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Abstract  T
H
17 cells are a subset of CD4+ helper T cells that produce IL-17A, 

IL-17F, IL-9, IL-21, and IL-22. They play an important role in promoting allergic 
and auto-immune responses as well as in protecting hosts against pathogens. Because 
IL-17A and IL-17F have the highest homology among IL-17 family members and 
bind the same IL-17RA and IL-17RC receptor complex, it is suggested that these 
two cytokines have similar functions. However, accumulating evidence suggests that 
these cytokines have overlapping yet distinct roles in the immune system. In this 
review, we introduce how IL-17A and IL-17F are involved in inflammatory immune 
responses and host defense mechanisms and discuss their relationship with other 
cytokines in the development of inflammatory and infectious diseases.

1 � IL-17A and IL-17F

The IL-17A gene, originally called CTLA-8 (cytotoxic T lymphocyte associated 
antigen-8) gene, was first cloned from a murine cytotoxic T lymphocyte (CTL) 
hybridoma cDNA library. Murine IL-17A is a 21-kDa glycoprotein with 147 amino 
acids and 63% amino acid homology with human IL-17A (155 amino acids). 
Recently, five additional related cytokines were identified (IL-17B, IL-17C, IL-17D, 
IL-17E also called IL-25, and IL-17F) with 16–50% amino acid identity with 
IL-17A (Aggarwal and Gurney 2002; Kolls and Linden 2004). Among these IL-17 
family members, IL-17F has the highest amino acid sequence homology to IL-17A. 
The Il17f gene is located close to the Il17a gene in both humans and mice.
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Both IL-17A and IL-17F induce the production of antimicrobial peptides 
(defensins and S100 proteins), cytokines (IL-6, G-CSF, and GM-CSF), chemokines 
(CXCL1, CXCL5, IL-8, CCL2, and CCL7), and matrix metalloproteinases (MMP1, 
MMP3, and MMP13) from fibroblasts, endothelial cells, and epithelial cells (Fig. 1). 
IL-17A induces intercellular cell adhesion molecule 1 (ICAM-1) in keratinocytes, 
IL-1 and TNF in macrophages, and iNOS and cyclooxygenase-2 (COX-2) in 
chondrocytes. IL-17A also promotes SCF and G-CSF-mediated granulopoiesis. 
Overexpression of IL-17A and IL-17F in the lungs of mice leads to increased pro-
inflammatory cytokine and chemokine expression, causing inflammation associated 
with neutrophil infiltration (Oda et al. 2005; Park et al. 2005; Yang et al. 2008a). 
These observations suggest that these cytokines have similar biological functions. 
Furthermore, IL-17A and IL-17F are secreted as both homodimers and heterodimers. 
The IL-17A-IL-17F heterodimer is more potent than IL-17F, but less potent than 
IL-17A in inducing chemokine expression (Liang et al. 2007; Wright et al. 2007).

The IL-17 receptor family members (IL-17RA–IL-17RE) have also been identi-
fied (Gaffen 2009). Both IL-17A and IL-17F bind the same receptor complexes, 
IL-17RA and IL-17RC (Zheng et al. 2008), as both IL-17A and IL-17F failed to 
induce chemokine expression in either Il17ra−/− or Il17rc−/− cells (Yang et al. 2008a; 
Zheng et  al. 2008). The expression of IL-17RA and IL-17RC is quite different; 
IL-17RA is highly expressed in lymphoid tissues, whereas IL-17RC is mainly 
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Fig. 1  Pleiotropic effects of IL-17A on multiple target cells
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expressed in non-hematopoietic tissues (Yao et  al. 1995; Kuestner et  al. 2007; 
Ishigame et  al. 2009), suggesting that these receptors have different functions. 
Because the binding affinity of IL-17F to IL-17RA is much lower than that of IL-17A 
(Hymowitz et al. 2001; Wright et al. 2008), and only IL-17F binds to IL-17RC in the 
mouse (Kuestner et al. 2007), it seems likely that IL-17A and IL-17F differentially 
use these receptors. In fact, the effects of IL-17A and IL-17F are different among 
colonic epithelial cells, macrophages, and T cells; both IL-17A and IL-17F can 
induce neutrophil chemo-attractants and b-defensins in colonic epithelial cells, while 
only IL-17A can efficiently induce cytokines in macrophages and T cells (Ishigame 
et al. 2009; Lin et al. 2009). These results suggest that in addition to the different 
binding affinity of these cytokines to these receptors, the distribution of IL-17RA and 
IL-17RC may determine the biological activity of IL-17A and IL-17F. It is also pos-
sible that receptors with compositions other than IL-17RA–IL-17RC heterodimer 
complex may determine the cell-type specificity among different cell types. Indeed, 
IL-17RA and IL-17RC may also form homodimers (Kramer et  al. 2006). Recent 
findings show that IL-17RA also forms combined with IL-17RB to transduce IL-25 
signaling (Rickel et al. 2008), suggesting that IL-17RA serves as a common receptor 
for several IL-17 family members. Further studies to elucidate the ligand–receptor 
relationship in the IL-17 system are needed to address these issues.

The IL-17 family members use a unique signaling pathway (Gaffen 2009). IL-17A 
activates the MAP kinase, NF-kB, PI3-Akt, and C/EBPd pathways. It has also been 
shown that IL-17RA signaling, like IL-1/Toll-like receptor (TLR) signaling, is 
dependent on TRAF6. Although IL-17A shows biological activities similar to IL-1 
in several immune responses, the adaptor molecules MyD88, TRIF, and IRAK4 are 
not required for IL-17A signaling. Recent studies showed that Act1, which physi-
cally interacts with IL-17RA and mediates TRAF6 recruitment, is an essential adaptor 
protein for IL-17A and IL-17F signaling and function (Li 2008; Gaffen 2009).

2 � Regulation of IL-17A and IL-17F Production

Upon antigenic stimulation, naive CD4+ T cells differentiate into distinct functional 
T cell subsets including T

H
1 and T

H
2 cells that are characterized by different cytokine 

production profiles and effector functions (Fig. 2). T
H
1 cells produce large quanti-

ties of IFN-g and mediate cellular immunity, while T
H
2 cells are involved in humoral 

immunity and mainly produce IL-4, IL-5, and IL-13. IL-12 induces the differentia-
tion of naive CD4+ T cells into IFN-g-producing T

H
1 cells through STAT4 activa-

tion. IFN-g signals are transduced by STAT1, which activates the downstream 
transcription factor, T-bet, that enhances the expression of T

H
1 cell-specific genes. 

In contrast, IL-4 induces STAT6 activation, followed by the expression of GATA-3, 
a transcription factor essential for both IL-4 production and T

H
2 cell differentiation. 

Recently, a new CD4+ T cell subset (T
H
17) that preferentially produces IL-17A, 

IL-17F, IL-9, IL-21, and IL-22 was identified. T
H
17 cells have been widely accepted 

as important effector cells in the development of auto-immune and allergic diseases 
and host defenses against a group of pathogens.
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IL-17A was originally described as a product of memory CD4+ T cells. The 
discovery of the link between IL-17A-producing T cells and IL-23 effector function 
led to the concept that IL-17A-producing T

H
17 cells belong to a CD4+ T cell subset 

that is distinct from the classical T
H
1 and T

H
2 cell subsets (Dong 2008; McGeachy 

and Cua 2008). Subsequent studies showed that T
H
17 cell differentiation is induced 

by TGF-b plus IL-6 or IL-21 and accelerated by the coordinated activities of IL-1 
and TNF (Fig. 2). Furthermore, T

H
17 cell differentiation depends on transcription 

factors, including interferon-regulatory factor 4 (IRF4), aryl hydrocarbon receptor 
(AHR), STAT3, retinoic acid receptor-related orphan receptor a (RORa), and 
RORg. It is now accepted that IL-23 is required for the growth, survival, and effector 
functions of T

H
17 cells and promotes IL-17A, IL-17F, IL-9, IL-21, and IL-22 

production by this T cell subset.
It is reported that T

H
17 lineage is a heterogenous population. In addition to 

IL-17A and IL-17F double-positive cells, there is an IL-17A- or IL-17F single-
positive population. Regulation of IL-17A and IL-17F production is also different, 
as IL-17F is expressed early in T

H
17 development compared to IL-17A (Liang et al. 

2007; Lee et al. 2009), suggesting that IL-17A and IL-17F production are regulated 
differently, depending on the stage of distinction. Although underlying molecular 
mechanisms are still not identified, it is likely that some factors, such as transcriptional 
factors or T cell receptor (TCR) signal strength, may distinctly regulate these 
productions. Indeed, deficiency of RORa only selectively reduces IL-17A, but not 
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IL-17F production (Yang et al. 2008b), and expression of IL-17A is more sensitive 
to the strength of TCR signaling compared to that of IL-17F (Gomez-Rodriguez 
et al. 2009). Furthermore, there are other sub-populations of T

H
17 cells that selec-

tively produce IL-9, IL-21, or IL-22, and the development of these subsets is 
differentially regulated (Annunziato and Romagnani 2009).

In addition to T
H
17 cells, a wide variety of immune cells, including CD8+ T cells, 

gd T cells, and NKT cells, produce IL-17A and IL-17F under various conditions. 
It is likely that IL-17A production from CD8+ T cells is dependent on TGF-b/IL-6 
and IL-23 (He et al. 2006; Stumhofer et al. 2006). IL-23, but not IL-6, is required 
for IL-17A production from NKT and gd T cells (Shibata et al. 2007; Rachitskaya 
et  al. 2008). These cells constitutively express IL-23R and RORgt, unlike naive 
CD4+ T cells (Lochner et al. 2008; Rachitskaya et al. 2008). Innate immune cells, 
such as neutrophils (Ferretti et al. 2003; Hoshino et al. 2008), monocytes (Starnes 
et al. 2001; Hue et al. 2006), NK cells (Satoh-Takayama et al. 2008), and lymphoid 
tissue inducer-like cells (LTi-like cells) (Luci et al. 2009; Sanos et al. 2009; Takatori 
et al. 2009), also produce IL-17A. It has now become evident that IL-17A production 
by these cells also contributes to various immune responses.

3 � The Role of IL-17A and IL-17F in Allergic Responses

3.1 � Delayed-Type Hypersensitivity

Delayed-type hypersensitivity (DTH) responses are elicited by immunization with 
exogenous antigens such as cells, protein antigens, and pathogens, and are believed 
to be mediated by CD4+ T cells, especially T

H
1 cells (Fig. 2). The contribution of 

IFN-g in the induction of DTH is different among antigens. Ifng−/− mice have suppressed 
KLH-mediated DTH (Akahira-Azuma et al. 2004; Gao et al. 2006), but exacerbated 
OVA- and mBSA-induced DTH (Feuerer et al. 2006; Irmler et al. 2007). Thus, the 
pathogenic mechanism of DTH cannot be explained completely by the action of 
IFN-g. Recent studies using Il17a−/−and Il17f  −/− showed that Il17a−/−, but not Il17f  −/− 
mice had attenuated mBSA-induced DTH (Ishigame et al. 2009). mBSA-specific 
T cell proliferation and mBSA-specific Ab production were also impaired in Il17a−/− 
mice, whereas Il17f  −/− mice did not have this defect (Nakae et al. 2002; Ishigame 
et  al. 2009). Il17a−/−, but not Il17f  −/−, mice also showed significantly decreased 
KLH-specific Ab production (Yang et  al. 2008a). In addition, similar to Il17a−/− 
mice, Il23a−/− mice show attenuated DTH responses against mBSA (Ghilardi et al. 
2004). In these mice, antigen-specific T cell expansion and cytokine production 
(IL-2, IFN-g, IL-4, IL-10, and GM-CSF) were normal, while IL-17A production 
was markedly impaired (Ghilardi et  al. 2004). These observations suggest that 
IL-17A, rather than IL-17F, is important in DTH response. The relative contribu-
tion of IL-17A and IFN-g in DTH response induced by different types of antigen 
has not yet been examined.
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3.2 � Contact Hypersensitivity

Contact hypersensitivity (CHS), which is induced by an epicutaneous exposure to 
chemicals, is considered to be a classic DTH response. Recently however, CHS 
is thought to be a different type of hypersensitive response, because the roles of 
CD4+ T cells and CD8+ T cells are opposite in these systems. CD4+ T cells play 
effector function and CD8+ T cells play regulatory role in DTH, while their func-
tions are opposite in CHS (Grabbe and Schwarz 1998; Kimber and Dearman 
2002). Involvement of T

H
1- and IFN-g-producing CD8+ T cells (Tc1 cells) is sug-

gested in CHS because a defect in IFN-g signaling suppresses FITC-induced CHS 
response (Lu et al. 1998). Other reports demonstrate that IFN-g is not pathogenic 
in oxazolone, TNCB, or DNFB-induced CHS (Saulnier et  al. 1995; Lu et  al. 
1998; Reeve et al. 1999; Nakae et al. 2003a), suggesting involvement of other 
T cell subsets. In CHS induced by TNCB and DNFB, but not by oxazolone, the 
response is attenuated in Il4 −/− mice, suggesting that T

H
2 cells mediate the 

response (Berg et al. 1995; Weigmann et al. 1997; Dieli et al. 1999; Traidl et al. 
1999). Consistently, CHS responses induced by TNCB, DNFB, FITC, and 
oxazolone are remarkably reduced in Stat6 −/− mice (Yokozeki et  al. 2000; 
Takeshita et al. 2004). IL-13, however, is not essential for the induction of CHS 
by DNFB (Herrick et al. 2003). These observations suggest that both IFN-g and 
IL-4 differentially regulate CHS responses, depending on the mouse genetic 
background and chemicals used.

IL-17A has also been suggested in the pathogenesis of contact dermatitis 
because nickel-specific T cell clones established from contact dermatitis patients 
produce IL-17A (Albanesi et al. 1999). Both IL-17A and IL-17F strongly induce 
IL-6, IL-8, CXCL1, GM-CSF, SCF, and ICAM-1 expression/production in human 
keratinocytes (Fig.  1). CHS responses induced by TNCB, DNFB, or FITC are 
attenuated in Il17a−/− mice, while Il17f  −/− mice display similar CHS response 
(Nakae et  al. 2002; Oboki et  al. 2008; Ishigame et  al. 2009). Although IL-17A 
enhances T cell activation by promoting DC maturation (Antonysamy et al. 1999), 
an IL-17A deficiency does not affect dermal DC/Langerhans cell functions such as 
migration, maturation, and antigen presentation in the CHS response (Nakae et al. 
2002). Instead, IL-17A is important for hapten-specific CD4+, but not CD8+, T cell 
expansion in the sensitization phase (Nakae et al. 2002). Wild-type mice engrafted 
with DNFB-sensitized Il17a−/− CD4+ cells also exhibited reduced sensitivity to 
CHS (Nakae et al. 2002). It was suggested that IL-17A-producing CD8+ T cells 
(Tc17 cells) are also important for the induction of CHS, because CHS induced by 
adaptive transfer of DNFB-sensitized CD8+ T cell are suppressed in Il17ra−/− mice 
(He et al. 2006, 2009). These results indicate that IL-17A, but not IL17F, is respon-
sible for the development of CHS in an IL-17RA-dependent manner, and IL-17A 
is involved in both sensitization and elicitation phases of CHS. However, relative 
contribution of T

H
17 and Tc17 cells, and the molecular mechanisms by which 

IL-17A, IFN-g and IL-4 orchestrate the development of CHS remain to be 
elucidated.
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3.3 � Allergic Airway Inflammation

Allergic asthma is mostly classified into two types: T
H
2-type (atopic) and non-T

H
2-

type (non-atopic) (Oboki et al. 2008). Atopic asthma is characterized by an increase 
in serum IgE and the accumulation and activation of T

H
2 cells, eosinophils, and 

mast cells, while non-atopic asthma is characterized by the accumulation of IL-8+ 
cells, neutrophils, and mast cells, without elevated serum IgE (Amin et al. 2000). 
IL-17A and IL-17F mRNA and protein were increased in asthmatic patients com-
pared to healthy subjects. Protein levels were profoundly elevated in the sputum of 
severe asthmatic patients with increased neutrophilia. IL-17A and IL-17F can acti-
vate bronchial fibroblasts, epithelial cells, and smooth muscle cells to produce vari-
ous pro-inflammatory mediators such as IL-6, IL-8 and CXCL1, which are important 
for granulopoiesis and neutrophil recruitment (Fig. 1) (Oboki et al. 2008). IL-17A 
or IL-17F overexpression resulted in the induction of neutrophilia rather than 
eosinophilia in the lungs of rodents (Oda et al. 2005; Park et al. 2005; Yang et al. 
2008a). Collectively, these observations suggest that both IL-17A and IL-17F con-
tribute to the pathogenesis of non-atopic asthma rather than atopic asthma.

T
H
2-dominant airway eosinophilia induced by immunization with OVA and anti-

gens from fungi, cockroaches, or house dust mites is a well established rodent model 
for atopic asthma. Airway hypersensitivity responses (AHR) and inflammation in 
the lung induced by OVA with aluminum hydroxide (alum) immunization are nor-
mally induced in Il17a−/− mice and is associated with increased IL-4 and IL-5 levels 
in the bronchoalveolar lavages (BALs) (Nakae et al. 2002; Pichavant et al. 2008; 
Ishigame et al. 2009). By contrast, other studies reported that Il17ra−/− mice and 
Il17a−/− mice exhibit reduced pulmonary eosinophilia (Schnyder-Candrian et  al. 
2006; Yang et al. 2008a). IL-17F is not involved in this response because Il17f  −/− 
mice have exacerbated or normal pulmonary eosinophilia during OVA/alum-
induced airway inflammation (Yang et  al. 2008a; Ishigame et  al. 2009). These 
apparent discrepancies may be explained by different experimental conditions, such 
as sensitization protocols, immunization routes, antigens, and mouse backgrounds. 
In this regard, the molecular mechanism for the induction of airway inflammation 
and AHR induced by OVA changes depending on the adjuvant, such as alum (Oboki 
et al. 2008). He et al. showed that epicutaneous OVA sensitization potently induces 
T

H
17 cells in the draining LNs, spleen, and lungs and recruits neutrophils in BALs, 

while intraperitoneal OVA immunization with alum induces weak T
H
17 cell devel-

opment and neutrophil recruitment (He et al. 2007). The eosinophil influx in the 
lungs was not affected by anti-IL-17A mAb treatment in mice epicutaneously 
immunized with OVA, whereas neutrophil recruitment was inhibited under these 
conditions. Intraperitoneal OVA sensitization with alum induced T

H
17 cells in the 

spleen but not in the draining LNs (He et al. 2007). On the other hand, subcutaneous 
OVA immunization with alum did not induce T

H
17 cells in the spleen, but did induce 

T
H
17 cells in the draining LNs (Schnyder-Candrian et al. 2006). In this case, the 

eosinophil influx in the lungs was exacerbated by anti-IL-17A mAb treatment. Thus, 
T

H
17 cell development in the spleen after OVA sensitization is influenced by the 
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immunization route (epicutaneously >> intraperitoneally > subcutaneously), and 
this may explain the differences in IL-17A dependency among T

H
2 cell-mediated 

and eosinophil-dominant murine asthma models.
In contrast to T

H
2 cell-dominant eosinophilic asthma models, the importance of 

IL-17A in the pathogenesis of non-T
H
2-type neutrophilic asthma models has been 

clearly shown in mice (Fig. 2). OVA-specific TCR-expressing DO11.10 and OTII 
mice exhibit AHR and airway inflammation after OVA inhalation without prior 
OVA sensitization (Knott et  al. 2000; Wilder et  al. 2001). Similar to non-atopic 
asthma (Amin et al. 2000), airway inflammation in OVA-inhaled DO11.10 and OTII 
mice is characterized by a predominant infiltration of neutrophils rather than eosino-
phils in the lungs without total and OVA-specific IgE elevation in sera (Knott et al. 
2000; Wilder et al. 2001; Nakae et al. 2007). In addition, T

H
1 cells and T

H
17 cells, 

but not T
H
2 cells, were increased in BALs from OVA-inhaled OTII mice (Nakae 

et al. 2007). OVA-induced airway neutrophilia in DO11.10 and OTII mice was pro-
foundly suppressed by the deficiency of IL-17A, whereas Il17f  −/− DO11.10 mice 
showed normal airway neutrophilia (Nakae et al. 2002, 2007; Ishigame et al. 2009). 
Airway inflammation was aggravated in Ifng−/− OTII mice (Nakae et al. 2007), sug-
gesting that IL-17A, but not IL-17F, is an effector and IFN-g is a negative regulator 
of this response. IL-17A induces TNF production by mast cells independent of IgE-
mediated signals, leading to neutrophil influx in airways (Nakae et al. 2007). Thus, 
TNF functions downstream of IL-17A in the antigen-induced airway neutrophilia in 
the OTII model, while IL-6 is not required in this model (Tanaka et al. 2009).

Neutrophil-dominant airway inflammation also can be induced by OVA inhalation 
without prior OVA sensitization in mice adoptively transferred with DO11.10 T

H
17 

cells (Liang et al. 2007). In this setting, T
H
17 cell-derived IL-17A, rather than IL-17F, 

is responsible for neutrophil recruitment to the airway since T
H
17 cell-mediated air-

way neutrophilia is suppressed by an anti-IL-17A neutralizing mAb but not by an 
anti-IL-17F mAb (Liang et al. 2007). Likewise, Rag2−/− mice engrafted with Tbx21−/− 
DO11.10 CD4+ T cells, which contain a larger amount of T

H
2 cells and T

H
17 cells (but 

fewer T
H
1 cells) than wild-type DO11.10 CD4+ T cells, show increased eosinophil 

and neutrophil counts in BALs compared to Rag2−/− mice engrafted with wild-type 
DO11.10 CD4+ T cells (Fujiwara et al. 2007). Treatment with an anti-IL-17A neutral-
izing mAb suppressed neutrophil, but not eosinophil recruitment in Tbx21−/− DO11.10 
CD4+ T cell-transferred Rag2−/− mice after OVA inhalation (Fujiwara et  al. 2007), 
indicating that IL-17A is responsible for the neutrophil accumulation.

Neutrophil-dominant allergic airway inflammation is also elicited by inhalation 
of fungal antigens (proteinase from Aspergillus oryzae) in mice independently of T 
and B cells (Kiss et al. 2007). In contrast to active and passive models using DO11.10 
or OTII mice, fungal proteinase-induced airway neutrophilia was normal in Il17a−/− 
mice but was significantly attenuated in Il17f  −/− or Il17ra−/− mice (Yang et al. 2008a), 
indicating that IL-17F, rather than IL-17A, is responsible for fungus-induced airway 
neutrophilia in an IL-17RA-dependent manner.

Taken together, IL-17A, and to a lesser extent IL-17F, plays more important role 
in the induction of non-T

H
2-type neutrophilic airway inflammation than in T

H
2-type 

eosinophilic airway inflammation.
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4 � The Role of IL-17A and IL-17F in Auto-immunity

4.1 � Rheumatoid Arthritis

Rheumatoid arthritis (RA) is one of the most serious auto-immune diseases, mainly 
affecting multiple joints of the body. The development of RA was previously 
believed to be mediated by T

H
1 cells because high levels of IL-12 and IFN-g were 

detected in inflammatory sites (Feldmann et al. 1996; Gately et al. 1998). It is now 
clear, however, that T

H
17 cells play crucial roles in this disease (Fig. 2) (Tesmer 

et al. 2008). Inhibition of either TNF, IL-1, or IL-6 activity in RA patients shows 
prominent beneficial effects on disease progression (Feldmann and Maini 2008). 
The roles of cytokines in the development of arthritis have been extensively exam-
ined using mouse models with different cytokine dependency.

Collagen-induced arthritis (CIA) is a typical induced arthritis model that is pro-
duced by immunizing animals with type II collagen (IIC). The development of CIA 
is largely dependent on IL-23, as Il23a−/− mice, but not Il12a−/− mice, are resistant to 
disease (Murphy et al. 2003). Both IL-17A and IL-17F are expressed in RA synovium 
and activates synoviocytes, fibroblasts, and endothelial cells to induce various 
inflammatory cytokines and chemokines, including IL-1 and TNF (Fig. 1). IL-17A 
also directly promotes osteoclast differentiation by inducing RANKL in osteoblasts 
(Sato et al. 2006). The development of this arthritis critically depends on IL-17A. 
Il17a−/− mice displayed significantly less severe arthritis development (Table  1) 
(Nakae et al. 2003b; Ishigame et al. 2009). The sensitization of T cells following 
immunization with IIC and IIC-specific antibody production were significantly 
reduced in Il17a−/− mice (Nakae et al. 2003b). These results suggest that IL-17A 
is involved in T cell sensitization and antibody production in addition to pro-
inflammatory cytokine induction in the effector phase. As the deficiency of IL-17A 
could not completely suppress CIA, involvement of IL-17F was suggested. Although 
adoptive transfer of IL-17F gene-transduced CD4+ T cells exacerbated arthritis 
(Yamaguchi et al. 2007), CIA was developed normally in Il17f  −/− mice (Ishigame 
et al. 2009), indicating that IL-17A plays a more important role than IL-17F in this 
model. On the other hand, Il22−/− mice significantly suppressed the disease (Geboes 
et al. 2009) and blockade of IL-21 signaling by IL-21R-Fc fusion protein also atten-
uated the development of CIA (Young et al. 2007). The development of arthritis was 
also markedly suppressed in either Il1a −/− Il1b −/− or Il6−/− mice (Alonzi et al. 1998; 
Saijo et al. 2002). These observations suggest that IL-17A, IL-22 and IL-21 corpo-
rately induce arthritis development downstream of IL-23, IL-1, and IL-6.

Various animal disease models other than CIA have been developed, including 
spontaneous, induced, and gene-manipulated animal models. The importance of 
IL-17A in the development of arthritis is also reported in several RA models. 
Transgenic mice carrying the HTLV-1 Tax gene with its own LTR promoter (HTLV-I 
Tg mice) developed chronic inflammatory polyarthropathy resembling RA in humans 
at a high incidence (Iwakura et  al. 1991). The expression of pro-inflammatory 
cytokine genes, including IL-1a, IL-1b, IL-2, IL-6, TNF, IFN-g, and IL-17A, is 
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enhanced in transgenic joints (Iwakura et al. 1995). The development of arthritis was 
greatly suppressed in either Il1a −/−Il1b −/−, Il6−/−, or Il17a−/− HTLV-I Tg mice (Table 2) 
(Iwakura et al. 2008), indicating the importance of these cytokines in the develop-
ment of arthritis in this model. Excess IL-6 signaling enhances the development of 
arthritis, as the development of arthritis is accelerated in HTLV-I Tg mice carrying a 
Y759F mutation in the IL-6R gp130 which is important for SOCS3-mediated nega-
tive feedback (Ishihara et al. 2004). In contrast, a TNF deficiency did not affect dis-
ease development at all (Iwakura et al. 2008). An IFN-g and IL-4 deficiency also did 
not affect disease onset (Iwakura et al. 2008), suggesting that neither T

H
1 nor T

H
2 

cells are involved in the pathogenesis of this arthritis.
Similar cytokine dependency is also observed in SKG mice, which develop auto-

immune arthritis because of a mutation in ZAP 70 of the TCR complex. An IL-17A 
deficiency completely suppresses the development of arthritis (Table 2) (Hirota et al. 
2007a, b). Consistent with this result, the development of arthritis in SKG mice 
depends on IL-6, IL-1, and TNF (Hata et al. 2004; Hirota et al. 2007a, b), indicating 
that these cytokines play important roles in the pathogenesis. The role of IL-17F, 
IL-21 and IL-22 in these models remains to be elucidated.

K/BxN mice carry the KRN transgene, which encodes a TCR reactive against a 
peptide from glucose-6-phosphate isomerase (GPI) presented by the Ag7 MHC 
class II molecule (Matsumoto et al. 1999). KRN-transgenic mice on the NOD (Ag7) 
background spontaneously develop auto-immune arthritis. The development of 
arthritis in this model depends on both T cells and B cells, and serum from K/BxN 
mice can induce arthritis in recipient mice (Korganow et al. 1999). Auto-antibodies 
to GPI are responsible for the disease (Matsumoto et  al. 1999) because immune 
complexes activate the C5a-containing complement activation pathway in mast 
cells through FcgRIII, resulting in the induction of inflammatory cytokines (Ji et al. 
2002a; Nigrovic et al. 2007). It was shown that mast cell-derived IL-1 plays a cru-
cial role in the development of arthritis in this serum transfer model (Nigrovic et al. 
2007). In addition, TNF is involved in the development of arthritis in this model (Ji 
et al. 2002b). Neutralization of IL-17A does not affect K/BxN serum induced arthri-
tis, indicating that IL-17A is not required in the effector phase. In this model how-
ever, autoreactive KRN T cells enhance K/BxN serum-transferred arthritis in a 

Table 2  Cytokine dependency of spontaneous RA models

IL-1 IL-6 TNF IL-17A IL-17F

HTLV-I Tg ↓ (Saijo et al. 
2002)

↓ (Iwakura 
et al. 2008)

→ (Iwakura 
et al. 2008)

↓ (Iwakura 
et al. 2008)

ND

Il1rn−/− ND → (Iwakura 
et al. 2008)

↓↓ (Horai et al. 
2004)

↓↓ (Nakae 
et al. 
2003c)

↓ (Ishigame 
et al. 2009)

SKG ↓ (Hata et al. 
2004)

↓↓ (Hata  
et al. 2004)

↓ (Hata et al. 
2004)

↓↓ (Hirota 
et al. 
2007a, b)

ND

→: independent, ↓: involved, ↓↓: dependent, ND: not determined
HTLV-I human T cell leukemia virus type I, Il1rn IL-1R antagonist
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IL-17 dependent manner, suggesting that IL-17 can enhance inflammation to some 
extent even in this setting (Jacobs et al. 2009).

It is widely accepted that IL-1 is a potent inducer of IL-17A and IL-17F produc-
tion (Fig. 2). IL-1 receptor antagonist (Ra) is an endogenous negative regulator of 
IL-1 signaling and IL-1Ra deficient (Il1rn−/−) mice spontaneously develop chronic 
inflammatory arthropathy (Horai et  al. 2000). The IL-17A and IL-17F-producing 
T cell population is significantly expanded in the LNs of Il1rn−/− mice (Nakae et al. 
2003c; Ishigame et al. 2009), suggesting that IL-1Ra deficiency may be sufficient to 
render T cells highly sensitive to IL-1, thereby leading to the activation of auto-
reactive IL-17A and IL-17F producing T cells by a physiological level of IL-1 in vivo. 
Interestingly, the development of arthritis in Il1rn−/− mice was almost completely 
suppressed in Il17a−/− Il1rn−/− mice (Nakae et al. 2003c), and slightly suppressed in 
Il17f  −/− Il1rn−/− mice (Table 2) (Ishigame et al. 2009). In contrast, the deficiency of 
T-bet does not affect the development of arthritis (Wang et al. 2006), suggesting that 
T

H
17 cells, not T

H
1 cells, are involved in the pathogenesis of this model. A TNF 

deficiency also completely suppressed the development of arthritis in these mice 
(Horai et al. 2004). In contrast to HTLV-I Tg and SKG mice, Il6−/− Il1rn−/− mice did 
not suppress disease onset (Iwakura et al. 2008), signifying that IL-1 can bypass the 
requirement of IL-6 for T

h
17 cell differentiation. Several studies have been reported 

that IL-1 directly acts on CD4+ T cells to produce IL-17A (Ben-Sasson et al. 2009; 
Chung et al. 2009), although underlying mechanisms are unknown. Several reports 
have shown that IL-6 is not absolutely required for T

H
17 differentiation. IL-21 can 

substitute for IL-6 to induce T
H
17 cell development in an autocrine manner (Korn 

et al. 2007; Nurieva et al. 2007; Zhou et al. 2007). Furthermore, IL-6 is not required 
for the induction of IL-17A from NKT cells or gd T cells (Shibata et  al. 2007; 
Rachitskaya et al. 2008). Further study is necessary to address whether IL-1 alone 
can directly induce IL-17A production/T

H
17 differentiation under certain conditions 

in vivo, or which T cell subset is the direct target for IL-1 to induce auto-immune 
arthritis in this model.

The role of TNF in RA is well established, as anti-TNF Ab treatment has been 
proved to be efficient for most RA patients (Feldmann and Maini 2008). However, 
a minor proportion of the patients are refractory against this treatment. It is possible 
that other cytokines such as IL-1, IL-6, and IL-17A are activated in these patients 
like HTLV-I Tg mouse model, which develop TNF-independent auto-immune 
arthritis. Because these cytokines act independently in the development of arthritis 
as revealed by these disease models, inhibitors for IL-17A, TNF, and IL-6 may be 
used in a complementary manner in the treatment of RA.

4.2 � Experimental Auto-immune Encephalomyelitis

Experimental auto-immune encephalomyelitis (EAE) is a well established murine 
model of multiple sclerosis (MS) and has long been believed to be a T

H
1 cytokine-

mediated auto-immune disease (Kuchroo et al. 2002). However, the mechanisms of 
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EAE development are more complex than previously thought. EAE is much more 
severe in mice which are defective in IL-12/IFN-g activity (Gran et al. 2002; Zhang 
et  al. 2003), arguing against the importance of T

H
1 cells in this disease. Several 

studies have demonstrated that IL-23, rather than IL-12 is essential for EAE devel-
opment, as EAE was greatly attenuated in mice that lack an IL-23 signal (Cua et al. 
2003; Zhang et al. 2003). Consistent with these observations, Il17a−/− mice were 
resistant to EAE (Table 1) (Komiyama et al. 2006; Yang et al. 2008a; Ishigame et al. 
2009). However, one report claimed that IL-17A did not contribute to EAE develop-
ment because CD4+ T cell-specific IL-17A overexpression did not have a major 
impact on the development of EAE (Haak et al. 2009). It was not shown whether the 
IL-17A expression levels in these transgenic mice were enough for the development 
of EAE. In support of the importance of T

H
17 cells, the development of EAE was 

also diminished in Rorg    −/− and Rora −/− mice which lacked T
H
17 cells (Ivanov et al. 

2006; Yang et  al. 2008b). Unlike the Il23a−/− mice, Il17a−/− mice still developed 
significant inflammation after MOG immunization, proposing that other IL-23-
induced mediators, such as IL-17F and IL-22 may also contribute to the develop-
ment of EAE. IL-17F, however, is not required for the pathogenesis of EAE (Yang 
et al. 2008a; Haak et al. 2009; Ishigame et al. 2009). Mice deficient in both IL-17A 
and IL-17F showed no additional suppression (Ishigame et al. 2009), showing that 
IL-17F is not only dispensable for the induction of these responses, but also does 
not have any substantial additive, synergistic, or compensatory effects to those of 
IL-17A in these disorders. T

H
17 cell-derived IL-17A, as well as IL-22, disrupts tight 

junctions that form the blood-brain barrier, resulting in an infiltration of T
H
17 cells 

into the central nervous system (Kebir et al. 2007) It is shown that IL-22 is also 
dispensable for EAE development (Kreymborg et al. 2007), while the contribution 
of IL-21 in the induction of EAE is still controversial. Although recombinant IL-21 
can induce T

H
17 cell differentiation from naive T cells in the presence of rhTGF-b 

in vitro, endogenous IL-21 is not essential for the T
H
17 cell differentiation during 

EAE in  vivo. EAE development is suppressed in some reports using Il21−/− and 
BALB/c-Il21r−/− mice (Korn et al. 2007; Nurieva et al. 2007), but is aggravated in 
other reports using the C57BL/6-Il21−/− and -Il21r−/− mice (Coquet et al. 2008; Liu 
et al. 2008). Recent studies also demonstrated that IL-9 produced by T

H
17 cells is 

also involved in EAE development (Nowak et al. 2009). However, IL-9 blockade 
by antibody or IL-9R deficiency only partially ameliorates disease. Therefore, the 
downstream mechanism of IL-23 still remains to be elucidated.

In contrast to the results observed from mice lacking IL-12 or IL-23 signaling, 
EAE can be induced by transfer of either IL-12 or IL-23-stimulated CD4+ T cells 
(Kroenke et al. 2008; Lees et al. 2008; Stromnes et al. 2008). Patterns of CNS infil-
tration and cytokine requirement in disease development are quite different between 
each T

H
 cell-transplanted mice. The majority of CNS infiltrating cells from recipient 

mice of IL-12-stimulated CD4+ T cells are macrophages and lymphocytes, whereas 
significant neutrophil recruitment is observed in mice given IL-23-stimulated CD4+ 
T cells (Kroenke et al. 2008; Lees et al. 2008; Stromnes et al. 2008). Neutralization 
of either IL-17A or GM-CSF delayed onset of disease induced by IL-23-stimulated 
CD4+ T cells, whereas IL-12-stimulated CD4+ T cell-mediated disease was not 
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(Kroenke et  al. 2008). Induction of EAE mediated by ether cell types was not 
dependent on IFN-g, because neither IL-12 or IL-23-mediated disease was suppressed 
by the treatment of anti-IFN-g antibody (Kroenke et  al. 2008). Several reports 
suggest that the T

H
17/T

H
1 ratio of infiltrating cells determines the sites of inflamma-

tion within the CNS (Kroenke et al. 2008; Lees et al. 2008; Stromnes et al. 2008). 
These observations suggest that T

H
17 and T

H
1 cell contribute to induction of EAE 

by using different pro-inflammatory pathways, and the balance between T
H
1 and 

T
H
17 cells is critical for the pathogenesis of EAE.
It is believed that T

H
17 cell-derived IL-17A is required for the induction of EAE 

because CD4+ T cells from Il17a−/− mice could not efficiently induce EAE (Komiyama 
et  al. 2006). Several studies showed that IL-17A-producing gd T cells are also 
important for the development of EAE. gd T cell-deficient mice showed a delayed 
onset and reduced severity of EAE (Jensen et al. 2008). gd T cells isolated from 
MOG-immunized mice could rapidly induce IL-17A production compared to that 
of T

H
17 cells after in vitro re-stimulation, and this IL-17A induction is mediated 

by IL-1 and IL-23 (Sutton et  al. 2009). These gd T cells were able to promote 
IL-17A production by CD4+ T cells as well as disease susceptibility, suggesting 
that IL-17A producing gd T cells cooperate with CD4+ T cells to induce EAE. 
IL-17A producing gd T cells are also increased in the arthritic joints and deletion of 
Vg4+ TCR, which is predominant source of IL-17A among gd T cells during CIA 
and significantly reduces disease incidence (Roark et al. 2007).

4.3 � Inflammatory Bowel Disease

Dysregulation of intestinal homeostasis causes inflammatory bowel diseases in 
which T cells play important roles. Recently, several studies have established that 
IL-23 is an essential cytokine for T cell-dependent intestinal inflammation. Transfer 
of CD4+CD45RBhi T cells into lymphopenic mice is a well established model of 
IBD. In this model, adoptive transfer of CD4+CD45RBhi T cells into IL-23 deficient 
Rag−/− mice could not induce colitis while wasting disease was observed in IL-12 
deficient Rag−/− recipient mice (Uhlig et al. 2006). Similarly, deficiency of IL-23 
suppressed the development of T cell-dependent spontaneous IBD in Il10−/− mice 
(Yen et  al. 2006). These results indicate that IL-23, rather than IL-12, plays an 
important role in the intestinal inflammatory response. Consistent with these obser-
vations, naïve CD4+ T cells isolated from Rorgt−/− mice induced less severe colitis 
(Leppkes et al. 2009), and adoptive transfer of IL-17F+ CD4+ T cells induced signifi-
cantly rapid colitis (Lee et al. 2009). However, the role of IL-17A and IL-17F in 
colitis is still controversial. Neither IL-17A or IL-17F deficiency suppressed colitis 
in CD4+CD45RBhi T cell adoptive transfer model (Table 1) (Noguchi et al. 2007; 
Izcue et al. 2008; Leppkes et al. 2009). Transfer of Il17f−/− CD4+CD45RBhi T cells, 
in combination with anti-IL-17A Ab, significantly reduced colitis (Leppkes et al. 
2009), suggesting that IL-17A and IL-17F have redundant function during colitis 
development in this model. Recent studies reported that mice transferred with 
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Il17a−/− CD4+ T cells displayed an accelerated wasting disease, which is associated 
with increased T

H
1-related cytokine production, and suggests a protective function 

of IL-17A (O’Connor et al. 2009). It should be noted that the protective function of 
IL-17A is only observed in recipient mouse weight loss and the extent of cellular 
infiltration does not correlate with the wasting aspect of the disease. Thus, the func-
tion of IL-17A in inflammation and in maintaining homeostasis of the gut may be 
different. On the other hand, many studies suggest that T

H
1 cells are also a key 

mediator in the development of IBD. Colitis was suppressed by the adoptive transfer 
of CD4+CD45RBhi T cells deficient in a T

H
1 cell-associated gene, such as IFN-g, 

T-bet, or STAT4. In addition, both T
H
1 and T

H
17 cells were required for the develop-

ment of Hericobactor hepaticus-induced colitis downstream of IL-23 (Hue et al. 
2006; Kullberg et al. 2006). It is interesting to investigate what kind of conditions 
determine the relative contribution of T

H
1 and T

H
17 cells and how other T

H
17 cell-

related cytokines, such as IL-17A, IL-17F, IL-22, and IL-21, are involved in the 
pathogenesis of T cell-mediated IBD.

The role of IL-17A in a dextran sodium sulfate (DSS)-induced acute colitis model 
is also still controversial. Although one study reported that Il17a−/− mice displayed 
significantly reduced clinical score (Ito et al. 2008), other studies demonstrated that 
mice deficient in IL-17A or given anti-IL-17A Ab showed severe weight loss and 
colonic epithelial damage (Table 1) (Ogawa et al. 2004; Yang et al. 2008a). On the 
other hand, Il17f−/− mice developed less severe colonic inflammation, which is associ-
ated with reduced chemokine expression (Yang et al. 2008a). IL-21 deficiency also 
suppressed body weight loss by inhibiting induction of T

H
17 associated molecules 

such as IL-6, IL17A, and IL-17F (Fina et al. 2008). IL-22 has a protective role in both 
DSS- and CD4+CD45RBhi T cell-induced colitis (Zenewicz et al. 2008). This protec-
tive function of IL-22 in these models appears to be mediated not only by CD4+ T cell-
derived IL-22, but also by NK cell-derived IL-22. Although T cell-produced IL-22 is 
dispensable for the protection of CD4+ T cell-induced colitis, deficiency of both donor 
and recipient derived IL-22 production resulted in more severe colitis. It has been also 
demonstrated that IL-23 is also a key player in T cell-independent colitis induced by an 
agonistic anti-CD40 antibody (Uhlig et al. 2006). Because lymphopenic mice can also 
produce IL-17A, IL-17F, and IL-21 from innate immune cells such as LTi-like cells, 
NK cells, and monocytes, further studies are needed to investigate whether these cytok-
ines are also involved in innate immune cell-mediated IBD models.

4.4 � Type I Diabetes

Type I diabetes mellitus (T1D) is an auto-immune disease caused by the invasion of 
islets of Langerhans by mononuclear cells resulting in the destruction of b cells. 
Both CD4+ and CD8+ T cells are involved in the islet destruction. Deficiency of IFN-g 
or IFN-gR on the NOD background did not suppress the development of diabetes 
(Hultgren et al. 1996; Kanagawa et al. 2000; Serreze et al. 2000) (Table 1), suggesting 
that other mediators contribute to the pathogenesis. Several groups reported that 
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IL-17A is involved in the pathogenesis of diabetes. Both IL-17A and IL-17F 
expression are increased in diabetic NOD pancreas (Martin-Orozco et  al. 2009). 
Neutralization of IL-17A by anti-IL-17A Ab treatment or suppression of IL-17A 
production by inducing IFN-g restored normoglycemia at the pre-diabetic stage of 
NOD mice is important (Jain et al. 2008; Emamaullee et al. 2009). IL-21 also plays 
a key role in the development of type 1 diabetes. Il21r−/− NOD mice are highly resis-
tant to insulitis, auto-antibody production against insulin, and diabetes development 
(Spolski et al. 2008; Sutherland et al. 2009). Mice expressing IL-21 in pancreatic b 
cells produced elevated levels of pro-inflammatory cytokines including IL-17A, 
IL-17F, and IFN-g, and spontaneously developed diabetes even on the diabetes-re-
sistant background (Sutherland et al. 2009). It is still controversial whether or not 
IL-21-induced diabetes depends on T

H
17 cells. Further studies are required to exam-

ine the role of IL-17A and IL-17F in the pathogenesis of diabetes by using IL-17A 
or IL-17F deficient NOD mice.

Transfer of the diabetogenic CD4+ BDC2.5 TCR+ T cell into NOD.scid mice 
can also cause diabetes (Katz et al. 1995). In this model, it is clear that T

H
1 cells 

play an important role in the induction of diabetes, because in vitro differentiated 
IFN-g-producing BDC2.5 TCR+ T

H
1 cells potently induce disease (Katz et  al. 

1995). Recent studies showed that diabetogenic T
H
17 cells can also rapidly induce 

diabetes in NOD.scid mice (Bending et  al. 2009; Martin-Orozco et  al. 2009). 
Interestingly, several reports showed that adoptive transfer of in vitro generated 
T

H
17 cells and maintained their differentiation program in normal recipients, 

whereas these cells were reprogrammed into T
H
1 cells in lymphopenic recipients 

(Bending et al. 2009; Lee et al. 2009; Martin-Orozco et al. 2009). Accordingly, 
diabetes development induced by the transfer of in vitro differentiated T

H
17 cells in 

NOD.scid mice was dependent on IFN-g, but not IL-17A (Bending et  al. 2009; 
Martin-Orozco et al. 2009). In CD8+ T cell-induced diabetes model, adoptive trans-
fer of IL-23-treated OTI Tc17 cells can induce diabetes in normal recipients that 
express OVA under the control of rat insulin promoter, and disease development is 
dependent on both IL-17A and IL-17F (Ciric et al. 2009). Thus, it is interesting to 
study what kinds of mediators regulate the plasticity of T

H
17 and Tc17 develop-

mental program, and the impact of these on the development of auto-immunity, 
such as type I diabetes.

5 � The Role of IL-17A and IL-17F in Host Defense  
Against Infections

5.1 � Microbe Stimulation and IL-17A and IL-17F Production

Recent studies suggest that IL-17A and IL-17F are also involved in host defense 
against infection. When stimulated by microbial products through pattern recogni-
tion receptors, APCs acquire the capacity to activate naive T cells to differentiate 
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into effector T cells that mediate adaptive immune responses. APCs stimulated with 
pathogens such as Bordetella pertusis, Klebsiella pneumoniae, and Mycobacterium 
tuberculosis produce large amounts of IL-23, resulting in the development of T

H
17 

cells (Khader et al. 2009). Several Toll-like receptor (TLR) agonists including LPS 
(TLR4 ligand), CpG-containing oligonucleotides (TLR9 ligand), R848 (TLR7/8 
ligand), and peptidoglycans (PGN) (TLR2 ligand) are thought to induce IL-12 pro-
duction in DCs (Napolitani et al. 2005; Gerosa et al. 2008). These TLR agonists also 
induce IL-23 production that facilitates T

H
17 differentiation (Napolitani et al. 2005; 

Gerosa et al. 2008) as CpG and PGN can substitute for complete Freund’s adjuvant 
containing killed mycobacteria to induce EAE, in which T

H
17 cells play a crucial 

role (Segal et al. 2000; Visser et al. 2005). Interestingly, in addition to TLRs, the 
intracellular receptor, NOD2, also plays a critical role in the generation of T

H
17 cells 

(van Beelen et al. 2007). NOD2 recognizes muramyldipeptides (MDP), the minimal 
motif in PGN from bacterial cell walls. Although stimulation of DCs with MDP 
alone does not induce cytokine production, MDP in combination with other bacterial-
derived TLR agonists enhances TLR-mediated IL-1 and IL-23 production and 
promotes T

H
17 cell differentiation (van Beelen et al. 2007). These findings indicate 

that many pathogen-derived molecules can induce both IL-12 and IL-23. However, 
the precise conditions or mechanisms by which either IL-12 or IL-23 is preferen-
tially induced and lead to the preferential expansion of T

H
1 or T

H
17 cells remain to 

be elucidated.

5.2 � Bacterial Infection

The importance of IL-12 in host defense against various bacteria is widely accepted 
(Fig. 2). Mice deficient in IFN-g, IFN-gR, or STAT1 are highly susceptible to many 
pathogens, including Listeria monocytogenes, M. tuberculosis, and Salmonella 
enteritidis (Shtrichman and Samuel 2001). The IL-12-IFN-g axis is primarily 
involved in host defense against intracellular pathogens by activating cellular 
immunity to kill bacteria and infected cells. In contrast, the IL-23-IL-17A axis is 
thought to be critical for host defense against extracellular bacteria by inducing 
CXC chemokine and G-CSF production and antimicrobial peptides, such as 
b-defensins, lipocalin-2, and S100A family proteins in epithelial cells and kerati-
nocytes (Fig. 1). Indeed, Il17ra−/−, IL17a−/−, and Il23a−/− mice are more susceptible 
to the extracellular bacterium K. pneumoniae in the lungs (Ye et al. 2001; Happel 
et  al. 2005; Aujla et  al. 2008) (Fig.  2). These mice show impaired neutrophil 
recruitment at the site of infection which is associated with defective G-CSF and 
CXC chemokine production. IL-12 and IFN-g signaling have also been shown to 
be critical for host defense against K. pneumoniae. IL-22 is induced with kinetics 
that are similar to those of IL-17A and IL-17F from T

H
17 cells and may also be 

involved in host defense mechanism. The protective role of IL-23 in colonic 
mucosal infection is also reported. IL-23, rather than IL-12, is required for host 
defense in the colon during the early phase of Citrobacter rodentium infection 
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(Mangan et al. 2006; Zheng et al. 2008). IL-17A and IL-17F are also involved in 
responses against C. rodentium by inducing b-defensin production. Notably, sple-
nomegaly and colon hypertrophy, which are associated with severe colonic inflam-
mation, were more pronounced in Il17f−/− mice than in Il17a−/− mice (Ishigame 
et al. 2009), suggesting that IL-17F is more important than IL-17A in protecting 
colonic epithelial cells from the pathogenic effects of this bacterium. However, a 
recent study using Il22−/− and Il17rc−/− mice, which do not respond to IL-17A and 
IL-17F, demonstrated that IL-22, but not IL-17A and IL-17F, expressed in response 
to IL-23 is essential for the early host response against C. rodentium (Zheng et al. 
2008). IL-22 is produced by innate immune cells, including dendritic cells and NK 
cells during C. rodentium infection and induces the expression of Reg family anti-
microbial proteins in colonic epithelial cells (Zheng et al. 2008). It is interesting to 
note that T

H
17 cells differentiation in the gastrointestinal tract is largely dependent 

on commensal microbiota (Gaboriau-Routhiau et  al. 2009; Ivanov et  al. 2009). 
Germ-free mice have much fewer lamina propria T

H
17 cells compared to specific-

pathogen-free mice (Niess et al. 2008; Gaboriau-Routhiau et al. 2009; Ivanov et al. 
2009), although one report showed increased T

H
17 population in the colon due to 

decreased IL-25 production by colonic epithelial cells (Zaph et al. 2008). Thus, 
intestinal commensal bacteria may differentially influence gut immune cells, such 
as T

H
17 cells, gd T cells, and NK cells, causing various effects on the intestinal host 

immune responses.
These findings indicate that T

H
17 cells and their related cytokines play critical 

roles in host defense against extracellular pathogens at epithelial and mucosal tissues 
such as the skin, lung, and intestine. T

H
17 cells also appear to play important roles 

in humans. Subjects with mutations in STAT3, which is critical for T
H
17 differentia-

tion, often suffer from fungal and extracellular pathogen infections such as Candida 
albicans and Staphylococcus aureus in the skin and lung (Milner et al. 2008). T cells 
from these subjects fail to produce IL-17A, while IL-2, TNF, and IFN-g production 
are normal (Milner et al. 2008). Similarly, Il17ra−/− or Il17a−/−Il17f−/− mice are highly 
susceptible to opportunistic S. aureus infection (Schwarzenberger and Kolls 2002; 
Ishigame et al. 2009), whereas Il17f−/− and Il17a−/− mice show normal sensitivity to 
this pathogen (Ishigame et al. 2009). These results suggest that the increased sus-
ceptibility of these subjects to infection is at least partially due to impaired T

H
17 cell 

differentiation and function, and that IL-17A and IL-17F complement each other in 
this setting.

Several lines of evidence have suggested that the IL-23-IL-17A axis is also 
required for host defense against intracellular pathogens in mice. Mice lacking 
both IL-12 and IL-23 are more susceptible to M. tuberculosis and S. enteritidis 
infections than mice lacking IL-12 alone (Holscher et al. 2001; Lehmann et al. 
2001; Lieberman et al. 2004). Similar results are also reported in protozoa infec-
tion, such as Toxoplasma gondii (Kelly et al. 2005). Il17ra−/−, Il17a−/−, and Il23a−/− 
mice do not show increased susceptibility to M. tuberculosis infection (Khader 
et  al. 2005; Umemura et  al. 2007; Aujla et  al. 2008) but IL-17RA signaling is 
required for the recruitment of T

H
1 cells to the site of infection to induce a recall 



287The Roles of IL-17A and IL-17F in Mucosal Infection and Allergy

response against M. tuberculosis following vaccination (Khader et al. 2007). Thus, 
T

H
1 cells, rather than T

H
17 cells play a more important role in host protection against 

intracellular bacteria. In contrast to these findings, it has been reported that the 
IL-23/IL-17A pathway is required for host resistance to the intracellular pathogen 
Francisella tularensis by inducing T

H
1-type immune responses (Lin et al. 2009). 

Impaired IFN-g production is also observed when Il17a−/− mice are infected with 
Mycobacterium bovis bacilli Calmette-Guerin (BCG) (Umemura et  al. 2007), 
indicating that under certain conditions, IL-23/IL-17A pathway-dependent induc-
tion of T

h
1 immune responses is essential for effective clearance of intracellular 

bacteria. Furthermore, IL-17A and IL-17F produced by gd T cells are also involved 
in innate immune response against L. monocytegenes in the liver. IL-17A and 
IL-17F are mainly produced by gd T cells at early stages of infection and defi-
ciency of IL-17A, IL-17RA, or IL-23 results in increased bacterial burden 
(Hamada et al. 2008; Meeks et al. 2009). Increased IL-17A production from gdT 
cells is also observed when mice are infected with M. tuberculosis, M. bovis BCG, 
or S. enteritidis (Lockhart et  al. 2006; Umemura et  al. 2007; Siegemund et  al. 
2009). Further studies are required to elucidate the relative contribution of CD4+ 
T cells and gd T cells in IL-17A/IL-17F-mediated host protective immunity 
against different bacteria.

5.3 � Fungal Infection

Both IL-17A and IL-17F are also induced by b-glucans, the components of yeast, 
fungus, and mushroom cell walls, through a TLR-independent pathway. Dectin-1 
is a C type lectin receptor that is widely expressed on myeloid cells such as DCs 
and macrophages. Dectin-1 recognizes b-glucans in zymosans and fungi and plays 
an important role in host defense against fungi (Saijo et  al. 2007; Taylor et  al. 
2007). Dectin-1 activates the Syc-CARD9 pathway through the ITAM in the cyto-
plasmic domain causing induction of IL-23, TGF-b, and IL-6, but little IL-12, 
which preferentially promotes T

H
17 cell differentiation (LeibundGut-Landmann 

et al. 2007). Dectin-2 is another C type lectin receptor for fungi and also contributes 
to fungus-induced IL-17A production (Robinson et  al. 2009). Unlike dectin-1, 
interaction of Dectin-2 with FcRg is required for the activation of Syk-CARD9 
complex because Dectin-2 has no signaling motif in the cytoplasmic domain 
(Robinson et  al. 2009). It is reported that candida mannan also induce T

H
17 

response via mannose receptor (van de Veerdonk et al. 2009), suggesting that these 
receptors induce T

H
17 response in cooperation during fungal infections. Fungal 

zymosans in incomplete Freund’s adjuvant (IFA) show potent adjuvant activity in 
EAE induction upon immunization with MOG peptide (Veldhoen et  al. 2006). 
Furthermore, b-glucans derived from C. albicans act as an adjuvant in CIA (Hida 
et al. 2005) and fungal infection causes the development of arthritis in SKG mice 
in which T

H
17 cells play an important role (Yoshitomi et al. 2005).
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A protective role for the IL-23/IL-17A pathway in fungal infections is suggested 
by the finding that mice lacking IL-12/IL-23 are more susceptible to systemic 
Cryptococcus neoformans infection than mice lacking IL-12 (Decken et al. 1998). 
An IL-23 deficiency results in increased susceptibility to C. neoformans infection, 
although IL-12 plays a more important role (Kleinschek et al. 2006). The involvement 
of IL-17R signaling is also evident in systemic C. albicans infection (Huang et al. 
2004). Il23a−/− and Il17ra−/−, but not Il12a−/− mice, are also highly susceptible to oral 
candidiasis due to defective neutrophil recruitment and antimicrobial peptide induc-
tion (Conti et al. 2009). As Il22−/− mice are only mildly susceptible to oral candidiasis, 
it is suggested that IL-17A and IL-17F, rather than IL-22, is important for the host 
defense in this model.

Although IL-23/IL-17A is required for host defense against some fungi (Fig. 2), 
dysregulated production of these cytokines induces tissue damage in infected tissues. 
It has been reported that the IL-23/IL-17A pathway promotes inflammation and 
susceptibility in gastric C. albicans and pulmonary A. fumigatus infections. Although 
IL-17R signaling is critical for systemic and oral C. albicans infection, both IL-17A 
and IL-23 impair the antifungal activities of neutrophils by negatively regulating 
IFN-g-mediated induction of indoleamine 2, 3-dioxygenase (IDO) (Zelante et  al. 
2007; Romani et al. 2008), which has potent regulatory effects on inflammatory and 
T cell responses. Similarly, in chronic T. gondii infection, a deficiency in IL-27, which 
negatively regulates T

H
17 cell differentiation, caused severe neuro-inflammation 

associated with an increased number of T
H
17 cells (Stumhofer et al. 2006). Thus, 

IL-23 and IL-17A function in both a protective and detrimental manner, depending on 
the pathogen and infection conditions.

6 � Concluding Remarks

Clinical studies showed that blockade of IL-12/IL-23 (p40), IL-1, IL-6 or TNF 
activity is effective in the treatment of inflammatory diseases, such as RA, MS, 
inflammatory bowel diseases, and psoriasis. As these cytokines are involved in the 
development of T

H
17 cells, neutralization of T

H
17 cell-related cytokine activity may 

be an attractive strategy for the treatment of these diseases in humans. However, 
these treatments may increase the risk of opportunistic infections, because both 
IL-17A and IL-17F are involved in mucosal host defense. As most of available data 
suggests that IL-17A is more important mediator than IL-17F in allergic and auto-
immune diseases, specific neutralization of IL-17A is an attractive treatment of 
inflammatory diseases without compromising host defense activity.

Accumulating evidence suggests that at least three independent effector T cell 
pathways are involved in inflammatory responses: IL-12/T

H
1, IL-4/T

H
2, and IL-23/

T
H
17. Identifying the major immune pathways responsible for the development of 

each disease is important for treatment because suppression of one pathway may 
accelerate the others. Understanding these cytokine networks will lead to the devel-
opment of more effective treatment of allergic and auto-immune diseases.
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