenges in recognition of road signs
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from real traffic scenes using a camera in amoving vehicle has been listed as lighting

condition, blurring effect, sign distortion, occlusion by other objects, and sensor

limitations. In [28], a nonlinear correlation scheme using filter banks is proposed to

tolerate in/out of plane distortion, illumination variance, background noise, and

partial occlusions. However, the method has not been tested on different signs in a

moving vehicle. Broggi et al. has addressed real-time road signs recognition in three

steps: color segmentation, shape detection, and classification via neural networks;

however, vehicle motion problem is not explicitly addressed. Jilmenez et al. used

FFT signatures of the road sign shapes and SVM-based classifier. The algorithm is

claimed to be robust in adverse conditions such as scaling, rotations, and projection

deformations and occlusions.

15.3 System Utility Analysis and Mechatronics Integration

In recent years, whisper speech processing has attracted several researches. In this

section, a system utility analysis is performed projecting the effect and cost of the

surveyed CV systems onto 2007 FARS accident causation data [31, 32]. First, a

query is run on FARS database to obtain the number of fatalities as the column and

several driver-related factors on the rows. This table is rearranged into a more

compact form and shown in Appendix 15.1. In this table, categories of causation are

grouped under three major groups: driver impairment, driver errors, and in-vehicle

devices. Redefining of these major groups in seven categories and matching them

with appropriate CV systems that have the potential of preventing the accidents

resulted in a new table shown in Appendix 15.2. The refined categories are: driver

impairment, poor decision making, reckless driving, poor lateral control, poor

longitudinal control, poor maneuvering, and in-vehicle devices. The distribution

of the database is shown in Fig. 15.2. From this figure, it can be seen that only 34%

of the fatalities are caused by driver-related factors; however, 66% of the data is

unclassified and not reported clearly. Therefore, we may say that 34% is an

underestimated figure. Nevertheless, the distribution within this 34% of the

fatalities in terms of causation gives us important information about which types

of driver errors should be prevented and where the drivers require the most

assistance. From the distribution of the causation of accidents, we can clearly see

that poor lateral and longitudinal control and maneuvering accounts for up to 65%.

This figure can be reduced by proper DAS, warning, or active safety systems. Using

the figures from the refined table in Appendix 15.2, a simple utility analysis is

performed, and the results are shown in Table 15.1.

From the analysis results in Table 15.1, the most beneficial systems are determined

to be lane tracking, optical flow, and traffic sign recognition. If an integrated system is

used and integrated using the same sensor with modulation according to the imminent

situation, the most beneficial system is traffic scene analysis. In the light of this

justification, we report our recent efforts in designing a traffic scene analysis system

with initial components being a lane tracker and traffic sign recognizer. The system
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Table 15.1 Utility analysis results using projected prevention rate and unit cost of systems

CV system Name

Projected

prevention % Cost Utility

Eye and head tracking EHT 4,307 14.3 100 0.143

Emotion recognition ER 1,683 5.6 100 0.056

Lane tracking LT 10,304 34.3 100 0.343

Optical flow OF 9,279 30.9 80 0.386

Lane change recognition LCR 219 0.73 80 0.009

Road area recognition RAR 66 0.22 50 0.004

Vehicle detection and tracking VDT 1,585 5.28 100 0.053

Pedestrian detection and tracking PDT 31 0.1 100 0.001

Traffic sign recognition TSR 8,657 28.8 80 0.36

Integrated systems

Traffic scene analysis TSA 20,664 68.8 100 0.688

Driver warning system DW 24,971 83.2 200 0.416

Fig. 15.2 Driver-related factors in crashes and its distribution
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is presented in detail in [22]. The general framework is depicted in Fig. 15.3 with

the aim to extract overall traffic context. The details of the lane tracking algorithm

is given in Fig. 15.4. Sample outputs from road sign recognition module is shown

in Fig. 15.5.

The fusion of information between different image processing modules can be

realized using a rule-based expert system as a first step. Here, we present a set of

rules combining the outputs of vision algorithms with the output options of warn-

ing, information message, and activation of safety features.

Case 1: If road sign is 0, standard deviation of lane position < 10 pixels, standard

deviation of vehicle speed < 10 km/h, context: normal cruise.

Case 2: If road sign is 0, standard deviation of lane position < 10 pixels, standard

deviation of vehicle speed > 10 km/h, context: stop-go traffic, likely

congestion, and output: send information to traffic control center.

Case 3: If road sign is 1, vehicle speed > 20 km/h, context: speed limit is

approaching, output: warning.

Case 4: If road sign is 2, vehicle speed > 20 km/h, context: stop sign is

approaching and the driver did not reduce the vehicle speed yet, output:

warning and activation of speed control and brake assist.

Case 5: If road sign is 3, vehicle speed > 20 km/h, context: pedestrian sign is

approaching, output: warning and activation of brake assist.

Fig. 15.3 General framework for TSA system. The details of the versatile lane tracker algorithm
are given in Fig. 15.4
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These cases represent only a subset of the rule-based schemes, and it is possible to

use more advanced rule-based construction methods such as fuzzy logic (Figs. 15.4

and 15.5).

Fig. 15.4 Versatile lane tracking algorithm. Some example results from lane tracking and road

sign recognition parts are shown in Fig. 15.5

Fig. 15.5 (a) An example output of road area detection and lane tracker. (b) Color segmented stop

signs after dilation in road sign recognition module
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15.4 Conclusion

In this chapter, a brief survey of state-of-the-art computer vision systems for in-vehicle

applications was presented. In a critical approach to gauge these systems with their

benefits, a utility analysis is performed given that an integrated traffic scene analysis

system would be the most optimal to work on. With the encouragement from the

utility analysis, the recent efforts of UTDrive in combining different image/video

processing algorithms with an integrated mechatronics approach using the same

sensor were reported.
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Chapter 16

Integrated Pedestrian Detection

and Localization Using Stereo Cameras

Yu Wang and Jien Kato

Abstract Detecting and localizing other traffic participants, especially pedestrians,

from a moving vehicle have many applications in smart vehicles. In this work, we

address these tasks by utilizing image sensors, namely stereo cameras mounted on a

vehicle. Our proposed method integrates appearance-based pedestrian detection

and sparse depth estimation. To benefit from depth estimation, we map the prior

distribution of a human’s actual height onto the image to update the detection result.

Simultaneously, the depth information that contributed to correct pedestrians’

hypotheses is used for a better localization. The difference with other previous works

is that we take the trade-off between accuracy and computational cost in the first place

of consideration and try tomake themost efficient integration for onboard applications.

Keywords Histogram of Oriented Gradients (HOG) • INRIA data • Pedestrian

detection • Stereo cameras

16.1 Introduction

Pedestrian detection is a very fundamental component in many applications, such as

smart vehicles and robot navigation. In this chapter, we address this task by using

image sensor which has obvious advantages with regard to visibility and low setup

cost. In utilizing an image sensor, the common method of finding pedestrians is to

slide a window over all the scales and positions of the image, extract features from

each window to match with a pretrained model, and return a set of detections with

high-matching scores. Obviously, more distinctive features and more representative
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models will lead to better accuracy. However, improvement in this approach

sometimes comes with additional processing time which usually slows down the

entire system’s speed [1].

In most real-world applications, speed and accuracy are crucial issues and

should be addressed simultaneously. Of course, time-consuming methods are not

recommended. At the same time, the simplest and fastest methods are not robust

enough by themselves. An example is illustrated in Fig. 16.1. We apply a very

simple pedestrian detector described in [2] on the street view image. When

selecting the candidates using strict standards, as shown with continuous line

bounding boxes, many true occurrences for pedestrians were missed. As we make

the selection standard a little looser, some missed true occurrences were success-

fully found. But the second approach has a drawback. The false number increased.

This means that a detector using a simple feature and coarse model is not, by itself,

discriminative enough. The inadequacy, however, could be compensated to some

extent by using other cues from the image and background knowledge.

Several studies have tried to use other cues for pedestrian detection. Leibe et al. [3]

proposed the use of scene geometry to improve object detection. By assuming that

pedestrians can only be possibly supported by the ground plane, some false detection

results could be filtered out. In another work, Gavrila and Munder [4] presented a

system which involves a cascade of modules wherein each unit utilizes complemen-

tary visual criteria to narrow down the image searching space. These two were both

excellent works; however, additional cues aremainly used to get rid of false results but

unable to support a true one.

Fig. 16.1 Select candidates strictly (continuous line bounding boxes); use looser criterion, more

candidates were found (dashed line bounding boxes)
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In a more recent publication, Hoiem et al. [5] showed how to take advantage of

scene elements to jointly determine the camera’s viewpoint, object identities, and

surface geometry efficiently from a single image. By utilizing the probabilistic

relationship among the scene elements, their integration makes a simple detector

become much more discriminative. However, since the geometric estimation mod-

ule costs too much time, their method has limited usage.

In this chapter, we build upon these ideas and expand them by integrating a

simple appearance-based object detector with sparse depth estimation. By properly

modeling the interdependence between object hypotheses and their location, our

method could not only reject object hypotheses with unreasonable depth but also let

sensible depth information to support a true one. In addition, the way we use depth

is independent of prior assumptions and could be done quite fast.

16.2 Overall Strategy

Taking stereo images as input, our system mainly has two complementary modules

which are able to run in parallel. The first one is a pedestrian detector which

processes images from the left camera to find pedestrian hypotheses with image

features only. For every single pedestrian hypothesis in the image, the detector will

assign a bounding box around it and a detection score to indicate its confidence.

The second module is sparse depth estimation which utilizes the stereo images

together to estimate a sparse depth map of images from the left camera.

In order to integrate the two modules together, we use a probabilistic way. We

assume that an object’s imaged height is conditioned on the object category and its

distance with respect to the camera. But the object identity and their distance are

independent from each other. Using a graphical model, we can represent the

conditional independence over the object identities oi, their imaged height hi, and
the corresponding 3D distance di, as shown in Fig. 16.2. The I denotes the left

camera image, and D means sparse depth map which could be estimated using the

stereo image pair, both are observed evidences in our model. Typically, we have n
object hypotheses in an image, where n varies by image.

With this model, the overall joint probability of the scene elements could be

written in the following equation as

P o; d; h; I;Dð Þ ¼
Y
i

P oið ÞP dið ÞP Djdið ÞP Ijoið ÞPðhijoi; diÞ (16.1)

Fig. 16.2 Graphical model
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With observed evidences I andD, we can use Bayes rule to give the likelihood of
the scene elements conditioned on the evidences as

P o; d; hjI;Dð Þ /
Y
i

P hijoi; dið ÞP oijIð ÞP dijDð Þ (16.2)

The proportionality equation is with respect to I andDwhich is constant evidence

from stereo images. On the right-hand side, P oijIð Þ means the confidence of an

object hypothesis given image evidence, which could be estimated by our pedestrian

detector. P hijoi; dið Þ indicates the probability of a hypothesis observed with imaged

height hi, conditioned on its category and 3D depth. In our case, it could be estimated

by introducing a prior distribution of the pedestrians’ actual height. That P dijDð Þ is
the confidence of depth estimation given the depth evidence from a depth map.

In this work, we estimate depth in an explicit way wherein the depth for each

object hypothesis is exact and without any probabilistic description. This allows us

to margin out the d on both left- and right-hand sides; for a single object hypothesis,
we then get

P oi; hijI;Dð Þ / P hijoi; dið ÞP oijIð Þ (16.3)

where P oi; hijI;Dð Þmeans, given the image evidences I and D, the probability of an
object hypothesis oi with its imaged height hi. It is propagated with the P hijoi; dið Þ
and P oijIð Þ, and could be considered as an improved confidence estimation of

object hypothesis which not only takes into account the image evidence but also

the depth information. We get the improved detection result by sorting the score

of P oi; hijI;Dð Þ for each object hypothesis and selecting the high ones. In the

following paragraph, we will introduce the way we get P hijoi; dið Þand P oijIð Þ
from stereo images.

16.3 Pedestrian Detection

In order to obtain a set of pedestrian hypotheses, we built a baseline detector similar

to the one described in [6]. As classifier, the Histogram of Oriented Gradients

(HOG) feature and linear support vector machine was used. To distinguish this from

the original 36-dimensional HOG feature used in [6], we employed an alternative

31-dimensional implementation from [1] to replace it. Also, to simplify the training

process and speed up the runtime performance, a lower-dimensional feature set

which could make a classifier with less parameters was utilized.

While training our detector, we used an existing package SVMPerf [7], which is

highly optimized for training binary two-class classification SVMs with large data

set. For this study, the INRIA person data set which has been organized into 3,610

positive samples of pedestrian with the size 70 by 134 was utilized. The negative
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samples contain a fixed number of 15,000 patches that randomly selected from

1,239 person-free images of that data set. The training returns a 3,255-dimensional

linear classifier (the size of 70 by 134 patch image’s feature vector).

When a novel image emerges, we slide a window over the scales and positions to

find the hypotheses. For each subwindow, we evaluate a score by doing dot product

of the pretrained linear model and feature vector of the image patch. If the score is

larger than the threshold, we either take it as a hypothesis or discard it. Typically,

for an image portion that is likely to be a pedestrian instance, the score for the boxes

around it will be very high. In order to eliminate any overlapped bounding boxes for

the same instance, we perform non-maxima suppression to select only one box for

each instance.

In this way, we get a set of hypotheses which is expected to have a pedestrian

instance, each one with a bounding box and a classification score. However, the

classification score is within the interval �1;þ1ð Þ. Since our graphical model

wants a probabilistic input P oijIð Þ which should be in the interval (0, 1), we

therefore transform the SVM output into a probability form with logistic regression:

P ¼ 1

1þ eAxþB
(16.4)

where x is the classification score output from the dot product, P is the corres-

ponding probability form of the score, and A and B are parameters which could be

estimated by collecting a set of x and p. With novel classification score x0, we take
the corresponding p0 as P oijIð Þ.

16.4 Localization of Pedestrian Instance

The use of a descriptor-based matching approach to obtain a sparse depth map

distinguishes our work from the previous studies on how to estimate depth in a

dense way. Though it could only provide a sparse representation of the scene, it is

less ambiguous than dense matching which suffers from occlusion and nontexture

regions. To make the depth map not “too sparse,” we use two different kinds of key

points as in [8] to relate the stereo images (Fig. 16.3).

We extract scale-invariant key points using Difference-of-Gaussian operator [10]

and corner key point with Harris operator. For the scale-invariant key points, we

utilize a GPU implementation of SIFT to compute their descriptors and match them

by measuring the Euclidean distance. This implementation benefits from the

Nvidia’s CUDA technology and can get a speed of 25 Hz when processing images

with size 640 by 480, which we think is enough for general real-world applications.

The corner points are matched with a correlation window by normalized cross-

correlation. Using two kinds of key points could help establish sufficient raw

correspondences fast.
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With the raw matching result, we further refine them by enforcing Epipolar

constraint and perform linear triangulation to get their 3D coordinates through

precalibrated camera matrices. We set the left camera’s optical center as the

world origin, and then the z coordinate is the depth of each matched key point.

For each object hypothesis that we obtained, we collect all the matched key

points inside its bounding box and select one representative for that bounding box’s

depth. Here we use a simple way to select the representative point by finding the

nearest feature point around the diagonals’ intersection and take the depth as the

hypothesis’ depth di.
Despite its simplicity, this solution performs reasonably well compared with

other approaches such as using mean-shift to directly find the coordinates of the

mass center. The reason may be that a lot of matched point is found around the

object’s boundary, and the mean-shift stops at local maxima frequently.

16.5 Utilize a Prior Height Distribution

The probability for the imaged height of a pedestrian hypothesis P hijoi; dið Þ is

obtained by a product of the observed height of its bounding box hi and a distance-

conditioned height distribution P hijoi; dið Þ. The later one is obtained using depth di.
and a prior distribution of human’s actual height.

Given a class-conditioned object hypothesisoi, its distance di; and the camera’s

focal length f which we already know from the camera’s calibration, we further

model the height of an adult human using a simple Gaussian. The parameters of this

Gaussian could be estimated from statistical data. We follow [5] to use a mean of

1.7 m and a standard derivation of 0.085 m for the pedestrian height distribution;

therefore, we have the height distribution as H � N 1:7; 0:0852
� �

.

Given the prior distribution of pedestrian’s actual height H, by using similarity

relation, we can represent the imaged pedestrian’s height as h ¼ Hf jD. Because of
H � N 1:7; 0:0852

� �
, h is also a simple Gaussian with 1:7f=di as mean and

0:085f=di as standard derivation. Therefore, we get

Fig. 16.3 Key points (left) and their 3D coordinates
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P hjoi; dið Þ � N 1:7
f

di
; 0:085

f

di

� �2
 !

(16.5)

With this imaged height distribution and the observed height hi of each bounding

box, the confidence of every single hypothesis could be updated by taking the

product of the detector output P oijIð Þ and the Pðhjoi; diÞ. The updated confidence

obtained in this way has thus taken into account the depth information and is

expected to be more discriminative than the visual-features-only estimated result.

16.6 Experimental Results

We now present the experiment to show the performance of our method. The test

data we used is collected from the ETHZ pedestrians’ data set [9], which contains

5,235 pairs of stereo images that have been taken from either moving vehicles or

mobile robots. All these images are from precalibrated cameras, with pedestrians on

the left camera images annotated with bounding boxes as ground truth. The data

were taken as sequences, so there are some continuous frames with almost the same

scene. Since our work is only trying to evaluate the detection performance of single

frame, we rearrange the data set by picking out image pairs with different scene

structures. The final test set contains 133 pairs of stereo images with 798 annotations

as ground truth.

In our experiment, we test three detection systems. First is our baseline detector,

which uses HOG feature and linear support vector machine. The second is our

proposed system which integrates this baseline detector and sparse depth estima-

tion. The third one is UoCTTI detector [1], which employs mixtures of multiscale

deformable part models. This is one of the best detectors in the PASCAL object

detection challenge.

Some example detection results of the three systems on difficult images from our

133 stereo pairs’ data set are shown in Fig. 16.4. The three columns from left to

right show the output from our baseline detection system, proposed integration

system, and UoCTTI system, respectively, on the same image. For a fair compari-

son, only the detections within the top ten confidences of each system are treated as

output.

In general, the UoCTTI detector performed the best, as a result of more advanced

modeling. Besides robust low-level feature, this detector uses a hierarchical struc-

ture model called deformable part model to represent the object category. In general,

their detector finds pedestrians not only because they look like a person but also

because they have parts (such as head, hands, legs), and these parts have appropriate

positions. This makes the detector especially robust against occlusion. When

distinguishing different human parts in crowded scene and large pedestrian volume

conditions, the UoCTTI performs much better than our baseline detector system and

our integration.
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When compared to the raw output of our baseline detector, our integration

system did quite well and shows significant improvement in the different scenarios.

The reason is that we integrated the depth cue. Through it, the system could find

pedestrians better by taking into account the observed height of detections and

update the detection confidence to become more reasonable.

From the experiment, in some board scene images, as shown in the second row

of Fig. 16.4, our integration system could perform better than the UoCTTI detector.

We think the reason is the trade-off between different sources of information. While

the UoCTTI detector utilizes both a deformable part model and the position of body

parts to improve the detection, at the same time, there are drawbacks to this

approach. Because the final detection result is partially based on the parts and the

corresponding locations, in cases of low image resolution (parts are not visually

clear) or the pedestrian instance is small (parts are not distinguishable), their model

will penalize the detection and result in a low detection score. In contrast, our

integration system uses depth information which is not dependent on any kind of

condition (as long as the depth is accurately estimated). For the pedestrian instances

that are small in the image, depth will help more because depth information itself

does not depend on the resolution of the image.

Our quantitative experiment uses precision–recall (PR) curve to measure how a

detection system performs in practice. It says a big deal about how the objects are

Fig. 16.4 Experimental results: (left) baseline system, (middle) integration system, (right)
UoCTTI system
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detected in practice. For a fair comparison, we also take top ten ranked hypotheses

as system output. The comparison of the three systems’ performance on the 133

stereo pairs is plotted in Fig. 16.5.

In most cases, the detector with deformable-part-based model has maintained a

precision near 0.5. By integrating depth information, our proposed system

outperforms the baseline detector significantly and closes to the best one.

We also compute an average precision for the three methods to show the overall

performance. The results are 0.2325 (our method), 0.1738 (baseline), and 0.2530

(UoCTTI), respectively.

Without any optimization of speed, on a 2.83-G Intel Core 2 Quad CPU with 4 G

RAM, the average speed of the threemethods are 1.73 s (ourmethod), 1.7 s (baseline),

and 8.4 s (UoCTTI) on a single 640 by 480 image. TheUoCTTI detector is quite time-

consuming. It usesnearlyfive timesmore thanour baselinedetector. Since theUoCTTI

detector also uses HOG as low-level feature set, its disadvantage in runtime may

mainly boil down to the complicated model it uses. Therefore, even if it is powerful,

it could not be used in some applications before the runtime issue could be resolved.

By carefully selecting the efficient cues, our integration system could also be

very fast. Though this runtime performance is not good enough for some

applications, it still has room for improvement. Currently, in our system, the most

time-consuming part is the HOG feature pyramid computation and sliding window

searching. Since these two kinds of processing can be done much more faster by

using GPU programming, our integration system still have the potential to be used

in real-time applications.

Fig. 16.5 PR curve for the detection performance
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16.7 Conclusion

In this chapter, we proposed a method for pedestrian detection in traffic areas. We

integrate typical object detection method with sparse depth estimation. This enables

us to use 3D depth information naturally and improve detection accuracy by taking

into account the human knowledge that “things become smaller when they move

farther.”

The efficiency of our integration was shown in our experiment. Without adding

too much processing time, our method could improve the performance of our

baseline detection system to a significant level, even close to a state-of-the-art

detection system [1]. For the latter one, processing time for the detection with the

same image size will cost nearly five times. Besides efficiency, another thing that

we found out from the experiment is that the utilization of depth is independent of

image resolution and instance size. This leads to stable improvement over the

baseline system for all different kinds of scenes.

However, some issues still exist in the current system. First, the depth informa-

tion that we introduced is obtained in an explicit way. This will, in some level, make

the system sensitive against error in depth estimation. Secondly, our system is not

good in handling occlusion and therefore quite weak in some crowd scenes. In the

future work, we will mainly focus on robust depth estimation and occlusion

handling.
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Chapter 17

An Examination of Overtaking Judgments

Based on Limitations in the Human

Perceptual System: Implications for

the Design of Driver-Assistance Systems

Anand Tharanathan

Abstract Traffic accidents that occur during an overtakingmaneuver is aworldwide

problem. Such accidents lead to several injuries and fatalities each year. Similarly,

rear-end collisions also comprise a large proportion of accidents each year. However,

there is a high disparity in the number of studies that has examined the underlying

causes for the two types of accidents. Several studies have investigated driver

performance during a car-following task, which have in turn led to the development

of driver-assistance systems to avoid rear-end collisions. However, only few studies

have attempted to study judgments during an overtaking task, and even fewer studies

have investigated the perceptual demands on a driver during such a maneuver. Since

driving is primarily a visual task, in this paper, I conduct a detailed examination of an

overtaking task with an emphasis on the limitations in the human perceptual system.

Also, to better understand the complexity of an overtaking task, I compare and contrast

an overtaking task with a car-following task. As an implication for design, I address

certain disadvantages in using a typical forward-collision-avoidance-warning-system

(designed to avoid rear-end collision) to aid anovertakingmaneuver.Considering such

limitations, seven functional requirements have beendescribed that are important to be

considered in the design of driver-assistance systems to support safe overtaking.

Finally, I propose a model for the design of driver-assistance systems that emphasizes

overcomingdrivers’ perceptual limitations byenhancing the effectiveness of the visual

information that is available from the traffic environment.
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17.1 Introduction

Traffic accidents account for several deaths and injuries each year. In Europe,

42,500 people are killed and 3,500,000 are injured every year due to traffic

accidents [1]. Similarly, in the United States, over 42,000 people are killed in a

year due to motor vehicle crashes [2]. Therefore, it is important to understand the

underlying reasons for such collisions. It has been suggested that approximately

90% of all traffic accidents can be attributed to human error [3], and studies have

investigated driver performance during car following [4], left and right turn

maneuvers, [5] and at traffic intersections [6]. Also, research on computer vision

and intelligent transportation systems have led to the development of several driver-

assistance systems (DAS) that aid drivers, for example, in car following, inattention

detection, pedestrian spotting, and lane keeping [7–9].

However, fewer studies have focused on drivers’ judgments during overtaking

maneuvers [10, 11]. This is quite surprising because overtaking maneuvers lead to

many fatal accidents each year [12]. For example, between 1995 and 2000, about 26

traffic participants died each year in Netherlands due to overtaking failures [12].

In addition, it was reported that overtaking maneuvers led to a considerable propor-

tion of injury-causing accidents in Nottinghamshire, England [13]. Furthermore, in

the United States, there were 138,000 accidents due to overtaking in the year 2000,

and such accidents accounted for 2.1% of all fatal crashes and 1.1% of injury

crashes [14]. In short, global accident data suggests that it is critical to identify the

underlying causes for accidents during overtaking maneuvers. Since driving is

primarily a visual task [15], it will be beneficial to identify limitations in the

human perceptual system that lead to erroneous judgments during such maneuvers.

Consequently, it is essential to explore ergonomically appropriate solutions to

overcome such limitations by developing DAS to help drivers during overtaking

maneuvers.

In this article, we address five specific topics. First, we identify the sources of

visual information that drivers rely on during an overtaking maneuver and the

perceptual judgments that they typically make during such maneuvers. Second, to

better understand the complexity of an overtaking maneuver, we compare and

contrast an overtaking task with car following, especially because judgments during

car following have been widely studied [16–18]. We outline the critical differences

in the available visual information and associated judgments during the two types of

tasks. Third, since forward-collision-avoidance-warning-systems (FCAWS) are

available to aid drivers during car following, we investigate the possibility of

using typical FCAWS to aid overtaking maneuvers. Based on the known limitations

in the human perceptual system and the functional capabilities of the currently

available FCAWS, we report certain disadvantages in using such FCAWS to

support overtaking maneuvers. Fourth, we describe seven functional requirements

that are important to be considered in the design of an ergonomically efficient DAS

to support overtaking maneuvers. Finally, we propose a model for the design of

DAS that emphasizes on overcoming drivers’ perceptual limitations by enhancing

the effectiveness of the available visual information.
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17.1.1 Identifying the Problem

Drivers perform maneuvers like lane changes, left and right turns, car following,

and overtaking, and it is important to avoid collisions during such maneuvers. It has

been suggested that an overtaking maneuver is especially a complex one that has a

high probability for human error [19]. Although studies suggest that an overtaking

maneuver is a complex task, the sources of visual information that guide such

maneuvers are largely unknown. Past research suggests that drivers use different

strategies to complete an overtaking maneuver [11]. Also, it has been noted that

drivers make erroneous judgments about the temporal gap required to complete a

safe overtaking maneuver [20]. Also, drivers are typically not accurate in judging

the distance required to pass [11, 21]. In short, first, it is important to clearly identify

the sources of visual information that drivers use during an overtaking maneuver.

Then, it is essential to examine the effectiveness of such sources. If the effective-

ness of the visual information is low, then the quality of the consequent perceptual

judgments will be poor. In contrast, if the effectiveness of the visual information is

high, then the quality of the consequent perceptual judgments will be better.

An important contribution from DAS can be in enhancing the effectiveness of

visual information.

17.2 Visual Information that Drivers Rely

on During Overtaking Maneuvers

A recent study reported that after drivers decide to overtake, they determine whether

the distance until the first oncoming car is sufficient to initiate the maneuver.

Additionally, it was suggested that since the self, lead car, and oncoming car are

in motion, it is essential to perceive the velocity and time-to-contact (TTC) informa-

tion of the cars before initiating the overtaking maneuver and while passing [22].

Furthermore, the oncoming car might be accelerating or decelerating. Therefore,

drivers have to accurately judge the rate of change of velocity of the oncoming car.

In short, judgments about distance, velocity, acceleration, deceleration, and TTC are

critical during overtaking maneuvers. Needless to state, an overtaking maneuver is

perceptually more demanding to a driver because he or she has to make such

judgments for more than one vehicle – the lead car and the oncoming car. Next,

I examine the effectiveness of such visual information.

17.2.1 Time-to-Collision

Lee (1976) noted that the time-to-collision with an approaching vehicle is optically

specified by the ratio of the angular extent (e.g., visual angle subtended on the

driver’s eye by the front bumper of the oncoming car) to the rate of change of that
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angular extent [23]. He named this ratio tau, and he suggested that the human

perceptual system is sensitive to tau. However, tau has an important limitation, which

is indirectly due to the limitation in the spatiotemporal resolution of the human visual

system [24]. Specifically, the threshold to detect an increase in an approaching

object’s optical size (or visual angle subtended at the eye) is 0.017 deg [25] or

0.172 deg/s [26]. Tau is effective only if the optical expansion rate exceeds threshold
(Gray and Regan 1998). Due to such limitations in the human perceptual system,

drivers cannot accurately judge the TTCwith an approaching vehicle when the actual

TTC is relatively high. However, during an overtaking maneuver, the TTC with the

oncoming car might be relatively large, sometimes around 6 s [22].

17.2.2 Distance of the Oncoming Car

The vergence angle of the eyes can provide information about the distance of a

fixated object, but such a source of information is accurate only when the fixated

object is less than 10 m from the self [11]. Importantly, during an overtaking

maneuver, an oncoming car can be more than 100 m from the driver [22]. Also,

the effectiveness of different sources of visual information varies with distance [27].

At far distances, optical expansion rate (i.e., the rate of change of the visual angle

subtended on the driver’s eye) of an oncoming vehicle and tau, which specifies the

TTC with the oncoming vehicle, may be below threshold.

17.2.3 Velocity of the Oncoming Car

Due to the limitation in the spatiotemporal resolution of the human visual system,

drivers will have more difficulty in perceiving the velocity of a vehicle that is small

in size, or one that is approaching slowly, compared with a large vehicle or one that

approaches fast. This is because the optical expansion rate is smaller for vehicles

that are smaller in size, or ones that move slowly, compared with those that are

larger or move faster [24].

17.2.4 Acceleration

Studies have reported that the human perceptual system is incapable of accurately

perceiving acceleratedmotion [28–30]. Specifically, studies have shown that observers

overestimate the TTC with a car that approaches at an accelerated rate [31].

An overestimation of TTC implies that drivers judge an approaching vehicle to collide

with themmuch later than it actually would. Such overestimations of TTC can be fatal

while driving.
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17.2.5 Relative Direction of Approach

Gray et al. (2004) reported that the perceived velocity is relatively lower when the

observer and an approaching object are moving in opposite directions [32]. They

suggested that this leads to erroneous judgments of TTC. Such erroneous judgments

are critical during an overtaking maneuver because while overtaking, the self and

the oncoming car are typically moving in opposite directions, head on.

17.2.6 Motion Adaptation

Studies have reported effects of motion adaptation on certain judgments involved in

driving [33] and especially during overtaking maneuvers [11]. Based on driver

performance in a driving simulator, such studies showed that while driving on rural

roads, after drivers have been exposed to a nonchanging gap between the self and

the lead car for an extensive period of time, the thresholds for detecting a change in

gap between the self and the lead car or the oncoming car is higher [11]. In other

words, it takes longer for drivers to detect the change in distance between them and

the oncoming car when overtaking on rural roads. From a safety perspective, this is

quite dangerous. Congruent with such studies, Hegeman et al. (2005) reported that

most of the overtaking accidents in Netherlands occur on rural roads [22].

In sum, there are several limitations in the human perceptual system to

perceive distance and motion. Such limitations become more critical under

certain traffic conditions which might lead to erroneous judgments about distance,

velocity, and TTC with an oncoming car. At this point, to better understand the

complexity of an overtaking task and the additional demands it imposes on a

driver, it will be beneficial to compare and contrast an overtaking task with a

closely related type of driving task that has been widely studied; car following.

I do so in the following section.

17.3 Critical Differences Between an Overtaking Task

and Car Following

Inaccurate judgments during overtakingmaneuvers can result in overtaking accidents.

Similarly, inaccurate judgments during car following can result in rear-end collisions.

Twenty-five percent of accidents on the road are rear-end collisions [34]. Therefore,

several studies have investigated the types of perceptual judgments that are critical

for safe car following. For example, studies have investigated deceleration judgments

[16, 18, 35], headway estimation [36], and TTC judgments [1, 2, 6, 14, 17, 18, 29, 31,

34–43] during car following. Interestingly, all judgments that are crucial for safe car

following are also critical during overtaking maneuvers. However, there are three
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specific differences between an overtaking maneuver and a car-following task which

makes an overtaking maneuver typically more complex.

First, during an overtaking maneuver, drivers have to judge the motion of both

the lead car (car to be overtaken) and the oncoming car. In contrast, during a

car-following task, the driver typically needs to judge only the motion of the lead

car. Therefore, the perceptual demands associated with an overtaking task might be

higher than a car-following task. Second, driver distraction is one of the leading

causes for rear-end collisions. In other words, rear-end collisions typically happen

because drivers do not attend to the road for adequate amount of time [40].

In contrast, during an overtaking maneuver, drivers typically have their eyes on

the road. Therefore, inaccurate judgments during overtaking maneuvers are primar-

ily due to the perceptual limitations in human beings to process motion, rather

than a lack of attention. Third, rear-end collisions typically happen at shorter

headways [44] when the self is following the lead car very closely. In contrast, an

overtaking maneuver might be initiated when the distance between the self and the

oncoming car is quite large. Furthermore, during poor driving conditions, such as

during rain, snow, or night, overtaking maneuvers can become even more percep-

tually taxing to drivers than usual.

In sum, there are critical differences between a typical car-following task and an

overtaking task. It is clearly evident that limitations in the human perceptual system

contribute highly towards inaccurate judgments during an overtaking maneuver,

rather than a lack of driver’s attention on the road. Therefore, it is important for

designers to consider such limitations in the human perceptual system in the design

of intelligent transportation systems that can enhance drivers’ visual performance

during such complex maneuvers. Currently, there are forward-collision-avoidance-

warning-systems (FCAWS) that can aid drivers in safe car following. In the next

section, I outline the typical functional requirements considered in the design of

such FCAWS and how it might be critically disadvantageous to utilize such systems

to assist drivers during overtaking maneuvers.

17.3.1 Current Forward-Collision-Avoidance-Warning-Systems

Due to the differences between the two types of maneuvers, FCAWS that are

specifically designed to aid car following [45] might not always be effective to aid

overtaking maneuvers. Specifically, there are three important limitations regarding

the use of FCAWS to aid overtaking maneuvers. First, FCAWS typically aid in

detecting the dynamics of only one host vehicle; the lead car [46]. However, in an

overtakingmaneuver, there are two cars involved, the lead car and the oncoming car.

Second, one of the functional requirements of a typical FCAWS is that it should be

able to detect the presence of a lead car only up to 100 m in front of the self [46].

However, during an overtaking maneuver, an oncoming car might be even fur-

ther [22]. Third, FCAWS typically issue warnings when the TTC with the host

vehicle reaches a threshold value, which is relatively small, for example, 2 s [47].
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However, an overtaking maneuver can take up to 6 s [22], and prior research shows

that the accuracy of TTC judgments decreases as the actual TTC increases [17].

In sum, the typical functional requirements and thresholds considered in the design

of FCAWS to aid safe car following cannot be generalized to aid overtaking

maneuvers. Therefore, as an aid to overtaking maneuvers, DAS needs a separate

set of functional requirements and thresholds.

17.4 Driver-Assistance Warning Systems

for Overtaking Maneuvers

In this section, I identify seven functional requirements that have to be considered

as guidelines while designing DAS to support overtaking maneuvers. Importantly,

the requirements have been developed to overcome the perceptual limitations of

drivers while carrying out overtaking maneuvers. Also, the human factor involved
in such a human–automation interaction is considered.

17.4.1 Focus on Object-Motion Processing in Addition
to Object Recognition

Most rear-end collisions occur when the driver is distracted and does not view the

traffic for adequate amount of time [40]. Therefore, forward-collision-avoidance-

warning-systems designed to support safe car following typically focus on object

recognition because it assumes that the driver is not attentive to the traffic scene.

However, during an overtaking maneuver, the drivers typically have their eyes on

the road throughout the maneuver and hence are attending to the traffic scene.

Under such conditions, it is the incapability of the human perceptual system to

perceive distance and motion that leads to inaccurate judgments rather than a lack

of attention to the traffic scene. Therefore, the DAS should be developed to

overcome such limitations.

17.4.2 Capability to Detect the Motion Parameters of a Vehicle
at Far Distances from the Self

Human perceptual system is typically incapable of accurately detecting a vehicle’s

motion when its distance from the self is very far. However, overtaking maneuvers

might have to be performed at such distances (e.g., 200 m).
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17.4.3 Capability to Detect Motion Parameters
of the Oncoming Vehicle

The DAS must be capable of accurately detecting in real time all parameters of

motion of the oncoming vehicle, relative to the self (velocity, acceleration, decel-

eration, TTC, direction of movement, etc.). The human perceptual system is

incapable of accurately detecting a vehicle’s optical expansion rate when the

vehicle is small in size, at a far distance, or moving at a slow velocity [24].

In addition, the perceptual system cannot accurately judge accelerated motion,

especially when the TTC is greater than 1 s [30]. Furthermore, accuracy of velocity

and TTC judgments vary with respect to the relative direction of movement

between the oncoming car and the self [32]. Finally, judgments of TTC are not

accurate when the optical expansion rate is below threshold [48].

17.4.4 Capability to Detect the Motion Parameters
of the Lead Vehicle

The DAS must be capable of accurately detecting in real time all parameters of the

lead vehicle’s motion (the vehicle which is to be overtaken), relative to the self

(velocity, acceleration, deceleration, time-to-passage, direction of movement, etc.).

All the justifications from functional requirement “c” apply here. In addition,

research [43] suggests that it is easier for human beings to attend to one object

and search (or judge) for a particular parameter (e.g., presence of a distracter)

compared with simultaneous searches between two objects for the same parameter

(e.g., TTC with oncoming car and time-to-passage with the lead vehicle, both of

which are temporal parameters). Furthermore, [49] showed that TTC judgments are

affected when the number of objects in the scene increases.

17.4.5 The DAS Must Be Sensitive to the Physical and Dynamic
Capabilities of the (Self’s) Car

The DAS should be able to continuously sense and process the possible gain (e.g.,

possible acceleration within a temporal window) of the (self’s) car under the given

set of environmental conditions (e.g., gyroscopic capabilities of the car, friction of

road during rain, snow, etc.). Such information must be processed simultaneously

with the dynamics of other vehicles (or objects) as mentioned in functional

requirements “b” through “d.” When drivers have to process such complex infor-

mation and make respective calculations, it will significantly increase their mental

workload. However, studies suggest that warning systems should be designed to

minimize work load on drivers (Miller and Huang 2002).
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17.5 The Human Factor in Human–Automation Interaction

Driver-assistance systems are automated systems, and it is important to consider the

implications of such automated systems on driver performance. According to the

Parasuraman–Sheridan–Wickens model [41] of automation, any automation can be

classified into four levels: (1) information acquisition, (2) information analysis, (3)

decision selection, and (4) action implementation. Automation can be done at any

or all the four levels. However, a major limitation in completely automating a

system (i.e., across all four levels) is that it leaves the human with only a supervi-

sory role. Therefore, if the system has to return back to manual functioning, or when

there is a malfunction in the automation, it leads to a decrease in the driver’s

situation awareness and an increase in workload [38]. Therefore, automation across

all four levels is not always ideal. The next two functional requirements have been

proposed considering such implications for human–automation interaction and to

enhance the overall performance of the driver–automation system.

17.5.1 Automate the Decision Selection Stage

Functional requirements “b” through “e” imply that the DAS should be automated

across the information acquisition and information analysis stages. Additionally,

the decision selection stage should also be automated. Based on existing traffic

conditions, the DAS should provide drivers with a decision. Such a decision should

be based on the possibility of overtaking, and the decision should be conveyed to

the driver in an effective manner. Specifically, based on the information analyses,

the DAS should be able to determine whether it is possible or not possible to safely
complete the overtaking maneuver. Let us consider a scenario. The self is going

uphill, on a rainy night. The self initiated the overtaking maneuver by moving to the

overtaking lane. However, there is an oncoming car, coming downhill. Based on the

information available from the environment (that of the lead car and the oncoming

car), the DAS calculates the time to complete the maneuver as 8 s, and the minimum

speed to be 100 kph. However, based on the calculation of the underlying dynamics

of the self’s car and an additional margin of safety, the DAS decides that it is not
possible to complete a safe overtaking maneuver. After analyzing this possibility of
completing a safe overtaking maneuver, a decision should be provided to the driver

in an effective manner.

Automating the decision selection stage is important for DAS designed for

overtaking maneuvers. When drivers have to process complex information and make

necessary calculations and analyses, it will significantly increase the mental workload

on the driver. This can affect the perceptual judgments and consequent actions. Also,

based on currently available research on motion perception, it is unclear about the

capability of humans to judge the ideal acceleration required to complete an overtaking

maneuver. The directly available optic information to sense the ideal acceleration is
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very complex, and research suggests that the human perceptual system might not be

able to compute such complex calculations [43, 50]. Therefore, it will be beneficial to

automate the decision selection stage such that the DAS can provide drivers with a

decision on whether it is safe or not to carry out the overtaking maneuver.

17.5.2 Provide an Auditory Warning, but Do Not Impose
It on the Driver

The modality and type of warning is important. The warning should be auditory,

and the DAS should not impose the warning on the driver. Also, the action

implementation stage should not be automated. This functional requirement is

supported by two specific reasons. First, during an overtaking maneuver, the visual

system is overloaded. Under such conditions, an auditory warning is more effective

and helps to capture the driver’s attention more readily (e.g., [42]). Second,

research suggests that human performance deteriorates when automation imposes

actions on them (e.g., [38]). Therefore, it is important that the driver is always in

active control of the vehicle. The DAS should only provide the driver with a

decision; it should be the driver who finally decides whether to accept the decision

provided by the DAS.

17.6 Designing DAS to Overcome Perceptual

Limitations in Drivers

As is evident from the above analysis of an overtaking maneuver, it is critical to

consider the limitations in the human perceptual system while designing better

DAS. One of the major assumptions of the current DAS is that such systems will be

helpful when drivers are not attending to the road, or in other words, are distracted.

For example, it has been suggested that if drivers are looking at a potential problem

in the traffic scene, a warning is irrelevant [8]. This might be true for car following,

when the lead vehicle is much closer to the driver. However, an overtaking

maneuver is a good example of how a warning might be effective, even when

drivers are looking at a potential problem in the traffic scene. During an overtaking

maneuver, deterioration in driver performance is primarily due to the incapability

of drivers to process distance and motion information when vehicles are far away,

approaching at a relatively slow velocity, or are smaller in size. Therefore, it is

critical to consider such perceptual limitations in the design of better DAS. Here,

I present a model (Fig. 17.1) that will be helpful in the design of better DAS. The

primary contribution of the proposed model is in emphasizing the fact that an

important aspect of collision avoidance lies in the ability of drivers to effectively
use the available visual information. If the visual information is not effective,
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allocating more attention will not improve driver performance. Therefore, DAS can

contribute significantly toward enhancing the effectiveness of visual information

which will lead to better perceptual judgments, reduce collisions, and increase

driving safety.

17.7 Conclusions

The global data on overtaking accidents suggest that such traffic maneuvers require

immediate attention. Additionally, the limitations in the human perceptual system

suggest that drivers’ judgments are not always accurate while performing such

maneuvers. Therefore, it is important to design DAS that can aid the drivers during

these complex maneuvers. Current FCAWS are typically designed for rear-end

collisions. However, the visual information and environmental characteristics

involved in a car-following task is different from an overtaking maneuver. In

short, it is important to design DAS that can help drivers during overtaking

maneuvers. Also, I have identified seven functional requirements that are important

to consider in the design of such DAS. Finally, a model has been proposed for the

Fig. 17.1 A model for designing driver-assistance systems to overcome perceptual limitations in

drivers
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design of an effective DAS with emphasis on overcoming the limitations of the

human perceptual system.

In conclusion, the proposed requirements take in to account human perceptual

capabilities, limitations, and psychological factors associated with interacting with

the automated DAS. Future research should address how such functional

requirements affect the cognitive aspects of driver performance, i.e., situation

awareness, human–automation interaction, and driver workload.
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Chapter 18

Advances in Multimodal Tracking

of Driver Distraction

Carlos Busso and Jinesh Jain

Abstract This chapter discusses research efforts focused on tracking driver

distraction using multimodal features. A car equipped with various sensors is

used to collect a database with real driving conditions. During the recording, the

drivers were asked to perform common secondary tasks such as operating a cell

phone, talking to another passenger, and changing the radio stations. We analyzed

the differences observed across multimodal features when the driver was engaged

in these secondary tasks. The study considers features extracted from the controller

area network bus (CAN-bus), a frontal camera facing the driver, and a microphone.

These features are used to predict the distraction level of the drivers. The output of

the proposed regression model has high correlation with human subjective

evaluations (r ¼ 0.728), which validates our approach.

Keywords Attention • CAN-bus data • Distraction • Driver behavior • Driver

distraction • Head pose estimation • Multimodal feature analysis • Real traffic

driving recording • Secondary task • Subjective evaluation of distraction

18.1 Introduction

New advances in sensing technologies and signal processing have opened interesting

opportunities for in-vehicle systems that aim to increase road safety. One important

direction is to monitor driver behaviors that can lead to car accidents. According to

theNational Highway Traffic Safety Administration (NHTSA),more than 25%of the

police-reported accidents involved distracted drivers [1]. This fact is supported by

the “100-Car Naturalistic Driving Study,” which concluded that over 78% of crashes

and 65% of near crashes were the result of inattentive drivers [2]. These statistics are
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not surprising since 30% of the time when a car is moving, the driver is involved in

secondary tasks that are potentially distracting [3]. With the development of new

in-vehicle technologies, these numbers are expected to increase. Therefore, it is

important to identify and develop feasible monitoring systems that are able to detect

and warn inattentive drivers. These systems will play a crucial role in preventing

accidents and increasing the overall safety on the roads.

Distraction can affect visual, cognitive, auditory, psychological, and physical

capabilities of the driver. Distraction is defined by the Australian Road Safety

Board as “the voluntary or involuntary diversion of attention from the primary

driving tasks not related to impairment (from alcohol, drugs, fatigue, or a medical

condition)” [4]. Under this well-accepted definition, the driver is involved in

additional activities that are not related to the primary driving task, which include

talking to a passenger, focusing on events or objects, and manipulating in-car

technologies. As a result, the driver reduces his/her situational awareness, which

affects his/her decision making, increasing the risk of crashes.

We have been working in detecting inattentive drivers by combining different

modalities including controller area network–bus (CAN-bus) data, video cameras,

and microphones [5, 6]. Our long term goal is to develop a multimodal framework

that can quantify the attention level of the driver by using these noninvasive sensors

(Fig. 18.1). Instead of relying on simulations, the study is based on recordings with

actual drivers in real-world scenarios using the UTDriver platform – a car equipped

with multiple sensors [7]. First, we have studied the changes observed in features

across modalities when the driver is involved in common secondary tasks such as

operating navigation systems, radio, and cell phone [5]. Then, we have proposed a

regression model based on relevant multimodal features that can predict driver

distraction. The results have shown that the outputs of the proposed system corre-

late with human subjective evaluations.

This chapter discusses the state-of-the-art in detecting inattentive drivers

using multiple sensing technologies. It describes previous studies and our own

contributions in the field. Notice that we only focus on distractions produced by

secondary tasks.We do not include distractions or impairments produced by alcohol,

fatigue, or drugs [8, 9].

Fig. 18.1 Monitoring driver behavior system using multimodal information
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The chapter is organized as follows: Section 18.2 gives a brief overview of

previous work related to the study presented in this chapter. Section 18.3 describes

the protocol used to collect the database. Section 18.4 presents subjective

evaluations to quantify the perceived distractive behaviors. Section 18.5 reports

our analysis of features extracted from the CAN-bus signal, a frontal camera, and a

microphone. We study the changes in behaviors observed when the driver is

engaged in secondary tasks. Section 18.6 demonstrates that the multimodal features

can be used to recognize drivers engaged in secondary tasks, and to infer the

distraction level of the drivers. Section 18.7 concludes the chapter with discussion

and future directions.

18.2 Related Work

Several studies have attempted to detect inattentive drivers. These studies have

proposed different sensing technologies including controller area network–bus (CAN-

bus) data [7, 10, 11], video cameras facing the driver [12–14], microphones [10], and

invasive sensors to capture biometric signals [8, 15, 16]. Some studies have analyzed

data from real driving scenarios [7, 11, 17], while others have considered car

simulators [16, 18, 19]. They also differ on the secondary tasks considered in the

analysis. Bach et al. presented an exhaustive review of 100 papers that have consid-

ered the problem of understanding, measuring, and evaluating driver attention [20].

This section gives a brief overview of the current approaches to detect driver

distractions.

18.2.1 Modalities

Features derived from the vehicle such as speed, acceleration, and steering wheel

angle are valuable in assessing driver behaviors [13, 18, 19, 21–23]. Relevant

information can be extracted from CAN-bus data. Sathyanarayana et al. used

CAN-bus signals to model driver behaviors [21]. They extracted steering wheel

angle and gas and brake pedal pressures. The proposed information was used to

detect driving maneuvers such as turns, stops, and lane changes. After maneuver

recognition, they recognized distraction using driver-dependent Gaussian mixture
model-universal background model (GMM-UBM). Unfortunately, accessing the

CAN-bus information is not always possible, since the car manufactures protect this

information. Accessing car information is easier in studies that use car simulators.

These interfaces usually provide detailed information about the car. For example,

Tango and Botta used features such as the steering angle, lateral position, lateral

acceleration, and speed of the host vehicle to predict the reaction time of the

drivers [19]. Along with other features, Liang et al. used the steering wheel position,

steering error, and lane position to assess cognitive distraction [13]. Ersal et al. built a
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radial-basis neural network model to characterize normal driving behavior [18].

The proposed system used features derived from the pedal position. They used this

normal model to identify variations on the behaviors displayed when the driver was

engaged in secondary tasks. Likewise, Yang et al. used a GPS signal to approximate

information that can be extracted from the CAN-bus signal such as the velocity and

steering wheel angle. They use computer simulations for the study [23].

Cameras have been used to detect and tract inattentive drivers. Several studies

have attempted to infer the head pose and/or eyelid movements of the driver from

frontal cameras [11, 13, 14, 17]. Liang et al. showed that eye movements and driving

performance measures (e.g., steering wheel position, lane position) were useful to

detect cognitive distraction [13]. They proposed a classifier trained with support
vectormachine (SVM), achieving an average accuracy of 81.1%.Su et al. presented a

simple approach to monitor driver inattention using eyelid movements and facial

orientation [14]. They used a low-cost CCD camera mounted in the car dashboard.

Bergasa et al. also considered eyelidmovements and head pose to detect fatigue [17].

They estimated the percent eye closure (PERCLOS), eye closure duration, blink

frequency, face position, fixed gaze, and nodding frequency, which were fused with

fuzzy classifiers. In addition to head rotations, Kutila et al. used the gaze of the driver

and lane tracking data to detect visual and cognitive workload. [11]. They used a

stereo camera system to estimate the head and gaze features. An important challenge

in this field is processing video in real driving conditions due to lighting variations.

Fortunately, advances in computer vision have led to robust tracking algorithms that

are effective and suitable for in-vehicle systems [24]. Furthermore, Bergasa et al.

showed that IR illuminator can be used to reduce changes in illumination [17].

Other studies have considered physiological signals, which are correlated with the

driver workload, attention, and fatigue [8, 15, 16]. Among all physiological signals,

electroencephalography (EEG) is the predominant andmost usedmodality [20]. Putze

et al. used multiple biometric signals such as skin conductance (SC), photoplethys-
mography (PPG), respiration and EEG [16]. Damousis and Tzovaras proposed a fuzzy

fusion system to detect alert versus drowsy drivers using electrooculogram (EOG)

[15]. They used this signal to infer different eyelid activity indicators that were used as

features. Lin et al. used EEG to detect drowsiness [8]. Sathyanarayana et al. extracted

CAN-bus information along with body sensors (accelerometer and gyroscope) to

detect driver distraction. They attached body sensors to the driver’s head and legs.

The drivers were also recorded with cameras, which were used to manually and

automatically segment the corpus into normal and task conditions. They reported

accuracies above 90% for the detection of distraction with k-NN classifiers.

18.2.2 Inducing Visual and Cognitive Distractions

Different approaches have been used to induce visual and cognitive distractions.

They aim to increase the driver workload, affecting the primary driving

task. Therefore, the recordings can include samples of inattentive behaviors.
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The most common approaches to induce cognitive distractions include solving

math problems [11, 16, 25], talking to another passenger [11, 21], and paying

attention to cognitive activities (e.g., follow stock market) [13]. For visual

distractions, common techniques are “look and find” tasks [13, 16, 19], operating

devices (e.g., touch screen, cell phone, GPS) [6, 18], and reading numbers [11].

In our work, we are interested in analyzing behaviors when the driver is engaged

in secondary tasks that are commonly performed in real driving scenarios.

18.2.3 Driving Platforms

Bach et al. reported that most of the studies in this research area have considered

recording from car simulators (51% of the studies considered in their review) [20]. In

many cases, using simulators is the only feasible and secure approach. For example,

studies that aim to detect fatigue are usually conducted in laboratory setup [8, 15].

As an exception, Bergasa et al. studied fatigue in real driving condition. However,

the subjects were asked to simulate drowsy behaviors [17]. Likewise, car simulators

are normally used when physiological signals are used [8, 15, 16]. Some of these

signals are difficult to collect in real car. Also, the invasive nature of the sensors

makes this approach less suitable for real-world driving scenarios.

Some studies have used recording from cars in real roads [11, 17, 21, 22]. For

this purpose, different car platforms have been designed to collect driver behaviors

with data acquisition systems consisting of invasive and noninvasive sensors in

real-world driving scenarios. Examples include Argos [26], UYANIK [27], and

UTDrive [7, 10] (this study uses the UTDrive platform). These cars will provide

more realistic data to study driver behaviors.

18.3 Recording Drivers in Real Road Conditions

The scope of our work is to use multimodal sensors to track driver behaviors during

real driving conditions. This requirement implies that the study cannot rely on

recordings based on driving simulations. Therefore, we recorded subjects driving

the UTDrive platform on real roads near the main campus of the University of Texas
at Dallas (UTD). The UTDrive car is a 2006 Toyota RAV4 equipped with data

acquisition systems with multiple sensors including camera and microphone arrays

(Fig. 18.2a). The system records the CAN-bus data, which provides relevant car

information such as the brake, gas, acceleration, vehicle speed, and steering wheel

angle. A frontal camera (PBC-700H) facing the driver was placed on the dashboard

behind the steering wheel (Fig. 18.2b), which records 30fps at a resolution of

320 � 240. It provides valuable information about facial expressions and head

orientation of the driver. There is also a camera facing the road ahead, which

records 15fps at a resolution of 320 � 240. Although we have not used this camera

18 Advances in Multimodal Tracking of Driver Distraction 257



in our work, it provides important information that can be used for lane tracking

[11, 28]. The information is simultaneously stored in a Dewetron computer. In

addition, a global positioning system (GPS) is placed at the center of the front

windshield for the experiments. The database was collected in dry days with good

light conditions to reduce the impact of environment in the study. The readers are

referred to [7] for further details about the UTDrive project.

In our study, we are interested in analyzing the observed behaviors when the

driver is involved in secondary tasks. We decided to include common activities

such as changing radio stations, talking by cell phone, operating a GPS, and having

spontaneous conversation with a passenger. There are other common secondary

tasks such as texting, eating, drinking, grooming, and smoking that were not

included for security reasons.

A multimodal database was collected from 20 subjects consisting of students and

employees of the university. They were asked to drive the UTDriver car following a

predefined, 5.6-mile route, described in Fig. 18.3. This route includes many traffic

lights, stop signs, heavy and low traffic zones, residential areas, and a school zone.

Each subject completed this route twice (12–16 minutes per lap).

In the first lap, drivers are asked to sequentially perform common tasks as

described in Fig. 18.3. The first task corresponds to change the built-in car radio to

targeted stations (route A in Fig. 18.3). The second task requires the driver to input a

specific predecided address into the GPS and then follow the instructions to the

desired destination (route B in Fig. 18.3). Preliminary analysis on the data indicated

that driver behaviors during operating and following the GPS were different. There-

fore, we subdivided this task in two. Then, the subject is asked to make a phone call

from his/her cell phone to obtain flight information between twoUS cities (route C in

Fig. 18.3). Due to similar reasons observed in theGPS task, we subdivided this task in

operating and talking on the cell phone. Notice that at the time of the recording, the

State of Texas allowed drivers to use cell phones. After that, a passenger shows

Fig. 18.2 UTDrive car and sensors setup. (a) UTDrive, (b) Setup
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randomly selected pictures and the driver is asked to describe them (route D in

Fig. 18.3). The purpose of this task is to collect approximated (and maybe

exaggerated) data from distractions caused by billboards, sign boards, and shops.

The last task corresponds to spontaneous conversation between the driver and a

passenger, who asked few general questions (route E in Fig. 18.3). After subdividing

the phone and GPS tasks, the database includes the following seven tasks: Radio,
GPS Operating, GPS Following, Phone Operating, Phone Talking, Picture, and
Conversation.

Fig. 18.3 Route used for the recording (5.6 miles long). Subjects drove this route two times. In the

first lap, the subjects performed the tasks in order, starting with the Radio task and ending with the
Conversation task. In the second lap, the subjects drove the same route without performing any

task. The second lap involves normal driving without any of the aforementioned tasks, which is

used as a normal reference. Since the same route is used for both normal and task conditions, the

analysis is less dependent on the selected road
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18.4 Assessing Driver Distraction

After collecting the database, the first research question is to assess the level of

distraction induced on the drivers by the selected secondary tasks [6]. Defining the

ground truth for driver distraction is a crucial problem for training and testing

systems that aim to identify inattentive drivers. However, this is a nontrivial task,

since different in-cab activities will create specific demands on the drivers causing

visual, cognitive, auditory, psychological, and/or physical distractions.

As a first approximation, we conducted perceptual evaluations to assess driver

distraction. A graphical user interface (GUI) was created for this subjective

evaluation (Fig. 18.4). This GUI allows the evaluators to watch videos extracted

from the frontal camera. They can evaluate the perceived distraction level of the

driver on a scale from 1 (less distracted) to 5 (more distracted). Notice that

evaluators should be able to identify visual distractions with high accuracy.

However, they may not be able to assess more challenging type of distractions.

Quantifying cognitive or psychological distractions remain an open challenge.

The database contains over 7 h of data. However, we decided to assess only

a portion of this corpus to reduce the time and resources needed for the evaluation.

The corpus was automatically split into 5-s videos. For each of the driver, three

videos were randomly selected per task. In addition, we include three videos of

the drivers under normal conditions. Therefore, we selected 480 5-s videos for the

Fig. 18.4 Subjective evaluation GUI. The subjects are required to rate the video based on how

distracted they feel the driver is (1 for less distraction, 5 for more distraction)
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evaluation (3 videos � 8 conditions � 20 drivers ¼ 480). Nine students participated

in the subjective experiment. They assessed only 160 videos (1 video � 8 conditions

� 20 drivers ¼ 160).We read the adopted definition of distraction (Sect. 18.1) before

the evaluation to unify their understanding of distraction. The presentation of the

videos was randomized to avoid biases. With this setup, each video was rated by three

independent evaluators.

Figure 18.5 gives the means and standard deviations of the perceived distraction

level across secondary tasks. The results indicate that the tasks GPS Following and

Phone Talking are not perceived as distracting as the tasksGPSOperating andPhone
Operating, respectively. Notice that talking on a cell phone increases the cognitive

load of the drivers. Studies have reported that the use of cell phone affect the driver

performance (e.g., missing traffic lights, fail to recognize billboard) [20, 29].

This subjective evaluation does not seem to capture this type of distraction. Likewise,

Radio and Picture are perceived as distractive tasks.

18.5 Analysis of Multimodal Features

Our next research problem is to identify multimodal features that can characterize

inattentive drivers. As mentioned in Sect. 18.3, the corpus includes CAN-bus

information, videos, and audio. Identifying informative features from these nonin-

vasive modalities is an important step toward detecting distracted drivers.

CAN-Bus: One important source of information is provided by the CAN-bus,

which includes steering wheel angle, brake value, vehicle speed, and acceleration.

The car has also sensors to measure and record the brake and gas pedal pressures.

Fig. 18.5 Perceived distraction levels based on subjective evaluations. The figure shows the

means and standard deviations for each task across drivers and evaluators
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From these continuous streams of data, we estimate the derivative of the brake and

gas pedal information. In addition, we estimate the jitter in the steering wheel angle,

since we expect that drivers involved in secondary tasks will produce more “jittery”

behaviors. Vehicle speed is also considered, since it is hypothesized that drivers

tend to reduce the speed of the car when they are engaged in a secondary task.

Frontal Video Camera: The camera captures frontal views of the drivers. From

this modality, we estimate head orientation and eye closure count. The head pose is

described by the yaw and pitch angles. Head roll movement is hypothesized to be

less important, given the considered secondary tasks. Therefore it is not included in

the analysis. Likewise, eye closure percentage is defined as the percentage of

frames in which the eyelids are lowered below a given threshold. This threshold

is set at the point where the eyes are looking straight at the frontal camera. These

variables are automatically extracted with the AFECT software [30]. Previous

studies have shown that this toolkit is robust against large datasets and different

illumination conditions. Another advantage of this toolkit is that the information is

independently estimated frame by frame. Therefore, the errors do not propagate

across frames. Unfortunately, some information is lost when the head is rotated

beyond a certain degree or when the face is occluded by the driver’s hands. The

algorithm produces empty data in those cases.

Microphone Array: The acoustic information is a relevant modality for

secondary tasks characterized by sound or voice activity such as GPS Following,
Phone Talking, Pictures, and Conversation. Here, we estimate the average audio

energy from the microphone that is closest to the driver.

The proposedmonitoring system segments the data into small windows (e.g., 5 s),

from which it extracts relevant features. We estimate the mean and standard devia-

tion of each of the aforementioned data, which are used as features. Details of other

preprocessing steps are described in Jain and Busso [5].

After the multimodal features are estimated, we compare their values under task

and normal conditions. Notice that segments of the road have different speed limits

and number of turns. Therefore, the features observed when the driver was engaged

in one task (first lap – Sect. 18.3) are only compared with the data collected when

the driver was not performing any task over the same route segment (second lap –

Sect. 18.3). This approach reduces the variability introduced by the route.

We conducted a statistical analysis to identify features that change their values

when the driver is engaged in secondary tasks. A matched pair hypothesis test is

used to assess whether the differences in the features between each task and the

corresponding normal condition are significant. We used matched pairs instead of

independent sample, because we want to compensate for potential driver

variability. For each feature f, we have the following hypothesis test [31]:

H0 : m f
normal � m f

task ¼ 0

H1 : m f
normal � m f

task 6¼ 0 (18.1)
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where m f
normal and m f

task are the means of f in normal and task conditions, across

speakers. Since the database consists of 20 drivers, we use a t-test for small sample,

t f ¼
�d f

s f
d =

ffiffiffi
n

p (18.2)

where �d f and s f
d represent the mean and standard deviation of the sample of

differences across the n (¼20) drivers. Figure 18.6 shows the features that are

found significant at p-value ¼ 0.05 (dark gray), p-value ¼ 0.10 (gray), and p-
value ¼ 0.20 (light gray). The figure shows that mean of the energy and head

yaw movement are significantly different for all the tasks (p-value ¼ 0.05). Eye

closure percentage (blink) is also significantly different for tasks such as Radio,
GPS Following, Phone Operating, and Pictures. The figure also shows that there

are tasks such as GPS Following, Phone Talking, and Conversation in which few of

the selected features present significant differences at p-value ¼ 0.05. Interest-

ingly, these tasks are perceived less distracting than other (see Fig. 18.5). Notice

that for different tasks, there are significant features across all the modalities

considered in this study (CAN-bus, video, and microphone).

While Fig. 18.6 identifies features that are significantly different under normal

and task conditions, it does not show the characteristic patterns for each condition.

Therefore, we estimated the mean and standard deviation of the features for each of

the secondary task, across speakers. We also estimated these statistics for features

observed in normal condition over the corresponding route segments.

Figure 18.7 shows the errors plot for (a) head yaw movement, (b) head pitch

movement, (c) vehicle speed, and (d) steering wheel jitter. Figure 18.7a reveals that

Fig. 18.6 Results of the matched pairs t-test: features vs. tasks. For a particular task, gray regions
indicate the features that are found to have significant differences (dark gray, p-value ¼ 0.05;

gray, p-value ¼ 0.10; light gray, p-value ¼ 0.20)
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Fig. 18.7 Error-bar plots

displaying the mean and

standard deviation for:

(a) head yaw, (b) head pitch,

(c) vehicle speed, and

(d) jitter in the steering wheel
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drivers tend to look at their right while performing the tasks. Changes in head pitch

movements are more evident in tasks such as Phone Operating and Picture
(Fig. 18.7b). In those cases, drivers tend to look down. Figure 18.7c shows that

drivers reduce the car speed when they are engaged in secondary tasks. This result

is consistently observed across task. Figure 18.7d shows that the jitter in the steering

wheel is slightly higher in GPS Operating and Phone Operating. However, these
differences are not significant (see Fig. 18.6). Figure 18.7 also shows differences in

the features during normal conditions across tasks. These differences are inherently

dependent on the road. This result suggests that the characteristic of the route is an

important variable that should be considered in the design of automatic feedback

systems [21]. Figure 18.8 shows the percentage of eye closure for the normal and

task conditions. It can be seen that the closure rates differ from the patterns

observed during normal condition for tasks such as Radio, Phone Operating, and
Pictures. For these tasks, the drivers tend to keep their eyelid more open.

Figure 18.9 provides further information about the differences observed in head

yaw movements for the tasks (a) Radio and (b) Conversation. The figure provides
the feature distributions for normal and task conditions. Notice that these are among

the most common secondary tasks performed by drivers. The figure shows that both

distributions present positive skewness for the task conditions. The implication is

that drivers shift their attention from the road, which may affect their situational

awareness.

18.6 Prediction of Driver Distractions

After studying relevant features that can signal driver distraction, this section

explores whether the proposed multimodal features can be used to detect driver

distractions. The study includes two evaluations. First, we train a classifier to

Fig. 18.8 Percentage of eye closure in task and normal conditions. The values for normal

conditions are estimated over the features observed in the corresponding route of the tasks
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Fig. 18.9 Distribution of head yaw movements for the tasks (a) Radio and (b) Conversation.
The distributions are estimated from data recorded during task (dark gray) and normal (light gray)
conditions. The vertical lines represent the corresponding means
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recognize whether the driver is performing any of the secondary tasks (Sect. 6.1).

Then, we build a regression model that aims to predict the level of distraction of the

driver (Sect. 6.2).

18.6.1 Classification of Secondary Tasks

The perceptual evaluation in Sect. 18.4 shows that some secondary tasks are

perceived more distracting than others. This result suggests that recognizing a

driver engaged in secondary tasks is an important problem. We have proposed

binary classifiers to distinguish between individual tasks and normal conditions [5].

Here, we are interested in the multi-class problem of recognizing between the seven

tasks and normal conditions (eight-class problem). We argue that this is a more

practical approach that can lead to useful applications.

For this evaluation, we trained a k-nearest neighbor classifier. The database is

split in 5-s windows which are considered as independent samples. The task labels

are assigned to the samples according to the task in the corresponding route

segment. To ensure driver-independent results, samples from one speaker are

included either on the training or testing sets. This was implemented using a

“leave-one-driver-out” cross validation scheme. Table 18.1 gives the average

accuracies across folds for different values of k. The best performance is obtained

for k ¼ 20, which gives an accuracy of 42.72%. This accuracy is significantly

higher than chances (12.5%).

18.6.2 Regression Model for Driver Distraction

The second evaluation consists in building a regression model to predict the

distraction level of the driver. The baseline for this experiment is the average of

the subjective evaluation results presented in Sect. 18.4. Only the samples that were

perceptually evaluated are considered in this analysis (480, 5-s segments with

balanced number of samples per task and driver). The multimodal features are

included as dependent variables. The proposed model includes interaction and

quadratic terms, because they improved the performance. The coefficient of deter-

mination for this model is R2 ¼ 0.53, which corresponds to a correlation of

r ¼ 0.728. This result shows that the proposed features can be used to predict the

distraction level of the driver.

Table 18.1 Accuracies for the multi-class k-NN classifier for different values of k

k 4 8 12 16 20

Accuracy 0.3582 0.3958 0.4021 0.4218 0.4272
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18.7 Discussion and Conclusions

Any distraction can affect the situational awareness of the driver leading to disastrous

consequences. This chapter summarized our current research effort in detecting

distracted drivers using multiple modalities. The study was based on a database

collected with real driving conditions, in which 20 drivers were asked to perform

common secondary tasks. Our analysis identified features extracted from the CAN-

bus data, a camera, and a microphone that present characteristic differences during

task conditions. Our results show that these multimodal features can be used to predict

the distraction level of the drivers. The proposed metric estimated from a regression

model was highly correlated with human subjective evaluations (r ¼ 0.728).
One weakness in our approach is the ground truth for the distraction level, which

is derived from subjective evaluations. The proposed perceptual evaluation may not

capture cognitive and psychological distractions. Indicators for these types of

distraction may be derived by conducting workload ratings (e.g., SWAT, NASA-

TLX) [20], by measuring brain activity with invasive sensors [32], or by indirectly

inferring the underlying cognitive state of the driver (i.e., emotions, stress). In this

area, we are working toward detecting the emotional state of the drivers, especially

for negative reactions.

Another area of interest is expanding the set of features. For example, advances

in the field of computer vision can lead to algorithms to directly detect distractive

objects (e.g., cell phone) or actions (e.g., eating). The outputs of these algorithms

can be used as discrete variables in the proposed regression models.

The work presented in this chapter represents our first step toward obtaining a

metric to determine the attention level of the drivers. A real-time algorithm with

such capability will facilitate the design of a feedback system to alert inattentive

drivers, preventing potential accidents, and therefore, improving the overall driver

experience.
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Chapter 19

A Stochastic Approach for Modeling

Lane-Change Trajectories

Yoshihiro Nishiwaki, Chiyomi Miyajima, Norihide Kitaoka,

and Kazuya Takeda

Abstract A signal-processing approach for modeling vehicle trajectory during lane

changes while driving is discussed. Since individual driving habits are not a deter-

ministic process, we develop a stochastic method to model them. The proposed

model consists of two parts: a dynamic system represented by a hidden Markov

model and a cognitive distance space represented with a hazard-map function. The

first part models the local dynamics of vehicular movements and generates a set of

probable trajectories. The second part selects an optimal trajectory by stochastically

evaluating the distances from surrounding vehicles. Through experimental evalua-

tion, we show that the model can predict vehicle trajectory in given traffic conditions

with a prediction error of 17.6 m.

Keywords Driving behavior • Generation • Hazard map • Hidden Markov model

(HMM) • Lane change • Prediction • Sampling • Stochastic modeling

19.1 Introduction

Driving safety and fuel-efficient driving are central issues in modern societies. Even

though the traffic accident fatality rate has dropped significantly in Japan, traffic

accidents were still responsible for approximately 5,000 fatalities in 2010 [1].

Energy and environmental problems are also serious threats to modern society.

Technologies such as precrash safety and hybrid vehicles have contributed to

solving some of these problems [2–4]. On the other hand, technologies focused

on drivers, such as driver monitoring and hands-free, in-vehicle interfaces, are still

not commonly utilized. Furthermore, there are an insufficient number of studies that
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model human driving behavior, although vehicular behavior has been widely

studied from the viewpoint of control theory [5–9]. Since human behavior is not

deterministic, research that models driving behavior from the viewpoint of stochas-

tic signal processing is important.

In this chapter, we propose a stochastic method of predicting vehicle trajectories

during lane changes. In our proposed method, a trajectory model can be trained by a

set of collected data based on the maximum likelihood principle without

predetermined parameters. In addition, using a hidden Markov model (HMM),

our method can model the multistate behavior of lane changing without explicit

knowledge about state transitions or predetermined parameters.

Various approaches have been taken to predict vehicular behavior. Danielsson

et al. [10] generated vehicle trajectories of surrounding vehicles for a few seconds.

However, driver characteristics were not considered, and this method was not

evaluated quantitatively. Althoff et al. [11] stochastically modeled the presence

of trucks, cars, and pedestrians in traffic for a few seconds. However, the effective-

ness of the modeling characteristics was not clear, nor were driver characteristics

considered.

The most important contribution of this study is that we develop a model that can

predict vehicle behavior for an interval of about 20 s, based on stochastic signal

processing. Such long-term prediction was not discussed in previous works on

control theory, as they assumed that sensing data are updated much more fre-

quently. We propose a stochastic method to model characteristics of drivers’

lane-change behavior and to predict a lane-change trajectory for a given initial

condition and traffic environment. Our proposed method consists of two parts as

shown in Fig. 19.1.

The first uses a hidden Markov model to characterize the stochastic dynamic

properties of vehicular movements that originate from the driver’s habitual

characteristics. Since lane-change activity consists of multiple states (i.e., examin-

ing the safety of traffic environments, assessing the positions of other vehicles,

moving into the next lane, and adjusting driving speed to traffic flow), a single

dynamic system cannot model vehicle trajectory. In addition, the boundaries

between states cannot be observed from its trajectory. HMMs can model such a

stochastic state transition systems, and estimation-maximization (EM) algorithms

can train HMMs without explicit information about state boundaries [12]. Further-

more, once the joint probability of a signal and its time derivatives, i.e., z[n] and
▵z[n], are trained, the most probable signal sequence, {z[n]}n ¼ 1, . . ., N, can be

calculated for a given state transition pattern [13]. Therefore, the first part of our

model can generate trajectory hypotheses that represent characteristics of drivers’

lane-change behavior.

The second part is a cognitive hazard map calculated from vehicle following

distance distributions of training data. Here, the driver’s sensitivity to the distance

to a nearby vehicle in a particular location is modeled. Such sensitivities to

surrounding vehicles are then integrated into a hazard map in a probability domain.

Therefore, this function can be used for trajectory selection.
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Finally, the two processes are combined into a trajectory-predicting algorithm

that first generates a set of probable trajectories by sampling from the HMM

probability distributions and then selects the optimal trajectory based on the

cognitive hazard map of the surrounding traffic.

19.2 Modeling Trajectories Using Hidden Markov Models

19.2.1 Trajectory Data

A set of vehicle-movement observations was measured using a driving simulator.

Relative longitudinal and lateral distances from the vehicle’s position when starting

the lane change, xi[n], yi[n], and the velocity of the vehicles, _xi½n�; _yi½n�, were
recorded every 160 ms. Here, i ¼ 1, 2, 3 is an index for the location of surrounding

vehicles (Fig. 19.2), and (x0[n], y0[n]) represents the position of the driver’s

Fig. 19.1 Overview of lane-change trajectory generation
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own vehicle. The duration of lane-change activity, n ¼1, 2, . . ., N, starts when V0

(driver’s own vehicle) and V2 are at the same longitudinal position and ends when

V0’s lateral position reaches the local minimum as shown in Fig. 19.2.

19.2.2 Hidden Markov Model

We used a three-state HMM to describe the three different stages of a lane change:

preparation, shifting, and adjusting.

In the proposed model, each state is characterized by a joint distribution of eight

variables:

v ¼ _x0; y0; D _x0; Dy0; D
2 _x1; D

2y0; _x1; _x2
� �t

(19.1)

In general, longitudinal distance, x0, monotonically increases in time and cannot

be modeled by an i.i.d. process. Therefore, we use longitudinal speed _x0, as a variable
to characterize the trajectory. We calculated a higher-order time derivative _x (or ▵x)
for signal x by linear regression as follows:

x n½ � ¼
PK

k¼�K

k � x n� k½ �
PK

k¼�K

k2
(19.2)

Finally, after training the HMM using a set of recorded trajectories, the mean

vector mj and covariance matrix ∑j of the trajectory variable v are estimated for

each state j ¼ 1, 2, 3. The distribution of duration N is modeled using a Gaussian

distribution.

Fig. 19.2 Lane-change trajectory and geometric positions of surrounding vehicles
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19.2.3 Trajectory Generation from a Hidden Markov Model

As shown in the following experiments, the shape of a trajectory is controlled by the

HMM and the duration of the lane-change activity. When the driver performs a lane

change in a shorter time, this results in a sharper trajectory. We generate a set

of probable lane-change trajectories by determining state durations {dj} and by

sampling the corresponding PDFs as follows.

First, we determine lane-change duration N by sampling from its trained distri-

bution. Then we determine state durations dj by uniformly sampling from the state

duration distribution by

dj ¼
xjNPK
k¼1 xk

& ’
(19.3)

where d e is a ceiling function, and xj is a random variable that follows a uniform

distribution between zero and one. Once a set of state durations is determined, the

maximum likelihood HMM signal synthesis algorithm (ML method) [13] or the

sampling algorithm [14] generates the most probable trajectory. Simply repeating

this process will produce a set of probable vehicle trajectories which characterize a

trained driver’s typical lane-change behavior.

19.3 Trajectory Selection

Although various natural driving trajectories may exist, due to the surrounding

vehicle conditions, the number of lane-change trajectories that can be realized

under given traffic circumstances is limited. Furthermore, the selection criteria of

the trajectory, based on the traffic context, differ among drivers, e.g., some drivers

are more sensitive to the position of the front vehicle than that of the side vehicle,

etc. Therefore, we model the selection criterion of each driver with a scoring

function for lane-change trajectories based on vehicular contexts, i.e., relative

distances to the surrounding vehicles.

In the proposed method, a hazard-map function M is defined in a stochastic

domain based on the histograms of the relative positions of the surrounding vehicles

ri ¼ [~x0; x0; ~y0; y0]
t.

To model sensitivity to surrounding vehicles, we calculated covariance matrix

Ri for each of three distances, ri, i ¼1, 2, 3, using training data. Since the distance

varies more widely at less sensitive distances, we use the quadratic form of inverse

covariance matrices Ri as a metric of the cognitive distance. Then we calculate

hazard-map function M for surrounding vehicle Vi as follows:

M r tiR
�1
i ri

� � ¼ 1

1þ exp ai rtiR
�1
i ri � bi

� �� � (19.4)
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where ai is a parameter of the minimum safe distance defined so that the minimum

value of cognitive distance rtiR
�1
i ri of the training data corresponds to the lower 5%

distribution values, and bi is the 50% distribution value (mean value) of rtiR
�1
i ri

(Fig. 19.3).

M min rtiR
�1
i ri

� � ¼ 0:95 (19.5)

M rtiR
�1
i ri

� 	
¼ 0:5 (19.6)

The hazard-map parameters
_
ai and bi are obtained as follows by solving

Eqs. 19.5 and 19.6 with respect to ai and bi:

ai ¼ log 0:05ð Þ � log 0:95ð Þ
min rtiR

�1
i ri

� �� rtiR
�1

i ri
(19.7)

bi ¼ rtiR
�1

i ri (19.8)

Hazard map M can take values within the interval (0, 1); the higher the value, the

more hazardous the situation.

Hazard mapM can be regarded as an a posteriori probability of being in the safe

driving condition under range distances Pr{safe | r}, when the likelihood is given as
an exponential quadratic form, i.e.,

Pr rjsafe/unsafef g / exp � 1

2
rtAr


 �
(19.9)

Fig. 19.3 Parameters of a hazard map
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where A is an invertible square matrix. Therefore, integrating the hazard maps for

three surrounding vehicles can be done simply by interpolating three probabilities

with weights li into an integrated map:

M 0 ¼
X
i

li

1þ exp ai rtiR
�1
i ri � bi

� 	n o (19.10)

Once the positions of the surrounding vehicles at point in time n, ri[n] are

determined, M can be calculated for each point in time, and by averaging the value

over the lane-change duration, we can compare the possible trajectories. Then the

optimal trajectory that has the lowest value is selected from the possible trajectories.

19.4 Evaluation

19.4.1 Data Collection and Setup

Thirty lane-change trials were recorded for each of two drivers using a driving

simulator which simulated a two-lane urban expressway where the traffic was

moderately dense. The velocities of the vehicles in the passing lane ranged between

82.8–127.4 km/h, and the distances between two successive vehicles in the passing

lane ranged between 85–315 m. The drivers were instructed to pass the preceding

vehicle once during each trial, when they were able to. The average velocity of the

two drivers when passing the lead vehicle was 112.4 km/h.

Figure 19.4 shows the lane-change duration at each trial and its most probable

state durations. The distribution of lane-change duration characterizes a driver’s

lane-change behavior. For example, on average, driver B required more time than

A to complete a lane change.

Fig. 19.4 Lane-change duration and its most probable state durations calculated using HMM
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Thirty trials were used for threefold cross validation tests: twenty for training

and ten for tests. Each state of an HMM was characterized by a joint Gaussian PDF

of trajectory variables and was trained using an HTK [15].

Four hundred possible trajectories were generated from an HMM. First, 20

lane-change duration values N were sampled from the distribution of a driver’s

own lane-change durations. Then, for each sampled lane-change duration N, 20 sets
of state durations {dj} were hypothesized, also by sampling from the uniform

distribution using Eq. 19.3. To select the optimal trajectory, we integrated three

hazard maps into a single hazard map with equal weights, i.e., l1, l2, l3¼ 1/3 in

Eq.19.10. We assumed that the surrounding vehicle speeds _xi; _yi were constant

throughout the lane-change activity.

19.4.2 Results

The trained joint PDFs of the trajectory variables are plotted for each HMM state of

the two drivers in Fig. 19.5. We confirmed that the habitual differences in lane-

Fig. 19.5 Joint PDFs of trajectory variables trained with three states of HMM for two drivers

(y-▵y plain is plotted). Square dots show the means and contours represent “one sigma”

boundaries

Fig. 19.6 Hazard maps for two drivers when the same positions of surrounding vehicles were given
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change behavior can be modeled with HMM parameters. The trained hazard maps

M’ for the two drivers shown in Fig. 19.6 also depict differences in sensitivity to

surrounding vehicles.

We generated possible lane-change vehicle trajectories over a 20-s period using

two methods: a maximum likelihood (ML) method [13] and a sampling method.

The possible generated trajectories and the selected optimal trajectory using the ML

method are shown in Fig. 19.7, and those generated using the sampling method are

shown in Fig. 19.8. The vehicles traveled about 600 m while changing lanes. The

trajectories of the two drivers are clearly different.

Fig 19.7 Examples of generated (dotted line) and the selected (dashed line) trajectories for

maximum likelihood (ML) signal synthesis algorithm. The actual trajectory observed under the

given condition is also plotted (solid line)

Fig 19.8 Examples of generated (dotted line) and the selected (dashed line)trajectories for sampling

method. The actual trajectory observed under the given condition is also plotted (solid line)
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For further quantitative evaluation, we calculated the difference between the

predicted and actual trajectories based on dynamic time warping (DTW), using the

normalized square difference as a local distance:

D i; jð Þ ¼ min

D i� 1; jð Þ
D i� 1; j� 1ð Þ
D i; j� 1ð Þ

8><
>:

þ 1

I þ J � 1

x0½i� � x̂0½j�ð Þ2PI
n¼1 x

2
0½n�

þ y0½i� � ŷ0½j�ð Þ2PI
n¼1 y

2
0½n�

( )
(19.11)

where I and J are the length of the actual and predicted trajectories, respectively. An
example of the DTW result is shown in Fig. 19.9. The DTW recursion proceeds

from D(0, 0) ¼ 0 to D(I, J). We used 10·log(D) as a signal-to-deviation (SDR)

measure for the prediction. This is because the lengths of the actual and predicted

trajectories are different.

Average SDRs of the best trajectory hypothesis (best) and all trajectory

hypotheses (mean) using the maximum likelihood method (left) and the sampling

method (right) are shown in Fig. 19.10. The resultant SDR of the sampling method

for 60 tests was 38.0 dB. The sampling method was better at generating vehicle

trajectories similar to actual driver trajectories than the ML method.

Figure 19.11 shows the resultant SDRs when driver A’s model was used for

predicting driver B’s trajectory and vice versa. The SDR decreased by 2.2 dB when

the other driver’s model was used to make the prediction. This result confirmed the

effectiveness of the proposed model for capturing individual characteristics of lane-

change behavior. We also tested our method using the actual lane-change duration,

i.e., I ¼ J. When the actual lane-change duration N is given, the root mean square

error (RMSE) between the predicted and actual trajectories can be calculated.

The average RMSE for 60 tests was 17.6 m, which was a good result for predicting

vehicle trajectories over a distance of about 600 m (i.e., for a 20-s time period).

Fig 19.9 Examples of DTW recursion between actual and generated vehicle trajectories
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19.5 Summary and Future Work

In this chapter, we proposed a stochastic framework for modeling driving behavior

where a driver’s habitual behavior and cognitive characteristics are modeled using

an HMM and a geometrical probability function. The proposed method can predict

lane-change trajectory of about 20 s in length given only the initial conditions by

generating a set of probable trajectories with the HMM and then selecting

the optimal trajectory with the geometric function. Since model parameters can

be trained based on statistical training criteria, a driver’s personal driving style

can be easily characterized using training data.

Based on experimental evaluations for two drivers, we confirmed that the model

can generate a reasonably accurate personalized trajectory. However, further study

is needed. First, more analytical and quantitative evaluation of the method is

necessary, using a larger amount of data. Also, the model should be tested using

real driving data collected under actual traffic conditions. Integrating the generation

and selection processes, based on a consistent criterion, is also a very challenging

but important task.

Fig 19.11 Average SDRs of trajectories selected using a driver’s own models (left) and using the
other driver’s models (right)

Fig 19.10 Average SDRs of the best trajectory hypothesis (best) and all trajectory hypotheses

(mean) using maximum likelihood method (left) and sampling method (right)
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Chapter 20

CAN-Bus Signal Analysis Using Stochastic

Methods and Pattern Recognition

in Time Series for Active Safety

Amardeep Sathyanarayana, Pinar Boyraz, Zelam Purohit,

and John H.L. Hansen

Abstract In the development of driver-adaptive and context-aware active safety

applications, CAN-Bus signals play a central role. Modern vehicles are equipped

with several sensors and ECU (electronic control unit) to provide measurements for

internal combustion engine and several active vehicle safety systems, such as ABS

(anti-lock brake system) and ESP (electronic stability program). The entire com-

munication between sensors, ECU, and actuators in a modern automobile is

performed via the CAN-Bus. However, the long-term history and trends in the

CAN-Bus signals, which contain important information on driving patterns and

driver characteristics, has not been widely explored. The traditional engine and

active safety systems use a very small time window (t < 2s) of the CAN-Bus to

operate. On the contrary, the implementation of driver-adaptive and context-aware

systems requires longer time windows and different methods for analysis. In this

chapter, a summary of systems that can be built on this type of analysis is presented.

The CAN-Bus signals are used to recognize the patterns in long-term representing

driving subtasks, maneuvers, and routes. Based on the analysis results, quantitative

metrics/feature vectors are suggested that can be used in many ways, with two

prospects considered here: (1) CAN-Bus signals can be presented in a way to

distinguish distracted/impaired driver behavior from normal/safe and (2) driver

characteristics and control strategies can be quantitatively identified so that active

safety controllers can be adapted accordingly to obtain the best driver–vehicle

response for safe systems. In other words, an optimal human–machine cooperative

system can be designed to achieve improved overall safety.
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20.1 Introduction

The last 20 years have witnessed a transformation of modern automobiles, turning

them into vehicles packed with sensors, microchips, and actuators, all forming

integrated and modular subsystems of safety, infotainment, and energy manage-

ment. In fact, automobiles have been perhaps the first merger between mechanical

and electrical/electronic components offering flexibility for better control of (1)

energy production and use (i.e., timed/controlled internal combustion engine cycle

or hybrid technology energy cycle/system switch management), (2) vehicle dynam-

ics (i.e., ABS, ESP) and (3) instrument cluster (i.e., better displays, adaptable

controls, setting points, etc.), and (4) driver assistance systems (i.e., LKS, ACC,

Blind Spot Warning, Parking Assistance, etc.). In the center of these developments

is a protocol that made it all possible to communicate the messages between

sensors, processing units, and actuators. That protocol and system called CAN-

Bus (Controller Area Network) was introduced in early 1990s [1]. While this

transformation is taking place, another dimension has caught the attention of

researchers. All the technology in modern vehicles needs to consider the human

component: driver. Although the pursuit of understanding or modeling human

driver behavior is not new [2–4], the long-awaited merger between advanced

vehicle concepts and human-centered systems has just began. To be able to design

truly cooperative and effective driver assistance, safety, or infotainment systems,

driver behavior needs to be better understood, modeled, and incorporated into the

system design. The subject of this chapter is to utilize CAN-Bus signals and

demonstrate the new opportunities of using it to model driver behavior and suggest

system implementations incorporating intelligent CAN-Bus processing. In this

chapter, newly developed CAN-Bus data analysis tools are presented in Sect. 2.

Next, the systems and applications based on CAN-Bus analysis are demonstrated.

Finally, conclusions are drawn from the findings of UTDrive project over the last

1.5 years and future directions are shown to attract more research into this very

exciting new area.

20.2 CAN-Bus Data Analysis

CAN-Bus data analysis requires a multimedia data annotation tool and a common

protocol to be able to segment the data into meaningful parts and use them

efficiently in modeling. Therefore, a multimedia data annotation tool (UTDAT)

using video channels (driver and road scene videos), driver’s speech, and CAN-Bus

is designed.

Accompanying this tool, a color code for driving timeline (CCDT) has been

designed to interpret the driving data from multiple channels for event detection.

Using these two tools, it is possible to zoom into particular sections of the data and

run specific analysis on the CAN-Bus or accompanying channels. The database
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used to develop these tools is the UTDrive Corpus. More extensive information can

be found on data collection procedure, data structure, and properties of the UTDrive

Corpus in [9].

20.2.1 Data Annotation Tool: UTDAT

Data annotation is the most crucial step in the analysis of multisensor data analysis

since it provides the basis for further signal processing. It should be noted that

although the segments of the roads are assigned to different tasks and driving events

can be also detected using this information, data collection is highly dynamic in

nature taking place in real traffic. Therefore, it is required to tag the events and tasks

to record their time tags (begin–end). For this particular study, the interest is to

recognize the driving maneuvers and detect distractions; therefore, two different

transcription files are prepared for each run. First, using video streams and CAN-

Bus channels, driving events are tagged as having six different labels: right turn

(RT), left turn (LT), lane change (LC), lane keeping in straight segment (LKS), lane

keeping in curved segment (LKC), and stops (ST). The events constitute the driving

event timeline parsing the session into meaningful parts which need to be examined

separately. Second, transcription involves time-tagging of 12 important task-related

events using the audio signal together with the video. These 12 labels are: driver

talks (DT), experimenter talks (ET), navigation instruction (NI), silence (SI), Tell-

Me Dialog system (TM), American Airline Dialog system (AA), lane change

prompts (LP), common tasks (CT), sign reading (SR), music playing (MP), and

two additional driver response–related tags, interrupted utterance (IU) and response

delay (RD). UTDAT data annotation tool is written using the MATLAB GUI and is

shown in Fig. 20.1.

20.2.2 Color-Coded Driving Timeline (CCDT):
A Novel Way to Look at CAN-Bus

In order to facilitate the analysis of large-size multisensory driving data, a color

code for driving timeline is prepared, visually marking each event and task label

with certain colors and projecting them as two parallel timelines. An example of the

timeline is shown in Fig. 20.2 with the legend of the Color-Coded Driving Timeline

(CCDT).

Using CCDT, it is possible to observe the events and secondary tasks in a session

simultaneously. This visualization tool is heavily used in further analysis stages for

building the distraction/workload hypotheses exploiting overlaps between tasks and

events in the timeline.
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Fig. 20.1 UTDAT multimedia data annotation tool is capable of cross-referencing and synchro-

nization of two videos, one audio, and CAN-Bus streams

Fig. 20.2 Timeline of driving events (black band) and tasks (white band) depicted in CCDT



20.3 Systems and Applications

A categorization of applications is given in Fig. 20.3 leading to different active

vehicle safety (AVS) structures. For both context recognition and abnormality

detection, the application can be either (1) generic or (2) person-specific. Generic

systems are expected to take 95% of the drivers with reasonable reliability and

acceptable false alarm rates (i.e., less than 2%). Designing such a generic system is

difficult because of the highly dynamic nature of the driving task, including the

variations between drivers, conditions, and even discrepancies between two

sessions of driving on the same route by the same driver. Previous work has

concentrated on designing a generic system for context recognition and abnormality

detection using stochastic methods with a non-optimal feature vector [7]. The

opposite of a generic approach, these systems can be person-dependent in order

to reduce the effect of the inter-driver variation on performance for recognition.

However, driver-dependent AVS systems require that personal driving char-

acteristics and/or biometrics be stored on the in-vehicle system. Driver-dependent

AVS is expected to have at least three submodules: (1) driver identification – use

speaker and/or face recognition or smart key to reduce complexity of driver

monitoring, (2) maneuver/context recognition – monitor and recognize driving

context to reduce the complexity of abnormality detection task, and (3) abnormality

Fig. 20.3 Active Vehicle Safety (AVS) systems categorized according to their data/structure and

output/end-use
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detection – given the specific driver characteristics/ models and context, this model

is expected to detect the abnormalities (i.e., due to distraction, sleepiness, inattention).

A driver-dependent framework has been previously designed and evaluated [4, 8].

20.3.1 Generic Maneuver Recognition and Distraction Detection

In the generic approach, it is assumed that no domain information is available;

however, the patterns in the signals can be recognized using general signal

processing approaches. Driving signals are considered based on the analogy with

speech signals and how they are processed. This analogy is given in Fig. 20.4.

This approach uses HMMs to model the maneuvers and neutral/distracted

versions of the maneuvers, and the comprehensive results can be found in [6]. In

the bottom-to-top (BtT) approach, an isolated subunit is the main interest of the

overall recognition algorithm. After obtaining a separate HMM for each maneuver

defined in the route, the route model can be constructed by internal semantics and

syntax structure.

According to this approach, “drivemes” common to all maneuvers can be

discovered and used to build up maneuver models. These maneuver models can

be used to build multi-maneuver models and finally complete routes. Alternatively,

in the top-to-bottom (TtB) approach, a single HMMwith a large number of states is

trained. In this manner, we assume that there is no a priori information known about

the individual maneuvers. We further assume that we have a record of a meaningful

data sequence which is constructed by some units; however, we do not insert

restrictions on their duration. After training this HMM framework, certain pruning

techniques, including clustering and the Viterbi algorithm, are used to determine

Fig. 20.4 Hierarchy among the units of speech recognition and maneuver recognition
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which states are dominant in the single HMM, while a portion of the route known as

a certain maneuver is presented as an observation sequence. The discovered

dominant states can be concatenated (state-tying) to represent certain maneuvers;

therefore, a finer model of the HMM can be obtained for the route. Using the HMM

framework, it is possible to recognize 100%, 93%, and 81% of 112 right turns, 29

left turns, and 70 lane change events, respectively. As for distraction detection,

distracted drivers were recognized with 100% rate for LT and LC maneuvers;

however, we could not obtain the same performance for RT. Since the approach

did not use CCDT segmentation at that time, the train data was not representing

ground truth in terms of maneuvers tagged with distraction. It is assumed that all the

maneuvers in distracted sessions were representing distracted data; however, this is

not necessarily so.

To improve the ground truth and perform finer generic maneuver recognition,

UTDAT and CCDT were utilized and a much simpler approach utilizing FFT was

performed. From this new analysis, very well-separated clusters of maneuvers

were obtained as shown in Fig. 20.5. Using geometrically defined decision

surfaces, the maneuvers were recognized with better performance. The results

are given in Table 20.1 [4]. The recognition results were further improved by

optimizing the decision surfaces using SVMs, giving 99% accuracy, with confu-

sion occurring only between LKS and LKC maneuvers. It was understood that

drivers have different baselines and there is also variation among the same

driver’s data from the same route; therefore, a driver-dependent approach was

pursued for distraction detection.

Fig. 20.5 3-D scatter plot of first FFT coefficients of CAN-Bus signals for six maneuvers
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20.3.2 Driver-Specific Distraction Detection

For the driver-specific approach, this is particularly suitable for detecting distraction

by eliminating the variation from driver characteristics. If the algorithm is applied

after maneuver recognition, a further reduction of variations can be achieved.

Motivated by the need to have a robust system depending on driver individual traits,

an integrated narrowing-down approach has been proposed [7, 8]. The driver-

specific system is shown in a block diagram in Fig. 20.6. To recognize the driver’s

identity, a speaker ID system was implemented using 30 s of driver’s speech for in-

set based training including nine drivers with 100% accuracy. When duration of the

data is reduced to 10 s, the accuracy drops to 91%, with further reductions with 5 s

and 2 s to 86% and 68%, respectively.

Table 20.1 Generic maneuver recognition performance using FFT and geometric decision

surfaces

True positive rate TPR ¼ TP/P 93.7%

False positive rate FPR ¼ FP/P 0.8%

Accuracy ACC ¼ (TP + TN)/(P + N) 93.7%

Specifity SPC ¼ 1-FPR 99.0%

Positive prediction value PPV ¼ TP/(TP + FP) 95.8%

Negative prediction value NPV ¼ TN/(TN + FN) 99.1%

False discovery rate FDR ¼ FP/(FP + TP) 4.1%

Fig. 20.6 Driver-dependent maneuver recognition and distraction detection system
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We suggest that already-proven biometric signals such as speech, fingerprint,

and face recognition should be utilized for driver identification. Although CAN-Bus

signals carry important personal traits, it was found that the performance of a CAN-

Bus–based identification was much lower than other biometric systems (between

83% and 90% recognition accuracy).

The driver-dependent system described here used a GMM/UBM-based structure

for distraction detection. The average distraction detection performance was always

above 70% for all maneuvers. However, the system is not able to recognize neutral

cases better than 70% as well. Therefore, the false alarm rate is expected to be

approximately 30%, which is unacceptable for a final safety application. Again,

after using UTDAT and CCDT tools, better data pools are obtained representing

ground truth in the driving timeline. These tools and a finer analysis on distraction

detection improved the results to 95% for distraction detection as reported in [9]

using specific driver performance metrics based on high-frequency content, sample

entropy, and standard deviation.

20.4 Conclusion

CAN-Bus signal analysis performed in long-term time windows open the door to

truly human-centric systems which are capable of recognizing the context/maneu-

ver and detecting distraction which can become an important module in driver

status monitoring and assistance systems. This chapter summarized the recent

findings in CAN-Bus analysis in the UTDrive project during the past 1.5 years.

Two important data mining tools were developed and found to be extremely

beneficial for multimedia data analysis. It was understood that if examined care-

fully, CAN-Bus signals carry important traces on context information and driver

status. This concealed information pieces can be made explicit and interpreted for

the benefit of active safety systems incorporating human factors into system design.
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Chapter 21

Adaptive Error Resilient Mechanisms

for Real-Time Multimedia Streaming over

Inter-Vehicle Communication Networks

Matteo Petracca, Paolo Bucciol, Antonio Servetti,

and Juan Carlos De Martin

Abstract To allow real-time streaming of loss tolerant flows such as multimedia

streams in inter-vehicle communication network, we propose a cross-layer tech-

nique based on proactive error correction and interleaving algorithms. The proposed

technique optimizes the FEC/interleaving channel coding parameters based on

network layer information under real-time constraints. It is implemented at packet

level to allow a straightforward adaption in the existing wireless devices. By

resorting to standard compliant, real-time RTCP reports, we also develop and

optimize an adaptive technique that is able to match fast channel variations and

reduce both the overhead required by the proactive error recovery scheme and the

additional delay introduced by the interleaver. Simulations based on Gilbert–Elliott

wireless channel model show that the proposed adaptive technique without

optimizations is able to gain over 0.9 dB in terms of video PSNR with respect to

the standard transmission, while in its optimized version, the gain is over 1.5 dB

PSNR, with a total overhead of about 12%.
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21.1 Introduction

The strong evolution of inter-vehicle communications in the Intelligent Transportation

System (ITS) sector, alongwith the widespread adoption of portable devices equipped

with IEEE 802.11 wireless interfaces, fosters the deployment of innovative wireless

communication services based on the real-time streaming of multimedia flows.

Inter-vehicle multimedia streaming has countless applications, ranging from safety

services to collaborative driving and generic value-added services such as advertising

and infotainment.

However, the high variability of intervehicle communication channels based on

the IEEE 802.11 standard makes the transmission of real-time multimedia informa-

tion a very challenging problem [1]. Among the main drawbacks of streaming

applications over VANETs is the high percentage of packet losses which can be

experienced over the wireless channel [2]. Even if multimedia information is

tolerant to some packet losses, high losses do not actually allow the faithful

reconstruction of the media with respect to its original version, thus not

guaranteeing the quality necessary for object and speech recognition algorithms.

In this chapter, we address the problem of protecting real-time multimedia

communications over intervehicle networks to guarantee the necessary quality for

sophisticated multimedia signal processing techniques.

Let us consider the following scenario, depicted in Fig. 21.1, where a video-

communication software is installed in two cars that are going over the same path.

The front car is transmitting real-time video information to the back car. As cars

move along the path, the wireless channel experiences noise due to environmental

elements, thus suffering from multipath fading. It causes variable bit error rate,

depending on several parameters such as the distance between the two cars, the

presence of objects between the cars, and the relative speed. Certain combinations

of these parameters can also generate very long bursts of packet losses resulting in

intermittent connectivity. When it happens, the real-time transmission of the con-

sidered video flow is unfeasible, unless appropriate counteractions are taken.

Packet-level Forward Error Correction (FEC) techniques are able to recover

packet losses without resorting to packet retransmission requests (which would

generate too high delays in real-time constrained scenarios). Packets to be trans-

mitted are grouped in blocks, and their loss can be recovered until the packet loss

rate of a given block exceeds the percentage of redundant packets inserted. If made

aware of the channel conditions, the sender can then adapt the percentage of FEC to

match the actual channel conditions.

This mechanism works well with the assumption of uniformly distributed losses.

However, VANET transmissions heavily suffer from burst losses that strongly impact

the possibility to recover data packets belonging to such bursts. To overcome this

problem, in this chapter, we resort to packet-level interleaving to split long consecu-

tive error bursts into smaller lost packets sequences. With adequate constraints, we

show that a joint FEC/interleaving technique is able to consistently improve the

transmission quality while respecting real-time constraints. We then present the
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proposed FEC and Interleaving Real-time protection technique (FIR) and its

optimized version (FIRO) which dynamically adapts protection strength and trans-

mission delay to channel variations. The proposed techniques are validated with

simulations based on the Gilbert–Elliott wireless channel model, showing gains of

up to more than 0.9 dB and 1.5 dB in PSNR with respect to plain transmission.

The remainder of the chapter is organized as follows: In Sect. 21.2, the principles

of real-time multimedia streaming are presented. In Sects. 21.3 and 21.4, the

building blocks of our solution are described, namely, the FEC and interleaving

techniques, and nonadaptive optimal parameters are obtained. In Sect. 21.5, the

proposed solution to the adaptive case is derived, both for the FIR and FIRO

algorithms, and their performance evaluated with respect to isolated adaptive

FEC, isolated adaptive interleaving, and plain transmission. Finally, Sect. 21.6

concludes the chapter.

21.2 Real-Time Multimedia Streaming

The requirements for real-time data transport mechanisms are distinctively different

from those for traditional data communications. For example, real-time delivery

requirements restrict the use of retransmissions to recover from packet losses so that

the Transmission Control Protocol (TCP) is not suitable for this scenario. Instead,

the Real-time Transport Protocol (RTP), specified in RFC 3550 [3], is the de facto

standard for delivering data with real-time content over IP networks.

To enable real-time transmission and playout at the receiver, the RTP packet

header carries sensitive information such as the sequence number and the timestamp.

An RTP packet may contain one or more codec frames, with the sequence number

incrementing by one for each packet sent and the timestamp increasing at the rate of

Fig. 21.1 Multimedia

streaming scenario in

vehicular ad-hoc networks
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the sampling clock. The RTP receiver uses the sequence number to detect lost packets

and the timestamp field to determine when to play out received data.

The RTP Control Protocol (RTCP) [3] is used to monitor the quality of service

and to convey information about the participants in an ongoing session. Basically,

RTCP carries long-term statistic information (e.g., mean packet loss rate (PLR),

round trip time, jitter, etc.) related to the RTP session participants. The full real-

time multimedia streaming procedure is shown in Fig. 21.2.

In this work, we discuss how RTCP reports can support RTP transmission to

track frequent variations of the wireless channel in order to provide the streaming

server with regular feedbacks from the receiver on the suffered packet loss rate.

Timely feedback is used, at the sender, to adapt the transmission policy to the

channel characteristics in order to achieve the best video quality as perceived by the

end user. Error control techniques are introduced to improve communication

reliability against time-varying and bursty packet losses. In fact, IEEE 802.11

link-layer retransmissions are efficient only in a shorter timescale and in the face

of short-term fluctuations (fast fading); more persistent fluctuations (slow fading) in

a high-mobility scenario render these mechanisms inefficient. Application-level

error control techniques may provide additional reliability on a longer timescale

and, as described in the next sections, cross-layer integration can be exploited to

regulate the trade-off between error control aggressiveness and transmission over-

head according to the channel loss trends reported by the RTCP protocol.

21.3 Forward Error Correction

Generic forward error correction is a codec-independent method of protecting the

information conveyed in data packets against packet erasures by adding redundant

data to the transport stream. In this work, we use a common method for generating

Fig. 21.2 Real-time multimedia streaming by means of the RTP and RTCP protocols
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FEC data that takes a set of packet payloads and applies the binary exclusive or

(XOR) operation across the payloads. This scheme allows the recovery of missing

data in the case where one of the original packets is lost, but the FEC packet is

received correctly. The RTP payload format for using generic FEC based on XOR

operations has been published in RFC 5109 [4].

In recent years, several proposals have been made to use well-known error-

correcting codes, such as Reed–Solomon [5] codes, for packet loss recovery as well.

However, the weakness of the more complex schemes is the computational com-

plexity, which may cause performance problems with long packets and a large

number of parity packets. This is why we limit the scope of this chapter to XOR-

based FEC codes only. Nevertheless, the basic principles discussed here can be

easily extended to other kinds of linear codes.

Figure 21.3 shows two basic schemes using the generic FEC defined in RFC

5109. In this chapter, we adopt the definition of function f(x, y, . . .) to denote the

resulting FEC packet when the XOR operation is applied to the packets x, y, . . . .
In example (a), a single packet loss every three packets (in the original media

stream) can be recovered, and in example (b), every packet loss can be recovered,

assuming that the FEC stream is received correctly in both cases.

Clearly, both schemes require more network bandwidth because of the redun-

dancy overhead. Example (a), that is denoted FEC 3:1, introduces an overhead of

33% since an FEC packet is sent every three data packets, while example (b), that is

denoted FEC 1:1, introduces an overhead of 100%. In general, an FEC i:1

introduces an FEC packet for every i data packets, causing an overhead of (100/i)%.

In practice, the media stream and the FEC stream are usually transmitted using

the same transport medium. This is why we cannot expect packet losses to occur

only in the media stream as both streams are likely to suffer from similar error

characteristics. In the network perspective, it is realistic to assume the media stream

and the FEC stream to form a single stream containing both media and FEC

packets. Given a sequence of media and FEC packets, we can easily see the

variation in error recovery rates when we examine the residual media data loss

rate after applying different kinds of FEC patterns to the sequence. In Fig. 21.4, we

plot the packet loss rate at the network level for a real wireless inter-vehicle

Fig. 21.3 Two basic sample schemes using generic FEC as defined in RFC 5109
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transmission trace together with the application-level data loss rate for FEC

examples (a) and (b). Clearly, the more overhead is introduced, the more media

data loss rate decreases.

Nevertheless, the loss rate reduction is lower than expected. This is because the

high packet loss rates of wireless transmission usually occur through correlated

(adjacent) packet losses. In this case, loss distribution (i.e., loss pattern) is a key

parameter that determines the FEC performance. Clustered losses considerably

reduce the efficiency of FEC and decrease the decoding quality. It is clear that

the packet loss rate at the application level does not depend only on the packet loss

rate but also on which packets are lost.

A method that can be used to tackle this problem is to use interleaving to spread

adjacent frames in different packets [6] as described in the next section.

21.4 Packet Interleaving

We explore a simple packet interleaving scheme to convert burst losses into an

equivalent number of isolated losses which are easier to recover from using forward

error control. Compared to other types of error resilience techniques, packet

Fig. 21.4 Application-level packet loss rate as a function of time for two generic XOR FEC

schemes compared to the case of no FEC. FEC overhead is 100% for FEC 1:1 and 33% for FEC 3:1
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interleaving provides the advantages of (1) being computationally simple and (2)

not requiring any increase in bit rate. Furthermore, packet interleaving can easily be

coupled with FEC techniques.

A potential drawback of packet interleaving is that it requires additional delay.

Interleaving delay is of particular concern in high interactive applications, such as

Internet telephony, that cannot tolerate a delay above 400 ms [7]. However, the

required delay, which depends on channel burst length characteristics, can gener-

ally be bound to relatively short values, so even in this kind of applications, the end-

to-end delay introduced by this technique is usually acceptable. Since many

approaches for interleaving exist, we introduce the specific packet interleaving

strategy used in this study.

A simple packet interleaver that permutes the packet transmission order is

represented in Fig. 21.5. At the sender, packets are first written into the interleaver

in rows, with each row corresponding to a block of n packets; among them, k ¼ n � 1
are data packets, and the last one is a XOR-based FEC packet. Then the packets are

transmitted by columns as soon as m rows of packets fill up. At the receiver, when

packets are reordered using their timestamp and sequence number, loss bursts are

converted into separated losses. Let us consider, for example, the case of a transmis-

sion channel afflicted by a burst loss of length three occurring during the transmission

of the first three packets. Using the (n, m) interleaver shown in Fig. 21.5, the burst loss
affects separated packets 1, 4, and 7 instead of successive packets 1, 2, and 3.

The effectiveness of the interleaver depends on the block size and the

interleaving depth as well as the loss characteristics of the channel. With an

interleaving depth of m, a burst loss of length B can be converted into a shorter

burst with a maximum length of dB/me, where dxe denotes the smallest integer not

smaller than x. In an ideal case, when m � B, the burst loss can be converted into

isolated losses.

In this case, the separation between any two losses is either n or n � 1. A larger

interleaver is more effective in that it can convert a longer burst loss into isolated

losses or increase the separation of the converted isolated losses. However, this is at

the cost of higher latency. At the client, an interleaved packet received cannot be

used until all the packets it depends on are received. For an (n, m) interleaver, the
nth packet in the original order suffers from the highest delay, as it has to be

transmitted in the ((n � 1) � m) + 1th place. Hence, the decoding delay

corresponding to an (n, m) interleaver is

ðn� 1Þ � m (21.1)

Fig. 21.5 Packet interleaver

with block size n ¼ 4 and

interleaving depth m ¼ 3.

Packets are transmitted by

columns following the

sequence numbers in brackets
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and a trade-off exists between the effectiveness in permuting the packets and the

latency. It should be noted that the total delay here is not the typical n � m which

arises in channel coding situations, since we do not have the delay of applying FEC

across the entire interleaved data [8].

Figure 21.6 illustrates the advantage of using different interleaving lengths for the

same FEC scheme in the real wireless intervehicle transmission trace shown in

Fig. 21.4. It is observed that the interleaver leads to lower packet loss rate by

converting the burst losses into isolated losses so that the XOR FEC scheme can

effectively recover the missing data packets. The figure also shows the corresponding

quality of the received video stream, measured by means of Peak Signal-to-Noise

Ratio (PSNR). Note that at the network level, the total number of losses is the same in

both cases; the difference is only in the pattern of the losses. In addition, we clearly

see that after a certain interleaving depth, there is nearly no gain in increasing the

interleaver depth. This is because the interleaving depth is equal or greater than the

mean burst length of the network channel and that this value is large enough to benefit

from burst loss spreading. In the next section, we determine the optimal combination

of FEC redundancy and interleaver length (n, m) under certain application-related

delay constraints.

Fig. 21.6 Application-level packet loss rate and PSNR (dotted line) as a function of the

interleaver depth with FEC 1:1 for the Foreman sequence and network trace of Fig. 21.4
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21.5 Adaptive FEC and Interleaving Techniques

Researchers have been working for a long time to improve FEC-based error

control mechanisms. The major research interest is still how to make the FEC

code size adaptive instead of using a fixed FEC code under all communication

environments.

Several works proposed adaptive FEC schemes that adjust the code size

according to an optimization model based on the assumption that the packet loss

in a network follows a Bernulli process [9], a Gilbert–Elliott model [10], etc.

However, the method of employing fixed models to determine the characteristics

of wireless channels works reasonably well for an environment where the end nodes

are fixed or have low mobility. For an environment that changes dynamically in

time and speed, finding an appropriate model is still a major research issue. So we

propose an alternative solution, that is to use a feedback loop to determine the

changing channel conditions and consequently to adjust the strength of the FEC

code depending on the notification of corrupted packets at the receiver end. By

means of RTCP reports the loss pattern at the network level is regularly sent back to

the receiver, thus giving the streaming server the possibility to adapt the FEC

strength along the video stream. The schematic implementation of the proposed

closed-loop FEC and Interleaving Real-time protection technique (FIR) and its

optimized version (FIRO) is shown in Fig. 21.7.

In the following of the chapter, the FIR and FIRO techniques are first presented;

then, their performance is evaluated with respect to isolated adaptive FEC, isolated

adaptive interleaving, and plain transmission. In all the simulations, the channel has

been modeled with a 2-state Gilbert–Elliott model.

Fig. 21.7 Implementation of the FEC and interleaving real-time protection technique
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21.5.1 FEC and Interleaving Real-Time Protection
Technique (FIR)

The proposed XOR-based adaptive FEC scheme uses the averaged loss rate

p reported periodically by RTCP to adjust the amount of redundancy (FEC) to be

transmitted. XOR-based FEC protocol produces an additional redundancy packet

from k media packets, and it has the capacity to overcome a single packet loss over

the n ¼ k + 1 consecutive packets. This provides resiliency against a maximum

packet loss rate of p ¼ 1/n when considering that even FEC packets may be

affected by loss. Thus, based on the averaged packet loss rate measurements such

as that provided by the RTCP feedback, it is possible to constantly adjust the

redundancy amount by changing the number of media packets (k) covered by the

FEC packet as follows:

k ¼ 1

p

� �
� 1 (21.2)

The maximum acceptable loss rate threshold beyond which the streaming server

triggers FEC adaptation may differ depending on the nature of the audiovisual

content and its loss resiliency characteristics (e.g., according to Eq. 21.2, if the

maximum threshold is set to 10%, the maximum value of k has to be set to 9).

The other dimension of the interleaving matrix, i.e., the number of rows (m),
depends on the overall delay that can be tolerated by the real-time application. The

total end-to-end delay consists of three components: the codec delay, the network

delay, and the playout delay. The latter is set according to the jitter introduced by

the network transmission, and when interleaving is used, it should be increased so

that it can accommodate also the interleaving delay. Playout buffer size is set by the

receiver at the beginning of the transmission, before media decoding and, in the

simplest scenarios, it is usually kept constant. So, if we denote it by dpo ¼ dj + di,
where dj corresponds to the jitter component and di to the interleaving component,

the value of m can be dynamically calculated from Eq. 21.1 as a function of di
and n as

m ¼ di
n� 1

� �
(21.3)

An additional issue that must be considered is that the FEC adaptation model

poses a problem when dealing with channels that exhibit varying packet loss rates

over time. The frequency of the receiver reports, which give to the sender an estimate

about the network loss rate and other parameters, may reduce the responsiveness of

the FEC scheme, leading to suboptimal FEC efficiency. A high frequency would

enhance the responsiveness at the sender while causing high variations between

successive measurements and possibly leading to instability, not to mention
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excessive feedback traffic overhead. On the other hand, a low frequency would have

good stability and low overhead, but poor responsiveness.

Every time the sender receives an RTCP packet with a report of the current PLR,

it calculates the PLR estimate p (also identified as long-term PLR) for the

subsequent time interval p̂ðiÞð Þ using the reported PLR value pði� 1Þð Þ and the

previous PLR estimate p̂ði� 1Þð Þ according to

p̂ðiÞ ¼ p̂ði� 1Þ � aþ pði� 1Þ � ð1� aÞ (21.4)

where the value of the memory factor a has to be chosen in order to give a good

noise reduction ratio while maintaining a reasonable rate of convergence.

The entire FIR algorithm can be summarized as follows:

21.5.2 FEC and Interleaving Real-Time Optimization
Protection Technique (FIRO)

In the FIR technique, the FEC and interleaver parameters are adjusted according to

the experienced packet loss rate which is reported to the sender by the RTCP

reports. The interarrival period of each RTCP report is considered fixed. This

choice from one hand simplifies the FEC and interleaving adaptation algorithm,

which does not depend from other variables, but on the other hand reduces the

adaptation capability of the algorithm.

The FIRO algorithm extends its previous version by adding the possibility of

changing the interarrival period of the RTCP reports. FIRO starts by setting an

initial frequency of the RTCP interarrival period, by defining a minimum and

maximum value for the interarrival period and the granularity of the variations

(steps). The RTCP interarrival period is then updated based on the actual channel

conditions. If there is the need of adapting more quickly to the channel variations or

to monitor the channel with more accuracy, that is, if the current estimate is not

accurate or if the long-term PLR is higher than the maximum allowed PLR, the time

between two consecutive RTCP reports is decreased by one step until the minimum

value of the interarrival period is reached. The interarrival period is increased by

one step (so to decrease the frequency of the reports) until the maximum allowed
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value is reached in all other cases. The new interarrival period is then appended as

RTP extension to the next packet to be transmitted.

The entire FIRO algorithm can be summarized as follows:

21.5.3 Performance Evaluation

To test the performance of the FIR and FIRO algorithms, the transmission of a 65 s

video stream between two cars in a highway scenario has been simulated. The input

video stream [11] has been compressed with the H.264/AVC codec [12] at

30 frames/s, 9 packets/frame, 600 kbit/s. The channel has been modeled with a

2-state Gilbert–Elliott model, with average packet loss rate of 10% and average

burst error length of 3 packets. The maximum allowed transmission delay has been

set to 400 ms, according to [7], while the maximum allowed packet loss rate has

been set to 5%. For the FIR algorithm, the RTCP interarrival time has been set equal

to 1 s, while for the FIRO, it can vary from a minimum of 0.1 s to a maximum of 1 s

with granularity of 0.1 s for increments/decrements. The received quality of the

video stream has been evaluated by means of Peak Signal-to-Noise Ratio (PSNR).

The performance of the following transmission techniques has been evaluated:

plain transmission, adaptive FEC only (without interleaving), adaptive interleaving

only (without FEC), FIR, and FIRO. Overall results are presented in Table 21.1.

The FIR algorithm outperforms a plain transmission and the adaptive techniques

in which FEC and interleaving are used in isolation both in PLR and PSNR results.

By resorting to interleaving, FIR outperforms the adaptive FEC technique in terms

of reduction of the application-level PLR (�0.62%). The error bursts are split

between multiple FEC blocks, allowing the FEC to be more effective. In terms of
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perceived quality, the adaptive interleaving technique performs better than the

adaptive FEC technique, even if its PLR performance is worse, since the error

concealment algorithm of the video decoder can recover single packet losses more

easily than burst losses.

The FIRO algorithm shows better performance with respect to its version

without optimizations (FIR) both in PLR and PSNR. The use of variable RTCP

interarrival time guarantees a much more effective adaptation to the channel

conditions, which results in a reduction of about 2% in terms of PLR and a gain

of about 0.5 dB with respect to the FIR algorithm. Moreover, FIRO shows a

substantial reduction in the additional transmission overhead, which is equal to

11.51% with respect to a plain transmission and lower than the 14.34% experienced

by the FIR algorithm.

21.6 Conclusions

This chapter discusses the implementation of adaptive communication techniques

aimed at the proactive protection of multimedia streams by means of combined

FEC and interleaving in the context of inter-vehicle communications. An adaptive

technique, FIR, and its optimized version, FIRO, for the real-time transmission of

loss-tolerant information flows targeted to V2V communication have been

presented. The two techniques are based on two well-known packet-level error-

resilience techniques and on periodic receiver feedbacks. FIR resorts to the periodic

receiver reports sent at a fixed interarrival frequency to dynamic update the FEC

and interleaving parameters, thus improving the communication quality at both

network and application layer. FIRO is an optimized version of the FIR technique in

which the interarrival frequency of the receiver reports is dynamically updated, thus

improving performance both in PLR and PSNR. The proposed FEC and

interleaving adaptation technique guarantees a gain of over 1.5 dB PSNR, with a

total overhead of about 12%, in its optimized version.

Acknowledgement This work was supported in part by Regione Piemonte through the VICSUM

project.

Table 21.1 Performance comparison between plain transmission, adaptive FEC, adaptive

interleaving, FIR, and FIRO

Transmission algorithm PLR (%) [D] PSNR (dB) [D] Overhead (%)

Plain transmission 9.98 [ ] 37.88 [ ] 0.00
Adaptive FEC 8.94 [�1.04] 3.10 [+0.22] 14.34
Adaptive interleaving 10.03 [+0.05] 38.64 [+0.76] 0.00
FIR 8.32 [�1.66] 38.83 [+0.95] 14.34
FIRO 6.18 [�3.80] 39.41 [+1.53] 11.51
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Chapter 22

Matisse: A Large‐Scale Multi‐Agent System
for Simulating Traffic Safety Scenarios

Rym Zalila-Wenkstern, Travis L. Steel, Ovidiu Daescu,

John H.L. Hansen, and Pinar Boyraz

Abstract In this study, we discuss the high level architecture of MATISSE, a

large-scale multi-agent system for simulating traffic safety and congestion

scenarios. MATISSE includes three main components: the Agent–Environment

System (AES) creates simulation instances where the environment is modeled as

a graph, the Data Management System stores and processes the information col-

lected from the AES, and the Visualization Framework provides 2D and 3D virtual

representations of simulated entities.

Keywords Multi-agent systems • Simulation • Safety • Traffic management

22.1 Introduction

The root causes of traffic congestion have long been understood, and several strategies

have been defined to address this problem [Dot07]. Transportation technologies

known as Intelligent Transportation Systems (ITS) have been considered as possible

solutions [1]. In this paper, we discuss Soteria,1 a multilayered, integrated traffic

super-infrastructure for safety enhancement and congestion reduction, andMATISSE,

a tailor-made, large-scale multi-agent-based simulation system designed to support

this infrastructure.
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Several advanced traffic simulation tools have been implemented in the last

decade (e.g., CORSIM [2], CONTRAM [3], CORFLO [4], PARAMICS [5]).

These tools are based on a conventional top-down view of the traffic problem

and produce models that are rigid and idealistic. In our work, we approach the

traffic problem from a bottom-up perspective and consider the traffic system as a

large set of small interacting autonomous entities. The global system behavior

emerges from the behavior and interactions of the individual entities.

The rest of this paper is organized as follows: in Sect. 22.2, we give a brief

overview of Soteria; in Sect. 22.3, we describe MATISSE’s high level architecture;

and in Sect. 22.4, we discuss a model execution through a case study.

22.2 Overview of the Soteria Super-Infrastructure

Soteria [6] is a novel super-infrastructure for improving safety and reducing

congestion on roads and highways. This infrastructure aims at enforcing communi-

cation, interaction, and collaboration between all the stakeholders at the micro and

macro levels.

The proposed super-infrastructure is based upon two underlying concepts:

• In order to manage the traffic environment efficiently, it is necessary to partition

the physical space into smaller defined areas called cells.
• Each cell is assigned a physical entity called a controller. A cell controller is

responsible for (1) autonomously managing and controlling a portion of the

physical environment (i.e., cell) including vehicles and traffic lights and (2)

notifying other controllers of changes that may affect their cells.

As shown in Fig. 22.1, our proposed super-infrastructure consists of three

components:

• The Cell Controller Infrastructure consists of cell controllers equipped with

interactive devices. The purpose of this infrastructure is to keep the Vehicle

Infrastructure and the Traffic Flow Infrastructure up to date with respect to

traffic and safety information.

• The Context-Aware Intelligent (CAI) Vehicle Infrastructure consists of vehicles
equipped with devices that allow them to (1) monitor the driver’s behavior in

order to prevent possible accidents, (2) communicate with other vehicles, and (3)

interact with cell controllers to obtain traffic information in real time.

• The Traffic Flow Infrastructure consists of three types of stationary traffic

devices: traffic lights, traffic collection devices, and relay units. The purpose

of this infrastructure is to improve safety and traffic flow on roads and highways

by providing information about the physical traffic infrastructure and congestion

condition.
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22.3 Matisse: A Simulation Platform for Soteria

Asmentioned in Sect. 22.1,MATISSE (Multi-Agent basedTraffIc Safety Simulation

systEm) is a “tailor-made” simulation framework2 designed to specify and execute

simulation models for Soteria. More precisely, it allows the simulation of various

traffic safety improvement and congestion reduction scenarios at the macro level

under nominal and hypothetical conditions.

MATISSE’s artificial world consists of a large number of agents and a virtual

environment. Agents can be of type vehicle, traffic light, or information collection
device and are either mobile or stationary. In MATISSE, the environment is a

bidirectional graph (G) in which nodes represent locations and edges represent

paths between locations. Agents move in the environment using the map specified

by G. Because of the dynamic and distributed features of the environment and due

to the large amount of information exchanged between the agents and the environ-

ment, it is necessary to partition the space into a network of cells. Cell information

is managed by individual cell controllers.

2 The term “framework” refers to a system of systems.

Fig. 22.1 The super-infrastructure
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MATISSE’s architecture is an extension of the DIVAs platform [7–9].

It includes three main components (see Fig. 22.3):

• The Agent Environment System (AES) creates simulation instances.

• TheDataManagement System (DMS) stores and processes information collected

from the AES.

• The Visualization Framework receives information from the DMS to create 2D

or 3D images of the simulation.

MATISSE’s main constituent, i.e., the Agent Environment System, consists of

three components:

• The Context-Aware Intelligent Vehicle (CAI) platform creates and manages

mobile agents that represent vehicles.

• The Traffic Device platform creates and manages stationary agents that represent

traffic lights and information collection devices.

• The Environment platform creates and manages the environment Fig. 22.2.

These platforms interact with one another through three Message Transport
Services.

22.3.1 Agent Architecture

In MATISSE, each agent, irrespective of its type, has an internal structure

consisting of interaction modules, information modules, a task module, and a

planning and control module (see Fig. 22.4). Concepts such as goals, tasks, and

constraints are defined for each specific agent:

• Interaction Modules. An agent is able to perceive the environment through the

environment perception module. It communicates with other agents through

the agent communication module.

Fig. 22.2 MATISSE cell structure
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Fig. 22.3 MATISSE high level architecture

Fig. 22.4 Agent architecture
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• Information Modules. This is partitioned into External Information Module

(EIM) and Internal Information Module (IIM). It serves as the portion of the

agent’s memory that is dedicated to maintaining knowledge about entities

external to the agent. It consists of the Environment Model and the Acquaintance
Model. The Environment Model is maintained according to the agent’s percep-

tion of its environment, while the Acquaintance Model is maintained according

to the agent’s collaboration with other agents.

It acts as the portion of the agent’s memory that is dedicated for keeping

information that the agent knows about itself. This module consists of the

agent’s Self Model and the Constraint Model. The Self Model maintains

the essential properties of the agent, while the Constraint Model maintains the

agent’s physical and collaborative limitations.

• Task Module. This module manages the specification of the atomic tasks that the

agent can perform in the domain in which it is being deployed. MATISSE allows

the user to define these tasks or assign them from a library of predefined tasks.

• Planning and Control Module. This serves as the brain of the agent. It uses

information provided by the other agent modules to plan, execute tasks, and

make decisions.

22.4 Cell Controller Architecture

A cell controller is responsible for managing and controlling its own portion of the

environment. It informs its local agents (e.g., vehicles, traffic lights) about changes

in their surroundings and informs neighboring cells of any changes that may affect

them. These characteristics reveal a strong correlation between the cell controller

and the agent architectures; thus, it is clear that a cell controller can be modeled as a

simple agent, as depicted in Fig. 22.5.

Similar to the agent architecture, the main four components of a cell controller

are the interaction modules, the information modules, a task module, and the

planning and control module.

• Interaction Modules. These modules handle asynchronous communication

among cell controllers as well as synchronous communication between cell

controllers and agents.

• Information Modules. These modules contain the data a controller needs to

function. It is composed of the:

• Agent Model. This model contains minimal information about the agents

within the cell’s environment region such as their identifiers and locations.

• Linked Cell Model. This model maintains a list of neighboring cells whose

graphs share a path with this cell’s graph. Information such as cell identifiers

and path identifiers of all shared paths are included in this model.

• Graph Model. This model contains information regarding the nodes and

edges contained within the cell.
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• Self Model. This model contains information regarding the essential

characteristics of the cell such as its identifier and region boundaries.

• Object Model. This model includes information detailing physical entities

that are situated within the cell region but are not actual agents.

22.5 Case Study: Model Execution

In this section, we will consider the accident scenario depicted in Fig. 22.6.

An accident has occurred in cell 12 (shown by the ‘X’), and the vehicle onboard

Collision Avoidance System informs cell controller C12 of the accident. Under this

scenario, C12 immediately performs the following steps:

(a) Informs all the vehicles in the cell of the accident. The C12 cell controller

achieves this by broadcasting an accident notification over the cell-controller-

to-vehicle MTS to all vehicle agents currently stored in the cell’s vehicle agent

model.

(b) Informs adjacent cell controllers of the accident. The C12 cell controller sends

accident notifications over the cell-controller-to-cell-controller MTS to neigh-

boring cell stored in the linked cell model.

(c) Communicates with higher level controllers to obtain broader traffic information

that is passed onto the vehicles. A hierarchy of cell controllers enables lower cell

controllers to exchange information with cell controllers on a broader scale.

Fig. 22.5 Cell controller architecture
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All the vehicles in the cell make use of the broader traffic information to

determine the best exit route (to avoid creating congestion on secondary streets).

Traffic lights communicate with other traffic lights to optimize traffic flow (e.g.,

approaching cars are not allowed to enter the cell) and may decide to turn green to

allow traffic to flow.

The adjacent cell controllers, upon receipt of the accident notification, act in a

similar manner as C12 to notify vehicles, traffic light controllers, and adjacent cell

controllers of the accident.

22.6 Conclusion

In this paper, we discussed the high level architecture of MATISSE, a large-scale

multi-agent system for the specification and execution of traffic safety scenarios.

We approach the traffic simulation problem using a bottom-up approach, where the

global system behavior is the result of the combination of individual micro-level

behaviors. The design of MATISSE is based upon sound software engineering

principles (i.e., separation of concerns, information hiding, and modularity). This

leads to an extensible, reusable architecture.

Fig. 22.6 Accident scenario
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