
Chapter 4
Incremental Bond Graphs

Wolfgang Borutzky

Abstract Incremental true bond graphs are used for a matrix-based determination
of first-order parameter sensitivities of transfer functions, of residuals of analytical
redundancy relations, and of the transfer matrix of the inverse model of a linear
multiple-input–multiple-output system given that the latter exists. Existing software
can be used for this approach for the derivation of equations from a bond graph and
from its associated incremental bond graph and for building the necessary matri-
ces in symbolic form. Parameter sensitivities of transfer functions are obtained by
multiplication of matrix entries. Symbolic differentiation of transfer functions is not
needed. The approach is illustrated by means of hand derivation of results for small
well-known examples.

Keywords Incremental true bond graphs · Parameter sensitivities of transfer
functions · Linear inverse models · Fault detection and isolation · Parameter
sensitivities of the residuals of analytical redundancy relations

4.1 Introduction

Initially, the author of this chapter introduced incremental true bond graphs for bond
graph-based determination of frequency domain parameter sensitivities of state and
output variables in symbolic form assuming a linearised time-invariant (LTI) model
[1, 2]. Contrary to sensitivity pseudo-bond graphs introduced by Cabanellas and
his co-workers [3] and used by Gawthrop [4] as well as by Kam and Dauphin-
Tanguy [5], bonds in incremental bond graphs do not carry first-order sensitivities
of power variables with respect to a parameter but variations (increments) of power
variables due to small incremental component parameter changes. Further study of
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incremental bond graphs has shown that they can be used for other problems due
to parameter variations as well. Incremental bond graphs have proven useful for
the derivation of the canonical as well as the standard interconnection form of state
equations in symbolic form as needed in robustness study [6, 7].

Furthermore, during recent years, the bond graph methodology has also been
applied in the field of model-based fault detection and isolation (FDI) and supervi-
sion, especially by Samantaray and others at Indian Institute of Technology, Kharag-
pur, India, and by members of the bond graph modelling group at École Centrale
de Lille, France [8–13]. In FDI, analytical redundancy relations (ARRs), being con-
straints between known variables, give rise to residuals that can serve as fault indi-
cators. Studying the effect of component parameter uncertainties on the residuals
of ARRs helps in fault isolation. In bond graph model-based FDI, ARRs can be
obtained from balances at 0- and 1-junctions in symbolic form if unknown variables
can be eliminated. Given symbolic processing capabilities either integrated in a bond
graph modelling and simulation software environment or separately available by
means of a computer algebra system, ARRs can be differentiated with respect to
parameters. The residual sensitivities obtained can be used to identify those param-
eter uncertainties that affect residuals most significantly, which is important because
FDI should be robust in the presence of parameter uncertainties.

Alternatively, in [8], parameter sensitivities of residuals of ARRs have been
determined by adding sensitivities of power variables at junctions in a sensitivity
pseudo-bond graph to which a virtual detector of the parameter sensitivity of the
residual has been attached. The sensitivity pseudo-bond graph is connected to a
bond graph of the process model under consideration by signals from the bond graph
that control modulated elements in the sensitivity bond graph. Recently, it has been
briefly shown that incremental bond graphs can serve the same purpose [14].

This chapter demonstrates how the incremental bond graph approach can be used
to solve some further problems. To that end, first, the construction of incremental
bond graphs (incBGs) and the systematic derivation of sensitivities of output vari-
ables is revisited. In the following two sections, incremental true bond graphs are
used for a matrix-based determination of parameter sensitivities of transfer func-
tions in symbolic form for linear multiple-input–multiple-output (MIMO) models
and for their inverse model (if it exists). Clearly, in case of models of small size,
transfer functions can be derived by hand by direct application of Mason’s loop rule
on the causal bond graph [15]. More generally, bond graph-based software such as
20-sim R©1 [16] or SYMBOLS ShaktiTM2 [17] can be used for this purpose. Once
transfer functions have been obtained, they can be partially differentiated symboli-
cally with respect to a component parameter by means of computer algebra systems

1 20-sim R© is a registered trademark of Controllab Products B.V., Hengelosestraat 705, 7521 PA
Enschede, The Netherlands, http://www.20sim.com
2 SYMBOLS ShaktiTM is a trademark of High Tech Consultants, STEP, I.I.T. Kharagpur – 721
302, India, http://www.htcinfo.com

http://www.20sim.com
http://www.htcinfo.com
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such as Mathematica R©3 or MapleTM.4 Kam and Dauphin-Tanguy [5] have derived
parameter sensitivities by direct application of Mason’s loop rule to a sensitivity
pseudo-bond graph.

Advantages of the incremental true bond graph-based approach presented in this
chapter are that the matrices can be automatically set up in symbolic form from an
original bond graph and its associated incremental bond graph by available software.
Parameter sensitivities of transfer functions are then obtained by multiplication of
matrix entries which can be performed by software in symbolic form. There is no
need for symbolic differentiation of transfer functions. The purpose of determining
sensitivities of transfer functions in symbolic form is that, in the design of a robust
control, it may be useful to know how sensitive transfer functions are with respect
to certain parameter uncertainties.

Furthermore, studying the effect of component parameter uncertainties on the
residuals of ARRs helps in fault isolation. Therefore, Section 4.6 addresses the
systematic derivation of parameter sensitivities of residuals of ARRs from an incre-
mental bond graph.

The proposed matrix-based approach is illustrated by manual derivation of results
for small, well-known examples. For more complex system models, software such
as CAMP-G/MATLAB R© together with the Symbolic Math ToolboxTM5 can be
used.

4.2 Basics of Incremental Bond Graphs

In contrast to sensitivity pseudo-bond graphs, bonds of incremental bond graphs
carry variations of power variables instead of their sensitivities with respect to a
parameter. The idea is that a parameter variation ΔΘ results in a perturbation of
both power variables at the ports of an element due to the interaction of the element
with the rest of the model [1]. Hence, a power variable v(t) (either an effort or a
flow) has a nominal part vn(t) and a variation Δv(t) due to a parameter change:

v(t) = vn(t)+Δv(t) (4.1)

The product (Δe)(Δ f ) of the incremental power variables of a bond clearly has the
physical dimension of power. This suggests to consider incremental bond graphs as
true bond graphs, although the product (Δe)(Δ f ) is only a part of the power change
ΔP due to a parameter change [1].

3 Mathematica R© is a trademark of Wolfram Research, Inc., 100 Trade Center Drive, Champaign,
IL 61820-7237, USA, http://www.wolfram.com
4 MapleTM is a trademark of Waterloo Maple Inc., 615 Kumpf Drive, Waterloo, ON, Canada
N2V1K8, http://www.maplesoft.com
5 MATLAB R©, Simulink R©, and Symbolic Math ToolboxTM are trademarks of The Mathworks,
Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA, http://www.mathworks.com

http://www.wolfram.com
http://www.maplesoft.com
http://www.mathworks.com
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Given a bond graph BG of a system, then the associated incremental bond graph
incBG is constructed by just replacing each element by its incremental model. The
latter one may be obtained by taking the total differential of the element’s constitu-
tive relations. That is, the Taylor series of the variation Δv of a power variable v is
approximated by neglecting higher order terms. Accordingly, the incremental bond
graph model built this way is linear, while the model represented by the initial bond
graph may be nonlinear. For the determination of first-order parameter sensitivities,
it is justified to neglect higher order terms in the Taylor series expansion. In [7],
incremental bond graphs are applied for the derivation of two special forms of state
equations used for robustness study and in this context the full variation Δv(t) is
taken into account, i.e. higher order terms are not neglected. The structure of the
incremental bond graph model of a bond graph element is the same in both cases
(cf. also [6]). Exact incremental bond graphs have also been used by Junco in the
context of Lyapunov’s stability analysis applied on bond graphs without parameter
variations but input and state variations [18]. In his 1993 paper, the term incremental
bond graph was possibly used for the first time.

As sources do not depend on system parameters, their incremental bond graph
model is a source of value zero. Clearly, the incremental model of a 0- (1-) junc-
tion again is a 0- (1-) junction. The incremental bond graph representation of other
elements differs from the initial bond graph element by additional sinks attached to
junctions.

4.2.1 Incremental Models of Bond Graph Elements

First, the total differential is applied to the constitutive equations of linear 1-port
elements, 2-port transformers, and gyrators, in order to keep the presentation simple.
As an example, consider a linear 1-port C element with the nominal capacitance Cn .
Taking a first-order variation of the constitutive relation

q = C × eC (4.2)

yields after resolving for ΔeC

ΔeC = 1

Cn
Δq − ΔC

Cn
eCn (4.3)

The result can be represented by the incremental bond graph model in Fig. 4.1. Note
that the output of the MSe source is modulated by a variable from the original bond
graph. In case full variations are taken into account, the equation

qn +Δq = (Cn +ΔC)(en +Δe) (4.4)
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Fig. 4.1 First-order
incremental bond graph
model of a linear 1-port
C element

ΔeC

ΔfC

1 C : Cn

wC

MSe :
1

Cn
︸︷︷︸

δC

eCn
(t)

zC

ΔC

leads to the same incremental bond graph model except that the effort source instead
of the nominal value en(t) is modulated by the perturbed effort e(t) = en(t)+Δe(t).

A first-order incremental bond graph model of a linear 1-port resistor with the
nominal resistance Rn is easily obtained in the same way. Taking the total differen-
tial of the constitutive relation

eR = R × fR (4.5)

gives

ΔeR = Rn(Δ fR)+ (ΔR) fR (4.6)

or

Δ fR = 1

Rn

(

ΔeR − ΔR

Rn
eR

)

(4.7)

Equation (4.6) may be represented by Fig. 4.2a, while Fig. 4.2b depicts (4.7). Hence,
the incremental bond graph model does not depend on the assignment of causality.

ΔeR

ΔfR

ΔeR

ΔfR

1 R : Rn R : Rn

wR wR

MSe : fRn(t) × ΔR MSe : fRn(t) × ΔR

(a)

1

(b)

Fig. 4.2 Incremental bond graph of a 1-port R element in (a) impedance and (b) admittance
causality
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Let mn denote the nominal modulus of a 2-port transformer. Then, taking the
total differential of its constitutive equations gives

Δe1 = mn Δe2 + e2n Δm (4.8a)

Δ f2 = mn Δ f1 + f1n Δm (4.8b)

In the incremental model of a transformer in Fig. 4.3, the second term on the right-
hand side of these equations is represented by modulated sources on both sides of
the transformer.

Fig. 4.3 First-order
incremental bond graph
model of a 2-port transformer

Δe1

Δf1

Δe2

Δf2
1

MSe  :  − e2n × Δm MSf  :  f1n × Δm

TF

mn..
0

Furthermore, consider an effort-modulated effort source with the constitutive
equation

E(t) = k × e(t) (4.9)

where k ∈ R and k > 0. The associated incremental model is depicted in Fig. 4.4
where kn denotes the nominal value of k.

Fig. 4.4 First-order
incremental bond graph
model of an effort-modulated
effort source

Δe
MSe

kn..
1

ΔE

MSe : en × Δk

The outlined construction of incremental models is also applicable to linear mul-
tiport fields (Section 4.4.3). Finally, the first-order variation of the constitutive equa-
tions of nonlinear multiport elements can be represented by an incremental model
[2, 14]. Consider, for instance, a nonlinear 1-port resistor with multiple parameters
Θ j ∈ R, Θ j > 0, j = 1, . . . ,m, Θ := [Θ1 . . . Θm]T and the constitutive equation

eR(t) = ΦR( fR(t),Θ) (4.10)
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The total differential

ΔeR(t) = ∂

∂ fR
ΦR( fR(t),Θ)Δ fR(t)+

m∑

j=1

∂

∂Θ j
ΦR( fRn(t),Θ)ΔΘ j (4.11)

is easily represented by the incremental model in Fig. 4.5.

Fig. 4.5 First-order
incremental bond graph
model of a nonlinear 1-port
R element

ΔeR

ΔfR
1 MR :

∂

∂fR
ΦR(fR(t),Θn)

MSe
∂ΦR

∂Θ1
ΔΘ1 : MSe :

∂ΦR

∂Θm
ΔΘm

. . .

In case of a hydraulic orifice described by Bernoulli’s square root law

fR = cd × A × sign(eR)

√
2

ρ
|eR | (4.12)

the incremental model takes the form depicted in Fig. 4.6. In (4.12), cd denotes the
discharge coefficient, A is the cross section area of the orifice, and ρ is a constant
value for the fluid density. In Fig. 4.6, k := A

√
2/ρ. Moreover, it is assumed that

eR > 0.

Fig. 4.6 First-order
incremental bond graph
model of a hydraulic orifice

Δe
R

Δf
R

0 MR :
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d

2
√

e
R

MSf : (k
√

e
R ) Δc

d

4.2.2 Derivation of Output Sensitivity Functions
from an Incremental Bond Graph

The previous development of incremental models of bond graph elements implies
that the incremental bond graph has the same structure as the original bond graph
from which it is obtained except the additional sources or sinks respectively modu-
lated by a power variable of the original bond graph. Their number equals the num-
ber of varying parameters. If the original model is linear so is the incremental bond
graph. Hence, a combination of software programs such as CAMP-G/MATLAB R©
and the Symbolic Math ToolboxTM can be used to symbolically set up the matrices
of the state space model for the original as well as for the associated incremental
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bond graph. In both state space models, the system matrix A is the same. The same
holds for the matrix C in the quadruple of matrices of a linear state space model.
Again, let Θ denote the vector of all component parameters and an index n indi-
cate a dependency from nominal parameter values. The state space model for the
incremental bond graph then reads

Δẋ(t) = An Δx(t) + B∗(Θn)w(t) (4.13a)

Δy(t) = Cn Δx(t) + D∗(Θn)w(t) (4.13b)

where the matrices An and Cn are set up from the original bond graph with nominal
parameters, while the matrices B∗ and D∗ can be set up automatically from the
incremental bond graph. The vector w denotes the outputs of the modulated sinks
representing parameter variations (cf. Fig. 4.1). It can be written in the form

w(t) = W(t,Θn)ΔΘ (4.14)

where W(t,Θn) is a diagonal matrix.
Assuming initial values Δx(0) to be null, then taking the Laplace transform of

(4.13a) and (4.13b) and substituting the vector w finally yields the matrix of output
sensitivity functions

L
∂y
∂Θ
= [Cn (sI − An)

−1 B∗ + D∗]
︸ ︷︷ ︸

=: F∗
(L W)(s) (4.15)

with s ∈ C. F∗ the transfer matrix of the incremental bond graph and I the identity
matrix of appropriate dimension.

4.3 Direct and Inverse Models

In subsequent sections, the notions direct model and inverse model will be used.

4.3.1 Direct Models

The term direct bond graph model refers to a bond graph model in preferred integral
causality that enables to compute the dynamics of the state x and the output y in
terms of the input u and known parameters Θ (see also Section 6.2.1.1). In the case
of a linear time-invariant (LTI) system, the model equations are of state space form

ẋ(t) = A(Θ)x(t)+ B(Θ)u(t) (4.16a)

y(t) = C(Θ)x(t)+ D(Θ)u(t) (4.16b)

with constant coefficient matrices A,B,C,D of appropriate dimensions.
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4.3.2 Inverse Models

Gawthrop and Smith [19] state that ‘A system inverse gives the system input
required to generate a given system output.’

In other words, given known parametersΘ , model inversion means to determine
the input u in terms of the state, the output y, and time derivatives of y.

Assume that the inverse model of a LTI system exists. Then, the equations of the
inverse model can be expressed in the form

ż(t) = A∗(Θ)z(t)+
m∑

j=0

B∗j (Θ)y( j)(t) (4.17a)

u(t) = C∗(Θ)z(t)+
m∑

j=0

D∗j (Θ)y( j)(t) (4.17b)

where z with dim(z) ≤ dim(x) denotes the state vector of the inverse model and
y( j) the j th time derivative of y (cf. Section 6.2.1.2). The matrices A∗,B∗j ,C∗,D∗j
are constant coefficient matrices.

Let initial values z(0) and y( j)(0) be zero. Then Laplace transform of the inverse
model equations gives

sL z = A∗L z+ B∗(s)L y (4.18a)

L u = C∗L z+ D∗(s)L y (4.18b)

where B∗(s) :=∑m
j=0 B∗j s j and D∗(s) :=∑m

j=0 D∗j s j .
Let H(s) denote the transfer matrix of the direct model. That is,

L y = H(s)L u (4.19)

Then, the inverse model exists if H is invertible. In that case, (4.18a) and (4.18b)
give for the transfer matrix of the inverse matrix

H∗(s) := H−1(s) = C∗(sI− A∗)−1B∗(s)+ D∗(s) (4.20)

Equations (4.17a) and (4.17b) can be considered a generalised state space realisation
of H−1(s) [20].

Note that the inverse of a state space model, in general, is not a state space model.
In contrast, the inverse of a descriptor system, in general, is again a descriptor
system.

The determination of parameter sensitivities of transfer functions from incremen-
tal linear inverse bond graph models is considered in Section 4.5.
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4.4 Parameter Sensitivities of Transfer Functions
from Direct Bond Graph Models

Let z j be the variable from the system bond graph controlling the modulated source
(sink) representing the j th parameter variation ΔΘ j in the incremental bond graph.
Then, according to (4.14), the output of the modulated source is

w j = δ j z j ΔΘ j (4.21)

where the coefficient δ j depends on the type of the element that has been replaced by

its incremental model. In case of a capacitor δ j = 1/C j
n and z j = e j

Cn
(cf. Fig. 4.1)

or δ j = 1/(C j
n )

2 and z j = q j
n . For a linear resistor with the nominal resistance Rn ,

δR = 1, zR = fR or δR = 1/Rn and zR = eR .
According to (4.15), the i th output sensitivity function with respect to Θ j ,

L ∂yi/∂Θ j , is a transfer function F∗i j multiplied by the Laplace transform of the
output w j = δ j z j of the j th modulated source representing the parameter variation
ΔΘ j :

L
∂yi

∂Θ j
= F∗i j δ j L z j (4.22)

The Laplace transform L z j may be considered one of the output variables L y j ′ of
the original bond graph related through transfer functions Fj ′κ to its n inputs uκ :

L z j = L y j ′ =
n∑

κ=1

Fj ′κ L uκ (4.23)

Substitute index j ′ by i . Then,

L yi =
n∑

κ=1

Fiκ L uκ (4.24)

Hence,

∂L yi

∂Θ j
=

n∑

κ=1

∂Fiκ

∂Θ j
L uκ (4.25)

The entry L ∂yi/∂Θ j of the matrix ∂L y/∂Θ is obtained from (4.15) and (4.21).

∂

∂Θ j
L yi =

n∑

κ=1

F∗i jδ j Fj ′κL uκ (4.26)
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Comparison of (4.25) and (4.26) finally leads to the result

∂Fiκ

∂Θ j
= F∗i jδ j Fj ′κ (4.27)

An advantage of this matrix-based approach to a determination of parame-
ter sensitivities of transfer functions is that available software such as CAMP-
G/MATLAB R© and the Symbolic Math ToolboxTM can be used for the steps of the
procedure. First, equations are automatically derived from both the original bond
graph and its associated incremental bond graph, and the matrices of their state
space models are built in symbolic form. Once the transfer matrices F := (Fi j )

for the bond graph and F∗ = (F∗i j ) for the incremental bond graph have been set
up in symbolic form, the factors of the right-hand side of (4.27) are known so
that any first-order parameter sensitivity of a transfer function of interest can be
determined symbolically by multiplying entries from both matrices. Clearly, given
a transfer function derived from a causal bond graph, its sensitivity with respect to
a parameter may also be obtained by symbolic differentiation. If the incremental
bond graph approach is used then the symbolic differentiation is not necessary. The
use of first-order incremental bond graph models implies that the total differential
of constitutive element equations has already been taken.

The incremental bond graph has the same structure as the bond graph. Therefore,
the expression for both transfer functions F and F∗ includes the factor (sI− An)

−1

(cf. (4.15)). Hence, since the inverse of a matrix M can be written as M−1 =
Adj(M)/det(M), the denominator in the right-hand side product of (4.27) equals
the square of det(sI− An).

In the next two sections, the approach is illustrated by application to two often
considered small example systems. Note that in all examples in this chapter the co-
energy variables of energy stores in integral causality are chosen as state variables.

4.4.1 Example: Coupled Hydraulic Tanks

Consider the coupled hydraulic tanks depicted in Fig. 4.7. The nonlinear character-
istic of the valves is given by Bernoulli’s well-known square root law. It is assumed
that the constitutive equations of the valves have been linearised around an operating
point so that the model equations are linear and Laplace transform can be applied.

Fig. 4.7 Schematic of a
coupled hydraulic tank
system

Tank 1

h1

h2

p1

Tank 2

p2

Valve 1 Valve 2

Qp(t) Qo(t)
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MSf
Qp

0

:

1

:

0

:

1
Qo

Se : 0

p1 p2QC1 QC2 QR2QR1

C : C1 R : R1() C : C2 R : R2()

Fig. 4.8 Bond graph of the coupled hydraulic tank system

The two tank pressures and the flow through the second valve are measured as indi-
cated by the detectors in the bond graph in Fig. 4.8. In the following, the pressure
in the right-hand side tank, p2, and the outflow, Qo, from this tank are considered
the output variables of interest. Then, the following linear state space model can be
derived from the bond graph of Fig. 4.8.

[
ṗ1
ṗ2

]

︸ ︷︷ ︸
ẋ

=

⎡

⎢
⎢
⎣

− 1

C1 R1

1

C1 R1

1

C2 R1
− 1

C2

(
1

R1
+ 1

R2

)

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
An

[
p1
p2

]

︸ ︷︷ ︸
x

+
⎡

⎣
1

C1

0

⎤

⎦

︸ ︷︷ ︸
Bn

[
Q p

]

︸ ︷︷ ︸
u

(4.28a)

[
p2
Qo

]

︸ ︷︷ ︸
y

=
⎡

⎣
0 1

0
1

R2

⎤

⎦

︸ ︷︷ ︸
Cn

[
p1
p2

]

+ [0]
︸︷︷︸
Dn

[
Q p

]
(4.28b)

4.4.1.1 Symbolic Differentiation of a Transfer Function with Respect
to a Parameter

For a general linear MIMO system, Laplace transform of the equations of the state
space model results in the matrix F of transfer functions:

L y =
[
Cn (sI− An)

−1 Bn + Dn

]

︸ ︷︷ ︸
F

L u

=
[

Cn
1

Δ
Adj (sI− An)Bn + Dn

]

L u (4.29)

where Δ := det (sI− An).
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In the case of the example under consideration, evaluation of (4.29) yields

[
L p2
L Qo

]

=
⎡

⎢
⎣

0 1

0
1

R2

⎤

⎥
⎦

1

Δ

⎡

⎢
⎢
⎣

s + 1

C2

(
1

R1
+ 1

R2

)
1

C1 R1

1

C2 R1
s + 1

C1 R1

⎤

⎥
⎥
⎦

⎡

⎣
1

C1

0

⎤

⎦
[
L Q p

]

= 1

Δ

1

C1

⎡

⎢
⎣

1

1

R2

⎤

⎥
⎦

1

C2 R1

︸ ︷︷ ︸
F

[
L Q p

]
(4.30)

Let F1 := L p2/L Q p. Then, for instance,

∂F1

∂R2
= − 1

C1C2 R1

1

Δ2

∂Δ

∂R2
(4.31)

where

− ∂Δ

∂R2
= 1

C2

1

R2
2

(

s + 1

C1 R1

)

(4.32)

4.4.1.2 Application of the Incremental Bond Graph Approach

Figure 4.9 depicts the associated incremental bond graph accounting for parameter
variation ΔR2. Clearly, due to the linearity of the model, further parameter varia-
tions can be superimposed by replacing bond graph elements by their incremental
model, which basically means adding a modulated sink accounting for the parameter
variation.

:0 fS 0 1

wR2

0 1
ΔQo

Se : 0

Δp1 Δp2

C : C1 R : R1 C : C2 R : R2

Fig. 4.9 Incremental bond graph of the coupled hydraulic tank system accounting for parameter
variation ΔR2
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The state space model derived from the associated incremental bond graph reads

[
Δ ṗ1
Δ ṗ2

]

= An

[
Δp1
Δp2

]

+
⎡

⎣
0
1

C2 R2

⎤

⎦

︸ ︷︷ ︸
B∗

[QoΔR2]
︸ ︷︷ ︸

w

(4.33a)

[
Δp2
ΔQo

]

= Cn

[
Δp1
Δp2

]

+
⎡

⎣
0

− 1

R2

⎤

⎦

︸ ︷︷ ︸
D∗

w (4.33b)

According to (4.29), the matrix of transfer functions, F∗, is given by the equation

LΔy =
[
Cn (sI− An)

−1 B∗ + D∗
]

︸ ︷︷ ︸
F∗

L w (4.34)

In the case of the coupled hydraulic tank system, (4.34) reads

L

[
Δp2
ΔQo

]

=

⎡

⎢
⎢
⎣

1

C2 R2

1

Δ

(

s + 1

C1 R1

)

1

C2 R2
2

1

Δ

(

s + 1

C1 R1

)

− 1

R2

⎤

⎥
⎥
⎦ L [QoΔR2] (4.35)

Substituting L Qo by means of (4.30) gives

ΔL p2 = 1

C2 R2

1

Δ

(

s + 1

C1 R1

)

︸ ︷︷ ︸
F∗1

× 1︸︷︷︸
δR2

× 1

Δ

1

C1

1

R2

1

C2 R1︸ ︷︷ ︸
F2

L Q p ΔR2 (4.36)

Hence,

∂F1

∂R2
= ∂

∂R2

(
L p2

L Q p

)

= 1

C1C2 R1

1

Δ2

1

C2 R2
2

(

s + 1

C1 R1

)

︸ ︷︷ ︸

− ∂Δ
∂R2

(4.37)

in accordance with (4.31).
This example illustrates that a parameter sensitivity of a transfer function such as

∂F1/∂R2 (4.31) can be obtained by multiplication of an entry of the transfer matrix
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F of the original bond graph model and an entry of the transfer matrix F∗ of the
associated incremental bond graph.

For other sensitivities of transfer functions, e.g. ∂F1/∂C1, the coefficients of the
polynomials in the numerator and in the denominator are complex expressions.
Accordingly, more effort is necessary to show by manual formulae manipulation
that the result obtained by the incremental bond graph approach equals the one that
direct symbolic differentiation of the transfer function yields. For instance,

∂F1

∂C1
= 1

C2 R1

∂

∂C1

(
1

Δ

1

C2

)

(4.38)

Performing the right-hand side differentiation results in a lengthy expression.
In any case, software such as CAMP-G/MATLAB R© in cooperation with the

Symbolic Math ToolboxTM can set up the matrices needed for establishing both
transfer matrices in symbolic form from both bond graphs.

4.4.2 Example: Fixed Field DC Motor

The second illustrative example is the well-known voltage-driven separately excited
DC motor that drives a mechanical load against an external moment (Fig. 4.10).
Figure 4.11 shows a direct bond graph model. Like the previous example, this model
also has two inputs and two outputs. That is, a transfer matrix H with four transfer
functions Fi j can be derived:

[
L ia

Lω

]

=
[

F11 F12
F21 F22

]

︸ ︷︷ ︸
H

[
L E
L Mload

]

(4.39)

A question that might be of interest is how sensitive these transfer functions are
with respect to variations of the mechanical friction on the mechanical load side.
Suppose that ∂F21/∂Rm is to be determined. In this case, the associated incremental
bond graph is obtained from the original bond graph by just replacing the resistor
R : Rm by its incremental bond graph model. Figure 4.12 shows the result.

Fig. 4.10 Fixed field DC
motor

ω

LaRa

E
Jm

Rm
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MSe
u1= E

y1= ia
1

ia =

I : La

R : Ra

GY

kT..

1

ω = x2x1

I  : Jm

R : Rm

u2 = Mload

y2 = ω
MSe

Fig. 4.11 Direct bond graph model of a fixed field DC motor

0 : Se

Δy1

1

Δi = Δx1

I : La

R : Ra

GY

kT..
1

Df : Δy2

Δω = Δx1

I : Jm

w1

MSe : ω ΔRm = z1ΔΘ1

R : Rm

Fig. 4.12 Incremental true bond graph of the DC motor accounting for a variation in mechanical
friction

4.4.2.1 Symbolic Differentiation of a Transfer Function with Respect
to a Parameter

Derivation of the Laplace transformed state equations from the original bond graph
in Fig. 4.11 yields

⎡

⎢
⎢
⎣

s + Ra

La

kT

La

− kT

Jm
s + Rm

Jm

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
(sI− An)

[
L ia

Lω

]

︸ ︷︷ ︸
L x

=

⎡

⎢
⎢
⎣

1

La
0

0
1

Jm

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Bn

[
L E
L Mload

]

︸ ︷︷ ︸
L u

(4.40)

Solving for L x gives for the second component L x2 = Lω = L y2

Lω = kT

(La Jm)Δ︸ ︷︷ ︸
F21

L E + Las + Ra

(La Jm)Δ︸ ︷︷ ︸
F22

L Mload (4.41)
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where

Δ := det(sI− An) =
(

s + Ra

La

)(

s + Rm

Jm

)

+ k2
T

Jm La

Accordingly,

∂F21

∂Rm
= ∂

∂Rm

(
Lω

L E

)

= kT

(La Jm)Δ︸ ︷︷ ︸
F21

−1

Δ

∂Δ

∂Rm
= F21

−1

Jm Δ

(

s + Ra

La

)

(4.42)

4.4.2.2 Application of the Incremental Bond Graph Approach

Derivation of the state equations from the incremental bond graph yields

[
LΔi
LΔω

]

︸ ︷︷ ︸
LΔx

= (sI− An)
−1

⎡

⎣
0

− 1

Jm

⎤

⎦

︸ ︷︷ ︸
B∗

[Lω] [ΔRm]
︸ ︷︷ ︸

L w

(4.43)

= − 1

JmΔ

⎡

⎢
⎢
⎣

− kT

La

s + Ra

La

⎤

⎥
⎥
⎦ [Lω] [ΔRm] (4.44)

Hence,

ΔLω = − 1

Jm Δ

(

s + Ra

La

)

︸ ︷︷ ︸
F∗21

(Lω)ΔRm (4.45)

Combining this result derived from the incremental bond graph with the one
obtained from the initial bond graph (cf. (4.41)) gives

ΔLω = F∗21 [ F21L E + F22L Mload ]ΔRm (4.46)

Partial differentiation of (4.39) yields

∂Lω

∂Rm
= ∂F21

∂Rm
L E + ∂F22

∂Rm
L Mload (4.47)
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Comparison of the last two equations finally gives the result

∂F21

∂Rm
= F∗21 F21 (4.48)

in accordance with (4.42) observing (4.45).
A Bode plot of ∂F21/∂Rm can be easily constructed by means of the low-

frequency and the high-frequency asymptotes of its factors observing that Δ is a
second-order polynomial in s. The amplitude drops for ω > ωn : = [(Ra Rm +
k2

T )/(La Jm)]1/2 with a slope of −3 and the phase drops from 180◦ to −90◦.
Figure 4.13 shows a Bode plot for the numerical values in Table 4.1 obtained by

using Scilab [21].
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Fig. 4.13 Parameter sensitivity of transfer function F21 with respect to Rm

Table 4.1 Parameter values of the fixed field DC motor

Parameter Value Units Meaning

Ra 5.0 � Armature resistance
La 50.0 mH Armature self-inductance
kT 0.15 Nm/A Torque constant
Jm 1.0× 10−3 kg m2 Momentum
Rm 1.0× 10−3 Nms Friction coefficient
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4.4.3 Bond Graphs with Linear Multiport Fields

In this section, energy stores and resistors are allowed to be linear multiport fields.

4.4.3.1 I-Fields

For illustration, consider the simple electrical circuit with mutually interacting coils
depicted in Fig. 4.14. The full circles above the coils denote their relative orienta-
tion. As the two currents, i1 and i2, both enter their coil at the end marked by the
full circle, the mutual inductance coefficient M12 in the constitutive equations is
positive.

Fig. 4.14 Electrical circuit
with mutually interacting
coils

In the bond graph of Fig. 4.15, the mutually interacting coils are represented by
a 2-port I -field. Its constitutive equations read

[
λ1
λ2

]

=
[

L1 M12
M12 L2

]

︸ ︷︷ ︸
L

[
i1
i2

]

(4.49)

where L1 and L2 denote the self-inductance coefficients of the two coils, M12 the
mutual inductance coefficient, and λ1 and λ2 the flux linkages.

Taking the total differential of the two flux linkages yields

Δλ1 = L1Δi1 + M12Δi2 + (ΔL1)i1 + (ΔM12)i2 (4.50a)

Δλ2 = M12Δi1 + L2Δi2 + (ΔM12)i1 + (ΔL2)i2 (4.50b)

Fig. 4.15 Bond graph of the
circuit in Fig. 4.14

Se
E

1

i1

R : R1

u1
I

u2
1

i2
R : R2
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Now, in both equations, the flux linkages Δλi are expressed by voltages Δui . After
Laplace transform the equations take the form

[
LΔu1
LΔu2

]

︸ ︷︷ ︸
LΔx

= sL
[

LΔi1
LΔi2

]

︸ ︷︷ ︸
LΔi

+s

[
(ΔL1)L i1 + (ΔM12)L i2
(ΔM12)L i1 + (ΔL2)L i2

]

︸ ︷︷ ︸
L w

= sLLΔi+ s(ΔL)L i (4.51)

Equation (4.51) can be represented by a linear I -field in derivative causality and
modulated effort sinks accounting for the parameter variations added to 1-junctions.
The incremental bond graph model of a linear 2-port I -field is depicted in Fig. 4.16.
The prime denotes differentiation with respect to time. Accordingly, Fig. 4.17 shows
the incremental bond graph of the circuit in Fig. 4.14.

Fig. 4.16 Incremental bond
graph model of a linear
two-port I -field

Δu1

Δi1 Δi2

Δu2
1 I 1

MSe : (ΔL1 (ΔL2)i1

MSe : (ΔM12 (ΔM12)i2

MSe : )i2

MSe : )i1

Se0 : 1

R : R1

Δu1 Δu21
Δi1

I
Δi2

1 1 R : R2

MSe :(ΔL1 (ΔL2)i1 i2

i2MSe : )

MSe : )

MSe :(ΔM12 i1)(ΔM12

Fig. 4.17 Incremental bond graph of the circuit in Fig. 4.14

The variations of the currents are determined by the two resistors in the incre-
mental bond graph of Fig. 4.17.

LΔi =
⎡

⎢
⎣
− 1

R1
0

0 − 1

R2

⎤

⎥
⎦

︸ ︷︷ ︸
A

LΔx (4.52)
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Substitution into (4.16) gives the transfer matrix F∗ relating the inputs into the incre-
mental bond graph to the current variations considered as outputs:

LΔi = (I− sAL)−1sA
︸ ︷︷ ︸

F∗
L w (4.53)

= F∗(ΔL)L i (4.54)

The following equations are obtained from the bond graph of the circuit
(Fig. 4.15). The first one is the constitutive equation of the I-field:

L x = sLL i (4.55)

and

L i = AL x+
⎡

⎣
1

R1
0

⎤

⎦

︸ ︷︷ ︸
B

[L E]
︸ ︷︷ ︸
L u

(4.56)

Substitution of (4.55) into (4.56) gives the transfer matrix F relating the input L u
into the bond graph to the current L i:

L i = (I− sAL)−1B
︸ ︷︷ ︸

F

L u (4.57)

Finally, replacing L i in (4.54) by (4.57) shows again that the Laplace transformed
variation of an output variable of the incremental bond graph is determined by the
product of a transfer matrix F∗ from the incremental bond graph and a transfer
matrix F from the original bond graph:

LΔi = F∗(ΔL)FL u (4.58)

Let ΔΘ be any of the three parameter variations ΔL1,ΔL2, and ΔM12. Then the
sensitivity ∂F/∂ΔΘ can be obtained from (4.58). For instance, assume that the
mutual inductance M12 is the only varying parameter, i.e.

ΔL = ΔM12

[
0 1
1 0

]

(4.59)

then (4.58) takes the form
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[
LΔi1
LΔi2

]

=
[

F∗11 F∗12
F∗21 F∗22

]

ΔM12

[
0 1
1 0

] [
F11
F21

]

[L E]

=
[

F∗12 F11 + F∗11 F21
F∗22 F11 + F∗21 F21

]

︸ ︷︷ ︸
∂F
∂M12

ΔM12L E (4.60)

4.4.3.2 C-Fields

Two-port C-fields are suitable for a convenient representation of devices such as the
movable plate capacitor, an air gap between a fixed and a movable magnetic pole
[22], or piezoelectric crystals [6]. Again, taking the total differential of the output
variables of a linear 2-port C-field results in relations between incremental power
variables that can be depicted by an incremental bond graph similar to the one in
Fig. 4.16.

For instance, consider a piezoelectric crystal. Assume a one-dimensional model
of the crystal and let F be the force acting on the crystal, x the mechanical deforma-
tion, u the voltage across the crystal, and q its electrical charge for the time instant t .
Then a commonly known form of the constitutive equations is

[
x
q

]

=
[

Cm dε
dε Ce

] [
F
u

]

(4.61)

where Cm denotes the mechanical compliance, dε the piezoelectric coupling, and Ce
the electrical capacitance. Accordingly, the equations for the first-order variations of
x and q differentiated with respect to time read

Δẋ = CmΔḞ + dεΔu̇ + (ΔCm)Ḟ + (Δdε)u̇ (4.62a)

Δq̇ = dεΔḞ + CeΔu̇ + (Δdε)Ḟ + (ΔCe)u̇ (4.62b)

and can be depicted by the incremental bond graph model in Fig. 4.18.

Fig. 4.18 Incremental bond
graph model of a linear 2-port
C-field

Δẋ
0

ΔF
C

Δu
0

Δq̇

MSf : (ΔCm) Ḟ

MSf : (Δd )u̇

MSf : (ΔCe )u̇

MSf : (Δd )Ḟ
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4.5 Parameter Sensitivities of Transfer Functions
of Linear Inverse Models

So far, parameter sensitivities of transfer functions of direct models have been con-
sidered. This section presents an incremental bond graph-based procedure to the
symbolic determination of parameter sensitivities of transfer functions of linear
inverse models given that the latter exist.

A bond graph representation of the inverse model can serve several purposes.
For instance, in the case of a single-input–single-output (SISO) system, the number
of energy stores in integral causality in the bond graph of the inverse model equals
the number of poles of the transfer function of the inverse model and thus equals the
number of zeros of the transfer function of the direct model. The number and the
location of the zeros of a linear time-invariant (LTI) system are of importance for
its control. The poles of a transfer function of the direct model arise from the C and
I stores in integral causality. In contrast, as has been pointed out by Gawthrop [23],
the dynamics giving rise to zeros in the direct model cannot be readily identified
from its bond graph.

In general, an inverse model does not have a physical realisation. The behaviour
of a physical system can approximate the one of an inverse model. Neverthe-
less, inverse models and transfer functions of inverse models are needed, e.g. in
the design of a control that ensures trajectory tracking and disturbance rejection.
Clearly, the control should be robust in the presence of some uncertain parameter
values.

Ngwompo and his co-authors [24] state that a LTI SISO system is structurally
invertible if there is at least one causal path in the causal direct bond graph between
the input variable and the output variable ([24, Proposition 1, p. 162]). Furthermore,
they show how the state equations of the inverse system can be directly determined
from a causal direct bond graph model or from a bicausal bond graph. (In order
to support tasks such as bond graph-based system inversion, Gawthrop extended
the concept of computational causality by introducing the notion of bicausality
[19, 25].) Clearly, the state equations of the inverse model of a SISO system can
be converted into a transfer function.

4.5.1 Construction of the Bond Graph of the Inverse Model

For a linear multiple-input–multiple-output system, Ngwompo and his co-workers
have developed criteria that can be checked on the causal bond graph of a direct
model to decide whether the inverse model exists [26–28]. Moreover, they provide
a procedure for constructing an inverse bond graph model that represents the inverse
system of minimal order. Basically, the procedure requires to identify a unique set of
disjoint input–output causal paths in the direct bond graph, to replace both sources
and detectors by source–sensors (usually denoted by the symbol SS [19]), to assign
and propagate bicausality along the bonds of each disjoint input–output causal path
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from the sensor to the source, and to apply the standard causality assignment proce-
dure (SCAP) to the rest of the bond graph ([26, Algorithm 1, p. 111]).

In case the inverse model exists and input–output pairs are collocated, the bond
graph of the inverse model can be obtained from the direct bond graph model by
replacing sources by their dual or by source–sensors, by applying inverted causality
to the latter, and by reassigning causality to the graph.

Let H∗ denote the transfer matrix of the inverse model. Then

L u = H∗L y (4.63)

Hence, the partial derivative with respect to a parameter Θi is

∂L u
∂Θi

= ∂H∗

∂Θi
L y+H∗ ∂L y

∂Θi
(4.64)

if the input vector y may depend on Θi .

4.5.2 Construction of the Incremental Bond Graph
of the Inverse Model

The incremental bond graph of the inverse model is constructed by replacing all
elements with varying parameters by their incremental model in the bond graph of
the inverse model. Thus, the latter contains modulated sources (sinks) controlled
by output variables zi of the direct model. That is, in addition to the vector Δy,
output variables wi = δi zi ΔΘi of the modulated sources (sinks) are inputs into the
incremental bond graph of the inverse model. Moreover, assignment of causalities
to the bond graph of the inverse model commonly leads to derivative causality at
the port of at least some of the energy stores. That is, the order of the inverse model
is lower than the one of the direct model. For linear time-invariant (LTI) models,
storage ports with differential causality imply that time derivatives of inputs will
occur in the equations for the states of the energy stores in integral causality [29].

4.5.3 Matrix-Based Determination of Transfer Function
Sensitivities for the Inverse Model

Now, let Δx∗i denote variations of the states of all storage elements in integral
causality, Δx∗d the variations of the non-states of all energy stores in differential
causality in the incremental bond graph of the inverse model, andΔx∗ the descriptor
vector Δx∗ := [Δx∗i Δx∗d ]T . Furthermore, may ΔΘ denote the vector of parameter
variations. Then, matrices can be built so that



4 Incremental Bond Graphs 159

Δẋ∗ = A∗Δx∗ + B∗Δy+ B∗1Δẏ+ B∗2WΔΘ + B∗3ẆΔΘ (4.65a)

Δu = C∗Δx∗ + D∗Δy+ D∗1Δẏ+ D∗2WΔΘ + D∗3ẆΔΘ (4.65b)

(see the Appendix).
Given that (sI− A∗)−1 exists, then Laplace transform of (4.65b) yields

LΔu = M1LΔy+M2(L W)ΔΘ (4.66)

where

M1 = C∗(sI− A∗)−1(B∗ + sB∗1)+ (D∗ + sD∗1) (4.67a)

M2 = C∗(sI− A∗)−1(B∗2 + sB∗3)+ (D∗2 + sD∗3) (4.67b)

The vector L w = (L W)ΔΘ in (4.66) can be expressed by the output vector y of
the direct model

L w = (L W)ΔΘ = (ΔW)L z = (ΔW)(M3L y) (4.68)

whereΔW is a diagonal matrix withΔWii = δiΔΘi and M3 a matrix with mi j
3 ∈ C.

Substitution of (4.68) into (4.66) yields

∂L u
∂Θi

= M1
∂L y
∂Θi

+
(

M2
∂W
∂Θi

M3

)

L y (4.69)

Comparison of (4.69) and (4.64) finally gives the result

M1 = H∗ (4.70)

M2
∂W
∂Θi

M3 = ∂H∗

∂Θi
(4.71)

where ∂Wi j/∂Θi = δi for i = j . Otherwise ∂Wi j/∂Θi = 0.
In the following section, for illustration, this matrix-based approach is applied to

two simple examples.

4.5.4 Example: Inverse Model of a Linear Network

Consider the simple linear electrical network depicted in Fig. 4.19. It can be
viewed as an electrical analogue of the coupled hydraulic tank system considered in
Section 4.4.1. A bond graph of the direct model with the two inputs I (t) and E(t)
and the two outputs e1 and f2 appears in Fig. 4.20. There is one set of two disjoint
input–output causal paths
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Fig. 4.19 Schematic of a
linear electrical network

I(t) E(t)C1 C2

R2R1

eC1

eC2

MSf
e1

I(t)
0

De : e1

fC1

C : C1 C2

1

fR1

R : R1 R2

0

x2x1

C :

1

Df : f2

fR2
eR2

R :

E(t)

f2
MSe

Fig. 4.20 Bond graph of the direct model of the linear electrical network

I (t)→ fC1 → x1 → e1

E(t)→ eR2 → fR2 → f2

The order of the first path is 1 and the order of the second one equals 0. Hence, the
model is structurally invertible ([26, Criterion 2], or [30, p. 165]) and the order of
the inverse model is 1 ([26, Proposition 2]).

Figure 4.21 shows a bond graph representation of the inverse model. Contrary
to the bond graph of the direct model, the bond graph of the inverse model has one
energy store in differential causality (C : C1) as to be expected from the structural
analysis of the direct bond graph. Hence, the order of the inverse model is 1.

In this example, input–output pairs I (t), e1 and E(t), f2, respectively, are collo-
cated. Hence, the left-hand side flow source and the effort detector in Fig. 4.20 can
be combined into one source–sensor element SS. The same holds for the right-hand
side effort source and the flow detector. The bond graph of the inverse model is

SSu1 = f1 : 0

SS : y1 = e1

x∗
1

C : C1

1

fR1

R : R1

0

x∗
2

C : C2

1

SS : y2 = f2

eR2

R : R2

SS : u2 = e2

Fig. 4.21 Bond graph of the inverse model of the linear electrical network using bicausality
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SS
e1 e2

f1 f2
0

x∗
1

C : C1 C2

1

fR1

R : R1 R2

0

x∗
2

C :

1

eR2

R :

SS

Fig. 4.22 Bond graph of the inverse model with two source–sensors

obtained by just reversing causality at the source–sensor elements and by propagat-
ing this information [19]. Figure 4.22 shows the result.

4.5.4.1 Symbolic Differentiation of the Transfer Matrix of the Inverse Model
with Respect to a Parameter

Let y = [e1 f2]T and u = [ f1 e2]T according to Fig. 4.22. Derivation of equations
from the bond graph of the inverse model and Laplace transform yields

[
L f1
L e2

]

︸ ︷︷ ︸
L u

=
[

H∗11 H∗12
H∗21 H∗22

]

︸ ︷︷ ︸
H∗

[
L e1
L f2

]

︸ ︷︷ ︸
L y

(4.72)

where

H∗11 = C1s + 1

R1
− 1

R1

1

d
(4.73a)

H∗12 =
1

d
(4.73b)

H∗21 =
1

d
(4.73c)

H∗22 = −
(

R1

d
+ R2

)

(4.73d)

and d := R1C2s + 1. Hence,

∂H∗

∂R2
=

[
0 0
0 −1

]

(4.74)

and

∂H∗

∂C2
= s

d2

[
1 −R1

−R1 R2
1

]

(4.75)

Remark 4.1 The above transfer functions of the inverse model have a pole due to
the term d in their denominator. It can be identified in the bond graph of the inverse
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model by the causal path from the store C : C1 to the resistor R : R1. Let H denote
the transfer matrix of the direct model. Then, because of H = (H∗)−1, this pole
gives rise to a zero in the transfer functions of H that is not evident in the direct
bond graph.

4.5.4.2 Incremental Bond Graph Approach

In the following, the results (4.74) and (4.75) obtained by symbolic differentiation
will be derived from the incremental bond graph of the inverse model (Fig. 4.23) by
building the matrices used in the approach presented in the previous section.

As parameters R2 and C2 are assumed to vary, the bond graph elements R : R2
and C : C2 have been replaced by their incremental models. Derivation of equations
from the incremental bond graph in Fig. 4.23 results in the following matrices:

[
Δẋ∗2
Δẋ∗1

]

︸ ︷︷ ︸
Δẋ∗

=
⎡

⎣−
1

R1C2
0

0 0

⎤

⎦

︸ ︷︷ ︸
A∗

[
Δx∗2
Δx∗1

]

︸ ︷︷ ︸
Δx∗

+
⎡

⎣
1

R1C2
− 1

C2

0 0

⎤

⎦

︸ ︷︷ ︸
B∗

[
Δe1
Δ f2

]

︸ ︷︷ ︸
Δy

+
[

0 0
1 0

]

︸ ︷︷ ︸
B∗1

[
Δė1

Δ ḟ2

]

︸ ︷︷ ︸
Δẏ

+
[−1 0

0 0

]

︸ ︷︷ ︸
B∗3

⎡

⎣
1

c2
ėC2 ΔC2

ḟ R2 ΔR2

⎤

⎦

︸ ︷︷ ︸
ẆΔΘ

(4.76)

SS
Δe1 Δe2

Δf2Δf1
0

Δx∗
1

C : C1

1

ΔfR1
ΔeR2

R : R1 R2

0 1

R :

SS

Δx∗
2

1CC2

C2
C2

:

MSe :
1

eC2 Δ

wR2

wC2

MSe : fR2  Δ R2

Fig. 4.23 Incremental bond graph of the inverse model of the linear electrical network
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Furthermore,

[
Δ f1
Δe2

]

︸ ︷︷ ︸
Δu

=
⎡

⎣−
1

R1
0

1 0

⎤

⎦

︸ ︷︷ ︸
C∗

[
Δx∗2
Δx∗1

]

︸ ︷︷ ︸
Δx∗

+
⎡

⎣
1

R1
0

0 −R2

⎤

⎦

︸ ︷︷ ︸
D∗

[
Δe1
Δ f2

]

︸ ︷︷ ︸
Δy

+
[

C1 0
0 0

]

︸ ︷︷ ︸
D∗1

[
Δė1

Δ ḟ2

]

︸ ︷︷ ︸
Δẏ

+
[

0 0
0 −1

]

︸ ︷︷ ︸
D∗2

⎡

⎣
1

C2
eC2 ΔC2

fR2 ΔR2

⎤

⎦

︸ ︷︷ ︸
WΔΘ

(4.77)

With these matrices and B∗2 = 0, D∗3 = 0, the right-hand side expression in (4.67b)
can be built. The result is

M2 = C2

d
s

⎡

⎣
1 0

−R1 − d

C2s

⎤

⎦ (4.78)

The vector (L W)ΔΘ is easily reformulated

(L W )ΔΘ =
⎡

⎣
ΔC2

C2
0

0 ΔR2

⎤

⎦

︸ ︷︷ ︸
ΔW

[
L ec2

L fR2

]

︸ ︷︷ ︸
z

= (ΔW)

⎡

⎣
1

d
(L e1 − R1L f2)

ΔR2L f2

⎤

⎦

= ΔW

⎡

⎣
1

d
− R1

d

0 1

⎤

⎦

︸ ︷︷ ︸
M3

[
L e1
L f2

]

︸ ︷︷ ︸
L y

(4.79)

Multiplication of matrices proves that, in fact,

M2
∂W
∂R2

M3 = ∂H∗

∂R2
(4.80)

M2
∂W
∂C2

M3 = ∂H∗

∂C2
(4.81)

(cf. (4.74) and (4.75)).
Finally, evaluation of the expression for M1 in (4.67a) confirms (4.70).
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4.5.5 Example: Inverse Model of a Fixed Field DC Motor

The second illustrative example is the well-known voltage-driven separately excited
DC motor that drives a mechanical load against an external moment (Fig. 4.10).

The inverse bond graph is obtained from the direct bond graph (Fig. 4.11) by
replacing each of the two effort sources representing the voltage source and the
external moment by a flow source–effort sensor, SS, as depicted in Fig. 4.24. The
source–sensor elements lead to differential causality at the ports of the two I ele-
ments accounting for the self-inductance La of the rotor winding and the mechanical
inertia Jm of rotor and load. That is, the inverse model has no states. Hence, the
denominator of all transfer functions of the inverse model is a constant.

Assume that the friction parameter Rm is subject to variations. Then, the element
R : Rm is to be replaced by its incremental model. This means that a modulated
effort sink MSe : ωΔΘ is attached to the 1-junction representing the variationΔRm

(Fig. 4.25). Figure 4.25 shows the resulting incremental inverse bond graph.
From the incremental inverse bond graph in Fig. 4.25, the following equations

can be immediately derived:

Δẋ∗ = Δẏ (4.82)

SS
u1 = E u2 = Mload

y1 =  ia
1

x1
∗ x2

∗

I : La

R : Ra

GY

kT..
1

I : Jm

R : Rm

y2 = ω
SS

Fig. 4.24 Inverse bond graph model of the fixed field DC motor

SS
Δu1 =ΔE

Δy1 =Δi
1

Δx∗
1

I : La

R : Ra

GY

kT..
1

Δx∗
2

I : Jm

R : Rm MSe : ωΔRm

ΔMload = Δu2

Δω = Δy2
SS

Fig. 4.25 Incremental inverse bond graph of the DC motor accounting for a variation in mechanical
friction
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and
[
Δu1
Δu2

]

︸ ︷︷ ︸
Δu

=
[

Ra kT

−kT Rm

]

︸ ︷︷ ︸
D∗

[
Δy1
Δy2

]

︸ ︷︷ ︸
Δy

+
[

La 0
0 Jm

]

︸ ︷︷ ︸
D∗1

[
Δẏ1
Δẏ2

]

︸ ︷︷ ︸
Δẏ

+
[

0 0
0 1

]

︸ ︷︷ ︸
D∗2

[
0 0
0 ΔRm

]

︸ ︷︷ ︸
ΔW

[
0 0
0 1

]

︸ ︷︷ ︸
M3

[
y1
y2

]

︸ ︷︷ ︸
y

(4.83)

Substitution of these matrices in the right-hand side expressions in (4.67) immedi-
ately gives

M1 =
[

Las + Ra kT

−kT Jms + Rm

]

= H∗ (4.84)

and

M2 =
[

0 0
0 1

]

(4.85)

Finally,

∂H∗

∂Rm
= M2

∂W
∂Rm

M3 =
[

0 0
0 1

]

(4.86)

This result obtained from the incremental inverse bond graph can be verified
by derivation of the transfer matrix H from the direct bond graph in Fig. 4.11 and
by differentiating its inverse H∗ with respect to the parameter Rm . Derivation of
Laplace transformed equations from the direct bond graph yields

[
L ia

Lω

]

= 1

Δ

[
Jms + Rm −kT

kT Las + Ra

]

︸ ︷︷ ︸
H

[
L E
L M

]

(4.87)

where Δ := (Las + Ra) (Jms + Rm)+ k2
T .

Hence,

H∗ = H−1 =
[

Las + Ra kT

−kT Jms + Rm

]

(4.88)

and

∂H∗

∂Rm
=

[
0 0
0 1

]

(4.89)

in accordance with (4.86).
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As the inverse model has no states in this example, (4.18a) and (4.18b) reduce to

L u = D∗(s)L y = H∗(s)L y

=
{[

Ra kT

−kT Rm

]

+ s

[
La 0
0 Jm

]}

L y

= (
D∗0 + D∗1s

)
L y (4.90)

In the SISO case u1 = E and y1 = ω, the matrix H∗ reduces to the scalar transfer
function

h∗(s) := La Jm

kT
s2 +

(
La Rm

kT
+ Ra Jm

kT

)

s +
(

Ra Rm

kT
+ kT

)

(4.91)

That is,

u1(t) =
(

Ra Rm

kT
+ kT

)

y1(t)+
(

La Rm

kT
+ Ra Jm

kT

)

ẏ1(t)+ La Jm

kT
ÿ1(t) (4.92)

4.6 Parameter Sensitivities of ARR Residuals

In [14], the author of this chapter briefly showed that incremental bond graphs
can also be used to determine parameter sensitivities of the residuals of analytical
redundancy relations (ARRs) used in model-based fault detection and isolation. This
section elaborates this aspect and gives an illustration.

4.6.1 ARRs for Continuous Systems

Analytical redundancy relations are balance equations of effort or flow variables,
in which unknown variables have been replaced by input variables and measured
output variables and in which parameters are known. Evaluation of an ARR provides
a residual that theoretically should be zero. In practice, however, the residual of
an ARR is within certain error bounds as long as no faults occur during system
operation. The value is not exactly zero over some time interval due to noise in
measurement, parameter uncertainties, and numerical inaccuracies. If, however, the
numerical value of a residual exceeds certain thresholds, then this is an indicator to
a fault in one of the system’s components. Noise in measured output variables may
result in residual values indicating a fault that does not exist. Hence, measured data
should pass appropriate filters before being used in ARRs.

To give an example of an ARR, consider the bond graph of the coupled tanks in
Fig. 4.8. The sum of volume flows at the right-hand side 0-junction reads
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0 = Q R1 − QC2 − Qo (4.93)

Replacing unknowns by means of constitutive component equations yields

r2 = k1sign(p1 − p2)
√|p1 − p2| − C2 ṗ2 − Qo (4.94)

This equation is an ARR because it relates the measured quantities p1, p2, and
Qo. The variable r2 holds the numerical value that is obtained by evaluation of the
right-hand side of the equation. That is, r2 is the residual of the ARR. (k1 is a known
constant in the constitutive equation of valve 1.) As can be seen, valve 1 between the
two tanks, the sensed pressures, p1, p2, and the sensed outlet flow, Qo, contribute
to this ARR.

If nonlinearities of constitutive equations permit the elimination of unknowns in
balance equations so that ARRs can be obtained in symbolic form, then the result
of their structural analysis is usually presented as structural fault signature matrix
(FSM) [6, 13, 31]. In the fault signature matrix, an entry ‘1’ in the i th row and
j th column indicates that the i th component contributes to the j th residual. The
entries in the j th column constitute the signature of residual r j . Residuals are called
structurally independent if their signatures differ. As has been shown by Samantaray
et al. [12], the entries in the fault signature matrix can be directly determined by
inspection of their diagnostic bond graph by following causal paths from inputs
(sources and measurements) to the virtual sensor of a residual (cf. Chapter 7).

The set of ARRs is not unique. In general, for an observable system, the num-
ber of structurally independent residuals equals the number of sensors added to the
system [32].

Structural analysis of ARRs also enables to decide whether a fault can be detected
and moreover can be isolated. It is common to add two columns to the fault signature
matrix holding information about whether a fault can be detected and moreover can
be isolated.

In case the signature matrix is not diagonal, Samantaray and Ghoshal use param-
eter estimation for isolation of simultaneous faults [11]. Parameters are estimated by
least squares optimisation of residuals. In that approach, values for sensitivities of
residuals with respect to parameters are needed. Beyond this optimisation problem,
knowledge of how sensitive residuals are with respect to certain parameters helps
assessing the information in a fault signature matrix.

As to parameter sensitivities of residuals, the parameter sensitivity of r2 with
respect to the parameter C2, for instance, equals (− ṗ2).

4.6.2 ARRs for Hybrid Systems

For dynamic systems with very fast state transitions in some components, e.g.
caused by an abrupt fault, it is appropriate to model these state transitions as dis-
crete events. That is, besides time continuous changes also discrete changes hap-
pen. In other words, there are a number of system modes and discrete changes
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between them. For each mode, the continuous dynamic behaviour is described by
a continuous model [6]. Such systems are known as hybrid systems. One way to
model such systems by bond graphs is to use controlled 1- and 0-junctions [33]. If
the local state automation of a controlled junction forces a state change, resulting
local causality changes must be propagated into the bond graph. This affects causal
paths. For the purpose of FDI, Low et al. [34, 35] recently proposed a causality
assignment to hybrid bond graphs so that causal paths remain unchanged under
state switches of controlled junctions. Only some parts of the paths are cut off due
to controlled junctions in OFF state. As a consequence, by following causal paths in
hybrid bond graphs, ARRs may be derived that hold for all system modes. Low and
his co-authors call these ARRs Global ARRs (GARRs) [34]. They include binary
variables that can switch off parts in the symbolic expression of a GARR. In other
words, the signature of a fault and the question of whether it can be detected and
isolated depends on the system mode. That is, there is not one global fault signature
matrix (FSM) but one for each system mode of operation.

4.6.3 Determination of Parameter Sensitivities of ARR Residuals

As ARRs in symbolic form cannot always be obtained by elimination of unknown
variables, sensitivities of their residuals with respect to parameters sometimes
cannot be derived by symbolic differentiation. Therefore, sensitivity bond graphs
have been used for numerical computation of residual sensitivities [8, 11]. In the
following, it is shown that once the matrices of the state space model have been
derived from the original bond graph with nominal parameters and from the associ-
ated incremental bond graph, parameter sensitivities of residuals of ARRs can also
be determined in symbolic form by multiplication of transfer matrix entries.

4.6.3.1 Matrix-Based Determination of Parameter Sensitivities
of ARR Residuals

Let Δr denote the vector of variations of the residuals and let the vector Δy of
output variables of the incremental bond graph be Δr. Then, according to (4.34) the
variation of the Laplace transform of the residuals reads

ΔL r =
[
Cn (sI− An)

−1 B∗ + D∗
]

︸ ︷︷ ︸
F∗

L WΔΘ (4.95)

where Θ denotes the vector of parameters. As W is a diagonal matrix, the i th com-
ponent is the weighted sum of m parameter variations:

ΔL ri =
m∑

j=1

F∗i jL W j j ΔΘ j (4.96)
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Hence, the parameter sensitivities of residuals are

∂L ri

∂Θ j
= F∗i jL W j j = F∗i jδ j

n∑

k=1

FjkL uk

︸ ︷︷ ︸
z j

(4.97)

Equation (4.97) indicates that the j th parameter sensitivity of the i th residual is
obtained using the entries in the i th row of the transfer matrix of the incremental
bond graph and variables from the original nominal bond graph. The latter are the
signals z j into the modulated sources of the incremental bond graph representing
the parameter variations. Again, these modulating signals are output variables of
the nominal bond graph and as such are a weighted sum of the Laplace transforms
of input variables uk of the nominal bond graph. In the latter sum, the weighting
factors are entries in a row of the transfer matrix F of the original bond graph.

Performing these operations by hand is practically hardly feasible even for small
systems. However, software programs such as CAMP-G, MATLAB R©, and the Sym-
bolic Math ToolboxTM can set up the matrices of the state space models, perform
multiplications of matrix entries, and build the sum of terms.

4.6.3.2 Manual Determination of Parameter Sensitivities of ARR Residuals

For small systems, parameter sensitivities of residuals of ARRs can be manually
determined in the following way. First, junctions to which detectors have been
attached are identified in the bond graph of the system. The number of structurally
independent residuals equals the number of sensors present in the system [13]. Then,
virtual detectors are attached to corresponding junctions in the incremental bond
graph. Adding variations of flows or efforts, respectively, at these junctions yields
variations of residuals of ARRs and thus parameter sensitivities of the residuals.

4.6.4 Example: Analog Integrator

For illustration, consider the circuit schematic of a simple functional model of an
analog integrator depicted in Fig. 4.26. In reality, an integrated operational ampli-
fier is built by means of a number of transistors. The macro-model in Fig. 4.26
reproduces the input–output behaviour of an operational amplifier. It is sufficiently
accurate for low frequencies. Its parameters that can be tuned are the gain, A, the
input resistance Ri, and the output resistance Ro. The measurement at internal nodes
of a real integrated circuit requires special equipment such as a probe station. The
output voltage Vo of a bonded and packaged operational amplifier chip can be mea-
sured at one of its pins and may be used for the detection of possible failures in the
circuit [36].

The circuit representation is easily converted into the bond graph in Fig. 4.27. It
includes an effort detector representing the sensor of the output voltage Vo.
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Vi
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i1

Vd Ri V = A × Vd

Ro

io

RL

C

iC

Vo

Fig. 4.26 Functional model of an analog integrator
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iC

C : C

03 iL
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r
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A MSe
V

12

io

R : Ro

Fig. 4.27 Bond graph representation of the macro-model in Fig. 4.26

Assume that the operational amplifier is operated so that the gain limitation is not
effective but that its gain A and input resistance Ri are subject to variations. Then,
the incremental bond graph is obtained by replacing the input resistor R : Ri and
the modulated effort source A : MSe by their incremental model. The effort detector
sensing the output voltage Vo is replaced by a virtual flow detector Df* representing
a sensor of the residual variation Δr . Figure 4.28 displays the resulting incremental
bond graph.

Summation of flow variations at junction 03 of the incremental bond graph in
Fig. 4.28 and some substitutions yield

LΔr =
(

A

Ro
− C s

)

LΔVd + 1

Ro
Lw2 (4.98)

where s ∈ C.
Adding voltage variations at junction 12 and substituting current variations give

[

1+ Ri

(
1

R1
+ C s

)]

︸ ︷︷ ︸
a

LΔVd = Lw1 (4.99)
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03
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R: RL
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ΔiC
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Fig. 4.28 Incremental bond graph of the macro-model in Fig. 4.26

That is, the output variable LΔr of the incremental bond graph model is a weighted
sum of the two input variables Lw1 and Lw2

LΔr =
(

A

Ro
− C s

)
1

a
︸ ︷︷ ︸

F∗11

(L ii )ΔRi︸ ︷︷ ︸
Lw1

+ 1

Ro︸︷︷︸
F∗12

(L Vd)ΔA
︸ ︷︷ ︸

Lw2

(4.100)

At the same time, LΔr is a weighted sum of the parameter variationsΔRi andΔA.
Hence,

L
∂r

∂Ri
= F∗11 L ii (4.101a)

L
∂r

∂A
= F∗12 L Vd (4.101b)

These results can be verified by derivation of the residual r from the bond graph
in Fig. 4.27 and by partial differentiation with respect to A and Ri , respectively. In
fact, adding currents at junction 03 in the bond graph of Fig. 4.27 and expressing
them by voltages gives

L r =
(

A

Ro
− C s

)

L Vd −
(

1

Ro
+ 1

RL
+ Cs

)

L Vo (4.102)

Partial differentiation with respect to A yields the same expression as in (4.101b).
Furthermore, expressing currents i1 and iC in the equation
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Vd = Ri ii = −Ri (i1 + iC ) (4.103)

by voltages yields

[
1

Ri
+ 1

R1
+ Cs

]

L Vd = − 1

R1
L Vi − Cs L Vo (4.104)

Partial differentiation of this equation with respect to Ri and subsequent rearranging
the result gives

∂L Vd

∂Ri
= 1

a
L ii (4.105)

and finally

∂L r

∂Ri
=

(
A

Ro
− C s

)
∂L Vd

∂Ri
=

(
A

Ro
− C s

)
1

a
L ii = F∗11 L ii (4.106)

The current ii is an output variable of the bond graph model. It is a weighted sum of
the input voltage Vi and the measured, hence known, output voltage Vo. According
to (4.104)

L ii =
(

−1

a

1

R1

)

︸ ︷︷ ︸
F11

L Vi +
(

−Cs

a

)

︸ ︷︷ ︸
F12

L Vo (4.107)

As a result,

L
∂r

∂Ri
= F∗11 F11L Vi + F∗11 F12L Vo (4.108)

That is, L ∂r/∂Ri is obtained by multiplication of a transfer function F∗11 of the
incremental bond graph and transfer functions F11 and F12 of the bond graph with
nominal parameters.

4.7 Conclusions

An incremental true bond graph approach to a matrix-based determination of param-
eter sensitivities of transfer functions of linear MIMO models and of residuals of
ARRs in symbolic form has been presented. The approach has the following advan-
tages:

• The incremental bond graph is systematically constructed by replacing elements
with varying parameters by their incremental model. This step could be imple-
mented in software.
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• Existing software such as CAMP-G/MATLAB R© supported by the Symbolic
Math ToolboxTM can derive equations from the bond graph and from its asso-
ciated incremental bond graph and can build the matrices of the state space equa-
tions and the output equations for both bond graphs in symbolic form.

• A parameter sensitivity of a transfer function out of the multiple possible ones of
a linear MIMO model is obtained in symbolic form by multiplication of appro-
priate matrix entries. This can be performed by computer algebra systems.

• Adding variations of power variables at junctions of the incremental bond graph
immediately leads to parameter sensitivities of residuals of ARRs.

• Furthermore, if the linear inverse model of a linear MIMO model exists, equa-
tions from the bond graph of the direct model and the incremental bond graph
of the inverse model can be automatically derived and matrices can be built.
Computer algebra systems can be used to determine parameter sensitivities of
the transfer matrix of the inverse model from these matrices.

For small linear models, the above steps can be carried out by hand as has been
shown by means of the illustrating examples. In any case, no symbolic differentia-
tion of transfer functions has to be performed. The use of an incremental bond graph
means that the total differential of constitutive equations has already been taken.

Appendix

It is assumed that the bond graph of a LTI MIMO system has only 1-port storage
elements some of which must take differential causality. Let xi denote the energy
vector of the storage elements in integral causality, xd the energy vector of the stores
in differential causality, and x := [xi xd]T .

As has been shown by Rosenberg [29], a linear state space equation in terms
of xi and the input vector u can be derived from the equations of the bond graph
junction structure and the linear constitutive equations of the storage fields and the
dissipative fields by eliminating xd and other variables. The result is

ẋi = Aixi + Bi1u+ Bi2u̇ (4.109)

with constant matrices Ai,Bi1,Bi2. Note that the elimination of xd entails the time
derivative of the input vector u̇.

On the other hand, the junction structure equations and the constitutive equations
of the dependent storage elements yield matrices Ad, Bd so that

xd = Adxi + Bdu (4.110)

(cf. [29, Equation 29]).
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Combining (4.109) and (4.110) results in an ODE for x:

[
ẋi

ẋd

]

︸ ︷︷ ︸
ẋ

=
[

A1 0
A2 0

]

︸ ︷︷ ︸
A

[
xi

xd

]

︸ ︷︷ ︸
x

+
[

B11
B12

]

︸ ︷︷ ︸
B1

[u]+
[

B21
B22

]

︸ ︷︷ ︸
B2

[u̇] (4.111)

where

A1 = Ai (4.112)

A2 = AdAi (4.113)

B11 = Bi1 (4.114)

B12 = AdBi1 (4.115)

B21 = Bi2 (4.116)

B22 = AdBi2 + Bd (4.117)

The expression for the output vector y takes the form

y = Cixi + Ddẋd + Diu (4.118)

with constant matrices Ci, Di, Dd (cf., e.g. [19], p. 123, Equation 4.56).
Using (4.109), (4.110), and the time derivative of (4.110) leads to matrices C, D,

and D1 so that (4.118) can be written in the form

y = Cx+ Du+ D1u̇ (4.119)
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