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Abstract. In this paper, we review some interesting problems of vacuum states
arising in hyperbolic conservations laws with applications to gas and fluid dynamics.
We present the current status of the understanding of compressible Euler flows near
vacuum and discuss related open problems.
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1. Introduction. A system of conservation laws is the collection of
partial differential equations in divergence form, which describe the dy-
namics of continua such as fluids and plasmas, by means of the physical
principles of conservation of mass, momentum, and energy with constitu-
tive relations encoding the material properties of the medium. Systems of
conservation laws identify the theory of mechanics, thermodynamics, elec-
trodynamics and so on. Its canonical form is ∂tU +

∑d
j=1 ∂xj

Fj(U) = 0
where U = U(t, x1, . . . , xd) ∈ R

n is a vector of conserved quantities and
Fj(U) ∈ R

n is a flux function. This system is called hyperbolic in the t-
direction if for any fixed U and ν ∈ Sd−1, the n×n matrix

∑d
j=1 νjDUFj(U)

has only real eigenvalues λ1, . . . , λn, called characteristic speeds, and it is
diagonalizable [15].

One of the most fundamental examples of a system of hyperbolic con-
servation laws is the compressible Euler system of isentropic, ideal gas
dynamics. In Eulerian coordinates, it takes the form:

∂tρ + div(ρu) = 0 ,

(ρu)t + div(ρu ⊗ u) + gradp = 0 .
(1.1)

Here ρ , u and p denote respectively the density, velocity, and pressure of
the gas. The first and second equations express respectively conservation of
mass and momentum. In considering the polytropic gases, the constitutive
relation which is also called the equation of state is given by

p = Kργ (1.2)

where K is an entropy constant and γ > 1 is the adiabatic gas exponent.
The case of γ = 1 corresponds to the isothermal gas flow. In this article,
we discuss isentropic compressible Euler equations (1.1) with (1.2) rather
than general hyperbolic conservation laws. The main interest is to study
vacuum states in the framework of classical solutions.
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When the initial density function contains a vacuum, the vacuum
boundary Γ is defined as

Γ = cl{(t, x) : ρ(t, x) > 0} ∩ cl{(t, x) : ρ(t, x) = 0}

where cl denotes the closure. We also introduce the sound speed c of Euler
equations (1.1)

c =

√
d

dρ
p(ρ)

(
=
√

Aγρ
γ−1

2 for polytropic gases
)
.

We recall that for one-dimensional Euler flows, u± c are the characteristic
speeds. If Γ is nonempty, Euler equations become degenerate along Γ,
namely degenerate hyperbolic.

We briefly review some existence theories of compressible flows. In
the absence of vacuum, namely if the density is bounded below from zero
everywhere, then one can use the theory of symmetric hyperbolic systems
developed by Friedrichs-Lax-Kato [19, 31, 33]; for instance, see Majda [46].
The breakdown of classical solutions was demonstrated by Sideris [61].

When the initial datum is compactly supported, there are at least
three ways of looking at the problem. The first consists in solving the Euler
equations in the whole space and requiring that the system (1.1) holds in the
sense of distribution for all x ∈ R

d and t ∈ [0, T ]. This is in particular the
strategy used to construct global weak solutions (see for instance Diperna
[16] and [10, 39]). The second way consists in symmetrizing the system
first and then solving it using the theory of symmetric hyperbolic system.
Again the symmetrized form has to be solved in the whole space. The third
way is to require the Euler equations to hold on the set {(t, x) : ρ(t, x) > 0}
and write an equation for Γ. Here, the vacuum boundary Γ is part of the
unknown: this is a free boundary problem and in this case, an appropriate
boundary condition at vacuum is necessary.

In the first and second ways (called later the Cauchy problem), there is
no need of knowing exactly the position of the vacuum boundary. DiPerna
used the theory of compensated compactness to pass to the limit weakly
in a parabolic approximation of the system and recovered a weak solution
of the Euler system (see also [39] where a kinetic formulation of the sys-
tem was also used). Makino, Ukai and Kawashima [51] wrote the system
in a symmetric hyperbolic form which allows the density to vanish. The
system they get is not equivalent to the Euler equations when the density
vanishes. This special symmetrization was also used for the Euler-Poisson
system. This formulation was also used by Chemin [9] to prove the local
existence of regular solutions in the sense that c, u ∈ C([0, T ); Hm(Rd)) for
some m > 1 + d/2 and d is the space dimension (see also Serre [59] and
Grassin [22], for some global existence result of classical solutions under
some special conditions on the initial data, by extracting a dispersive effect



VACUUM IN GAS AND FLUID DYNAMICS 317

after some invariant transformation). However, it was noted in [47, 48] that
the requirement that c is continuously differentiable excludes many inter-
esting solutions such as the stationary solutions of the Euler-Poisson system
which have a behavior of the type ρ ∼ |x − x0|

1

γ−1 , namely c2 ∼ |x − x0|
near the vacuum boundary. Indeed, Nishida in [55] suggested to consider
a free boundary problem which includes this kind of singularity caused by
vacuum, not shock wave singularity.

For the third way (called later the free boundary problem), we divide
into a few cases according to the initial behavior of the sound speed c. For
simplicity, let the origin be the initial vacuum contact point (x0 = 0). And
let c ∼ |x|α. When α ≥ 1, namely initial contact to vacuum is smooth
enough, Liu and Yang [43] constructed the local-in-time solutions to one-
dimensional Euler equations with damping by using the energy method
based on the adaptation of the theory of symmetric hyperbolic system and
characteristic method. They also prove that c2 can not be smooth across
Γ after a finite time. We note that in these regimes there is no acceleration
along the vacuum boundary.

For 0 < α < 1, the initial contact to vacuum is only Holder continuous.
In particular, the corresponding behavior to α = 1/2 can be realized by
some self-similar solutions and stationary solutions for different physical
systems such as Euler equations with damping, Navier-Stokes-Poisson or
Euler-Poisson equations for gaseous stars [27, 28, 44, 64]. This motivates
the following definition: A vacuum boundary Γ is called physical if the
acceleration is bounded from below and above, namely

−∞ <
∂c2

∂n
< 0 (1.3)

in a small neighborhood of the boundary, where n is the outward unit nor-
mal to Γ. Despite its physical importance, the local existence theory of
smooth solutions featuring the physical vacuum boundary even for one-
dimensional flows was established only recently. This is because if the
physical vacuum boundary condition (1.3) is assumed, the classical the-
ory of hyperbolic systems can not be applied [44, 64]: the characteristic
speeds u ± c become singular with infinite spatial derivatives at the vac-
uum boundary and this singularity creates an analytical difficulty. The
first rigorous result regarding the physical vacuum was given by the authors
[29] for one-dimensional Euler equations in mass Lagrangian coordinates
based on extracting a new structure lying upon the physical vacuum. Re-
cently Coutand and Shkoller [12] constructed more regular solutions in La-
grangian coordinates. For multi-dimensional case, Coutand, Lindblad and
Shkoller [14] have a priori estimates by assuming smoothness of solutions.
More recently, Coutand and Shkoller [13] extended their 1D methodology
to construct solutions in 3D with physical vacuum and independently of
this work, the authors [30] have established the well-posedness of 3D case.
The methods are very different.
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For 0 < α < 1/2 or 1/2 < α < 1, the corresponding boundary
behavior is believed to be ill-posed and indeed, we think that it should
instantaneously change into the physical vacuum. However, there is no
mathematical justification available so far.

The case α = 0 is when there is no continuous initial contact of the
density with vacuum. It can be considered as either Cauchy problem or
free boundary problem. An example of Cauchy problem when α = 0 is the
Riemann problem for genuinely discontinuous initial datum. For instance,
see [24], which was brought up by Hunter [1] and Bouchut [7]. An example
of a free boundary problem when α = 0 is the work by Lindblad [36] where
the density is positive at the vacuum boundary.

The paper proceeds as follows. In Section 2, we discuss the well-
posedness of vacuum free boundary problems in detail. In Section 3, the
comparison between Euler equations with damping and porus media equa-
tions and some open problems are presented. In Section 4, we present some
analogues of vacuum singularity in other areas and further discuss other
research directions.

2. Euler equations with vacuum free boundary.

2.1. Mass Lagrangian formulation in 1D flows and α ≥ 1. Let
the initial density ρ0(0, x) for a ≤ x ≤ b be given so that ρ0(a) = 0 and
ρ0(x) > 0 for a < x ≤ b. Let a(t) be the particle path from x = a. We seek
ρ(t, x), u(t, x), and a(t) for t ∈ [0, T ], T > 0 and x ∈ [a(t), b] so that for
such t and x, ρ(t, x) and u(t, x) satisfy Euler equations (1.1) with boundary
conditions

ρ(t, a(t)) = 0 , u(t, b) = 0 , 0 <
∂

∂x
ρ

γ−1

2α

∣∣
x=a(t)

<∞ .

In the following, we present the work of Liu and Yang [43] which con-
cerns the well-posedness of the boundary condition of the case α ≥ 1. For
one-dimensional Euler equations, there is a natural transformation which
fixes the free boundary, mass Lagrangian coordinates:

y ≡
∫ x

a(t)

ρ(t, z)dz, x ∈ [a(t), b].

Note that the vacuum free boundary x = a(t) corresponds to y = 0, and
x = b to y = M where M is the total mass of the gas, and thus both
boundaries are fixed in (t, y). The Euler equations (1.1) can be rewritten
as a symmetric hyperbolic system

φt + μuy = 0 ; ut + μφy = 0 (2.1)

in the variables φ ∼ ρ(γ−1)/2 and μ ∼ ρ(γ+1)/2 . Since φ ∼ yα(γ−1)/(2α+γ−1)

vanishes algebraically at y = 0, one can try to find another change of
variables so that (2.1) reduces to the system in non-vanishing unknown and
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the corresponding propagation speed becomes smooth in a new variable.
To this end, let z ≡ yq, φ ≡ zβη and u ≡ C + zβζ where C is a given
constant, β = α(γ− 1)/q(2α+ γ− 1) and q is a constant to be determined.
Now the interest is when η > 0. Write (2.1) for η, ζ:

ηt + dz(α−1)(γ−1)/q(2α+γ−1)η(γ+1)/(γ−1)(zζz + βζ) = 0

ζt + dz(α−1)(γ−1)/q(2α+γ−1)η(γ+1)/(γ−1)(zηz + βη) = 0
(2.2)

where d is a constant depending on q, γ. We now state the result in [43].

Theorem 2.1. Let α ≥ 1. There exist solutions for the system
(2.1) of the following form locally in time φ(t, y) = yα(γ−1)/(2α+γ−1)η,
u(t, y) = C + yα(γ−1)/(2α+γ−1)ζ, where η > 0, ζ satisfies (2.2).

Here the point is that for α ≥ 1, one can choose a positive constant q
so that the propagation speed z(α−1)(γ−1)/q(2α+γ−1)+1 of (2.2) is smooth,
indeed either z or z2 and thus Kato’s theorem [31] on a symmetric quasi-
linear hyperbolic system for η, ζ can be applied. However, this method is
not applied to other singular cases 0 < α < 1.

2.2. Well-posedness of physical vacuum. We fix α = 1/2. Let
us start with (2.1). Note that the degeneracy for the physical singularity
is given by φ ∼ y(γ−1)/2γ and μ ∼ y(γ+1)/2γ . In order to get around this
degeneracy, the following change of variables was introduced by Liu and
Yang [44]:

ξ ≡ 2γ

γ − 1
y

γ−1

2γ such that ∂y = y−
γ+1

2γ ∂ξ .

After normalizing A and M , the equations (2.1) take the form:

φt + (
φ

ξ
)2kuξ = 0 ; ut + (

φ

ξ
)2kφξ = 0 , k ≡ 1

2
γ + 1
γ − 1

(2.3)

for t ≥ 0 and 0 ≤ ξ ≤ 1. The physical singularity condition (1.3) is
written as 0 < |φξ| < ∞. Thus we expect φ ∼ ξ for a short time near
0. The propagation speed is now non-degenerate. However, its behavior
is different in the interior and on the boundary, which makes it hard to
apply any standard energy method to construct solutions in the current
formulation.

In [29], we proposed a new formulation to (2.3) so that some energy
estimates can be closed in the appropriate energy space. As a preparation,
first define the operators V and V ∗ associated to (2.3) as follows:

V (f) ≡ 1
ξk

∂ξ

[
φ2k

ξk
f

]
, V ∗(g) ≡ −φ2k

ξk
∂ξ

[
1
ξk

g

]
(2.4)
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for f, g ∈ L2
ξ. In terms of V and V ∗, the Euler equations (2.3) can be

rewritten as follows:

∂t(ξkφ)− V ∗(ξku) = 0 ; ∂t(ξku) + V (ξkφ)/(2k + 1) = 0 (2.5)

with the boundary conditions φ(t, 0) = 0 and u(t, 1) = 0 . Equations (2.5)
look like a symmetric linear hyperbolic system with respect to nonlinear
operators V, V ∗. Define the associated energy

E(φ, u) ≡
k�+3∑
i=0

∫
|(V )i(ξkφ)|2 + |(V ∗)i(ξku)|2dξ

where )k* = min{n ∈ Z : k ≤ n}. The study of V, V ∗ operators and
V, V ∗ energy estimates, which require Hardy-type inequalities, leads to
the well-posedness of physical vacuum [29].

Theorem 2.2. Fix k, 1/2 < k < ∞. Suppose given initial data
φ0 and u0 have finite energy E(φ0, u0) < ∞ and φ0 satisfies the physical
vacuum singularity condition: φ0/ξ ∼ 1 near ξ ∼ 0. Then there exist a
time T > 0 only depending on the initial data, and a unique solution (φ, u)
to the reformulated Euler equations (2.5) on the time interval [0, T ] so
that E(φ, u) <∞ and φ/ξ ∼ 1 near ξ ∼ 0.

We remark that the above energy E is designed to guarantee such min-
imal regularity that φ

ξ and φξ are bounded away from zero and from above,

and continuous. In particular, since ∂c2

∂x = (φ
ξ )2kφξ , up to constant, the so-

lution constructed in Theorem 2.2 satisfies the physical vacuum boundary
condition (1.3). The energy E is a ρ-weighted energy in Eulerian coordi-
nates where the weights and the derivatives are carefully combined and
the smaller γ, the more derivatives are needed. And the energy may be
finite for initial data which is regular inside but not very regular at the
boundary. The evolution of the vacuum boundary x = a(t) is given by
ȧ(t) = u(t, ξ = 0). By Theorem 2.2, we deduce that the vacuum interface
is well-defined.

2.3. Lagrangian formulation and physical vacuum. Parallel to
the recent progress in free surface boundary problems with geometry in-
volved (see for instance [2, 3, 4, 11, 60, 67]), one-dimensional result is
expected to be generalized to multi-dimensional case, since the difficulty
of the physical singularity lies in how the solution behaves with respect to
the normal direction to the boundary. Indeed, by assuming to have smooth
solutions in hand, Coutand, Shkoller and Lindblad [14] have a priori es-
timates for 3D compressible Euler equations for γ = 2. In this section,
we discuss their result established in real Lagrangian coordinates. This
Lagrangian approach leads to the study of Lagrangian velocity and flow
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map only, since the density is constructed from the initial datum and the
Jacobian determinant of the deformation gradient.

Let η(t, x) be the position of the gas particle x at time t so that

ηt = u(t, η(t, x)) for t > 0 and η(0, x) = x in Ω .

Defining the following Lagrangian quantities

v(t, x) ≡ u(t, η(t, x)) , f(t, x) ≡ ρ(t, η(t, x)) ,

A ≡ [Dη]−1 , J ≡ detDη , a ≡ JA ,

and using Einstein’s summation convention and the notation F,k to denote
the kth-partial derivative of F , Euler equations (1.1) for γ = 2 read as
follows:

ft + fAj
iv

i,j = 0 ; fvi
t + Ak

i f2,k = 0 . (2.6)

Since Jt = JAj
iv

i,j and J(0) = 1, together the equation for f , we find that
fJ = ρ0 where ρ0 is given initial density function. Thus, using Ak

i = J−1ak
i ,

(2.6) reduce to the following:

ρ0v
i
t + ak

i (ρ0
2J−2),k = 0. (2.7)

For simplicity, Ω = T
2 × (0, 1), Γ(0) = {x3 = 1} as the reference vacuum

boundary and ρ0 = 1 − x3 are considered. The moving vacuum boundary
is given by Γ(t) = η(t)(Γ(0)). Define the higher-order energy function

E(t) =
4∑

i=0

‖∂2i
t η(t)‖24−i +

4∑
i=0

{
‖ρ0∂

4−i
∂2i

t Dη(t)‖20 + ‖√ρ0∂
4−i

∂2i
t v(t)‖20

}
+

3∑
i=0

‖ρ0∂
2i
t J−2(t)‖24−i + ‖curlηv(t)‖23 + ‖ρ0∂

4
curlηv(t)‖20

where ∂ = (∂x1
, ∂x2

) tangential derivatives. We now state the result [14].

Theorem 2.3. Suppose η(t) is a smooth solution of (2.7). Then
there exists a sufficiently small T0 > 0 depending on E(0) such that for
0 < T < T0, the energy function E(t) constructed from η(t) satisfies the a
priori estimate supt∈[0,T ] E(t) ≤M0 where M0 depends on E(0).

The proof consists of a few different key ingredients such as weighted
Sobolev embedding, curl estimates, time differentiated energy estimates,
and elliptic estimates for normal derivatives. The additional estimates
for normal derivatives are obtained by inverting time derivatives via the
equation. As noted in [14], in order to do so legally, sufficient smoothness
of solutions was assumed and its justification by their energy should require
additional work.
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Recently Coutand and Shkoller [12] constructed H2-type solutions for
one-dimensional Euler equations based on the a priori estimates given in
Theorem 2.3 and Hardy inequalities by degenerate parabolic regularization.
This work provides an answer to the regularity question; these solutions are
smoother than the solutions constructed in [29], of course, with smoother
initial data. Due to the regularized approximations, the initial data need
to have more regularity than the solutions to guarantee the uniqueness.

More recently, there are many works trying to prove local existence in
3D: Coutand and Shkoller [13] have a way of constructing solutions in 3D
with the same method used in 1D case. Also, Lindblad [37] has a similar
result using the linearized compressible Euler equations with a Nash-Moser
iteration. Independently of these works, the authors [30] have constructed
solutions to 3D compressible Euler equations in Lagrangian coordinates by
a new analysis of physical vacuum. We briefly discuss the analysis of [30]
for general γ.

Let w ≡ Kργ−1
0 satisfying (1.3). For instance, one can take w =

x3(1 − x3) for the domain Ω = T
2 × (0, 1). Note that the equations (1.1)

or (2.7) can be viewed as a degenerate nonlinear acoustic equation for η:

wαηi
tt + (w1+α Ak

i J−1/α),k = 0 and ηi
t = vi (2.8)

where α ≡ 1/(γ − 1). Define the instant energy and the total energy:

EN ≡
N∑

m+n=0

1
2

∫
Ω

wα+n|∂m
∂n
3 v|2dx +

1
2

∫
Ω

w1+α+nJ−1/α|Dη∂
m

∂n
3 η|2dx

T EN ≡ EN +
N∑

m+n=1

1
2

∫
Ω

w1+α+nJ−1/α|curlη∂
m

∂n
3 v|2dx.

Theorem 2.4 ([30]). Let α > 0 be fixed and N ≥ 2[α] + 9 be given.
Let T EN (0) < ∞. Then there exist a time T > 0 depending only on
T EN (0) and a unique solution (η, v) to the Euler equation (2.8) on the
time interval [0, T ] satisfying T EN (η, v) ≤ 2T EN (0) and ‖A−I‖∞ ≤ 1/8 .

The proof is based on a hyperbolic type of new energy estimates which
consist in the instant energy estimates and the curl estimates. The new
key is to extract right algebraic weighted structure for the linearization in
the normal direction such that one can directly estimate normal derivatives
via the energy estimates and thus the energy estimates provide a unified,
systematic way of treating all the spatial derivatives. The solutions are
constructed by the duality argument and the degenerate elliptic regularity.

Theorem 2.4 indicates that the minimal number of derivatives needed
to capture the physical vacuum (1.3) depends on γ as captured in the 1D
result [29]. Besides boundary geometry, a critical difference between 1D
case and the new analysis is that while in V, V ∗ framework, the energy
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space is nonlinear and the number of V, V ∗ is rigid, the energy spaces given
in the above are indeed equivalent to the standard linear weighted Sobolev
spaces and also the higher regularity can be readily established.

3. Open problems.

3.1. Long time behavior with or without damping. Having the
local existence theory of vacuum states, the next important question is
whether such a local solution exists globally in time or how it breaks down.
We note that study of vacuum free boundary problems automatically ex-
cludes the breakdown of solutions caused by vacuum, which is one possible
senario for positive solutions to compressible Euler equations (1.1). It was
shown in [41] that the shock waves vanish at the vacuum and the singular
behavior is similar to the behavior of the centered rarefaction waves corre-
sponding to the case when c is regular [44], which indicates that vacuum
has a regularizing effect. Therefore it would be interesting to investigate
the long time behavior of vacuum states.

When there is damping, based on self-similar behavior, Liu conjectured
[40] that time asymptotically, solutions to Euler equations with damping

ρt + (ρu)x = 0 ; ρ(ut + uux) + (Aργ)x = −ρu

should behave like, via Darcy’s law, the ones to the porus media equation:

ρt − (Aργ)xx = 0 (3.1)

where the canonical boundary is characterized by the physical vacuum
condition (1.3). The statement on the canonical boundary for porus me-
dia equations will be clear in Section 3.2. This conjecture was established
by Huang, Marcati and Pan [26] in the framework of the entropy solution
where the method of compensated compactness yields a global weak so-
lution in L∞. But in their work, there is no way of tracking the vacuum
boundary. Thus it would be interesting to investigate the asymptotic rela-
tionship between regular solutions of physical vacuum and regular solutions
to the porus media equation. Of course, prior to it, one should have global
solutions in hand.

3.2. Ill-posedness and change of behavior. We now go back to
other vacuum states of compressible Euler equations: c ∼ xα for 0 < α <
1/2 or 1/2 < α < 1 described in the introduction. Recall that the physical
vacuum corresponds to α = 1/2. The question is whether the boundary
condition c ∼ xα is well-posed or not for Euler equations. Indeed, for such
a fixed α, if assuming that it were well-posed for a short time and tracking
the behavior c ∼ xα near vacuum boundary through both equations in (2.3)
within that time, one can see that always the more singular mode will be
created. The conjecture is that the behavior should instantaneously change
into the physical vacuum, namely from α ∈ (0, 1/2) ∪ (1/2, 1) to α = 1/2,
but its mathematical justification is an open problem.



324 JUHI JANG AND NADER MASMOUDI

In Section 3.1, we discussed some connection between Euler equations
with damping and porus media equations. For the porus media equa-
tions (3.1), which are nonlinear degenerate parabolic equations, the initial
boundary value problem including the behavior of solutions and the reg-
ularity of the vacuum free boundary has been well studied. In particular,
in the work of Knerr, Cafarelli and Friedman [32, 8], it was shown that
if the initial data ργ−1

0 ≤ Cx2, then there exists a waiting time t∗ > 0
such that the boundary starts moving after this waiting time and (ργ−1)x

is bounded away from zero and infinity for t > t∗; on the other hand, if the
initial data ργ−1

0 ≥ Cx2α where 0 < α < 1, the boundary moves instanta-
neously and (ργ−1)x is bounded away from zero and infinity for t > 0. We
note that the canonical boundary behavior ργ−1 ∼ x for the porus media
equations corresponds to the physical vacuum c2 ∼ x for Euler equations.
One expects to have this kind of waiting time behavior or instantaneous
change of behavior for Euler equations with damping, but again it is an
open question.

3.3. Relativistic fluids. The relativistic Euler equations for a per-
fect fluid in four-dimensional Minkowski spacetime are given by

∂t

(
ρ + ε2p

1− ε2u2
− ε2p

)
+ ∂x

(
ρ + ε2p

1− ε2u2
u

)
= 0 ,

∂t

(
ρ + ε2p

1− ε2u2
u

)
+ ∂x

(
ρ + ε2p

1− ε2u2
u2 + p

)
= 0 ,

where the parameter 1/ε represents the speed of light. The range of physical
interest is ρ ≥ 0, |u| < 1/ε, and c < 1/ε. Letting ε → 0, non-relativistic
Euler equations (1.1) are formally recovered. For the physical background,
see [23, 34, 49, 50, 57, 58] and the references therein.

The relativistic Euler equations is known to be symmetric hyperbolic
in the so-called entropy variables introduced by Makino and Ukai [49, 50]
away from vacuum. A particular interest is compactly supported relativis-
tic flows which for instance can be applied to the dynamics of stars in the
context of special relativity. LeFloch and Ukai [34] proposed a new sym-
metrization, which makes sense for solutions containing vacuum states and
generalizes the theory in [51] for non-relativistic Euler equations as Cauchy
problem. Whether one can extend the theory of free boundary problems
including physical vacuum developed for non-relativistic Euler equations
to relativistic case is an open problem.

4. Further discussions.

4.1. Viscous flows and vacuum. Compressible Navier-Stokes equa-
tions

∂tρ + div(ρu) = 0 ,

(ρu)t + div(ρu⊗ u) +∇p = div(μ[∇u +∇uT ]) +∇(δdivu) ,
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where the viscosity coefficients are assumed to satisfy μ ≥ 0 and 2μ/d +
δ ≥ 0, describe the dynamics of viscous gases and fluids. Often div(μ∇u)
is used as the viscosity. There is huge literature on the studies of the
existence and the behavior of solutions; we will not attempt to address
exhaustive references: for classical works, see [18, 38]. One of the major
difficulties when trying to prove global existence of weak solutions and
strong regularity results is the possible appearance of vacuum.

When vacuum is allowed to appear initially, studying Cauchy prob-
lems for compressible Navier-Stokes equations with constant viscosity co-
efficients yields somewhat negative results: for instance, a finite time blow-
up for nontrivial compactly supported initial density [63] and a failure of
continuous dependence on initial data [25]. There are some existence the-
ories available with the physical vacuum boundary: the vacuum interface
behavior as well as the regularity to one-dimensional Navier-Stokes free
boundary problems were investigated in [45]. And the local-in-time well-
posedness of Navier-Stokes-Poisson equations in three dimensions with ra-
dial symmetry featuring the physical vacuum boundary was established in
[28]. Global existence of such strong solutions is an open problem. See
also [17, 53, 56] for related models. On the other hand, to resolve the
issue of no continuous dependence on initial data in [25] for constant vis-
cosity coefficient, a density-dependent viscosity coefficient was introduced
in [42]. Since then, there has been a lot of studies on global weak solutions
for various models and stabilization results under gravitation and external
forces: see [35, 54, 65, 66] and the references therein. Despite the signifi-
cant progress over the years, many interesting and important questions are
still unanswered especially for general multi-dimensional flows.

4.2. Magnetohydrodynamics and vacuum. The theory of mag-
netohydrodynamics (MHD), another interesting system of hyperbolic con-
servation laws arising in electromechanical phenomena, describes the in-
teraction of a magnetic field with an electrically conducting thermoelastic
fluid. The equations, also called Lundquist’s equations, read as follows:

∂tρ + div(ρu) = 0 ,

(ρu)t + div(ρu⊗ u−H ⊗H) + grad
(

p +
|H |2

2

)
= 0 ,

∂tH − curl(u×H) = 0 , divH = 0 ,

where H is the magnetic field and the electric field is given by E = H × u.
See [15, 21] for more physical background. Vacuum states of MHD can be
realized by seeking equilibria for the system and for example, static ax-
isymmetric equilibria are obtained by solving the Grad-Shafranov equation
which is a nonlinear elliptic partial differential equation [6]. Due to the in-
terplay between the scalar pressure of the fluid and the anisotropic magnetic
stress, vacuum states are richer than in hydrodynamics and their rigorous
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study in the context of nonlinear partial differential equations seems to be
widely open.

4.3. Degenerate elliptic equations. One of the main difficulty of
studying the Euler system with a free boundary is that it leads to a degen-
erate hyperbolic equation due to the fact that the density vanishes at the
free boundary. For this we need techniques coming from elliptic degenerate
equations (see for instance Baouendi [5]). Also, similar problems arise in
degenerate parabolic equations (in porous medium equations [8], in thin
film equations [20], in the study of polymeric flows [52] and so on).

4.4. Validity of vacuum in hydrodynamics and kinetic theory.
The following Von Neumann’s comment on vacuum of hydrodynamics in
1949 [62] was brought up and read by Serre at the meeting [1].

There is a further difficulty in the expansion case considered by
Burgers. It was accepted that the front advances into a vacuum. It is
evident that you cannot get the normal conditions of kinetic theory here
either, because the density of the gas goes to zero at the front, which
means that the mean free path of the molecules will go to infinity. This
means that if we are in the expanding gas and approach the (theoretical)
front, we will necessarily come to regions where the mean free path is
larger than the distance from the front. In such regions one cannot use the
hydrodynamical equations. But, as in the case of the shock wave, where
ordinary conditions are reached at a distance of a few mean free paths
from the shock itself, so in the case of expansion into a vacuum, at a short
distance from the theoretical front, one comes into regions where the mean
free path is considerably smaller than the distance from the front, and
where again the classical hydrodynamical equations can be applied. If this
is applied to expanding interstellar clouds, I think that in order that the
classical theory be true down to 1/1000 of the density of the clouds, it is
necessary that the distance from the theoretical front should be of the order
of a percent of a parsec.

As to the issue of validity of vacuum in hydrodynamics, Serre [1] sug-
gested to consider ρε problem for Euler equations (1.1) where inf ρε ≥ ε
and to study the limit ε→ 0 to test the stability of vacuum.

The above comment also suggests the importance of the modeling of
the vacuum boundary. It suggests the existence of a layer where we need to
use kinetic theory, in particular Boltzmann equations. This poses an other
question, namely the boundary condition between the region where the ki-
netic theory is necessary and the region where hydrodynamic equations are
used. This study would not be only important for the mathematical the-
ory of vacuum but it can also be applicable to other physical problems for
instance the modeling of stellar structure by using both kinetic equations
and hydrodynamical equations in rarefied gas region and vacuum region.
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