
Chapter 10
A Circuit-Architecture Co-optimization
Framework for Exploring Nonvolatile Memory
Hierarchies

Xiangyu Dong, Norman P. Jouppi and Yuan Xie

Extension of Conference Paper: This submission is extended
from “A Circuit-Architecture Co-optimization Framework for
Evaluating Emerging Memory Hierarchies” published on
ISPASS’13. The additional material provided in the submission
includes a detailed explanation of the circuit-level and the
architecture-level models, a new case study of using PCRAM,
and a sensitivity study on processor core counts.
This work is supported in part by SRC grants, NSF 1218867,
1213052, 0903432 and by DoE under Award Number
DE-SC0005026.

10.1 Introduction

The state-of-the-art memory hierarchy design with SRAM on-chip caches and
DRAM off-chip main memory is now being challenged from two aspects. First,
both SRAM and DRAM technologies are leaky. The SRAM leakage power and the
DRAM refresh power will start to dominate if memory capacities keep growing.
Some data already show that 25–40 % of total power is attributed to the memory sys-
tem [1] and some embedded processor caches can compromise over 40 % of the total

X. Dong
Qualcomm Technology, Inc., Qualcomm, USA
e-mail: xiangyud@qualcomm.com

N. P. Jouppi
Google Inc., CA, USA
e-mail: jouppi@acm.org

Y. Xie (B)

Pennsylvania State University and AMD Research, Pennsylvania, USA
e-mail: yuanxie@cse.psu.edu

Y. Xie (ed.), Emerging Memory Technologies, 261
DOI: 10.1007/978-1-4419-9551-3_10,
© Springer Science+Business Media New York 2014



262 X. Dong et al.

chip power budget [2]. Second, SRAM and DRAM are facing many difficulties in
scaling down. For example, it is hard to scale down DRAM below a 20-nm process
node due to the difficulty in keeping an adequate amount of cell capacitance [3].
The recent shift of some L3 on-chip caches from SRAM to eDRAM [4] and the
research momentum in replacing DRAM main memory with various emerging non-
volatile memories [5–13] reflect the responses to such challenges in designing an
energy-efficient and cost-effective memory hierarchy.

Recently, many alternative memory technologies, such as phase-change RAM
(PCRAM)1 [14–16], spin-torque transfer RAM (STTRAM)2 [17, 18], and resistive
RAM (ReRAM)3 [19–21], have been demonstrated. These emerging nonvolatile
memory technologies have attractive properties of high density, fast access, good
scalability, and nonvolatility, and they have drawn the attention of the computer
industry and challenged the role of SRAM and DRAM in the mainstream memory
hierarchy for the first time in more than 30 years.

Since each of the emerging memory technologies has their pros and cons and the
peripheral circuit design can vary the memory module property greatly, the future
memory hierarchy will have a much larger design space. Therefore, it is necessary to
have an estimation framework that can quickly find the optimal memory technology
choice and the corresponding circuit design style in terms of performance, energy,
or area.4 But, there are two challenges before doing that.

First, unlike SRAM whose cells and macro-designs are highly standardized,
emerging memory technologies only have prototypes whose performance and energy
properties can vary greatly. Such circuit variation can already be observed from the
related literature [14–21], where some of the memory prototypes show extremely
fast access speed while others show extremely dense structure. In order to model this
variety and the circuit-level trade-offs, we build a circuit-level performance, energy,
and area model.

Second, in order to build an optimization loop covering circuit- and architecture-
level design options, we require models that reflect how architectural metrics (e.g.,
IPC and power consumption) change as we tune the underlying memory hierarchy de-
sign knobs (i.e., cache capacity, cache associativity, and cache read or write latency).
Conventionally, such model is built through simulations; however, it is impractical
to run time-consuming simulations for each possible design input. To surmount this
difficulty, we apply statistical analysis and effectively use limited simulation runs to
approximate the entire architectural design space.

After modeling the circuit- and architecture-level trade-offs, we combine them
into a circuit-architecture joint design space exploration framework and use this
framework to optimize different memory hierarchy levels by adopting emerging
memory technologies. In this work, we show that combined with SRAM L1 or L2
caches, the versatility of emerging memory technologies can excel in the remaining
memory hierarchy levels from L2 or L3 caches to main memories, and such a hybrid
hierarchy has significant benefits in energy and area reduction with insignificant
performance degradation overhead. As an example, our analysis shows that using

4 Silicon area is the main factor that determines chip cost.



10 A Circuit-Architecture Co-optimization Framework 263

ReRAM in L3 caches can achieve overall improvements on EDP (by 28 %) and EDAP
(by 39 %) on an 8-core chip multiprocessor (CMP) system. Finally, we propose a
simulated annealing approach that can quickly find the near-optimal solution in
designing a energy-efficient or cost-efficient memory hierarchy.

10.2 Related Work

Since our work involves both circuit- and architecture-level models, we first describe
prior work on circuit-level memory design space exploration and predictive perfor-
mance models.

10.2.1 Circuit Model for Memory Modules

Many circuit-level models have been provided to enable SRAM or DRAM design
explorations. For example, CACTI [22, 23] is to estimate the performance, energy,
and area of SRAM and DRAM caches. However, as CACTI is originally designed
to model an SRAM-based cache, and some of its fundamental assumptions do not
match the actual emerging nonvolatile memory circuit implementations. Besides
CACTI, Amrutur and Horowitz [24] introduced an analytical model for estimating
the SRAM array speed and power scaling. Another circuit-level model [25] uses a
logic synthesis tool to build a circuit library and relies on curve fitting to represent
the circuit design trade-offs.

10.2.2 Predictive Performance Model

Statistical models [25–30] can be used to infer the impact of architectural input
configurations on overall performance metrics. Although it is time-consuming to
collect sufficient sample data from conventional simulation, this is a one-time effort,
and all the later outputs can be generated with the statistical model. Different fitting
models have been used in the inference process that fits a predictive model through
regression. Joseph et al. [26] used linear regression, Lee and Brooks [27] used cubic
splines, whereas Azizi et al. [25] applied polynomial functions to create architecture-
level models. Artificial neural network (ANN) [28–30] is another popular approach to
build a predictive architecture model, which can efficiently explore exponential-size
architectural design spaces with many interacting parameters.



264 X. Dong et al.

10.3 Circuit Model: An RC Approach

After more than 30 years of application, both SRAM and DRAM memory modules
have defined their own typical design styles. For example, 6T or 8T SRAM cells are
widely adopted in the on-chip cache designs, and 1T DRAM cells are also typical.
Moreover, on-chip SRAM designs are mainly supported by standard libraries or even
memory compiler tools, and commodity DRAM is highly standardized as well. Due
to the technology maturity, both SRAM and DRAM memory modules now have less
variety.

However, such design consistency cannot be found in the emerging memory mod-
ule design. Recently, many STTRAM, PCRAM, and ReRAM prototype chips have
been designed and demonstrated [14–21], but few of them show consistency in re-
porting the performance, energy, and area data. This is actually common for any new
technology. Due to the still evolving states of these emerging technologies, there
is no single design, standard design option can balance the trade-off among chip
performance, energy consumption, and chip area. Therefore, researchers have made
various decisions on design and manufacturing, and thus, it causes a large variation
among designs.

Such variation brings challenges as well as opportunities for using emerging mem-
ory technologies in future memory hierarchies. The opportunity is that we can still
freely bias the optimal design options toward different optimization targets on the
different memory hierarchy levels, especially when large prototype chip variations
tell us these technologies can cover a wide design spectrum from highly latency-
optimized microprocessor caches to highly density-optimized secondary storage.
But, the challenge is to build a performance, energy, and area model for these emerg-
ing memory technologies even before they become mature. Therefore, we first build
a circuit-level model for nonvolatile memory technologies.

10.3.1 Modeling Philosophy

We apply the modeling philosophy used in CACTI [31, 32] to establish a library
of emerging memory technologies spanning from ultra-fast to ultra-dense memory
designs. Similar to CACTI, we capture the device-level RC property of memory
cells and use traditional RC analysis to estimate their performance and energy con-
sumption. We follow standard design rules to predict the silicon area occupied by
each circuit components. We obtain the process-related data of transistors and metal
layers from the ITRS report [3] and the MASTAR tool [33]. The data cover the
process nodes from 22 to 180 nm and support three transistor types, which are high
performance, low operating power, and low standby power.



10 A Circuit-Architecture Co-optimization Framework 265

Fig. 10.1 The circuit-level model for memory module timing, power, and area estimations

10.3.2 Circuit Components and Tuning Knobs

Figure 10.1 shows the basic components abstracted in this circuit-level model. Each
memory module is modeled as a set of banks, every bank can contain multiple
subarrays, and a memory operation is fulfilled by simultaneous accesses to multiple
subarrays in a bank. Depending on the design requirement, a bank can be partitioned
into subarrays with different granularity. The rule of thumbs is that smaller subarrays
are faster and larger subarrays are area-efficient.

A subarray is the elementary structure, in which there are a set of peripheral circuit
including row decoders, column multiplexers, output drivers, and so on. There are
a large amount of design knobs that can be tuned in the subarray design, especially
regarding the choice of peripheral circuit. For example, the output driver design can
have the option of following logical effort [34] and use optimal levels and sizes of
inverters for high performance, or it can be simply designed as a single inverter for
area efficiency. For sense amplifiers, the voltage-sensing scheme is straightforward
but slower, while the current-sensing one incurs two-level sensing but much faster
and more suitable for sensing the resistance difference of emerging memory cells.
Other tuning knobs such as the multiplexer design are also shown in Fig. 10.1.

10.3.3 Memory Array Structure

There are two types of memory arrays modeled in this work: MOS-accessed and
cross-point.

MOS-accessed cells correspond to the typical 1T1R (1-transistor-1-resistor) struc-
ture used by many nonvolatile memory prototype chips [17, 18], in which an NMOS



266 X. Dong et al.

access device is connected in series with the nonvolatile storage element (i.e., MTJ
in STT-RAM, GST in PCRAM, and metal oxide in ReRAM) as shown in Fig. 10.2.
Such an NMOS device turns on/off the access path to the storage element by varying
the voltage applied to its gate. The MOS-accessed cell usually has the best isolation
between neighboring cells due to the high OFF resistance of the MOSFET. In MOS-
accessed cells, the size of access transistor is bounded by the current needed by the
write operation. This NMOS needs to be sufficiently large so that it can drive enough
write current.

Cross-point cell corresponds to the 1D1R (1-diode-1-resistor) [14, 15, 35, 36] or
the 0T1R (0-transistor-1-resistor) [19, 20, 37] structures used by several high-density
nonvolatile memory chips. Figure 10.3 shows a cross-point array without diodes
(i.e., 0T1R structure). For a 1D1R structure, a diode is inserted between the word
line and the storage element. Such cells either rely on the one-way connectivity of
diode (i.e., 1D1R) or the material’s nonlinearity (i.e., 0T1R) to control the memory
access path.

Compared to MOS-accessed cells, cross-point cells have much smaller cell sizes.
The area efficiency benefit of the cross-point structure is evident in the comparison
between Figs. 10.2 and 10.3. The removal of MOS access devices leads to a memory
cell size of only 4F2, where F is the process feature size. Unfortunately, the cross-
point structure worsens the isolation among memory cells and thus brings challenges
to peripheral circuitry designs. Several design issues such as half-select write, two-
step sequential write, and external sensing [38] are included in our model.

10.3.4 Model Accuracy

We validate our circuit model against STTRAM [18], PCRAM [14], and ReRAM [21]
prototypes. In general, the performance (i.e., read latency, write latency) estimation
error is within 20 %, and the area estimation error is below 10 %.

Fig. 10.2 The schematic view of MOS-accessed ReRAM arrays (WL wordline, BL bitline, SL
sourceline)



10 A Circuit-Architecture Co-optimization Framework 267

Fig. 10.3 The schematic view of cross-point ReRAM arrays without access devices (WL wordline,
BL it bitline)

10.3.5 Circuit-Level Model Summary

In summary, our circuit-level model takes the memory design parameters such as
technology node, memory capacity, associativity, block size, and cell type as the in-
puts, and it gives circuit-level outputs such as read/write latency, read/write dynamic
energy per access, leakage power, and silicon area. Our circuit-level model provides 8
optimizations targets, which are read latency, write latency, read energy, write energy,
read EDP, write EDP, silicon area, and leakage power, and each of these optimized
designs is evaluated in the later circuit-architecture joint design space exploration.
The optimization is achieved by tuning the design knobs including, but not limited
to, subarray size, global interconnect style, driver design, sense amplifier design,
multiplexer design, and memory cell structure.

10.4 Architecture Model: An ANN Approach

At the architectural level, we need performance models that predict the architectural
performance of the overall system such as IPC and access counts at all cache levels
as we change the underlying memory hierarchy. The input parameters at the archi-
tectural level are the parameters such as cache capacity, cache associativity, read
latency, and write latency.

Fig. 10.4 The basic organization of a two-layer feed-forward artificial neural network (ANN)



268 X. Dong et al.

In a simulation-based approach, long run times are necessary to simulate each
possible input setting, making it intractable to explore a large design space. How-
ever, simulation accuracy is not the first priority in such a large-scale design space
exploration. Instead, a speedy but less accurate architecture-level model is a preferred
choice. In this work, since both our input space and output space are high dimen-
sional, we select an artificial neural network (ANN) to fit the sampled simulation
results into a predictive performance model.

10.4.1 Artificial Neural Network

Figure 10.4 shows the simplified diagram of a two-layer artificial neural network with
one sigmoid hidden layer (which uses sigmoid functions as the calculation kernel)
and one linear output layer (which uses linear functions as the calculation kernel).
The input and output design parameters are also shown in Fig. 10.4. The essential ar-
chitectural outputs for energy-performance-area evaluation are the read/write access
counts and the read/write miss counts of every level of caches, and read/write access
counts of the main memory, and the number of instructions that each microprocessor
core has processed. To feed the architectural model, the inputs of the architectural de-
sign space are the capacity, associativity, read/write latency of all the cache modules
and the main memory, which can be generated from the aforementioned circuit-level
model. The statistical architectural model makes an output estimate from given input
sets, and it can be treated as a black box that generates predicted outputs as a function
of the inputs,

L1readCount = f1(L1capacity, L1assoc, L1readLatency, ..., L3capacity, ..., MemwriteLatency)

(10.1)

... = ...

L3writeMiss = fn−1(L1capacity, L1assoc, L1readLatency, ..., L3capacity, ..., MemwriteLatency)

(10.2)

IPC = fn(L1capacity, L1assoc, L1readLatency, ..., L3capacity, ..., MemwriteLatency)

(10.3)

In our model, the input dimension is 14 (vector I14), and the output dimension is
13 (vector O13). The number of neurons in the hidden layer (X) is S, which ranges
from 30 to 60 depending on different fitting targets. In Fig. 10.4, W and b are the
weight matrix and bias vector of the hidden layer; W′ and b′ are those of the output
layer. The feed-forward ANN is calculated as follows:

XS = σ (WS×14I14 + bS) (10.4)

O13 = ψ
(
W′

13×SXS + b′
13

)
(10.5)

where σ(·) and ψ(·) are sigmoid and linear functions.



10 A Circuit-Architecture Co-optimization Framework 269

10.4.2 Training and Validation

ANN is able to fit multidimensional mapping problems given consistent data and
enough neurons in the hidden layer. The accuracy of the statistical architectural
model depends on the number of training samples achieved from actual full-system
simulations. In this work, 3,000 cycle-accurate full-system simulation results are
collected for each workload. Among each set of 3,000 samples, 2,400 data samples
are used for training, 300 are used for testing, and the other 300 are used for validation
during the training procedure to prevent over-training [39]. To reduce variability,
multiple rounds of cross-validation during which data are rotated among the training,
testing, and validation sets are performed using different partitions, and the validation
results are averaged over the rounds. Every ANN is configured to have 30–60 hidden
neurons and trained using the Levenberg-Marquardt algorithm [40]. The Levenberg-
Marquardt algorithm trains the ANN by adjusting the weight matrices and bias
vectors based on the data iteratively until the ANN accurately predicts the outputs
from the input parameters.

10.4.3 Sample Collection

In this work, we collect samples to evaluate an 8-core chip multiprocessor (CMP).5

Each core is configured to be a scaled 32nm in-order SPARC-V9-like processor core
with a 3.2 GHz frequency. A private L1 instruction cache (I-L1), an L1 data cache
(D-L1), and a unified L2 cache (L2) are associated with each core. Eight cores to-
gether share an on-die L3 cache. The detailed input design space is listed in Table 10.1.
In this work, I-L1 and D-L1 are assumed to have the same design specification.

We use NPB [41] and PARSEC [42] as the experimental workloads. The workload
size of the NPB benchmark is CLASS-C (DC has no CLASS-C setting, and CLASS-B
is used instead), and the native inputs are used for the PARSEC benchmark to generate
realistic program behavior. In total, 23 benchmark applications are evaluated, and we
build 23 separate ANN models for the 8-core CMP architecture-level model.6 Later,
all the experimental results are based on the average value of these 23 workloads.
We randomly pick design configurations per benchmark and use the Simics full-
system simulator [43] to collect sample data. Each Simics simulation is fast forwarded
to the pre-defined breakpoint at the code region of interest, warmed up by 1 billion
instructions, and then simulated in the detailed timing mode for 10 billion cycles.

5 We also use the same methodology to collect the data for a 4-core CMP performance model, and
the result is shown in Sect. 10.6.4.
6 Another 23 ANN models are built for the 4-core CMP model.



270 X. Dong et al.

10.4.4 Model Accuracy

Figure 10.5 illustrates the IPC prediction errors of the architecture-level performance
model after training. The x axis shows the relative error between the predicted and
the actual values, and the y axis presents the cumulative distribution function. In
Fig. 10.5 (middle), we can find that 8 benchmarks in PARSEC have a probability
of 80 % to achieve an IPC prediction error of only 0.1 %, and the probability of
achieving IPC prediction errors of less than 0.2 % is very close to 100 %.

To measure the model accuracy, we use the metric error = |predicted −
actual|/actual. The average prediction error is 4.29 %. Figures 10.6, 10.7, 10.8
show three examples of the ANN fitting results: a very accurate fit (0.15 % error), a
typical fit (3.06 % error), and the worst fit in this work. Even in the worst case, the
prediction error is under 18.71 %.

The prediction results of other output parameters (e.g., L1 read count, L1 write
count, L2 read count, L2 write count) are similar to the IPC prediction.

10.5 Joint Design Space Exploration Framework

In this section, we describe how the circuit- and the architecture-level models are
combined into a joint design space exploration framework.

Table 10.1 Input design
space parameters

Parameter Range

Processor frequency 3.2 GHz
Processor core 8-core, in-order
I-L1 (D-L1) capacity 8KB to 64 KB
I-L1 (D-L1) associativity 4-way to 8-way
I-L1 (D-L1) read latency 2-cc to 40-cc
I-L1 (D-L1) write latency 2-cc to 700-cc
L2 capacity 64 KB to 512 KB
L2 associativity 8-way or 16-way
L2 read latency 5-cc to 80-cc
L2 write latency 5-cc to 800-cc
L3 capacity 512 KB to 16 MB
L3 associativity 8-way to 32-way
L3 read latency 20-cc to 100-cc
L3 write latency 20-cc to 900-cc
Memory read latency 30-cc to 300-cc
Memory write latency 30-cc to 1,000-cc



10 A Circuit-Architecture Co-optimization Framework 271

10.5.1 Framework Overview

Figure 10.9 shows an overview of this joint circuit-architecture exploration
framework. As mentioned, 3,000 randomly generated architecture-level inputs per
benchmark workload are used to produce 3,000 corresponding samples in the archi-
tectural design space. The samples are then fed into the ANN trainer to establish
the architecture-level performance model for each benchmark workload. The trained
ANN is used as the architecture-level performance model. The circuit-level inputs
are first passed through the memory module performance, energy, and area model,
and then fed into the ANN-based architecture-level performance model to generate
the predicted architecture-level results such as IPC and power consumption together
with the silicon area estimates. When the predicted result does not meet the design
requirement, feedback information containing the distance between the design opti-
mization target and the current achieved result is sent to a simulated annealing [44]
optimization engine, and a new design trial is generated for the optimization loop.
This optimization procedure steps forward iteratively until the design requirement
(e.g., best EDP or best EDAP) is achieved or a near-optimal solution is reached.
We use a simulated annealing engine to conduct this optimization step, and this is
described in Sect. 10.7 in detail.

0% 5% 10% 15% 20% 25% 30%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Prediction error

C
D

F

BT.C
CG.C
DC.B
EP.C
FT.C

IS.C
LU.C
MG.C
SP.C
UA.C

0% 0.05% 0.1% 0.15% 0.2%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Prediction error

C
D

F

blackscholes
canneal
facesim
freqmine
raytrace
streamcluster
swaptions
vips

0% 5% 10% 15% 20% 25% 30%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Prediction error

C
D

F

bodytrack
dedup
ferret
fluidanimate
x264

Fig. 10.5 CDF plots of error on IPC prediction of NPB and PARSEC benchmark applications: The
x-axis shows the prediction error; the y-axis shows the percentage of data points that achieve the
prediction error less than each x value

0 0.1 0.2
0

0.05

0.1

0.15

0.2

0.25

Actual IPC

P
re

di
ct

ed
 IP

C

Fig. 10.6 An accurate ANN fitting example: MG from NPB



272 X. Dong et al.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Actual IPC
P

re
di

ct
ed

 IP
C

Fig. 10.7 A typical ANN fitting example: dedup from PARSEC

0 0.1 0.2 0.3
0

0.1

0.2

0.3

Actual IPC

P
re

di
ct

ed
 IP

C

Fig. 10.8 The worst ANN fitting example: x264 from PARSEC

Fig. 10.9 Overview of the optimization framework. Architecture-level models are generated using
sampling and an ANN trainer. Circuit-level models are used to estimate the latency, energy, and
area of each memory module in the hierarchy. A simulated annealing engine is applied to find the
near-optimal solution without exhaustive search

10.5.2 Circuit-Architecture Combination

After obtaining the access activities of each cache level, the memory subsystem
power consumption can be calculated. Because the dynamic energy consumption
of main memory is proportional to the last-level cache miss rate, we include it as a
part of the memory subsystem power consumption for a fair comparison. The power
consumption of logic components including the processor cores, on-chip memory



10 A Circuit-Architecture Co-optimization Framework 273

controller, and inter-core crossbar are estimated by McPAT [45]. We use a 32 nm
technology in this work.

From McPAT, the logic components have 7.41 W leakage power (Plogic,leakage)
and 10.98 W peak dynamic power. The run-time dynamic power consumption
(Plogic,dynamic) is scaled down from the peak dynamic power according to the ac-
tual IPC value. The total power consumption of the processor chip is calculated as
follows:

Ememory,dynamic =
3∑

i=1

[
NreadHiti Ehiti + NreadMissi Emissi + (

NwriteHiti + NwriteMissi

)
Ewritei

]

+ NreadMiss3 Eread4 + NwriteMiss3 Ewrite4 (10.6)
Pmemory,leakage = 2Ncore P1 + Ncore P2 + P3 (10.7)

Pprocessor,total = Ememory,dynamic/T + Plogic,dynamic + Plogic,leakage (10.8)

In Eq. 10.6, NreadHiti , NreadMissi , NwriteHiti , and NwriteMissi are the read count, read
miss count, write count, and write miss count of the Level-i cache, which are gener-
ated from the ANN-based architecture-level model. Ehiti , Emissi , and Ewritei are the
dynamic energy consumption of a hit, miss, and write operation in the Level-i cache,
and they are obtained from the RC-based circuit-level model. Eread4 and Eread4 are
the dynamic energy consumption of main memory read and write operations, since
we label the main memory as the fourth level of the memory hierarchy. In Eq. 10.7,
Ncore is the number of cores, and Pi represents the leakage power consumption of
each cache level. The coefficient 2 is because of the identical data and instruction L1
caches (D-L1 and I-L1) in this work. Equation 10.8 gives the total power consump-
tion where T is the simulation time (T = 10 B/3.2 GHz = 3.125 s according to our
experimental setup).

10.6 Design Exploration: An ReRAM Case Study

In this section, we demonstrate how to perform a circuit-architecture joint memory
hierarchy design space exploration by adopting emerging ReRAM technology.

10.6.1 ReRAM Technology

ReRAM is an emerging nonvolatile memory technology that involves electro- and
thermochemical effects in the resistance change of a metal-oxide-metal system7.
An ReRAM cell consists of a metal oxide layer sandwiched between two metal
electrodes as shown in Fig. 10.10. The electronic behavior of metal/oxide interfaces
depends on the oxygen vacancy concentration of the metal oxide layer. Typically,

7 There are other models explaining the ReRAM working mechanism.



274 X. Dong et al.

Fig. 10.10 An ReRAM cell example which uses Pt and Ti

Table 10.2 ReRAM technology assumptions

ReRAM [38]
MOS-accessed Cross-point

Cell size 20 F2 4F2

Write pulse duration One pulse 50 ns per pulse Two pulses 50 ns per pulse
State-0 resistance 10 k�

State-1 resistance 500 k�

Half-select resistance – 100 k�

Write endurance 1012

Fig. 10.11 The design spectrum of 32 nm ReRAM: read latency versus density

the metal/oxide interface shows Ohmic behavior in the case of very high doping
and rectifying in the case of low doping [46]. In Fig. 10.10, the TiOx region is
semi-insulating indicating lower oxygen vacancy concentration, while the TiO2−x is
conductive indicating higher concentration.



10 A Circuit-Architecture Co-optimization Framework 275

Fig. 10.12 The design spectrum of 32 nm ReRAM: write latency versus density

As an example, we use the ReRAM device parameters shown in Table 10.2 and
explore the circuit-level design space at first. Figures 10.11 and 10.12 demonstrate
the design spectrum of the emerging ReRAM memory technology. For comparison,
the design spectrum of SRAM and DRAM is also shown. Note that MOS-accessed
ReRAM and cross-point ReRAM are more than 10X denser than SRAM, and cross-
point ReRAM can be as dense as DRAM. In terms of speed, ReRAM has comparable
read speed to that of SRAM, but significantly slower write speed. The write latency
of MOS-accessed ReRAM is dominated by the switching pulse duration, which is
50 ns in our experiments, and the latency of cross-point ReRAM is twice this due to
two-step writes.

10.6.2 Wear-Leveling Assumption

Similar to NAND flash, ReRAM technology has limited write endurance (i.e.,
the number of times that an ReRAM cell can be overwritten). Many recent tech-
niques [6, 7, 10] have been developed for extending the endurance of PCRAM-
based memories, which can be directly borrowed for ReRAM wear leveling. In
this case study, we simply assume that these techniques can give us perfect wear
leveling. Given this assumption and the current write endurance level of 1010–
1012 [21, 47, 48], we can explore the possibility of using ReRAM technology in
L2 and L3 caches. In later experiments, we add an additional 2 ns access latency due
to the consideration of wear-leveling hardware overhead.



276 X. Dong et al.

Fig. 10.13 Pareto curves: en-
ergy and performance trade-
off of the memory hierarchy.
Main memory dynamic power
is included for a fair compari-
son

10.6.3 Memory Hierarchy Design Exploration

We next explore architecture-level memory hierarchy design space via ANN to show
the Pareto-optimal curves of the trade-off range after adopting ReRAM technology.
In this step, we separate the cache design space (L1, L2, and L3) and the memory
design space. We assume the main memory is built by either cross-point ReRAMs that
are optimized for density or MOS-accessed ReRAMs that are optimized for latency.
Table 10.3 lists the timing and area parameters of MOS-accessed and cross-point
ReRAM main memory solutions.

Focusing on the design space exploration of ReRAM-based memory hierarchies,
Fig. 10.13 shows the Pareto-optimal curves of the power-performance trade-off.
The x-axis is the total power consumption of the processor chip, and the y-axis is
the IPC performance. It can be observed from Fig. 10.13 that a great amount of
power consumption can be reduced by only taking a small amount of performance
degradation. For instance, as shown in Fig. 10.13, design option D4 (using SRAM
L1 and L2 caches but ReRAM L3 cache) reaches 1.610 IPC by consuming 24.50 W
total power. Compared to design option D7 (using SRAM-only cache hierarchy) that
reaches 1.826 IPC but consumes 42.00 W power, the achieved power reduction is
42 % but the performance degradation is only 12 %. The design option also meets the

Table 10.3 MOS-accessed
and cross-point ReRAM main
memory parameters (1 Gb,
8-bit, 16-bank)

MOS-accessed Cross-point

Die area 129 mm2 48 mm2

Read latency 6.2 ns 10.0 ns
Write latency 54.9 ns 107.1 ns
Burst read latency 4.3 ns 4.3 ns
Burst write latency 4.3 ns 4.3 ns



10 A Circuit-Architecture Co-optimization Framework 277

20 25 30 35 40 45
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Total processor power and main memory

In
st

ru
ct

io
n 

pe
r 

cy
cl

e 
(I

P
C

)
SRAM L1, L2, and L3
SRAM L1 and L2, ReRAM L3
SRAM L1, ReRAM L2 and L3
ReRAM L1, L2, and L3 (no SRAM)

 dynamic power(Unit:W)

Fig. 10.14 Pareto curves (cross-point ReRAM as main memory): energy and performance trade-off
under different constraints on ReRAM deployment

constraint set by 1010 write endurance as discussed in Sect. 10.6.2. If the ReRAM
write endurance is assumed to be 1012, more aggressive options (e.g., using L2
ReRAM caches) can further reduce the power consumption. For example, design
option D3 (using ReRAM L2 and L3 caches) reaches 1.545 IPC by consuming
only 23.52 W total power. To show how different cache hierarchy designs have been
explored, we list the design parameters of 7 design options (D1 to D7) in Table 10.4.

We find that the Pareto-optimal curves are composed of several segments, such as
D1-to-D2, D4-to-D6. The joints between every two segments represent the place
where SRAM/ReRAM replacement occurs. Such replacements can be found in
Fig. 10.14. In general, IPC improvements are achieved by adding more SRAM re-
sources, and greater reductions in power consumption come from replacing SRAM
with ReRAM. Figure 10.14 shows an ReRAM-only cache hierarchy is on the global
Pareto-front but it achieves less than 0.30 IPC, and that segment has a large slope.
Thus, it suggests SRAM should still be deployed at least in L1 caches. But, starting
form L2, ReRAM cache deployment can achieve considerable additional power re-
duction by only sacrificing a small amount of performance. This is especially true for
a hybrid on-chip cache hierarchy with SRAM L1/L2 caches and ReRAM L3 caches.
Figure 10.14 shows that in this region, the total power consumption can be lowered
to 24.50 W but the IPC is only degraded from 1.826 to 1.610 (i.e., design option D4
in Fig. 10.13).

Another benefit obtained from using ReRAM caches is silicon area reduction.
Figure 10.15 shows the Pareto-optimal curves of cache area and performance trade-
offs, which have similar shapes to the ones in the power-performance trade-off as
shown in Fig. 10.15. The processor core area (including memory controller and
crossbar) is 45.6 mm2 as estimated by McPAT [45]. Achieving the highest perfor-
mance using pure-SRAM caches costs at least another 12 mm2 of silicon area while



278 X. Dong et al.

Ta
bl

e
10

.4
O

n-
di

e
ca

ch
e

hi
er

ar
ch

y
de

si
gn

pa
ra

m
et

er
s

of
7

de
si

gn
op

tio
ns

D
1

D
2

D
3

D
4

D
5

D
6

D
7

L
1

ca
pa

ci
ty

32
K

B
8

K
B

8
K

B
8

K
B

32
K

B
8

K
B

8
K

B
L

1
as

so
ci

at
iv

ity
8

8
4

4
4

4
4

L
1

m
em

or
y

ty
pe

M
-R

eR
A

M
SR

A
M

SR
A

M
SR

A
M

SR
A

M
SR

A
M

SR
A

M
L

1
op

tim
iz

ed
fo

r
L

W
P

R
L

W
P

R
L

R
P

R
L

L
1

se
ns

in
g

sc
he

m
e

E
X

IN
IN

IN
IN

IN
IN

L
2

ca
pa

ci
ty

51
2

K
B

51
2

K
B

51
2

K
B

64
K

B
64

K
B

64
K

B
64

K
B

L
2

as
so

ci
at

iv
ity

8
16

8
16

8
8

8
L

2
m

em
or

y
ty

pe
M

-R
eR

A
M

M
-R

eR
A

M
M

-R
eR

A
M

SR
A

M
SR

A
M

SR
A

M
SR

A
M

L
2

op
tim

iz
ed

fo
r

L
L

L
L

W
E

W
E

R
E

L
2

se
ns

in
g

sc
he

m
e

IN
IN

IN
IN

IN
IN

IN
L

3
ca

pa
ci

ty
16

M
B

16
M

B
8

M
B

8
M

B
64

M
B

8
M

B
8

M
B

L
3

as
so

ci
at

iv
ity

16
16

8
8

8
8

8
L

3
m

em
or

y
ty

pe
M

-R
eR

A
M

M
-R

eR
A

M
M

-R
eR

A
M

X
-R

eR
A

M
M

-R
eR

A
M

SR
A

M
SR

A
M

L
3

op
tim

iz
ed

fo
r

L
L

L
L

R
E

L
W

P
L

3
se

ns
in

g
sc

he
m

e
IN

IN
E

X
IN

E
X

IN
IN

IP
C

0.
26

5
1.

41
0

1.
54

5
1.

61
0

1.
67

7
1.

75
1

1.
82

6
Po

w
er

co
ns

um
pt

io
n

(W
)

20
.2

0
22

.9
8

23
.5

2
24

.5
0

25
.0

8
40

.3
1

42
.0

0
Si

lic
on

ar
ea

(m
m

2
)

49
.4

5
49

.6
4

48
.2

5
48

.1
6

62
.9

2
57

.4
1

58
.2

3
∗ M

em
or

y
ty

pe
ab

br
ev

ia
tio

n:
M

-R
eR

A
M

=
M

O
S-

ac
ce

ss
ed

R
eR

A
M

,X
-R

eR
A

M
=

C
ro

ss
-p

oi
nt

R
eR

A
M

;O
pt

im
iz

at
io

n
ab

br
ev

ia
tio

n:
R

L
re

ad
la

te
nc

y,
W

L
w

ri
te

la
te

nc
y,

R
E

re
ad

en
er

gy
,W

E
w

ri
te

en
er

gy
,R

P
re

ad
E

D
P,

W
P

w
ri

te
E

D
P,

L
le

ak
ag

e,
A

ar
ea

;s
en

si
ng

sc
he

m
e

ab
br

ev
ia

tio
n:

IN
in

te
rn

al
,E

X
ex

te
rn

al



10 A Circuit-Architecture Co-optimization Framework 279

45 50 55 60 65
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Total silicon area of the processor chip (Unit: mm2)

In
st

ru
ct

io
n 

pe
r 

cy
cl

e 
(I

P
C

)
SRAM L1, L2, and L3

SRAM L1 and L2, ReRAM L3

SRAM L1, ReRAM L2 and L3

ReRAM L1, L2, and L3 (no SRAM)

Fig. 10.15 Pareto curves (cross-point ReRAM as main memory): cache area and performance
trade-off under different ReRAM deployments

Fig. 10.16 The global Pareto-optimal curve (cross-point ReRAM as main memory) and feasible
design options with total chip area less than 50 mm2

replacing the SRAM L3 cache with ReRAM can save more than 7 mm2 in chip area
by degrading performance from an IPC of 1.82–1.70. We show the feasible region of
designs with less than 50 mm2 total cache area in Fig. 10.16. This result is extremely
useful in the low-cost computing segment where the performance requirement is
just-in-time but the chip cost is the first priority. Figure 10.16 also indicates using
ReRAM caches can reduce power consumption and silicon area at the same time,
which further improves EDAP.



280 X. Dong et al.

10.6.4 Other Case Studies

As a general-purpose tool, our circuit-architecture joint space exploration framework
is not limited to the case study of ReRAM-based cache hierarchy on an 8-core CMP
system. Using the same circuit-level model, we can build another circuit library
for PCRAM-based cache modules (PCRAM parameters are listed in Table 10.5).
Furthermore, using the same architecture-level model, a 4-core CMP performance
model can also be established.

Figures 10.17, 10.18 demonstrate how the framework can be easily adapted and
help the design space exploration for an 8-core PCRAM-based and a 4-core ReRAM-
based cache hierarchy in terms of the power-performance trade-off and the area-
performance trade-off, respectively. The tool quickly provides the estimation that:

– In a 8-core CMP system, adopting PCRAM technology in L3 caches can achieve
an EDP improvement of 16 % and an EDAP improvement of 25 %.

– In a 4-core CMP system, adopting ReRAM technology in L3 caches can achieve
an EDP improvement of 25 % and an EDAP improvement of 35 %.

– In a 8-core CMP system, adopting ReRAM technology in L3 caches can achieve
an EDP improvement of 28 % and an EDAP improvement of 39 %.

From the 8-core PCRAM/ReRAM comparison, we can quickly find that ReRAM’s
fast switching property makes ReRAM outperform PCRAM in terms of IPC.

10.7 Design Optimization

Running full design space exploration using an exhaustive search is time-consuming
and may not be necessary in most cases. Therefore, to use this joint circuit-
architecture model as a practical memory hierarchy design assistant, an efficient
optimization method is required. In this work, we use a simplified simulated anneal-
ing [44] algorithm to find a near globally optimal solution. The simulated annealing
heuristic is described in Algorithm 1.

In this optimization methodology, we first randomly choose an initial design op-
tion, s0, and calculate its annealing energy function from the joint circuit-architecture
model. The annealing energy function can be EDP, EDAP, or any other energy-
performance-area combination. The optimization loop continuously tries neighbor-

Table 10.5 PCRAM
technology assumptions [16]

Cell size 36F2

Reset pulse duration 100 ns
Set pulse duration 300 ns
State-0 resistance 5 k�

State-1 resistance 500 k�



10 A Circuit-Architecture Co-optimization Framework 281

10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

In
st

ru
ct

io
n 

pe
r 

cy
cl

e 
(I

P
C

)

Total processor power and main memory

8−core system
w/ PCRAM+SRAM

4−core system
w/ ReRAM+SRAM

8−core system
w/ ReRAM+SRAM

 dynamic power(Unit:W)

Fig. 10.17 The power-performance Pareto curves: (1) an 8-core system with PCRAM+SRAM; (2)
a 4-core system with ReRAM+SRAM; (3) an 8-core system with ReRAM+SRAM

20 30 40 50 60 70
0

0.5

1

1.5

2

In
st

ru
ct

io
n 

pe
r 

cy
cl

e 
(I

P
C

)

Total silicon area of the processor chip (Unit: mm2)

8−core system w/ PCRAM+SRAM
4−core system w/ ReRAM+SRAM
8−core system w/ ReRAM+SRAM

Fig. 10.18 The area-performance Pareto curves: (1) an 8-core system with PCRAM+SRAM; (2)
a 4-core system with ReRAM+SRAM; (3) an 8-core system with ReRAM+SRAM

ing options8 of the current one. If the new design option is better than the previous
one, it is adopted unconditionally; if not, it is adopted with probability depending on
an acceptance function. The acceptance probability, Paccept, is defined as,

8 In this work, a neighboring option is generated by changing two parameters from the parameter
set of L1 capacity, L1 associativity, L1 memory type, L2 capacity, L2 associativity, L2 memory
type, L3 capacity, L3 associativity, and L3 memory type.



282 X. Dong et al.

Algorithm 1 Design space optimization algorithm

state=s0, energy=E(state)
repeat

new_state = neighbor(state), new_energy = E(new_state)
if new_energy < energy then

state = new_state, energy = new_energy {Accept unconditionally}
else if T(energy, new_energy) > random() then

state = new_state, energy = new_energy {Accept with probability}
end if

until energy stops improving in the last K rounds
return state

15 20 25 30 35 40 45
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

In
st

ru
ct

io
n 

pe
r 

cy
cl

e 
(I

P
C

)

Total processor power and main memory 

Global Pareto−optimal curve
Iso−EDP curve
Optimization path

Random
initialization
point

Optimized
solution

dynamic power(Unit:W)

Fig. 10.19 The path of EDP optimization

Paccept(E, E ′) =
⎧
⎨

⎩

1 ifE ′ < E
E/E ′ if E ≤ E ′ < 1.3E
0 otherwise

(10.9)

where E is the old energy, and E ′ is the new energy.
Figure 10.19 shows how the simulated annealing algorithm eventually evolves

an initial random design option to a near globally optimal one in terms of EDP. In
addition, Fig. 10.20 shows the EDAP optimization path.

Compared to exhaustive search of the same design space that takes more than 8
hours on an 8-core Xeon X5570 microprocessor, the proposed optimization method-
ology usually finds the near-optimal values in less than 30 seconds. This optimization
scheme provides an almost instant design decision given any specified performance,
energy, or area requirements. Furthermore, it becomes feasible to integrate this model
into higher level tools that consider not only the memory system design trade-offs
but also design trade-offs within microprocessor cores [25].



10 A Circuit-Architecture Co-optimization Framework 283

0 1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Power and area product (Unit: W−mm2)

In
st

ru
ct

io
n 

pe
r 

cy
cl

e 
(I

P
C

)

Global Pareto−optimal curve
Iso−EADP curve
Optimization path

Random
initialization
point

Optimized
solution

Fig. 10.20 The path of EDAP optimization

10.8 Discussion

Power consumption has been an issue for many years. Our exploration and
optimization results demonstrate that both the EDP and the EDAP optimal points
are close to the y-axis on the IPC versus power plot. In this design space region,
ReRAM resources are adopted in the memory hierarchy design (for example, using
ReRAM L3 caches, or more aggressively using ReRAM L2 and L3 caches). Even
if performance constraints are applied, using ReRAM starting with the L3 cache
always brings energy efficiency. Moreover, locating these energy-optimal points on
the IPC versus area plot also shows significant silicon area savings achieved from
ReRAM without incurring much performance degradation. Compared to the best
values of pure-SRAM designs, the introduction of ReRAM in L3 caches improves
EDP and EDAP by 28 and 39 % on a scaled 32 nm 8-core SPARC-V9-like processor
chip, respectively. The memory technology shift from SRAM to ReRAM achieves
these improvements for the following reasons:

Table 10.6 Overview of the proposed universal memory hierarchy

Level L1 cache L2 cache

Memory type SRAM SRAM or MOS-accessed
ReRAM

Endurance requirement 1013 [Section 10.6.2] 1011 [Section 10.6.2]
Level L3 cache Main memory
Memory type MOS-accessed or cross-point

ReRAM
MOS-accessed or cross-point

ReRAM
Endurance requirement 1010 [Section 10.6.2] 108 [7]



284 X. Dong et al.

• The compact ReRAM module size greatly reduces the silicon area used for on-chip
memories (EDAP improvement) or allows more on-chip memory resource deploy-
ment to improve the performance (EDP and EDAP improvement);

• The relatively smaller ReRAM size implies shorter wordlines and bitlines in the
ReRAM cell array and thus reduces the dynamic energy consumption per memory
access (EDP and EDAP improvement);

• The nonvolatility property of ReRAM eliminates the leakage energy consumption
of memory cells (EDP and EDAP improvement).

Therefore, we envision a heterogeneous memory hierarchy as summarized in
Table 10.6. In such a hierarchy, SRAM is used in L1 and L2 caches, MOS-accessed
ReRAM may be used in L3 or even in L2 caches if ReRAM technology keeps
improving (e.g., improvement on write speed and write endurance), and low-cost
cross-point ReRAM may be used in L3 caches and main memory.

10.9 Conclusion

In the next era of computing, we need more energy-efficient and cost-effective com-
puting. However, conventional SRAM and eDRAM technologies used in memory
hierarchy designs have problems in reducing power consumption and silicon area
with scaling. On the other hand, many emerging nonvolatile memory technologies
such as STTRAM, PCRAM, and ReRAM have been researched and the correspond-
ing prototypes have been demonstrated. These new memory technologies bring de-
sired features such as high density, fast access, good scalability, and nonvolatility,
and they are potentially useful in many levels of future energy-efficient and cost-
effective memory hierarchies. However, such emerging memory technologies are
still new, and there are too many uncertainties in evaluating their actual impact on
the future memory hierarchy design. Therefore, it is necessary to have a framework
that can model the circuit-level trade-offs among performance, energy, and area and
can leverage such design variety into the architecture-level memory hierarchy.

In this work, we first build a circuit-level performance, energy, and area estimation
model for emerging memory technologies, then use this model to explore a wide-
range of memory module implementations, and generate a memory module library
with various optimized designs. After that, we integrate this circuit-level model into
an ANN-based architecture-level model and create a general performance-energy-
area optimization framework for the memory hierarchy design in a joint circuit-
architecture design space. Our validation results show that the proposed framework
is sufficiently accurate for the purpose of design space exploration, and by using this
framework, we are able to rapidly explore a very large space of memory hierarchy
designs and find good solutions in terms of energy-performance-area trade-offs.
Moreover, we use this framework to evaluate new memory technologies such as
ReRAM. Our experimental results reveal the memory design preference for ReRAM
in an 8-core CMP setting when the design targets EDP or EDAP goals. Our results



10 A Circuit-Architecture Co-optimization Framework 285

show using ReRAM starting from L3 caches can achieve a 28 % EDP improvement
and a 39 % EDAP improvement, which means the trade-offs in designing ReRAM
memory hierarchy can greatly boost the energy efficiency or cost efficiency with
only a slight impact on the IPC.

In general, this work is the initial effort to study the feasibility of building an
energy-efficient or cost-efficient memory hierarchies by adopting emerging memory
technologies. We believe this work is only the first step toward a new generation of
energy-efficient and cost-efficient heterogeneous computer memory hierarchies.

References

1. Udipi, A. N., et al. (2010). Rethinking DRAM design and organization for energy-constrained
multi-cores. In Proceedings of the International Symposium on Computer Architecture (pp.
175–186).

2. Meng, Y., et al. (2005). On the limits of leakage power reduction in caches. Architecture: In
Proceedings of the International Symposium on High-Performance Computer (pp. 154–165).

3. International technology roadmap for semiconductors. Process integration, devices, and struc-
tures 2010 update. (2010). http://www.itrs.net/.

4. Kalla, R., et al. (2010). POWER7: IBM’s next-generation server processor. IEEE Micro, 30(2),
7–15.

5. Lee, B. C., et al. (2009). Architecting phase change memory as a scalable DRAM alternative.
Architecture: In Proceedings of the International Symposium on Computer (pp. 2–13).

6. Zhou, P., et al. (2009). A durable and energy efficient main memory using phase change memory
technology. Architecture: In Proceedings of the International Symposium on Computer (14–
23).

7. Qureshi, M. K., et al. (2009b). Scalable high performance main memory system using phase-
change memory technology. Architecture: In Proceedings of the International Symposium on
Computer (pp. 24–33).

8. Qureshi, M. K. (2009a). Enhancing lifetime and security of PCM-based main memory with
start-gap wear leveling. In Proceedings of the International Symposium on Microarchitecture
(pp. 14–23).

9. Seong, N. S., et al. (2010). Security refresh: Prevent malicious wear-out and increase durability
for phase-change memory with dynamically randomized address mapping. In Proceedings of
the International Symposium on Computer Architecture (pp. 383–394).

10. Schechter, S. (2010). Use ECP, not ECC, for hard failures in resistive memories. Architecture:
In Proceedings of the International Symposium on Computer (pp. 141–152).

11. Dong, X., et al. (2008). Circuit and microarchitecture evaluation of 3D stacking magnetic
RAM (MRAM) as a universal memory replacement. In Proceedings of the Design Automation
Conference (pp. 554–559).

12. Sun, G., et al. (2009). A novel 3D stacked MRAM cache architecture for CMPs. Architecture: In
Proceedings of the International Symposium on High-Performance Computer (pp. 239–249).

13. Smullen, C. W., et al. (2011). Relaxing non-volatility for fast and energy-efficient STT-RAM
caches. In Proceedings of the International Symposium on High Performance, Computer Ar-
chitecture (pp. 50–61).

14. Lee, K.-J., et al. (2008). A 90 nm 1.8 V 512 Mb diode-switch PRAM with 266MB/s read
throughput. IEEE Journal of Solid-State Circuits, 43(1), 150–162.

15. Yoshitaka, S., et al. (2009). Cross-point phase change memory with 4F2 cell size driven by
low-contact-resistivity poly-Si diode. In Proceedings of the Symposium on VLSI Technology
(pp. 24–25).

http://www.itrs.net/


286 X. Dong et al.

16. De Sandre, G., et al. (2010). A 90nm 4Mb embedded phase-change memory with 1.2V 12ns
read access time and 1MB/s write throughput. In Proceedings of the International Solid-State
Circuits Conference (pp. 268–269).

17. Kawahara, T., et al. (2007). 2 Mb spin-transfer torque RAM (SPRAM) with bit-by-bit bidirec-
tional current write and parallelizing-direction current read. In Proceedings of the International
Solid-State Circuits Conference (pp. 480–617).

18. Tsuchida, K., et al. (2010). A 64 Mb MRAM with clamped-reference and adequate-reference
schemes. In Proceedings of the International Solid-State Circuits Conference (pp. 268–269).

19. Chen, Y.-C., et al. (2003). An access-transistor-free (0T/1R) non-volatile resistance random ac-
cess memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device.
In Proceedings of the International Electron Devices Meeting (pp. 750–753).

20. Kim, K.-H., et al. (2010). Nanoscale resistive memory with intrinsic diode characteristics and
long endurance. Applied Physics Letters, 96(5), 053106.1-053106.3.

21. Sheu, S.-S., et al. (2011). A 4 Mb embedded SLC resistive-RAM macro with 7.2 ns read-
write random-access time and 160 ns MLC-access capability. In Proceedings of the IEEE
International Solid-State Circuits Conference (pp. 200–201).

22. Wilton, S. J. E., & Jouppi, N. P. (1996). CACTI: An enhanced cache access and cycle time
model. IEEE Journal of Solid-State Circuits, 31, 677–688.

23. Thoziyoor, S., et al. (2008b). CACTI 5.1 technical report. Technical report HPL-2008-20. HP
labs.

24. Amrutur, B. S., & Horowitz, M. A. (2000). Speed and power scaling of SRAM’s. IEEE Journal
of Solid-State Circuits, 35(2), 175–185.

25. Azizi, O., et al. (2010). Energy-performance tradeoffs in processor architecture and circuit
design: A marginal cost analysis. In Proceedings of the International Symposium on Computer
Architecture (pp. 26–36).

26. Joseph, P. J., et al. (2006a). Construction and use of linear regression models for processor
performance analysis. In Proceedings of the International Symposium on High-Performance
Computer Architecture (pp. 99–108).

27. Lee, B. C., & Brooks, D. M. (2006). Accurate and efficient regression modeling for microar-
chitectural performance and power prediction. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems (pp. 185–194).

28. Ipek, E., et al. (2008). Efficient architectural design space exploration via predictive modeling.
ACM Transactions on Architecture and Code Optimization, 4(4), 1:1–1:34.

29. Joseph, P. J., et al. (2006b). A predictive performance model for superscalar processors. In
Proceedings of the International Symposium on Microarchitecture (pp. 161–170).

30. Dubach, C., et al. (2007). Microarchitectural design space exploration using an architecture-
centric approach. In Proceedings of the International Symposium on Microarchitecture (pp.
262–271).

31. Muralimanohar, N. (2008). Architecting efficient interconnects for large caches with CACTI
6.0. IEEE Micro, 28(1), 69–79.

32. Thoziyoor, S., et al. (2008a). A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchies. In Proceedings of the International
Symposium on Computer Architecture (pp. 51–62).

33. International technology roadmap for semiconductors. The model for assessment of cmoS
technologies and roadmaps (MASTAR). (2010). http://www.itrs.net/models.html.

34. Sutherland, I. E., et al. (1999). Logical effort: Designing fast CMOS circuits. Morgan Kauf-
mann.

35. Zhang, Y., et al. (2007). An integrated phase change memory cell with ge nanowire diode for
cross-point memory. In Proceedings of the IEEE Symposium on VLSI, Technology (pp. 98–99).

36. Lee, M.-J., et al. (2007). 2-stack 1D–1R cross-point structure with oxide diodes as switch ele-
ments for high density resistance RAM applications. In Proceedings of the IEEE International
Electron Devices Meeting (pp. 771–774).

37. Kau, D. C., et al. (2009). A stackable cross point phase change memory. In Proceedings of the
IEEE International Electron Devices Meeting, 27.1.1-27.1.4.

http://www.itrs.net/models.html


10 A Circuit-Architecture Co-optimization Framework 287

38. Xu, C., et al. (2011). Design implications of memristor-based RRAM cross-point structures.
In Proceedings of the Design, Automation and Test in, Europe (pp. 1–6).

39. Sarle, W. S. (1995). Stopped training and other remedies for overfitting. In Proceedings of the
Symposium on the Interface of Computing Science and, Statistics (pp. 55–69).

40. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

41. NASA advanced supercomputing (NAS) division. The NAS parallel benchmarks (NPB) 3.3.
http://www.nas.nasa.gov/Resources/Software/npb.html.

42. Bienia, C., et al. (2008). The PARSEC benchmark suite: characterization and architectural
implications. In Proceedings of the International Conference on Parallel architectures and
Compilation Techniques (pp. 72–81).

43. Magnusson, P. S., et al. (2002). Simics: A full system simulation platform. Computer, 35(2),
50–58.

44. Kirkpatrick, S., et al. (1983). Optimization by simulated annealing. Science Magazine,
220(4598), 671–680.

45. Li, S., et al. (2009). McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. In Proceedings of the International Symposium on
Microarchitecture (pp. 469–480).

46. Yang, J. J., et al. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices.
Nature Nanotechnology, 3(7), 429–433.

47. Kim, Y.-B., et al. (2011). Bi-Layered RRAM with unlimited endurance and extremely uniform
switching. In Proceedings of the Symposium on VLSI Technology (pp. 52–53).

48. Eshraghian, K., et al. (2010). Memristor MOS content addressable memory (MCAM): Hybrid
architecture for future high performance search engines. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 99, 1–11.

http://www.nas.nasa.gov/Resources/Software/npb.html

	10 A Circuit-Architecture Co-optimization Framework for Exploring Nonvolatile Memory Hierarchies
	10.1 Introduction
	10.2 Related Work
	10.2.1 Circuit Model for Memory Modules
	10.2.2 Predictive Performance Model

	10.3 Circuit Model: An RC Approach
	10.3.1 Modeling Philosophy
	10.3.2 Circuit Components and Tuning Knobs
	10.3.3 Memory Array Structure
	10.3.4 Model Accuracy
	10.3.5 Circuit-Level Model Summary

	10.4 Architecture Model: An ANN Approach
	10.4.1 Artificial Neural Network
	10.4.2 Training and Validation
	10.4.3 Sample Collection
	10.4.4 Model Accuracy

	10.5 Joint Design Space Exploration Framework
	10.5.1 Framework Overview
	10.5.2 Circuit-Architecture Combination

	10.6 Design Exploration: An ReRAM Case Study
	10.6.1 ReRAM Technology
	10.6.2 Wear-Leveling Assumption
	10.6.3 Memory Hierarchy Design Exploration
	10.6.4 Other Case Studies

	10.7 Design Optimization
	10.8 Discussion
	10.9 Conclusion
	References


