
Chapter 11
Ferroelectric Nonvolatile Processor Design,
Optimization, and Application

Yongpan Liu, Huazhong Yang, Yiqun Wang, Cong Wang, Xiao Sheng,
Shuangchen Li, Daming Zhang and Yinan Sun

Abstract Nonvolatile processor (NVP) is one of the most promising techniques
to realize energy-efficient computing systems with zero standby power, instant-on
features, high resilience to power failures, and fine-grained power management. As
flip-flops as well as static random access memories (SRAM) should be replaced by
nonvolatile memory in an NVP, it puts rigid requirements on the nonvolatile mem-
ories, such as nearly unlimited operation cycles, ultra-short access time and easy
integration to CMOS technology. Ferroelectric memory can meet those metrics with
good energy efficiency, which is appropriate to realize an NVP. However, there are
several major design problems, such as the unknown design flow of a ferroelec-
tric NVP, the nontrivial area overheads as well as the absent of the real application
systems. To overcome those challenges, we present the first fabricated NVP with
zero standby power, 7 µs sleep time and 3 µs wake-up time, consisting of a flip-flop
controller (FFC), a distributed memory architecture and a voltage detection system.
Compared with an existing industry processor, it can achieve over 30–100× speedup
on the wake-up/sleep time and 70× energy savings on the data backup and recall
operations. Meanwhile, the ferroelectric NVP exhibits comparative performance and
power consumption in normal operations. To attack its area challenges, we design a
parallel compare-and-compress architecture (PaCC) and an appropriate vector select-
ing method to reduce the number of nonvolatile registers by 70–80 % with less than
1 % overflow possibility, which leads to up to 30 % processor area savings. Another
segment-based parallel compression (SPaC) architecture is proposed to trade off the
chip area and the backup speed. It divides the system vector into several segments and
compresses them in parallel. Compared with the PaCC solution, it can improve the
backup speed by 83 % with 16 % area savings over the full replacement architecture.
Finally, we demonstrate two kinds of battery-less sensor nodes based on the NVP for
the first time.They aimed at the moving object detection and the body sensor appli-
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cations. As both systems are powered by energy-harvesting systems, they eliminate
the battery lifetime constraints and work reliably under frequency power failures.

11.1 Introduction

In embedded applications, low-power processors can be shut down to eliminate
leakage power. However, their states in volatile storage elements, such as flip-flops,
registers, and static random access memories (SRAM), will be lost, because the
charge on the capacitors is quickly drained without power supply. To keep those
states, they need to backup the states into the secondary nonvolatile storages, such
as flash memory or hard disks. But transferring data between a volatile processor
and secondary nonvolatile storages leads to long delays, large switching energy
consumption, and vulnerability to power failures. Therefore, efficient alternatives
are needed to remove such limitations.

Nonvolatile processor (NVP) is one of the most promising alternatives, which
replaces flip-flops, registers, and SRAMs in processors with nonvolatile ones. As
the nonvolatile memory can store the system states locally, data transfer overheads
are significantly reduced. Researchers have evaluated various nonvolatile memories
in processors [1–4] to show the following advantages: (1) zero standby power: the
processor can retain its state without power, while the traditional ones suffer from
the increasing leakage power to keep data; (2) instant-on and instant-off features:
the processor can resume its work within several cycles from the stalled point, while
the traditional one needs millions of initializing cycles; (3) high resilience to power
failures: the processor can work reliably under the environments with frequent power
interrupts, such as energy-harvesting and wireless-powered applications [2]; (4) fine-
grained power management supported [1]: the processor can be shut down whenever
possible due to the ultra-low energy and fast recovering characteristics. Therefore,
research on NVPs is interesting.

To implement an NVP, appropriate memory technologies are needed. Flash is
a mature high-density nonvolatile memory in commercial microcontrollers [5, 6].
However, it has drawbacks of low endurance, slow writing speed, block erasing
pattern, and high mask cost as distributed nonvolatile registers. Phase-change random
access memory (PCRAM) has the potential to be used as a cache with SRAMs [7].
However, its asymmetric reading/writing characteristics and limited lifetime hinder
its application as flip-flops and registers. Among existing nonvolatile memories [8],
ferroelectric RAM (FeRAM) and magnetic RAM (MRAM) emerge as the most
promising candidates for NVPs because of their nearly unlimited operation cycles,
ultra-short access time and easy integration to CMOS technology. As FeRAM shows
better energy efficiency and mature fabrication process, this chapter will focus on
the ferroelectric NVP.

There are several major design challenges from the ferroelectric NVP. First,
though previous work had reported the implementation of nonvolatile flip-flops
(NVFF) [9–11], the complete design flow to implement a ferroelectric NVP is
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still absent. Besides NVFFs and RAMs, it is necessary to build flip-flop controllers
(FFCs), distributed memory architecture, peripheral power manage circuits, and spe-
cific design tools. However, none of previous work solved those problems. Second,
as most of popular NVFFs adopt hybrid architecture, researchers observed nontrivial
area overheads. In [2, 10, 12], they reported over 40 % increasing of chip area due to
the replacement of nonvolatile registers. It will have a great impact on the cost and
yield. Therefore, investigating techniques to realize area-efficient NVPs is necessary.
Finally, the absent of a real NVP hinders the exploration of its application. There
are no reports on how to use NVPs and combine their characteristics with appropri-
ate applications [13–15], such as smart sensors and energy-harvesting devices. To
overcome those challenges from NVP design, optimization, and applications, our
contributions are listed as below:

1. We present the first fabricated NVP with zero standby power, 7 µs sleep time,
and 3 µs wake-up time, consisting of FFC, distributed memory architecture and
voltage detection system.

2. We demonstrate that the NVP can achieve over 30–100× speedups on the wake-
up/sleep time and 70× energy savings on the data backup and recall operations
compared with an existing industry processor. Meanwhile, the NVP exhibits com-
parative performance and power consumption in normal operations.

3. We propose a parallel compare-and-compress architecture (PaCC) to reduce the
area of nonvolatile registers. With an appropriate vector selecting method, the
compression codec can reduce the number of nonvolatile registers by 70–80 %
with less than 1 % overflow possibility, which leads to up to 30 % processor area
savings.

4. We present a SPaC architecture to trade off the chip area and the backup speed.
With a hybrid off-line/online partition method, it divides the system vector into
several segments and compresses them in parallel. Compared with the PaCC
solution, it can improve the backup speed by 83 % with 16 % area savings over
the full replacement architecture.

5. We demonstrate two kinds of battery-less sensor nodes based on the NVP. They
aimed at moving vehicle detection and body sensor applications. As both systems
are powered by energy-harvesting devices, they eliminate the battery lifetime
constraints and work reliably under frequency power failures.

The chapter is organized as follows: Sect. 11.2 discusses the mechanism of ferro-
electric memory and the models. We introduce the design of NVP in Sect. 11.3 and
present the related area optimizing techniques in Sect. 11.4. We discuss two appli-
cations of NVP in Sect. 11.5 and present the related work in Sect. 11.6. Section 11.7
concludes the chapter.
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Fig. 11.1 Polarization–
voltage hysteretic loop [16]

11.2 Background

This section describes the mechanism and the model of ferroelectric capacitor
(FeCap) in the memory cells. It is an indispensable background for the ferroelectric
NVP design.

11.2.1 Ferroelectric Material Mechanism

A ferroelectric material refers to a material with two stable polarization states. It
switches from one state to another if an external strong electric field is applied. Fur-
thermore, the relationship between the electric field E and the electric displacement
D of a ferroelectric material is hysteretic. Figure 11.1 shows a typical polarization–
voltage (P–V ) hysteretic loop. After removing the external electric field, the remanent
polarization +/− Pr represents logic “0” or “1”. Those polarization information can
be stored reliably without power supply.

With the stable polarization states of ferroelectric materials, we can store informa-
tion in FeCaps by applying an external field. Figure 11.2 shows the popular designs of
a ferroelectric memory cell, including the 1T-1C and the 2T-2C architecture. The 1T-
1C design uses one FeCap to store the information, while there is a complementary
FeCap pair in the 2T-2C architecture [17]. When we need to read a specific FeCap
in a 1T-1C cell, a poled reference cell is used. By measuring the voltage/current
between the capacitor and the reference cell, we can determine the stored value.
The 1T-1C cell is area efficient but less reliable. The 2T-2C cell uses two FeCaps to
store complementary polarization states. It can store and recall the information more
reliably but with much larger area overheads.
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Fig. 11.2 Memory design with FeCaps [17]. a 1T1C, b 2T2C

11.2.2 Ferroelectric Capacitor Simulation Model

To better design and optimize the ferroelectric memory, we need a circuit model to
efficiently describe the electrical characteristics of a FeCap. There are several models
for FeCaps, such as zero-switching-time macro-modeling [16, 18]. However, they
are computationally expensive. Furthermore, previous models generally omitted to
model the capacitor during the power-off state, which is desirable for the unified
simulation framework.

For circuit design, we need a behavior model for the SPICE simulator and char-
acterize the nonvolatile property when power failures occur. Therefore, we built the
FeCap model in Fig. 11.3. It consists of two nonlinear voltage-control capacitors, a
voltage-control voltage source, and some voltage-control switches. A Schmitt trig-
ger generates the control signals for switches S1–S4. Two voltage-control resistances
mimic the nonvolatile property. Their values are zero when the power is on and tend
to be infinite when the power is off to keep the charge in the capacitors.

This model can be easily implemented in SPICE, and the simulation results of P–V
hysteresis loop are shown in Fig. 11.4. By tuning the circuit parameters of the model,
the curve coincides with the measured data. The behavior model of ferroelectric
capacitors can be used in the SPICE simulation for the NVFF design.
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Fig. 11.3 Ferroelectric capacitance SPICE model

Fig. 11.4 Simulation result
of P–V hysteresis loop

11.3 Nonvolatile Processor Design

In this section, we will introduce an actual NVP design based on ferroelectric
flip-flops. First, we show the overall architecture of our design. Second, we describe
two special nonvolatile circuits differing from a volatile processor: the ferroelectric-
capacitor-based flip-flops and the FFC. Third, we discuss how NVP works under
power failures. Finally, we give out some measured results from the fabricated NVP.

11.3.1 Overall Architecture

Figure 11.5 shows the block diagram of the fabricated NVP. It contains an MCS51
instruction set compatible core, a mode-selecting module, a JTAG debugging module,



11 Ferroelectric Nonvolatile Processor Design 295

Timer/
Counter

MCU_CONTROLLER
(ID & FSM & RegFile Control)

Wishbone Bus

128B
Register 

File

Serial
Interface

ALU

Flip-Flop 
Controller

(FFC)

SPI I2C

Volatile Logic Non-volatile Logic Flip-flop Controller

JTAG8KB
SRAM

MODE

Sleep
/Wake-up

JTAG

SPI 
Signal

PIO&PC

T1/T2

I2C 
Signal

TXD/
RXD

Fig. 11.5 Overall architecture of NVP

and two peripheral interfaces. The core consists of an MCU controller, an 8-bit
arithmetic logic unit, a serial interface, a 128-byte register file, and an 8 K-byte
SRAM. We have replaced the 128-byte register file and all flip-flops in the core with
FeCap-based flip-flops (FeFFs). As the SRAM is used as a secondary data memory,
we do not replace it in this implementation. However, it can be replaced with FeRAM
easily [19]. The mode-selecting module controls the operating mode of the processor,
including the volatile mode, the nonvolatile mode, and the debug mode. The JTAG
module supports the user to debug the processor via scan chains. The SPI and I2C
interfaces are connected to the core via a Wishbone bus. They are realized in the
volatile logic domain. The FFC provides controlling signals to all FeFFs and volatile
flip-flops in parallel after receiving the sleep or wake-up signals. As the FeFF and
FFC are two main parts differing from a volatile processor, their detail structures are
described as follows.

11.3.2 FeFF Design and Optimization

Figure 11.6a [12] shows the FeFF diagram. It adopts a hybrid CMOS and ferroelectric
process, consisting of a standard master-slave D flip-flop (DFF) and a backup FeCap
pair. They are isolated by two CMOS switches M1/M2 controlled by the “RW”
signal. In the normal operating mode, the switches M1/M2 are open so the FeFF
works as a standard DFF. Therefore, no performance losts will be introduced to the
NVP during the normal operations. When a sleep/wake-up signal is detected, the
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Fig. 11.6 Modeling and simulation of FeFF. a Proposed ferroelectric flip-flop structure. b Timing
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controller will generate signals to make FeFFs store and restore their states and close
the switches M1/M2. In the store operation, the complementary outputs of the DFF
are connected to the positive plates of the FeCaps. “PL” is pulled up to polarize the
FeCap pair into different complementary values to remember the present state. In
the restore operation, “PCH” is pulled up to shorten nodes “a” and “b”. The back-
to-back inverter pair operates in a semi-stable state. After that, “PL” is pulled up
and “PCH” is pulled down simultaneously. The FeCap pair drives nodes “a” and “b”
with different currents until nodes “a” and “b” stay at stable complementary outputs
“0/1” or “1/0”. The differential architecture improves the reliability and performance
with area overheads. We simulate this circuit in HSPICE, and Fig. 11.6b shows the
waveform of the circuit during store and restore operations.
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11.3.3 Flip-Flop Controller

The FFC generates controlling signals to FeFFs during sleep and wake-up actions.
Figure 11.7a shows the block diagram of a FFC. It consists of a timing block and
a finite-state machine (FSM). The timing block is self-timed by the inverter chain
and the three timers provide overflow signals (Tov1-Tov3) to the FSM. The FSM
generates the controlling signals (“RW,” “PL,” “PCH”) based on Tov1–Tov3 to meet
the timing requirements in Fig. 11.7c. The “Sleep/Wake-up” signal triggers the FSM
to execute the sleep sequence or the wake-up sequence. The output “CG” is the
clock-gating signal to both FeFFs and DFFs. Figure 11.7b shows the interconnections
between the FFC and the flip-flops. “CG” gates the clock of both the FeFFs and the
volatile flip-flops during the store and recall actions in Fig. 11.7c. It prevents writing
uncertainty when the FeFFs executing store operations and halts the system before
the FeFFs complete the data recall.

11.3.4 Power Management Circuit and Optimization

This section will discuss how to generate the sleep/wake-up signal for the NVP
to backup its system state when power failures happen. An configurable voltage
detection system (CVDS) is proposed to generate those signals.

The CVDS architecture is shown in Fig. 11.8a, which contains two configurable
units. The first one is a switched capacitor array attached to the power line. The con-
figurable capacitor, denoted as CPL, provides the data backup energy to the NVP by

Flip-flop
Controller

(FFC)

Clk

D Q

RW

PCH

Clk

D Q

Sleep/
Wake-up

Clock

NV 
Controlling 

Signals

RW

PCH

Gated
clock

FeFF

Volatile FF

CG

PL PL

Timer1

Timer2

Timer3

Signal
generating

FSM

Internal clock Tov1

Tov2

Tov3

Sleep/Wake-up

RW

PCH

PL

Timing block CG

Sleep(0)/
Wake-up(1)

Clock

CG

RW

PL

Gated_clock

PCH

Store (Sleep) Recall (Wake-up )

……

(a)

(b) (c)

Fig. 11.7 Block diagram of flip-flop controller. a Block diagram of FFC. b Interconnection between
FFC and FFs. c Timing chart in store and recall actions



298 Y. Liu et al.

Tphl

Trecall

Vref

Wake-up time

Tplh

VDD

Trise Tfall

Tstore

Tplh ,Tphl :Voltage detection speed decided by CVD

Trise ,Tfall :Voltage transition time on power line decided by CPL

Tstore,Trecall :Data store and recall time

Sleep /
Wake-up

NVP

Voltage Detection
Circuit

VDD

Sleep/
Wake-up

PIO

Power

Sleep/
Wake-up

VDD

……

Vref ……

−
+

From 
External
Switches

CVD

CPL

(a)

(b)

Fig. 11.8 Architecture and controlling timing chart of configurable voltage detection system. a
Architecture of configurable voltage detection system. b Timing chart of system level sleep/wake-
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keeping the voltage above the operating threshold after power down. The other one,
denoted as CVD, is another switched capacitor array used in the voltage detection
circuit. The voltage detection circuit detects the power failure and recovery. It gen-
erates the sleep/wake-up signal (0/1) within a specific time (Tplh) after the voltage of
the power line is above the threshold. We set the value of Tplh considering both the
system reliability and the backup speed. The controlling words for those switched
capacitor arrays are given by external input switches. Figure 11.8b shows the signal
waveform during the sleep/wake-up actions and the timing diagram influenced by
CPL and CVD.

We show the measured results of the wake-up time with different capacitance
of CPL and CVD under different power conditions in Fig. 11.9. The wake-up time
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Fig. 11.9 The minimal wake-up time for system accuracy under different capacitance values

should be larger than the sum of power-stabilizing time, voltage detection time, and
on-chip intrinsic wake-up time. CPL has an impact on the power-stabilizing time via
the RC-constant, where the minimal requested wake-up time decreases with smaller
CPL. However, when CPL is smaller than 470 nF, it cannot provide sufficient energy
for the NVP to backup the states so that the system goes to the false region, where the
NVP can not backup its states correctly. CVD affects the voltage detection time via
its RC-constant, where the wake-up time decreases with smaller CVD. CVD cannot
be smaller than 10 pF for the power and clock signals to be stabilized. As we can
see, the minimal system wake-up time (>100 µs) is much larger than the on-chip
intrinsic sleep and wake-up time (<10 µs), because the most dominating factor is the
time for the power and clock signals to be stabilized, instead of the on-chip intrinsic
circuit delay.

11.3.5 Chip Testing

The fabricated NVP, named as THU1010N, uses the ROHM 0.13 µm CMOS-
ferroelectric hybrid process. Figure 11.10 shows its photomicrograph and general
statistics. It has two unique nonvolatile characteristics: 1,607-bit FeFFs and zero
standby power. The maximum operating frequency and the active power consumption
are measured under a suite of embedded benchmarks for sensor networks, includ-
ing FFT, FIR, and ZigBee protocols. Specially, we show the properties of sleep and
wake-up actions, as well as some comparison results in Table 11.1.

Table 11.1 compares the NVP with a popular industrial processor “MSP430” [5]
and its variants with FeRAM “MSP430FR series” [19]. We show the sleep/wake-up
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Fig. 11.10 Micrograph and general design statistics of THU1010N

Table 11.1 Comparison results of sleep and wake-up properties between THU-1010N and emerg-
ing commercial microprocessor

Microprocessor type THU1010N TI-MSP430-5 series TI-MSP430
with Flash [5] with FRAM [19]

Sleep/Wake-up Sleep time (µs) 7 6 × 103 212
time Wake-up time (µs) 3 3 × 103 310
Sleep/Wake-up Sleep energy (pJ/bit) 14.4 2.76 × 105 N/A
energy Wake-up energy (pJ/bit) 5.04 373 N/A

time and the energy consumption during the store and recall operations. The sleep and
wake-up time of “MSP430” come from the switching time between LPM4.5 mode
and active mode [5, 19]. The results show that the NVP has tremendous advan-
tages in the sleep/wake-up time and energy. It achieves over 100–1, 000× speedup
in the sleep time, 30–100× speedup in the wake-up time, and 19, 000× saving in
the sleep energy. In the chip level, we need a few microseconds to switch from the
power-down mode to the active mode. Therefore, we conclude that the distributed
nonvolatile architecture of the NVP provides much better performance than the exist-
ing centralized nonvolatile storage. It is quite promising for the energy-harvesting
and power management applications to use the NVP technique.

Moreover, we discover that the core voltage has an effect on the sleep/wake-up
speed. Figure 11.11 shows the sleep/wake-up time under different supply voltages.
Lower voltages lead to a slower speed. It is because the delays of both FeFFs and
the FFC circuit become larger under a lower voltage. However, the sleep/wake-up
time can still be smaller than 20 and 10 µs under a 0.8-V supply voltage. It implies
that the NVP can keep its instant-on feature under low voltages. Compared with
the several milliseconds backup time in the centralized structure, the microseconds
switching time will provide more power saving opportunities for the fine-grained
on-chip power management.
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11.4 Compression Codec for Nonvolatile Processor

Though the NVP can sleep and wake-up very quickly, the nonvolatile storage
elements induce large area overheads. This section will describe some area-efficient
techniques to tackle this challenge. First, we propose an area-efficient architecture
for the NVP. Furthermore, we describe two specific implementations referred to as
PaCC and SPaC.

11.4.1 Area Challenges and Solutions

The nonvolatile memory cells, such as FeCaps (see Fig. 11.6), magnetic tunnel
junctions (MTJ), and floating-gate transistors, usually occupy a quite large area.
To remove the performance losts in the normal operations, a hybrid flip-flop is usu-
ally adopted, containing a standard flip-flop and nonvolatile cells. It makes the area
of NVFFs even bigger. Table 11.2 shows the area overheads of a single NVFF and
an NVP under different nonvolatile techniques. It shows that all of them introduce
nontrivial area overheads. Note that the area overheads do not consider the variation
and reliable issues, which make the chip area even larger. For example, the FeCap
has a sandwich structure with a ferroelectric film layer between two metal layers.
To reduce error rates during the read and write operations, the ferroelectric film
should be large enough. Measurements show that nearly five times area overhead
is observed in a commercial FeFF. Recently, Beach et al. [20] pointed out that the
MTJ-based memory demonstrates statistical read and write behaviors and requires
extra error-correcting units.
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Table 11.2 Area challenges under different nonvolatile techniques

Approach Area of NVFF in DFFs Area overhead of entire chip (%)

Floating gate [2] 1.4x 19
Magnetic RAM [10] 2x 40
FeRAM [21] 4–5x 90

Fig. 11.12 Hybrid archi-
tectures for NVP. a Hybrid
architecture of the fabricated
NVP. b Partial hybrid archi-
tecture for NVP
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To quantify the area overheads in an NVP, we assume that an NVFF is α times
larger than the original flip-flop and all the NVFFs occupy β(0 < β < 1) of the
total chip area. The area overhead Sov equals to β × (α −1) when replacing standard
flip-flops with NVFFs. In a fabricated NVP [21], β approximates to 20 %, α is near
to 5, and Sov ≈ 80 %. Therefore, efficient design techniques are needed to alleviate
those area impacts.

Figure 11.12b presents a partial hybrid nonvolatile architecture to deal with the
area challenge. In this architecture, we only replace parts of flip-flops with NVFFs
so as to reduce the chip area. However, there may be insufficient NVFFs to backup
the system states. Data compression and corresponding techniques are proposed to
ensure the correct backup and recovery operations. The data compression can be
realized in either a software or a hardware approach. In the software approach, the
application stores critical data into NVFFs, while keeping other data in the volatile
flip-flops. Only critical data are stored when power off. The advantage of the software
approach is its flexibility. However, it puts the burden on the application developers to
determine which data should be stored. Another solution is to design a specific hard-
ware codec to perform data compression. It can compress data fast and is transparent
to the application designers. Thus, we present two concrete designs of compression
codec, named PaCC and SPaC, as follows.
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11.4.2 An Parallel Compare-and-Compress Codec for Nonvolatile
Processors

This section presents an area-efficient architecture referred to as parallel compare-
and-compress codec (PaCC) to reduce the number of the nonvolatile registers, and
thus the area of the NVP. It consists of an improved RLE algorithm and the corre-
sponding hardware implementation. Furthermore, a state table selection solution is
proposed to improve the PaCC’s compression ratio.

11.4.3 PaCC Overview

First, we analyze the redundancy in processor states stored in registers, which reveals
the potential of register reduction by compression. Let vi = 0/1 represents the value
of the i th flip-flop in a processor at a given time. We use V = (ν1, ν2, ..., νn) to
denote the processor state at that point. Simulations show that over 80 % of the vi ’s
are unchanged during a program execution. If we construct a reference vector Vref
such that each vi ∈ Vref equals to the most common value for the corresponding
flip-flop, a differential vector Vdiff = V ⊕ Vref can be obtained for a state vector V.
As Vdiff may consist of many consecutive zeros, we can compress Vdiff to a much
shorter vector Vc

diff and use fewer NVFFs to store it. We define the compression
ratio as

C R = |Vc∗|
|V∗| , (11.1)

where V∗ is any original vector and Vc∗ is the compressed version.
The comparison of a conventional NVP and the PaCC architecture is shown in

Fig. 11.13. Figure 11.13a shows a straightforward way to implement an NVP which
simply augments a volatile processor with FeFFs and a FFC. Such a processor stores
the system state V without compression, and the FeFFs increase area significantly.
The PaCC architecture (see Fig. 11.13b) consists of volatile registers which stores
the current system state V, a state table, a compression codec (divided into a PaCC
encoder and a PaCC decoder), and a small set of FeFFs. The state table is used to
store Vref, and the compression codec is used to make conversions between Vdiff
and Vc

diff, and the comparison is done by the bit-wise XORs. Though the volatile
registers, the state table, and the compression codec bring in additional area, the
significant reduction in the number of FeFFs leads to a much smaller overall chip
area. The operation of a PaCC can be partitioned into the encoding procedure and
the decoding one. The encoding procedure accomplishes the following:

• halt the clock to maintain the state vector V when a power interruption is detected,
• select a reference vector Vref from the state table, which can generate the most

consecutive zeros after comparison,
• calculate Vdiff by XORing V and Vref,
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NVP. b Parallel Compare-and-Compress (PaCC) Architecture of NVP

• compress Vdiff using the PaCC encoder to get Vc
diff, and

• store Vc
diff into the nonvolatile storages.

The decoding procedure works in the opposite direction. Obviously, the PaCC
codec design and the Vref selecting are two critical issues in the architecture. We will
discuss them as follows.

11.4.4 PaCC Codec

To achieve a fast compression process along with a good CR, we use a threshold-
based parallel run-length encoding (PRLE) algorithm to compress the Vdiff. Instead
of processing the input data stream bit-by-bit, this algorithm introduces a parallel
observation mechanism into the traditional RLE to bypass continuous k-bit 0(1) in
parallel. In order to further improve the compression ratio, we adopt a threshold
value L th to deal with the short 0(1) chains as in [22]. We only encode the 0(1)
chains longer than the L th bit because short chains cannot be compressed by PRLE.

Algorithm 10.1 presents the details of PRLE algorithm. The inputs of the algorithm
are the differential vector Vdiff, the observation window width (OWW) k, and the
threshold Lth. The output is the compression result Vc

diff. Variable Suni denotes a
uniform sequence of all 0’s or 1’s and Snon denotes a nonuniform sequence such as
{0100101 . . .} which does not contain any 0/1 chains longer than the L th bit.

After the initialization (Line 1), the main body of the algorithm is a “while” loop
(Line 2) which checks the end of the input vector. We append the following 0/1
chain to Suni as the temporary uniform sequence. In this step, we execute the parallel
observation to check whether the following k bits or the remaining bits are all 0/1’s.
If so, we append all of them to Suni to bypass them in one step (Line 4–6). Otherwise
we only add the current bit to Suni (Line 7–9). Subsequently, if a 0/1 transition is
detected (Line 10), we decide how to process Suni. We check whether the length
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of Suni exceeds L th. If not, which means that the current Suni actually belongs to
a nonuniform sequence, we append Suni to Snon and clear Suni (Line 11–13). If
the length of Suni is larger than L th, we first call function Process_Short SE Q to
encode Snon and Process_LongSE Q to encode Suni, then re-initialize Snon and Suni
(Line 16–20). If reaching the end of Vdiff (s == n + 1), we process Suni as above
(Line 11–13, 16–20). Specially, we call function Process_Short SE Q to encode
the remaining Snon (Line 14–15) when |Suni| <= L th occurs. The results of the
functions Process_Short SE Q and Process_Short SE Q follow the format shown
in Fig. 11.14. We call them copied segments and encoded segments, respectively.

Algorithm 1: Threshold-based parallel RLE algorithm
Input: Vd i f f = {a1, a2, ..., as , ..., an}, Lth , k
Output: Vd i f f c

Variables: Suni , Snon , s
1 Initialization: Vc

di f f = φ, Suni = φ, Snon = φ, s = 1;

2 while s ≤ n do
3 w = min{s + k − 1, n};
4 if {as , ..., aw} == {00...0}or{11...1} then
5 {as , ..., aw} → Suni ;
6 s = w + 1;
7 else
8 as → Suni ;
9 s = s + 1;

10 if (as �= as+1 && s ≤ n)‖(s == n + 1) then
11 if |Suni | <= Lth then
12 Suni → Snon ;
13 Suni = φ;
14 if s == n + 1 then
15 Process_Short SE Q(Snon) → Vc

di f f ;

16 else
17 Process_Short SE Q(Snon) → Vc

di f f ;

18 Process_LongSE Q(Suni ) → Vc
di f f ;

19 Snon = φ;
20 Suni = φ;

In this section, we present the hardware design of a PaCC Codec. Figure 11.15
shows the block diagram of our PaCC encoder which is the hardware realization
of PaCC algorithm. It consists of an input-end shifting network which shifts n-bit
Vdiff from the volatile registers to the RLE encoding module. The n-bit output is the
shifted value for updating the volatile registers. Similarly, the output-end shifting
network shifts the m-bit compression results to the NV registers. Besides the shifting
networks, the “all 0/1 detector” block helps to execute k-bit parallel observation
and generate a bypass signal to the RLE encoder and length controller. The length
controller provides the shifting length to the input-end shifting network according to
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Fig. 11.15 The block diagram of PaCC encoder and its location in the PaCC architecture

the bypass signal as well as OWW k. The RLE encoder compresses the k-bit input
serially when the bypass signal is disabled, otherwise bypasses the k-bit input. The
format of the compression result is based on the given L th (see Fig. 11.14). The
OWW k and threshold L th are given by the microcontroller (MCU) based on actual
applications. Once the RLE encoder accomplishes the compression, it sends the q-bit
compressed segment (see Fig. 11.14) to the output-end shifting network.

The PaCC decoder is similar to the encoder. Since encoding and decoding are
opposite operations, the decoder can reuse the two shifting networks. The input-end
and output-end part are exchanged and the data flow in the opposite direction. The
only difference in the PaCC decoder is that it contains a RLE decoding module
instead of the RLE encoding module. Thus, we omit the detail discussion on the
decoder part.
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11.4.5 State Table Optimization

The state table stores and provides Vref for generating Vdiff. Since different
applications may have very different Vref’s, only one Vref is insufficient. The state
table thus contains multiple Vref’s as well as a selection mechanism.

The overall design of the state table is shown in Fig. 11.16 which consists of a
reference vector array and a selection unit. Since encoding and decoding use the same
Vref, the choice of Vref should be retained when power is off. To meet this require-
ment, we propose two methods. One method adopts external inputs such as switches
to hold the choice of Vref. This method simplifies hardware design and control, but
the selection is not so flexible. The other method uses additional nonvolatile storage
(e.g., 2 3-bit NVFF) to memorize the choice of Vref generated dynamically from the
MCU according to the actual application. This method requires more complicated
software control, but achieves more flexible selection. In real cases, we can use a
hybrid selection mechanism combining these two methods such that if MCU only
runs one application, we can use the external switch method to reduce the control
complexity while in other cases, we use the dynamic NVFF based selection.

Then we will decide how to choose an appropriate reference vector for a specific
application. We can formulate the problem as following: assuming β system-state
vectors {V1, V2, ..., Vβ} should be stored, we need to determine an optimal reference
vector Vopt to minimize the length LVcomp of the compressed vector under the worst
case:

Vref, opt = arg min
Vref

(
δ

max
i=1

L(C(Vi ⊕ Vref))

)
(11.2)

where Vi ⊕V represents XOR two vectors bit-by-bit; function P calculates the length
of the vector after compressing V by PRLE algorithm.

The direct searching space of Vref is very large and function P does not have
an analytical pattern, so we develop a naive heuristic to find a solution. Intuitively,
the CR of RLE algorithm is related to the number of 0’s in Vdiff, so we can get a
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suboptimal reference vector Vsub,opt resulting in the most 0’s in Vdiff in the global
vision. Therefore, we set the i th bit of Vsub,opt as follows:

Vsub,opt(i) = M({ j ∈ 1, 2, ..., β|V j (i)}) (11.3)

M(S) equals to the majority element in the set S. In our experiments, this method
can achieve quite good compression ratio in most cases; however, it may lead to poor
results for some special vectors because it ignores the continuity of 0’s in Vdiff. Some
better heuristic algorithms can be explored to address the optimization problem in
our future work.

11.4.5.1 Evaluation Results

In this part, we will show the evaluation results of PaCC in chip area and compression
speed. We use Cadence NC-Verilog to sample the system-state vectors and evalu-
ate the clock cycles statistics. The area statistics is obtained from Synopsys Design
Compiler under Rohm’s 0.13 µm ferroelectric-CMOS hybrid process. To simulate
the processor behavior in real embedded applications, we use the benchmark pro-
grams of Fibonacci, sorting and square root from Dalton Project [23]; Rijndael and
FFT from MiBench [24], and ZigBee MAC Protocol from Z-Stack [25].

We evaluate the area efficiency of PaCC for the programs. We randomly select 50
state vectors for each program and calculate the optimized reference vector Vref,opt
based on heuristics in Eq. 11.2. We get the desired number of NVFFs Lnv and the area
reduction numbers in Table 11.3. Each row represents the results from one program.
The columns give out the compression ratio of PRLE, the number of NVFFs, the
area reduction ratio of MCU (both MCU only and the whole chip), and the overflow
possibility. All data are obtained under the optimal threshold L th for each program.
The optimal threshold is the one which results in the smallest number of NVFFs
among all the threshold values in [4,50]. In the programs considered, the optimal L th
is always 9 or 10. This is due to the fix encoding format in Fig. 11.14.

As shown in Table 11.3, different programs may lead to different numbers of
NVFFs (see column 3). Thus, the area savings vary for different programs. By uti-
lizing PaCC, the compression ratio can reach to 19.2 % with the number of NVFFs
reduced from 1607 to 308. Based on this reduction, the area saving ratio for the MCU
only can be 23.4–30.2 % and the worst case ratio is still above 15 % for the total chip.
We conclude that the algorithm is effective to reduce the chip area.

The run-time of encoding and decoding is also important metrics for PaCC. The
encoding performance depends on the chosen OWW k. Intuitively, smaller k may not
achieve significant reduction in clock cycles while a larger k reduces the opportunity
to encounter consecutive zeros or ones. As a result, we can get an optimal k which
leads to the smallest number of encoding clock cycles. In our experiments, the optimal
k may vary for different programs, and it usually locates in a fixed range of [16–20].
Given the optimal k chosen for each program, Table 11.4 shows the clock cycles
of encoding and decoding for different programs. We can see that the encoding
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process needs extra 200–300 cycles to compress one vector, while the decoding one
costs 90–100 cycles. Therefore, the time to store data takes less than 30 µs and the
recall takes less than 10 µs at the 10-MHz clock frequency. It maintains the NVP’s
instant-on/instant-off features.

11.4.6 A Segment-Based Parallel Compression for Backup
Acceleration in Nonvolatile Processors

In this section, we will introduce another compression structure referred to as SPaC:
a segment-based parallel compression architecture. It achieves trade-offs between
the compression time overheads in PaCC and the area overheads in a conventional
NVP with full NVFF replacement.

11.4.6.1 SPaC Overview

We give the comparison of different NVP architectures in Fig. 11.17. As Fig. 11.17a
shows, the conventional NVP connects each register with a nonvolatile cell. The
backup process is totally parallel and fast but leads to nontrivial area overheads due
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to a large number of nonvolatile cells. PaCC in Fig. 11.17b uses a compression module
(CM) to reduce the number of nonvolatile cells as well as the area. However, the CM
compresses the data stream bit-by-bit causing longer backup time. Our proposed
SPaC architecture in Fig. 11.17c partitions the registers into several segments and
equips each segment with an individual CM. In SPaC, all segments are compressed
in parallel to achieve faster backup speed against PaCC. Meanwhile, SPaC reduces
the area against the full replacement approach.

Two key metrics of SPaC are the area and backup speed. We evaluate the metrics
versus numbers of segments M to show their trends. The results in Figs. 11.18 and
11.19 are based on THU1010N (discussed in Sect. 11.3). Figure 11.18 shows the
chip area normalized to the full replacement realization versus M . The area data
are approximately linear to the number of segments, because the increasing area
primarily comes from the additional CMs. Moreover, the total compression effect of
PRLE algorithm degrades when the input vector is divided to more segments, which
is another factor inducing the area increase. In our case, the area of SPaC cannot save
area when M > 7. Figure 11.19 shows the compression speed under different M .
Generally speaking, a larger M leads to deeper parallelism and fewer clock cycles.
However, when M > 6, the speedup by further parallelism is trivial. We use three

Fig. 11.18 Area evaluation
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curves to indicate the average value and the upper/lower bound in Fig. 11.19. The
variations come from the input changes at different backup points. If the variation is
large, it can significantly degrade the backup speed. This can be solved by an online
scheduling controller in the next subsection. Considering both area efficiency and
compression speed, the appropriate M is 2 or 3.

Although the data in Figs. 11.18 and 11.19 are based on a specific case, the
trends of area and speed are common in other computer architectures (such as MIPS,
X86). However, the demarcation point may be different in other processors, because
they have different register numbers and architectures, and their area models may
be different in other technology processes. Therefore, SPaC can be applied to other
processors, but the number of segments should be determined according to the actual
design and its requirements. For an actual processor, we propose the design flow for
SPaC in Fig. 11.20. As Fig. 11.20 shows, different Ms are evaluated according to
the area and speed constraints. We will change the value of M if the constraints are
violated. Given a certain M , off-line partition optimization and online compression
adjustment are introduced to minimize compression time.

11.4.6.2 SPaC Design

Figure 11.21 shows the detailed diagram of SPaC with M segments. The flip-flops are
clustered into M segments denoted as {S1, S2, ...Sk, Bk+1, ..., BM } and each segment
is connected to a CM module for parallel compression. Segments Si usually have
relative small workload variations and do not support compression reallocation. The
determination of Si is based on an off-line algorithm to balance the workloads on
each CM. To support dynamic workload adjustment, we design a specific structure
to allow the segments to share their CMs if some CMs are idle and others are busy.
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We denote such shared segments as Bi . To support the CM sharing among segments
Bi , we use a set of MUXs to realize the switching operations.

First, we describe the off-line partition algorithm in the following.

Algorithm 2: Off-line Algorithm
Input: V, M, Varth, loopth
Output: S = (S1, S2, . . . , SM )

Variables: std, time, step, loop
1 Si = length(V)/M for i = 1, 2, . . . , M; std = Sth;;
2 while std ≥ Sth and loop ≤ loopth do
3 time = C M(V, S);
4 std = ST D(time);
5 step = ceil(std);
6 S(I ndexof (max(time))) = S(I ndexof (max(time))) − step;
7 S(I ndexof (min(time))) = S(I ndexof (min(time))) − step;
8 loop = loop + 1;

Supposing that we partition the system-state vector V into M segments, Sth
denotes the threshold of the standard deviation and loopth denotes the loop limitation.
The output vector S = (S1, S2, . . . , SM ) represents the length of each segment. The
variable std denotes the temporary standard deviation under the current partition S;
time = (t1, t2, , tM ) gives out the average clock cycles of all segments; step is the
max step value to change the vector length, and loop is the iterating number. We
use the equal partition as the initial S and set std to Sth. In each loop, we calculate
the compressing time of each segment to get time and its variation std. We find the
segment with the maximum average clock cycles in t ime and reduce its vector length
by one step. Similarly, the opposite operation is performed to the segment with the
minimum average clock cycles. We keep changing S until std is smaller than Sth,
otherwise it will return an error message. In case of failures, we either reduce Sth or
set a larger loopth.

Furthermore, we illustrate the dynamic workload adjustment based on CM shar-
ing. Each shared segment Bi is divided into two parts. One part is shared which is
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connected to MUXs. The remaining parts are directly connected to the segments’
own CMs. During the compression, the online controller monitors the complete state
of each segment. If one segment completes its compression and another is not, the
online controller switches the shared part of the slowest segment to the CM of the
fastest segment. To avoid area overheads of the multiplexing, the number of shared
segments is small. The size of shared parts of each Bi is determined by the compres-
sion speed variations.

11.4.6.3 Evaluation Results

We compare metrics of an NVP using equal-size partition, off-line only partition
and hybrid off-line/online partition under different Ms in Table 11.5. We can see
that the off-line algorithm balances the workloads of different segments effectively
while the hybrid algorithm further decreases the variations. As Table 11.5 shows, the
off-line-only partition can improve the compression speed by 32 % compared to the
equal-size partition. The hybrid strategy further reduces the variations by average
31.7 % and improves the overall speed performance by up to 10 %.

11.5 Nonvolatile Processor Applications

In this section, we describe two typical applications based on an NVP. The first one
is a vehicle detection system. The second one is a self-powered sensor node aimed at
body area monitoring. These two application systems have unique features differing
from traditional sensor nodes, and we list them as follows:

1. Both systems are driven by immediate harvested energy without conventional
energy storage devices, such as batteries.

2. Both systems work continuously under frequent power interruptions even using
a square-wave power supply.

Those system features are attributed to the features of NVPs. The complexity to
design a power system for a NVP-based sensor node can be significantly reduced
without AC–DC regulators and energy storages. It implies the potential to reduce the
cost and size of the total system.

11.5.1 Vehicle Detection System

The vehicle detection system is based on energy-driven nonvolatile sensor nodes. The
whole system is depicted in Fig. 11.22. Each nonvolatile sensor node is equipped with
a solar cell energy harvester with no batteries. The energy source can be sunlight out-
doors or light sources indoors. Given an energy source, the sensor node continuously
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Fig. 11.22 The proposed moving vehicles detection system

counts the number. When a moving vehicle (e.g., a car) comes in between sunlight
and sensor node, power to the sensor node is cut off. The nonvolatile sensor node will
remember the current state and wait for the moving object to pass by. After that, the
power supply is recovered, and the sensor node will continue to count. The counting
number and related information can be stored in the local nonvolatile memory or
wirelessly transferred to the remote data center. An object recognition algorithm is
used in the data center to analyze the object occurring time and other information. A
synchronization algorithm should be implemented among the collecting point and
sensor nodes. After a certain period of time, the global time should be refreshed
and synchronized with each node. A graphic user interface (GUI) is provided to
show the real-time detecting results. The most novel technique used in this demo is
the NVP-based energy-driven system. This system consists of the energy-harvesting
module (solar cell), the power management unit (PMU), and the NVP, shown in
Fig. 11.23. At several square centimeters in size, a solar cell is used to provide 6-V
and more than 5-mW power supply under medium sunlight. The PMU realized the
functions of energy detection and voltage regulation. It measures the energy stored
on the capacitor and generates activation signals to the NVP as well as regulates the
supply voltage.

To better describe the system working mechanism, we draw the signal timing
diagram of the sleep and wake-up actions in Fig. 11.24. In the sleep action, when
the PMU detects a power failure, it generates a sleep signal and maintains the power
supply via the capacitor until the system state is stored in nonvolatile cells. In the
wake-up action, the PMU detects the power recovery and provides power to the NVP
until the voltage is stable. After that, it generates a wake-up signal to restart the NVP.
According to the measured results, the wake-up action costs less than 100 µs and the
sleep action takes around 50 µs, which enables our system to work under a frequently
interrupted power supply.
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Fig. 11.23 Architecture and realization of energy-driven sensor node
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Fig. 11.24 Signal timing chart in sleep and wake-up actions

11.5.2 Self-Powered Body Sensors

Another NVP-based application focuses on the body health monitoring, which is
significant to the personal life. Recently, many works have concentrated on the wire-
less body area network (WBAN) implementation. The body sensor nodes should
achieve ultra-low power, low costs, small size, and high reliability. The NVP-based
self-powered body sensors can be a promising candidate.

Figure 11.25a shows the block diagram of a self-powered body sensor. Generally,
it consists of an energy-harvesting source (EH), a PMU, an NVP, and some periph-
erals. The NVP provides the node high robustness against power interruptions. The
peripherals include several sensors and a RFID. The sensors are used to monitor
the medical parameters of a human being and the RFID module enables the node
to transmit those data to a sink in a wireless way. The actual sensor node is shown
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Fig. 11.25 Self-powered body sensor. a Block diagram of self-powered body sensor. b Actual
self-powered body sensor

in Fig. 11.25b. The total size of the node is 50 × 50 × 27 mm. We adopt several
power optimizing techniques to enable the sensor node to work under very limited
power supply from small-size energy-harvesting devices. The node adopts a DC–
DC converter with over 85 % energy-transforming efficiency and a ultra-low-power
RFID module. By profiling the power consumption of the sensor node, we find that
the Flash code memory contributes a more than 5 mA current under normal opera-
tions. As there is a large frequency gap between the NVP and the Flash memory, we
design a specific program to power down the Flash memory when it is not read. With
this technique, we reduce over 80 % power consumption of the Flash memory and
the overall power of the node is reduced to 4 mW. The final demonstration (shown
in Fig. 11.26) is a self-powered sensor node with harvested energy from sunlight or
vibration. The sensor node monitors the temperature, sunlight duration, and intensity,
and it transmits the data into a base station (PC). It mimics the working environment
where a human being wears those sensor nodes outdoors or walking. It can collect
those medical information reliably without a battery. The users can access those data
via a RFID reader in a smart phone or specific devices.

11.6 Related Work

The NVP is a promising approach to realize a nonvolatile-memory-based computing
system. Many researchers and companies have evaluated various ways to integrate
nonvolatile memories in processors. Flash is a mature high-density nonvolatile mem-
ory and is widely used in the mainstream commercial microcontrollers [5, 6]. How-
ever, Flash is not suitable to implement distributed NVFFs, because it has drawbacks
such as low endurance, slow writing speed, block erasing pattern, and high mask
cost. Among existing nonvolatile memories [8], FeRAM and MRAM emerge as the
most promising candidates for the NVP. Zwerg et al. [26] embedded a FeRAM into
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Fig. 11.26 Self-powered body sensor demonstration platform

a microcontroller for better tolerance to power failures. Xu et al. [27] had proposed
to adopt STT-MRAM as the last-level on-chip cache in microprocessors. However,
the centralized memory architecture cannot provide sufficient bandwidth and fast
backup speed in accidental power failures.

In order to achieve faster sleep and wake-up features, some works had concentrated
on the register-level nonvolatile memory implementation. Zhao et al. [4] employed
MTJ-based flip-flops in FPGAs to achieve rapid start-up. Sakimura et al. [10] devel-
oped a magnetic flip-flop (MFF) library for systems-on-a-chip (SoC) design and
tested the MFFs in a shifter circuit. Guo et al. [28] conducted an architectural analy-
sis of a STT-MRAM-based processor, including the logic-in-memory, nonvolatile
registers, and nonvolatile caches.

Recently, Rohm developed a lifetime-enhanced NVFF by adding a FeCap pair to
a standard flip-flop and implemented a nonvolatile counter [1]. The hybrid flip-flop
structure does not degrade the performance in the normal operations and prolongs the
lifetime of the nonvolatile cells. Wang et al. [12] evaluated an NVP with ferroelectric
flip-flops using a compare-and-write policy. Afterward, Yu et al. [2] proposed an
evaluation of NVPs based on floating-gate technology. Their analysis demonstrated
the performance, area, and power characteristics of an NVP based on the hybrid
NVFFs. Simultaneously, Wang et al. [21] fabricated an actual NVP based on the
ferroelectric flip-flops and obtained measured results on the sleep and wake-up prop-
erties. Most recently, Qazi et al. [29] provided an FIR filter based on ferroelectric
flip-flops and demonstrated even faster sleep and wake-up speed.

To further improve the performance of an NVP, some design-optimizing methods
are proposed. After observing large area overheads of the hybrid NVFFs, Wang et
al. [30] presented a compare-and-compress architecture to reduce the NVP’s area
and Sheng et al. [31] reported a way to trade off the area overhead and the backup
speed in an NVP.
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In future, the NVP design may focus on the following aspects: high-speed and
reliable NVFF design, hybrid nonvolatile memory architecture, and novel NVP appli-
cations.

11.7 Conclusion

In this chapter, we demonstrated the complete design flow to fabricate a ferroelectric
NVP. Our experimental results show that the first fabricated NVP can achieve 7 µs
sleep time and 3 µs wake-up time with zero standby power, which means over 30–
100× speedup on the wake-up/sleep time and 70× energy savings on the backup and
recall operations compared with the state-of-the-art industry microcontroller. Mean-
while, the ferroelectric NVP exhibits comparative performance and power consump-
tion in normal operations. Furthermore, we design a PaCC and its variants SPaC to
save up to 30 % silicon area in a ferroelectric NVP. Finally, we demonstrate two
kinds of battery-less sensor nodes based on the NVP for the first time. They aimed
at moving vehicle detection and body sensor applications.

Ferroelectric NVPs can realize energy-efficient computing systems with zero
standby power, instant-on features, high resilience to power failures, and fine-grained
power management. It has the potential to realize computing system powered by
energy-harvesting devices, which eliminates the battery lifetime constraints and
becomes a very promising solution for smart sensors and other applications.
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