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Foreword

I am extremely pleased to have been asked to write this Foreword to this compilation
text on bond graph modeling. The contributors to this book are all experts in their
fields and I consider all of them to be friends. I have ample evidence from my 40+
years of working in the mechatronics area that physical system understanding is
imperative for the design of modern engineering systems. It remains essential to be
able to represent physical systems in a uniform way such that analytical or computer
response predictions can be straightforwardly carried out.

Bond graphs are a concise pictorial representation of all types of interacting
energetic systems. In my experience working with engineers on the development
of complex systems it is obvious that these systems suffer from thermal problems,
structural problems, vibration and noise problems, and control and stability issues
that do not fit into a single discipline. Bond graphs provide the link by which all
these different disciplines can be represented in an overall system model. I am cer-
tain that bond graphs are the best way to study and solve these multi-energy domain
system problems.

Bond graphs were invented by Professor Henry Paynter at M.I.T. We jokingly
assign the bond graph birthday as April 24, 1954. I was fortunate to have Hank
as an adviser and I learned a lot from him while trying to keep up with his ideas.
Hank was probably a genius but definitely not a detail-oriented person. While Hank
was able to construct bond graph models in his own mind, he did not take the time
to develop the rules by which the rest of us could construct a bond graph model.
This was left to his students, Professors Dean Karnopp and Ronald Rosenberg. They
developed the concepts of power convention and the causal stroke and developed the
first computer program that could interpret a bond graph description and generate
a set of state space equations. Now there are many computer programs that can go
from a bond graph picture to a simulation of a nonlinear system in a straightforward,
systematic approach.

Bond graph modeling has come a long way since these early days. There are
literally tens of thousands of publications that use bond graphs. There are courses at
universities all over the world that teach bond graph modeling in incredibly diverse
areas such as chemical physics, biophysics, nanotechnology, and cell dynamics.
There was a time when I knew practically every bond grapher in the world. That
time has long passed as more and more disciplines recognize the value of a unified
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vi Foreword

approach to modeling all types of physical systems, producing both linear and non-
linear mathematical models.

This book is a compilation of contributions from outstanding researchers all over
the world in the field of bond graph modeling and theory. There are introductory
topics for the uninitiated, topics on bond graph theory, and a wealth of information
on applications of bond graphs to realistic mechatronic systems. I hope that the
readers will enjoy this book and find it most useful for their engineering careers.

Davis, California Donald Margolis
December 2010



Preface

This multi-author book reflects the present state of the art in bond graph modelling
of engineering systems with respect to theory, applications and software support.
Bond graph modelling is a physical modelling methodology based on first princi-
ples that is particularly suited for modelling multidisciplinary or mechatronic sys-
tems. Bond graphs were devised by Professor H. Paynter some 50 years ago at
the Massachusetts Institute of Technology (MIT) in Cambridge, MA, USA. As to
the pioneers of this methodology, the authors of this book are indebted to, among
others, Professor D. Karnopp and Professor D. Margolis (University of California
at Davis), Professor R. Rosenberg (Michigan State University, East Lansing, MI),
Professor J. Thoma (Professor Emeritus at the University of Waterloo, ON, Canada)
and Professor J.J. van Dixhoorn (University of Twente, Enschede, the Netherlands.

Since the early days, bond graph modelling has evolved into a powerful rich
methodology. Considerable progress has been achieved since then. Bond graph
modelling has spread all over the world. It is used in engineering education as well as
in industrial projects. Numerous bond graph-related papers have been presented in
international conferences and published in refereed scientific journals. Furthermore,
bond graph modelling has been used in many Ph.D. theses and has been the subject
of a number of monographs and textbooks in various languages.

Beyond some special journal issues devoted to bond graph modelling, to the
knowledge of the editor, very few multi-author books on bond graph modelling
have been published during the past decades. One book to be mentioned is the
1991 compilation text Bond Graphs for Engineers edited by P. Breedveld and
G. Dauphin-Tanguy. Another contributed book titled Les bond graphs was edited
by G. Dauphin-Tanguy and published in 2000. A survey of bond graph-related pub-
lications suggests that it was time for a new collection that covers achievements
and recent developments in bond graph modelling by integrating various works and
presenting them in a uniform manner. On invitation by Springer, the editor of this
book asked colleagues active in the realm of bond graph modelling for contributions.
This book is the outcome of a truly international worldwide successful cooperation
of excellent young researchers and those who have been using bond graphs and have
been teaching the methodology for a long time. The book covers some theoretical
issues and methodology topics that have been the subject of ongoing research during
past years, presents new promising applications such as the bond graph modelling of
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viii Preface

fuel cells and illustrates how bond graph modelling and simulation of mechatronic
systems can be supported by software. This up-to-date comprehensive presentation
of various topics has been made possible by the cooperation of a group of authors
who are experts in various fields and share the “bond graph way of thinking”.

The aim of this contributed book is to reflect the current state of the art in bond
graph modelling by presenting and discussing advanced recent topics. However, all
chapters have been written in such a way that newcomers to the methodology with
some knowledge of the basics may easily get into the vast fascinating and open field
of advanced bond graph modelling. Readers who may want to have a closer look at
bond graph fundamentals will find references to latest monographs and textbooks.
Furthermore, each chapter provides many references to conference papers, journal
articles and Ph.D. theses on advanced topics.

Bond Graph Modelling of Engineering Systems: Theory, Applications and Soft-
ware Support addresses readers in academia as well as engineers in industry and
invites experts in related fields to consider the potential and the state of the art of
bond graph modelling. This multi-author book well complements latest monographs
and textbooks on bond graph modelling and may serve as a guide for further self-
study and as a reference.

Sankt Augustin, Germany Wolfgang Borutzky
December 2010
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Part I
Bond Graph Theory and Methodology

Part I of this book addresses theoretic foundations and concepts of bond graph
modelling. Moreover, it presents methodologies for a bond graph-based solution
of various types of problems.

Chapter 1 closely reviews the model development process. After a formal foun-
dation of bond graphs, principles and fundamental concepts of port-based physical
systems modelling in terms of bond graphs are pointed out and are discussed in a
clarifying way that may help avoid model developers to fall into traps, to overlook
assumptions and the context dependency of models, or to mix concepts which may
give rise to confusions, e.g. with regard to ideal concepts and physical components.
A key issue of Chapter 1 is that it emphasises the distinction between configuration
structure, physical structure, and conceptual structure.

Clearly, a model to be developed should meet the accuracy requirements of
an application and at the same time should be as simple as possible. However,
as today’s engineering systems tend to become larger, more complex, and more
integrated, it is not always obvious at the beginning of a modelling process which
phenomena are relevant with regard to the application and to decide what to include
into a model and what to neglect. As a result, one approach often applied is to
start with a complex model and to reduce its complexity subsequently as far as the
application permits.

Chapter 2 presents three model reduction techniques based on the consideration
of energy flows in a bond graph model. One approach ranks energy stores and dis-
sipators on the basis of a power norm called activity in order to reduce the model
complexity by eliminating the least ‘active’ elements.

Chapter 3 introduces a special decomposition of bond graph elements in a part
with nominal parameters and one with uncertain parameters. The resulting bond
graph model of a bond graph element is called linear fractional transformation (LFT)
model. In case of linear models, bond graphs with elements replaced by their LFT
model enable the derivation of state space and output equations in LFT form as used
for stability analysis and control law synthesis based on μ-analysis.

Moreover, LFT bond graphs can also support robust fault detection and isolation
(FDI) of systems with uncertain parameters. The decomposition of bond graph ele-
ments leads to a derivation of analytical redundancy relations (ARRs) composed of
a nominal part representing their residuals and an uncertain part due to parameter



2 Part I Bond Graph Theory and Methodology

uncertainties. The latter one can be used for the calculation of adaptive thresholds
and for a parameter sensitivity analysis of the residuals.

Incremental bond graphs present another approach. Similar to the LFT bond
graph approach, they are obtained by replacing elements by their incremental model.
The latter one is also a decomposition of a bond graph element into a nominal part
and one that accounts for parameter variations. Opposed to LFT bond graphs, bonds
of incremental bond graphs carry variations of the conjugated power variables due
to parameter variations.

Chapter 4 shows how incremental bond graphs enable a matrix-based determina-
tion of parameter sensitivities of transfer functions for direct as well as for inverse
linear models. The necessary matrices can be generated from a bond graph and its
incremental bond graph by means of existing software. Furthermore, incremental
bond graphs also support a parameter sensitivity analysis of ARR residuals.



Chapter 1
Concept-Oriented Modeling
of Dynamic Behavior

P.C. Breedveld

Abstract This chapter introduces the reader to the concept-oriented approach to
modeling that clearly separates ideal concepts from the physical components of a
system when modeling its dynamic behavior for a specific problem context. This
is done from a port-based point of view for which the domain-independent bond
graph notation is used, which has been misinterpreted over and over, due to the
paradigm shift that concept-oriented modeling in terms of ports requires. For that
reason, the grammar and semantics of the graphical language of bond graphs are
first defined without making any connection to the physical modeling concepts
it is used for. In order to get a first impression of how bond graphs can repre-
sent models, an existing model is transformed into bond graphs as the transfor-
mation steps also give a good impression of how this notation provides immediate
feedback on modeling decisions during actual modeling. Next, physical systems
modeling in terms of bond graphs is discussed as well as the importance of the
role of energy and power that is built into the semantics and grammar of bond
graphs. It is emphasized that, just like circuit diagrams, bond graphs are a topo-
logical representation of the conceptual structure and should not be confused with
spatial structure. By means of a discussion of some examples of such confusions
it is explained why bond graphs have a slow acceptance rate in some scientific
communities.

Keywords Labeled di-graph · Node categorization · Energy and co-energy ·
Legendre transform · Thermodynamic framework of variables · Generalized
mechanic framework of variables · Equilibrium-determining variable · Equilibrium-
establishing variable

P.C. Breedveld (B)
University of Twente, EWI/EL/CE, 7500 AE Enschede, The Netherlands
e-mail: p.c.breedveld@utwente.nl

W. Borutzky (ed.), Bond Graph Modelling of Engineering Systems,
DOI 10.1007/978-1-4419-9368-7_1, C© Springer Science+Business Media, LLC 2011
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4 P.C. Breedveld

1.1 Introduction

Many models are constructed to obtain better insight into the dynamic behavior
of all sorts of real-world systems and processes, however, often without careful
consideration of what the meaning of such a model is. This is due to the fact that it
is easy to fall into the trap of (unconsciously) extrapolating the meaning of a model
to interpretations that violate the original assumptions that led to the abstraction at
hand. Apart from the aim to introduce the port-based approach in terms of bond
graphs in this book, this contribution is written with the aim to make clear that
a model is such an abstraction that focuses on particular aspects of a part of the
real world, given a problem with the real world or question about it, even if it is a
question about some future realization (design). In all cases, this makes the model
highly dependent on the context of that problem, even when the question is quite
general: the person(s) making the abstraction will always do so from a particular
viewpoint and background. As a result, models are often highly dependent on (sci-
entific) culture and its jargon, even when this culture is mathematics or rather math-
ematical physics, which has the longest tradition in carefully using unambiguous
concepts.

Herein, we will try to carefully step through the process of creating a dynamic
model of a system or process that is assumed to obey the principles of classical
physics (to be enumerated later). During this journey we will point out why and
how things can go wrong the way they often do. In the introduction of the catalogue
of an exposition created by Wim Beeren called ‘Traces of Science in Art’ nuclear
physicist Walter H. G. Lewin searches for the reason why art and science have so
many parallels. “Both try,” he writes, “to expose new ideas; they seek essence and
clarity. The goal is a new opinion, a new way of looking at things which we are not
used to. Never, therefore, the familiar – and so confirmational – comfort of a ‘warm
bed’, but always the uncomfortable but potentially very revealing ‘cold floor’” [1].

During the following journey through the conceptual world of dynamic behavior,
some readers, including Walter Lewin when he would read this, may also feel this
cold floor, in particular when we discuss one of Lewin’s lectures that are avail-
able on YouTube (Part 1: http://www.youtube.com/watch?v=eqjl-qRy71w, Part 2:
http://www.youtube.com/watch?v=1bUWcy8HwpM) as an example of how ignor-
ing implicit assumptions of a modeling technique may lead to misleading paradoxes.
The reader is advised to watch the lectures beforehand and is challenged to answer
the question of who was cheating, Lewin or his colleagues in the audience . . .

In order to be able to represent the models and modeling issues that will be
discussed in an insightful way, the abstractions will not only be expressed in terms of
mathematical equations, but primarily in a graphical notation for port-based models
called bond graphs [2]. As many negative prejudices exist about this notation and
its use, most of them unjustified [3], we will start by simply defining the notation
itself that has a graph-theoretic foundation, while keeping it free from any (physical)
interpretation for the time being, even when the terminology seems to induce such
an interpretation. At a later stage this notation will be used to explain a specific
physical interpretation of models known as the port-based approach to modeling.

http://www.youtube.com/watch?v=eqjl-qRy71w
http://www.youtube.com/watch?v=1bUWcy8HwpM
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1.2 Graph-Theoretic Foundation of Bond Graphs

1.2.1 Introduction

An often heard argument to reject the ideas represented by bond graphs is that they
are not well defined, at least mathematically speaking. Therefore, a unique definition
of this graphical language will be given first, while being aware of the fact that each
language has its dialects, just like any other mathematical paper that needs a proper
list of symbols and a set of definitions too. The existence of a dialect does not mean
that the meaning becomes ambiguous: for each case unambiguous definitions should
always be possible and preferably made explicit along the same lines as the ones to
follow.

1.2.2 Bond Graphs

A bond graph is a labeled di-graph – directed graph, i.e., ‘a graph in which each link
has an assigned orientation’ [4] – of which the two types of edges are called bonds
and signals and the labeled nodes are called multiport nodes or, if no confusion is
possible, just multiports, where the number of bonds connected to a node corre-
sponds to the number of ports of a multiport, including the concept of a one-port.
Each signal connected to a node with inward orientation is said to modulate the
multiport, which in turn is called a modulated multiport, unless no bonds but only
signals are connected to the node, in which case the signal is just an input of a so-
called block diagram-type node. A block diagram is a computational diagram that
only contains signal edges and (functional) block nodes that represent an operator
on the input(s). A signal is connected to a signal port. It may depend on the context
if the concept of the number of ports in a description of a multiport refers to the total
number of ports, including or excluding the signal ports, but the description should
make this clear. In case of doubt a clear distinction should be made between ports
for signals and ports for bonds. Bonds are represented by augmenting the edge with
its direction in the graph by means of a small line that turns the representation of
the edge into a half arrow and signals are represented by augmenting the edge with
its direction by means of an arrow head, usually two small lines that turn it into a
full arrow (Fig. 1.1). The labels can consist of contoured descriptions (word bond

Fig. 1.1 Labeled di-graph
with bonds and signals

Type1

Type1

Type2

Block1

Type3

:Node1

Node2:

:Node3

:Signal node

:Node4
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graph), mnemonic codes consisting of a limited number of alphanumeric symbols,
or graphical symbols (in case block diagram symbols represent operations on sig-
nals). The node label indicates the type of the node. If a particular instantiation of a
node type needs to be specified, this is done by means of a colon and a specific name.
For linear one-ports this name commonly consists of its constitutive parameter.

Multiple edges of the same type between two nodes may be represented in a
combined manner by using condensed edge symbols consisting of two (or more,
in case of underlying hierarchy) parallel edges (lines), if necessary with a number
(or array of numbers) indicating its dimension(s), i.e., the number(s) of bonds or
signals that form this so-called multibond (array) or multisignal (array), respectively.
Collections of nodes may be condensed into (a hierarchy of) arrays by underlining.
This multibond notation has been defined before [5, 6] and will not be discussed in
detail herein as it would distract from the main message and is only meant to allow
zooming in order to keep large graphs manageable and insightful.

1.2.3 Ports and Bonds

Each port of a multiport, i.e., the interface between a bond and a multiport node,
is characterized by two real variables of time that are called effort (e) and flow ( f )
and that are considered ‘dynamically conjugated.’ They are scalars in case of single
bond edges and vectors in the sense of one-column matrices in case of multibond
edges. If their (inner) product is called a power (P) these variables are called power
conjugated, the bond is called a power bond, and the port to which it is connected
is a power port, without linking it to some physical interpretation yet. Bond graphs
that only contain power bonds and signals are sometimes called true bond graphs
as opposed to the larger class of pseudo-bond graphs in which the efforts and flows
are considered to be only dynamically conjugated (terminology to be explained in
more detail in Section 1.5.6). The nodes in a true bond graph have true power ports
and are connected by true bonds. When it is obvious that no confusion can arise true
bond graphs are just called bond graphs and power bonds just bonds. Even though
this terminology already suggests some relation with modeling of physical system
behavior, this interpretation is deliberately postponed until the discussion of port-
based modeling itself. This means that the property of variables being ‘conjugated’
just expresses at this time that they belong to the same port.

The attachment of a signal to a node is called a signal port. There are two types
of signal ports: inputs and outputs. A signal interconnects an output to an input.
The full arrow of the signal is attached to an input and its open end to an output.
This interconnection has a unique meaning: connecting two signal ports by a signal
equates the variables on each signal port to those on the signal and thus to each other
(Fig. 1.2). This means that the dimensions and units of the variables that are equated
by a signal should correspond to each other.

The multiport itself relates all efforts and flows at its ports fundamentally in such
a way that each power port has a dependent and an independent (effort or flow)
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s1 s2

s = s1 = s2
Node1: Type 1 Type 2 :Node2

Fig. 1.2 Signal connecting two signal ports in a graph fragment

variable. These relations are called constitutive relations and may also depend on
the input signals of the multiport (independent variables of the multiport). Output
signals may depend on any of the independent variables of a multiport. In some
cases where the desired dynamic behavior of both conjugate variables is taken as
a starting point, the constitutive relation itself (constitutive parameter in the linear
case) is chosen to be the unknown, such that the fundamental shape of the above
relation is violated. However, this does not correspond to a dynamic model anymore,
but to the use of a dynamic model structure for changing its dynamic properties in
a design context. We will address this anomaly later, as there is a branch of the
literature that uses bond graphs for this purpose.

A (multi)bond equates the efforts of the connected ports to each other. Similarly
it equates the flows of the ports it connects to each other. As a result, the effort
and flow variables can also be considered to live on the (multi)bond (Fig. 1.3). This
means that the property of variables being ‘conjugated’ also expresses that they
belong to the same bond and that the dimensions of the variables that are equated
by a (multi)bond should correspond to each other.

e2

f2

e = e1 = e2

f = f1 = f2

e1
f1

Node1: Type 1 Type 2 :Node2

Fig. 1.3 Signal connecting two signal ports in a graph fragment

1.2.4 Causal Stroke

From the fact that one of the variables on a port is an independent variable of the
constitutive relation and the other one a dependent variable, it follows that the com-
putational direction of the two conjugate variables at a bond is always bi-directional
and can in principle be expanded into two opposite signals, in other words, a bond
can be considered a bilateral signal flow. The effort is the input of the multiport node
at the one side and the output of the node at the other side. Only after a particular
choice is made about the two possibilities of these directions, this can be represented
by ‘causally augmenting’ the (multi)bond with a so-called causal stroke, a little line
drawn orthogonal to the bond at the end of the bond where the effort serves as
an output of the bond from a computational point of view. This implicates that it
serves as an input for the port that is connected to that side of the bond. Similarly
the conjugate flow at that side of the bond is an output of this port and an input to
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e e

ff f

Type 1

Type 1

Type 1

Type 1

Type 2

Type 2

Type 2

Type 2

Fig. 1.4 Meaning of the causal stroke: direction of the bilateral signals

the bond. Obviously, the open end of the bond at the other side reverses this story
for the port connected to the other side of the bond: effort is output of port and
input of bond and flow is input of port and output of bond (Fig. 1.4). The feature
of a bond that it can also be drawn without a causal stroke, i.e., without fixing the
computational directions of the bilateral signal flow, is one of the main advantages of
a port-based approach during modeling and in particular for the re-use of submodels,
as it expresses that the causal form of the constitutive relations should not be fixed
a priori and left open where possible in order to facilitate interconnection.

A signal represents one arbitrary variable of time that may also be an effort or
a flow, but not necessarily. Its computational direction is fixed by definition and
represented by a full arrow which clearly distinguishes it from the bilateral signal
flow represented by a (power) bond. In the particular case that a signal represents an
effort or flow, it can be considered a so-called activated bond, i.e., a bond of which
the conjugate variable is negligible and thus considered zero-valued, consequently
not playing a role at the side of the edge where there is no arrow and resulting in the
inner product of the conjugate variables being zero. As discussed in more detail in
Section 1.3 this can be considered as the representation of the concept of an ideal
sensor.

Only ports with the same types of efforts and flows can be connected to each
other by a bond. A particular type of effort and flow belongs to a domain. Table 1.1
shows a list of domains and the corresponding names of the effort and flow types
that belong to that domain. Again we emphasize that, even though the terminology
in this table suggests a strong connection with physical system modeling, this con-
nection is postponed until the discussion of physical system modeling itself. In other
words, Table 1.1 just defines the terminology and the interconnection constraints, as
only ports that belong to the same domain can be connected by a bond. However,
as this table is based on a thermodynamic framework of variables (to be discussed
in Section 1.5.6) it may be unfamiliar to many readers who have a background in
analog system modeling that is commonly using the mechanical framework of vari-
ables (Table 1.2) in which some domains are combined to one domain by adding
a different kind of state (generalized momentum) [7]. This will be discussed in
Section 1.5.
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Table 1.1 Thermodynamic framework of domains and variables

f
flow
Equilibrium
establishing

e
effort
Equilibrium determining,
intensive state

q = ∫
f dt

Generalized state,
extensive state

Electric i
Current

u
Voltage

q = ∫
i dt

Charge

Magnetic u
Voltage

i
Current

λ = ∫
u dt

Magnetic flux linkage

Elastic/potential
translation

v

Velocity
F
Force

x = ∫
v dt

Displacement

Kinetic
translation

F
Force

v

Velocity
p = ∫

F dt
Momentum

Elastic/potential
rotation

ω

Angular velocity
T
Torque

θ = ∫
ω dt

Angular displacement

Kinetic rotation T
Torque

ω

Angular velocity
b = ∫

T dt
Angular momentum

Elastic hydraulic ϕ

Volume flow
p
Pressure

V = ∫
ϕ dt

Volume

Kinetic hydraulic p
Pressure

ϕ

Volume flow
Γ = ∫

p dt
Momentum of a flow tube

Thermal T
Temperature

f S
Entropy flow

S = ∫
fS dt

Entropy

Chemical μ

Chemical
potential

f N
Molar flow

N = ∫
fN dt

Number of moles

An arbitrary node of a bond graph is a multiport, i.e., a node with multiple
(power) ports and it may also have signal ports. This multiport can be categorized
based on the nature of the relations between the involved (power) port variables and
signals. An arbitrary node may be represented in a bond graph by a short descrip-
tion (label) enclosed by an ellipse, resulting in a so-called word bond graph [8].
The only generic properties of this multiport are that it represents the constitutive
relations between a number of efforts and a number of flows that are both equal
to the number of (power) ports and thus equal itself and that each port has one
independent and one dependent variable (either the effort or the flow) in the relation
and between a number of arbitrary variables that is equal to the number of input
signal ports. Output signal ports result in additional constitutive relations that relate
the output to one or more independent variables. For a multiport with n ports, k inde-
pendent flows f , n − k independent efforts e, r outputs u, and s inputs i this can be
written as
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Table 1.2 Conventional domains with corresponding flow, effort, generalized displacement, and
generalized momentum

f
flow

e
effort

q = ∫
f dt

Generalized
displacement

p = ∫
e dt

Generalized
momentum

Electromagnetic i
Current

u
Voltage

q = ∫
i dt

Charge
λ = ∫

u dt
Magnetic flux

linkage

Mechanical
translation

v

Velocity
F
Force

x = ∫
v dt

Displacement
p = ∫

F dt
Momentum

Mechanical
rotation

ω

Angular velocity
T
Torque

θ = ∫
ω dt

Angular
displacement

b = ∫
T dt

Angular
momentum

Hydraulic/
pneumatic

ϕ

Volume flow
p
Pressure

V = ∫
ϕ dt

Volume
Γ = ∫

p dt
Momentum of a

flow tube

Thermal T
Temperature

f S
Entropy flow

S = ∫
fS dt

Entropy

Chemical μ

Chemical
potential

f N
Molar flow

N = ∫
fN dt

Number of
moles

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1
...

ek

fk+1
...

fn

u1
...

ur

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 (x)
...

ek (x)
fk+1 (x)
...

fn (x)
u1 (x)
...

ur (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
...

fk

ek+1
...

en

i1
...

is

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1.1)

A categorization of these constitutive relations allows further categorization of
the nodes and simpler and more generic labeling. While still making no relation to
port-based modeling, these categories will be quite general and when the connection
to port-based modeling is made further restrictions can be made, highly depend-
ing on the modeling level though, as will be explained when discussing modeling
itself. All categories allow the presence of an arbitrary number of outputs (meaning
nothing else than making a variable available as independent variable at an input
of another multiport). An arbitrary number of inputs is also allowed: this has been
introduced already as ‘modulation’ (modulated multiport) and each signal is a mod-
ulation signal or modulating signal. Note that one can also consider a multiport as
being a node with an arbitrary number of inputs and an arbitrary number of outputs
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of which a number (n) of inputs are conjugated (paired) to n outputs while leaving
the question open which of the variables in a pair gets the role of input or output as
long as the relation is bilateral, i.e., one input and one output. These bilateral pairs
are represented by the (power) ports and the other inputs and outputs by the signal
ports.

Earlier we noted that in a design context the constitutive relation can be
chosen as the unknown, requiring both effort and flow as inputs, which vio-
lates the above use of the causal stroke. This refers to the situation that when
a given model structure is found, the equations can be rewritten in such a way
that the constitutive relation, mostly the constitutive parameter, can be found
for a certain desired behavior. The mathematical solution of this kind of ques-
tion is sometimes mapped on the bond graph by using half causal strokes at
both sides of a bond. This graphical approach is addressed by the terminology
‘bi-causality’ and is discussed in more detail in Chapters 5 and 6. However, since
it is not clear what the graphical representation adds to the insight of the modeler –
on the contrary, it highly confuses many bond graph novices – we will not discuss
bi-causality herein any further.

The above defines the principles of a bond graph even though it does not become
very useful without a classification of the node types. However, this classification is
in part a matter of taste: The more limited a set of nodes is classified, the more pow-
erful conclusions may be drawn from a bond graph, but this also limits the possible
models that can be represented at the same time. The most common generic clas-
sification is given in the next section. This classification results in particular causal
port properties which allow an algorithmic causality assignment. Consequently this
assignment can be automated and even be shown during the construction of a graph
using a dedicated computer tool like 20-sim (www.20sim.com). In particular causal
changes and causal problems during modeling give the modeler immediate feed-
back on his modeling decisions, which is another powerful aspect of a port-based
approach represented by a bond graph. Section 1.4 lists these causal properties and
discusses a causality assignment algorithm. Again it is emphasized that in this sec-
tion no links were made to physical system modeling concepts: only the graphical
notation and its interpretation in terms of variables and constitutive relations of var-
ious types was discussed. In Section 1.5 physical system modeling is discussed.

1.3 Categorization of Nodes

1.3.1 Introduction

The following categories of multiport node types can be distinguished in a bond
graph:

• Block diagram nodes: All nodes that only have signal ports and represent math-
ematical relations between these signals. These nodes are equal to any type
of block diagram definition that exists based on (elementary) mathematical

www.20sim.com


12 P.C. Breedveld

operations. Their labels commonly consist of rectangles with a (mathematical)
symbol that is inspired by the underlying mathematical operation(s). As block
diagrams are a well-accepted notation with many dialects, these nodes will not
be further categorized explicitly herein. Consequently all other nodes will have
at least one (power) port.

• Power port nodes: We will discuss the most general form of the constitutive rela-
tions of these ports, but in case these relations can be assumed linear, a one-port is
characterized by a constitutive parameter and an n-port by an n × n-dimensional
matrix. The power will be considered to be the rate of change of a global quantity
called ‘energy,’ for which we will assume a conservation principle, anticipating
the physical meaning that is commonly given to these concepts. Herein, it is only
used as a concept for categorization.

Note that the rest of this categorization assumes that input signals (inputs) are
not equal to (a function of) one or more of the outputs (‘port modulation’), even
though the bond graph notation allows it in principle. It is easy to see that each
of the categories (albeit with an already fixed causality) can be constructed from
port modulated sources if port modulation is allowed without further explanation,
which would make this categorization more or less useless. However, if a sequence
of modeling steps leads to a situation like this, it may create much insight if this
kind of identities can be recognized. At the end of Section 1.5.9 an example is given
of this situation. We will start with the group of power discontinuous nodes. Due to
the assumption of the energy conservation principle these nodes can only reversibly
store the energy related to the net power into the node not being equal to zero. This
can take place inside the system boundary, resulting in true storage nodes, or in the
environment, resulting in sources and sinks, i.e., sources that inject, respectively,
absorb power from the perspective of the chosen dichotomy between system and
environment. Here it becomes clear that the modeling choice for a particular system
boundary is synonymous with the assumption that the storage processes in the cho-
sen environment do not affect the dynamics of the system. In other words, sources
can be considered infinitely large storage nodes. The second category we discuss
consists of the power continuous nodes.

1.3.2 Power Discontinuous Nodes

• Storage nodes: All ports of a storage node are storage ports, which means that one
of the port variables has to be integrated with respect to time before it plays a role
in the constitutive relation of the node or obtained by differentiation with respect
to time from a result of the constitutive relation. If the flow variable is integrated
with respect to time into a so-called q-type state variable or if the flow variable is
obtained by differentiation with respect to time of the constitutive relation, that
is, a function of the effort, the port is called a C-type port (or q-type port). If
the effort variable is integrated with respect to time into a so-called p-type state
variable or the effort is obtained by differentiation with respect to time of the con-
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stitutive relation that is a function of the flow, the port is called an I-type port (or
p-type port). In case all ports are power ports, there exists a real, scalar function
of the independent variables that generates the constitutive relations between the
dependent and the independent variables and is equal to the time integral of the
net power in the storage node. When the relations are written in a form that only
contains integrations with respect to time for each port, the mixed second deriva-
tives of this scalar function (called ‘energy function’) have to be equal in order
not to violate the concept of storage. The efforts of q-type ports and the flows of
p-type ports can be found from the energy function by partial differentiation with
respect to their conjugate states. Storage nodes have at least one port. In case a
storage node has at least one input (signal) port, it is called a modulated storage
node, which implies that the concept of storage is violated in principle as the
stored energy is changeable while the net power at the port(s) is zero. However,
the concept of modulated storage may be useful when the ignored power of the
signal port is small with respect to the power at the other ports. In case a storage
node only contains C-type ports, it is called a (multiport) C-element (node label:
C). In case a storage node only contains I-type ports, it is called a (multiport)
I-element (node label: I). When a storage node contains both C-type and I-type
ports, it is called a (multiport) IC-element (node label: IC). A modulated stor-
age node has node label MC or MI or MIC. Note that port-based modeling
may put more restrictions on the modulation of storage nodes, depending on
the modeling level, but that the notation allows modulation of storage nodes in
principle, as they may be useful when the power related to the modulation is
negligible.

Nodes with both storage ports and other ports are not accepted in this categoriza-
tion in order to keep the labeling (i.e., storage) meaningful later when discussing the
concepts used in port-based modeling. Consequently, all other nodes do not contain
storage ports.

• Source nodes: All dependent port variables of a source node are independent of
its independent port variables. This means that the dependent variables are either
constant (linear case with one parameter) or the function of an input (modulated
source). This means that a multiport source node can always be split into a set
of (modulated) one-port sources. When the dependent port variable is an effort
the source is called an effort source (node label: Se). When the dependent port
variable is a flow the source is called a flow source (node label: Sf). A modulated
source has node label MSe or MSf.

• Sensor nodes: A sensor node allows external observation or availability of one
or more independent port variables while the conjugate dependent variables are
kept zero. In other words, sensor nodes are zero-valued sources and, as such,
need no separate node label, although some dialects use separate labels as this
may increase insight given their particular focus.
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1.3.3 Power Continuous Nodes

• Resistive nodes: In this first category of power continuous nodes the power conti-
nuity is hidden, as the power entering the resistive ports is converted into thermal
power and not explicitly represented by a thermal port, such that energy seems
to be ‘dissipated,’ but careful use of concepts shows that only ‘free energy’ can
be dissipated and that the use of power as a flow of free energy corresponds to
an implicit assumption, viz., that the temperature at the thermal port is constant
or its fluctuations are slow with respect to the fluctuations of interest, such that
the temperature can be considered constant. For a resistive node a semi-positive
definite scalar potential function (‘entropy production function’ or ‘dissipation
function’) of the independent variables exists that generates its constitutive rela-
tions. A resistive node has at least one port. Its node label is R. A modulated
resistive node has node label MR. A resistive node or resistor is sometimes called
a dissipative node or dissipator.

It can be proven by means of a linear transformation of the conjugate variables
into so-called scattering variables [9, 10] that all power continuous nodes have con-
stitutive relations with a multiplicative form. This means that the vector of depen-
dent port variables can be written as a product of some operator on the vector of
independent port variables. When this operator only relates efforts to efforts and
flows to flows, a property called ‘non-mixing’ [11], the multiport is called a trans-
former (node label: TF). If the operator is a function of one or more additional node
inputs, it is called a modulated transformer (node label: MTF). When this operator
only relates efforts to flows and flows to efforts, a property called ‘mixing’ [11], the
multiport is called a gyrator (node label: GY). If the operator is a function of node
inputs it is called a modulated gyrator (node label: MGY).

• Reversible transducers: In case the relations of a TF or GY are linear, the opera-
tor is a constant matrix that is anti- or skew-symmetric due to power continuity.
In case the inputs are independent functions of time (externally modulated MTF
or MGY) the anti-symmetric matrix is time variant. In both cases the transduc-
tion is reversible in the sense that the sign of the power of each of the ports is
always unconstrained, in other words: power can flow in both directions. In case
of two-ports the matrix is a 2 × 2-dimensional anti-symmetric matrix that has
only one independent parameternfor the TF or r for the GY:

[
e1

f ′2

]

=
[

0 n (·)
−n (·) 0

][
f1

e2

]

(1.2)

or

[
e1

e′2

]

=
[

0 r (·)
−r (·) 0

][
f1

f2

]

(1.3)
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By changing the positive orientation of one of the ports, the two constitutive
relations of the two ports can be simplified into

e1 = n (·) e2 (1.4)

and

f2 = n (·) f1 = − f ′2 (1.5)

for the transformer and

e1 = r (·) f2 (1.6)

and

e2 = r (·) f1 = −e′2 (1.7)

for the gyrator (Fig. 1.5).

Fig. 1.5 Transformer and
gyrator representation ..

n

..
r

e1

e1

f1 f2

e2

e2 = –e2’

f1 f2 = –f2’
TF

GY

• Junction nodes: A junction is a node with power ports that is power continuous
and of which the ports are mutually exchangeable without changing its nature:
this property is called ‘port symmetry.’ Scattering variables can also be used to
prove that there exist only two types of power continuous, port symmetric nodes,
both with linear constitutive relations (i.e., linearity is not assumed a priori) [9]:

(1) A 0-junction or zero-junction (node label: 0) of which the efforts of all ports
are equal

ei = e j ∀i �= j (1.8)

and the sum of the flows of all ports with a sign in the summation dependent
on the direction of the half arrow of the bond connected to the port being
zero

n∑

i=1

εi fi ∀εi ∈ {−1,+1} (1.9)
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where the minus sign holds for bonds oriented away from the junction and
the plus sign for bonds oriented toward the junction.

(2) A 1-junction or one-junction (node label: 1) of which the flows of all ports
are equal

fi = f j ∀i �= j (1.10)

and the sum of the efforts of all ports with a sign in the summation depen-
dent on the direction of the half arrow of the bond connected to the port
being zero

n∑

i=1

εi ei ∀εi ∈ {−1,+1} (1.11)

where the minus sign holds for bonds oriented away from the junction and
the plus sign for bonds oriented toward the junction.

As a consequence, all other power continuous nodes are port asymmet-
ric. Another result is that modulation of junctions can only take place in
the form of a boolean variable that activates or deactivates the node: the
junction is then called a switched junction (node labels X0 and X1). This
allows a variable interconnection structure.

Note that junctions fall into the category of non-mixing, reversible trans-
ducers. They may be seen as a TF or MTF with a constitutive matrix that
contains only 1, −1, and 0 as matrix elements and modulation consists of
changing the absolute values of this matrix. Furthermore, the same holds
for multiport substructures that only contain junctions. The transpose of
this matrix relates the independent voltages to the dependent ones and thus
corresponds to those columns of the reduced incidence matrix of an electri-
cal circuit that relate the link voltages to the branch voltages.

• Irreversible transduction nodes: An irreversible transduction node is a resistive
node with true power ports with one additional power port of which the flow is
equal to the entropy production function of the resistive node. Consequently the
conjugate effort equals the power of this port divided by the entropy production
function and is called temperature. This illustrates the nonlinear nature of its
constitutive relations, such that the earlier conclusion that linear, time-(in)variant
transducers are reversible is not violated. Node label: RS. In case of modulation
(time variance of the entropy production function): MRS. Note that an (M)RS
is an extension of an (M)R and when discussing port-based modeling, it will
turn out that the (M)R rather is a special case of an (M)RS which is the result
of a modeling assumption (constant temperature or irrelevance of temperature
changes) that remains often implicit.

As explained earlier, nonlinearity may be created by port modulation. There-
fore, it is possible to use port modulation on an MTF or MGY to create irre-
versible behavior, similar to that of the RS. While modeling physical systems
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this may have the disadvantage that the irreversibility is hidden in the modula-
tion, while designing physical systems with desired behavior it may lead to novel
approaches, e.g., damping with reduced generation of heat. Also, this equivalence
shows that the constitutive relation of an irreversible transducer has a multiplica-
tive form and does not violate our earlier conclusion as a consequence.

In case the resistive port of the RS has a linear relation (the entropy producing
port always has a nonlinear relation that relates either the rate of change of the
entropy or the temperature to the two independent variables of the RS), the two-
port RS can be characterized by just one parameter R:

⎧
⎪⎨

⎪⎩

e = R f

fSirr =
R f 2

T

or

⎧
⎪⎨

⎪⎩

f = e

R

fSirr =
e2

RT

or

⎧
⎪⎨

⎪⎩

e = R f

T = R f 2

fSirr

or

⎧
⎪⎪⎨

⎪⎪⎩

f = e

R

T = R f 2

fSirr

(1.12)

1.3.4 Basic Elements

We now have nine basic bond labels: (M)C, (M)I, (M)Se, (M)Sf, (M)R(S), (M)TF,
(M)GY, (X)0, and (X)1, which, for reasons of clarity can also be introduced bottom-
up, in the sense that each is defined in the simplest form possible and where ports
are power ports (as mentioned before, in case ports are not power ports, bond graphs
are commonly addressed as pseudo-bond graphs with pseudo-bonds). This simplest
form is the minimum number of ports and a minimum number of constitutive param-
eters, which results in the linear form. This results in one-port C, I, Se, Sf, and R, as
well as the two-port TF, GY, and RS that are all characterized by one parameter and
the 0- and 1-junctions, which are always linear, have no parameter at all. Junctions
should have at least two ports to be power continuous, but that would limit the
possible structures to chains only. This means that the simplest form of a junction
required to be able to build arbitrary structures should have a minimum of three
ports. In case the constitutive parameter of an element is replaced by a function
of time, the modulated and switched versions of the basic elements, i.e., MC, MI,
MSe, MSf, MR(S), MTF, MGY, X0, and X1, are obtained (cf. Table 1.3).

Note that Paynter [2] originally used only one-letter labels for the node types:
E instead of Se, F instead of Sf, T instead of TF, and G instead of GY. His stu-
dents Karnopp and Rosenberg [8] noted that interpretation became easier when in
some cases two- and three-letter labels were used and they introduced the label-
ing used herein. In some dialects, e.g., [12], the 0- and 1-junctions are replaced
by e- and f -junctions (common effort and common flow junction, respectively) or
even using the domain-dependent symbols of effort and flow, like u for common
voltage junction, v for common velocity junction, and T for common temperature
junction. Thoma [13] uses a dialect that violates our earlier attempt to only focus at
the topological structure of relations between concepts: he uses the so-called s- and
p-junctions, where he relates an s-junction to a series connection and a p-junction
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Table 1.3 Basic node types

Node label Linear (time-variant) constitutive relation

M)C e − C−1 (·) q = 0; q = ∫
f dt

(M)I f − I−1 (·) p = 0; p = ∫
edt

(M)Se e = e (·) ; de
d f = 0

(M)Sf f = f (·) ; d f
de = 0

(M)R(S) e − R (·) f = 0;
(

fSirr − R (·) f 2

T = 0

)

(M)TF e1 − n (·) e2 = 0; f2 − n (·) f1 = 0

(M)GY e1 − r (·) f2 = 0; e2 − r (·) f1 = 0

0 ei = e j ∀i �= j;
n∑

i=1
εi fi = 0 ∀εi ∈ {−1,+1}, +1: inward; −1: outward

1 fi = f j ∀i �= j;
n∑

i=1
εi ei = 0 ∀εi ∈ {−1,+1}, +1: inward; −1: outward

X0 ei = if condition then e j else 0 endif ∀ j �= i ;

f j = if condition then
n−1∑

i=1
εi fi ∀i �= j, εi ∈ {−1,+1} else 0 endif

X1 fi = if condition then f j else 0 endif ∀ j �= i ;

e j = if condition then
n−1∑

i=1
εi ei ∀i �= j, εi ∈ {−1,+1} else 0 endif

to a parallel connection. Given that this only has a meaning for physical structures
and confuses a topological representation of concepts with a spatial representation,
we strongly advise against the use of the terminology in this dialect, as it causes a
form of confusion during physical systems modeling that can be quite misleading.

Again it is emphasized that although the terminology (power, energy, entropy,
and temperature) seems to imply a link with the physics, the link with the corre-
sponding physical concepts like energy and power will be made during the dis-
cussion of port-based modeling. This section lists unambiguous definitions of the
most elementary node types. However, any user can add specific nodes to these
definitions. The answer whether it makes sense in the context of port-based mod-
eling does not belong in the framework of the description of the notation itself: it
is possible to express both sense and nonsense in terms of correct language, and
bond graphs are nothing more or less than a graphical language of which we are
discussing the semantics and grammar rules. In Section 1.4 we add causal port prop-
erties and causality assignment to set the stage for using this graphical language in
physical system modeling, but first we shortly discuss how an existing model can be
translated or transformed into a bond graph. In Section 1.5 it will become clear that
aspects of the causality assignment procedure can also be used during the process
of modeling itself as they provide immediate feedback on the modeling decisions
being taken.
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1.3.5 Model Transformation into a Bond Graph

When a model is already available in the form of a domain-dependent iconic
representation like an electrical circuit diagram or a mechanical schematic,
it can be converted into a domain-independent bond graph by first identify-
ing the domains that are present (step 1) and choosing a reference effort (or
velocity) (step 2), next identifying all the port types that are present (step 3)
and listing to which effort or effort difference (velocity or velocity difference)
they are connected (step 4). All efforts can be represented by a 0-junction
(step 5) and all effort differences can be represented by a 0-junction that is
connected to the two 0-junctions of which it is a difference by means of a
1-junction and bond orientations that result in this difference (step 6). Similarly,
all velocities can be represented by a 1-junction (step 5) and all relative velocities
(‘velocity differences’) can be represented by a 1-junction that is connected tot the
two 1-junctions of which it is a difference by means of a 0-junction and proper bond
orientations (step 6). Finally all ports can be connected to this junction structure
using the list made during step 4 (step 7). Finally superfluous junctions can be
omitted (junction structure simplification; step 8) [14, pp. 297–311]. These eight
steps can be used to perform model transformation.

Take, for instance, the model represented in Fig. 1.6 by an iconic diagram
which shows an ideal planar pendulum driven by an electric dynamic transducer
(motor/generator) connected to a voltage source. The model has four domains in
the mechanical framework of variables that we will use, viz., the electromagnetic
domain, two orthogonal mechanical translation domains, and the rotational domain.
In the thermodynamic framework it would have eight domains, viz., electric, mag-
netic, three potential, and three kinetic domains for each of the two independent
coordinates of the plane as well as the rotation in that plane, but as the iconic
diagram model is already based on the mechanical framework of variables, we
choose to work herein and show the transition to the thermodynamic framework
later. Hence four references (in the mechanical case: reference directions) need to
be identified: the electric ground as indicated in the iconic diagram as well as the
reference frame with the orthogonal velocities in the x- and y-directions that span
the plane and the angular velocity in that plane. The already identified elementary
behaviors in the electromagnetic domain are (cf. Fig. 1.6) an ideal voltage source,
the series resistance of the current loop, i.e., mainly of the motor windings, the series
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inductance of the motor windings, and the electric port of the ideal motor/generator
(magnetic field assumed to be constant!). The other port of the motor is in the
rotational domain, in which also the motor inertia and the bearing friction can be
identified in the iconic diagram. The symbol for the pendulum mass indicates that
it is assumed to be a point mass with I-type storages in both coordinate directions.
If one of these directions is in parallel with the gravitational acceleration, the iconic
diagram expresses that there is a constant force of effort (force) on the corresponding
I-type port, which corresponds to an Se-type port.

What remains to be done is to translate the configuration information of the pen-
dulum, i.e., the rigid constraint between the pivot point and the point mass

x = l cosϕ (1.13)

y = l sinϕ (1.14)
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into velocity relations that generate the remaining part of the junction structure that
for the time being can be modeled as a three-port position-modulated transformer
(with ϕ being the modulating state) with flow relations:

ẋ = (−l sinϕ) ϕ̇ (1.15)

ẏ = (l cosϕ) ϕ̇ (1.16)

and due to the necessity of power continuity of the constraint:

Tϕϕ̇ = Fx ẋ + Fy ẏ = (−l sinϕ) Fx ϕ̇ + (l cosϕ) Fy ϕ̇ (1.17)

The torque force relation should be

Tϕ = (−l sinϕ) Fx + (l cosϕ) Fy (1.18)

resulting in the 2× 1 transformation matrix

[−l sinϕ
l cosϕ

]

(1.19)

that characterizes this 2× 1-port MTF.
Via the intermediate steps mentioned above (cf. Fig. 1.7a–c) and a straightfor-

ward decomposition [15, 16] of the 2× 1-port MTF into two elementary MTFs the
final bond graph in Fig. 1.7d is obtained.

1.4 Computational Causality and Causality Assignment

1.4.1 Introduction

Although there are physical arguments for some of the causal port properties, this
section will only address the possible causal port properties and a causality assign-
ment algorithm that is based on these properties. The implications on physical
system modeling will be discussed later. The aim of this particular algorithm is to
generate a computational structure that is optimally suited for computer simulation,
but other algorithms can be defined that have other purposes.

Each port in a true bond graph is characterized by four relevant objects: effort,
flow, power, and the constitutive relation between effort and flow that may contain
an integration or differentiation with respect to time. In case of pseudo-bonds there
are only three relevant objects, effort, flow, and constitutive relation, as the conju-
gation of effort and flow is not related to power. In case of linearity, the constitutive
relation is characterized by just one parameter per port. It depends on the purpose
of the model that is being represented by the bond graph which of these objects
are independent and which are dependent with respect to a particular port. If the
constitutive relation is a known and therefore independent object, either the effort
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or the flow has to be an independent variable due to the definition of a constitutive
relation, while the (power) conjugate variable is by definition dependent. As a result,
the power is a dependent variable too, because it is equal to the product of the power
conjugate variables effort and flow. When the constitutive relation is the dependent
object – as is the case in the context of design or parameter estimation – both the
effort and the flow can be considered independent objects of a port.

Hence, we can distinguish two situations:

1. Known constitutive relation: Either the effort or the flow is an independent vari-
able, power can always be computed as the product of effort and flow

2. Unknown constitutive relation: Both effort and flow are independent variables

In the first case the effort and flow can be considered bilateral signals at the port
(cf. Fig. 1.4). Consequently, the bond connected to that port represents a bilateral
signal flow and at the port at the other side of the bond, the roles of effort and flow
in the constitutive relation of that port are reversed.

While a bond graph is being constructed a choice has to be made for each port
between independent (input) and dependent (output) port variable. If the effort of
a bond serves as the input for one of the two ports it connects, it has to be the
output of the other port. Due to the bilateral nature of the connection the flow of
the first port has to be an output and serves as an input for the second port. When
a choice is made, this is indicated in the bond graph by a causal stroke at the end
of the bond that is connected to the port where the effort is an independent variable
and the conjugate flow a dependent variable. As a result, the open end of the bond
(i.e., the end without a causal stroke) is connected to the port where the flow is an
independent variable and the conjugate effort a dependent variable (Fig. 1.4). When
a bond graph is ready and fully augmented with causal strokes, it can be automat-
ically converted into a set of computable assignment statements. The assignment
of this computational causality or, if no confusion is possible, just causality is an
algorithmic process based on the causal properties of each port and/or node type
[8, 17]. The graphical representation of this computational structure also gives a
modeler immediate feedback on his modeling decisions [18].

In the second case it is possible that at some port both effort and flow are inde-
pendently given and the constitutive relation (the constitutive parameter of the linear
case) is the dependent object. As mentioned before, this situation has been addressed
in the literature as ‘bi-causality’ (cf. Chapters 5 and 6). The concept of bi-causality
may play a role in design and identification of unknown constitutive relations. In
some dialects it is represented by drawing only the upper half of the causal stroke
at the port where both effort and flow are given and by putting the lower half of the
stroke at the other side of the bond, assuming that the bond is drawn horizontally
to be able to explain the position in terms of ‘upper’ and ‘lower.’ Naturally the
orientation of a bond in the drawing plane of the graph has no meaning as it is
topological, so the concept of ‘lower’ will be defined with respect to a bond in
the side of the bond where the little stroke of the half arrow is located. Obviously
the concept of ‘upper’ is the other side of the bond. It is clear that in a context of
modeling existing dynamic behavior with the purpose of numerical simulation the
situation that a constitutive relation is unknown is not relevant and is merely used for
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computational purposes related to design and parameter estimation/identification in
which one may have doubts about the added value of graphical representation in a
bond graph. For this reason, only the first case will be considered in the remainder
of this section.

1.4.2 Causal Port Properties

Ports may have different causal properties:

(1) The causality of the port is fixed. This occurs in two situations:

(a) Either the effort or the flow is a given input of the port, independent of the
conjugate variable. This corresponds to the definitions of the (M)Se and
the (M)Sf nodes.

(b) The constitutive relation has a form that can only be made explicit in one
causal form (non-invertible) any other node except the junctions.

(2) There is a preference for a particular causality. For example, in case there is
a preference for integration over differentiation with respect to time, the ports
of the storage nodes, (M)C and (M)I, may be given a preferred causality, viz.,
effort-out (C) and flow-out (I), respectively. This will turn out to be the most
common preferred causality later, when a causality assignment algorithm is dis-
cussed aimed at generating a set of differential equations that is in an optimal
form for numerical simulation.

(3) There is a constraint between the causality of two or more ports of a node. This
is the case for the elementary two port nodes (M)TF and (M)GY: the (M)TF
always has only one stroke at the node, while the (M)GY has either both strokes
at the node or both open ends. The junctions also have such a causal constraint:
an n-port 0-junction has one stroke at the node and n − 1 open ends, while an
n-port 1-junction has one open end at the node and n − 1 causal strokes. The
same holds for the X0 and the X1 in principle, but in many cases they will be
given a fixed causality, given the discontinuous and consequently non-invertible
nature of their constitutive relations.

(4) In all other cases there is arbitrary causality or free causality, which means that
the causality can be chosen freely or is determined by the causal properties of
the port at the other side of the bond.

1.4.3 Causality Assignment

Causality assignment or causal augmentation is an algorithmic procedure that can
be applied to a bond graph based on the causal port properties of its nodes. An
important process during this assignment is the propagation of causality via causal
constraints. This means that when the port of a node with constrained causal port
properties gets its causality assigned in such a way that it determines the causality
of one or more of its other ports on the basis of the constraint, the causality is



24 P.C. Breedveld

propagated via these other ports, which in turn can cause propagation at the other
nodes to which these ports are attached until the process stops. The causal bonds
resulting from such a propagation process form a so-called causal path. When
causality propagation results in a closed causal path or causal cycle, in most cases a
global constraint can be applied on that cycle that depends on the particular domain
represented by the graph.

In short, the following steps are taken:

(1) Choose an unassigned port with a fixed causality of type 1a, assign it, and check
that the causality of the port at the other side of the bond, which is assigned as
a result

(a) either is not in conflict with a fixed causality of that port: If there is a
conflict with a fixed causality of type 1a, the bond graph is ill-posed; if
there is a conflict with a fixed causality of type 1b, the constitutive rela-
tion should be changed into an invertible one or approximated by iteration
during numerical solution, or

(b) corresponds to the preferred causality of that port: If not, the consequences
should be checked based on the origin of the preference, or

(c) is propagated via the causal constraint of the port of the other side of the
bond to one or more ports for which all these checks should be repeated
until propagation ends, or

(d) is an arbitrary or free causality.
Continue with (1) until all ports with fixed causality of type 1a are

assigned.

(2) Choose an unassigned port with a fixed causality of type 1b, assign it, and check
that the causality of the port at the other side of the bond, which is assigned as
a result

(a) either is not in conflict with a fixed causality of that port: A conflict with
a fixed causality of type 1a cannot occur here, as it should have become
apparent during step 1; if there is a conflict with another fixed causality
of type 1b, one of the two constitutive relations should be changed into an
invertible one, approximated by iteration or the resulting combination of
involved constitutive relations should be rewritten analytically, or

(b) corresponds to the preferred causality of that port; if not, the consequences
should be checked based on the origin of the preference: preferably the con-
stitutive relation should be changed as assigning a non-preferred causality
in this manner unnecessarily decreases the order of the set of state equations
represented by the bond graph, or

(c) is propagated via the causal constraint of the port of the other side of the
bond to one or more ports for which all these checks should be repeated
until propagation ends, or

(d) is an arbitrary or free causality.
Continue with (2) until all ports with fixed causality of type 1b are

assigned.



1 Concept-Oriented Modeling of Dynamic Behavior 25

(3) Choose an unassigned port with a preferred causality, assign it, and check that
the causality of the port at the other side of the bond, which is assigned as a
result

(a) either corresponds to the preferred causality of that port; if not, this means
that the corresponding states are not independent of each other (in case of
integral preferred causality) or that the states or not independently control-
lable (in case of differential preferred causality), or

(b) is propagated via the causal constraint of the port of the other side of the
bond to one or more ports for which all these checks should be repeated
until propagation ends, or

(c) is an arbitrary or free causality.
Continue with (3) until all ports with preferred causality are assigned.

If all bonds have obtained their causality after this step a set of ordinary
differential equations (ODE) is obtained, if not, the result will be a set of
mixed differential and algebraic equations (DAE).

(4) Choose an unassigned port with an arbitrary causality, choose a causality, and
check that the causality of the port at the other side of the bond, which is
assigned as a result

(a) either is propagated via the causal constraint of the port of the other side
of the bond to one or more ports for which all these checks should be
repeated until propagation ends, or

(b) is an arbitrary or free causality too; make an inventory of all the algebraic
loops that occur as a result of the first choice and compare it with the
properties of the algebraic loop(s) that would occur when the first choice
would have been different. If solution of the algebraic loops by iteration
is no option, the set of constitutive relations that is part of the causal path
can be written in an explicit form analytically. Note that the choice of the
arbitrary causality may influence the loop gain of the algebraic loop and
may be adapted to obtain a set of algebraic relations that is optimal for
numerical solution.

Continue with (4) until all ports with arbitrary causality are assigned.

1.4.4 Causality Assignment Example

Straightforward application of the causality assignment to the bond graph in Fig. 1.7
results in Fig. 1.8, where the numbers refer to the sequential order in which the
causal strokes were assigned. Note that the two I-type storage elements representing
the pendulum point mass do not get their preferred causality. Section 1.5 will explain
and solve this issue.

A causal bond graph is commonly synonymous with a set of ordinary first-order
differential equations (ODE) that can be automatically generated from the graph
when the constitutive relations of each port are well defined (linear relations are
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Fig. 1.8 Causality
assignment to bond graph of
example model
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used by default). In case dependent storage ports or algebraic loops are detected
during causality assignment, like in Fig. 1.8, the user knows that the generated
set of equations is a mixed set of differential and algebraic equations (DAE) in
principle – automated symbolic processes may still generate a set of ODE’s –
such that an appropriate choice of a numerical integration method has to be made
[19]. Modeling and simulation tools like 20sim can make efficient use of these
aspects (www.20sim.com), such that a first simulation result of a modeling idea or a
dynamic effect on a model change can be easily obtained, thus providing fast feed-
back on modeling decisions, which improves the modeling and model debugging
processes.

1.5 Port-Based Physical System Modeling

1.5.1 Introduction

Modeling can be defined as the creation of an abstraction of a (part of a) problem
and its context in such a way that the abstraction helps the modeler deal with that
problem, where a problem should be considered in the most general sense of the
word: the need for more insight can be seen as a problem as well. Obviously, there is
no such thing as THE model, as each modeler will make his own modeling decisions
and it is highly unlikely that these are always the same. Furthermore, even though a
man-made device may have been constructed from the perspective of one particular
functional model, the context of its physical realization will rarely be identical, such
that different models are needed that depend on a particular context. This means that
it makes no sense trying to find out if one particular model is ‘true’ or ‘false’: the
key issue is whether or not the model is competent to help the modeler answer his
question in the most general sense of the word. In many cases this competence can
be quantified by the error between the numerical results of a model and measure-
ments of relevant aspects in the real world that the model tries to capture. However,
in some cases a qualitative correspondence in the sense of the nature of the behavior
(e.g., oscillation, relaxation, and (in)stability) may already lead to the solution of a
problem without considering numerical errors.

www.20sim.com
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1.5.1.1 Intended Behavior Versus Parasitic Behavior

In case a model needs to be created for trouble-shooting purposes of a man-made
device with an intended functional behavior, the designer of that device is often
not the most successful modeler as the problems often result from the difference
between the behavior of the actual physical realization and the conceptual picture of
reality that the designer used to create a particular functionality and that is a model
as well. The trouble-shooter should model the physical effects that are ‘parasitic,’
i.e., not contributing to the intended functionality. Parasitic effects are effects that
are neglected initially, yet influence the behavior in such a way that they should be
included in a model to be able to capture the behavior that is of interest. They should
be made part of the model in order to be able to solve the problem at hand.

1.5.2 Basic Physical Principles

In case of the general context of physical systems, i.e., systems of which the behav-
ior is supposed to obey the basic principles of (classical) physics, a model of the
dynamic behavior of a physical system is also supposed to correspond to these basic
principles like energy conservation, and positive entropy production and the conser-
vation principles of the generic physical quantities like momentum, electric charge,
magnetic flux (linkage), and entropy (while allowing that entropy is produced as
well!). These principles can be considered generic modeling assumptions.

1.5.3 Modeling Versus Model Transformation

Many textbooks that claim to discuss modeling ‘pollute’ the picture of modeling
sketched above, as they do not describe the process of modeling itself, but the
process of transforming one model description (usually in the form of natural lan-
guage supported by sketches or diagrams) into another one, usually in the form of
a set of (differential) equations or a block diagram representing a computational
structure or even the input code of a specific simulation package. The modeling
decisions themselves, i.e., the decisions about the physical phenomena that should
be represented by the model in order to obtain a competent description of reality
in a particular problem context, commonly do not play a large role. For instance,
when Feynman et al. [20] in his Lectures on Physics part 1 Fig. 4.7 shows a pendu-
lum, his text makes clear that his ‘pendulum’ is already a model consisting of ideal
concepts: a point mass, an infinitely stiff, massless constraint, and an ideal pivot
point. The transformation into equations then becomes a process with a unique
result. Zill [21, p. 209] makes a difference between a ‘physical pendulum’ – any
object that swings back and forth – and a ‘simple pendulum’ for which he explicitly
states most assumptions. However, his concept ‘mass’ is implicitly assumed to be
a point mass and his concept ‘rod’ is implicitly assumed to be infinitely stiff. He
then generates the corresponding differential equation (= model transformation)
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by writing the constraint of the rod in terms of accelerations and relates this via
Newton’s second law to the tangential force. By referring to his sketch he equates
this force to the tangential component of the gravitational force and thus obtains
a nonlinear second-order differential equation in the angular displacement of the
pendulum from its equilibrium position. No attention is paid to the background of
the modeling decisions when they cease to lead to a competent model and this is
typical for many descriptions of a modeling process.

The transformation of the iconic diagram of the simple pendulum model into
a second-order differential equation is unique, given a choice of relevant variables
(angular, tangential, horizontal, or vertical displacement) and parameters (pendulum
length and mass, gravitational acceleration). It is a suitable exercise in model trans-
formation for engineering students, but has nothing in common with the modeling
process itself, i.e., the decision under which circumstances this model is a compe-
tent abstraction from reality that helps answer a question. As it is easier to create
an appearance of objectivity in exams by testing model transformation abilities on
the basis of one possible result, while model decisions are much less strict and by
definition subjective to some extent, most educational systems that have deviated
from the master–pupil model for efficiency reasons have also deviated from teaching
the actual process of modeling as a consequence.

Before the time of computer simulation, many could counter this criticism
by demonstrating that bringing in more complex aspects into a model leads to
differential equations that cannot be solved analytically, giving not much room for
competence to help to solve a problem. In other words, the availability of solv-
able model structures was relatively small and the decision process restricted to
the selection of a model structure that would best capture the data. However, using
computer simulation, the behavior of much more complex models can be studied,
which means that carefully taken modeling decisions and explicit assumptions are a
key to competent models for real-world situations.

1.5.4 Model Representations

Apart from mathematical model representations in terms of differential equations,
many graphical model representations exist: block diagrams and signal flow graphs
are used to represent the mathematical structure of a model, Venn diagrams and Petri
nets represent the logi(sti)c structure of systems in which the events are considered
to be discrete in time, electrical circuit diagrams represent both the relations between
the electrical properties of physical components and the relations between concep-
tual elements. Iconic diagrams similar to circuit diagrams exist for the mechanic,
hydraulic, pneumatic, and thermal domains, even though the symbols are often not
as well defined as in the electrical case, the picture of a simple pendulum model
being an already used example. In all cases, however, the (arbitrarily) chosen metric
of the topological graph has no meaning: The location of the nodes with respect to
each other is commonly chosen such that the picture gives an organized impression.
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Fig. 1.9 Simple electrical
circuit diagram

For instance, in an electrical circuit diagram the unwritten, heuristic rule is that
the reference node is at the bottom, nodes related to sources at the left, and nodes
related to loads at the right, while the nodes are kept as much as possible at a grid
and the symbols of the labeled edges are connected to the nodes by straight lines
(Fig. 1.9).

By contrast, in a linear graph [22], which can be seen as an abstraction of a circuit
diagram, the edge symbols are replaced by edge mnemonic codes that are not part of
the edge anymore, while the edges are commonly drawn as curved lines. In his ear-
lier mentioned lecture with the challenging title ‘complete breakdown of intuition,’
Lewin incorrectly implies that the arbitrary area enclosed by the edges of a circuit
diagram can be related to an actual area enclosed by a current-carrying wire, a cur-
rent that can be (among other things) the result of a magnetic field surrounded by this
wire. Note that the arbitrary area is only present in the graph in order to represent the
nodes separate from each other and that the layout can be changed without changing
its meaning. The influence of a magnetic field on an actual (‘spatial’) area enclosed
by actual wires thus has to be separately represented in a graph (circuit diagram)
by the concept of an ideal inductor (‘conceptual concentration’), which would have
prevented the paradoxal conclusions Lewin makes and which even makes him state
that ‘Kirchhoff is for the birds.’ Even though this may have been an educational trick
to draw the attention of the audience, downplaying famous scientists like Kirchhoff
and even downplaying his own colleagues of whom he says in a suggestive way that
their correct claim that he is cheating ‘is telling you something about them’ does
not seem to fit in this explanation. The point where he is actually cheating is when
he claims that the voltmeters are connected to the same points: he has connected
the voltmeters to different points in space, viz., immediately across the spatially
separate resistors, interpreting the wires as ideal connectors which can then be con-
sidered to be ‘the same points’ from the perspective of electric potentials. However,
the wires between these points constitute the majority of the winding that picks
up the induced current, thus generating an induced voltage between his points of
measurement. Like one of the comments on YouTube puts it: ‘There is no problem
in interpreting the flux term in Faraday’s equation as an EMF, it is done historically
and everyone knows that is not a gradient of a scalar potential.’ (EMF stands here
for electromotive force, the induced voltage, and is often called back-EMF when
this voltage is generated by a spinning motor and thus a measure for its speed.)

The reason for spending so many words on this issue is that these kinds of con-
fusions are deeply rooted in our scientific culture. A good way to prevent oneself
from falling into the traps of confusing modeling with model transformation, of
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confusing spatial information with a topology representing conceptual structure and
unjustified extrapolation of existing models is to use the following checklist:

Checklist for modeling physical systems:

• Make problem context explicit as much as possible and iterate at any time when
needed

• Make implicit assumptions explicit
• Keep record of all assumptions being made
• Keep the spatial configuration information separate from the topology that repre-

sents conceptual structure, even if the variables happen to coincide

Note that the example of the model with the ideal pendulum in Fig. 1.6 is an
example of a situation where the position variable (the angular position ϕ) merely
describes a configuration state.

Next we study the conceptual foundations of each dynamic model.

1.5.5 The Concepts of System Boundary and Environment

The system boundary separates the system or subsystem from its environment. The
environment of a system is that part of the rest of the universe that has some form of
relation with the system. The environment can influence the behavior of the system,
but not its dynamic characteristics. The system boundary is the boundary between a
system and its environment that can be defined on the basis of a boundary criterion.
Common boundary criteria are based on the concept of state that will be discussed
first.

1.5.6 The Concepts of State, Equilibrium, and Change of State

All dynamic models are based on the concept of state. States can be divided into
extensive states, i.e., states that are proportional to the extent (either spatial, mate-
rial, or both) of the physical object of which the behavior is described, and inten-
sive states, i.e., states that are independent of the extent of this physical object.
An extensive state can be related to a conservation principle (momentum, charge,
matter, magnetic flux, displacement, etc.), i.e., if q is a state it satisfies the property∮

dq = 0, and its dialectic complement, the ‘rate of change of state’, dq/dt = f
is generally considered a flow of the corresponding quantity in a general sense, as
conservation is also interpreted in the sense that an exchange of a stored quantity has
to take place via the intermediate space. In other words it is assumed that conser-
vation is not achieved by simultaneous annihilation and generation at the same rate.
The state and its rate of change are considered dialectic complements as a state has
no meaning when it cannot change and a flow has no meaning if it does not result
in change of state, even when this state is not included in the model. The latter
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remark refers to the situation that storage of ‘what is flowing’ is not always rele-
vant to understand behavior. This is the case when constant (= ‘stationary’) flows
play a role in a model. In other words, flows can exist that describe an exchange
with a non-storing concept, i.e., they are not identical to a rate of change of state,
although they may contribute to it. This process of shaping concepts can be seen as
‘conceptual concentration’: even though the flow is in principle always related to a
change of state, it may be decoupled from it by concentrating the change of state
in a particular concept (‘storage’) and concentrating the description the contribu-
tion to the change of state in a separate summation of contributions, i.e., flows that
are not a time derivative of a state individually, but contribute to it via a so-called
balance equation. This approach allows that the storage related to flows is not part
of the model, but of the environment, such that there is no need to describe it as
storage.

A system is said to be in its equilibrium state when the system is not exposed
to changing environmental influences (there may be a constant influence though)
and all the rates of change of state are zero and consequently all states constant.
This means that flows can be considered ‘equilibrium-establishing variables’: the
net result of contributing flows to a rate of change of state is unequal to zero until
the equilibrium state is reached. This leaves room for some flows not being zero,
but having a constant value in equilibrium. In other words, the concept of a flow
can be generalized by realizing that each contribution to a rate of change of state in
a balance equation can be considered a flow, such that a flow itself does not have
to be equal to a rate of change itself. This means that an equilibrium situation can
occur if the sum of the non-zero, constant flows in a balance equation results in a
zero rate of change of state. Such a special case of equilibrium is called a stationary
state.

When a state of an object is identified, it is considered the same for the whole
extent of the object or concept being considered. The extent itself is also a state, even
though it is often constant. When we increase the extent by bringing two objects
together that are in mutual equilibrium, i.e., do not result in flows when left to
interact freely with each other, the intensive state remains the same by definition.
In other words, the equilibrium between two objects is determined by the intensive
states being equal. On the other hand, a difference in intensive state(s) will generate
(a) change(s) of state or flow(s) until an equilibrium is reached. This brings us to the
heart of the description of dynamic physical processes: flows that establish equilib-
rium and intensive states or efforts that determine equilibrium and thus can be con-
sidered ‘equilibrium-determining variables.’ As a consequence, efforts and flows
are said to be dynamically conjugated. Note that this distinction for the concepts of
effort and flow is available for a thermodynamic type of variable classification (cf.
Table 1.1). We will see later that this distinction is lost in the mechanical framework
of variables (cf. Table 1.2) where the potential and kinetic domains are combined
into one domain, which is unfortunate for the process of identifying concepts during
modeling. Combined with checks of units and dimensions, the check on the nature
of physical variables forms a powerful instrument for taking modeling decisions and
checking the consistency of models.
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1.5.7 Boundary Criteria

The states that are commonly used as boundary criteria are ‘amount of matter,’ e.g.,
not only the fixed amount of matter in a rigid body, but also a fixed amount of fluid in
Lagrangian coordinates or the gas in a closed balloon, and ‘available volume’, e.g.,
not only a container with a fixed volume, but also a ‘control volume’ for the study
of fluid flow in Eulerian coordinates. In case of the ‘matter criterion’ the system
consists of a fixed amount of matter or rather the boundary is defined as a border
that does not allow exchange of matter. In case of the ‘volume criterion’ the system
consists of a fixed volume or rather the boundary is defined by a border that does
not allow volume changes. Note that the two latter formulations are more general
as they allow mixed boundaries like fluid flowing through a piece of flexible tube:
the openings are spatially fixed with respect to the wall boundaries and allow no
change of volume, while they do allow exchange of matter (fluid), while the tube
wall does not allow an exchange of matter, but it does allow a change of available
volume due to the flexibility of the tube. In principle, other conserved quantities like
electric charge could serve as a boundary criterion too, but this is seldom used.

In case of a spatial structure of components that are modeled as a network struc-
ture, the network structure is only constant if the subsystem boundaries maintain
their relative locations with respect to each other, in other words, each subsystem
should keep the same neighbors. This means that material subsystem boundaries
can only be used when they do not violate the network structure. For instance, rigid
bodies in a chain structure should not pass each other. In case the volume criterion
is used to define a subsystem boundary a similar constraint holds that is automati-
cally satisfied if all volume boundaries are defined with respect to the same spatial
reference.

1.5.8 The Port Concept

Due to the dynamic conjugation of intensive state (equilibrium-determining variable
or effort) and rate of change of extensive state (equilibrium-establishing variable
or flow), the concept of a ‘port’ can be introduced as the medium of exchange of
the concepts effort and flow with other conceptual entities that represent dynamic
properties of physical objects. This way of looking at relationships between physical
concepts can be seen as a paradigm change with respect to the input–output way
of thinking that is induced by modeling in terms of block diagrams (with fixed,
explicit causality) as well as with respect to the completely a-causal description of,
for instance, balance equations. The possibility to represent the chosen causality for
a port in a bond graph as an algorithmic consequence of a particular interconnection,
not only generating a format of the model equations well suited for simulation but
also providing feedback to the modeler about his modeling decisions, is a feature
that makes a bond graph extremely well suited to construct and to represent port-
based models.
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1.5.9 Bond Graph Construction

A bond graph can be written during modeling in a manner similar to the model
transformation into a bond graph representation:

Identify domains, choose a reference per domain, and identify common
equilibrium-determining variables. These are commonly efforts, but if the classical
mechanical framework of variables is used the kinetic effort, i.e., the velocity, is
dualized into a flow. Represent common efforts by 0-junctions and common veloc-
ities by 1-junctions. Identify the basic concepts that are needed to represent the
relevant phenomena per domain in terms of ports. For instance, an ideal transformer
that connects two domains has two ports and each of them has to be identified.
Next it has to be determined to which effort (velocity) or effort difference (velocity
difference) a port is to be connected. An effort difference can be constructed by
means of a 1-junction and a velocity difference can be constructed by means of a
0-junction, but all effort differences should be explicitly represented by 0-junctions,
while all velocity differences should be explicitly represented by 1-junctions. Next
all ports can be connected to 0-junctions (or 1-junctions in case of mechanical ports)
and the bond graph can be simplified when possible. Note that the reference effort
or velocity is not represented by a junction (as it would result in an unnecessarily
complex graph that leads to the same result after simplification), unless one is inter-
ested in the value of the conjugate variable acting on the reference (e.g., the reaction
force or the ground current).

Returning to the causal bond graph of the example in Fig. 1.8 we can now
conclude that the differential causality of both I-elements results from the rigid
constraint between the rotor inertia and the point mass of the pendulum in the
two degrees of freedom of the plane. Even without writing equations the mod-
eler gets this feedback from causality assignment and since this can be automated
this provides a means for immediate feedback on modeling decisions while draw-
ing the bond graph. It immediately shows that infinitely rigid, massless mechani-
cal constraints are in principle not physically realizable, but that it still may be a
good decision to neglect the elastic behavior of a stiff mechanical connection as
it introduces high frequent behavior in the model that may not be relevant for the
problem context and is at the same time costly for numerical integration. In case
the transformers would have a constant transformation ratio (no modulation), the
bond graph allows for a straightforward model transformation of both dependent
I-elements to the same junction as the rotor inertia, with which they can be com-
bined into one I-element with integral causality, an operation analogous to appli-
cation of the Huygens–Steiner theorem (e.g., [23]). However, in case of modu-
lated transformers an additional gyristor [24] is generated (cf. Fig. 1.10) for both
x-direction

Tx = (−l sinϕ)
d

dt
(−ml sinϕ) ϕ̇ = d

dt

(
ml2 sin2 ϕ

)
ϕ̇ −

(
ml2 sinϕ cosϕ

)
ϕ̇2

(1.20)
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Fig. 1.10 Virtual inertia’s and gyristors resulting from a transformation of the I-elements to the
body-fixed frame in the example of Fig. 1.7

and y-direction

Ty = (l cosϕ)
d

dt
(ml cosϕ) ϕ̇ = d

dt

(
ml2 cos2 ϕ

)
ϕ̇+

(
ml2 sinϕ cosϕ

)
ϕ̇2 (1.21)

However, in this particular case of rotation, the sum of the two time-dependent
virtual inertias becomes a true (constant) inertia

d
(
ml2 sin2 ϕ

)
ϕ̇

dt
+ d

(
ml2 cos2 ϕ

)
ϕ̇

dt
= dml2ϕ̇

dt
(1.22)

such that the total inertia becomes

J + ml2 (1.23)

and the gyristor contributions compensate each other as a consequence:

−
(

ml2 sinϕ cosϕ
)
ϕ̇2 +

(
ml2 sinϕ cosϕ

)
ϕ̇2 = 0 (1.24)

Note that if the constraint would be elastic, the gyristors (GR) would stay in the
model and represent the fictitious forces like the centrifugal force (in case of a rigid
constraint, the corresponding velocity and thus the corresponding power is zero,
such that the contribution becomes irrelevant for the behavior).

The result of transforming both I-elements leaves only the Se-element repre-
senting gravity at the other side of the transformer. Taking a closer look at the
combination of configuration state-modulated MTF and Se shows that internal port-
modulation results in a nonlinear C-element (cf. Fig. 1.11):

TC = −Tg = − (l cosϕ) Fg = − (l cosϕ) (−mg) = mgl cosϕ (1.25)
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Fig. 1.11 Resulting inertia combined with Se via a port-state-modulated transformer (a) resulting
in an IC second-order loop and (b) with nonlinear C

The causal path between the I and the C immediately shows the potential peri-
odic behavior of the pendulum. For small angles around −π/2 this C-element
even becomes a linear C-element with parameter 1/mgl and the relation for the
oscillation frequency f can be seen directly from the graph to be the common
result:

f = ω

2π
= 1

2π
√

IC
= 1

2π

√
mgl

J + ml2
= 1

2π

√
g

J
ml + l

(1.26)

When compared to immediately writing a damped second-order model in the
angle ϕ for the pendulum, one may observe that the final result is identical, but that
the approach allows for physically motivated model extrapolation, e.g., a ‘spring-
pendulum’ or a ‘pinned pendulum’ as well as connection to other domains like the
electric drive in the example. The example also shows how bond graph construction
provides immediate feedback on modeling decisions based on the causal port prop-
erties of the concepts used in the model to represent the modeling choices, based on
energy conservation and power continuity that is built in the notation. Next the role
of energy conservation is further explored for multiport storage.
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1.5.10 Energy Conservation

For physical systems a function E (q) = E (q1, . . . , qn) of the (conserved) exten-
sive states q1, . . . , qn can be defined that in turn is conserved. This conservation
is related to the evident requirement that the models we make are symmetric with
respect to time translation, in other words, a dynamic model should result in the
same behavior when starting from a particular initial state, independent of the exact
moment in time. Obviously, without such a constraint, modeling would be a sense-
less activity. Due to the principle of energy conservation, the energy is an extensive
state too, albeit a function of all other relevant extensive states. In principle, it is a
first-degree homogenous function of the extensive states as a consequence of being
extensive. A homogenous function F (x) satisfies the following property:

F (αx) = αnF(x) (1.27)

where α is an arbitrary parameter and n is the degree, also called order, of the
homogenous function. Consequently, if α systems with energy E(q) that are in
mutual equilibrium are combined, the energy E(αq) of the resulting combination
is equal to α times the energy E(q), i.e., α1 E(q), so the energy is indeed a first-
degree homogenous function in principle. Note that if there would not be mutual
equilibrium, the resulting energy depends on the process of combining and thus
would change the model.

In many modeling cases energy functions are used that are not first-degree
homogenous, due to keeping one of the states constant and not considering it a
state anymore, but a constitutive parameter. If one takes the example of an amount
of matter moving with respect to some inertial reference, the extensive states are its
amount of moles N and its momentum p. The (kinetic) energy is

Ekin (p, N ) = p2

2M N
(1.28)

where M is the molar mass (a material parameter). Since

Ekin (αp, αN ) = α2 p2

2MαN
= α p2

2M N
= α1 Ekin (p, N ) (1.29)

the kinetic energy is a first-degree homogenous function and thus an extensive quan-
tity. However, when using the concept of a rigid body, the constant amount of moles
is commonly not considered a (constant) state anymore, but part of the constitutive
parameter ‘mass’ m = M N , such that the kinetic energy becomes a second-degree
homogenous (quadratic) function of the momentum p:

Ekin (αp) = α
2 p2

2m
= α2 Ekin (p) (1.30)
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and in this case equal to the negative value of its Legendre transform L with respect
to p

L (Ekin (p))p =
∂Ekin (p)

∂p
p − Ekin (p) = vp − Ekin = L (v) (1.31)

i.e., the complementary energy or co-energy

E∗kin (v) = −L (v) = vp − Ekin = 1

2
mv2 (1.32)

where v is the velocity of the body

v = ∂Ekin (p)

∂p
= p

m
(1.33)

The partial derivatives of the energy with respect to the states q

∂E (q)
∂qi

= ei (q) (1.34)

are called efforts and are, again in principle (!), zero-degree homogenous functions
of the extensive states and are intensive states as a consequence:

ei (αq) = ∂E (αq)
∂αqi

= α∂E (q)
α∂qi

= α0 ∂E (q)
∂qi

= ∂E (q)
∂qi

(1.35)

Note that the velocity is an intensive state in the kinetic domain, i.e., the domain
linked to the extensive momentum state, and thus the equilibrium-determining vari-
able of the kinetic domain, and that there is an intensive state of the material domain
μtot (total material potential) too:

μtot (p, N ) = ∂Ekin (p, N )

∂M
= − p2

2M N 2
= −Mv2

2
= μtot (v) (1.36)

The latter relation between the two intensities can also be seen as the result of the
fact that the total Legendre transform of a first-degree homogenous function is equal
to zero:

L (E (q)) = E (q)−
∑

i

∂E (q)
∂qi

qi = E (q)−
∑

i

ei qi = L (e) = 0 (1.37)

This means that one of the intensities is a function of the other ones or, in other
words, the number of independent intensive states is one less than the number of
extensive states. This makes sense, since the information about the extent itself is
omitted from the intensive description. If we would have assumed in our example
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that the density of the matter ρ is constant, the mass can also be described by the
volume V it consumes, i.e., m = ρV , such that

∂Ekin (p, V )

∂V
= ∂

p2

2ρV

∂V
= − p2

2ρV 2
= −ρv

2

2
(1.38)

The latter term is equal to minus the so-called dynamic pressure that is used to
describe fluid flow.

Note that

E (q) =
∑

i

∂E (q)
∂qi

qi =
∑

i

ei qi (1.39)

is a property of any first-degree homogenous function (in thermodynamics called
Gibbs’ equation), while

dL (E (q)) = dE (q)− d
∑

i

ei qi =

=
∑

i

ei dqi −
∑

i

ei dqi −
∑

i

qi dei = −
∑

i

qi dei = 0 (1.40)

The relation

n∑

i=1

qi dei = 0 (1.41)

is called the Gibbs–Duhem relation in thermodynamics [25], where n is the number
of extensive states involved, often written for a constant total amount of moles N in
the form

n−1∑

i=1

qi

N
dei = 0 (1.42)

where qi/N is the molar density of state qi (which becomes a molar fraction when
this state is another species), i.e., an intensive quantity, which is reflected in the
reduction of the amount of involved efforts to n−1, while only n−2 efforts remain
independent due to this relation which has the nature of a weighted sum.

When the conserved extensive states change during a dynamic process by
exchange due to flows, energy is exchanged too. This means that the (‘local’) rate
of change of the energy, called power P , is a relevant physical variable too

P = dE (q)
dt

=
∑

i

∂E (q)
∂qi

dqi

dt
=

∑

i

ei fi = eT f = e · f (1.43)
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where we see that these particular intensities (efforts) and rates of change of exten-
sities (flows) are not only dynamically conjugated but also power conjugated. Note
that, in addition to the energy conservation principle, also Heaviside’s principle is
assumed here, viz., that the energy has to transverse the intermediate space and that
the conservation is not maintained by annihilation in one ‘place’ and generation at
the same rate in another ‘place.’ The concept of ‘place’ is put between quotes in
order to emphasize that these ‘places’ may be spatially separated locations, but may
also indicate that the separation is merely conceptual, such that an interconnection
structure may be related to a spatial structure, but may also refer to a structure of
conceptual relations. Abstracting away from physical space often appears to be a
conceptual bridge too far for many, leading to all sorts of conflicting interpretations
and paradoxes, as will be discussed in more detail in Section 1.5.14.

1.5.11 The Power Port Concept and the Bond Graph Notation

In the above treatment a link was made between the physics and the variables effort,
flow, and power, for which we defined the bond graph notation earlier. This means
that a link between physical concepts and the bond graph notation can be made in
a straightforward manner. Given the definition of a C-type port in subsection 1.3.2,
Fig. 1.12 shows that the energy can be assumed to be stored in a multiport C-element
with n ports of which the efforts are equal to the partial derivatives of the energy
with respect to the extensive state variable stored via the corresponding port and
the conjugate flows are equal to the rates of change of this state. This means that
the energy function is a generating function of the n constitutive relations ei (q)
with dqi = fi dt . In the graph, the generating function is distinguished from the
constitutive parameter or relation by the use of a double colon (::) instead of a
colon. In order to create a flow when some difference exists between equilibrium-
determining variables (efforts), it is necessary that other types of ports than storing
ports can be described (e.g., irreversible transduction). The concepts of effort and
flow are thus generalized into variables that may contribute to a partial derivative of
the energy (generalized effort) and that may contribute to a rate of change of state
(generalized flow), but do not have to be identical to them. This corresponds to a
multiport-irreversible transducer that relates the effort vector of the multiport to the
conjugate flow vector. Due to the irreversible nature of this process, the net power
that flows into n − 1 of the ports has to come out at the thermal port of which the
flow represents the production of entropy that is related to an irreversible process

Fig. 1.12 Multiport
C-element representing
energy storage
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as a consequence of the principle of entropy production. The power of this port is
thermal power, i.e., a rate of change of heat.

In order to (conceptually) connect these non-storing ports to the storing ports,
nodes are needed that neither store nor make a difference between their ports, in
other words ports that are power continuous and port symmetric. It can be proven
that merely the demands of power continuity and port symmetry lead to two solu-
tions for the constitutive relations that are linear and domain independent and can
be considered a combination of the generalized Kirchhoff current (flow) and voltage
(effort) laws with the commonness of the conjugate effort and flow, respectively [9].
Again, we emphasize that these nodes do not have to be spatially distinguishable:
they may spatially coincide with the fundamental physical behaviors (storage, irre-
versible transduction, etc.) that are needed to describe the dynamics of variables in
one spatial location. This also means that these variables will not be individually
measurable in that situation. However, if one wishes to represent such model struc-
tures graphically they will need to be given a separate location at a piece of paper
or a computer screen. This means that there is no automatic relation between the
spatial structure of objects under investigation and the graphical representation of
the concepts needed to describe dynamic behavior. This abstraction step in model
representation is for many people, both students and experienced researchers, a
bridge too far: they tend to confuse the conceptual structure between fundamental
dynamic behaviors with a spatial structure, not in the last place, because in some
domains physical components are created of which the dominant behavior, at least
within a certain range of operation, can be competently modeled by just one elemen-
tary behavior and thus represented by just one ideal conceptual element. On top of
that, the names of these physical components often coincide with the names of the
corresponding conceptual elements. This holds in particular for electrical circuits
where the names ‘resistor,’ ‘capacitor,’ ‘transformer,’ etc., are used in both cases,
but it also holds for the inertia of a rigid body in the mechanical domain.

1.5.12 Causality, Legendre Transforms, and Co-energy

As discussed in the previous section, the stored energy as a function of the extensive
states can be represented by a multiport C-type node in a bond graph (C-element). It
can be concluded that when this energy is used to generate the constitutive relations
of this multiport, the efforts are dependent variables of the stored extensive states,
i.e., an effort-out causality in the bond graph. This causality requires that all flows
at the ports are integrated with respect to time in order to obtain the change in state
that can be added to the initial state, which is a relevant parameter for each physical
storage port. If the interconnection to another port requires that the causality of a
port be inverted, this means that the extensive state is replaced in the constitutive
relation as an independent variable by the conjugate effort (intensive state) and that
the conjugate flow (the rate of change of the state) has to be obtained via differenti-
ation with respect to time which leaves no room for the concept of initial state. This
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physical argument, combined with the fact that numerical differentiation amplifies
(numerical) noise, results in a preference for effort-out or integral causality for a
C-type port as opposed to flow-out or differential causality.

However, if a particular model requires non-preferred differential causality the
energy cannot be used as a generating function for the constitutive relations and
has to be Legendre transformed. As discussed earlier, the negative Legendre trans-
form or co-energy with respect to the dependent extensive state(s) should now be
used as generating function and this changes the relation between the efforts at the
other ports and the generating function. In case one or more extensive states are
considered constant parameters in such a way that the constitutive relations become
linear, the energy and co-energy become equal in value, although they still have
different independent variables. This results in a common misinterpretation in the
sense that energy and co-energy are confused, which may have an impact on the
way a constitutive relation can be derived from a generating function:

E∗qi
= −L (E (q))qi

= ∂E (q)
∂qi

qi − E (q) = ei qi − E

= E∗qi
(q1, . . . , qi−1, ei , qi+1, . . . , qn) (1.44)

For example, take a two-port C characterized by the following energy function:

E (q) = E (q1, q2) = q2
1

2C (q2)
(1.45)

The efforts then are

e1 = ∂E (q1, q2)

∂q1
= q1

C (q2)

e2 = ∂E (q1, q2)

∂q2
= − q2

1

2C2 (q2)

dC (q2)

dq2
= −e2

1

2

dC (q2)

dq2
(1.46)

The co-energy with respect to q1 is

E∗q1
(e1, q2) = e1q1 − E (q1, q2) = e2

1C (q2)− e2
1C2 (q2)

2C (q2)
= +e2

1C (q2)

2
(1.47)

and the second effort can be found as the negative value of the partial derivative of
this co-energy with respect to q2

∂E∗q1
(e1, q2)

∂q2
= +e2

1

2

dC (q2)

dq2
= −e2 (1.48)
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which means that

e2 �=
∂E∗q1

(e1, q2)

∂q2
(1.49)

An example will make clear why the latter inequality is listed explicitly.
Take a flat-plate capacitor of which the fringing of the electric field lines can be

neglected. For the capacitance C , such a capacitor can be written as

C = Aε

d
(1.50)

where A is the area of the plates, d the distance between the plates (spatial parame-
ters), and ε the dielectric constant (material parameter). The energy can be written
(second-degree homogenous function) as

E (q) = q2

2C
= q2d

2Aε
(1.51)

and the co-energy

E∗ (u) = Cu2

2
= u2 Aε

2d
(1.52)

However, due to the linearity of the constitutive relation both are the same in
value and the latter expression is often called ‘energy’ as a consequence. When the
distance between the plates is not constant, the distance d is considered again a
state variable, say x , and the model should be extended with a mechanical port. The
mechanical effort (force) of this port can be obtained by partial differentiation of the
energy function (that is a third-degree homogenous function)

E (q, x) = q2

2C (x)
= q2x

2Aε
(1.53)

with respect to x :

F (q, x) = ∂E(q, x)

∂x
= − q2

2C2 (x)

dC(x)

dx
= q2

2Aε
(1.54)

Note that the energy function is only written as a first-degree homogenous function
as the area is also considered as the product of two displacement states, such that all
extensive states are identified, even when kept constant.

Using

u (q, x) = ∂E (q, x)

∂q
= q

C (x)
= qx

Aε
(1.55)
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F (u, x) can be written (i.e., after a change in causality) as

F (u, x) = u2 A2ε2

2Aεx2
= u2 Aε

2x2
(1.56)

However, if this operation is applied to the co-energy, because it is mistaken for
the energy, one obtains

F ′ (u, x) = ∂E∗ (u, x)

∂x
= u2

2

dC (x)

dx
= −u2 Aε

2x2
(1.57)

so

F ′ (u, x) = −F (u, x) (1.58)

In other words, there is the danger of at least a sign error when deriving the force
via partial differentiation of a generating function that is incorrectly considered an
energy, even though it has the same numerical value, but not the same indepen-
dent variables. The reader is challenged to perform a similar analysis in case the
voltage is proportional to the third power of the charge, which will show him that
the difference may be more than ‘just’ a sign error that is often justified by some
action-is-minus-reaction reasoning. This moreover demonstrates the need for mak-
ing a careful categorization of variables when modeling and the distinction between
equilibrium-determining and equilibrium-establishing variables certainly supports
this categorization.

1.5.13 The Thermodynamic Versus the Mechanical
Framework of Variables

The above treatment of the concepts of power and energy and its Legendre trans-
forms is a typical thermodynamic approach [25], even though it holds for all
domains in which states and energy are useful concepts as demonstrated by the
above example of kinetic energy. It results in domains that are identified by one
extensive state q that is conserved, its rate of change or flow f that establishes the
equilibrium, and one intensive state or effort e that determines the equilibrium (cf.
Table 1.1 for particular instantiations). In the mechanical framework in Table 1.2,
two of these domains are combined into one, resulting in two types of extensive
state per domain, the so-called generalized displacements q and the generalized
momenta p, while the conjugate intensive variables are related to each other’s rates
of change by Hamilton’s equations, where the Hamiltonian H (q,p) is the energy
of the mechanical domain in principle (it can be generalized), i.e., the sum of the
kinetic and potential energies:
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∂H (q,p)
∂pi

= d

dt
qi = vi

∂H (q,p)
∂qi

= − d

dt
pi = −Fi

(1.59)

or

∂H (q,p)
∂ (q,p)

=
[

0 −I

I 0

][
q̇

ṗ

]

=
[

0 −I

I 0

][
v

F

]

= J−1

[
v

F

]

(1.60)

or, in non-preferred causality

[
v

F

]

= J
∂H (q,p)
∂ (q,p)

(1.61)

where I is a unit matrix and J a so-called symplectic matrix or Poisson structure
matrix. Note that the so-called external forces can be simply added to this format, but
the most important conclusion is that when the generalized forces F and generalized
velocities v are used to describe the physical domains in a generalized mechanical
sense, the asymmetry between these variables is lost, as both can be equilibrium
establishing and equilibrium determining, which makes the use of these concepts
during modeling harder to use and interpret. However, given the large body of lit-
erature that is available on all aspects of this approach an extended mathematical
framework, inspired by a bond graph approach, was coined as ‘port-Hamiltonian
approach’ [26].

Another, even more important drawback of generalization of the mechanical
framework is the fact that the displacement variable that can be used to describe
storage of potential energy has the same nature as the variables needed to describe
the spatial configuration. In many cases the same variable describes configuration as
well as energy storage. This dual role of the displacement variable has brought many
to believe that force and displacement should be considered to be the conjugate
pair of variables for the mechanical domain, which leads to all sorts of confusing
analogies. However, it is easy to see that the initial length of a spring between two
masses does not influence its dynamic properties for linear motions: only the spring
constant and the masses determine the natural frequency of this system. However,
in case of planar or spatial motion or even linear motion with contact behavior like a
bouncing ball, the changing configuration modulates the energy transfer and in those
cases the configuration variable will influence the dynamics, but in a fundamentally
different manner than an energy state. This is why it is fruitful to distinguish between
(potential) energy states (displacements) and configuration states (positions), even if
the variable turns out to be the same mathematical state. Before the time of symbolic
processing, reduction of the states to the minimal set of independent states largely
supported the analysis. Using modern computer tools, dependent states can either
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be eliminated symbolically or solved numerically afterwards without bothering the
user, even though the user should carefully inspect the results in both cases.

The close relationship between configuration states and energy states creates
a preference for configuration-related variables in a model description, i.e., often
generalized momenta are replaced by generalized velocities in the relations, which
is rather straightforward in case the linearity of Newton’s law is assumed, which
always holds in classical mechanics. However, this means that a Legendre transform
is performed on the true energy function, the Hamiltonian H

H (q,p) = T (q,p)+ V (q) (1.62)

resulting in the Lagrangian L

L (q, q̇) = q̇t p− H (q,p) =
= T (q,p)+ T ∗ (q, q̇)− (T (q,p)+ V (q)) =
= T (q,p)+ T ∗ (q, q̇)− T (q,p)− V (q) =
= T ∗ (q, q̇)− V (q)

(1.63)

in other words, the Lagrangian is the difference between kinetic co-energy T ∗ (q, q̇)
and potential energy V (q), where the position dependence of the kinetic (co-)energy
is the result of the coordinate transformation into generalized coordinates.

1.5.14 Energy States Versus Configuration States

As the first use of bond graph concepts was highly related to the mechanical domain
and heavily influenced by already existing mathematical modeling approaches for
mechanical systems, the distinction between energy states and configuration states
was usually not made and two types of state variables were distinguished, general-
ized displacement (q-type state stored via a C-type storage port) and generalized
momentum (p-type state stored via an I-type storage port). As a consequence,
the asymmetry between effort and flow was lost as this approach combines two
domains and treats them as one (refer to thermal inertance paper and thesis). In the
two-domain approach the generalized potential domain has a generalized force-type
effort and a generalized velocity-type flow (rate of change of generalized displace-
ment, while the generalized kinetic domain has a generalized velocity-type effort
and a generalized force-type flow (rate of change of momentum). In bond graph
terminology it is easy to see that a unit gyrator expresses that in an inertial frame
the net effort of the potential domain is equal to the flow of the kinetic domain,
while the effort of the kinetic domain determines the rate of change of displace-
ment (flow) in the potential domain. Similarly, if one assumes quasi-stationary, i.e.,
non-radiating, electrical circuits, Maxwell’s equations that couple the magnetic and
electric domains can be reduced to a relation that equates the rate of change of
flux (linkage) (i.e., the magnetic flow) with a voltage (i.e., the electric effort) and a
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current (i.e., the electric flow) with a magnetomotive force (i.e., the magnetic effort).
In these specific cases (inertial frame and quasi-stationary networks) the interdo-
main relations reduce to identities that are expressed in a bond graph by a unit
gyrator called ‘symplectic gyrator’ (SGY). As dualizing, i.e., interchanging the roles
of effort and flow, the graph at one side of the SGY eliminates the SGY, the number
of variables is reduced, and the roles of effort and flow have become symmetric,
i.e., the distinction between equilibrium determining and equilibrium establishing
cannot be made anymore. This has caused endless discussions about whether a force
is analogous to a voltage or to a current, while the above discussion shows that this
is just a matter of which side of the SGY is dualized in the sense that the roles of
efforts and flows are interchanged. However, given the fact that the energy state of
the potential domain (displacement) is similar to and often coincides with a config-
uration state which is of importance for all domains, it is to be expected that most
of the modeling concepts in the model are part of the potential domain, such that
it is to be expected that dualization of the kinetic domain is more straightforward.
Something similar holds for electrical circuits: The only conceptual connection to
the magnetic domain is the ideal coil (inductor), while the rest of the circuit model
is part of the electrical domain. In that case it is also more straightforward to dualize
the magnetic storage port into an I-type port.

Due to the dual role of the displacement variable, it is possible to eliminate the
potential energy by choosing another description of the configuration space. For
instance, Einstein showed in his general theory of relativity in 1915 that as a math-
ematical result, it is possible to eliminate potential energy by such a transformation
of the space–time that gravity is reduced to a property (curvature) of space–time.

During the modeling process, where one is not yet interested in the mathemati-
cally minimal form of a model, but in a form that allows straightforward interpreta-
tion in terms of physical concepts, it is wise to represent the two roles of the position
variable separated, even if they merge mathematically into one variable when the
model is prepared for analysis or simulation.

The confusion that configuration information may cause when not kept separate
from other concepts also applies to topological representations. Graphs like circuit
diagrams or bond graphs are often interpreted as spatial relations or even with spatial
parameters like an area.

Earlier we discussed that assigning more meaning to certain model representa-
tions than they actually have leads to all sorts of confusions, similar to Lewin’s
incorrect interpretation of his own experiment, which is an example of confus-
ing topological information with spatial information. Although Willems [3] does
recognize the basic principle of a bond graph that models of physical systems consist
of subsystems that are related by bilateral signal flows, these confusions also make
him reject bond graphs when he writes, emphasized by a separate frame at page 66
of his paper:

(1) ‘The requirement that the product of effort and flow must be power is sometimes
not natural, for example, in thermal interconnections.’
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(2) ‘In connecting terminals of mechanical systems, bond graph modeling equates
velocities, and sets the sum of the forces equal to zero. In reality one ought to
equate positions, not velocities. Equating velocities instead of positions leads to
incomplete models.’

(3) ‘Interconnections are made by means of terminals, while energy is transferred
through ports. Ports involve many terminals simultaneously. The interconnec-
tion of two electrical wires involves equating two terminal potentials and putting
the sum of two terminal currents to zero. The product of effort, namely, the
electrical potential, and flow, namely, the electrical current, for an electrical
connection has the dimension of power, but it is not power. Power involves
potential differences, while the interconnection constraint involves the termi-
nal potentials themselves. It is not possible to interpret these interconnection
constraints as equating the power on both sides of the interconnection point.’

(4) ‘In many interconnections, it is unnecessary to have to worry about conservation
of energy.’

In particular points (2) and (3) refer to the earlier mentioned confusion, but we
will extensively comment on all of Willems’ arguments, because they represent the
beliefs of many and lead to erroneous conclusions, not only about bond graphs but
about modeling in general. It should be noted that Willems refers to classical bond
graphs based on the mechanical framework of variables with two types of storage
and velocity being a flow-type variable as discussed before.

Ad (1) Any self-respecting thermodynamic textbook will explain that the amount
of stored heat is not a state as it does not satisfy the criterion that its cyclic integral
equals zero, such that a heat flow is not a rate of change of state. If a model is
constrained to the thermal domain, heat or thermal energy is only a function of
the stored entropy and can serve as a state in that particular case only. In that case
also pseudo-bond graphs can be used to represent such models, so the constraint
that the two conjugated variables of a bond should always be power conjugated is
not as hard as Willems suggests. Furthermore, he writes in his main text that the
use of entropy flow ‘seems artificial.’ He probably means that for many students of
thermodynamics the concept of an entropy flow is counterintuitive, yet it is a well-
accepted concept in physics, which is absolutely necessary to describe the dynamic
interaction of the thermal domain with other domains like the mechanical domain
as the well-known treatment of an ideal Carnot cycle demonstrates [25].

Ad (2) The statement ‘In reality one ought to equate positions, not velocities’
shows that he does not make a distinction between configuration states (positions)
and energy states (displacements). The only difference between a constraint at
the displacement level and a constraint at the velocity level is an initial condi-
tion, for instance, the initial distance between two masses connected by a spring.
However, the dynamic behavior is not influenced by this initial condition. The
only argument to use (additional) constraints at the position level can be that
numerical integration generates errors that may lead to a change in the contri-
bution of the initial condition, which means that, due to numerical inaccuracies,
the masses in the example drift apart or closer together while they are oscillating.
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However, adding such a constraint is a numerical issue and not part of the con-
ceptual model. The easiest way to see this is to make a similar statement about
the electric charge in an electric circuit: While simulating the behavior of an elec-
tric circuit containing capacitors the total charge balance may be distorted due to
numerical errors. Apart from the fact that nobody seems to care about this, prob-
ably because charge is much less ‘visible’ than configuration and charge cannot
modulate the interconnection structure, a constraint at the charge level can still be
added in the numerical solution procedure to improve accuracy. However, position
variables also describe the configuration state and often one variable plays both
roles. For planar and spatial mechanisms the configuration variables can influ-
ence the dynamics via modulation when the coordinate transformations required
to describe the interconnection structure are position dependent. These coordi-
nate transformations are represented in bond graphs by a modulated multiport
transformer [27]. In conclusion one may state that the constraints in the junction
structure of the bond graph are energetic constraints at the velocity level, while
the configuration constraints are dealt with at the signal level, both for modulat-
ing the MTFs in the generalized junction structure and for finding potential rela-
tions between initial conditions, e.g., two springs connected between the same
masses.

Ad (3) He writes: ‘Interconnections are made by means of terminals, while
energy is transferred through ports.’

Here the actual configuration (‘interconnection’) is mixed up with conceptual
relationships.

He continues: ‘Ports involve many terminals simultaneously.’
First of all, it should be clear about which domain we talk: in a mechanical sys-

tem a terminal may correspond to a port, while mostly two electrical terminals are
required to create an electrical port. However, Willems fails to give examples of
ports consisting of more than two terminals and unless he is referring to multiports,
which would be confusing, more than two terminals per port are not possible, unless
one uses a rather uncommon definition of a terminal.

He then writes: ‘The interconnection of two electrical wires involves equating
two terminal potentials and putting the sum of two terminal currents to zero. The
product of effort, namely, the electrical potential, and flow, namely, the electrical
current, for an electrical connection has the dimension of power, but it is not power.
Power involves potential differences, while the interconnection constraints involves
the terminal potentials themselves. It is not possible to interpret these interconnec-
tion constraints as equating the power on both sides of the interconnection point.’

The conceptual error in this argument lies in the use of the concept ‘wire.’
Willems uses this as something for which a current is a meaningful concept as soon
as one terminal of the wire is connected to the terminal of another wire. However, a
current is a ‘through-variable,’ which means that a connection to a second terminal
at the other side, commonly with a component in between, is required to make the
concept of current meaningful. Not only the current requires two terminals, also
the voltage, as it is a relative concept and always measured with respect to some
reference (‘ground’). This means that all potentials are in fact potential differences,
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while Willems only considers potential differences with respect to potentials that
are not the ground potential.

This makes clear that any two electrical terminals, also if one is grounded and
not represented as such, form a port. However, in many treatments of electrical
circuits the logical order is reversed: First, a distinction is made between potential
and potential differences. Next a relation between the potential differences and the
potentials is derived via the incidence matrix and only then it is recognized that one
of the rows (balance equations) refers to a reference node (ground) which should be
omitted from the incidence matrix to obtain the so-called reduced incidence matrix.
This culture may have led Willems to drawing this conclusion.

In his main text (page 68) Willems even writes about this:
‘In electrical circuits, energy is not transmitted along terminals but rather through

ports. On the other hand, in modeling and interconnection, terminals matter, not
ports.’

He then explains the difference in his Fig. 11 where it becomes clear that he
assumes that connecting two terminals with each other suffices for electrical inter-
connection, which is not the case: A current can only flow after a second connection
that creates a loop.

This shows that he does not appreciate the difference between a drawing of some
physical components soldered together (= ‘mechanical’ connection) which does not
lead to a device that has any electrical meaning as no current can flow and an elec-
trical circuit diagram in which connections may coincide with physical connections
(soldering points), but may as well be conceptual.

Ad (4) Any textbook on (classical) physics will explain that if one models the
dynamics of physical systems, one should always consider the conservation of
energy, the most general principle of physics. However, the power involved in some
of the relations in a system may be negligible with respect to the power of other
relations and this is probably what Willems tries to say; however, he formulates it in
such a way that it becomes an implicit modeling assumption that power is negligible.
A bond graph represents such a modeling decision by ‘bond activation,’ turning the
bond into a signal for one of the conjugate variables while assuming the other to
be negligible. This shows that Willems, like many others, including those who use
bond graphs, has not taken the effort of studying what a bond graph representation
really is about, but that he has considered explanatory text in a particular context to
be a unique and generic definition.

Another highly related confusion is the concept of a ‘memristor’ introduced
by Chua [28]. When one studies Chua’s paper from a bond graph perspective it
becomes clear that he refers to what in a bond graph would be optimally repre-
sented by a state-modulated transformer for which Chua coined the name ‘mem-
ristor’ due to the seemingly missing link between the q-type and p-type variables
in the mechanical frame work of variables (Table 1.2). Note that the more general
thermodynamical framework would never suggest this relation. Not much attention
has been paid to this concept until recently, where some researchers came across
an interesting phenomenon that can be best described as a state-modulated resistor,
where the state can be set to different values without much ‘leakage,’ in other words:
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a resistor with a memory. They immediately saw the latter as a reason to rewrite their
equations into a form that more or less resembles Chua’s equations and next claimed
that the memristor was finally found [29], which again demonstrates the common
confusion between physical components and ideal conceptual elements.

1.5.15 Conservation and Continuity Within a Domain

As each conserved state determines a domain, additional connection constraints can
be found for various port types. For instance, a bond connected to one side of a
0-junction may be connected to a C-type storage port or a source port, as these
ports do not violate the balance equation. However, in principle, one should be more
careful when connecting an I-type, R-type, TF-type, or GY-type port, because these
ports cannot ‘absorb’ the conserved state related to the flow. However, all domains
with relative equilibrium-determining variables have a non-displayed balance for
the reference node (this balance equation is dependent on the balance equations for
the rest of the network and corresponds to the row that is omitted in an incidence
matrix to turn it into a reduced incidence matrix of an electrical circuit, for exam-
ple). This additional balance compensates for this flow, such that it is still possible
to connect these ports without violating the balance equation. Note that the I-type
port in principle is a connection to a GY-type port that connects to the storage in
another domain. Some domains have absolute equilibrium-determining variables,
like temperature and pressure, but since in most cases it is not practical to choose
the absolute zero point as a reference, usually another reference state is chosen, such
that these variables are treated as differences with respect to an arbitrary reference
and an additional balance too.

Further note that labeling energy with a domain is only possible in case of one-
port storage as multiport storage means that other domains have access to the stored
energy, such that it does not belong to one domain when stored. As we have seen
before, one-port storage is the result of neglecting all ports of other states because
they are considered constant, but it does not exist in principle, because a first-degree
homogenous energy function of a one-port storage element would lead to a zero-
order homogenous relation between effort and state, which would mean that the
effort would be a constant. So, also in principle, it is not appropriate to assign a
domain to energy, as it can be reached via more than one port, unless the flows of
all other ports are kept zero.

1.6 Conclusion

The warm bed of dynamic models in the form of a set of differential equations or
a block diagram in an a priori fixed causality has been replaced by the cold floor
of port-based modeling concepts with causal preferences and constraints. Hope-
fully the new revelation caused by this disturbing experience is the insight that the
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causality assignment procedure gives the modeler immediate feedback on his mod-
eling decisions, because the causal consequences of interconnection constraints can
be seen immediately in the context of the physical concepts instead of being the
result of an abstract analysis that hides the relation to the physics.

Another key issue of this contribution is to make clear that three kinds of struc-
tures, viz., configuration structure (spatial structure), physical structure, and con-
ceptual structure are often mixed up during the modeling of dynamic behavior of
physical systems. The earlier mentioned lecture where Lewin gives an area (spatial)
interpretation to a conceptual (topological) representation and incorrectly assigns
similarity of points in a conceptual representation to points in a spatial representa-
tion is an example of such a mix-up. Willems’ problems to understand bond graphs
are an example of a confusion of physical structure (‘soldering’ physical compo-
nents together not resulting in a configuration that has a meaning in an electrical
sense) and conceptual structure that shows the relations between ideal elements that
represent dominant behaviors of these components in a particular context, viz., a
circuit in that allows electrical phenomena, viz., currents. Again it is emphasized
that much attention was paid to these cases, not for the sake of having a special-
ized scientific discussion with opponents, but because these examples clarify how
easy it is to become the victim of the conceptual trap of forgetting about implicit
assumptions.

The common criticism that bond graphs are not well defined has been countered
by showing that their key properties can be defined up to a certain level, but that,
like any other language, dialects remain possible and it is up to the user to define the
exact meaning of specific symbols.
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Chapter 2
Energy-Based Bond Graph Model Reduction

L.S. Louca, D.G. Rideout, T. Ersal, and J.L. Stein

Abstract Model reduction refers to reducing the complexity of a given model to
achieve a balance between model simplicity and accuracy. This chapter presents
a set of model reduction techniques that are particularly amenable to bond graph
models due to the common energy-based nature of these techniques and the bond
graph language. Three techniques are presented that are developed with model order
reduction, model partitioning, and simultaneous order and structure reduction in
mind. Each technique utilizes a different energy-based metric that can be easily
calculated from a bond graph model. These underlying metrics are presented first,
followed by the algorithms, each with a simple illustrative example, as well as
summaries of larger case studies performed with those algorithms to highlight their
benefits. All three techniques are applicable to nonlinear models in differential–
algebraic form, are realization preserving in the sense that the original meanings of
the states and parameters are preserved, are trajectory dependent and thus explicitly
take the specific inputs and parameter values into account, and can reduce models
directly at the bond graph level.

Keywords Model order reduction ·Model structure reduction ·Model partitioning ·
Model simplification · Model deduction · Proper model · Power and energy ·
Activity · Relative activity · Junction inactivity · Activity index · Energetic
contribution index · Conditioning of bonds · Decoupling · Driving and driven
subgraphs · Driving and driven partitions · Subgraph loop

2.1 Introduction

The viability of a model for engineering system analysis, design, and control devel-
opment rests on its accuracy and simplicity. Model accuracy is critical for under-
standing, optimizing, and controlling the dynamics of a given system effectively.
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Model simplicity, on the other hand, is essential for gaining insights and for
tractability in system identification and optimization. Simpler models also lead to
lower order controllers that are easier to implement.

Seeking model accuracy and simplicity simultaneously, however, typically
engenders a trade-off: increasing the accuracy of a system model often necessitates
increasing the complexity of the model to a level more commensurate with the com-
plexity of the real system. In other words, the requirements of model accuracy and
simplicity often compete and must hence be traded off. This competition typically
grows as engineering systems become larger, more complex, and more integrated,
a trend in many modern engineering disciplines. Thus, there is a growing need for
system models that mitigate this competition and balance accuracy and simplicity
by only capturing the dynamics necessary for their respective applications. The lit-
erature, in recognition of this need, deems a dynamic system model proper for an
application [1] if it provides the accuracy required for that application with minimal
complexity. Note that the definition of a proper model in this context is application
dependent and different from the control theoretic definition of a proper transfer
function, which refers to a transfer function in which the degree of the numerator
does not exceed the degree of the denominator.

Obtaining a proper model is not a trivial task. It is not always obvious which
phenomena are important for a specific application and, hence, what to include in the
model and what to neglect. Therefore, dynamic system models are seldom proper
at the outset. To remedy this problem, the literature proposes many techniques for
obtaining proper models; a broad review of these techniques can be found in [2].
Some proper modeling techniques begin with simple models and increment their
complexity until they meet their respective accuracy requirements, a process known
as model deduction. Most techniques, however, begin with excessively complex
models and then reduce them until they become proper.

This chapter considers the reduction approach to proper modeling and describes
a set of model reduction techniques that are particularly amenable to bond graph
models in the sense that the techniques take advantage of the explicit energetic
nature of bonds in a bond graph model and yield reductions not only at the equation
level but also directly at the graph level.

Three techniques are covered in detail in this chapter. The first one, the Model
Order Reduction Algorithm (MORA), uses the L1 norm of power, referred to as
activity, to rank the energy storage and dissipation elements in a bond graph and
reduce the model by eliminating the least active elements. The second technique is
a decoupling identification and partitioning algorithm that applies a variation of the
activity metric, namely relative activity, to the junction structure in a bond graph
to find local sites of weak coupling and ultimately partition models into “driving”
and “driven” subsystems, which can lead to reduction of model order and junc-
tion structure. The third technique is based on another metric, namely the Energetic
Contribution Index (ECI), which considers not only the magnitudes of but also the
correlations between energy flow trajectories in the bonds for an improved assess-
ment. The ECI-based reduction technique ranks the bonds in a bond graph model
according to their ECI and identifies various possibilities for eliminating bonds from
the model, thereby obtaining simultaneous model order and structure reduction.
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The chapter starts with the description of the metrics that the techniques are based
on. Then, the reduction techniques are presented together with simple examples
illustrating their mechanics. Next, brief summaries of larger scale case studies are
given to demonstrate the techniques’ performances on larger scale system models.
Finally, a discussion of the advantages and limitations of the techniques is given
along with possible directions for future research.

2.2 Model Reduction Metrics

In the heart of any reduction technique lies a metric to evaluate which phenomena
can be neglected in a given model and which are important to keep. This section
presents the three metrics that underpin the subsequent reduction techniques. These
metrics are the activity, the relative activity, and the Energetic Contribution Index
(ECI).

All three metrics are based on the concepts of power and energy, which are
common underlying phenomena in all physical systems. A formalism such as bond
graphs, which represent the power/energy topography of a dynamic system, is there-
fore particularly amenable to implement these metrics and the algorithms based
on them. The power of each bond in a bond graph model is readily available as
the product of the corresponding generalized effort (e) and generalized flow ( f ).
The metrics are applicable to other formalisms, as well, as long as the energetic
interactions are made explicit.

The metrics assume a general system that can be described by differential–
algebraic equations as follows:

ẋi = F(xi , xd ,u), xi (0) = xi0

0 = G(xi , xd)
(2.1)

where xi ∈ �ni is the independent state vector, ni is the number of independent
states, xd ∈ �nd is the dependant state vector, nd is the number of dependent states,
u ∈ �m is the input vector, m is the number of inputs, F: �ni × �nd × �m → �ni

is a nonlinear vector function, G: �ni ×�nd → �nd is a nonlinear constraint vector
function, and xi0 ∈ �ni is the initial condition vector of the independent states. In
bond graph terms, this corresponds to bond graph models that can include derivative
causalities and Lagrange multipliers [3, 4]. Given any input excitation u and initial
conditions xi0, the state equations in (2.1) can be solved analytically or numerically
to obtain the time response of the state variables xi (t) and xd(t). The solutions of
the states can then be used to determine the required efforts and flows for calculating
the power of any bond in the model.

2.2.1 Activity: A Metric for Assessing Aggregate Energy Flow

The power associated with each element in a bond graph provides an indication
of the element’s contribution to the total energetic behavior of the system. Thus, if
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an element has high power associated with it, then this suggests that it is storing
or absorbing a “significant” portion of the power that is supplied into the system
through the inputs, and therefore, this high-power element can be expected to be
important to the system’s behavior.

However, using power as a reduction metric would lead to instantaneous and
time-varying decisions about the importance of elements, thus producing models
that are valid for a single time instance. Instead of instantaneous power, an aggre-
gate measure of power flow in or out of an element during a given time window
is desired. Previous work by Rosenberg and Zhou [5] proposed and implemented
RMS power, chosen from several alternative metrics that produce a single quantity
from power. While the physical meaning of RMS power is clear in steady-state
sinusoidal signals, its physical interpretation in assessing element importance in a
dynamic system is not. Therefore, a new measure of the power response that has
a simpler definition and clearer physical interpretation is used here. This power
response measure is called activity, A, and is defined as the L1 norm of power;
i.e.,

A =
τ1+T∫

τ1

|P(t)|dt =
τ1+T∫

τ1

|e(t) f (t)|dt (2.2)

where P(t) is the element power, e(t) and f (t) are the effort and flow of an energy
element, respectively, and τ1 is the beginning of the time period T over which the
model has to accurately predict the system behavior. Element power can also be
calculated using the constitutive law of each energy element as follows:

I : PI (t) = eI f I = eII

(∫
eI dt

)

= eII (p)

C : PC (t) = eC fC = C

(∫
fC dt

)

fC = C (q) fC (2.3)

R : PR(t) = eR fR = R( fR) fR

where I (p), C (q), and R( f ) are known scalar, in general nonlinear, constitu-
tive functions, p is the generalized momentum, and q is the generalized displace-
ment.

Activity has the units of energy, representing the total amount of energy that
flows in and out of an energetic element over the specified time window T . How-
ever, activity is a different quantity from energy because of the absolute value in
its definition. For example, the change in stored energy of an ideal energy storage
element (I or C) over a power oscillation cycle is zero; however, the activity over
the same cycle is nonzero, strictly positive, and monotonically increasing as shown
in Fig. 2.1.

In summary, to calculate the activity of each element, first the time response of
the state variables is determined by integrating the state equations in (2.1). Then,
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Fig. 2.1 Energy stored in an energy storage element versus the activity for an oscillation of power

element power is calculated from (2.3), and finally, the activity is calculated as
defined in (2.2) for each energy element in the model.

2.2.1.1 Activity Index

To get a relative measure of element importance, the element activity is compared to
a quantity that represents the “overall activity” of the system. This quantity is called
total activity and is defined as the sum of all the energetic element activities of the
system, i.e.,

Atotal =
k∑

i=1

Ai =
k∑

i=1

⎧
⎨

⎩

τ1+T∫

τ1

|Pi (t)|dt

⎫
⎬

⎭
(2.4)

where Ai is the activity of the i th element and k is the total number of energy
elements in the system.

The total activity, Atotal, represents the total amount of energy that flows through
the system’s energy elements over the given time T , and therefore, it indicates the
activity level of the system. This quantity is used to calculate a normalized measure
of element importance called element activity index or just activity index and is
given by

AIi = 100
Ai

Atotal
= 100

∫ τ1+T

τ1

|Pi (t)|dt

∑k
i=1

⎧
⎨

⎩

τ1+T∫

τ1

|Pi (t)|dt

⎫
⎬

⎭

i = 1, . . . , k (2.5)

The activity index is calculated for each element in the model and it repre-
sents the portion of the total system energy that flows through a specific element.
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Thus, (2.5) provides a ranking of all k elements relative to the total energy flow-
ing through all the elements in the system. It is proposed that an element with a
low activity index has a small contribution to the system dynamic response, thus
it is unnecessary under the given scenario and, therefore, can be eliminated from
the model to generate a reduced model. This elimination procedure is described in
Section 2.3.

2.2.2 Relative Activity

As described above, eliminating energy storage and dissipative elements with low
activity index will be shown to be an effective means of reducing model order.
Extending the application of activity to the bond graph junction structure can give
further model reduction opportunities by unearthing weakly coupled sets of ele-
ments in the model. Bonding of graph elements represents a connection of physical
devices at power ports, at which the power variables (effort and flow) of the con-
nected elements must be constrained to be equal. If only one of the power variables
is required to be equated between the elements, then one-way coupling exists which
can lead to model partitioning and reduction.

“Junction structure” refers to the 1- and 0-junctions capturing the constraint
equations that link the constitutive law variables of elements. Decoupling or one-
way coupling among elements creates negligible constraint equation terms, which
manifest themselves as bonds with relatively low aggregate power flow at a 1- or
0-junction [6]. The activity of a bond attached to a 0- or 1-junction, compared to the
activities of the other bonds at that junction, can then be used as a measure of the
relative importance of the associated constraint equation term compared to the other
terms in the equation. Such local comparison entails dividing each bond activity Ai

at the junction by the maximum bond activity Amax at the junction to get “Relative
Activity” RA, i.e., for bond i at a junction,

RAi = Ai

Amax, junction
(2.6)

Suppose any relative activity that falls below a user-defined threshold ε is deemed
negligible. Negligible relative activity of bond i implies that for a 0-junction, the
flow fi can be neglected in the flow constraint equation, and for a 1-junction, the
effort ei can be neglected in the effort equation.

A power bond with low relative activity can be “conditioned” or converted to
a modulated source and signal. This leads to the partitioning and model reduction
algorithm described in Section 2.3.

2.2.3 Energetic Contribution Index (ECI)

Energetic Contribution Index (ECI), previously referred to as Relative Importance
in the literature [7, 8], is a metric that is based on the same energy-based intuition
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behind metrics such as RMS power or activity. However, unlike these other metrics,
ECI works directly with energy instead of power and is geared toward capturing not
only the magnitudes of but also the correlations between the energy flow patterns
in a model for an improved assessment of the relative importance of both the ener-
getic components and their interactions, thereby enabling simultaneous structure
and order reduction.

The ECI is developed as follows. Let ei (t) denote the energy in a given bond i ,
which is given by the time integral of the product of the generalized effort and flow
variables associated with the bond, i.e.,

ei (t) =
∫ t

t0
effort (τ ) flow (τ ) dτ (2.7)

Construct the energy vector

e (t) � [e1 (t) e2 (t) · · · en (t)]
T (2.8)

where n is the number of bonds in the given bond graph. The energy trajectory
matrix of the system for a time window of

[
t0, t f

]
is then given by

E �=

⎡

⎢
⎢
⎢
⎣

eT (t0)
eT (t1)
...

eT
(
t f

)

⎤

⎥
⎥
⎥
⎦

(2.9)

As an intermediate step toward developing the ECI, let our first goal be to opti-
mally compress the information contained in E. In mathematical terms, this corre-
sponds to looking for an optimal lower rank approximation to E or, equivalently, to
minimizing the following error residual:

J =
t f∫

t0

‖e (t)− er (t)‖2 dt (2.10)

where er (t) denotes an approximation to e(t) that resides in an r -dimensional sub-
space. The solution to this minimization problem is given by the Karhunen–Loève
Expansion (KLE) [9, 10], also known as principal component analysis [11], the
method of empirical orthogonal functions [12], proper orthogonal decomposition
[13], singular value decomposition [14], empirical eigenfunction decomposition
[15–17], or the method of quasi-harmonic modes [18]. Specifically, let us define
the energy Gramian

W �=
∫ t f

t0
e (t) eT (t) dt ≥ 0 (2.11)
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with real eigenvalues σ 2
1 ≥ · · · ≥ σ 2

n ≥ 0 and orthonormal eigenvectors v1, . . . , vn .
Then, the following are known from the KLE theory [19]:

1. The energy vector e (t) can be decomposed into the orthogonal components
vi ci (t), i.e., e (t) = ∑n

i=1 vi ci (t), where ci (t) = vT
i e (t) is the component

function.
2. The magnitude, as measured by the squared norm, of each component vi ci (t) is

given by its corresponding eigenvalue, i.e.,
∫ t f

t0
‖vi ci (t)‖2 dt = σ 2

i .

3. The error residual J = ∫ t f
t0
‖e (t)− er (t)‖2 dt is minimized by er (t) =

∑r
i=1 vi ci (t) and is equal to

∑n
i=r+1 σ

2
i .

In other words, the KLE provides an optimal set of orthogonal basis vectors that
minimizes the error residual, i.e., for a given r there is no better choice of an
orthogonal set of vectors than the first r vectors given by KLE. Traditionally, model
reduction using KLE involves projecting the equations on the subspace spanned by
these basis vectors. However, to avoid a change in realization, no projection will be
performed at this point.

Instead, let us interpret the above-mentioned facts as follows: the eigenvectors
provide an optimal orthogonal basis for the full space of e (t), and the corresponding
eigenvalues quantify how much signal energy is captured by each eigenvector. Since
the observed quantity is energy, the eigenvectors give a new basis to express the
energy flow in the system, so they can be interpreted as energy exchange modes
in the system. Within each mode, the (absolute value of the) j th component tells
how much the j th bond contributes to that mode. Thus, an intuitive measure for
the energetic contributions of the bonds is proposed as a weighted combination of
the absolute values of the eigenvectors �vi , where the weights are the eigenvalues
σ 2

i , i.e.,

c̃ �=
n∑

i=1

σ 2
i |vi | (2.12)

where the j th component of c̃ provides an indication for the energetic contribution
of bond j . The absolute value |vi | indicates the absolute value of each component of
the vector and not a norm of the vector. The vector c̃ can be normalized with respect
to its maximum element to give a relative measure of energetic contribution, i.e.,

c �= c̃/max(c̃) (2.13)

where c is referred to as the Energetic Contribution Index (ECI) vector of the bonds.
Naturally, since the energy vector will depend on the particular inputs, initial

conditions, and parameter values used for simulation, it will be trajectory dependent,
and so will be the ECI vector. This will allow for tailoring the reduction to specific
scenarios of interest as will be illustrated later.
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2.2.3.1 A Note on Computing the ECI

Note that the energy Gramian in (2.11) provides an analytical way of computing the
ECI. However, obtaining the energy Gramian analytically may not always be easy
or even possible, especially in nonlinear systems. In that case, the Gramian can be
obtained through numerical integration. That would involve a discretization of the
integral in (2.11), which, in its simplest form, can be written as follows:

W ≈ e (t1) eT (t1)�t1 + e (t2) eT (t2)�t2 + · · · + e
(
t f

)
eT (

t f
)
�t f (2.14)

with�tk = tk− tk−1. For brevity, let ek
i
�= ei (tk)

√
�tk and ek

i j
�= ei (tk) e j (tk)�tk .

Then, (2.14) can be manipulated as follows:

W≈

⎡

⎢
⎢
⎢
⎢
⎣

e1
1

e1
2
...

e1
n

⎤

⎥
⎥
⎥
⎥
⎦

[
e1

1 e1
2 · · · e1

n

]+

⎡

⎢
⎢
⎢
⎢
⎣

e2
1

e2
2
...

e2
n

⎤

⎥
⎥
⎥
⎥
⎦

[
e2

1 e2
2 · · · e2

n

]+ · · · +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e f
1

e f
2
...

e f
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[
e f

1 e f
2 · · · e f

n

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e1
11 + e2

11 + · · · + e f
11 e1

12 + e2
12 + · · · + e f

12 · · · e1
1n + e2

1n + · · · + e f
1n

e1
21 + e2

21 + · · · + e f
21 e1

22 + e2
22 + · · · + e f

22 · · · e1
2n + e2

2n + · · · + e f
2n

...
...

...
...

e1
n1 + e2

n1 + · · · + e f
n1 e1

n2 + e2
n2 + · · · + e f

n2 · · · e1
nn + e2

nn + · · · + e f
nn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

n×n

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e1
1 e2

1 · · · e f
1

e1
2 e2

2 · · · e f
2

...
...
...
...

e1
n e2

n · · · e f
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

n× f

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e1
1 e1

2 · · · e1
n

e2
1 e2

2 · · · e2
n

...
...
...
...

e f
1 e f

2 · · · e f
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

f×n

= ST S

(2.15)
Now recall the relationship between the singular value decomposition of an arbi-

trary matrix S and the eigenvalue decomposition of ST S :

ST S =
(

U�VT
)T (

U�VT
)
= V�T UT U�VT = V

(
�T�

)
VT (2.16)

In other words, the eigenvalues of ST S are the squares of the singular values of S,
and the eigenvectors of ST S are the right singular vectors of S. Thus, the eigenval-
ues, σ 2

i , and eigenvectors, vi , of ST S, and hence of W, can be computed from the
singular value decomposition of S. This, actually, gives a numerically better way
of computing σ 2

i and vi , because calculation of singular values is a numerically
better-posed problem than calculating eigenvalues. The algorithm that is proposed
later in this chapter is based on this way of calculating the ECI.



62 L.S. Louca et al.

2.3 Model Reduction Algorithms

The previous section defined activity A, relative activity RA, and energetic contri-
bution index ECI. These metrics underpin the following algorithms for reduction of
model order and/or structure and system partitioning. These algorithms assume that
a model satisfying the accuracy goal is given, but is overly complex, and hence a
balance between accuracy and simplicity is sought through a reduction approach.
This initial model is hereafter referred to as the full model.

2.3.1 Model Order Reduction Algorithm (MORA)

The first model reduction algorithm based on the activity metric is shown in Fig. 2.2
and is called Model Order Reduction Algorithm (MORA). Given the full model, the
goal of MORA is to order the importance of the energy elements in that model as
given by their activity and reduce the size of the model based on a user-supplied
threshold of the percent of the total activity to be retained in the reduced model.

Fig. 2.2 Model order
reduction algorithm (MORA)

At the end of the simulation of the full model, the time response of the output
variables in (2.3) is available for the activity analysis. Given these output variables,
the element power is calculated. Then, the activity metric is calculated using (2.2).
Finally, the activity index in (2.5) of each element is calculated. The activity indices
are then sorted in descending order to identify the elements with high activity, con-
sidered more important, and low activity, considered less important. The result of
the sorting process is the ranking of the element importance and it is represented
with the vector r as shown in (2.17). The first element of this vector points to
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the element with the highest activity and the last points to the one with the lowest
activity:

r =

⎧
⎪⎨

⎪⎩

r1
...

rk

⎫
⎪⎬

⎪⎭
≡

⎧
⎪⎨

⎪⎩

highest activity element
...

lowest activity element

⎫
⎪⎬

⎪⎭
(2.17)

Sorting of the activity indices provides the critical information needed to reduce
the full model. Based on a user-supplied threshold (β) of how much of the total
activity is required to retain sufficiently accurate predictions for a particular engi-
neering design task, MORA trims appropriate energy elements from the bond graph.
This threshold defines the borderline between the elements that are going to be
retained in the model and those that are going to be eliminated. This process is
shown graphically in Fig. 2.3.

Fig. 2.3 Activity index sorting

The reduction algorithm sums the sorted activity indices until the Cumulative
Activity Index (CAI) exceeds the user-specified threshold. The summation process
starts with the element that is considered the most important (r1) and the cumulative
activity index is set to be equal to the activity index of element r1. Then, the next
important element (r2) is added and the cumulative activity index is increased by
the addition of the activity index of r2 to the previous cumulative activity index. For
a given number of included elements, i , the cumulative index is given by

CAIi = CAIi−1 + AIri , i = 1, . . . , k, CAI0 = 0 (2.18)
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Fig. 2.4 Detail of reduced
model procedure in Fig. 2.2

No

This procedure is repeated until the cumulative activity index exceeds the speci-
fied threshold (β) as shown in Fig. 2.4. The elements that have been accounted for
in the cumulative activity index are the significant elements and, therefore, are the
only elements included in the reduced model. The remaining elements of the full
model are eliminated.

MORA generates reduced models by eliminating ideal elements from the full
model. In the case where the full model is represented as a bond graph, the elimi-
nation of low-activity elements is achieved simply by removing these low-activity
energy elements and their connecting bonds. The junction structure of the bond
graph is retained in the reduced model, and therefore, the reduced model realization
is the same as the full model, so its physical meaning and relation to the physical
system are retained.

2.3.1.1 Illustrative Example: Nonlinear Quarter Car Model

A quarter car model is used to illustrate MORA. This model is a standard vehicle
dynamics model used in automotive engineering for ride quality evaluation [20] and
it is depicted in Fig. 2.5. Though it is already a relatively small model (two DOF,
requiring four state variables), it still serves the purpose of illustrating the proposed
ideas, as well as showing that even a relatively small model may not be proper.

The assumed full model of the vehicle is shown in Fig. 2.5 and consists of the
sprung mass (car body, engine, etc.) and the unsprung mass that accounts for the
wheel and axle masses supported by the tire. The suspension is modeled as a spring
and a damper in parallel, which connects the unsprung to the sprung mass. The tire
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Bond Graph ModelIdeal Physical Model

Model 

Conversion

Fig. 2.5 Nonlinear quarter car model representations – full model

is also modeled as a spring and a damper in parallel and represents the transfer of the
road force to the unsprung mass through the tire’s elastic and viscoelastic properties.
It is assumed that the model is excited by large amplitude road inputs, and therefore,
the nonlinear force/deflection characteristics (stiffening) of the suspension and tire
springs are included. In addition, the tire is modeled such that it can only carry
compressive loads to capture wheel liftoff that can occur on tough roads under high
forward vehicle speeds. The tire force for contact conditions is given by e(q) =
a1 q + a3 q3, whereas for no contact (liftoff, q > 0) the tire force is zero, i.e.,
e(q) = 0. This model feature introduces a model discontinuity that demonstrates
the applicability of the activity metric to highly nonlinear systems.

The bond graph of the full model is also given in Fig. 2.5 and has six ideal energy
elements, two of each type (I , C, and R), and their parameters are given in Table 2.1.
Note that the model includes only the system dynamics in the vertical direction; the
constant forward speed is used only to convert the spatial road description Zr (x)
into a temporal vertical velocity input, Vr (t), at the road/tire interface as shown in

Table 2.1 Vehicle parameters

Ideal energy element Parameter

Sprung mass Ms = 267.0 kg
Suspension damping BS = 700.0 N/s/m
Suspension stiffness a1 = 18, 872 N/m, a3 = 2× 105 N/m3

Unsprung mass MU = 36.6 kg
Tire damping BT = 200.0 Ns/m
Tire stiffness a1 = 193, 915 N/m, a3 = 2× 108 N/m3
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Fig. 2.6 Road profile – road
elevation Vr (x) and velocity
Zr (x)

Fig. 2.6. The vehicle is assumed to be traveling at a constant forward speed VF on a
flat road and at some point x = x0 it reaches a “smooth” curb. The transition of the
road profile from low to high level (Z = 0.2 m) is described by a cycloid function,
whereas the length of the curb is L = 0.5 m.

Due to the simplicity of this model the state and output equations are derived by
hand and transferred into MATLAB [21]. This step could have been done using a
bond graph modeling environment (e.g., 20-Sim [22], CAMP-G [23]) to generate
the time responses needed for the “Analyze Activity” step of MORA (see Fig. 2.2).
The dynamic equations are numerically integrated to first produce the time response
of the state variables and then the required set of outputs as defined in (2.3).

This illustrative example is divided into three studies. The first study explores
the proposed model reduction procedure by showing the outputs of many of the
intermediate steps leading to the proper model for a single “high forward speed”
input. Because the proper model is scenario dependent, a second study explores the
effect of changing the input to a “smoother” input (lower vehicle forward speed
than that used in the first study) on the proper model produced. Finally, a third
study explores the effect of the user-defined “model reduction threshold,” (β), on
the reduced model accuracy, by generating a series of reduced models under the
same input conditions.

High Forward Vehicle Speed Scenario

In this first study, the vehicle model is exercised as it travels over the curb at a
constant forward speed, VF = 5 m/s. This high forward speed generates a severe
velocity input that approximates an impulse function; the duration of the input is
only 0.1 s. The activity is calculated as a function of time by setting the lower bound,
τ1, to zero and varying the time window, T , of the integration in (2.2). As shown
in Fig. 2.7, the activities remain at zero until the vehicle hits the curb, at which
point power starts to flow into the system. The activities increase due to the nonzero
power flow until they approach a steady-state value as the system transients die out.
Note the discontinuity in the slope of the activities (especially for tire stiffness and
damping) at around 1.5 s. The high forward speed causes the wheel to lift off as the
vehicle drives over the curb and contact is restored at about 1.5 s. This causes an
impact force that results in the rapid increase in the activities.
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Fig. 2.7 Element activity, VF = 5 m/s

The steady-state value of the activities (τ1 = 0 s and T = 5 s) is used to gen-
erate a reduced model. This value accounts for all the power flow during the entire
dynamic event (both transient and steady-state effects), and thus, a reduction based
on these activities hypothetically should produce a model that accurately predicts
the system behavior over the same time interval.

The sorted steady-state values of the element activities are shown in Table 2.2.
There is only one element, namely the tire damping, that is clearly separated from
the others. The tire damping has a 0.15% activity index where the next most impor-
tant element, the tire stiffness, has an 8.46% activity index. The most important
element is the suspension stiffness, which accounts for more than 45% of the total
activity of the system. The sprung mass, suspension damping, and unsprung mass
are the next most important elements.

Table 2.2 Element activity and ranking, VF = 5 m/s

Rank element name Activity [J]
Activity
index [%]

Cumulative
activity index [%]

r1 Suspension stiffness 4139 45.44 45.44
r2 Sprung mass 2155 23.65 69.09
r3 Suspension damping 1066 11.70 80.79
r4 Unsprung mass 966.2 10.61 91.39
r5 Tire stiffness 770.7 8.457 99.85
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
r6 Tire damping 13.49 0.1481 100.00
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Based on a model reduction threshold, β = 95%, the element elimination is
completed as outlined in Fig. 2.4. MORA identifies the tire damping as the only
element that can be eliminated from the full model for this threshold. Note that
the algorithm keeps adding energy elements until the CAI becomes bigger than
the predefined threshold. As Table 2.2 shows (elements below the dashed line are
eliminated), the reduced model includes five out of the six elements and it retains
99.85% of the total activity. The tire damping is eliminated from the model and
the reduced model bond graph is given in Fig. 2.8. The reduced model maintains the
same number of states (four), but has one energy element eliminated. The equivalent
ideal physical model is also shown in Fig. 2.8, which is developed using a systematic
procedure for the physical interpretation of ideal element elimination as suggested
by the activity metric [24].

Model 

Reduction

Model 

Interpretation

Fig. 2.8 Model reduction, VF = 5 m/s, β = 95%

For assessing the accuracy of the reduced model, the dynamic response of the
reduced model is compared to the one of the full model. For all four states, the
reduced model accurately predicts the system behavior, but for a more rigorous
comparison, a quantitative comparison is used. The average relative error (ε) is
calculated using the following expression:

ε = 100

τ1+T∫

τ1

|w(t)− wr (t)| dt

/ τ1+T∫

τ1

|w(t)| dt (2.19)

where w(t) and wr (t) are the responses of the full and reduced model, respectively.
This accuracy measure is not unique and other metrics can be used leading to similar
conclusions.

The average error, ε, of each state is calculated using the metric in (2.19), and the
accuracy for the sprung mass velocity, unsprung mass velocity, suspension deflec-
tion, and tire deflection is 0.38, 6.1, 0.10, and 0.57%, respectively. The average
errors for the sprung mass and suspension spring states are expected to be lower,
since these components have a small high-frequency component and the eliminated
tire damping has a higher affect on the high-frequency mode.
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Fig. 2.9 Tire contact force error, VF = 5 m/s

For visual comparison, also the error of the tire contact force is plotted as shown
in Fig. 2.9. Notice that the error has a large high-frequency component and a much
smaller low-frequency one, which indicates the reduced model retains more the
lower than the higher frequency content of the full model.

Low Forward Vehicle Speed Scenario

A lower forward speed is used to demonstrate how the element activities and the
reduced model are affected by the system input. All the other simulation conditions
remain the same as in the high forward speed study.

Table 2.3 shows the steady-state activity indices as sorted by MORA. The table
shows that the most important element for this scenario is the suspension stiff-
ness, which utilizes most of the energy that flows through the system (60.86%). In
decreasing importance are the sprung mass, tire stiffness, and suspension damping.
A significant decrease in activity is then observed. The least important elements are
the unsprung mass and tire damping, with the tire damping absorbing almost no
energy (0.02% activity index).

Using the same threshold as in the first study, MORA eliminates the elements
that contain less than 5% of the total activity (95% accumulated activity). MORA
suggests that two elements, namely the unsprung mass and tire damping (elements
below the dashed line in Table 2.3), should be eliminated from the model. The
reduced model retains 99.15% of the total activity and it is generated by eliminating

Table 2.3 Element activity and ranking, VF = 1 m/s

Rank element name Activity [J]
Activity
index [%]

Cumulative
activity index [%]

r1 Suspension stiffness 1775 60.86 60.86
r2 Sprung mass 719.2 24.66 85.53
r3 Suspension damping 200.8 6.89 92.41
r4 Tire stiffness 196.6 6.74 99.15
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
r5 Unsprung mass 24.21 0.82 99.98
r6 Tire damping 0.5521 0.02 100.00
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Fig. 2.10 Model reduction, VF = 1 m/s, β = 95%

the unsprung mass (Mu) and tire damping (Bt) from the bond graph (see Fig. 2.10).
The reduced model has only three states instead of four, since the unsprung mass, an
energy storage element, has been eliminated. The equivalent ideal physical model is
also shown in Fig. 2.10. The elimination of the unsprung mass removes the inertial
effects without removing the constant gravity force.

For assessing the accuracy of the reduced model, the dynamic response of the
reduced model is compared to the one of the full model. The reduced model has
only three states; however, the eliminated unsprung mass velocity state can still
be computed from the remaining three states. The predictions of all states of the
reduced model are “similar” to those of the full model. The error, ε, for each of
the four state variables, sprung mass velocity, unsprung mass velocity, suspension
deflection, and tire deflection, is 1.17, 1.41, 0.08, and 0.25%, respectively. The accu-
racy of the unsprung mass velocity is the worst, since the state associated with this
variable is eliminated from the reduced model.

Element Rank and Model Accuracy

The underlying assumption of MORA is that the lower the activity of an element is,
the lower the contribution of that element to the overall model behavior is, and there-
fore, the element can be eliminated without significant degradation of the model
predictions. If this conjecture is true, it is expected that as elements with higher
activity are eliminated from the model, the accuracy of the reduced model will be
more strongly affected. To test these assumptions, a series of reduced models are
generated by varying the reduction threshold, β, in such a manner that one addi-
tional element, namely the one with the lowest activity, is eliminated from the next
reduced model.

The conditions for this study are the same as the ones used in the second scenario,
i.e., vehicle drives over the curb at a low forward speed. Therefore, the same activity
analysis as shown in Table 2.3 is used to generate the reduced models in this study.
The first reduced model is generated by setting the reduction threshold, β = 99.5%,
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Table 2.4 Accuracy level of reduced models

Average error as given by metric in (2.19)
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R
ed

uc
ed

m
od

el

R
ed

uc
tio

n
th

re
sh

ol
d

In
cl

ud
ed

el
em

en
ts

vs [%] vu[%] qs [%] qt [%] Mean [%]
Tire
contact force [%]

1 99.5 5 0.25 0.27 0.02 0.05 0.15 0.02
2 95 4 1.17 1.41 0.08 0.25 0.73 0.31
3 90 3 31.7 26.9 2.15 5.64 16.5 2.41
4 85 2 781 26.9 56.7 5.64 218 62.2

which, according to MORA, maintains five elements and only the tire damping is
eliminated from the full model. The accuracy of the states is also calculated using
the average error metric defined in (2.19), and the errors are given in Table 2.4.
To have a single accuracy measure for this reduced model, the mean value of all
the state variable accuracies is calculated. In addition to the state variables, the tire
contact force is used for comparison purposes, and it is plotted versus the full model
response in Fig. 2.11. The accuracy of the tire contact force is also given in Table 2.4.

Setting the reduction threshold to 95, 90, and 85% generates three additional
reduced models. Each of these reduced models has one less energy element as com-
pared to the previous reduced model. For generating the four reduced models, 1,
2, 3, and 4 elements are eliminated respectively. No additional reduced models are
generated since further reduction produces models with no physical meaning. The
results are given in Table 2.4, as well as in Fig. 2.11.

Fig. 2.11 Time histories of full versus reduced model predictions of tire contact force and the
errors in the reduced model predictions



72 L.S. Louca et al.

The first two reduced models (reduced model 1 and reduced model 2) have almost
identical predictions for the tire contact force as it is shown in Fig. 2.11 and have
an error of 0.02 and 0.31%, respectively. The third reduced model (reduced model
3) has some visible differences with an accuracy of 2.41%, while the last reduced
model (reduced model 4) has an average error of 62.2% and fails to capture the
system behavior. As can be seen in Fig. 2.11, the tire contact force prediction of the
fourth reduced model has undamped oscillations and it is very different from the
one of the full model. This prediction is expected, since this model has no dissipa-
tion elements included and consists of only a spring and mass connected in series.
Note that in the top plot of Fig. 2.11 there are five curves plotted, one for the full
model and one for each one of the four reduced models. However, only three curves
(reduced 2, reduced 3, reduced 4) are visible, since the full and reduced 1 curves are
almost identical with reduced 2. Similarly, in the bottom plot of Fig. 2.11 there are
five curves plotted but only three are visible.

The results in Table 2.4, for both the average error and the tire contact force
error, show that the error increases as more elements are eliminated. As elements
with a larger percentage of the total activity are eliminated, correspondingly larger
errors are produced. For the contact force, the error from the full to the first reduced
model is 0.02%, from first to second reduced model is 0.29%, from second to third
reduced model is 2.1%, and from third to fourth reduced model is 59.8%. The aver-
age errors of the four states exhibit a similar trend in the accuracy drop. This shows a
relation between accuracy and element activity such that the higher the activity of
an eliminated element, the higher the loss of accuracy will be.

2.3.2 Decoupling Identification and Partitioning Algorithm

The algorithm in the previous section establishes the connection between activity
and an energetic element’s contribution to the overall system dynamics. MORA
reduces model order by eliminating inactive elements, while retaining the junction
structure. Another proper modeling challenge is to find groups of elements within a
bond graph which form partitions, i.e., sets of elements between which there is weak
coupling, and to eliminate partitions which are not required to predict outputs of
interest. The partitioning problem is tackled in this section by applying the activity
metric to the junction structure.

A power bond with low relative activity RA at a junction, as defined in
Section 2.2, can be “conditioned” or converted to a modulated source due to the fact
that one of the two power variables that are shared by the elements connected by the
bond does not contribute significantly to one of the associated constitutive laws. The
conditioning is illustrated in Table 2.5. Scenario (i), Case A, is a case where a bond
has low RA at a 0-junction. In other words, activity A1 � Am+1, . . . , An . Assuming
that the low activity is due to relatively low flow in the 0-junction flow summation
[24], the low-RA bond is removed from the flow summation by replacing it with a
modulated effort source. The modulating signal is the effort out of the junction. This
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Table 2.5 Conversion (conditioning) of low relative activity power bonds

effort is applied by the source to the element at the other end of the original bond,
i.e., the end that is not adjacent to the 0-junction at which the bond is relatively
inactive. The half-arrow direction (direction of algebraically positive power flow)
of the modulated source is the same as that of the original low-activity bond. Case
A in Table 2.5 shows a possible partitioning site between the elements to the left
and to the right of bond 1, for now a power bond with causal information flow in
both directions has been replaced by a modulating signal carrying information only
from left to right. At this site, the elements to the right of bond 1 are “driven” by the
elements to the left and do not significantly back-excite the elements to the left.

For a bond with negligible RA at a 1-junction, the bond becomes a modulated
flow source upon conditioning, thereby removing a term from the junction effort
summation as illustrated in Case B of Scenario (i).

If the RA of an external junction structure bond (I , C , or R element) is negligible,
then the element can be eliminated from the model, as its causal output makes an
insignificant contribution to the remainder of the system. In Scenarios (ii) and (iii)
of Table 2.5, external elements are represented by the symbol Z for a generalized
impedance.

Table 2.6 shows an internal bond connecting a junction to an (M)TF or (M)GY
element. If both bonds are locally inactive compared to their respective junctions,
then the transformer or gyrator can be eliminated. If one bond is locally inactive, a
modulated source in sequence with an (M)TF or (M)GY results. The transformer or
gyrator can be incorporated into the source, resulting in the equivalent conditioned
junction structure shown in Table 2.6. Conversion of (M)TF or (M)GY elements
connected to 1- or 0-junctions, respectively, results in MSf elements.

Note that, as shown in Tables 2.5 and 2.6, the locally inactive bonds must be
causally weak, i.e., they must not provide the flow input to a 1-junction nor the
effort input to a 0-junction. Causality reassignment may be required.
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Table 2.6 Transformer and gyrator conversion examples

Conditioning of all appropriate bonds allows for visual identification of one-way
coupled groups of bond graph elements or “driving and driven partitions,” and sub-
sequent model reduction.

Given a conditioned model, i.e., a bond graph with all low-RA power bonds
converted to modulated sources, we make the following definitions:

A subgraph S is a set of elements from that bond graph that has no power bonds
connected to any bond graph element outside the set. The subgraph may be con-
nected to the rest of the bond graph by modulating signals or may be unconnected.

When all new modulating signals (due to bond conditioning) between two sub-
graphs are directed from one subgraph to the other, then the subgraph from which
the signals originate is the driving subgraph S→ and the other is the driven sub-
graph S←.

A subgraph loop SL is a set of subgraphs in which each S ∈ SL is connected to
the previous by modulating signals directed into S and to the next by modulating
signals directed out of S. A subgraph loop can itself be a subgraph (see Fig. 2.12).

A driving partition is a subgraph P→ that is connected to at least one other
subgraph strictly by modulating signals directed outward from P→ to that subgraph.
A subgraph loop can be a driving partition.

A driven partition is a subgraph P← that is not an element of a subgraph loop and
is connected to at least one other subgraph strictly by modulating signals directed
inward toward P← from that subgraph.

A flow chart of the algorithm to search for locally inactive bonds is shown in
Fig. 2.13, and Fig. 2.14 depicts the model conditioning algorithm.

MSe
MSfS1

S2
→ ←

P1
P2

MSe
MSf

→ ←

(a) (b) (c)

Fig. 2.12 Subgraphs, partitions, and loops. (a) No subgraphs; (b) driving and driven subgraphs;
(c) driving and driven partitions
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Model conditioning is followed by a search for partitions. The distinction
between subgraphs and partitions is drawn because modulating signals may exist,
prior to conditioning, which create subgraph loops and prevent partitioning as shown
in Fig. 2.12b – even though all new modulating signals from bond conditioning carry
information from S→ to S←. Such modulated element signals must be assessed to
quantify whether or not the subgraph loop can be broken and partitions created as
in Fig. 2.12c.

The contribution of a modulating signal can be evaluated if the modulated ener-
getic element can be divided into modulated and non-modulated elements, the total
effect of which is the same as the original element. The signal can be eliminated
if the modulated elements have low relative activity, in which case the primary
contribution of the element was from the non-modulated portion. Three possible
approaches to element division are [25] as follows:

1. Series expansion of element constitutive laws: For a system that operates close
to an equilibrium point, the user may attempt to expand the constitutive law
containing the modulating signal as an infinite series such as a Taylor Series.
A separate element will result for each term of the series. The first (equilib-
rium) term of the expansion will be non-modulated. If local comparison of the
activities of the individual elements suggests elimination of all but the first, then
modulation is not necessary (see Fig. 2.15).
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Fig. 2.15 Taylor expansion of state-modulated transformer constitutive law

2. Analytical separation of constitutive laws: In Fig. 2.16(a), a C and modulated
R element are bonded to a 1-junction. The modulated resistor constitutive law
consists of clearly separable modulated and non-modulated components. The
element can be broken into separate elements with the same causality as the orig-
inal, affixed to a common junction – in this case the original 1-junction whose
flow serves as the input to both. If as in Fig. 2.16(b) the element is attached to a
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Fig. 2.16 Modulated element with separable constitutive law

0-junction, the separate Ro and φ(x) elements still require a common 1-junction,
at which the two resistance components can be added.

3. Separation of the signal into nominal and varying components: If the consti-
tutive law is not separable, but a nominal value of the modulating signal can
be calculated, then the element can be duplicated and the signal split into con-
stant and varying components. The first copy of the element is modulated by
the constant nominal value. This element is essentially non-modulated, as the
constant signal can be incorporated into the constitutive law as a parameter.
The second copy is attached to a common junction (according to standard bond
graph equivalence relations) as shown in Fig. 2.17 and is modulated by the
difference between the total and nominal signal components. A local activity
comparison then determines whether the modulated copy of the element can be
neglected.
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Fig. 2.17 Constitutive law and modulating signal decomposition

The final partitioning algorithm is depicted in Fig. 2.18. Finding and separating
partitions allows immediate model reduction, even if the partitions are not subjected
to techniques to eliminate non-contributing states. As shown in Fig. 2.19, an output
associated with a driving partition element can be predicted by simulating the driv-
ing partition by itself. The energetic elements and junction structure of the driven
partition can be eliminated. To predict a driven partition output, the driving model
structure can be eliminated after the necessary modulating signals are generated and
stored in an input file.
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Fig. 2.18 Model partitioning algorithm

2.3.2.1 Illustrative Example: Two-Mass System

In Fig. 2.20, two masses and three parallel spring–damper arrangements are con-
nected through a lever. Inertia of the lever is neglected. The lever is assumed to
be long enough, so that the endpoints approximately translate in the v1 and v2
directions. A step input force F1 is applied to the mass m1. The goal is to predict
displacements x1 and x2.

For this system, increasing the ratio a/b will increasingly attenuate the force
Fb transmitted through the lever to k2–c2. Thus, depending on the energetic ele-
ment parameters, the response of m1 may not be affected significantly by the
dynamics of m2. The velocity vb, which would be significantly lower than va for
large a/b, would still be necessary to define the spring velocity vk3 and set m2
into motion.

Note that neglecting the lever inertia creates an algebraic loop. With state vari-
ables defined as the mass velocities and spring displacements, the differential–
algebraic equations of motion are given below.
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(2.20)
Figure 2.21 shows the system bond graph, with activity values corresponding to

a/b = 1 adjacent to each bond and internal junction structure bonds shown in bold.
Bonds 1 and 2 in the figure have relative activities of 0.14 and 2.4% with respect to



80 L.S. Louca et al.

m1

v1

v2

m2

k1, c1

a

b

va, Fa

vb, Fb

k2, c2

k3, c3

F1(t)

100F1(t)

0.1c3

0.1k3

1m2

variablea/b

1c2

10k2

10c1

100k1

10m1

Fig. 2.20 Illustrative example system

1
v1

Se:F1

x2

x1

0
Fa

1
vk2

0
Fb

1

C:k2
–1

I:m2

1
v2

1
vb

TF
a/b

1
va

R:c2

R:c1

I:m1 C:k1
–1 vk3

C:k3
–1R:c3

0.56

402

49.5

99.3
378 0.013

0.56 0.56

0.59

0.14

0.0045

0.012

0.32

0.53

1
dt

2

dt

Fig. 2.21 Example system bond graph relative activities

the v1 and Fa junctions, respectively, and are subject to conditioning based on a 3%
relative activity threshold ε.

Conditioning bonds 1 and 2 in Fig. 2.21 results in the conditioned model and
partitions of Fig. 2.22 and the output time series shown in Fig. 2.23. The trivial
driven subgraph containing k2–c2 is discarded in Fig. 2.22, as it does not affect the
outputs of interest. For the partitioned system, the equations of motion illustrate the
partitioned state variable vector and the presence of the input v1(t) to the driven
partition:

Driving:
{
v̇1
ẋk2

}

=
[−c1 − k1

m1

1 0

]{
v1
xk2

}

+
[

1
0

]

{F1(t)}

Driven:
{
v̇2
ẋk3

}

=
[− c3

m2
− k3

m2−1 0

]{
v2
xk3

}

+
[

b
a

c3
m2
b
a

]

{v1(t)}
(2.21)

Eliminating c2 breaks the algebraic loop, thus facilitating equation formulation
and computation. Simply conditioning the model removes the output from c2 to the
rest of the system, eliminating the algebraic loop and reducing computation time
by 35% even though no states are eliminated. Simulation of the driving or driven
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Fig. 2.23 Partitioned and original model output

partition, or both in parallel or in sequence, requires even less time. The compu-
tation steps and time reductions are more significant for larger models with more
conditioned bonds and more balanced partitions. In [26], for example, a 279-state
three-dimensional engine model was partitioned, with sequential driving-driven par-
tition simulation reducing the computation time by 54%. Figure 2.23 shows accurate
predictions of the mass displacements using the partitioned model.

A larger nonlinear vehicle pitch plane model is subjected to the inactive bond
search, conditioning and partitioning algorithms in Section 2.4. The case study
demonstrates not only the benefits of conditioning and partitioning for model
reduction but also the breaking of subgraph loops due to pre-existing modulating
signals.
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In summary, the conditioning and partitioning algorithms allow the simulation-
based design engineer to

• systematically assess coupling within an arbitrary lumped-parameter model of a
nonlinear system, rather than using a priori decoupling assumptions;

• monitor the coupling strength as the system parameters or environment changes;
• validate a priori decoupling or one-way coupling assumptions and subsequent

model reductions;
• identify “partitions” – collections of dynamic elements between which one-way

coupling exists;
• determine the significance of modulating signals from driven to driving dynam-

ics, thus maximizing partitioning opportunities;
• simulate “driving” and “driven” partitions separately or in parallel.

When decoupling can no longer be assumed, relative activity directs the analyst
toward the specific locations of increased or decreased two-way power flow within
a system. Retention of physical parameters maximizes insight into the coupling
among dynamic system elements. As local bond activities exceed the threshold,
the required increase in model complexity is automatically suggested – modulating
signals and sources can simply be reverted back to power bonds.

Finally, it is worth noting that the presence of outputs of interest only in driv-
ing partitions, and therefore the ability to eliminate large numbers of energetic and
junction structure elements, is not assured.

2.3.3 ECI-Based Model Reduction Algorithm

An algorithm for model reduction using the ECI can be outlined as follows:

1. Simulate the full model for a scenario of interest (i.e., a choice of inputs, initial
conditions, parameters, and time window) and record the energies of the bonds
of interest. Let n be the number of bonds of interest and m the number of samples
along the energy trajectories of each bond.

2. Arrange the data in a m × n matrix E as defined in (2.9) such that the columns
are the energy trajectories of the corresponding bonds.

3. Calculate Sk, j = √�tk Ek, j ; k = 1, . . . ,m ; j = 1, . . . , n, where �tk is the
time step between the k−1st and the kth samples as determined by the numerical
integration scheme.

4. Perform singular value decomposition on S, i.e., S = U�VT, where � =
diag(σ1, σ2, . . . , σn)m×n with σ1 ≥ · · · ≥ σn ≥ 0, and the columns of V are vi .

5. Calculate the relative ECI of the bonds using (2.12) and (2.13).
6. Arrange bonds in decreasing order of ECI. Let p be an index for the rows of this

ordered list.
7. If ECIp/ECIp+1 > r for some row p < n− 1 and user-defined ratio r > 1, then

bonds in rows p + 1, . . . , n are subject to reduction. There may be more than
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one such threshold, i.e., more than one level of reduction. It is up to the modeler
to decide on the ratio r and which threshold to use for reduction.

8. Remove the elements that are disconnected from the rest of the model as a result
of step 7.

Note that if all bonds are subject to the analysis, this algorithm gives a unified
approach to the reduction problem in the sense that not only the order but also the
structure of the model can be reduced. This will be hereafter referred to as a global
application of the ECI. It is also possible to perform the analysis locally, e.g., only
for the bonds connected to the components representing the states for the purposes
of model order reduction or only for the bonds connected to a junction element for
the purposes of model partitioning.

2.3.3.1 Illustrative Example: Slider–Crank System

This section provides an example to illustrate the mechanics of the ECI-based model
reduction algorithm and emphasize its advantages, namely its applicability to non-
linear systems, ability to achieve graph-level reduction, and ability to reduce the
order and structure of the model, while taking into account the scenario of interest
and preserving the realization of the model.

Consider the system shown in Fig. 2.24, where a mass–spring–damper system is
connected to the slider of a crank mechanism. A rotational spring and damper are
connected to the crank arm, and the rotational spring is undeflected when α = π/2.
There is viscous friction between the slider and the ground. The parameter values
are given in Table 2.7 and the bond graph model of the system is given in Fig. 2.25,
which is the full model in this example. The bonds are numbered such that each bond
with a unique energy receives a unique index. Bonds connected to power-through

I AB,A

L1 k1α β

BC
IG , m BC, L 2

f

b1

A

B

C

D
b2

k2

G

mC
mD

x

y

Fig. 2.24 Schematic representation of the example system

Table 2.7 The parameters of the example system in Fig. 2.24

Parameter Value Parameter Value

I A
AB 3.53× 10−5 kg m2 k2 100 N/m

I G
BC 8.84× 10−3 kg m2 f 1 N s/m

m BC 0.42 kg b1 0.01 N m s/rad
mC 10 kg b2 0.1 N s/m
m D 0.1 kg L1 0.05 m
k1 1 N m/rad L2 0.5 m
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Fig. 2.25 Bond graph of the example system in Fig. 2.24

junctions therefore have the same index. The full model includes the dynamics of
the links and masses, as well as the kinematics

vG = vB + ωBC × rG/B = ωAB × rB/A + ωBC × rG/B

=
(

−L1α̇ sinα − L2

2
β̇ sinβ

)

i+
(

L1α̇ cosα + L2

2
β̇ cosβ

)

j

= vGx i+ vGyj

vC = vB + ωBC × rC/B = ωAB × rB/A + ωBC × rC/B

= (−L1α̇ sinα − L2β̇ sinβ
)

i+ (
L1α̇ cosα + L2β̇ cosβ

)
j

= vCx i+ vCyj (2.22)

along with the constraint

vCy = L1α̇ cosα + L2β̇ cosβ = 0 (2.23)

Scenario 1

Consider the scenario in which the springs k1 and k2 are given initial displacements
of 1 rad and 0.01 m, respectively, where a positive sign indicates extension, and
the free response of the system is observed. Let the output of interest be the posi-
tion of the mass m D . When the ECI analysis is applied to this scenario, the results
summarized in Table 2.8 are obtained for a global analysis with r = 2 and a simu-
lation time window of 5 s.
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Table 2.8 ECI of bonds for scenario 1 and reduction thresholds for r = 2

Bond ECI (%) Bond ECI (%)

7 100 1 1.86
26 64.93 21 1.69
3 64.93 17 1.37

13 56.60 31 0.91
14 39.84 18 0.48 3

- - - - - - - - - - - - - - - - - - -
6 27.11 22 0.21

15 21.25 5 8 0.21
- - - - - - - - - - - - - - - - - -
11 10.25 23 0.13
29 10.25 2 0.13
28 10.25 5 0.08
4 10.25 25 0.07

27 10.02 24 0.07
10 10.02 4 9 0.07 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
19 2.79 12 0.02 1

- - - - - - - - - - - - - - - - - - -
16 1.90 30 0
20 1.86

The dashed lines in Table 2.8 indicate the five thresholds for r = 2, and hence
five different levels of reduction, which can be explained physically as follows:

Level 1: This threshold points to a well-known structural simplification that
can be made in the bond graph, namely, the null flow source can be removed
along with the 1-junction vCy without affecting the accuracy of the model.

Level 2: The moment of inertia of the second link is removed. Even though it is
larger than the moment of inertia of the first link, the second link rotates less
due to the kinematics, and therefore the energy associated with its rotational
dynamics is very low.

Level 3: The rotational and translational dynamics of the first link and the
translational dynamics and kinematics of the second link in y-direction are
removed. Furthermore, the translational kinematics of the point G in x-
direction is reduced by neglecting the terms involving β and its derivatives,
i.e., the expression for vG in (2.22) reduces to

vG = −L1α̇ sinαi (2.24)

Level 4: The dynamics and kinematics of the mass–spring–damper system con-
nected to the slider are removed, as well as the translational dynamics and
kinematics of the second link in x-direction.

Level 5: The kinematics associated with β are removed. As a result, the expres-
sion for vC in (2.22) reduces to

vC = −L1α̇ sinαi (2.25)
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and the constraint (2.23) is not needed. Figure 2.26 shows the schematic
representation of this reduced system, and Fig. 2.27 shows the corresponding
bond graph. Figure 2.28 compares the output of this reduced model to the
output of the full model.

So far this example illustrated the mechanics of the ECI-based model reduction
algorithm and highlighted the following benefits of it: applicability to nonlinear sys-
tems, ability to achieve graph-level reduction, preservation of the original realization
of the model, and ability to reduce the structure of the model, i.e., reducing not only

Fig. 2.26 Schematic
representation of the 5th-level
reduced model for scenario 1
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Fig. 2.28 Output of the full model versus output of the 5th-level reduced model for scenario 1
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the dynamics but also the kinematics. The next part highlights the method’s ability
to furnish different reduced models for different scenarios.

Scenario 2

Consider now the scenario in which an initial momentum of 0.05 kg m/s is given
to the mass m D , and the free response of the system is observed. As in Scenario
1, let the output of interest be the position of the mass m D . When the ECI analysis
is applied to this scenario, the results summarized in Table 2.9 are obtained for a
global analysis with r = 2 and a simulation time window of 3 s.

Table 2.9 indicates four thresholds and hence four different levels of reduction;
however, since level 4 corresponds to practically discarding the model completely,
it will be ignored. The remaining reduction levels can be explained physically as
follows:

Level 1: All kinematics involving β, the translational kinematics and dynam-
ics of the second link in y-direction as well as its rotational dynamics, and
the constraint (2.23) are removed. Without any kinematics involving β, the
expression for vG in (2.22) reduces to (2.24).

Level 2: The rotational and translational dynamics of the first link and the kine-
matics and dynamics of the second link in x-direction are removed.

Level 3: The kinematics involving α, the rotational stiffness k1 and damping
b1, the kinematics and dynamics of mass m D along with the friction between
m D and the surface are removed. Schematically, the system reduces down to
Fig. 2.29, and the bond graph reduces to Fig. 2.30. Figure 2.31 compares the
output of this reduced model to the output of the full model.

Table 2.9 ECI of bonds for scenario 2 and reduction thresholds for r = 2

Bond ECI (%) Bond ECI (%)

17 100 21 0.02 1
- - - - - - - - - - - - - - - - - - -

19 85.70 4 4 0
- - - - - - - - - - - - - - - - - - -

18 21.93 29 0
31 19.22 3 28 0
- - - - - - - - - - - - - - - - - - -

16 1.81 11 0
13 1.14 10 0

3 1.14 27 0
26 1.14 22 0

7 0.83 8 0
14 0.48 2 0

6 0.35 23 0
15 0.21 2 25 0
- - - - - - - - - - - - - - - - - - -
5 0.03 24 0

20 0.02 9 0
1 0.02 12 0

30 0
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Fig. 2.29 Schematic
representation of the 3rd-level
reduced model for scenario 2
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Fig. 2.31 Output of the full model versus output of the 3rd-level reduced model for scenario 2

Notice the difference between the reduced models for the two scenarios
(Figs. 2.27 and 2.30) and how the ECI tailors the reduction according to the scenario
of interest.

2.4 Case Studies

The three algorithms described in this chapter were demonstrated through relatively
simple illustrative examples. However, their applicability is not limited by the size
or complexity of the system. In fact, the motivation for developing these modeling
metrics and algorithms was to overcome the bottlenecks of the modeling procedure
of real-life engineering systems. The following case studies represent this class of
systems and reveal the strengths of the algorithms when it comes to real systems.
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However, due to the lack of space, they are described only briefly and references to
more detailed analyses are given.

2.4.1 Reduction of a Heavy Tractor Semi-trailer and a Hybrid
Hydraulic Truck Using MORA

Vehicle handling and stability, which are critical for heavy trucks, are typically pre-
dicted by means of modeling and simulation. Such models are based on assumptions
of the critical components that need to be included for obtaining accurate predic-
tions. Depending on the modeler’s knowledge and understanding of the system,
these assumptions may lead to an oversimplified or overcomplicated model. MORA
can be used in this case to systematically verify the modeling assumptions and eval-
uate the complexity of such vehicle models.

The first system to be considered here is the M916A1/870A2 military heavy-duty
tractor semi-trailer. The full model is generated by synthesizing 20 rigid bodies
with 33 rigid body DOF and 121 forces/moments. The full model has 91 states
and approximately 120 parameters. The equations of motion are formulated using
Kane’s method and the resulting model is highly nonlinear due to the nonlinear
constraint forces and the three-dimensional rigid body kinematics.

A specific maneuver is selected to calculate activity and reduce the model. It is
assumed that the vehicle is traveling with a constant speed of 60 mph and at time
t = 1 s the driver performs a lane change maneuver to avoid an obstacle. This
maneuver is assumed to be executed by turning the steering wheel first left to avoid
the obstacle and then right to resume the original heading in the adjacent left lane.
The full model is used to calculate the system response as it is performing this lane
change maneuver. This is a relatively severe maneuver producing a maximum of
about 0.2 g of lateral acceleration.

The simulation also produces the required outputs needed for calculating the
power, the activity, and finally the activity index of each energy element in the
model. There are 169 elements (121 forces and 8 rigid bodies with 6 directions
each), for which the activities are calculated to determine their relative importance
for this maneuver. The inertial forces of rigid bodies are projected onto each degree
of freedom to produce six activities for each body. The sorted activity indices
along with the cumulative activity indices for this steering maneuver are plotted in
Fig. 2.32. Notice that the cumulative activity is at approximately 80% after including
the first 13 most important (active) elements. The most important elements are the
trailer and tractor translational inertia in the longitudinal and lateral direction and
the force-generating elements in the tire model in the longitudinal direction.

A series of reduced models are produced based on the activity index and MORA.
More specifically, 19, 23, and 37% of the elements are eliminated to generate three
reduced models. The accuracy of the reduced models degrades as more elements
are eliminated; however, even after removing 37% of the elements the reduced
model retains only the most important elements to predict the system response with
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Fig. 2.32 Sorted activity indices and cumulative index

sufficient accuracy. The model with 37% of the elements eliminated has a maximum
error of 8% in predicting the lateral acceleration and yaw rate. It is also shown that
the frequency content of the model reduces as the model size is reduced according to
the activity metric, i.e., low-activity elements are associated with high frequencies.
More details on this real-life modeling case study can be found in [27].

Another real-life case study is the development and reduction of an integrated
hybrid vehicle model composed of an engine, drivetrain, hydraulics, and vehicle
dynamics. The model is configured for a medium-size truck using the bond graph
formulation and implemented in 20-Sim. After developing the model, MORA is
applied to generate a reduced vehicle model that provides more design insight,
while having improved computational efficiency. Compared to the full model, the
reduced model for the hybrid truck, as generated by MORA, produces almost iden-
tical results, has half the size, and computes the system response 2.5 times faster.
More specifically, these benefits come with only a 0.11% loss in accuracy in the
predictions of fuel economy over a complete driving cycle on an uneven terrain.
More details on this case study are given in [28].

2.4.2 Partitioning of a Nonlinear Pitch Plane Truck Model

A pitch plane model of a Class VI delivery truck based on an International 4700-
series vehicle was constructed to predict forward speed V and pitch angle θ . The
vehicle accelerates at full-throttle from a standstill, on a road that is flat and smooth
for the first 1200 ft of travel, after which a 1:10 slope is encountered. The maneu-
ver lasts 120 s. The model is conditioned with a 4% threshold to determine if the
longitudinal dynamics form a partition that drives the pitch response, thus allowing
prediction of V and θ with smaller individual submodels. Details of the model for-
mulation and parameters can be found in [25]. A schematic and conditioned bond
graph are shown in Figs. 2.33 and 2.34, respectively. The model permits large angu-
lar motions of the sprung mass and uses nonlinear constitutive laws for aerodynamic
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Fig. 2.33 Pitch plane truck schematic

drag and tire slip and rolling resistance. In Fig. 2.34, the heavy dashed lines indicate
new modulating signals to sources arising from bond conditioning. The dotted lines
are pre-existing modulating signals from the driven subgraph to the driving, thus
precluding partitioning unless the subgraph loop can be broken.

The conditioned bonds are physically interpreted in Table 2.10.
Partitioning is contingent upon breaking the bond subgraph loop created by the

following two modulating signals: the rear tire normal force modulating signal (out-
put of the Fzr 0-junction) and the pitch angle signal (output of the θ̇ 1-junction).
The driving subgraph rear tire rolling and slip resistances are functions of the
normal force Fzr from the driven subgraph. A nominal signal value of −39950
N was identified as the static tire load, and the difference between the total and
nominal values gave the varying component. The pitch angle nominal value was
set at the road inclination (adjusted by the truck’s static pitch angle) and depar-
ture of the pitch angle from the road angle served as the varying component of the

Table 2.10 Truck model conditioned bonds

Bond Description RA

1 Longitudinal force on sprung mass from front tires/susp. 0.75
2 Gyrational longitudinal force on sprung mass 0.75
3 Long. vel. component of rear hub due to rotation ∼0
4 Moment about c.g. from long. rear tire/susp. force 2.8
5 Long. vel. component of front hub due to rotation ∼0
6 Moment about c.g. from long. front tire/susp. force 0.58
7 Body-fixed y rear susp. force component tangent to road 1.5
8 Rear tire vel. normal to road, body-fixed long. component ∼0
9 Body-fixed long. rear susp. force component normal to road 0.23

10 Front tire vel. normal to road, body-fixed long. component ∼0
11 Body-fixed long. front susp. force normal to road ∼0
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signal. The modulated elements had low RA and could be eliminated, breaking the
subgraph loop.

To estimate the outputs of interest (forward speed and pitch angle), only the
driving partition is required, leading to significant model reduction. As reported
in [25], conditioning the model breaks four algebraic loops, reducing the number of
computation steps by 38% and time by 43%. Simulating the driving partition only
gives accurate predictions, with reductions in computation steps and time of 61 and
52%, respectively.

Subjecting the truck model to a rough road increases the relative activity of bonds
1, 2, and 7 in Fig. 2.34 above the threshold. Partitioning is no longer recommended,
and significant discrepancies arise between the predictions of a fully coupled and
partitioned model.

The reader is also referred to [26] for details of an even larger case study involv-
ing a 14-body, 279-state model of an inline six-cylinder diesel engine. The parti-
tioning algorithm was used to decouple engine dynamics into a driving partition
comprised of reciprocating elements and a driven partition containing the block
moving in three dimensions on its mounts. This partitioning is consistent with the
assumption of decoupling between reciprocating dynamics and engine block motion
reported in prior literature [29] for balanced engines running at low speed. Introduc-
tion of a misfire into the engine increased vibration, and the algorithms predicted
that partitioning the model would bring unacceptable prediction errors. Simulation
times were reduced by 20 and 53% for the conditioned and partitioned models,
respectively, in predicting the responses of both partitions.

2.4.3 ECI-Based Reduction of a HMMWV Model

The ECI-based model reduction algorithm has been used for the reduction of a
multibody model of a High-Mobility Multipurpose Wheeled Vehicle (HMMWV)
in [8]. The three-dimensional 22-body model of the HMMWV comprised the chas-
sis; the four independent double-wishbone suspensions comprising lower and upper
A-arms, wheel hubs, suspension springs and dampers; the front and rear anti-roll
bars; the four tires with vertical tire stiffness and damping and longitudinal and
lateral slip models; and the steering mechanism consisting of the steering link,
idler arm, Pitman arm, and tie rods. The anti-roll bars were not modeled as three-
dimensional bodies, but their effect was taken into account through spring elements
applying restoring forces on the velocity differences between the left and the right
suspension struts.

There are many families of maneuvers that could be employed in vehicle dynam-
ics studies, and different families of maneuvers would require different reduced
models. To illustrate this, this case study considered three scenarios representative
of three different families of maneuvers.
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The first scenario was a two-double-lane-change maneuver on a flat road. Such
a maneuver could be employed in, e.g., vehicle rollover and handling studies. The
vehicle was accelerated from rest to a constant velocity, the lane-change maneuvers
were performed, and the vehicle was brought to a stop. The output of interest was
the roll acceleration of the vehicle.

The second scenario was a shaker table scenario. This scenario might be of inter-
est when studying, e.g., the suspension characteristics and ride quality of a vehicle.
In this scenario the tires were removed from the model, and a sinusoidal sweeping
displacement was applied to all four wheel hubs. The output of interest was the
vertical position of the chassis.

The third scenario was driving straight on a flat road. This scenario could be
useful, e.g., when studying the acceleration characteristics of the vehicle, sizing the
engine, or designing a cruise controller. In this particular scenario the input dictated
the wheel speed. The output of interest was the longitudinal acceleration of the
vehicle.

Application of the ECI revealed what can be physically removed from the model
in each scenario. For example, in Scenario 1, ECI analysis showed that most of
the translational and rotational dynamics of the smaller suspension and steering
linkages (e.g., A-arms, Pitman arm) had little influence on the system behavior. In
Scenario 2, the analysis showed that the dynamics of the steering mechanism were
not critical to model for analyzing the vehicle’s vertical vibrations, but part of the
kinematics of the mechanism may be important. In Scenario 3, the model essentially
reduced down to a disk rolling without slip or, equivalently, to a point mass. Such
physical interpretations provide a deeper insight into the vehicle dynamics, and the
ECI analysis provided these insights automatically.

Table 2.11 highlights the computational benefits obtained with ECI-based model
reduction in each scenario with up to 99.8% reduction in simulation time, and
Figs. 2.35, 2.36, and 2.37 compare the outputs of the full and reduced models to
show the fidelity compromised for the purposes of reduction.

This case study shows that ECI analysis can be successfully applied to compli-
cated systems, as well, to seek for a balance between model simplicity and fidelity
for the specific scenarios of interest. The details of this case study can be found in
[8, 30].

Table 2.11 20-Sim processing and simulation results for the HMMWV case study

Scenario 1
% decrease
Scenario 2 Scenario 3

Number of Equations 38.9 71.2 98.1
Number of Independent states 22.1 81.2 94.7
Number of Dependent states 38.9 85.2 100
Number of Constraints 32.0 16.7 100
Simulation time 88.2 94.7 99.8
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2.5 Discussion

This chapter has defined a suite of metrics and algorithms for energy-based model
reduction. The use of power and energy in the metrics recommends the bond graph
formalism, in which power flow paths among elements are explicitly indicated, and
the generalized effort and flow variables are at hand for all elements. Indeed, bond
graph-based software programs have started implementing some of the ideas pre-
sented in this chapter. For example, 20-Sim has appended its element library with 1-
and 0-junctions that can calculate relative activity of all connected bonds. AMESim
[31] has implemented activity analysis and can automatically provide the analysis
results to the user at the end of a simulation, based on which the user can then
reduce the model manually according to MORA. Calculation of these metrics can
be accomplished in non-bond graph-based packages such as ADAMS or MATLAB,
as well, but bond graph-based packages certainly facilitate the implementation of
these techniques.

The three techniques introduced in this chapter share some common properties
that give them certain advantages over some of the existing techniques. The first
advantage is that they can be applied to the reduction of nonlinear models while
preserving the model’s realization. This is a distinct advantage over, for example,
frequency-based methods that are typically applicable to linear models only or
projection-based methods that are by their very nature non-realization preserving.
As the case studies suggest, the techniques can be applied even in the presence of
the nonlinear elements such as suspension springs and rolling resistance or even
model discontinuities such as wheel liftoff, and the reduced models still preserve
their original physical interpretations.

A second advantage is that all energy elements in the model can be treated
equally. This is, for example, unlike the Model Order Deduction Algorithm –
MODA [32] that adds only compliance elements to the model to increase its com-
plexity and requires the user to decide by other non-specified means whether to
include other energy storage or dissipation elements. The analyst may, however,
choose not to treat all elements equally when applying the partitioning and ECI
algorithms. These algorithms can be applied either globally to all model elements,
thereby serving as a means of simultaneous model reduction and partitioning, or
locally to subsets of bond graph elements or junction structure only, thus achieving
a selective reduction or partitioning.

A third advantage of the techniques is the insight they provide to the user. Even if
the metrics are calculated and the algorithms are applied without actually reducing
the model, the analyst can gain considerable insight into the interactions among
the elements and the criticality of accurate estimation of their parameters. MORA,
for instance, shows the relative ranking of all elements in the model. This parameter
sensitivity is different from typical sensitivity measures in that the parameter ranking
is with respect to the entire system dynamics and not to some outputs [33, 34]. For
example, the ride quality example shows, not surprisingly, that for the harsh input
the suspension deflects nearly twice as much as with the smooth input. Thus, from
a conventional sensitivity point of view, the suspension spring displacement is sen-
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sitive to the input magnitude. However, activity shows that the relative importance
of the suspension spring to the system total activity slightly reduces as the vehicle
speed increases. In other words, the relative value of the spring is less important to
the overall system dynamics as the vehicle speed is increased. The elements that are
important relative to the input are the unsprung mass, whose activity index is about
12 times more important to the model when the input becomes harsher, and the
suspension damper, which is nearly twice as important. Note the tire damping also
becomes more important by a factor close to 12, but still remains the least important
element in the model. This, of course, is likely to change for even more severe
inputs, i.e., higher forward vehicle speed. This parameter ranking as a function of
input provide the designer with the insight to see where the most benefit may be
generated from modifying the design. Some of this type of insight could be obtained
with other techniques; however, the approach of this chapter allows this insight to
be gained as part of the modeling process, and not as part of a downstream analysis
process, which is less likely to have an effect on modeling decisions. Furthermore,
other techniques such as design of experiments [35, 36] require multiple model
evaluations that can be costly and time consuming to calculate system sensitivities,
especially for large-size models. With the activity metric, however, the system’s
sensitivity to its parameters can be obtained with only a single or a few simulations.

Indeed, one of the most costly and perhaps difficult tasks associated with model-
ing is obtaining numerical values for the parameters. As a first observation, reducing
the parameter estimation burden may not appear to be an advantage of the afore-
mentioned techniques, or any other reduction technique in general, because a full
model is required to assess what may or may not be important. However, often
during the modeling process, parameter values are approximated from previous test
results, borrowed from a similar model of a similar product, or simply estimated.
The hierarchy created by MORA or ECI, or the relegation of certain elements to
driven partitions, can be viewed as a priority task list. The most important elements
are the elements whose parameters must be known most accurately. If, as in the
MORA illustrative example, tire damping is not important, then spending a lot of
time and effort to determine its characteristics is not justified. On the other hand,
more resources should be allocated for getting better estimates of the suspension
parameters since they are the most important elements according to activity.

It is also reasonable to expect significant savings in numerical simulation time
from a reduced model. Although the saving may not be compelling in the simple
illustrative examples used above, the simulation time of much larger systems may
be dramatically reduced if a large number of low-activity, low-ECI, or driven par-
tition elements are removed from the full model, leading to a significant reduction
in the size of the state vector [8, 26–28, 37]. Even modest improvements in sim-
ulation time for an individual run can give significant aggregate time savings for
applications that require many iterations such as optimization or Monte Carlo sim-
ulation. However, it is important to note that the numerical efficiency of a reduced
model is not assured, as it may not be always easy or even possible to obtain the
reduced model equations in explicit form. As elements are trimmed from the model,
dependencies can be created between energy storage elements as well as between
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storage elements and inputs. This, of course, can be easily seen if the model is
in bond graph form. Thus, while the full model might have been a type 1 causal
system for which explicit equations can be easily found, this might not be true for
the reduced model. This can affect not only the effort required to formulate the state
equations but also the efficiency of numerically integrating them. The user can use
causality to help direct the model reduction process to try to avoid these potential
problems. These problems could exist in the full model, as well, so reducing the
model does not necessarily make the model harder to formulate and solve numer-
ically. The simple illustrative example of the conditioning algorithm demonstrates
that bond conditioning can break algebraic loops and improve numerical efficiency
even if no partitions are identified or eliminated. The reader is referred to [26]
for an example of significant savings due to conditioning alone in a large engine
dynamics model. The algorithms of Figs. 2.13 and 2.14 specify that “parasitic”
or “constraint” branches of a bond graph ought not to be subject to conditioning
and that causality assignment be attempted to ensure that conditioned bonds are
causally weak. “Parasitic” elements refer to small masses or stiff springs that are
added to, for example, multibody mechanical systems [38] normally comprised of
rigidly constrained bodies. A compliance at a pin joint can, if sufficiently stiff and
damped, break dependencies between the momenta of the connected bodies without
compromising the kinematic constraints at a macroscopic level. Such elements are
tuned to have low relative activity [39], yet are purposefully retained to facilitate
formation of explicit ordinary differential equations.

Reduction of initially complex models allows the designer the option of decid-
ing explicitly and quantitatively the trade-off between model accuracy and simplic-
ity. The user can easily generate an array of models to satisfy different needs by
specifying the desired level of accuracies (cumulative activity, ECI threshold, or
low-RA threshold) needed for the different tasks. Noting the MORA and ECI illus-
trative examples, model accuracy degrades as more elements are eliminated from
the model. The change in error between two consecutive MORA-reduced models
was proportional to the activity of the eliminated element. This monotonic relation
between the error and the element activity provides evidence to support the assump-
tion that activity and the other energy-based metrics can be used as measures of
elements’ contribution to the accuracy of the model predictions. While there does
not currently exist proof that this relationship will always be true, results suggest that
such a relationship may exist. The correlation of activity, relative activity, or ECI to
a measure of the state trajectory deviation of the full model versus a reduced model
is unknown. Fathy and Stein [40] have shown that for linear system models with
certain initial conditions and inputs, the reduced model attained through balanced
truncation will be identical to a bond graph model in which the lowest activity
elements are eliminated. While general equivalence between balanced truncation
models and models reduced using activity has not yet been proven, the theoretical
justification of activity as a reduction metric for linear systems expressed in a partic-
ular form increases confidence in the activity approach. The work of Fathy and Stein
is relevant to partitioning inasmuch as the partitioning algorithm calculates activity
for elements of a set of constraint terms, and elimination of negligible-activity terms
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is held to have no significant effect on the dynamic response of the remaining ele-
ments of the set. Many further extensions in this area are required before the three
algorithms can be subject to formal proof. Some contributions have also been made
toward quantifying model accuracy based on the states of the full model versus
the reduced (e.g., Sendur et al. [41, 42]), but this also remains an area for further
research.

One of the advantages of the model reduction techniques presented in this chap-
ter is also one of their limitations, namely scenario dependence. While this can
be viewed as useful in uncovering which parameters are important under which
conditions, it also means that, in general, one reduced model cannot be found that
is suitable for all conditions and, for that matter, all design variations. Rerunning of
the model to check one’s assumption under different conditions is needed. Quantifi-
cation of the “range of validity” of a reduced model remains an open research ques-
tion – in other words, how far from the inputs, initial conditions, and parameters can
one deviate during the model-driven design process without having to recalculate
the metrics and reapply the algorithms?

Also common to the three methods, and again a potential advantage and disad-
vantage, is the setting of a time window over which to calculate activity, relative
activity, or ECI. Design insight can be gained from the metrics by utilizing the
freedom provided in choosing this window. As can be seen in Fig. 2.7 for the activ-
ity metric, for example, the metric values for elements can change over time with
respect to one another. For example, in Fig. 2.7, the unsprung mass at the time just
after the input is turned on (t just after 1 s) has the second higher activity. At about
1.2 s, it becomes smaller than the activity of the sprung mass, and then, at around 2 s,
it becomes smaller than the activity of the suspension damping, as well. Obviously,
the relative importance of these elements to the system model can be manipulated by
the choice of the integration time window. This can be of value to the designer who
chooses the windowing parameters wisely. For example, placing the window tightly
around the main transient event versus including all of the steady-state information
could be used to differentiate between those elements important to maximum val-
ues (loads, displacements, etc.) versus those responsible for efficiency. The formal
exploitation of this issue is an ongoing research topic. Prior research by Kypuros
and Longoria [43] applied different road input frequencies to a pitch plane vehicle
model at different times of a simulation maneuver and generated four MORA-based
reduced models. The four models resulted from changing the activity integration
time window to correspond with the intervals of a given input frequency. They then
calculated a moving average of activity and plotted the results to show the time
dependency of proper model complexity. The moving average was proposed as a
means of generating variable complexity models, if the model complexity changes
could be automated. Recent research by Rideout and Haq [44] has used moving
average of absolute power (a metric very closely related to activity) to detect when
changes to model complexity are required and to automate the switching off and on
of elements as their energetic contribution falls below or rises above a threshold. The
method of [44] brings with it a computational penalty, but automatically predicts the
time window over which a given degree of model reduction is appropriate and can
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predict the accuracy of a collection of such proper models of the same system if
they were run sequentially.

It is also important to note that although the techniques presented in this chapter
take explicitly into account the particular inputs, initial conditions, parameter values,
and time windows of interest, they do not take the outputs of interest into account.
Therefore, a model arrived at through these techniques is not necessarily the lowest
complexity model that sufficiently predicts a specific output variable. Making the
techniques output dependent is an important area for future research.

Finally, despite this chapter’s emphasis on energy-based model reduction, the
proposed metrics can also be used for model simplification, which refers to find-
ing a more succinct realization without compromising accuracy [45]. Some well-
established rules for bond graph-level simplification include eliminating loose,
power-through, or constraining junctions; merging adjacent junctions of same type;
eliminating a null effort (flow) source connected to a 1-junction (0-junction); and
lumping dependent elements or some structural equivalencies [46, 47]. It is also
possible to leverage, for example, the activity metric presented in this chapter and
introduce the junction inactivity concept to achieve further structural simplification
in a bond graph model. A junction element, 1- or 0-junction, is called inactive if all
the bonds that are connected to the junction element have a negligible activity [45].
This concept can be considered as the generalization of the idea that 1-junctions
with zero flow and 0-junctions with zero effort can be eliminated from a bond graph
without sacrificing the accuracy of the model, because a 1-junction (0-junction) will
be inactive not only if its flow (effort) is zero but also if the efforts (flows) are zero.
For the details of this concept and a simplification algorithm based on it, the reader
is referred to [45, 48].

2.6 Conclusion

To maximize their utility, mathematical models need to achieve a balance between
accuracy and simplicity. One way of achieving this balance systematically is to start
with an accurate, but overly complex model and reduce it. Toward this end, three
model reduction algorithms based on three different metrics are given in this chapter
that are particularly suitable for reducing bond graph models due to their common
energy-based nature. However, neither the metrics nor the algorithms are restricted
to bond graphs.

Typical benefits that accrue to the user of these algorithms are increased insight
into physical system dynamics, fewer model parameters to estimate, and improve-
ments in computation time without significant reduction of model accuracy that
render the model more suitable for iterative applications such as optimization and
Monte Carlo simulation. Furthermore, these algorithms also have the advantages of
being applicable to nonlinear models and realization preserving, where the latter is
important to preserve the original meanings of the states and parameters. Finally,
the algorithms are trajectory dependent, thereby taking the specific scenarios of
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interest (i.e., inputs, initial conditions, parameters, time windows) into account for
reduction. Thus, the algorithms are capable of yielding different reduced models for
different scenarios of interest.
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Chapter 3
LFT Bond Graph Model-Based Robust Fault
Detection and Isolation

M.A. Djeziri, B. Ould Bouamama, G. Dauphin-Tanguy, and R. Merzouki

Abstract Diagnosis of uncertain systems has been the subject of several recent
research works (Djeziri et al. Proceeding of the 2007 American Control Confer-
ence 3017–3022, 2007; Han et al. 15th IFAC World Congress 1887–1892, 2002;
Henry and Zolghari Control Engineering Practice 14:1081–1097, 2006; Hsing-Chia
and Hui-Kuo Engineering Applications of Artificial Intelligence 17:919–930, 2004;
Ploix Ph.D. de I.N.P.L, C.R.A.N 1998; Yan and Edwards Automatica 43:1605–
1614, 2007). This interest is reflected by the fact that physical systems are complex
and non-stationary and require more security and performance. The bond graph
model in LFT form allows the generation of analytical redundancy relations (ARRs)
composed of two completely separated parts: a nominal part, which represents the
residuals, and an uncertain part which serves for both the calculation of adaptive
thresholds and sensitivity analysis.

Keywords Bond graph · Fault detection and isolation (FDI) · Uncertain systems ·
Sensitivity analysis ·Mecatronic systems

3.1 Introduction

Diagnosis of uncertain systems has been the subject of several recent research
works [1–6]. This interest is reflected by the fact that physical systems are complex
and non-stationary and require more security and performance. The bond graph
model in LFT form allows the generation of analytical redundancy relations (ARRs)
composed of two completely separated parts: a nominal part, which represents the
residuals, and an uncertain part which serves for both the calculation of adaptive
thresholds and sensitivity analysis.

The chapter is composed of three parts. In the first one, the LFT BG is defined
and its building procedure is presented. The second part shows how to use LFT
BG for diagnosis of uncertain systems. This methodology is implemented on an
electromechanical system and simulation and experimentation results are compared.
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3.2 Bond Graph Modeling in LFT Form

Before developing the methodology for diagnosis of uncertain systems using the
bond graph (BG) model in linear fractional transformation (LFT) form, BG mod-
eling in LFT form of elements with parameter uncertainties is presented in this
section. Linear fractional transformation was introduced on mathematical models
by R. Redheffer in 1960 [7] and on bond graph models by G. Dauphin-Tanguy in
1999 [8]. This kind of modeling offers several advantages for robust control and
fault detection and isolation (FDI) of uncertain systems.

3.2.1 LFT Representation

Linear fractional transformations (LFT) represented in Fig. 3.1 are generic objects,
widely used for uncertain systems modeling. Genericity of the LFT is due to the
fact that any rational expression can be written under this form [9, 10]. It is used
for stability analysis and for control law synthesis using μ-analysis and synthesis
principles, by separating the nominal part of the model from its uncertain part as
shown in Fig. 3.1. The nominal values are grouped in an augmented matrix denoted
M , supposed proper and all uncertainties (structured and unstructured uncertainties,
measurement noise, etc.) are gathered in a matrix Δ with a diagonal structure.

Fig. 3.1 LFT representation u y

w z

In the linear case, this standard form leads to a state-space representation as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

·
x = A.x + B1.w + B2.u

z = C1.x + D11.w + D12.u

y = C2.x + D21.w + D22.u

(3.1)

with x ∈ Rn the state vector of the system, u ∈ Rm and y ∈ R p vectors gathering,
respectively, the control inputs and the measured outputs of the system. w ∈ Rl and
z ∈ Rl include, respectively, auxiliary inputs and outputs. n, m, l, and p are positive
integers.
(A, B1, B2, C1, C2, D11, D12, D21, D22) are matrices of appropriate dimen-

sions. Equations (3.1) are not easy to obtain in case of complex systems, particularly
because of the constraint on Δ which has to be diagonal.
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3.2.2 LFT Modeling of Bond Graph Elements

An uncertainty on a parameter value θ can be introduced under either an additive
form or a multiplicative one, as follows:

θ = θn +Δθ (a) (3.2)

θ = θn . (1+ δθ ) (b)

whereΔθ and δθ = Δθ/θn are, respectively, absolute and relative deviations around
nominal value θn .

When the element characteristic law is written in terms of 1/θ, (3.2) becomes

1

θ
= 1

θn
.
(
1+ δ1/θ

)
(3.3)

with δ1/θ = − Δθ
θn+Δθ .

Only LFT models of uncertain R-element, RS-element, and TF-element in flow
and effort causality are developed here. Figure 3.8 regroups all the LFT BG models
of passive and junction elements. The sources are supposed to be known without
uncertainty, except in the case of closed-loop models.

Consider R-element in resistance (imposed flow) causality. The characteristic
law corresponding to R-element in the linear case (Fig. 3.2a) is given as follows:

eR = R. fR (3.4)

Fig. 3.2 (a) R-element in
resistance causality.
(b) Uncertain R-element in
resistance causality in LFT
form
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In case of uncertainty on a parameter R, (3.4) becomes

eR = Rn . (1+ δR) . fR = Rn . fR + δR .Rn . fR = eRn + eRunc (3.5)

Constitutive equation (3.5) can be represented by the LFT BG of uncertain
R-element in Fig. 3.2b by introducing a modulated source M Se associated with
auxiliary input wR and a virtual effort sensor associated with auxiliary output zR .

For an R-element in conductance (imposed effort) causality, the procedure is the
same
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Fig. 3.3 (a) R-element in
conductance causality.
(b) Uncertain R-element in
conductance causality in LFT
form
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which can be written as follows and leads to Fig. 3.3b:

fR = 1

Rn
.
(
1+ δ1/R

)
.eR = 1

Rn
.eR + δ1/R

Rn
.eR = fRn + fRunc (3.7)

In non-linear case, the non-linearities do not appear explicitly on the BG, but on
the characteristic law governing the BG element dynamic. Let us consider the LFT
BG of a pipe transporting water at ambient temperature as given in Fig. 3.4.

The mathematical equation characterizing the system is given as follows:

ṁ Rz = 1

Rz
.
√

Pin − Pout (3.8)

Rz-element depends on the manufacturing of the pipe and it is a function of the valve
opening z. The nominal value Rzn and uncertainty value δRz can be calculated as
follows by considering a Poiseuille law:

Rz = 8.ρl .Lp

π.rp
4

(3.9)

where Lp is the length of the pipe, rp the pipe radius, assumed uncertain.
Using a logarithmic derivative we obtain

mRz

Rz
Pin

Pout

0 1

*Df : z1./RMSf: w1/R

–δ1/R

Rz:R
mn

mRzn
mRzn

n
mRz

P1 = PRz

–

min:MSf

moutPout

Fig. 3.4 LFT BG model of a pipe transporting water in ambient temperature
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δ1/Rz = −δρl − δLp + 4.δrp (3.10)

The uncertainty on flow at the output of the pipe can be calculated as follows:

wRz = −δ 1
Rz
.

√
Pin − Pout

Rz
(3.11)

Let us consider an RS multi-port (well developed in Thoma and Ould
Bouamama [11]). This element can be considered as an active resistance which
generates entropy. The typical example is an electrical heating resistance (Fig. 3.5a).
Using thermal pseudo-bond graph developed initially by Karnopp [12] and later by
Thoma and Ould Bouamana [11], the flow and effort variables are, respectively,
thermal flow φ̇ (J/s) and temperature T . For an electrical resistance (e1RS, f1RS)
corresponds to the pair (voltage (u), current (i)) and (e2RS, f2RS) corresponds to(
T, φ̇

)
. The thermal flow f2RS can be expressed as

f2RS = e1RS. f1RS (3.12)

The bond graph model of an RS-element is given in Fig. 3.5b.

Fig. 3.5 RS-element.
(a) Heating resistance.
(b) Bond graph model of the
heating resistance

RS

Heat

e1RS e2RS

f1RS f2RS

e1RS e2RS

f1RS f2RS

(a) (b)

When the power variables are both known at the left bond input of the multi-port
RS, the principle of power conservation allows the determination of the heat flow
with precision, without using the value of the parameter RS. The generated heat
flow Q̇ is thus given by the expression

Q̇ = u.i

When only one of the two variables (e1RS or f1RS) is known, power output is
a nonlinear function of the known power variable and the value of parameter RS,
which could be known with uncertainty.

When e1RS is known, expression of f2RS is given as follows:

f2RS = Φ (RSn, e1RS) .
(
1+ δ1/RS

)
(3.13)

= Φ (RSn, e1RS)+ δ1/RS.Φ (RSn, e1RS) = f2RSn + f2RSunc

The bond graph model in LFT form of the multi-port RS equivalent to the math-
ematical model of (3.13) is given in Fig. 3.6a.
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0RSn

RS

11RSn ).e,(RS

RS

1wMSf:

0

RS
1

* z:De

RSn

RS(RSn,f1RS).

wRSMSf:* zRS:Df

1 0
e1RS

f1RS

e2RS

f2RSf2RSn

f2RSunc

e1RS

f1RS f2RS
n

f2RSunc

e2RS

f2RS

(a) (b)

Fig. 3.6 Bond graph model in LFT form of RS-element with two different causalities

When the flow variable is known, expression of f2RS is given as follows:

f2RS = Φ (RSn, f1RS) . (1+ δRS)

= Φ (RSn, f1RS)+ δRS.Φ (RSn, f1RS) = f2RSn + f2RSunc (3.14)

The bond graph model in LFT form of the multi-port RS equivalent to the math-
ematical model of (3.14) is given in Fig. 3.6b.

The characteristic law of an uncertain TF-element in m causality is written as
follows:

e1 = mn . (1+ δm) .e2 (3.15)

e1 = mn . (e2 − wb) with wb = −δm .e2

f2 = mn . (1+ δm) . f1

f2 = mn . ( f1 + wa) with wa = δm . f1

with δm = Δm/mn .
mn , δm , and�m represent, respectively, the nominal value, multiplicative uncer-

tainty, and additive uncertainty on the module m of the TF-element. e1, f1 and e2,
f2, are, respectively, the effort and the flow at the two bonds of TF-element. wa , wb

are the fictive inputs.
The bond graph model of TF-element in m causality with multiplicative uncer-

tainty is given in Fig. 3.7a.
The characteristic law of the uncertain TF-element in 1/m causality is given as

follows and the corresponding LFT BG is given in Fig. 3.7b:

e2 = 1

mn
.
(
1+ δ1/m

)
.e1 (3.16)

e2 = 1

mn
. (e1 + wa) with wa = δ1/m .e1

f1 = 1

mn
.
(
1+ δ1/m

)
. f2

f1 = 1

mn
. ( f2 − wb) with wb = −δ1/m . f2
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Fig. 3.7 LFT bond graph model of TF-element with two different causalities

with δ1/m = −�m

mn +�m
.

All the LFT BG elementary elements are regrouped in Fig. 3.8.

3.2.3 LFT BG of a Global Model

Modeling in LFT form requires for the model to be proper and observable [13]. The
bond graph methodology allows by causal manipulations, the verification of these
properties directly on the bond graph model.

Property 1.1 A bond graph model is proper if and only if it does not contain any
dynamic element in derivative causality when the bond graph model is in preferred
integral causality, and vice versa [14].

Property 1.2 A bond graph model is structurally state-observable if and only if
the following conditions are satisfied:

(i) On the bond graph model in integral causality, there is a causal path between all
the dynamic elements I and C in integral causality and a detector De or D f ;

�
Fig. 3.8 LFT BG of uncertain elements: (a) R element in resistance causality, (b) R element in
conductance causality, (c) I element in integral causality, (d) C element in derivative causality,
(e) C element in integral causality, (f) I element in derivative causality, (g) TF element in m
causality, (h) TF element in 1/m causality, (i) GY element in r causality, (j) GY element in 1/r
causality, (k) RS element in resistance causality, (l) RS element in conductance causality
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Fig. 3.8 (continued)
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(ii) All dynamic elements I and C admit a derivative causality on the bond graph
model in preferred derivative causality. If some dynamic elements I and C
remain in integral causality, the dualization of the detectors De and D f should
enable to assign them derivative causality [14].

Proposition 3.1 The LFT representation of a global model can be derived from a
BG model, by replacing each uncertain element by its LFT BG model.

3.2.4 Example

The example of Fig. 3.9a represents an oleopneumatic suspension for a quar-
ter of vehicle. The oleopneumatic element combines the functions of suspension
and damping. Oleopneumatic compliance of the gas is expressed as Csph =
ν.P2

e /(P0V0) with Pe = Ms .g/SP , Csph being the capacity of the sphere. Pe is
the static pressure at equilibrium state, ν = 1.4 is the isentropic constant of the
nitrogen. P0 and V0 represent, respectively, the inflation pressure of the sphere and
the volume of the sphere vacuum, Ms is the mass of the body, g is gravity.

The bond graph model of the system in integral causality is given in Fig. 3.9b,
and the bond graph model in LFT form of the system is given in Fig. 3.10 [15].
The model represents the movements around the static equilibrium with respect to
gravity, neglecting initial conditions. Multiplicative uncertainties are introduced in
elements: Csph, Ra, Mns and Ms , and Sp.

The state variables are associated with the I - and C-elements with nominal
values:

x =

⎡

⎢
⎢
⎣

pMns

pMs

qkp = �lkp

qCsph = Vsph

⎤

⎥
⎥
⎦ (3.17)

(b)

Ms

Csph

Ra

(a)

0 1

0

1

Sf: x

x1

x2

I : Ms

kp

1
C : Cp =

Sp

TF

I : Mns R : Ra

2
e

p0.V0

pC : Csph
ζ=

x

Sp

Fig. 3.9 Oleopneumatic suspension for a quarter of vehicle and its bond graph model in integral
causality
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Fig. 3.10 Bond graph model in LFT form of an oleopneumatic suspension for a quarter of vehicle.
Uncertainties on CSph, Ra , Mns , Ms , Sp

The auxiliary variables corresponding to parameter uncertainties satisfy the fol-
lowing:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w 1
Mns
= −δ 1

Mns
.z 1

Mns

w 1
Ms
= −δ 1

Ms
.z 1

Ms

wRa = −δRa .zRa

w 1
Csph
= −δ 1

Csph
.z 1

Csph

wa = δSp .za

wb = −δSp .zb

(3.18)

with δ1/Ms = −�Ms
Msn+�Ms

, δ1/Mns = −�Mns
Mnsn+�Mns

, δ1/Csph = −�Csph
Csphn+�Csph

, δRa = �Ra
Ran
,

δSp = �Sp
Spn
.

The fictive outputs z1/Mns, z1/Ms, za, zb, z 1
Csph

, and zRa are determined from

the bond graph model of Fig. 3.10 and expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z 1
Mns
= 1

Mnsn
.pMns

z 1
Ms
= 1

Msn
.pMs

za = 1
Mnsn

.pMns − 1
Msn
.pMs

zb = 1
Csphn

.q 1
Csph
− w 1

Csph
− wRawa + Spn .Ran .w 1

Ms
+ Spn .Ran .

1
Mnsn

.pMns

− Spn .Ran .
1

Msn
.pMs − Spn .Ran .w 1

Mns

z 1
Csph
= 1

Csphn
.q 1

Csph

zRa = wa + Spn .Ran .w 1
Ms
+ Spn .Ran .

1
Mnsn

.pMns

− Spn .Ran .
1

Msn
.pMs − Spn .Ran .w 1

Mns
(3.19)
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The state model deduced from the LFT BG of Fig. 3.10 is now under the form of
(3.1) with

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Sp2
n .Ran

Mnsn

Sp2
n .Ran
Msn

kpn − Spn
Csphn

0

Sp2
n .Ran

Mnsn
− Sp2

n .Ran
Msn

0 Spn
Csphn

− 1
Mnsn

0 0 0

Spn
Mnsn

− Spn
Msn

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 Spn Spn Spn

0 0 0 −Spn −Spn −Spn

1 0 0 0 0 0

−Spn Spn Spn 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3.20)

C1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
Mnsn

0 0 0

0 1
Msn

0 0

1
Mnsn

− 1
Msn

0 0

Spn .Ran
Mnsn

−Spn .Ran
Msn

0 1
Csphn

0 0 0 1
Csphn

Spn .Ran
Mnsn

−Spn .Ran
Msn

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

D11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Spn .Ran Spn .Ran 0 Spn .Ran −1 −1

0 0 0 0 0 0

−Spn .Ran Spn .Ran Spn .Ran 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

w =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w 1
Mns

w 1
Ms

wa

wb

w 1
Csph

wRa

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ 1
Mns

0 0 0 0 0

0 δ 1
Ms 0 0 0 0

0 0 δa 0 0 0

0 0 0 δb 0 0

0 0 0 0 δ 1
Csph

0

0 0 0 0 0 δRa

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z 1
Mns

z 1
Ms

za

zb

z 1
Csph

zRa

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; D12 = 0; B2 =

⎡

⎢
⎢
⎢
⎣

0

0

1

0

⎤

⎥
⎥
⎥
⎦

(3.21)
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3.3 LFT Bond Graphs for Robust FDI

Diagnosis of uncertain systems has been the subject of several recent research
works [1–6]. This interest is reflected by the fact that physical systems are complex
and non-stationary and require more security and performance. The bond graph
model in LFT form allows the generation of analytical redundancy relations (ARRs)
composed of two completely separated parts: a nominal part, which represents the
residuals, and an uncertain part which serves both for the calculation of adaptive
thresholds and sensitivity analysis.

In a BG (as in a bi-partite graph) can be defined a set of variables Z = K ∪ X,
composed of known variables (K ) associated with measured variables (De and D f )
and input ones (Se, S f , M Se, M S f ) and of unknown variables X = xa ∪ xd ∪ ẋd ∪
xi∪ ẋi (variables associated with all the elements of a BG). a, d, i refer, respectively,
to algebraic, derivative, and integral constraints.

The determination of ARRs on a bond graph model is done by elimination of
unknown variables contained in the structural constraints of junctions 0 and 1. The
equations of power balance on the junctions constitute the ARRs [16].

To avoid initial conditions problem which are not known in real processes, ARRs
are directly generated from the BG model in derivative causality. Dualizing effort
(or flow) detector transforms it into a signal source SSe = D̃e (or SS f = D̃ f )
modulated by the measured value, as illustrated in Fig. 3.11. This imposed signal is
the starting point for the elimination of unknown variables. Thus, models in integral
causality of Figs. 3.11a and 3.12a are aimed at physical simulation while those in
derivative causality of Figs. 3.11b and 3.12b are used for ARRs generation.

Fig. 3.11 (a) BG model in
integral causality with a flow
sensor. (b) BG model in
derivative causality with a
dualized flow sensor

1 Df 1 fD
~

:SSf

I I

(a) (b)

Fig. 3.12 (a) BG model in
integral causality with an
effort sensor. (b) BG model
in derivative causality with a
dualized effort sensor

0 De 0 eD
~

:SSe

C C

(a) (b)
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From the BG model of Figs. 3.11b and 3.12b we can write

SS f +
∑

bi .ei = 0

SSe +
∑

bi . fi = 0

with i the number of the links connected to the junction and bi = ±1 following the
half-arrow orientation.

ARRs generation consists in eliminating unknown variables ei and fi by follow-
ing the causal path from a known variable to an unknown one. However, the elim-
ination of the unknown variable on the considered causal constraint is not always
possible. In the algebraic case where the equation is nonlinear, calculating the vari-
able can be done only in one way.

Consider first a junction with I - and R-elements (Fig. 3.13a).
By dualizing the flow detector (on the model of Fig. 3.13a) which becomes a

flow source SS f , I -element can be assigned with derivative causality. The ARR
of (3.22) is then derived by eliminating the unknown variables in junction 1 using
causal paths from known variable SS f (imposed) to the unknown variables:

Se − I1
d SS f

dt
− R1.SS f = 0 (3.22)

In the presence of a C-element (Fig. 3.13b), a conflict of causality appears on the
bond graph when trying to put both dynamic elements in derivative causality. It
means that C element has to stay in integral causality. ARR will depend on initial
effort eC(0).

Fig. 3.13 (a) Bond graph
model causally correct after
dualizing the sensor. (b)
Bond graph model with a
conflict of causality
(under-constrained)

C

1 fD
~

:SSfSe

1I:I

1R:R
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1R:R

?
fD

~
:SSf

Re
Rf

ReRf

Ie If
e

SSf = 0
Ie

If
eC

Cf
e

SSf = 0

(a) (b)

3.3.1 Generation of Robust Residuals

3.3.1.1 General Form of Uncertain ARRs

The generation of robust analytical redundancy relations from a bond graph model
proper and observable is summarized by the following steps:
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1st step: Try to assign a preferred derivative causality on the nominal BG; if it is
possible (the model is over-constrained), then continue the following steps;

2nd step: Build the LFT BG model;
3rd step: Derive ARRs by writing junction equations, as

∑
bi . fin +

∑
S f +

∑
wi = 0

for a junction 0 and

∑
bi .ein +

∑
Se +

∑
wi = 0

for a junction 1.
The unknown variables are ein and fin .

4th step: Eliminate the unknown variables by following the causal paths from
sensors and sources to unknown variables;

5th step: Write the uncertain ARRs as follows:

ARR : Φ
(∑

Se,
∑

S f, De, D f,
∼

De,
∼

D f ,
∑
wi , Rn,Cn, In,TFn,GYn,RSn

)

= 0

(3.23)

where TFn and GYn are, respectively, the nominal values of TF and GY moduli.
Rn, Cn, In , and RSn are the nominal values of elements R, C, I , and RS.

∑
wi is

the sum of modulated inputs corresponding to uncertainties on the elements related
to the considered junction.

3.3.1.2 Generation of Adaptive Thresholds

The generated ARR consists of two parts well separated due to the using of LFT
model, a nominal part noted r :

r = Φ
(∑

Se,
∑

S f, De, D f,
∼

De,
∼

D f , Rn,Cn, In,TFn,GYn,RSn

)

(3.24)

and an uncertain part noted b =∑
wi with

wi = Φ
(

De, D f,
∼

De,
∼

D f , Rn,Cn, In,TFn,GYn,RSn, δR, δI , δC , δRS, δTF, δGY

)

(3.25)

where δR, δI , δC , δRS, δTF, δGY are respectively, the values of multiplicative uncer-
tainties on the elements R, I, C, RS, TF, and GY.

The uncertain part of the ARR is used to generate adaptive thresholds under an
envelope form that contains residuals in the absence of faults.
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Parameter uncertainty can be defined as a slight deviation of the parameter from
its nominal value, without any effect on the functioning of the system. It may be
constant or variable and may vary randomly in a positive or in a negative sense.

From (3.23), (3.24), and (3.25), it gives

r +
∑
wi = 0⇒ r = −

∑
wi

Let us define a threshold of the residual noted a as

a =
∑
|wi | (3.26)

with r � a.
Thus an adaptive threshold of the residual is generated in the form of an envelope

(3.27):

− a � r � a (3.27)

The use of absolute values to generate the thresholds of normal operation ensures
the robustness of this algorithm to false alarms. To control the non-detections and
delays in the detection of the faults, sensitivity analysis of the residuals to faults and
uncertainties allows the estimation of the fault detectable values.

3.3.2 Sensitivity Analysis

Several methods of model-based robust FDI have been developed in recent years
[2, 3, 6, 17–19], for residual generation and evaluation. Evaluation methods depend
on the approaches used for residual generation, and assumptions on the nature and
type of uncertainties in the model. If we assume that uncertainties are not involved at
the same frequency as faults, filtering methods are well suited [3]. In the case where
the variation of the residual is assumed normally distributed around a known mean
value, statistical methods are used to generate normal operating thresholds. After a
judicious choice of a confidence degree, it is possible to calculate the probability of
false alarms and non-detections [17]. Parity space is used for the fault detection
of sensors and actuators, where the evaluation of the residuals is performed by
considering uncertainties bounded by a norm or an interval. With this method, it
is difficult to find a good compromise between robustness to uncertainty and sensi-
tivity to faults, since the elimination of the influence of uncertainties in the residual
may cause insensitivity to faults, especially actuators’ faults [2]. Since it is often
difficult to reduce or eliminate the impact of uncertainties on the residuals using the
space parity, it is useful to exploit the uncertain part of the model to derive thresh-
olds for normal operation [2, 18]. Unfortunately, in case of parameter dependency,
the thresholds are overvalued and likely differ, then they are usually generated by
neglecting the parameter correlation.
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LFT bond graph model allows to generate automatically residuals and adaptive
thresholds; these thresholds provide robustness to uncertainties and are automati-
cally adapted to changes in the operating modes of the system. The bond graph tool
provides a practical solution to the problem of parameter dependency, because it is
possible to track the spread of the influence of uncertainties in terms of effort or
flow across the model through causal paths.

The sensitivity analysis of residuals to uncertainties and faults depends on sen-
sitivity indices and fault detectability indices, to be defined. They allow control
and improvement of diagnosis performance. In practice, the knowledge of fault
detectable value allows the user to measure the damage that this fault can cause
on the system, and the knowledge of uncertainties that could mask the appearance
of faults may induce additional measurements to control their changes and achieve
the desired performance.

3.3.2.1 Normalized Sensitivity Index

Sensitivity analysis of a residual to a parameter uncertainty can be done by deriving
the uncertain part a of the ARR according to uncertainty δi as shown by (3.28) and
(3.29). The result is a power variable (effort or flow), derived using the nominal
value of the parameter. The sensitivity of the ARRs generated from 1 junction and
0 junction are

Sδi =
∂a

∂ |δi | =
∂
(∑ |wi |

)

∂ |δi | = ∂
(∑ ∣

∣δi .ein

∣
∣)

∂ |δi | = ∣
∣ein

∣
∣ (3.28)

Sδi =
∂a

∂ |δi | =
∂
(∑ |wi |

)

∂ |δi | = ∂
(∑ ∣

∣δi . fin

∣
∣
)

∂ |δi | = ∣
∣ fin

∣
∣ (3.29)

i ∈ {R,C, I,RS,TF,GY}. δi is the multiplicative uncertainty on parameter i.
The normalized sensitivity index of the residual to a parametric uncertainty δi is

the ratio between effort (or flow) given by the uncertainty δi and the effort (or flow)
contributed by all the parameter uncertainties a. Thus, the sum of these indices gives

∑
SIδi =

∑ |wi |
a
=

∑ |wi |
a

= 1 (3.30)

The residual sensitivity to parameter uncertainty is proportional to the normal-
ized sensitivity indices, i.e., the residual is most sensitive to the uncertainty that has
the greatest normalized sensitivity index.

3.3.2.2 Fault Detectability Index

In this section, we focus on two types of faults, parameter fault noted Yi and struc-
tural fault noted Ys. The parameter fault Yi represents a rate of abnormal devia-
tion of the parameter i of the system from its nominal value. It differs from the



3 LFT Bond Graph Model-Based Robust Fault Detection and Isolation 121

Fig. 3.14 (a) Bond graph model of a system without fault. (b) Bond graph model of a system with
a parameter fault

multiplicative parameter uncertainty noted δi , which is a slight deviation rate of the
parameter from its nominal value, without any influence on the normal operation
of the system. A parameter fault causes a degradation of system performances and
may cause its total failure.

An example of parameter fault is given in Fig. 3.14. The system consists of a
tank driven by an external source; the fluid then passes through a pipe to outside.
The bond graph model of the system without fault is given in Fig.3.14a. Figure 3.14b
shows the system with a plug in the pipe, considered as parameter fault because it
changes the value of the element R : Rz, but does not modify the model structure.
It is modeled in the same way as a multiplicative uncertainty, as a percentage of the
nominal value of the parameter.

A structural fault noted Ys corresponds to a new effort (or flow) source that causes
a change in the structure of the model. Thus, the nominal model of the system is not
conserved and its dynamic is altered by the presence of the fault. This difference
between the system and the model generates an unbalance in the flow, mass and
energy conservation laws, calculated from junctions 0 and 1 of the bond graph
model. For example, a water leakage in the tank of Fig. 3.15b is a structural fault.
It can be modeled by a flow source S f : Ys. The model structure has changed from
the bond graph model of the system without fault of Fig 3.15a.

The fault detectability index DI is defined as follows:

Definition 3.1 The fault detectability index DI is the difference in absolute value
between the effort (or flow) provided by faults and those granted by all the uncer-
tainties:

DI = |Yi | .
∣
∣ein

∣
∣+ |Ys| − a in a junction 1 (3.31)

DI = |Yi | .
∣
∣ fin

∣
∣+ |Ys| − a in a junction 0
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Fig. 3.15 (a) Bond graph model of a system without fault. (b) Bond graph model of a system with
a structural fault

where
(|Yi | .

∣
∣ein

∣
∣+ |Ys|

)
corresponds to the contribution of all faults. Yi is the rate

of detectable fault on the parameter i , Ys is detectable value of a structural fault
and a is deducted from the uncertain part of the ARR. ein is the effort brought by
element with nominal parameter value in.

Proposition 3.2 Fault detectability condition

{
if DI � 0 : The fault is not detectable
if DI > 0 : The fault is detectable

Assumption 3.3 The effort (or flow) provided to the residual by the occurrence of
multiple faults is greater than the effort (or flow) contributed to the residual by the
occurrence of a single fault.

Given this assumption, detectable value of a fault can be calculated assuming that
this fault is the only one present in the system. The detectable rate Yi of the fault
on the parameter i can be defined by one of inequalities (3.32) and (3.33), assuming
Ys = 0.

• From the ARR generated from a junction 1, we deduce

|Yi | > a
∣
∣ein

∣
∣ (3.32)

• From the ARR generated from a junction 0, we deduce

|Yi | > a
∣
∣ fin

∣
∣ (3.33)
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Given Definition 3.1, Proposition 3.2 and Assumption 3.3, the detectable value
of a structural fault Ys can be defined by the following inequality, assuming Yi = 0:

|Ys | > a (3.34)

3.4 Application to a Mechatronic System

The mechatronic test bench of Fig. 3.16 consists of a computer, communicating with
the power part of the system through DSpace acquisition card. The system consists
of a DC motor which delivers a maximum power of 900 W and equipped with an
incremental encoder on its main axle. The mechanical part of the system consists
of a transmission mechanism (Fig. 3.17), defined by two moving parts linked to the
engine axle by means of springs of different stiffnesses. The two parts can commu-
nicate through a dead zone varying between 0 and 0.5 rad. The position of the output
axle is measured by an incremental encoder, which gives the relative position of the
external load.

Fig. 3.16 Overview of the test bench

Speed

Body 2

Body 1
Stiff link

2j
0

Fig. 3.17 The backlash mechanism
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Fig. 3.18 Bond graph model of the nominal system in preferred integral causality

The bond graph model of the nominal system in integral causality is given in
Fig. 3.18. The mechanical part of the engine is characterized by the viscous friction
fm and inertia Jm . Load part is characterized by friction fs and inertia Js . Reducer
part is represented by TF, and the axles’ stiffness at the input and output of the
reducer is represented by C : 1/K element. Modulated effort sources d and ds are
the disturbing torques caused by the presence of the backlash. Axle velocities are
represented on the bond graph model of Fig. 3.18 by two flow sensors D f : θ̇e and
D f : θ̇s .

3.4.1 Robust FDI Procedure

1st step: Verification of structural properties of the system on the nominal bond
graph model of Fig. 3.18.

On the bond graph model of Fig. 3.19, all dynamic elements are linked by causal
paths to at least one detector, and all the dynamic elements I and C admit derivative
causality on the bond graph model in preferred derivative causality. The model is
thus proper and observable [20].

Dualization of the two sensors (Fig. 3.20) causes a problem of causality on the
part of the system located before the transformer TF.

Since initial conditions are known as the real system is equipped with position
detectors, we can generate two ARRs from both 1 junctions, by keeping the element
C : 1/K in integral causality.

2nd step: The LFT bond graph model of the test bench is given in Fig. 3.21.
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Fig. 3.19 Nominal bond graph model of the system in derivative causality

Fig. 3.20 Bond graph model of the system in derivative causality with dualized flow sensors
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Fictive inputs wi (i = 1, . . . , 7) are linked to fictive outputs zi (i = 1, . . . , 7) by
the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 =
(
δK .δ j0+δK+δ j0

)
.z1 ;z1= dn

w2 = −δ fm .z2 ;z2= f mn
.θ̇e

w3 = −δ Jm .z3 ;z3= J mn .θ̈e

w4 = −δK .z4 ;z4= K n . (θe − N .θs)

w5 =
(
δK .δ j0 + δK + δ j0

)
.z5 ; z5= dsn

w6 = −δ fs .z6 ;z6= f sn
.θ̇s

w7 = −δ Js .z7 ;z7= J sn .θ̈s

δJm , δ fm , δJs , δ fs represent, respectively, the multiplicative uncertainties on the iner-
tia and viscous friction of the engine and the load. δK is the multiplicative uncer-
tainty on the stiffness constant.

Disturbing torques d and ds are considered as known inputs, estimated by
(3.35), and represented on the bond graph model of Fig. 3.21 by two modulated
inputs, with multiplicative uncertainties δd = δK .δ j0 + δK + δ j0 and δds =
N .

(
δK .δ j0 + δK + δ j0

)
. The torque U and the reduction constant N0 are considered

well known.

⎧
⎨

⎩

d = −4.K . j0 .
1−e−γβ
1+e−γβ

ds = N .d
(3.35)

3rd step: On the bond graph model of Fig. 3.21, ARRs of (3.36) are generated from
the energy balance on the two 1 junctions:

ARR1 : U − f mn
.θ̇e−J mn .θ̈e−K n . (θe−N 0.θ s)+w1+w2+w3+w4= 0 (3.36)

ARR2 : N0.K n . (θe−N 0.θ s)+dsn− f sn
.θ̇ s−J sn .θ̈ s−N 0.w4+w5+w6+w7= 0

4th step: The ARRs obtained in the previous step are composed of two separated
parts, given as follows:

r1 = U− f mn
.θ̇e−J mn .θ̈e−K n . (θe − N .θs) (3.37)

a1 = |w1| + |w2| + |w3| + |w4| + |dn|
r2 = N .Kn . (θe − N .θs)− f sn

.θ̇s−J sn .θ̈s

a2 = |N .w4| + |w5| + |w6| + |w7| +
∣
∣dsn

∣
∣
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3.4.2 Simulation Results

The original backlash is considered as a model uncertainty, whose contributed
efforts are estimated using the equation set (3.35); its variation cannot be associated
with the variation of one of elements R, I , and C of a BG model. An abnormal vari-
ation of the backlash is treated as a structural fault; its detectable value is determined
using (3.31):

• Detectability index DIr1

DIr1 = |Ys| −
∑
|wi |

= |Ys| − (|w1| + |w2| + |w3| + |w4| + |dn|)

DIr1 > 0 �⇒ |Ys| > (|w1| + |w2| + |w3| + |w4| + |dn|)

• Detectability index DIr2

DIr1 = |Ys| −
∑
|wi |

= |Ys| −
(|N .w4| + |w5| + |w6| + |w7| +

∣
∣dsn

∣
∣)

DIr2 > 0 �⇒ |Ys| >
(|N .w4| + |w5| + |w6| + |w7| +

∣
∣dsn

∣
∣
)

with

|Ys | =
∣
∣
∣
∣−4K

(
j0 + YJ0

)
.
1− e−γβ

1+ e−γβ

∣
∣
∣
∣ (3.38)

where YJ0 is the fault. In the absence of fault YJ0 is equal to zero.
Figure 3.22 shows the residuals and fault detectability indices without any fault

and any uncertainty.
Figure 3.23 presents the residuals in the presence of modeling uncertainties

( j0 = 0.2 rad which is the maximum backlash allowed on the system in normal
operation) and parameter uncertainties, and in the absence of fault

(
YJ0 = 0

)
. The

fault detectability indices DIr1 and DIr2 are negative as shown in Fig. 3.23c, d.
The residual values are equal to the torque provided by the initial disturbing torque,
estimated by (3.35).

Figure 3.25 represents the residuals r1 and r2 in the presence of fault. The fault is
gradually added to the original backlash j0 (3.38) between time t = 4 s and t = 16 s
as shown in Fig. 3.24. The fault detectability index DIr2 becomes positive at time
t = 6 s (Fig. 3.25d) and the fault amplitude at this time is 0.00038 rad (Fig. 3.24).
Indeed, residual r2 begins to detect the presence of the fault at time t = 6 s. The
fault detectability index DIr1 becomes positive at time t = 7.8 s (Fig. 3.25c); at this
time the residual r1 detects the presence of the fault. So, we conclude that the fault
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Fig. 3.22 Residuals and fault detectability indices in the absence of faults and uncertainties.
(a) Residual r1, (b) residual r2, (c) fault detectability index of r1, and (d) fault detectability index
of r2

detectable value is 0.00038 rad, and it will be detected by the residual r2 with a
slight lead over the residual r1.

3.4.3 Experimental Results

On the real system, the residual values in normal operation are not equal to zero
because of parameter uncertainties and the value of the model uncertainty corre-
sponding to an initial backlash j0. This latter causes a slight difference between
the input and output of the reducer as shown in Fig. 3.26a, b. Residuals given in
Fig. 3.27, the system being in normal operation, remain inside thresholds and no
alarm is generated.

The structure of the test bench does not allow introducing a progressive fault to
accurately reproduce the previous simulation. The fault is introduced by removing
a metal plate at the reducer level.
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The backlash variation causes a large difference between the reducer input and
output as shown in Fig. 3.28a, b. Overlaying Fig. 3.28a with Fig. 3.29a, b shows
that the residuals begin to detect the fault as soon as its amplitude becomes slightly
higher, 0.2 rad, which corresponds to the estimated value by the fault detectability
indices.

3.5 Conclusion

Modeling is an important step in fault diagnosis scheme design, because the desired
performances depend heavily on the model accuracy. The choice of the bond graph
tool for robust FDI of uncertain systems is due to its multi-energy aspect and its
causal and structural properties. The LFT BG modeling does not introduce new
bond graph elements on the model; therefore, no change occurs in the order of the
model and its structural properties. Structural analysis can thus be done directly on
the deterministic model. The transformation from the deterministic to LFT bond
graph model is easily made by just replacing the deterministic elements R, I , C ,
TF, GY, and RS by their corresponding LFT element.

The presented FDI method allows by using a bond graph model in LFT form,
to generate residuals and adaptive thresholds. To improve and monitor the perfor-
mances of the diagnosis, a method of residual sensitivity analysis is proposed to
estimate the detectable values of the faults.

The proposed application shows the robustness of an FDI algorithm on mecha-
tronic systems. Indeed, simulation and experimental results show that the algo-
rithm is robust to false alarms, because residues remain inside the thresholds when
the system is in normal operation. The performance of the algorithm against the
non-detections and delays in fault detection is controlled by estimation of the fault
detectable values.
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Chapter 4
Incremental Bond Graphs

Wolfgang Borutzky

Abstract Incremental true bond graphs are used for a matrix-based determination
of first-order parameter sensitivities of transfer functions, of residuals of analytical
redundancy relations, and of the transfer matrix of the inverse model of a linear
multiple-input–multiple-output system given that the latter exists. Existing software
can be used for this approach for the derivation of equations from a bond graph and
from its associated incremental bond graph and for building the necessary matri-
ces in symbolic form. Parameter sensitivities of transfer functions are obtained by
multiplication of matrix entries. Symbolic differentiation of transfer functions is not
needed. The approach is illustrated by means of hand derivation of results for small
well-known examples.

Keywords Incremental true bond graphs · Parameter sensitivities of transfer
functions · Linear inverse models · Fault detection and isolation · Parameter
sensitivities of the residuals of analytical redundancy relations

4.1 Introduction

Initially, the author of this chapter introduced incremental true bond graphs for bond
graph-based determination of frequency domain parameter sensitivities of state and
output variables in symbolic form assuming a linearised time-invariant (LTI) model
[1, 2]. Contrary to sensitivity pseudo-bond graphs introduced by Cabanellas and
his co-workers [3] and used by Gawthrop [4] as well as by Kam and Dauphin-
Tanguy [5], bonds in incremental bond graphs do not carry first-order sensitivities
of power variables with respect to a parameter but variations (increments) of power
variables due to small incremental component parameter changes. Further study of
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incremental bond graphs has shown that they can be used for other problems due
to parameter variations as well. Incremental bond graphs have proven useful for
the derivation of the canonical as well as the standard interconnection form of state
equations in symbolic form as needed in robustness study [6, 7].

Furthermore, during recent years, the bond graph methodology has also been
applied in the field of model-based fault detection and isolation (FDI) and supervi-
sion, especially by Samantaray and others at Indian Institute of Technology, Kharag-
pur, India, and by members of the bond graph modelling group at École Centrale
de Lille, France [8–13]. In FDI, analytical redundancy relations (ARRs), being con-
straints between known variables, give rise to residuals that can serve as fault indi-
cators. Studying the effect of component parameter uncertainties on the residuals
of ARRs helps in fault isolation. In bond graph model-based FDI, ARRs can be
obtained from balances at 0- and 1-junctions in symbolic form if unknown variables
can be eliminated. Given symbolic processing capabilities either integrated in a bond
graph modelling and simulation software environment or separately available by
means of a computer algebra system, ARRs can be differentiated with respect to
parameters. The residual sensitivities obtained can be used to identify those param-
eter uncertainties that affect residuals most significantly, which is important because
FDI should be robust in the presence of parameter uncertainties.

Alternatively, in [8], parameter sensitivities of residuals of ARRs have been
determined by adding sensitivities of power variables at junctions in a sensitivity
pseudo-bond graph to which a virtual detector of the parameter sensitivity of the
residual has been attached. The sensitivity pseudo-bond graph is connected to a
bond graph of the process model under consideration by signals from the bond graph
that control modulated elements in the sensitivity bond graph. Recently, it has been
briefly shown that incremental bond graphs can serve the same purpose [14].

This chapter demonstrates how the incremental bond graph approach can be used
to solve some further problems. To that end, first, the construction of incremental
bond graphs (incBGs) and the systematic derivation of sensitivities of output vari-
ables is revisited. In the following two sections, incremental true bond graphs are
used for a matrix-based determination of parameter sensitivities of transfer func-
tions in symbolic form for linear multiple-input–multiple-output (MIMO) models
and for their inverse model (if it exists). Clearly, in case of models of small size,
transfer functions can be derived by hand by direct application of Mason’s loop rule
on the causal bond graph [15]. More generally, bond graph-based software such as
20-sim R©1 [16] or SYMBOLS ShaktiTM2 [17] can be used for this purpose. Once
transfer functions have been obtained, they can be partially differentiated symboli-
cally with respect to a component parameter by means of computer algebra systems

1 20-sim R© is a registered trademark of Controllab Products B.V., Hengelosestraat 705, 7521 PA
Enschede, The Netherlands, http://www.20sim.com
2 SYMBOLS ShaktiTM is a trademark of High Tech Consultants, STEP, I.I.T. Kharagpur – 721
302, India, http://www.htcinfo.com

http://www.20sim.com
http://www.htcinfo.com
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such as Mathematica R©3 or MapleTM.4 Kam and Dauphin-Tanguy [5] have derived
parameter sensitivities by direct application of Mason’s loop rule to a sensitivity
pseudo-bond graph.

Advantages of the incremental true bond graph-based approach presented in this
chapter are that the matrices can be automatically set up in symbolic form from an
original bond graph and its associated incremental bond graph by available software.
Parameter sensitivities of transfer functions are then obtained by multiplication of
matrix entries which can be performed by software in symbolic form. There is no
need for symbolic differentiation of transfer functions. The purpose of determining
sensitivities of transfer functions in symbolic form is that, in the design of a robust
control, it may be useful to know how sensitive transfer functions are with respect
to certain parameter uncertainties.

Furthermore, studying the effect of component parameter uncertainties on the
residuals of ARRs helps in fault isolation. Therefore, Section 4.6 addresses the
systematic derivation of parameter sensitivities of residuals of ARRs from an incre-
mental bond graph.

The proposed matrix-based approach is illustrated by manual derivation of results
for small, well-known examples. For more complex system models, software such
as CAMP-G/MATLAB R© together with the Symbolic Math ToolboxTM5 can be
used.

4.2 Basics of Incremental Bond Graphs

In contrast to sensitivity pseudo-bond graphs, bonds of incremental bond graphs
carry variations of power variables instead of their sensitivities with respect to a
parameter. The idea is that a parameter variation ΔΘ results in a perturbation of
both power variables at the ports of an element due to the interaction of the element
with the rest of the model [1]. Hence, a power variable v(t) (either an effort or a
flow) has a nominal part vn(t) and a variation Δv(t) due to a parameter change:

v(t) = vn(t)+Δv(t) (4.1)

The product (Δe)(Δ f ) of the incremental power variables of a bond clearly has the
physical dimension of power. This suggests to consider incremental bond graphs as
true bond graphs, although the product (Δe)(Δ f ) is only a part of the power change
ΔP due to a parameter change [1].

3 Mathematica R© is a trademark of Wolfram Research, Inc., 100 Trade Center Drive, Champaign,
IL 61820-7237, USA, http://www.wolfram.com
4 MapleTM is a trademark of Waterloo Maple Inc., 615 Kumpf Drive, Waterloo, ON, Canada
N2V1K8, http://www.maplesoft.com
5 MATLAB R©, Simulink R©, and Symbolic Math ToolboxTM are trademarks of The Mathworks,
Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA, http://www.mathworks.com

http://www.wolfram.com
http://www.maplesoft.com
http://www.mathworks.com
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Given a bond graph BG of a system, then the associated incremental bond graph
incBG is constructed by just replacing each element by its incremental model. The
latter one may be obtained by taking the total differential of the element’s constitu-
tive relations. That is, the Taylor series of the variation Δv of a power variable v is
approximated by neglecting higher order terms. Accordingly, the incremental bond
graph model built this way is linear, while the model represented by the initial bond
graph may be nonlinear. For the determination of first-order parameter sensitivities,
it is justified to neglect higher order terms in the Taylor series expansion. In [7],
incremental bond graphs are applied for the derivation of two special forms of state
equations used for robustness study and in this context the full variation Δv(t) is
taken into account, i.e. higher order terms are not neglected. The structure of the
incremental bond graph model of a bond graph element is the same in both cases
(cf. also [6]). Exact incremental bond graphs have also been used by Junco in the
context of Lyapunov’s stability analysis applied on bond graphs without parameter
variations but input and state variations [18]. In his 1993 paper, the term incremental
bond graph was possibly used for the first time.

As sources do not depend on system parameters, their incremental bond graph
model is a source of value zero. Clearly, the incremental model of a 0- (1-) junc-
tion again is a 0- (1-) junction. The incremental bond graph representation of other
elements differs from the initial bond graph element by additional sinks attached to
junctions.

4.2.1 Incremental Models of Bond Graph Elements

First, the total differential is applied to the constitutive equations of linear 1-port
elements, 2-port transformers, and gyrators, in order to keep the presentation simple.
As an example, consider a linear 1-port C element with the nominal capacitance Cn .
Taking a first-order variation of the constitutive relation

q = C × eC (4.2)

yields after resolving for ΔeC

ΔeC = 1

Cn
Δq − ΔC

Cn
eCn (4.3)

The result can be represented by the incremental bond graph model in Fig. 4.1. Note
that the output of the MSe source is modulated by a variable from the original bond
graph. In case full variations are taken into account, the equation

qn +Δq = (Cn +ΔC)(en +Δe) (4.4)
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Fig. 4.1 First-order
incremental bond graph
model of a linear 1-port
C element

ΔeC

ΔfC

1 C : Cn

wC

MSe :
1

Cn
︸︷︷︸

δC

eCn
(t)

zC

ΔC

leads to the same incremental bond graph model except that the effort source instead
of the nominal value en(t) is modulated by the perturbed effort e(t) = en(t)+Δe(t).

A first-order incremental bond graph model of a linear 1-port resistor with the
nominal resistance Rn is easily obtained in the same way. Taking the total differen-
tial of the constitutive relation

eR = R × fR (4.5)

gives

ΔeR = Rn(Δ fR)+ (ΔR) fR (4.6)

or

Δ fR = 1

Rn

(

ΔeR − ΔR

Rn
eR

)

(4.7)

Equation (4.6) may be represented by Fig. 4.2a, while Fig. 4.2b depicts (4.7). Hence,
the incremental bond graph model does not depend on the assignment of causality.

ΔeR

ΔfR

ΔeR

ΔfR

1 R : Rn R : Rn

wR wR

MSe : fRn(t) × ΔR MSe : fRn(t) × ΔR

(a)

1

(b)

Fig. 4.2 Incremental bond graph of a 1-port R element in (a) impedance and (b) admittance
causality
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Let mn denote the nominal modulus of a 2-port transformer. Then, taking the
total differential of its constitutive equations gives

Δe1 = mn Δe2 + e2n Δm (4.8a)

Δ f2 = mn Δ f1 + f1n Δm (4.8b)

In the incremental model of a transformer in Fig. 4.3, the second term on the right-
hand side of these equations is represented by modulated sources on both sides of
the transformer.

Fig. 4.3 First-order
incremental bond graph
model of a 2-port transformer

Δe1

Δf1

Δe2

Δf2
1

MSe  :  − e2n × Δm MSf  :  f1n × Δm

TF

mn..
0

Furthermore, consider an effort-modulated effort source with the constitutive
equation

E(t) = k × e(t) (4.9)

where k ∈ R and k > 0. The associated incremental model is depicted in Fig. 4.4
where kn denotes the nominal value of k.

Fig. 4.4 First-order
incremental bond graph
model of an effort-modulated
effort source

Δe
MSe

kn..
1

ΔE

MSe : en × Δk

The outlined construction of incremental models is also applicable to linear mul-
tiport fields (Section 4.4.3). Finally, the first-order variation of the constitutive equa-
tions of nonlinear multiport elements can be represented by an incremental model
[2, 14]. Consider, for instance, a nonlinear 1-port resistor with multiple parameters
Θ j ∈ R, Θ j > 0, j = 1, . . . ,m, Θ := [Θ1 . . . Θm]T and the constitutive equation

eR(t) = ΦR( fR(t),Θ) (4.10)
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The total differential

ΔeR(t) = ∂

∂ fR
ΦR( fR(t),Θ)Δ fR(t)+

m∑

j=1

∂

∂Θ j
ΦR( fRn(t),Θ)ΔΘ j (4.11)

is easily represented by the incremental model in Fig. 4.5.

Fig. 4.5 First-order
incremental bond graph
model of a nonlinear 1-port
R element

ΔeR

ΔfR
1 MR :

∂

∂fR
ΦR(fR(t),Θn)

MSe
∂ΦR

∂Θ1
ΔΘ1 : MSe :

∂ΦR

∂Θm
ΔΘm

. . .

In case of a hydraulic orifice described by Bernoulli’s square root law

fR = cd × A × sign(eR)

√
2

ρ
|eR | (4.12)

the incremental model takes the form depicted in Fig. 4.6. In (4.12), cd denotes the
discharge coefficient, A is the cross section area of the orifice, and ρ is a constant
value for the fluid density. In Fig. 4.6, k := A

√
2/ρ. Moreover, it is assumed that

eR > 0.

Fig. 4.6 First-order
incremental bond graph
model of a hydraulic orifice

Δe
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Δf
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R ) Δc
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4.2.2 Derivation of Output Sensitivity Functions
from an Incremental Bond Graph

The previous development of incremental models of bond graph elements implies
that the incremental bond graph has the same structure as the original bond graph
from which it is obtained except the additional sources or sinks respectively modu-
lated by a power variable of the original bond graph. Their number equals the num-
ber of varying parameters. If the original model is linear so is the incremental bond
graph. Hence, a combination of software programs such as CAMP-G/MATLAB R©
and the Symbolic Math ToolboxTM can be used to symbolically set up the matrices
of the state space model for the original as well as for the associated incremental
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bond graph. In both state space models, the system matrix A is the same. The same
holds for the matrix C in the quadruple of matrices of a linear state space model.
Again, let Θ denote the vector of all component parameters and an index n indi-
cate a dependency from nominal parameter values. The state space model for the
incremental bond graph then reads

Δẋ(t) = An Δx(t) + B∗(Θn)w(t) (4.13a)

Δy(t) = Cn Δx(t) + D∗(Θn)w(t) (4.13b)

where the matrices An and Cn are set up from the original bond graph with nominal
parameters, while the matrices B∗ and D∗ can be set up automatically from the
incremental bond graph. The vector w denotes the outputs of the modulated sinks
representing parameter variations (cf. Fig. 4.1). It can be written in the form

w(t) = W(t,Θn)ΔΘ (4.14)

where W(t,Θn) is a diagonal matrix.
Assuming initial values Δx(0) to be null, then taking the Laplace transform of

(4.13a) and (4.13b) and substituting the vector w finally yields the matrix of output
sensitivity functions

L
∂y
∂Θ
= [Cn (sI − An)

−1 B∗ + D∗]
︸ ︷︷ ︸

=: F∗
(L W)(s) (4.15)

with s ∈ C. F∗ the transfer matrix of the incremental bond graph and I the identity
matrix of appropriate dimension.

4.3 Direct and Inverse Models

In subsequent sections, the notions direct model and inverse model will be used.

4.3.1 Direct Models

The term direct bond graph model refers to a bond graph model in preferred integral
causality that enables to compute the dynamics of the state x and the output y in
terms of the input u and known parameters Θ (see also Section 6.2.1.1). In the case
of a linear time-invariant (LTI) system, the model equations are of state space form

ẋ(t) = A(Θ)x(t)+ B(Θ)u(t) (4.16a)

y(t) = C(Θ)x(t)+ D(Θ)u(t) (4.16b)

with constant coefficient matrices A,B,C,D of appropriate dimensions.
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4.3.2 Inverse Models

Gawthrop and Smith [19] state that ‘A system inverse gives the system input
required to generate a given system output.’

In other words, given known parametersΘ , model inversion means to determine
the input u in terms of the state, the output y, and time derivatives of y.

Assume that the inverse model of a LTI system exists. Then, the equations of the
inverse model can be expressed in the form

ż(t) = A∗(Θ)z(t)+
m∑

j=0

B∗j (Θ)y( j)(t) (4.17a)

u(t) = C∗(Θ)z(t)+
m∑

j=0

D∗j (Θ)y( j)(t) (4.17b)

where z with dim(z) ≤ dim(x) denotes the state vector of the inverse model and
y( j) the j th time derivative of y (cf. Section 6.2.1.2). The matrices A∗,B∗j ,C∗,D∗j
are constant coefficient matrices.

Let initial values z(0) and y( j)(0) be zero. Then Laplace transform of the inverse
model equations gives

sL z = A∗L z+ B∗(s)L y (4.18a)

L u = C∗L z+ D∗(s)L y (4.18b)

where B∗(s) :=∑m
j=0 B∗j s j and D∗(s) :=∑m

j=0 D∗j s j .
Let H(s) denote the transfer matrix of the direct model. That is,

L y = H(s)L u (4.19)

Then, the inverse model exists if H is invertible. In that case, (4.18a) and (4.18b)
give for the transfer matrix of the inverse matrix

H∗(s) := H−1(s) = C∗(sI− A∗)−1B∗(s)+ D∗(s) (4.20)

Equations (4.17a) and (4.17b) can be considered a generalised state space realisation
of H−1(s) [20].

Note that the inverse of a state space model, in general, is not a state space model.
In contrast, the inverse of a descriptor system, in general, is again a descriptor
system.

The determination of parameter sensitivities of transfer functions from incremen-
tal linear inverse bond graph models is considered in Section 4.5.
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4.4 Parameter Sensitivities of Transfer Functions
from Direct Bond Graph Models

Let z j be the variable from the system bond graph controlling the modulated source
(sink) representing the j th parameter variation ΔΘ j in the incremental bond graph.
Then, according to (4.14), the output of the modulated source is

w j = δ j z j ΔΘ j (4.21)

where the coefficient δ j depends on the type of the element that has been replaced by

its incremental model. In case of a capacitor δ j = 1/C j
n and z j = e j

Cn
(cf. Fig. 4.1)

or δ j = 1/(C j
n )

2 and z j = q j
n . For a linear resistor with the nominal resistance Rn ,

δR = 1, zR = fR or δR = 1/Rn and zR = eR .
According to (4.15), the i th output sensitivity function with respect to Θ j ,

L ∂yi/∂Θ j , is a transfer function F∗i j multiplied by the Laplace transform of the
output w j = δ j z j of the j th modulated source representing the parameter variation
ΔΘ j :

L
∂yi

∂Θ j
= F∗i j δ j L z j (4.22)

The Laplace transform L z j may be considered one of the output variables L y j ′ of
the original bond graph related through transfer functions Fj ′κ to its n inputs uκ :

L z j = L y j ′ =
n∑

κ=1

Fj ′κ L uκ (4.23)

Substitute index j ′ by i . Then,

L yi =
n∑

κ=1

Fiκ L uκ (4.24)

Hence,

∂L yi

∂Θ j
=

n∑

κ=1

∂Fiκ

∂Θ j
L uκ (4.25)

The entry L ∂yi/∂Θ j of the matrix ∂L y/∂Θ is obtained from (4.15) and (4.21).

∂

∂Θ j
L yi =

n∑

κ=1

F∗i jδ j Fj ′κL uκ (4.26)
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Comparison of (4.25) and (4.26) finally leads to the result

∂Fiκ

∂Θ j
= F∗i jδ j Fj ′κ (4.27)

An advantage of this matrix-based approach to a determination of parame-
ter sensitivities of transfer functions is that available software such as CAMP-
G/MATLAB R© and the Symbolic Math ToolboxTM can be used for the steps of the
procedure. First, equations are automatically derived from both the original bond
graph and its associated incremental bond graph, and the matrices of their state
space models are built in symbolic form. Once the transfer matrices F := (Fi j )

for the bond graph and F∗ = (F∗i j ) for the incremental bond graph have been set
up in symbolic form, the factors of the right-hand side of (4.27) are known so
that any first-order parameter sensitivity of a transfer function of interest can be
determined symbolically by multiplying entries from both matrices. Clearly, given
a transfer function derived from a causal bond graph, its sensitivity with respect to
a parameter may also be obtained by symbolic differentiation. If the incremental
bond graph approach is used then the symbolic differentiation is not necessary. The
use of first-order incremental bond graph models implies that the total differential
of constitutive element equations has already been taken.

The incremental bond graph has the same structure as the bond graph. Therefore,
the expression for both transfer functions F and F∗ includes the factor (sI− An)

−1

(cf. (4.15)). Hence, since the inverse of a matrix M can be written as M−1 =
Adj(M)/det(M), the denominator in the right-hand side product of (4.27) equals
the square of det(sI− An).

In the next two sections, the approach is illustrated by application to two often
considered small example systems. Note that in all examples in this chapter the co-
energy variables of energy stores in integral causality are chosen as state variables.

4.4.1 Example: Coupled Hydraulic Tanks

Consider the coupled hydraulic tanks depicted in Fig. 4.7. The nonlinear character-
istic of the valves is given by Bernoulli’s well-known square root law. It is assumed
that the constitutive equations of the valves have been linearised around an operating
point so that the model equations are linear and Laplace transform can be applied.

Fig. 4.7 Schematic of a
coupled hydraulic tank
system

Tank 1

h1

h2

p1

Tank 2

p2

Valve 1 Valve 2

Qp(t) Qo(t)
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MSf
Qp

0

:

1

:

0

:

1
Qo

Se : 0

p1 p2QC1 QC2 QR2QR1

C : C1 R : R1() C : C2 R : R2()

Fig. 4.8 Bond graph of the coupled hydraulic tank system

The two tank pressures and the flow through the second valve are measured as indi-
cated by the detectors in the bond graph in Fig. 4.8. In the following, the pressure
in the right-hand side tank, p2, and the outflow, Qo, from this tank are considered
the output variables of interest. Then, the following linear state space model can be
derived from the bond graph of Fig. 4.8.

[
ṗ1
ṗ2

]

︸ ︷︷ ︸
ẋ

=

⎡

⎢
⎢
⎣

− 1

C1 R1

1

C1 R1

1

C2 R1
− 1

C2

(
1

R1
+ 1

R2

)

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
An

[
p1
p2

]

︸ ︷︷ ︸
x

+
⎡

⎣
1

C1

0

⎤

⎦

︸ ︷︷ ︸
Bn

[
Q p

]

︸ ︷︷ ︸
u

(4.28a)

[
p2
Qo

]

︸ ︷︷ ︸
y

=
⎡

⎣
0 1

0
1

R2

⎤

⎦

︸ ︷︷ ︸
Cn

[
p1
p2

]

+ [0]
︸︷︷︸
Dn

[
Q p

]
(4.28b)

4.4.1.1 Symbolic Differentiation of a Transfer Function with Respect
to a Parameter

For a general linear MIMO system, Laplace transform of the equations of the state
space model results in the matrix F of transfer functions:

L y =
[
Cn (sI− An)

−1 Bn + Dn

]

︸ ︷︷ ︸
F

L u

=
[

Cn
1

Δ
Adj (sI− An)Bn + Dn

]

L u (4.29)

where Δ := det (sI− An).
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In the case of the example under consideration, evaluation of (4.29) yields

[
L p2
L Qo

]

=
⎡

⎢
⎣

0 1

0
1

R2

⎤

⎥
⎦

1

Δ

⎡

⎢
⎢
⎣

s + 1

C2

(
1

R1
+ 1

R2

)
1

C1 R1

1

C2 R1
s + 1

C1 R1

⎤

⎥
⎥
⎦

⎡

⎣
1

C1

0

⎤

⎦
[
L Q p

]

= 1

Δ

1

C1

⎡

⎢
⎣

1

1

R2

⎤

⎥
⎦

1

C2 R1

︸ ︷︷ ︸
F

[
L Q p

]
(4.30)

Let F1 := L p2/L Q p. Then, for instance,

∂F1

∂R2
= − 1

C1C2 R1

1

Δ2

∂Δ

∂R2
(4.31)

where

− ∂Δ

∂R2
= 1

C2

1

R2
2

(

s + 1

C1 R1

)

(4.32)

4.4.1.2 Application of the Incremental Bond Graph Approach

Figure 4.9 depicts the associated incremental bond graph accounting for parameter
variation ΔR2. Clearly, due to the linearity of the model, further parameter varia-
tions can be superimposed by replacing bond graph elements by their incremental
model, which basically means adding a modulated sink accounting for the parameter
variation.

:0 fS 0 1

wR2

0 1
ΔQo

Se : 0

Δp1 Δp2

C : C1 R : R1 C : C2 R : R2

Fig. 4.9 Incremental bond graph of the coupled hydraulic tank system accounting for parameter
variation ΔR2
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The state space model derived from the associated incremental bond graph reads

[
Δ ṗ1
Δ ṗ2

]

= An

[
Δp1
Δp2

]

+
⎡

⎣
0
1

C2 R2

⎤

⎦

︸ ︷︷ ︸
B∗

[QoΔR2]
︸ ︷︷ ︸

w

(4.33a)

[
Δp2
ΔQo

]

= Cn

[
Δp1
Δp2

]

+
⎡

⎣
0

− 1

R2

⎤

⎦

︸ ︷︷ ︸
D∗

w (4.33b)

According to (4.29), the matrix of transfer functions, F∗, is given by the equation

LΔy =
[
Cn (sI− An)

−1 B∗ + D∗
]

︸ ︷︷ ︸
F∗

L w (4.34)

In the case of the coupled hydraulic tank system, (4.34) reads

L

[
Δp2
ΔQo

]

=

⎡

⎢
⎢
⎣

1

C2 R2

1

Δ

(

s + 1

C1 R1

)

1

C2 R2
2

1

Δ

(

s + 1

C1 R1

)

− 1

R2

⎤

⎥
⎥
⎦ L [QoΔR2] (4.35)

Substituting L Qo by means of (4.30) gives

ΔL p2 = 1

C2 R2

1

Δ

(

s + 1

C1 R1

)

︸ ︷︷ ︸
F∗1

× 1︸︷︷︸
δR2

× 1

Δ

1

C1

1

R2

1

C2 R1︸ ︷︷ ︸
F2

L Q p ΔR2 (4.36)

Hence,

∂F1

∂R2
= ∂

∂R2

(
L p2

L Q p

)

= 1

C1C2 R1

1

Δ2

1

C2 R2
2

(

s + 1

C1 R1

)

︸ ︷︷ ︸

− ∂Δ
∂R2

(4.37)

in accordance with (4.31).
This example illustrates that a parameter sensitivity of a transfer function such as

∂F1/∂R2 (4.31) can be obtained by multiplication of an entry of the transfer matrix
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F of the original bond graph model and an entry of the transfer matrix F∗ of the
associated incremental bond graph.

For other sensitivities of transfer functions, e.g. ∂F1/∂C1, the coefficients of the
polynomials in the numerator and in the denominator are complex expressions.
Accordingly, more effort is necessary to show by manual formulae manipulation
that the result obtained by the incremental bond graph approach equals the one that
direct symbolic differentiation of the transfer function yields. For instance,

∂F1

∂C1
= 1

C2 R1

∂

∂C1

(
1

Δ

1

C2

)

(4.38)

Performing the right-hand side differentiation results in a lengthy expression.
In any case, software such as CAMP-G/MATLAB R© in cooperation with the

Symbolic Math ToolboxTM can set up the matrices needed for establishing both
transfer matrices in symbolic form from both bond graphs.

4.4.2 Example: Fixed Field DC Motor

The second illustrative example is the well-known voltage-driven separately excited
DC motor that drives a mechanical load against an external moment (Fig. 4.10).
Figure 4.11 shows a direct bond graph model. Like the previous example, this model
also has two inputs and two outputs. That is, a transfer matrix H with four transfer
functions Fi j can be derived:

[
L ia

Lω

]

=
[

F11 F12
F21 F22

]

︸ ︷︷ ︸
H

[
L E
L Mload

]

(4.39)

A question that might be of interest is how sensitive these transfer functions are
with respect to variations of the mechanical friction on the mechanical load side.
Suppose that ∂F21/∂Rm is to be determined. In this case, the associated incremental
bond graph is obtained from the original bond graph by just replacing the resistor
R : Rm by its incremental bond graph model. Figure 4.12 shows the result.

Fig. 4.10 Fixed field DC
motor

ω

LaRa

E
Jm

Rm
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MSe
u1= E

y1= ia
1

ia =

I : La

R : Ra

GY

kT..

1

ω = x2x1

I  : Jm

R : Rm

u2 = Mload

y2 = ω
MSe

Fig. 4.11 Direct bond graph model of a fixed field DC motor

0 : Se

Δy1

1

Δi = Δx1

I : La

R : Ra

GY

kT..
1

Df : Δy2

Δω = Δx1

I : Jm

w1

MSe : ω ΔRm = z1ΔΘ1

R : Rm

Fig. 4.12 Incremental true bond graph of the DC motor accounting for a variation in mechanical
friction

4.4.2.1 Symbolic Differentiation of a Transfer Function with Respect
to a Parameter

Derivation of the Laplace transformed state equations from the original bond graph
in Fig. 4.11 yields

⎡

⎢
⎢
⎣

s + Ra

La

kT

La

− kT

Jm
s + Rm

Jm

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
(sI− An)

[
L ia

Lω

]

︸ ︷︷ ︸
L x

=

⎡

⎢
⎢
⎣

1

La
0

0
1

Jm

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Bn

[
L E
L Mload

]

︸ ︷︷ ︸
L u

(4.40)

Solving for L x gives for the second component L x2 = Lω = L y2

Lω = kT

(La Jm)Δ︸ ︷︷ ︸
F21

L E + Las + Ra

(La Jm)Δ︸ ︷︷ ︸
F22

L Mload (4.41)
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where

Δ := det(sI− An) =
(

s + Ra

La

)(

s + Rm

Jm

)

+ k2
T

Jm La

Accordingly,

∂F21

∂Rm
= ∂

∂Rm

(
Lω

L E

)

= kT

(La Jm)Δ︸ ︷︷ ︸
F21

−1

Δ

∂Δ

∂Rm
= F21

−1

Jm Δ

(

s + Ra

La

)

(4.42)

4.4.2.2 Application of the Incremental Bond Graph Approach

Derivation of the state equations from the incremental bond graph yields

[
LΔi
LΔω

]

︸ ︷︷ ︸
LΔx

= (sI− An)
−1

⎡

⎣
0

− 1

Jm

⎤

⎦

︸ ︷︷ ︸
B∗

[Lω] [ΔRm]
︸ ︷︷ ︸

L w

(4.43)

= − 1

JmΔ

⎡

⎢
⎢
⎣

− kT

La

s + Ra

La

⎤

⎥
⎥
⎦ [Lω] [ΔRm] (4.44)

Hence,

ΔLω = − 1

Jm Δ

(

s + Ra

La

)

︸ ︷︷ ︸
F∗21

(Lω)ΔRm (4.45)

Combining this result derived from the incremental bond graph with the one
obtained from the initial bond graph (cf. (4.41)) gives

ΔLω = F∗21 [ F21L E + F22L Mload ]ΔRm (4.46)

Partial differentiation of (4.39) yields

∂Lω

∂Rm
= ∂F21

∂Rm
L E + ∂F22

∂Rm
L Mload (4.47)
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Comparison of the last two equations finally gives the result

∂F21

∂Rm
= F∗21 F21 (4.48)

in accordance with (4.42) observing (4.45).
A Bode plot of ∂F21/∂Rm can be easily constructed by means of the low-

frequency and the high-frequency asymptotes of its factors observing that Δ is a
second-order polynomial in s. The amplitude drops for ω > ωn : = [(Ra Rm +
k2

T )/(La Jm)]1/2 with a slope of −3 and the phase drops from 180◦ to −90◦.
Figure 4.13 shows a Bode plot for the numerical values in Table 4.1 obtained by

using Scilab [21].
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Fig. 4.13 Parameter sensitivity of transfer function F21 with respect to Rm

Table 4.1 Parameter values of the fixed field DC motor

Parameter Value Units Meaning

Ra 5.0 � Armature resistance
La 50.0 mH Armature self-inductance
kT 0.15 Nm/A Torque constant
Jm 1.0× 10−3 kg m2 Momentum
Rm 1.0× 10−3 Nms Friction coefficient
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4.4.3 Bond Graphs with Linear Multiport Fields

In this section, energy stores and resistors are allowed to be linear multiport fields.

4.4.3.1 I-Fields

For illustration, consider the simple electrical circuit with mutually interacting coils
depicted in Fig. 4.14. The full circles above the coils denote their relative orienta-
tion. As the two currents, i1 and i2, both enter their coil at the end marked by the
full circle, the mutual inductance coefficient M12 in the constitutive equations is
positive.

Fig. 4.14 Electrical circuit
with mutually interacting
coils

In the bond graph of Fig. 4.15, the mutually interacting coils are represented by
a 2-port I -field. Its constitutive equations read

[
λ1
λ2

]

=
[

L1 M12
M12 L2

]

︸ ︷︷ ︸
L

[
i1
i2

]

(4.49)

where L1 and L2 denote the self-inductance coefficients of the two coils, M12 the
mutual inductance coefficient, and λ1 and λ2 the flux linkages.

Taking the total differential of the two flux linkages yields

Δλ1 = L1Δi1 + M12Δi2 + (ΔL1)i1 + (ΔM12)i2 (4.50a)

Δλ2 = M12Δi1 + L2Δi2 + (ΔM12)i1 + (ΔL2)i2 (4.50b)

Fig. 4.15 Bond graph of the
circuit in Fig. 4.14

Se
E

1

i1

R : R1

u1
I

u2
1

i2
R : R2
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Now, in both equations, the flux linkages Δλi are expressed by voltages Δui . After
Laplace transform the equations take the form

[
LΔu1
LΔu2

]

︸ ︷︷ ︸
LΔx

= sL
[

LΔi1
LΔi2

]

︸ ︷︷ ︸
LΔi

+s

[
(ΔL1)L i1 + (ΔM12)L i2
(ΔM12)L i1 + (ΔL2)L i2

]

︸ ︷︷ ︸
L w

= sLLΔi+ s(ΔL)L i (4.51)

Equation (4.51) can be represented by a linear I -field in derivative causality and
modulated effort sinks accounting for the parameter variations added to 1-junctions.
The incremental bond graph model of a linear 2-port I -field is depicted in Fig. 4.16.
The prime denotes differentiation with respect to time. Accordingly, Fig. 4.17 shows
the incremental bond graph of the circuit in Fig. 4.14.

Fig. 4.16 Incremental bond
graph model of a linear
two-port I -field

Δu1

Δi1 Δi2

Δu2
1 I 1

MSe : (ΔL1 (ΔL2)i1

MSe : (ΔM12 (ΔM12)i2

MSe : )i2

MSe : )i1

Se0 : 1

R : R1

Δu1 Δu21
Δi1

I
Δi2

1 1 R : R2

MSe :(ΔL1 (ΔL2)i1 i2

i2MSe : )

MSe : )

MSe :(ΔM12 i1)(ΔM12

Fig. 4.17 Incremental bond graph of the circuit in Fig. 4.14

The variations of the currents are determined by the two resistors in the incre-
mental bond graph of Fig. 4.17.

LΔi =
⎡

⎢
⎣
− 1

R1
0

0 − 1

R2

⎤

⎥
⎦

︸ ︷︷ ︸
A

LΔx (4.52)
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Substitution into (4.16) gives the transfer matrix F∗ relating the inputs into the incre-
mental bond graph to the current variations considered as outputs:

LΔi = (I− sAL)−1sA
︸ ︷︷ ︸

F∗
L w (4.53)

= F∗(ΔL)L i (4.54)

The following equations are obtained from the bond graph of the circuit
(Fig. 4.15). The first one is the constitutive equation of the I-field:

L x = sLL i (4.55)

and

L i = AL x+
⎡

⎣
1

R1
0

⎤

⎦

︸ ︷︷ ︸
B

[L E]
︸ ︷︷ ︸
L u

(4.56)

Substitution of (4.55) into (4.56) gives the transfer matrix F relating the input L u
into the bond graph to the current L i:

L i = (I− sAL)−1B
︸ ︷︷ ︸

F

L u (4.57)

Finally, replacing L i in (4.54) by (4.57) shows again that the Laplace transformed
variation of an output variable of the incremental bond graph is determined by the
product of a transfer matrix F∗ from the incremental bond graph and a transfer
matrix F from the original bond graph:

LΔi = F∗(ΔL)FL u (4.58)

Let ΔΘ be any of the three parameter variations ΔL1,ΔL2, and ΔM12. Then the
sensitivity ∂F/∂ΔΘ can be obtained from (4.58). For instance, assume that the
mutual inductance M12 is the only varying parameter, i.e.

ΔL = ΔM12

[
0 1
1 0

]

(4.59)

then (4.58) takes the form
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[
LΔi1
LΔi2

]

=
[

F∗11 F∗12
F∗21 F∗22

]

ΔM12

[
0 1
1 0

] [
F11
F21

]

[L E]

=
[

F∗12 F11 + F∗11 F21
F∗22 F11 + F∗21 F21

]

︸ ︷︷ ︸
∂F
∂M12

ΔM12L E (4.60)

4.4.3.2 C-Fields

Two-port C-fields are suitable for a convenient representation of devices such as the
movable plate capacitor, an air gap between a fixed and a movable magnetic pole
[22], or piezoelectric crystals [6]. Again, taking the total differential of the output
variables of a linear 2-port C-field results in relations between incremental power
variables that can be depicted by an incremental bond graph similar to the one in
Fig. 4.16.

For instance, consider a piezoelectric crystal. Assume a one-dimensional model
of the crystal and let F be the force acting on the crystal, x the mechanical deforma-
tion, u the voltage across the crystal, and q its electrical charge for the time instant t .
Then a commonly known form of the constitutive equations is

[
x
q

]

=
[

Cm dε
dε Ce

] [
F
u

]

(4.61)

where Cm denotes the mechanical compliance, dε the piezoelectric coupling, and Ce
the electrical capacitance. Accordingly, the equations for the first-order variations of
x and q differentiated with respect to time read

Δẋ = CmΔḞ + dεΔu̇ + (ΔCm)Ḟ + (Δdε)u̇ (4.62a)

Δq̇ = dεΔḞ + CeΔu̇ + (Δdε)Ḟ + (ΔCe)u̇ (4.62b)

and can be depicted by the incremental bond graph model in Fig. 4.18.

Fig. 4.18 Incremental bond
graph model of a linear 2-port
C-field

Δẋ
0

ΔF
C

Δu
0

Δq̇

MSf : (ΔCm) Ḟ

MSf : (Δd )u̇

MSf : (ΔCe )u̇

MSf : (Δd )Ḟ
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4.5 Parameter Sensitivities of Transfer Functions
of Linear Inverse Models

So far, parameter sensitivities of transfer functions of direct models have been con-
sidered. This section presents an incremental bond graph-based procedure to the
symbolic determination of parameter sensitivities of transfer functions of linear
inverse models given that the latter exist.

A bond graph representation of the inverse model can serve several purposes.
For instance, in the case of a single-input–single-output (SISO) system, the number
of energy stores in integral causality in the bond graph of the inverse model equals
the number of poles of the transfer function of the inverse model and thus equals the
number of zeros of the transfer function of the direct model. The number and the
location of the zeros of a linear time-invariant (LTI) system are of importance for
its control. The poles of a transfer function of the direct model arise from the C and
I stores in integral causality. In contrast, as has been pointed out by Gawthrop [23],
the dynamics giving rise to zeros in the direct model cannot be readily identified
from its bond graph.

In general, an inverse model does not have a physical realisation. The behaviour
of a physical system can approximate the one of an inverse model. Neverthe-
less, inverse models and transfer functions of inverse models are needed, e.g. in
the design of a control that ensures trajectory tracking and disturbance rejection.
Clearly, the control should be robust in the presence of some uncertain parameter
values.

Ngwompo and his co-authors [24] state that a LTI SISO system is structurally
invertible if there is at least one causal path in the causal direct bond graph between
the input variable and the output variable ([24, Proposition 1, p. 162]). Furthermore,
they show how the state equations of the inverse system can be directly determined
from a causal direct bond graph model or from a bicausal bond graph. (In order
to support tasks such as bond graph-based system inversion, Gawthrop extended
the concept of computational causality by introducing the notion of bicausality
[19, 25].) Clearly, the state equations of the inverse model of a SISO system can
be converted into a transfer function.

4.5.1 Construction of the Bond Graph of the Inverse Model

For a linear multiple-input–multiple-output system, Ngwompo and his co-workers
have developed criteria that can be checked on the causal bond graph of a direct
model to decide whether the inverse model exists [26–28]. Moreover, they provide
a procedure for constructing an inverse bond graph model that represents the inverse
system of minimal order. Basically, the procedure requires to identify a unique set of
disjoint input–output causal paths in the direct bond graph, to replace both sources
and detectors by source–sensors (usually denoted by the symbol SS [19]), to assign
and propagate bicausality along the bonds of each disjoint input–output causal path
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from the sensor to the source, and to apply the standard causality assignment proce-
dure (SCAP) to the rest of the bond graph ([26, Algorithm 1, p. 111]).

In case the inverse model exists and input–output pairs are collocated, the bond
graph of the inverse model can be obtained from the direct bond graph model by
replacing sources by their dual or by source–sensors, by applying inverted causality
to the latter, and by reassigning causality to the graph.

Let H∗ denote the transfer matrix of the inverse model. Then

L u = H∗L y (4.63)

Hence, the partial derivative with respect to a parameter Θi is

∂L u
∂Θi

= ∂H∗

∂Θi
L y+H∗ ∂L y

∂Θi
(4.64)

if the input vector y may depend on Θi .

4.5.2 Construction of the Incremental Bond Graph
of the Inverse Model

The incremental bond graph of the inverse model is constructed by replacing all
elements with varying parameters by their incremental model in the bond graph of
the inverse model. Thus, the latter contains modulated sources (sinks) controlled
by output variables zi of the direct model. That is, in addition to the vector Δy,
output variables wi = δi zi ΔΘi of the modulated sources (sinks) are inputs into the
incremental bond graph of the inverse model. Moreover, assignment of causalities
to the bond graph of the inverse model commonly leads to derivative causality at
the port of at least some of the energy stores. That is, the order of the inverse model
is lower than the one of the direct model. For linear time-invariant (LTI) models,
storage ports with differential causality imply that time derivatives of inputs will
occur in the equations for the states of the energy stores in integral causality [29].

4.5.3 Matrix-Based Determination of Transfer Function
Sensitivities for the Inverse Model

Now, let Δx∗i denote variations of the states of all storage elements in integral
causality, Δx∗d the variations of the non-states of all energy stores in differential
causality in the incremental bond graph of the inverse model, andΔx∗ the descriptor
vector Δx∗ := [Δx∗i Δx∗d ]T . Furthermore, may ΔΘ denote the vector of parameter
variations. Then, matrices can be built so that
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Δẋ∗ = A∗Δx∗ + B∗Δy+ B∗1Δẏ+ B∗2WΔΘ + B∗3ẆΔΘ (4.65a)

Δu = C∗Δx∗ + D∗Δy+ D∗1Δẏ+ D∗2WΔΘ + D∗3ẆΔΘ (4.65b)

(see the Appendix).
Given that (sI− A∗)−1 exists, then Laplace transform of (4.65b) yields

LΔu = M1LΔy+M2(L W)ΔΘ (4.66)

where

M1 = C∗(sI− A∗)−1(B∗ + sB∗1)+ (D∗ + sD∗1) (4.67a)

M2 = C∗(sI− A∗)−1(B∗2 + sB∗3)+ (D∗2 + sD∗3) (4.67b)

The vector L w = (L W)ΔΘ in (4.66) can be expressed by the output vector y of
the direct model

L w = (L W)ΔΘ = (ΔW)L z = (ΔW)(M3L y) (4.68)

whereΔW is a diagonal matrix withΔWii = δiΔΘi and M3 a matrix with mi j
3 ∈ C.

Substitution of (4.68) into (4.66) yields

∂L u
∂Θi

= M1
∂L y
∂Θi

+
(

M2
∂W
∂Θi

M3

)

L y (4.69)

Comparison of (4.69) and (4.64) finally gives the result

M1 = H∗ (4.70)

M2
∂W
∂Θi

M3 = ∂H∗

∂Θi
(4.71)

where ∂Wi j/∂Θi = δi for i = j . Otherwise ∂Wi j/∂Θi = 0.
In the following section, for illustration, this matrix-based approach is applied to

two simple examples.

4.5.4 Example: Inverse Model of a Linear Network

Consider the simple linear electrical network depicted in Fig. 4.19. It can be
viewed as an electrical analogue of the coupled hydraulic tank system considered in
Section 4.4.1. A bond graph of the direct model with the two inputs I (t) and E(t)
and the two outputs e1 and f2 appears in Fig. 4.20. There is one set of two disjoint
input–output causal paths
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Fig. 4.19 Schematic of a
linear electrical network

I(t) E(t)C1 C2

R2R1

eC1

eC2

MSf
e1

I(t)
0

De : e1

fC1

C : C1 C2

1

fR1

R : R1 R2

0

x2x1

C :

1

Df : f2

fR2
eR2

R :

E(t)

f2
MSe

Fig. 4.20 Bond graph of the direct model of the linear electrical network

I (t)→ fC1 → x1 → e1

E(t)→ eR2 → fR2 → f2

The order of the first path is 1 and the order of the second one equals 0. Hence, the
model is structurally invertible ([26, Criterion 2], or [30, p. 165]) and the order of
the inverse model is 1 ([26, Proposition 2]).

Figure 4.21 shows a bond graph representation of the inverse model. Contrary
to the bond graph of the direct model, the bond graph of the inverse model has one
energy store in differential causality (C : C1) as to be expected from the structural
analysis of the direct bond graph. Hence, the order of the inverse model is 1.

In this example, input–output pairs I (t), e1 and E(t), f2, respectively, are collo-
cated. Hence, the left-hand side flow source and the effort detector in Fig. 4.20 can
be combined into one source–sensor element SS. The same holds for the right-hand
side effort source and the flow detector. The bond graph of the inverse model is

SSu1 = f1 : 0

SS : y1 = e1

x∗
1

C : C1

1

fR1

R : R1

0

x∗
2

C : C2

1

SS : y2 = f2

eR2

R : R2

SS : u2 = e2

Fig. 4.21 Bond graph of the inverse model of the linear electrical network using bicausality
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SS
e1 e2

f1 f2
0

x∗
1

C : C1 C2

1

fR1

R : R1 R2

0

x∗
2

C :

1

eR2

R :

SS

Fig. 4.22 Bond graph of the inverse model with two source–sensors

obtained by just reversing causality at the source–sensor elements and by propagat-
ing this information [19]. Figure 4.22 shows the result.

4.5.4.1 Symbolic Differentiation of the Transfer Matrix of the Inverse Model
with Respect to a Parameter

Let y = [e1 f2]T and u = [ f1 e2]T according to Fig. 4.22. Derivation of equations
from the bond graph of the inverse model and Laplace transform yields

[
L f1
L e2

]

︸ ︷︷ ︸
L u

=
[

H∗11 H∗12
H∗21 H∗22

]

︸ ︷︷ ︸
H∗

[
L e1
L f2

]

︸ ︷︷ ︸
L y

(4.72)

where

H∗11 = C1s + 1

R1
− 1

R1

1

d
(4.73a)

H∗12 =
1

d
(4.73b)

H∗21 =
1

d
(4.73c)

H∗22 = −
(

R1

d
+ R2

)

(4.73d)

and d := R1C2s + 1. Hence,

∂H∗

∂R2
=

[
0 0
0 −1

]

(4.74)

and

∂H∗

∂C2
= s

d2

[
1 −R1

−R1 R2
1

]

(4.75)

Remark 4.1 The above transfer functions of the inverse model have a pole due to
the term d in their denominator. It can be identified in the bond graph of the inverse
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model by the causal path from the store C : C1 to the resistor R : R1. Let H denote
the transfer matrix of the direct model. Then, because of H = (H∗)−1, this pole
gives rise to a zero in the transfer functions of H that is not evident in the direct
bond graph.

4.5.4.2 Incremental Bond Graph Approach

In the following, the results (4.74) and (4.75) obtained by symbolic differentiation
will be derived from the incremental bond graph of the inverse model (Fig. 4.23) by
building the matrices used in the approach presented in the previous section.

As parameters R2 and C2 are assumed to vary, the bond graph elements R : R2
and C : C2 have been replaced by their incremental models. Derivation of equations
from the incremental bond graph in Fig. 4.23 results in the following matrices:

[
Δẋ∗2
Δẋ∗1

]

︸ ︷︷ ︸
Δẋ∗

=
⎡

⎣−
1

R1C2
0

0 0

⎤

⎦

︸ ︷︷ ︸
A∗

[
Δx∗2
Δx∗1

]

︸ ︷︷ ︸
Δx∗

+
⎡

⎣
1

R1C2
− 1

C2

0 0

⎤

⎦

︸ ︷︷ ︸
B∗

[
Δe1
Δ f2

]

︸ ︷︷ ︸
Δy

+
[

0 0
1 0

]

︸ ︷︷ ︸
B∗1

[
Δė1

Δ ḟ2

]

︸ ︷︷ ︸
Δẏ

+
[−1 0

0 0

]

︸ ︷︷ ︸
B∗3

⎡

⎣
1

c2
ėC2 ΔC2

ḟ R2 ΔR2

⎤

⎦

︸ ︷︷ ︸
ẆΔΘ

(4.76)

SS
Δe1 Δe2

Δf2Δf1
0

Δx∗
1

C : C1

1

ΔfR1
ΔeR2

R : R1 R2

0 1

R :

SS

Δx∗
2

1CC2

C2
C2

:

MSe :
1

eC2 Δ

wR2

wC2

MSe : fR2  Δ R2

Fig. 4.23 Incremental bond graph of the inverse model of the linear electrical network
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Furthermore,

[
Δ f1
Δe2

]

︸ ︷︷ ︸
Δu

=
⎡

⎣−
1

R1
0

1 0

⎤

⎦

︸ ︷︷ ︸
C∗

[
Δx∗2
Δx∗1

]

︸ ︷︷ ︸
Δx∗

+
⎡

⎣
1

R1
0

0 −R2

⎤

⎦

︸ ︷︷ ︸
D∗

[
Δe1
Δ f2

]

︸ ︷︷ ︸
Δy

+
[

C1 0
0 0

]

︸ ︷︷ ︸
D∗1

[
Δė1

Δ ḟ2

]

︸ ︷︷ ︸
Δẏ

+
[

0 0
0 −1

]

︸ ︷︷ ︸
D∗2

⎡

⎣
1

C2
eC2 ΔC2

fR2 ΔR2

⎤

⎦

︸ ︷︷ ︸
WΔΘ

(4.77)

With these matrices and B∗2 = 0, D∗3 = 0, the right-hand side expression in (4.67b)
can be built. The result is

M2 = C2

d
s

⎡

⎣
1 0

−R1 − d

C2s

⎤

⎦ (4.78)

The vector (L W)ΔΘ is easily reformulated

(L W )ΔΘ =
⎡

⎣
ΔC2

C2
0

0 ΔR2

⎤

⎦

︸ ︷︷ ︸
ΔW

[
L ec2

L fR2

]

︸ ︷︷ ︸
z

= (ΔW)

⎡

⎣
1

d
(L e1 − R1L f2)

ΔR2L f2

⎤

⎦

= ΔW

⎡

⎣
1

d
− R1

d

0 1

⎤

⎦

︸ ︷︷ ︸
M3

[
L e1
L f2

]

︸ ︷︷ ︸
L y

(4.79)

Multiplication of matrices proves that, in fact,

M2
∂W
∂R2

M3 = ∂H∗

∂R2
(4.80)

M2
∂W
∂C2

M3 = ∂H∗

∂C2
(4.81)

(cf. (4.74) and (4.75)).
Finally, evaluation of the expression for M1 in (4.67a) confirms (4.70).
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4.5.5 Example: Inverse Model of a Fixed Field DC Motor

The second illustrative example is the well-known voltage-driven separately excited
DC motor that drives a mechanical load against an external moment (Fig. 4.10).

The inverse bond graph is obtained from the direct bond graph (Fig. 4.11) by
replacing each of the two effort sources representing the voltage source and the
external moment by a flow source–effort sensor, SS, as depicted in Fig. 4.24. The
source–sensor elements lead to differential causality at the ports of the two I ele-
ments accounting for the self-inductance La of the rotor winding and the mechanical
inertia Jm of rotor and load. That is, the inverse model has no states. Hence, the
denominator of all transfer functions of the inverse model is a constant.

Assume that the friction parameter Rm is subject to variations. Then, the element
R : Rm is to be replaced by its incremental model. This means that a modulated
effort sink MSe : ωΔΘ is attached to the 1-junction representing the variationΔRm

(Fig. 4.25). Figure 4.25 shows the resulting incremental inverse bond graph.
From the incremental inverse bond graph in Fig. 4.25, the following equations

can be immediately derived:

Δẋ∗ = Δẏ (4.82)

SS
u1 = E u2 = Mload

y1 =  ia
1

x1
∗ x2

∗

I : La

R : Ra

GY

kT..
1

I : Jm

R : Rm

y2 = ω
SS

Fig. 4.24 Inverse bond graph model of the fixed field DC motor

SS
Δu1 =ΔE

Δy1 =Δi
1

Δx∗
1

I : La

R : Ra

GY

kT..
1

Δx∗
2

I : Jm

R : Rm MSe : ωΔRm

ΔMload = Δu2

Δω = Δy2
SS

Fig. 4.25 Incremental inverse bond graph of the DC motor accounting for a variation in mechanical
friction
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and
[
Δu1
Δu2

]

︸ ︷︷ ︸
Δu

=
[

Ra kT

−kT Rm

]

︸ ︷︷ ︸
D∗

[
Δy1
Δy2

]

︸ ︷︷ ︸
Δy

+
[

La 0
0 Jm

]

︸ ︷︷ ︸
D∗1

[
Δẏ1
Δẏ2

]

︸ ︷︷ ︸
Δẏ

+
[

0 0
0 1

]

︸ ︷︷ ︸
D∗2

[
0 0
0 ΔRm

]

︸ ︷︷ ︸
ΔW

[
0 0
0 1

]

︸ ︷︷ ︸
M3

[
y1
y2

]

︸ ︷︷ ︸
y

(4.83)

Substitution of these matrices in the right-hand side expressions in (4.67) immedi-
ately gives

M1 =
[

Las + Ra kT

−kT Jms + Rm

]

= H∗ (4.84)

and

M2 =
[

0 0
0 1

]

(4.85)

Finally,

∂H∗

∂Rm
= M2

∂W
∂Rm

M3 =
[

0 0
0 1

]

(4.86)

This result obtained from the incremental inverse bond graph can be verified
by derivation of the transfer matrix H from the direct bond graph in Fig. 4.11 and
by differentiating its inverse H∗ with respect to the parameter Rm . Derivation of
Laplace transformed equations from the direct bond graph yields

[
L ia

Lω

]

= 1

Δ

[
Jms + Rm −kT

kT Las + Ra

]

︸ ︷︷ ︸
H

[
L E
L M

]

(4.87)

where Δ := (Las + Ra) (Jms + Rm)+ k2
T .

Hence,

H∗ = H−1 =
[

Las + Ra kT

−kT Jms + Rm

]

(4.88)

and

∂H∗

∂Rm
=

[
0 0
0 1

]

(4.89)

in accordance with (4.86).
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As the inverse model has no states in this example, (4.18a) and (4.18b) reduce to

L u = D∗(s)L y = H∗(s)L y

=
{[

Ra kT

−kT Rm

]

+ s

[
La 0
0 Jm

]}

L y

= (
D∗0 + D∗1s

)
L y (4.90)

In the SISO case u1 = E and y1 = ω, the matrix H∗ reduces to the scalar transfer
function

h∗(s) := La Jm

kT
s2 +

(
La Rm

kT
+ Ra Jm

kT

)

s +
(

Ra Rm

kT
+ kT

)

(4.91)

That is,

u1(t) =
(

Ra Rm

kT
+ kT

)

y1(t)+
(

La Rm

kT
+ Ra Jm

kT

)

ẏ1(t)+ La Jm

kT
ÿ1(t) (4.92)

4.6 Parameter Sensitivities of ARR Residuals

In [14], the author of this chapter briefly showed that incremental bond graphs
can also be used to determine parameter sensitivities of the residuals of analytical
redundancy relations (ARRs) used in model-based fault detection and isolation. This
section elaborates this aspect and gives an illustration.

4.6.1 ARRs for Continuous Systems

Analytical redundancy relations are balance equations of effort or flow variables,
in which unknown variables have been replaced by input variables and measured
output variables and in which parameters are known. Evaluation of an ARR provides
a residual that theoretically should be zero. In practice, however, the residual of
an ARR is within certain error bounds as long as no faults occur during system
operation. The value is not exactly zero over some time interval due to noise in
measurement, parameter uncertainties, and numerical inaccuracies. If, however, the
numerical value of a residual exceeds certain thresholds, then this is an indicator to
a fault in one of the system’s components. Noise in measured output variables may
result in residual values indicating a fault that does not exist. Hence, measured data
should pass appropriate filters before being used in ARRs.

To give an example of an ARR, consider the bond graph of the coupled tanks in
Fig. 4.8. The sum of volume flows at the right-hand side 0-junction reads



4 Incremental Bond Graphs 167

0 = Q R1 − QC2 − Qo (4.93)

Replacing unknowns by means of constitutive component equations yields

r2 = k1sign(p1 − p2)
√|p1 − p2| − C2 ṗ2 − Qo (4.94)

This equation is an ARR because it relates the measured quantities p1, p2, and
Qo. The variable r2 holds the numerical value that is obtained by evaluation of the
right-hand side of the equation. That is, r2 is the residual of the ARR. (k1 is a known
constant in the constitutive equation of valve 1.) As can be seen, valve 1 between the
two tanks, the sensed pressures, p1, p2, and the sensed outlet flow, Qo, contribute
to this ARR.

If nonlinearities of constitutive equations permit the elimination of unknowns in
balance equations so that ARRs can be obtained in symbolic form, then the result
of their structural analysis is usually presented as structural fault signature matrix
(FSM) [6, 13, 31]. In the fault signature matrix, an entry ‘1’ in the i th row and
j th column indicates that the i th component contributes to the j th residual. The
entries in the j th column constitute the signature of residual r j . Residuals are called
structurally independent if their signatures differ. As has been shown by Samantaray
et al. [12], the entries in the fault signature matrix can be directly determined by
inspection of their diagnostic bond graph by following causal paths from inputs
(sources and measurements) to the virtual sensor of a residual (cf. Chapter 7).

The set of ARRs is not unique. In general, for an observable system, the num-
ber of structurally independent residuals equals the number of sensors added to the
system [32].

Structural analysis of ARRs also enables to decide whether a fault can be detected
and moreover can be isolated. It is common to add two columns to the fault signature
matrix holding information about whether a fault can be detected and moreover can
be isolated.

In case the signature matrix is not diagonal, Samantaray and Ghoshal use param-
eter estimation for isolation of simultaneous faults [11]. Parameters are estimated by
least squares optimisation of residuals. In that approach, values for sensitivities of
residuals with respect to parameters are needed. Beyond this optimisation problem,
knowledge of how sensitive residuals are with respect to certain parameters helps
assessing the information in a fault signature matrix.

As to parameter sensitivities of residuals, the parameter sensitivity of r2 with
respect to the parameter C2, for instance, equals (− ṗ2).

4.6.2 ARRs for Hybrid Systems

For dynamic systems with very fast state transitions in some components, e.g.
caused by an abrupt fault, it is appropriate to model these state transitions as dis-
crete events. That is, besides time continuous changes also discrete changes hap-
pen. In other words, there are a number of system modes and discrete changes



168 W. Borutzky

between them. For each mode, the continuous dynamic behaviour is described by
a continuous model [6]. Such systems are known as hybrid systems. One way to
model such systems by bond graphs is to use controlled 1- and 0-junctions [33]. If
the local state automation of a controlled junction forces a state change, resulting
local causality changes must be propagated into the bond graph. This affects causal
paths. For the purpose of FDI, Low et al. [34, 35] recently proposed a causality
assignment to hybrid bond graphs so that causal paths remain unchanged under
state switches of controlled junctions. Only some parts of the paths are cut off due
to controlled junctions in OFF state. As a consequence, by following causal paths in
hybrid bond graphs, ARRs may be derived that hold for all system modes. Low and
his co-authors call these ARRs Global ARRs (GARRs) [34]. They include binary
variables that can switch off parts in the symbolic expression of a GARR. In other
words, the signature of a fault and the question of whether it can be detected and
isolated depends on the system mode. That is, there is not one global fault signature
matrix (FSM) but one for each system mode of operation.

4.6.3 Determination of Parameter Sensitivities of ARR Residuals

As ARRs in symbolic form cannot always be obtained by elimination of unknown
variables, sensitivities of their residuals with respect to parameters sometimes
cannot be derived by symbolic differentiation. Therefore, sensitivity bond graphs
have been used for numerical computation of residual sensitivities [8, 11]. In the
following, it is shown that once the matrices of the state space model have been
derived from the original bond graph with nominal parameters and from the associ-
ated incremental bond graph, parameter sensitivities of residuals of ARRs can also
be determined in symbolic form by multiplication of transfer matrix entries.

4.6.3.1 Matrix-Based Determination of Parameter Sensitivities
of ARR Residuals

Let Δr denote the vector of variations of the residuals and let the vector Δy of
output variables of the incremental bond graph be Δr. Then, according to (4.34) the
variation of the Laplace transform of the residuals reads

ΔL r =
[
Cn (sI− An)

−1 B∗ + D∗
]

︸ ︷︷ ︸
F∗

L WΔΘ (4.95)

where Θ denotes the vector of parameters. As W is a diagonal matrix, the i th com-
ponent is the weighted sum of m parameter variations:

ΔL ri =
m∑

j=1

F∗i jL W j j ΔΘ j (4.96)
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Hence, the parameter sensitivities of residuals are

∂L ri

∂Θ j
= F∗i jL W j j = F∗i jδ j

n∑

k=1

FjkL uk

︸ ︷︷ ︸
z j

(4.97)

Equation (4.97) indicates that the j th parameter sensitivity of the i th residual is
obtained using the entries in the i th row of the transfer matrix of the incremental
bond graph and variables from the original nominal bond graph. The latter are the
signals z j into the modulated sources of the incremental bond graph representing
the parameter variations. Again, these modulating signals are output variables of
the nominal bond graph and as such are a weighted sum of the Laplace transforms
of input variables uk of the nominal bond graph. In the latter sum, the weighting
factors are entries in a row of the transfer matrix F of the original bond graph.

Performing these operations by hand is practically hardly feasible even for small
systems. However, software programs such as CAMP-G, MATLAB R©, and the Sym-
bolic Math ToolboxTM can set up the matrices of the state space models, perform
multiplications of matrix entries, and build the sum of terms.

4.6.3.2 Manual Determination of Parameter Sensitivities of ARR Residuals

For small systems, parameter sensitivities of residuals of ARRs can be manually
determined in the following way. First, junctions to which detectors have been
attached are identified in the bond graph of the system. The number of structurally
independent residuals equals the number of sensors present in the system [13]. Then,
virtual detectors are attached to corresponding junctions in the incremental bond
graph. Adding variations of flows or efforts, respectively, at these junctions yields
variations of residuals of ARRs and thus parameter sensitivities of the residuals.

4.6.4 Example: Analog Integrator

For illustration, consider the circuit schematic of a simple functional model of an
analog integrator depicted in Fig. 4.26. In reality, an integrated operational ampli-
fier is built by means of a number of transistors. The macro-model in Fig. 4.26
reproduces the input–output behaviour of an operational amplifier. It is sufficiently
accurate for low frequencies. Its parameters that can be tuned are the gain, A, the
input resistance Ri, and the output resistance Ro. The measurement at internal nodes
of a real integrated circuit requires special equipment such as a probe station. The
output voltage Vo of a bonded and packaged operational amplifier chip can be mea-
sured at one of its pins and may be used for the detection of possible failures in the
circuit [36].

The circuit representation is easily converted into the bond graph in Fig. 4.27. It
includes an effort detector representing the sensor of the output voltage Vo.
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Vd Ri V = A × Vd

Ro

io

RL
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iC

Vo

Fig. 4.26 Functional model of an analog integrator
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V
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io
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Fig. 4.27 Bond graph representation of the macro-model in Fig. 4.26

Assume that the operational amplifier is operated so that the gain limitation is not
effective but that its gain A and input resistance Ri are subject to variations. Then,
the incremental bond graph is obtained by replacing the input resistor R : Ri and
the modulated effort source A : MSe by their incremental model. The effort detector
sensing the output voltage Vo is replaced by a virtual flow detector Df* representing
a sensor of the residual variation Δr . Figure 4.28 displays the resulting incremental
bond graph.

Summation of flow variations at junction 03 of the incremental bond graph in
Fig. 4.28 and some substitutions yield

LΔr =
(

A

Ro
− C s

)

LΔVd + 1

Ro
Lw2 (4.98)

where s ∈ C.
Adding voltage variations at junction 12 and substituting current variations give

[

1+ Ri

(
1

R1
+ C s

)]

︸ ︷︷ ︸
a

LΔVd = Lw1 (4.99)
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R: RL

15

ΔiC

C : C

Fig. 4.28 Incremental bond graph of the macro-model in Fig. 4.26

That is, the output variable LΔr of the incremental bond graph model is a weighted
sum of the two input variables Lw1 and Lw2

LΔr =
(

A

Ro
− C s

)
1

a
︸ ︷︷ ︸

F∗11

(L ii )ΔRi︸ ︷︷ ︸
Lw1

+ 1

Ro︸︷︷︸
F∗12

(L Vd)ΔA
︸ ︷︷ ︸

Lw2

(4.100)

At the same time, LΔr is a weighted sum of the parameter variationsΔRi andΔA.
Hence,

L
∂r

∂Ri
= F∗11 L ii (4.101a)

L
∂r

∂A
= F∗12 L Vd (4.101b)

These results can be verified by derivation of the residual r from the bond graph
in Fig. 4.27 and by partial differentiation with respect to A and Ri , respectively. In
fact, adding currents at junction 03 in the bond graph of Fig. 4.27 and expressing
them by voltages gives

L r =
(

A

Ro
− C s

)

L Vd −
(

1

Ro
+ 1

RL
+ Cs

)

L Vo (4.102)

Partial differentiation with respect to A yields the same expression as in (4.101b).
Furthermore, expressing currents i1 and iC in the equation
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Vd = Ri ii = −Ri (i1 + iC ) (4.103)

by voltages yields

[
1

Ri
+ 1

R1
+ Cs

]

L Vd = − 1

R1
L Vi − Cs L Vo (4.104)

Partial differentiation of this equation with respect to Ri and subsequent rearranging
the result gives

∂L Vd

∂Ri
= 1

a
L ii (4.105)

and finally

∂L r

∂Ri
=

(
A

Ro
− C s

)
∂L Vd

∂Ri
=

(
A

Ro
− C s

)
1

a
L ii = F∗11 L ii (4.106)

The current ii is an output variable of the bond graph model. It is a weighted sum of
the input voltage Vi and the measured, hence known, output voltage Vo. According
to (4.104)

L ii =
(

−1

a

1

R1

)

︸ ︷︷ ︸
F11

L Vi +
(

−Cs

a

)

︸ ︷︷ ︸
F12

L Vo (4.107)

As a result,

L
∂r

∂Ri
= F∗11 F11L Vi + F∗11 F12L Vo (4.108)

That is, L ∂r/∂Ri is obtained by multiplication of a transfer function F∗11 of the
incremental bond graph and transfer functions F11 and F12 of the bond graph with
nominal parameters.

4.7 Conclusions

An incremental true bond graph approach to a matrix-based determination of param-
eter sensitivities of transfer functions of linear MIMO models and of residuals of
ARRs in symbolic form has been presented. The approach has the following advan-
tages:

• The incremental bond graph is systematically constructed by replacing elements
with varying parameters by their incremental model. This step could be imple-
mented in software.
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• Existing software such as CAMP-G/MATLAB R© supported by the Symbolic
Math ToolboxTM can derive equations from the bond graph and from its asso-
ciated incremental bond graph and can build the matrices of the state space equa-
tions and the output equations for both bond graphs in symbolic form.

• A parameter sensitivity of a transfer function out of the multiple possible ones of
a linear MIMO model is obtained in symbolic form by multiplication of appro-
priate matrix entries. This can be performed by computer algebra systems.

• Adding variations of power variables at junctions of the incremental bond graph
immediately leads to parameter sensitivities of residuals of ARRs.

• Furthermore, if the linear inverse model of a linear MIMO model exists, equa-
tions from the bond graph of the direct model and the incremental bond graph
of the inverse model can be automatically derived and matrices can be built.
Computer algebra systems can be used to determine parameter sensitivities of
the transfer matrix of the inverse model from these matrices.

For small linear models, the above steps can be carried out by hand as has been
shown by means of the illustrating examples. In any case, no symbolic differentia-
tion of transfer functions has to be performed. The use of an incremental bond graph
means that the total differential of constitutive equations has already been taken.

Appendix

It is assumed that the bond graph of a LTI MIMO system has only 1-port storage
elements some of which must take differential causality. Let xi denote the energy
vector of the storage elements in integral causality, xd the energy vector of the stores
in differential causality, and x := [xi xd]T .

As has been shown by Rosenberg [29], a linear state space equation in terms
of xi and the input vector u can be derived from the equations of the bond graph
junction structure and the linear constitutive equations of the storage fields and the
dissipative fields by eliminating xd and other variables. The result is

ẋi = Aixi + Bi1u+ Bi2u̇ (4.109)

with constant matrices Ai,Bi1,Bi2. Note that the elimination of xd entails the time
derivative of the input vector u̇.

On the other hand, the junction structure equations and the constitutive equations
of the dependent storage elements yield matrices Ad, Bd so that

xd = Adxi + Bdu (4.110)

(cf. [29, Equation 29]).
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Combining (4.109) and (4.110) results in an ODE for x:

[
ẋi

ẋd

]

︸ ︷︷ ︸
ẋ

=
[

A1 0
A2 0

]

︸ ︷︷ ︸
A

[
xi

xd

]

︸ ︷︷ ︸
x

+
[

B11
B12

]

︸ ︷︷ ︸
B1

[u]+
[

B21
B22

]

︸ ︷︷ ︸
B2

[u̇] (4.111)

where

A1 = Ai (4.112)

A2 = AdAi (4.113)

B11 = Bi1 (4.114)

B12 = AdBi1 (4.115)

B21 = Bi2 (4.116)

B22 = AdBi2 + Bd (4.117)

The expression for the output vector y takes the form

y = Cixi + Ddẋd + Diu (4.118)

with constant matrices Ci, Di, Dd (cf., e.g. [19], p. 123, Equation 4.56).
Using (4.109), (4.110), and the time derivative of (4.110) leads to matrices C, D,

and D1 so that (4.118) can be written in the form

y = Cx+ Du+ D1u̇ (4.119)
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Part II
Bond Graph Modelling for Design,

Control, and Diagnosis

Beyond rule-based development of multidisciplinary dynamic system models for
simulation, the bond graph methodology can support qualitative system analysis and
design and may be used for the design of a control for a system. Remarkable char-
acteristics of the bond graph methodology discovered during the past two decades
is that information about properties such as structural observability and structural
controllability, inversion of a model, pole zero locations of linearised models can be
directly obtained by examination of a causal bond graph. The concept of computa-
tional causality can serve more purposes than just the derivation of a mathematical
model from a bond graph to be used for time domain analysis. Structural observ-
ability and structural controllability are prerequisites for the design of a control.
Moreover, pole zero locations of a transfer function of a linearised model clearly
influence the design of the system and the design of a system controlling it.

The first chapter of Part II illustrates all these aspects by considering a coaxi-
ally coupled inverted pendula system that is unstabilisable when torque actuation is
applied but is controllable in case of velocity actuation although there is a right-half
plane zero.

The second chapter of Part II presents a methodology for the design of mecha-
tronic systems that is based on inverse modelling, makes use of the possibility to
check a bond graph for structural invertibility and exploits bicausality assignment
to construct the inverse model. If, e.g. the specifications of a robot include velocity
profiles then it is essential to make sure that the design comes up with a system that
meets these requirements which means that an inverse model is needed.

Clearly, it does not make sense to proceed with the design process if an exam-
ination of a bond graph model at an early stage of the design process turns out
that it is not structurally invertible. An aim of the bond graph-based approach in
Chapter 6 is to reduce the number of iterations in the cycle of model development,
evaluation and revision by a methodology that checks model validity at each level
of the design process. The proposed methodology is illustrated by considering a
decelerating car. The task is to design the front and the rear suspension with respect
to given specifications to ensure a desired riding comfort.

Another remarkable result of bond graph research, carried out especially during
recent years, is the development of an elaborated bond graph approach to quan-
titative model-based fault detection and isolation and supervision of engineering
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processes. In this field, analytical redundancy relations (ARRs) play an essential
role. They relate known input variables and measured output variables and include
known system parameters. The idea is that their evaluation should result in a resid-
ual value within certain tolerance bounds. If the latter are exceeded then this may
be used as an indicator to a fault. ARRs can be obtained from a bond graph by
summation of flows at certain 0-junctions and/or summation of efforts at certain
1-junctions, respectively.

Chapter 7 provides a survey of qualitative as well as quantitative approaches to
bond graph model-based fault diagnosis. An even more comprehensive presentation
can be found in the 2008 Springer book titled Model-Based Process Supervision:
A Bond Graph Approach by Samantaray and Ould Bouamama.



Chapter 5
Coaxially Coupled Inverted Pendula:
Bond Graph-Based Modelling, Design
and Control

P.J. Gawthrop and F. Rizwi

Abstract A bond graph method is used to examine qualitative aspects of a class
of unstable under-actuated mechanical systems. It is shown that torque actuation
leads to an unstabilisable system, whereas velocity actuation gives a controllable
system which has, however, a right-half plane zero. The fundamental limitations
theory of feedback control when a system has a right-half plane zero and a right-half
plane pole is used to evaluate the desirable physical properties of coaxially coupled
inverted pendula. An experimental system which approximates such a system is
used to illustrate and validate the approach.

Keywords Bond graph · Under-actuated systems · Fundamental control limitations

5.1 Introduction

As discussed in Part I of this book, the textbooks (for example, [1–4]) and the
recent tutorial [5], bond graphs provide a powerful and intuitive way for modelling
dynamical systems. They may also be used for designing the corresponding control
systems [6–15]. In particular, bond graphs provide a qualitative description of a
dynamical system and so can be used to investigate structural controllability and
observability [16–18], relative degree and inversion [19–22] and actuator location
and choice [9, 18, 23, 24].

However, having determined qualitative properties, it is necessary to turn to
actual system parameters for the design of controllers for specific systems. As
discussed in the textbooks (for example, [25, 26]) system (qualitative) structure
together with parameters implies fundamental limitations on the performance of
feedback control systems. In particular, right-half plane poles and zeros impose
constraints on the achievable sensitivity function.
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This chapter brings together all of these aspects of control system design by
considering the practical application to a class of under-actuated mechanical system
which will be called coaxially coupled inverted pendula (CCIP). Section 5.2 con-
siders qualitative aspects of the design including the form (torque or velocity) of
actuation, number of poles and zeros and the fact that the resultant system has one
right-hand plane (RHP) pole and one RHP zero. Section 5.3 considers the numer-
ical implications of the results of Section 5.2 for the design of the CCIP irrespec-
tive of controller design approach. Section 5.4 looks at one particular controller
design method paying particular attention to the bandwidth constraints implied by
the results of Section 5.3. Section 5.5 applies the results to a particular experi-
mental CCIP system a self-balancing seesaw, and verifies the broad conclusions
of Section 5.4. Section 5.6 concludes the chapter.

5.2 Qualitative System Analysis and Design

Figure 5.1a shows two inverted pendula mounted on a common pivot – rather like
the hands of a clock. An actuator is mounted on the same axis so that each pendulum
has an equal and opposite torque τ0; this is termed coaxial coupling. It is assumed
that the angles from the vertical of the two pendula (θ1 and θ2) can be measured.

The equations of motion are

⎧
⎨

⎩

j1Ω̇1 − m1gl1 sin θ1 = −τ0
j2Ω̇2 − m2gl2 sin θ2 = τ0

(5.1)

where m1 and m2 are the masses and l1 and l2 the distance to the centre of gravity
of each pendulum from the common pivot.

In the sequel, the linearised versions of (5.1) will be considered:

⎧
⎨

⎩

j1Ω̇1 − k1θ1 = −τ0
j2Ω̇2 − k2θ2 = τ0

(5.2)

Fig. 5.1 Coaxially coupled
inverted pendula: (a) general
and (b) reparameterised
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Fig. 5.2 Bond graph model: (a) acausal; (b) effort (torque) actuation; (c) flow (velocity) actuation;
and (d) approximate effort actuation

where

ki = mi gli for i = 1, 2 (5.3)

It is illuminating to analyse the system of Fig. 5.1a in the bond graph form of
Fig. 5.2. Figure 5.2a shows the acausal bond graph. The components I:j1 and I:j2
represent the inertia of each rod about the common axis and C:k1 and C:k2 repre-
sent the gravitational spring caused by gravity acting on the centre of mass of each
pendulum. Using standard bond graph notation, ei denotes effort (in this case torque
τi ) and fi denotes flow, in this case angular velocity Ωi = θ̇i .

5.2.1 Controllability

An advantage of the bond graph approach is that it allows high-level decisions about
control configuration to be made independently of actual system parameters. One
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such decision is to choose between effort (torque) and flow (velocity) actuation; in
bond graph terms this is a causality issue. Fig. 5.2b shows effort actuation implied
by the Se:s0 effort source and Fig. 5.2c shows flow actuation implied by the Sf:s0
flow source.

As indicated in Fig. 5.2b, effort actuation leads to all four dynamic components
(I:j1, I:j2, C:k1 and C:k2) having integral causality. However, the effect of the effort
source is to break the system into two subsystems which, apart from sharing an
input, are completely separate. It follows that using effort actuation the system is
uncontrollable; moreover, as the uncontrollable part is also unstable, the system is
unstabilisable.

This somewhat intuitive analysis can be backed up by the formal analysis of
structural controllability [16–18]. According to Rahmani et al. [16, Theorem II and
Property 2, p. 302], the following recipe can be applied to this (SISO) case:

1. Dualise the source: thus the effort source becomes a flow source and vice versa
2. Complete causality to maximise derivative causality
3. If the resultant bond graph has no C or I components in integral causality, the

system is structurally controllable; if, on the other hand, the resultant bond graph
has at least one C or I component in integral causality then the system is not
structurally controllable.

Figure 5.3a shows the result of applying this recipe to the system with effort
actuation (when dualised, the effort source Se:s0 becomes the flow source Sf:s0);
one component (C:k1) is in integral causality and so it is confirmed that this system
is not structurally controllable with effort actuation. Conversely, Fig. 5.3b shows
the result of applying this recipe to the system with flow actuation; no component
remains in integral causality and so it is confirmed that this system is structurally
controllable with effort actuation.

To summarise, this system cannot be controlled with effort (torque) actuation but
can be with flow (velocity) actuation. The rest of the chapter therefore concentrates
on the latter case.

e1 = e0 e2 = e0

f1

f0

f2

e0

j1 j2

k1 k2s0

s2

(a)

e2 = e0e1 = e0

f1 f2

f0e0

j1

k1 s0

s2

j2

k2

(b)

Fig. 5.3 Maximising derivative causality: (a) dual effort actuation and (b) dual flow actuation
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5.2.2 Poles and Zeros

The relative degree r of a linear system is defined in terms of the number of poles
np and number of zeros nz as r = np − nz. As discussed by Fotsu Ngwombo et al.
[22], r = nscp where nscp is defined as the shortest causal path from system input to
system output; in terms of Fig. 5.2c, this is the shortest causal path from the input
flow f0 to the output flow f2. In this case, the shortest causal path is

f0
0−→ f1

I:j1−→ e1
0−→ e2

I:j2−→ f2 (5.4)

via the two I components I:j1 and I:j2. As I:j1 is in derivative causality and I:j2 in
integral causality, the length of the causal path is zero so

r = nscp = 0 (5.5)

It follows that the number of poles is the same as the number of zeros np = nz.
The poles of the system can be determined by setting the input to zero. This

reduces the central 0-junction to one with two compatible bonds which can therefore
be removed and the two 1-junctions combined. The two components I:j1 and I:j2
can then be combined into a single component I:j0, where j0 = j1 + j2 and the two
components C:k1 and C:k2 can then be combined into a single component C:k0
where k0 = k1 + k2. It follows that the system denominator is of the form

j0s2 − k0 = j0(s + p)(s − p) (5.6)

where

p =
√

k0

j0
(5.7)

The zeros of the system can be found by setting the system output to zero; this is
equivalent to system inversion [19–22] which can be carried out using the concept
of bicausality [21, 27, 28].

Figure 5.4 shows the bond graph of the inverse system where the output flow
detector has been reversed to form a bicausal source–source (SS:y) component. As
discussed previously [21], the bicausality propagates to the system input where the
Sf:u component is reversed to give the bicausal sensor–sensor component SS:u.
The pair of components I:j1 and C:k1 modelling the first pendulum remain in inte-
gral causality, and therefore form a denominator polynomial of the form

j1s2 − k1 = j1(s + z)(s − z) (5.8)
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Fig. 5.4 Bond graph of
inverse model
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where

z =
√

k1

j1
(5.9)

This inverse system denominator corresponds to the system numerator. The upshot
of (5.6) and (5.8) is that, when controlled using a velocity source, the CCIP system
has poles at s = ±p and zeros at s = ±z where p corresponds to the dynamics of
the “locked” system and z to the dynamics of the free first inverted pendulum. The
system is therefore unstable and has unstable zero dynamics; this gives fundamental
limitations of control performance [25, 26] due to the single right-half plane pole at
s = p given by (5.7) and the single right-half plane zero at s = z given by (5.9). By
themselves, these two equations give physical insight into the control problem; but
reparameterising the CCIP system gives further insight.

Figure 5.1b gives an alternative representation of the system as two inverted pen-
dula with the mass concentrated at the tips. The parameters ji and ki (i = 1, 2) are
replaced by the parameters Mi (mass) and Li (length) where

Li = g
ji
ki

(5.10)

Mi = ji
L2

i

(5.11)

In terms of these new parameters, the RHP pole (5.7) and zero (5.9) are given by

p =
√

g

L0
(5.12)

z =
√

g

L1
(5.13)

The critical factor of the system transfer function is

s − z

s − p
= z

p

1− sτ1
1− sτ0

(5.14)
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where

τ1 = 1

z
=

√
L1

g
(5.15)

and

τ0 = 1

p
=

√
L0

g
(5.16)

the time constants τ1 and τ0 have units of seconds and represent “how long” it
takes the free reaction pendulum and the locked pendula respectively to fall over.
As discussed in the next section, the system is simpler to control if τ0 � τ1.

5.3 Quantitative System Analysis and Design

As shown in Section 5.2, the system has two real poles at s = ±p and two real
zeros at s = ±z. Thus the system has both a right-half plane (RHP) pole and an
RHP zero; as discussed in the textbooks [25, 26], this imposes fundamental restric-
tions on feedback control performance. In particular, as discussed by Skogestad and
Postlethwaite [26, Section 5.9, p. 185], system bandwidth (as measured by the crit-
ical frequency, ωc; [26, Section 2.4.5, p. 36]) should be approximately bounded by

αp < ωc <
z

α
(5.17)

where α is a design parameter. Inequalities (5.17) also imply that

ρ = z

p
= τ0
τ1
> α2 (5.18)

Reference [26] suggest a value for α = 2, although this is quite conservative. As
will be seen in Section 5.5, wider bounds are possible up to about α = 1.

It is convenient to express the CCIP system in terms of the reparameterisation of
(5.10) and (5.11) and thus use expressions (5.12) and (5.13) for p and z. Substituting
(5.12) and (5.13) into (5.18) give the following design rules:

Design rule 1 The length L0 of the equivalent locked pendula should be at least α4

times greater than the length L1 of the reaction pendulum:

L0 > α
4L1 (5.19)

A conservative value for α is α = 2.
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It is also convenient that the two pendula balance at equal and opposite angles to
the vertical. This leads to the second design rule:

Design rule 2 The gravitational stiffness k1 of the reaction pendulum should be
about the same as gravitational stiffness k2 of the controlled pendulum. Equivalently

M2

M1
= L1

L2
(5.20)

5.4 Control System Design

Having determined that a flow input is required and that the system is inherently
hard to control due to the RHP pole and zero, the next step is to design a controller.
A state-space approach is used here and so a state-space model must first be derived
from the bond graph of Fig. 5.2c. This system represents a differential–algebraic
equation (DAE) which can, however, be rewritten as a state-space equation. In par-
ticular, system state-space equations can be derived from Fig. 5.2c as follows. Defin-
ing the angular momenta of the two pendula as h1 and h2, respectively, the torque
e0 (which drives the controlled pendulum) is, from the left-hand side of Fig. 5.2c,

e0 = k1θ1 − ḣ1

= k1θ1 − j1

(
ḣ2

j2
− ḟ0

)

(5.21)

The controlled pendulum dynamics are then, from the right-hand side of Fig. 5.2c.

ḣ2 = e0 + k2θ2

= k1θ1 + k2θ2 − j1

(
ḣ2

j2
− ḟ0

)

(5.22)

It follows that

ḣ2 = γ
(
k1θ1 + k2θ2 + j1 ḟ0

)
(5.23)

where γ = j2/( j1 + j2) = j2/ j0.

The input derivative term ḟ0 leads to a direct feed-through term. From the engi-
neering point of view this is impractical so a new control signal u is defined such
that

τ ḟ0 + f0 = u (5.24)

Equation (5.24) defines a low-pass filter of which f0 is the state.
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Thus, in this formulation, h1 is not a system state; but a new state arises from
(5.24). Hence define the system state-vector x as

x = [
θ1 θ2 h2 f0

]T (5.25)

This definition gives the state-space system with input u and output y = θ2 in the
standard form:

ẋ = Ax + Bu (5.26)

y = Cx (5.27)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1
j2

−1

0 0 1
j2

0

γ k1 γ k2 0 −γ j1
τ

0 0 0 − 1
τ

⎤

⎥
⎥
⎥
⎥
⎥
⎦
; B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

γ
j1
τ

1
τ

⎤

⎥
⎥
⎥
⎥
⎥
⎦
; C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

T

(5.28)

The corresponding transfer function is

G(s) = j1s2 − k1

s(1+ sτ)( j0s2 − k0)
(5.29)

= (s + z)(s − z)

s(1+ sτ)(s + p)(s − p)
(5.30)

where p and z are defined in (5.7) and (5.9) and the 1+ sτ term arises from (5.24)
and the integrator 1/s from the fact that the output is defined as the angle θ2 rather
than the angular velocity.

A state-feedback/state-observer approach was used for the experiments reported
in Section 5.5. The state-feedback controller was designed by one of two pole-
placement methods:

1. Leave the pole at s = −1/τ fixed, move the integrator to s = −1/τ and choose
the remaining two poles as

s = −λp

(

1± 1√
2

)

(5.31)

– a second-order Butterworth configuration
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2. Leave the pole at s = −1/τ fixed and choose the remaining three poles as

s = −λp,−λp

(
1

2
±
√

3

2

)

(5.32)

– a third-order Butterworth configuration

It was found that the results were similar and so only the second method is discussed
in the sequel.

The single design parameter λ determines the location of the closed-loop poles
and thus indirectly, the system bandwidth [26]. This relationship is considered fur-
ther in Section 5.5.

5.5 Experimental Results

Figure 5.5 shows the Quanser [29] self-balancing seesaw apparatus. A dc-motor-
driven cart moves along a track forming the top of a seesaw pivoted at a point below
the track. As the pivot is below the track, the seesaw is unstable; as the acceleration
of the cart is associated with a reaction force opposite to the acceleration direction,
the system has a right-half plane zero. The cart had a fast inner loop to control
velocity (relative to the seesaw) together with a low-pass filter to implement (5.24).

The relationship between a modified seesaw system and a CCIP system can be
seen in two stages:

1. The locked cart and pendulum pivot about the seesaw pivot and thus exactly
correspond to the locked CCIP of Fig. 5.1.

2. Imagine first a slightly different system where the track was semicircle with
centre at the seesaw pivot. If the cart were held vertically above the pivot but
free to move along the track, the seesaw would just behave as a simple inverted

(a)

mc

xc

θ2

h

θ1

(b)

Fig. 5.5 Experimental seesaw: (a) photograph and (b) schematic
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pendulum as discussed in Section 5.2.2. As the track is not circular, there is in
fact an interaction due to the cart having to move vertically as the seesaw rotates;
this effect is ignored in the controller design.

It follows that the self-balancing seesaw apparatus can be approximated by the CCIP
model and thus can be used to experimentally verify the approach of this chapter.

The controller was implemented in hard real time at a sample frequency of
1 kHz on a 2.66 GHz Pentium P4-based processor on a AICMB800 motherboard
with 512 MB DRAM using the RTAI Linux-based hard real time operating system
and the Scilab/Scicos [30] based interface RTAI-lab [31]. The control design was
performed using Octave [32].1

This system can be approximated by the CCIP system displayed in Fig. 5.1b and
analysed in Section 5.2. The corresponding parameters appear in Table 5.1 (under
“unmodified”); these violate Design Rule 1. For this reason, an additional set of
experiments were made using a seesaw modified by attaching a 1.5 kg mass to each
end of the seesaw. This gave the parameters of Table 5.1 (under “modified”); these
satisfy both Design Rule 1 and Design Rule 2.

For the CCIP system of this chapter, Fig. 5.6 shows how bandwidth (defined as
the critical frequency ωc – see the discussion in [26, section 2.4.5, p. 36]) varies
with λ for both the modified and unmodified system. Using (5.18), inequality (5.17)
can be rewritten in normalised form as

α < η <
1

α
ρ (5.33)

Table 5.1 System parameters for the seesaw in unmodified and modified forms

Unmodified Modified

j1 kg m2 0.0164 0.0164
j2 kg m2 0.420 1.17
k1 Nm rad−1 1.15 1.15
k2 Nm rad−1 1.878 2.76
L1 m 0.140 0.140
L2 m 2.19 4.16
M1 kg 0.835 0.835
M2 kg 0.0872 0.0677
p s−1 2.633 1.81
z s−1 8.371 8.371
τ0 s 0.380 0.552
τ1 s 0.119 0.119
ρ = z

p 3.180 4.61
S̄min 1.92 1.55

1 Octave is the open-source high-level language, primarily intended for numerical computations
(similar to the commercial product Matlab), available at www.octave.org

www.octave.org
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η

λ

(a)

η

λ

(b)

Fig. 5.6 Controller design: bandwidth ratio η = ωc
prh

v; pole location λ; the lines η = 1 and
η = ρ = z/p are also plotted. (a) Unmodified seesaw and (b) modified seesaw

where the normalised bandwidth is defined as η = ωc/p and, as in (5.18), ρ = z/p.
Figure 5.6 shows the normalised bandwidth η plotted against λ. As expected, ωc

increases monotonically with pole location λ and thus λ is used in the sequel as a
bandwidth adjusting function. For comparison, the two bounds (5.33) corresponding
to α = 1 are also plotted. α = 1 is much less conservative than the α = 2 suggested
by Skogestad and Postlethwaite [26, Section 5.9, p. 185] (see (5.17) and therefore
good control is not expected towards these bounds. Guided by Fig. 5.6, experiments
were performed on both the unmodified and modified seesaw with λ = 1, 2 and 3.

The experimental results appear in Figs. 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 and in
each case there are two subfigures:

(a) The seesaw angle θ2 is plotted against time t ; except for Fig. 5.7, there is a step
setpoint change at time t = 1 from w = 0 to 1 which appears as a dotted line.

(b) The relative cart angle θ1 − θ2 is plotted against time t .

In each case, both experimental (firm line) and simulated (dashed line) results are
given. In the particular case of Fig. 5.7, the system was so unstable that no setpoint
change was possible.

Fig. 5.7 Experimental results: unmodified, method 2, λ = 1. (a) seesaw angle θ2 and (b) relative
cart angle θ1 − θ2



5 Coaxially Coupled Inverted Pendula 191

(b)(a)

Fig. 5.8 Experimental results: unmodified, method 2, λ = 2. (a) seesaw angle θ2 and (b) relative
cart angle θ1 − θ2

(b)(a)

Fig. 5.9 Experimental results: unmodified, method 2, λ = 3. (a) Seesaw angle θ2 and (b) relative
cart angle θ1 − θ2

(a) (b)

Fig. 5.10 Experimental results: modified, method 2, λ = 1. (a) Seesaw angle θ2 and (b) relative
cart angle θ1 − θ2

The experimental results for the unmodified seesaw appear in Figs. 5.7, 5.8, and
5.9 for pole locations λ = 1, 2 and 3, respectively. For λ = 1, the system was on the
boundary of stability and continually oscillated. For λ = 2 and 3, the system was
stable and set point changes were possible. The quite large discrepancy between
simulation and experiment can be attributed to the inevitable peak in sensitivity
function coupled with the modelling approximations involved. Higher values of λ
gave violent instability.
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(a) (b)

Fig. 5.11 Experimental results: modified, method 2, λ = 2. (a) Seesaw angle θ2 and (b) relative
cart angle θ1 − θ2

(a) (b)

Fig. 5.12 Experimental results: modified, method 2, λ = 3. (a) Seesaw angle θ2 and (b) relative
cart angle θ1 − θ2

The experimental results for the modified seesaw appear in Figs. 5.10, 5.11, and
5.12 for pole locations λ = 1, 2 and 3, respectively. When λ = 1, the system
was stable but experiment and simulation were quite different. When λ = 2 and 3,
the system was stable with a good response to setpoint changes with experimen-
tal/simulation discrepancies relatively smaller than in the unmodified case. The
closed-loop system was unstable for both smaller values of λ; larger values of λ;
were not possible due to excessive high-frequency motor movement caused by see-
saw encoder quantisation which led to slippage of the cart driving wheel.

These experimental results broadly confirm the predictions contained in Fig. 5.6.

5.6 Conclusions

A class of under-actuated systems, coaxially coupled inverted pendula, have been
introduced and their qualitative properties analysed using established bond graph
approaches. In particular, it is shown that torque actuation leads to an uncontrollable
system, whereas angular velocity actuation gives a controllable system.
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The resultant linearised system displays a single right-half plane pole/zero pair
which imply fundamental limitations of achievable performance. The quantitative
properties of the CCIP model are analysed from this point of view.

An experimental system – the self-balancing seesaw – is shown to have an
approximate CCIP representation. This was successfully controlled using the CCIP
approach. Moreover, the CCIP analysis predicted that modifying this experimental
system by adding inertia to the seesaw would allow better control performance; this
prediction was experimentally verified.
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Chapter 6
Bond Graphs and Inverse Modeling
for Mechatronic System Design

Wilfrid Marquis-Favre and Audrey Jardin

Abstract This chapter is concerned with the design of mechatronic systems on
dynamic and energy criteria. Compared to the traditional trial–error–correction
approach a methodology is presented that drastically decreases the number of sim-
ulation iterations and ensures more relevant solutions with respect to the specifica-
tions. Moreover, early in the design stages, this methodology enables to check if
the design problem is well posed before any simulation. This verification is possible
according to the structural analysis concept that points out the characteristic prop-
erties of the design models independently of the parameter numerical values. Also,
the methodology is based on model inversion that uses straightforwardly the infor-
mation written in the specifications. Finally, because of its ability to represent multi-
disciplinary physical systems, to acausally describe a model and to easily undertake
a structural analysis, and to visualize the results of this analysis, the bond graph
language is well dedicated to this methodology. In this chapter topics like design
model validity, specifications validity, structural analysis, technological component
specifications, selection and validation, and open-loop control determination will be
discussed.

Keywords Inverse model · Structure analysis · Power line · Causal path ·
Bicausality · Component specification · Sizing validation

6.1 Introduction

This chapter presents the use of the bond graph language for inverse model-based
design and, in particular, a methodology concerning the sizing1 of mechatronic
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e-mail: wilfrid.marquis-favre@insa-lyon.fr

1 The term “sizing” is used here to equally designate the process of choosing off-the-shelf compo-
nents or of specifying brand new components.
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systems on dynamic and energy criteria. In the design cycle this methodology takes
place between, on the one hand, the step of the functional analysis for the definition
of the product concepts and, on the other hand, the step of the geometric definition
of the designed components for the prototype manufacture. The output of the previ-
ous step in this design cycle defines the specifications for the methodology, and in
return, the results of the methodology furnish the data for the next step. Based on
model inversion and applied in the context of the bond graph language, this enables
the designer to directly use the specifications data in order to determine what is
unknown in his design problem (the component sizes in the system to design).

Figure 6.1 presents, in a simplified sketch, the methodology for sizing the com-
ponents of a mechatronic system. The theoretical material used in the methodology
is presented in Section 6.2. Section 6.3 introduces four criteria, bicausality, and
the notion of analysis levels that guide the application of the methodology phases
and the search of a design solution. Finally, Section 6.4 goes into the details of
the different phases of this methodology. They are chronologically ordered from
the validity checking of the design model and of the specifications, the component
specification and selection, the selected component validation, until the open-loop
control determination.

SpecificationsLoad...
Power

modulators
...

Energy
sources

Control
Validity of the design model

Validity of the specifications 

Component specification and selection

Selected component validation

Identical steps at each stage of the actuating chain

Open-loop control determination

Fig. 6.1 Phases in the sizing process methodology

6.2 Theoretical Concepts

This section presents the theoretical material required for the methodology con-
cepts and the proof of its effectiveness. A very brief review of model inversion is
first recalled. Then the definitions of relative orders, orders of zeros at infinity, and
essential orders are presented. These notions are also reviewed in the bond graph
language for defining structural analysis in this framework. In particular the con-
cepts of power lines and causal paths are defined. They will be used for checking
the structural criteria of invertibility and differentiability.
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6.2.1 Model Inversion

The basic concepts of inversion are now presented in the context of state-space
representation.

6.2.1.1 Direct Model

A direct model corresponds to the physical way the associated system behaves. It
enables the physical outputs to be calculated from data given about the physical
inputs and the parameters (Fig. 6.2). In the bond graph language the direct model is
obtained by assigning a preferential integral causality to the acausal representation.

Model of the selected
sub-system or

component

Parameters
(known)

Outputs
(unknown)

Inputs
(known)

Fig. 6.2 Organization of quantities for a direct model

In the case of a square linear time-invariant (LTI) system Σ , the state-space
model can be expressed by

Σ :
{

ẋ(t) = Ax(t)+ Bu(t)

y(t) = Cx(t)+ Du(t)
(6.1)

where x ∈ R
n is the state vector, u ∈ R

m and y ∈ R
m denote, respectively, the input

and output vectors, and A, B, C, and D are, respectively, (n × n), (n ×m), (m × n),
and (m × m), constant matrices.

6.2.1.2 Inverse Model

The inverse model corresponds to a re-organization of the equations where the input
and output roles are exchanged: inputs become outputs and vice versa (Fig. 6.3).2

2 Here inversion is considered between inputs and outputs exclusively. It could also be envisaged
between parameters and outputs. This would correspond, in this case, to the objective of a param-
eter synthesis.



198 W. Marquis-Favre and A. Jardin

Model of the selected
sub-system or

component

Parameters

OutputsInputs

Fig. 6.3 Organization of quantities for an inverse model

Assuming that it exists, the inverse model denoted Σ−1 of Σ is expressed by

Σ−1 :
{

ż(t) = Ainvz(t)+ Binvyα(t)

u(t) = Cinvz(t)+ Dinvyα(t)
(6.2)

where z ∈ R
n is the state vector, yα ∈ R

m denotes the vector resulting from differ-
ential and algebraic operations on y, and Ainv, Binv, Cinv, and Dinv are, respectively,
(n × n), (n × m), (m × n), and (m × m) constant matrices.

The inverse model presented in (6.2) is of full rank in the sense that its state
vector z has the same dimension n as that of the vector x. However, it was proved
that there exists an inverse model of minimal order where the state vector has a
dimension less than n [46]. This feature will be of great interest in the building of
the inverse model from a bond graph representation.

One of the main characteristics of an inverse model is the presence of the output
derivatives in the equations (vector yα(t)). This will be discussed in more detail in
the following sections. In particular, in structural analysis, the notion of essential
orders enables the necessary minimal number of output time differentiations to be
anticipated before the construction of the inverse model. This notion will be trans-
lated into the bond graph language.

The key principle for obtaining the inverse model from the direct one is to suc-
cessively differentiate the outputs with respect to time until the inputs appear in the
expression of the output derivatives. Then, from this transformation of the model,
the aim is to express the inputs in terms of the outputs by inverting these equations
if possible. The condition for the existence of this inversion will also be discussed
in the following sections.

Model inversion was discussed in 1963 by Zadeh and Desoer [57] and by Weiss
[53] in the context of functional reproductibility. Brockett and Mesarović [5, 6]
established the first necessary and sufficient condition of invertibility and an algo-
rithm of inversion for LTI single-input/single-output (SISO) models. Youla and
Dorato [12, 56] dealt with multi-input/multi-output (MIMO) models. They set a
simpler criterion of invertibility and proposed a new algorithm for inversion. In 1969
Silverman [47] went back over the SISO case and proved that Brockett’s algorithm
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is generally applicable to discrete systems and to linear parameter varying (LPV)
models. His work was the basis for a number of other works like those of Sain
and Massey [45], Porter [38], or Willsky [54]. To name a few, other contributions
about inversion were from Rosenbrock and van der Weiden [44] for their system
matrix approach; Hirschorn [21], Singh [48], Nijmeijer [35, 36], and Fliess [14] for
their work on nonlinear models; Tan and Vandewalle [50] on singular systems; and
Perdon et al. [37] for their work on periodic systems.

Finally, inversion has already been used in robotics for sizing manipulators, by
Potkonjak and Vukobratović [39, 52] who introduced criteria based on power, tran-
sient power (first time derivative of power), and power jerk (second time derivative
of power) and by Dequidt et al. [9, 10] who proposed a selection method of high-
performance motion servomechanisms.

6.2.2 Concepts of Structural Analysis

This section presents the key concepts of structural analysis which are used in the
sizing methodology. They are defined in the framework of LTI models. These con-
cepts furnish qualitative information to the designer about his model as well as
tools that help him in his design process. Structural analysis does not depend on
the numerical values of the model parameters. Thus, it is carried out before any
simulation and enables time to be saved in the design process by detecting, as soon
as possible, whether the design problem is well defined or not. A practical result
in the context of the bond graph sizing methodology based on inverse models is to
state structural criteria for a model to be invertible and for output specifications to
be sufficiently differentiable.

6.2.2.1 Relative Order

The relative order, denoted n′i , associated with the output yi of the system Σ , cor-
responds to the minimal number of times that it is necessary to time differentiate
this output to make one component of the input vector u appear (6.3) [5, 7, 11].
This relative order can also be determined from the transfer matrix [5, 8] or from
the notion of the infinite zero in row [5, 11]:

n′i =
{

0 if di �= 0

infk∈N∗ {k|ci Ak−1B �= 0} (6.3)

The relative order indicates that the output yi will appear with a time derivative of
order n′i at least in the inverse model. Depending on the model, this derivative order
can be higher and then defined by the essential order of this output (see Section
6.2.2.3). It can be shown that the difference between the relative order and the essen-
tial order is related to the notion of the dynamic extension that must be introduced
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for a model to be decouplable by a static feedback [19]. The determination of the
relative order from a bond graph representation will be shown in Section 6.2.3.

6.2.2.2 Structure at Infinity

Introduced in 1982 by Vardulakis [51] the Smith–McMillan factorization at infinity
of a transfer matrix T(s) of rank r enables the structure at infinity of a system Σ :
(A,B,C,D) (6.1) to be characterized (6.4)3:

T(s) = B1(s)Λ(s)B2(s) (6.4)

where

• B1(s) and B2(s) are biproper matrices4;

• Λ(s) =
(
Δ∞(s) 0

0 0

)

with Δ∞(s) =
⎛

⎜
⎝

s−n1

. . .

s−nr

⎞

⎟
⎠

and n1 ≤ n2 ≤ · · · ≤ nr .

The integer ni ≥ O (resp. ≤ 0) is the order of the i th zero (resp. pole) at infinity
of the corresponding system Σ . This concept is used to define the essential order
and will also be defined in the bond graph language.

6.2.2.3 Essential Order

The notion of essential order was first introduced by Commault et al. [7] to solve the
problem of decouplability by static feedback. The essential order nie of the output yi

of a system Σ is the maximal order of its time derivatives appearing in the inverse
model [7, 20]. For the system Σ : (A,B,C,D), assumed invertible, the essential
order of output yi is calculated by (6.5)

nie =
m∑

j=1

n j −
m−1∑

j=1

ni j (6.5)

where

• n j is the order of the j th zero at infinity of Σ ;
• ni j is the order of the j th zero at infinity of (A,B,Ci ,Di ) when

3 T(s) = C(sI− A)−1B+ D with I the (n × n) identity matrix.
4 A rational matrix B(s) is biproper if and only if it is proper and its inverse is also proper. A
matrix B(s) is proper if and only if all its elements are rational fractions with the degree of their
denominator greater than that of their numerator [42].
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Ci =
(

cT
1 cT

2 . . . cT
i−1 cT

i+1 . . . cT
m

)T

Di =
(

dT
1 dT

2 . . . dT
i−1 dT

i+1 . . . dT
m

)T

and ∀k ∈ {1, . . . ,m}, ck (resp. dk) is the kth row of C (resp. D).

The concept of essential order is presented in the bond graph language in the next
section.

6.2.3 Structural Analysis Concepts in Bond Graph

The previous concepts of structural analysis are now reviewed in the context of the
bond graph language. First, the notions attached to power lines and causal paths are
defined and then used for determining the relative orders, the orders of the zeros at
infinity, and the essential orders. All the following definitions are given for the bond
graph representation of an LTI system Σ : (A,B,C,D).

6.2.3.1 Power Line Concepts

Three definitions are given about the power line concepts. A power line character-
izes the way energy flows between two points in a system. So, talking about inverse
models (here implicitly between the inputs and the outputs), the input/output (I/O)
power line concept is defined. Finally, the invertibility criteria presented in Section
6.3.1 lead to introduce the notion of disjoint power lines.

Definition 6.1 (Power line) In an acausal bond graph representation, a power line
between two components is a series of power bonds and multiport elements con-
necting these two components [33, 55].

Definition 6.2 (Input/output (I/O) power line) An input/output (I/O) power line
starts from a modulated element and goes to a detector (De or D f element).

Definition 6.3 (Disjoint power line) Two power lines are said to be disjoint only if
there is no power in common [34].

6.2.3.2 Causal Path Concepts

While the power line is an acausal concept, i.e., it does not require any organization
of the model equations, the causal path needs a causality assignment in the bond
graph representation. Its definition is first recalled. Then the length and the order of
a causal path are introduced, and finally, both different and disjoint causal paths are
defined. The latter concepts, as for the power line, will be used in the invertibility
criteria. The concept of different causal paths will also be used to characterize the
structure at infinity of a model from its bond graph representation.
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Definition 6.4 (Causal path) In a causal (or bicausal) bond graph representation, a
causal path is a series of effort and flow variables successively related according to
the model causality assignment [34, 55].

Definition 6.5 (Input/output (I/O) causal path) An input/output (I/O) causal path
starts from a modulated element and goes to a detector (De or D f element).

Definition 6.6 (Causal path length) In a causal (or bicausal) bond graph representa-
tion, the length, denoted �k(vi → v j ), of a causal path k between a variable vi and
another variable v j is defined as the number of energy storage elements in integral
causality along this causal path [41].

Definition 6.7 (Causal path order) In a causal (or bicausal) bond graph representa-
tion, the order, denoted ωk(vi → v j ) (or the generalized length), of a causal path k
between a variable vi and another variable v j is defined as the difference between
the number of energy storage elements in integral causality and the number of those
in derivative causality along this causal path [2, 15].

Definition 6.8 (Different causal path) In a bond graph representation in preferential
integral causality, two causal paths are said to be different if they have no energy
storage element in integral causality in common [40, 41].

Definition 6.9 (Disjoint causal path) In a causal or (bicausal) bond graph repre-
sentation, two causal paths are said to be disjoint only if they have no variable in
common [34]. This translates into a graphical disjunction of these two causal paths
in the bond graph representation.

6.2.3.3 Structure at Infinity

This section gives the procedures that enable the output relative orders, the number
and the orders of the zeros at infinity, and the essential orders of a system Σ to
be determined directly from a bond graph representation. These procedures use the
concepts defined in the previous sections.

Procedure 1 (Output relative order (Fotsu-Ngwompo [15] and Wu and
Youcef-Toumi [55])) In a bond graph representation in preferential integral causal-
ity of a system Σ , the relative order n′i of the output yi (and so the i th infi-
nite zero order in row) is determined by ωimin , the minimal order a causal path
(Definition 6.7) can have between the output yi and any inputs.5

Procedure 2 (Number of zeros at infinity (Jardin [24] and Sueur and Dauphin-
Tanguy [49])) In a bond graph representation in preferential integral causality of
a system Σ , the number r of zeros at infinity is determined by the maximal number

5 In the case of several causal paths between the same I/O pair having the same minimal order
and of which the sum of their gain is equal to zero, the relative order of the studied output can
be greater than n′i . The gain of a causal path is determined by the product of the gains of all the
elements contained in the path.
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of paths a set of disjoint I/O causal paths (Definition 6.9) may have for the bond
graph representation. When the model is invertible the number r is equal to m.

Procedure 3 (Orders of zeros at infinity (Jardin [24] and Sueur and Dauphin-
Tanguy [49])) In a bond graph representation in preferential integral causality of
a system Σ , the orders ni (i ∈ {1, . . . , r}) of the zeros at infinity are determined by

{
n1 = L1
ni = Li − Li−1

(6.6)

where Li is the minimal length a set6 of i different I/O causal paths (Definition 6.8)
can have.7

The essential orders of the outputs, used in the differentiability criterion (see
Section 6.3.2), can be determined from a causal bond graph [1, 13, 24] but this
requires manipulation of different causal bond graph representations. Instead a
straightforward procedure has been established using a bicausal bond graph rep-
resentation. The procedure is now given:

Procedure 4 (Output essential order (El Feki et al. [13] and Jardin [24])) In a
bicausal bond graph representation of a system Σ , the essential order nie of the
output yi of a system Σ can be expressed by

nie = − min
j∈{1,...,m}

{
ω j i

}
(6.7)

where ω j i represents the minimal order a causal path (Definition 6.7) can have
between the double source associated with yi and the double detector associated
with u j .

All the material is now available to present the criteria to check the invertibility
and the differentiability of a model and then to present the different phases of the
sizing methodology.

6.3 Criteria for Inversion and Analysis Levels

This section defines the criteria that will be used in the bond graph sizing method-
ology based on model inversion. Then bicausality is presented as a tool for deter-
mining the inverse model directly from a bond graph representation. As seen in
Procedure 4, bicausality also enables the essential orders to be determined.

6 By extension the length of a set of causal paths is the sum of the lengths of the causal paths
(Definition 6.6) constituting the set.
7 As for the relative orders, the orders of the zeros at infinity may be affected by the possible
existence of causal paths between the same I/O pair having the same length and of which the sum
of their gain is equal to zero.
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6.3.1 Invertibility Criteria

First, a series of criteria concerns the invertibility checking of a model. An approach
based on different I/O causal paths (see Definition 6.8) and the system matrix
determinant8 has been proposed in [40]. Here the approach based on disjoint I/O
causal paths (see Definition 6.9) is presented [15, 24, 25]. It uses two structural
criteria which, if not verified, enable the inversion process to be stopped early in
the procedure. A third criterion is formulated at a behavioral level. This level is
called behavioral in the sense that it requires analytical developments based on the
constitutive and conservation laws in the bond graph representation.

Criterion 1 (Acausal) In the acausal bond graph representation, if no set of disjoint
I/O power lines (Definition 6.3) exists then the model is not invertible.

Criterion 2 (Causal) In the bond graph representation in preferential integral
causality, if no set of disjoint I/O causal paths (Definition 6.9) exists then the model
is not invertible.

Criterion 3 (Junction structure solvability) In the bicausal bond graph representa-
tion, if for all the sets of disjoint I/O power lines and for all the sets of disjoint
I/O causal paths retained for the bicausality assignment, a non-solvable junction
structure appears then the model is not invertible.

The latter criterion corresponds to checking if the equations of the corresponding
model are solvable. In practice it is generally sufficient to detect possible causal
loops9 and to verify that they are not algebraic,10 and if they are, to verify that they
have no unitary gain.

Remark To a large extent these criteria can be applied in the case of nonlinear mod-
els. In that case it has to be further checked that the constitutive laws “touched” by
inversion in the bond graph representation (elements passed through by bicausality
or of which causality changes with respect to the causal representation) are invertible
in the domain of definition of the involved variables.

6.3.2 Differentiability Criterion

The criterion given now aims at verifying that the output specifications in the sizing
problem are mathematically in adequacy with the structure of the inverse model.

8 The system matrix of a model Σ : (A,B,C,D) is defined by P(s) =
(

sI− A B
−C D

)

with I the

(n × n) identity matrix [43].
9 It is recalled that a causal loop is a closed causal path.
10 Algebraic causal paths and algebraic causal loops have constant gains.
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Criterion 4 (Specification differentiability) In order to simulate an inverse model
each output specification must have a time differentiation order greater than or
equal to nie, the essential order (Section 6.2.2.3 and Procedure 4) of the corre-
sponding specified output yi in the system Σ .

In fact if the specifications in a sizing problem based on the approach of model
inversion do not verify this criterion, unit pulses may appear when inverting the
equations which is not physically feasible.

6.3.3 Bicausality Assignment Procedure

6.3.3.1 Bicausality

Bicausality is the extension of causality for obtaining the inverse model equations
directly from a bond graph representation. The way bicausality is assigned in a
bond graph depends on the results of the invertibility criteria and of the structural
analysis in terms of I/O power line (see Definition 6.2) sets and I/O causal path (see
Definition 6.5) sets.

The principle for assigning bicausality lies on the different mathematical com-
binations of the adaption of two conjugate power variable pairs when two subsys-
tems are physically connected. This adaption is expressed by two implicit equations
between the efforts and the flows on both the subsystem ports (Fig. 6.4).

Causality, by comparison, corresponds to the physical principle postulating that a
subsystem cannot impose both the conjugate power variables to the other subsystem
to which it is connected. From this constraint the only two possibilities of causal
assignment are given in Fig. 6.5 causal bond graphs with their corresponding causal
equations.

Bicausality breaks this physical principle and accepts that a subsystem “imposes”
both the conjugate power variables to the other subsystem to which it is connected.
In fact, mathematically speaking, this corresponds to exploiting the two last combi-
nations of Fig. 6.4 implicit equations thus giving Fig. 6.6 bicausal equations.

Fig. 6.4 Bond graph
representation of two
physical subsystem
connection

Subsystem B
eA

fA

eB

fB

0
0

Subsystem A

Subsystem B
eA

fA

eB

fB

Subsystem A Subsystem B
eA

fA

eB

fB

Subsystem A

Fig. 6.5 Causal bond graphs of two physical subsystem connections
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Subsystem B
eA

fA

eB

fB

Subsystem A Subsystem B
eA

fA

eB

fB

Subsystem A

Fig. 6.6 Bicausal bond graphs of two physical subsystem connections

The graphic trick to represent bicausality in a bond graph breaks the causal
stroke into two half strokes each dedicated to the assignment of one of the two
conjugate power variables (here the flow variable is on the half arrow side and the
effort variable on the opposite side). The assignment rule remains in agreement
with the one of causality since a flow is “imposed” on the subsystem far from the
flow-dedicated half stroke while an effort is “imposed” on the subsystem closed to
the effort-dedicated half stroke [18] (Fig. 6.6).

Now two new elements are required to assign bicausality in a bond graph repre-
sentation. The first element, a double source, “initializes” this assignment by impos-
ing both the conjugate power variables at one port of the model, while the second
one, a double detector, “receives” both the conjugate power variables at another
port of the model. In the context of I/O inverse model, the double sources (resp.
double detectors) replace the detectors (resp. the modulated elements) carrying the
outputs (resp. the inputs). Concerning the double source, distinction must be done
with respect to both types of detectors which they are substituted with. For an effort
(resp. flow) detector, the replacing double source assigns both a specified effort
(resp. flow) and a null flow (effort). The bond graph representations of the two
types of double sources with their respective bicausality assignment are displayed,
respectively, in Figs. 6.7 and 6.8.

A procedure for bicausality assignment is now given. It uses the criteria pre-
viously defined and will be applied to determine the inverse model in the sizing
methodology. The input of this procedure is the acausal bond graph representation
of the model of a physical system. In the very first step a set of disjoint I/O causal
paths of minimal order is searched. This guarantees an inverse model of minimal
order (see Section 6.2.1.2). The interest of the preceding is that, on the one hand,

Fig. 6.7 Bond graph
representation of a double
source replacing an effort
detector

SeSf
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f

Fig. 6.8 Bond graph
representation of a double
source replacing a flow
detector
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the inverse model obtained has a dynamic part of minimal dimension and, on the
other hand, that the specified outputs appear in the equations with their minimal
time differentiation order [15, 24].

Procedure 5 (Bicausality Assignment (Fotsu-Ngwompo [15] and Jardin [24]))

1. In the bond graph representation in preferential integral causality, choose a set
of disjoint I/O power lines associated11 with a set of disjoint I/O causal paths of
minimal order. If such sets do not exist then the model is not invertible (criteria
1 and 2), and the procedure stops.

2. In the acausal bond graph representation, replace the modulated elements (resp.
detectors) associated with inputs (resp. outputs) by double detectors DeDf (resp.
double sources SeSf).

3. For each element of which causality is imposed (sources, elements with non-
invertible constitutive laws) assign it and propagate it through the junction struc-
ture taking into account the causality constraints of 0- and 1-junctions, TF- and
GY-elements.

4. Along each power line chosen at step 1 propagate bicausality from the dou-
ble source to the double detector and propagate causality through the junction
structure taking into account the causality constraints of 0- and 1-junctions, TF-
and GY-elements. If at this step causal conflicts or non-solvable causal loops
appear, repeat the previous steps with another set of disjoint I/O power lines.
If none of them solves the problem of causal conflicts or non-solvable causal
loop appearance then the model is not invertible (Criterion 3) and the procedure
stops.

5. For the energy storage elements assign a preferential integral causality if possi-
ble and propagate it through the junction structure as previously.

6. If some R-elements remain not causally determined then assign a causality to
one and propagate as previously. Repeat this step until all the R-elements are
causally determined.

7. If the bond graph is not completely causally determined assign a causality on a
bond and propagate it as previously. Repeat this step until all the bond graph is
causally determined.

6.3.4 Notion of Analysis Levels

One of the main interests of structural analysis is to provide the designer with quali-
tative information on his model and to help him take decisions in the design process.
The structural feature of the analysis, i.e., independent of any numerical value and,
thus, before the numerical simulation, enables time to be saved by detecting in early

11 A set of causal paths is said to be associated with a set of power lines if each junction belonging
to the power lines is also passed through by at least one of the associated causal paths [33].
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stages if the design problem is ill-posed. A practical objective of structural analy-
sis is to verify the mathematical conditions of model inversion. Depending on the
answer the designer will be able to question his design model or his specifications.

The bond graph language offers different levels of information depending on
what one decides to read in the bond graph representation. For instance, the graphic
reading leads to retrieval of some properties of the model structure independently
of the mathematical forms of the phenomenon constitutive laws. A deeper read-
ing enables “behavioral” properties to be obtained in the sense that, in addition to
the graphic reading, the mathematical forms of the phenomenon constitutive laws
and the way the phenomena are reticulated in the model clarify some properties.12

Finally, if the numerical values of the parameters are introduced an even deeper
analysis is possible either analytically or by simulation.

This inclusion of information levels is interesting from a chronological point of
view in a design process. In fact, if a property is not verified at a level, it is not at the
successive level at all. For instance, concerning non-invertibility of a model, if it is
detected at the earliest stage (power lines – Criterion 1, or causal paths – Criterion 2,
or junction structure solvability – Criterion 3), the designer will not spend time to
go further in his design problem which will be known as ill-posed.

Moreover, this strategy has the advantage to provide the designer with a guide
in his design process. In fact, if he assesses his model as sufficiently faithful to the
studied system, the results of the analysis levels (bond graph structure, behavioral

Fig. 6.9 Different analysis levels for the design process

12 Note 5 illustrates this distinction between the information at the graphic structure level and the
one at the behavioral structure level.



6 Bond Graphs and Inverse Modeling for Mechatronic System Design 209

structure, numerical) can be extrapolated to the system design at the corresponding
level (Fig. 6.9) [24]. For instance, if a property (invertibility or other) is not verified
at the bond graph structure level, then the energy architecture of the system must
be questioned. If it is verified at the bond graph structure level but not at the behav-
ioral structure one, the designer can try to identify if it is due to a certain coupling
between components in the system and if adding a phenomenon a priori neglected or
eliminating one a priori not preponderant would solve the problem. At that point it
must be emphasized that the bond graph representation offers an ideal tool to locate
where the design possibilities are in the physical system. Finally, if a property is
also verified at the behavioral structure level but not at the numerical one then the
designer can work out the values for the parameters not yet fixed in the physical
system or in the specifications.

6.4 Phases of the Sizing Methodology

The different phases of the sizing methodology are now presented. They are chrono-
logically organized according to Fig. 6.1. For each phase care is taken to clearly
present the objective, the inputs, and the unknowns of the posed problem. Steps of
the methodology are then listed and the example (the same for all the phases) of an
automotive application illustrates the methodology.

6.4.1 Validity of the Design Model

Today, in particular for complex systems like in mechatronics, design is largely
based on virtual prototyping where the model has a central role. Here, a design
model refers to a model that is at the basis of a synthesis work for what is to be
designed. Early in the design process it is important to validate it. In an approach
based on model inversion checking the validity of design models consists of check-
ing their invertibility. The problem position of this phase is summarized in Table 6.1.

Table 6.1 Problem position of methodology phase 1 for the validity of the design model

To validate the model used in the successive phases
Phase objective of design

Inputs of the problem • The load that the system to design actuates

• The load inputsa

• The specified outputs of the load

Unknowns of the problem The system to design

Problem posed To test the structural invertibility of the model
a To give the load inputs or outputs signifies that the quantities that play these roles in the model
are identified but their time evolution, except if explicitly mentioned, is not necessarily known or
given
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Methodology – Phase 1 (Validity of the design model)

1. Model the load.13

2. Build the acausal bond graph representation.
3. Apply Criterion 1 with respect to the inputs and the specified outputs of the prob-

lem.
4. If it is verified, assign the preferential integral causality to the bond graph rep-

resentation, else the model is not structurally invertible and the phase stops.
5. Apply Criterion 2.
6. If it is verified, assign bicausality according to Procedure 5 to the bond graph

representation, else the model is not structurally invertible and the phase stops.
7. Apply Criterion 3.
8. If it is verified, test the invertibility of the constitutive laws touched by bicausality

or by a change of causality with respect to the initial causality assignment, else
the model is not structurally invertible and the phase stops.

9. If one of the previously mentioned laws is not invertible the model is not invertible
and the phase stops.

The conclusion of this phase is that either the conditions are passed and the next
phase can be carried out or they are not and the designer must question his design
model by detecting at which step the invertibility test failed.

Example The illustrating application, sketched in Fig. 6.10, is an automotive vehicle
in a braking situation on a straight trajectory. The model considered is planar and
constitutes a chassis and two axles. The vehicle has longitudinal, heave, and pitch
motions. Front and rear axles are composed each of a wheel and a suspension act-
ing only vertically. The heave and pitch evolutions are supposed sufficiently small
to consider a linear model with constant distances (wheelbases and mass center
height). The road is assumed flat. The braking situation starts from an initial velocity
and a constant deceleration distributed on both the axles is applied at a certain time
after.

G

pitch

z

x

Lr Lf

heave

Fr

Ff

Fxr Fxf

Δzr Δzf

Fig. 6.10 Sketch of the automotive vehicle

13 The modeling step consists here of setting up the physical hypotheses of the model.
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In the context of riding comfort, the design problem is here to size both the front
and rear suspensions with respect to given specifications on the heave and pitch
behaviors for different decelerations and different front/rear braking distributions.
To fulfill the requirements active suspensions are envisaged. The specified outputs
are, respectively, the heave z and the pitch angle ϕ of the vehicle, and the inputs are
both front Ff and rear Fr forces exerted by the suspensions. Table 6.2 summarizes
the parameters for the vehicle considered as the load of the design problem and
Fig. 6.11 shows three braking situations corresponding, respectively, to the three
cases of deceleration: 0.3, 0.5, and 0.8 g. For each one three front/rear distributions
(expressed in percentage of the specified deceleration) are studied: 93/69, 100/38,
and 100/20.

The application of phase 1 requires the acausal bond graph representation given
in Fig. 6.12. The acausal structural analysis gives eight I/O power lines between
the suspension forces (Ff,Fr) and the heave and pitch velocities (ż, ϕ̇).14 Combining
these I/O power lines, two sets of disjoint power lines exist; thus the first criterion
is verified. Figure 6.12 shows one of them.

Then the preferential integral causality is assigned to give the causal bond graph
representation in Fig. 6.13. The causal structural analysis results in four I/O causal
paths, each of length 1, and two sets of I/O disjoint causal paths of length 2 which
is minimal. The second criterion is also verified and Fig. 6.13 displays the set asso-
ciated with that of Fig. 6.12 power lines.

Finally, the bicausal bond graph representation is obtained in Fig. 6.14. It has
been obtained, on the one hand, from the set of the disjoint I/O causal paths of min-
imal length equal to 2 and, on the other hand, from the set of the associated disjoint

Table 6.2 Parameters of the automotive vehicle

Chassis • Mass: Mv = 1700 kg

• Moment of inertia around mass center: Iv = 450 kg m2

• Front wheelbase from mass center: L f = 1 m

• Rear wheelbase from mass center: L r = 1.7 m

• Mass center height: h = 0.55 m

Front axle • Wheel mass: Mw = 33.7 kg

• Tire stiffness: ktf = 44,400 Nm−1

• Tire structural damping: btf = 1348 N−1(ms)−1

Rear axle • Wheel mass: Mw = 33.7 kg

• Tire stiffness: ktr = 50,000 Nm−1

• Tire structural damping: btr = 1280 N−1(ms)−1

Initial conditions • Vehicle velocity: Vx0 = 36 ms−1

• Front tire deflection: Qf0 = −0.13 m

• Rear tire deflection: Qr0 = −0.24 m

14 All the analysis steps were undertaken with MS1 [23].
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c)

a) b)

Fig. 6.11 Specifications of the design problem for a deceleration of (a) 0.3 g (b) 0.5 g (c) 0.8 g

Fig. 6.12 Acausal bond graph representation of the automotive vehicle model
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Fig. 6.13 Causal bond graph representation of the automotive vehicle model
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Fig. 6.14 Bicausal bond graph representation of the automotive vehicle model
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I/O power lines. It can be easily verified in this bicausal bond graph representation
that the junction structure is solvable. In conclusion of this phase the design model
of the load (vehicle without its suspensions) is validated with respect to the pair of
inputs (Ff,Fr) and the pair of outputs (ż, ϕ̇). The design process can be pursued.

6.4.2 Validity of the Specifications

Once the design model is validated the next question concerns the specifications, in
particular, the mathematical form of the specified outputs. The problem position of
this phase is summarized in Table 6.3.

Methodology – Phase 2 (Validity of the specifications)

1. Model the load.
2. Build the acausal bond graph representation.
3. Assign bicausality according to Procedure 5 to the bond graph representation

with respect to the inputs and the specified outputs.15

4. For a specified output determine its essential order according to Procedure 4.
5. Apply Criterion 4.
6. If it is not verified, the phase stops, else repeat the previous two steps for all the

outputs.

If one or more specifications do not verify the differentiability criterion they must
be first questioned, but the design model may also be discussed at this stage. On the
contrary, if the design model is considered faithful to reality, the non-verification of
this differentiability criterion signifies that the inputs are not capable of producing
the specifications on the outputs. Unit pulses would appear which are physically not
feasible.

Table 6.3 Problem position of the methodology phase for the validity of the specifications

Phase objective To validate the specifications for the successive phases of design

Inputs of the problem • The load that the system to design actuates

• The load inputs

• The specified outputs of the load

• The mathematical definition of the specified outputs

Unknowns of the problem The system to design

Problem posed To test the necessary time derivative order for the specified
outputs

15 If the previous phase has been executed the different invertibility criteria have been verified and
the bicausality is already assigned.
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Example Inspection of Fig. 6.14 bicausal bond graph representation shows that
among all the causal paths from the outputs ż and ϕ̇ to the inputs Ff and Fr, the
lower orders are −1 for both outputs. Thus their essential orders are equal to 1
and the specifications for heave and pitch velocities must be at least C1 func-
tions. Compared to the data given in Fig. 6.11 it can be concluded that the spec-
ifications verify the differentiability criterion and the methodology phases can be
pursued.

6.4.3 Component Specification and Selection

Once the well posedness of the design problem is checked in terms of the design
model and the specifications, the next phase is to specify the component directly
connected to the load (or augmented by the part of the system already sized in
previous design steps). It uses the inverse model of the load in simulation (Fig. 6.15).

Contrary to the previous phases this one contributes directly to the system syn-
thesis. In fact it consists of determining the specifications at the outputs of the com-
ponents connected to the load (or augmented by the part of the system already sized
in previous design steps) straight from the specifications given for the load outputs.
The problem position is summarized in Table 6.4.

Fig. 6.15 Simplified sketch of the component specification phase

Table 6.4 Problem position of the methodology phase for the component specification and
selection

Phase objective To specify a component to size in the system to design

Inputs of the problem • The load that the system to design actuates (or augmented by
the part of the system already sized)

• The load inputs (or of the part of the system already sized)

• The specified outputs of the load

• The mathematical definition of the specified outputs

• The manufacturer’s documentation of components

Unknowns of the problem The component to size in the system to design

Problem posed To calculate the specifications at the outputs of the component to
design from the specifications of the load outputs
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Methodology – Phase 3 (Component specification and selection)

1. Model the load (possibly with the part of the system already sized).
2. Build the acausal bond graph representation.
3. Assign bicausality according to Procedure 5 to the bond graph representation

with respect to the inputs and the specified outputs.
4. Simulate the obtained inverse model from the bicausal bond graph.
5. Compare the calculated conjugate power variables at the double detector ports

to the data of the manufacturer’s documentation.

One practical result of this phase is a selection of components (if any exists)
that satisfy the specifications, the so-called backward transported. If none has been
selected the designer gets precise specifications to launch the design of a brand new
component.

The approach based on the inverse model in the selection of components has
several advantages. This enables, in one simulation run, relevant information to be
obtained in the selection process. In fact the backward transportation takes into
account the dynamic feature of the specifications. It clearly shows possible over-
sizing margins or, if manufacturer’s data limits are crossed over, the amplitude and
duration over the limits since the curves obtained are time parametrized. The dura-
tion over the limits can even be used in the case of sizing based on intermittent
operation. Also, the simulation results are obtained in a completely independent
way from what is still unknown in the system to design and from the control inputs
of the system. Finally, the approach does not necessitate to take any a priori option
on the component technology. Thus technology comparison can also be undertaken
in an easy way. This selection phase can be summarized in Fig. 6.16.

Example The bicausal bond graph representation of the automotive example is
given in Fig. 6.14. Figures 6.17, 6.18, and 6.19 show, for the different specified

Fig. 6.16 Simplified sketch of component selection phase
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a) b)

Fig. 6.17 Simulation results of the specifications backward transported for a deceleration of 0.3 g.
(a) front suspension and (b) rear suspension

a) b)

Fig. 6.18 Simulation results of the specifications backward transported for a deceleration of 0.5 g.
(a) front suspension and (b) rear suspension

decelerations, the results in effort/flow frames of the conjugate power variables
(Ff, �̇zf) and (Fr, �̇zr) required, respectively, for the front and rear suspensions,16

where �zf and �zr denote their deflection. It also gives in this way information
about power demands.

Examples of manufacturer’s component limits are superimposed on Fig. 6.19
curves and show that they both satisfy the backward transported specifications.

16 All the simulations were undertaken with MS1 and the solver ESACAP [22].



218 W. Marquis-Favre and A. Jardin

a) b)

Fig. 6.19 Simulation results of the specifications backward transported for a deceleration of 0.8 g.
(a) front suspension and (b) rear suspension

6.4.4 Selected Component Validation

Starting from the previous component selection the next phase is to completely val-
idate these components by taking into account their dynamic behavior and their
parameters. This necessitates to model them and to reconsider the two former
phases, but this time on the set constituted by the load and the component that is
being validated. Then the inverse model of this set, fed with the load output specifi-
cations, can be simulated. This simulation furnishes the conjugate power variables
at the set inputs and anywhere in the model, in particular, the variables of the com-
ponent that is being validated (Fig. 6.20). The problem position of this phase is
summarized in Table 6.5.

Fig. 6.20 Simplified sketch of the selected component validation phase
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Table 6.5 Problem position of the methodology phase for the selected component validation

Phase objective To validate a selected component in the system to design

Inputs of the problem • The load that the system to design actuates (or augmented of the
part of the system already sized)

• The component being validated (model, parameters, manufac-
turer’s data)

• The inputs of the component being validated

• The specified outputs of the load

• The mathematical definition of the specified outputs

Unknowns of the problem The rest of the system to design

Problem posed To calculate the variables of the component being validated, in
particular its inputs, from the specifications of the load outputs

Methodology – Phase 4 (Selected component validation)

1. Model the load (possibly with the part of the system already sized).
2. Build the acausal bond graph representation.
3. Assign bicausality according to Procedure 5 to the bond graph representation

with respect to the inputs and the specified outputs.
4. Simulate the obtained inverse model from the bicausal bond graph.
5. Compare the calculated conjugate power variables at the double detector ports

and the variables of the component being validated to the data of the manufac-
turer’s documentation.

For the component being validated if any variable is over the manufacturer’s
data limits then the component is not validated and taken away from the previous
selection. From the results it is possible to know precisely the reason (variables,
amplitude, duration, etc.) why a component is not validated. If no component is
validated, like for the previous phase, it will be possible to clearly specify the design
of a brand new component.

On the contrary, in the case when several selected components are validated,
either other criteria like mass, dimension, and cost can be introduced to achieve the
sizing process or all the validated components can be kept for the successive phases.
In particular, the latter case provides degrees of freedom for the successive sizing
phases.

Example In the set of the selected components obtained from the previous phase,
the example of an active hydraulic suspension equipped with a sphere is taken for
illustrating the validation phase (Fig. 6.21). A linear model of this component is
considered with an equivalent stiffness, a dissipation through the orifice between
the sphere and the chamber, and an ideal transduction between the hydraulic and
the translational domains. The suspensions are supposed to be fed with volume flow
rates considered now as the new control inputs of the overall system. The acausal
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Fig. 6.21 Sketch of the active
hydraulic suspension

df,r

Pf,r

Qf,r

ksf,r

bsf,r

bond graph representation is given in Fig. 6.22a and Table 6.6 shows the parame-
ters of the selected components. They replace the effort sources associated with the
forces Ff and Fr in Fig. 6.12 bond graph representation.

Then bicausality assignment (Fig. 6.22b) involves the verification of the invert-
ibility and differentiability criteria. This step, not presented here, is supposed exe-
cuted.

Figure 6.23 shows, in the case of a deceleration of 0.8 g, the simulation results
concerning the input conjugate power variables (pressures and volume flow rates)
(Pf,Qf) and (Pr,Qr), respectively, for the front and rear suspensions. The superimpo-
sition of the manufacturer’s data limits indicates that the rear suspension is validated
but not the front one. If, in the previous phase, another component was selected, the

1

0

πdf,r
2/4

T̈F

1/ksf,r :C R:bsf,r

Sf :
Pf,s

πdf,r
2/4
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Pf,s

1

0T̈ F DeDf

b)a)

Fig. 6.22 (a) Acausal and (b) bicausal bond graph representations of the active hydraulic
suspensions

Table 6.6 Parameters of the active hydraulic suspensions

Front suspension • Sphere equivalent stiffness: ksf = 2.27× 1010 Pa m−3

• Viscous damping coefficient: bsf = 5× 109 Pa (m3 s−1)−1

• Piston diameter: df = 19.5 mm

• Initial sphere hydraulic volume: Vsf0 = 1.549× 10−3 m3

Rear suspension • Sphere equivalent stiffness: ksr = 3.36× 1010 Pa m−3

• Viscous damping coefficient: bsr = 4.3× 109 Pa (m3 s−1)−1

• Piston diameter: dr = 21.3 mm

• Initial sphere hydraulic volume: Vsf0 = 0.516× 10−3 m3
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a) b)

Fig. 6.23 Simulation results of the validation phase for the (a) front suspension and (b) rear
suspension

validation phase can be repeated. If none other exists the design of a new suspension
can be envisaged.

6.4.5 Open-Loop Control Determination

The last phase presented concerns the determination of the open-loop control when
all the power components of the system to design have been sized (Fig. 6.24). The
problem position is summarized in Table 6.7.

Methodology – Phase 5 (Open-loop control determination)

1. Model the load and the components of the actuating system.
2. Build the acausal bond graph representation.
3. Assign bicausality according to Procedure 5 to the bond graph representation

with respect to the control inputs and the specified outputs.
4. Simulate the obtained inverse model from the bicausal bond graph.

Fig. 6.24 Simplified sketch of the open-loop determination phase
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Table 6.7 Problem position of the methodology phase for the open-loop control determination

Phase objective To determine the open-loop control to follow the specified outputs

Inputs of the problem • The load and the sized components of the system actuating the
load (models, parameters)

• The control inputs

• The specified outputs of the load

• The mathematical definition of the specified outputs

Unknowns of the problem The time functions of the control inputs

Problem posed To calculate the control inputs from the specifications of the load
outputs

The simulation of the inverse model furnishes the ideal inputs to follow the spec-
ifications on the outputs. Then a control law synthesis can be started on this basis to
increase the performance of the system. An interesting use of this approach is also
the determination of power assistance laws. For instance, in the domain of automo-
tive applications the determination of the power steering assistance (hydraulic or
electrical) is of prime importance in the vehicle design [29, 30].

Example On the automotive example, if the volume flow rates Qf and Qr are con-
sidered as the control inputs and if both suspensions in the previous phase are con-
served through the non-validation of the front one, Fig. 6.25 extracts the simulation
already obtained in Fig. 6.23, but now displayed with respect to time.

a) b)

Fig. 6.25 Simulation results of the open-loop control determination for the (a) front suspension
and (b) rear suspension
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6.5 Conclusion

This chapter presented the use of the bond graph language for a sizing methodology
based on model inversion. It first gave the theoretical material for the manipulated
concepts and their translation or determination in a bond graph representation. Then
the tools for testing the existence of an inverse model and for organizing the equa-
tions were presented. Finally, the phases of the methodology were proposed. These
phases were chronologically presented; however, depending on the design problem,
one can directly come to the one of one’s own interest.

One of the main advantages of the approach based on model inversion is the
fact that it poses the design problem in such a way that the specifications can
be straightforwardly used. In fact, at each phase, the model manipulation needs
no information about what is still unknown. Thus this approach saves time in the
design process by decreasing the number of calculus iterations. Furthermore, it
brings more insight into the design, in particular by increasing the pertinence of
the component sizing (dynamic specifications, oversizing margins, amplitude and
duration over the manufacturer’s data limits, etc.). If a solution exists for the design
problem the designer has the guarantee to have it in the selection phase. Also, when
no component satisfies the load output requirements, the designer still gets precise
specifications for the design of new components.

The bond graph language shows to be well adapted for the approach presented.
The different phases of the methodology get the benefits of all the bond graph fea-
tures (energy based, multidomains, multitechnologies, graphic, etc.). Moreover, the
different levels of information lead to different levels of analysis for the designer.
The first levels are structural and enable detection of whether or not the design prob-
lem is ill-posed in an early stage of the design process. Also, still depending on the
information level, the analysis can guide the designer to question his problem and,
in particular, if a solution is to be searched at a structural, behavioral, or parameter
level in the system to design.

On the basis of the concepts developed in the former sections, the latter section
showed a series of design problems. The used approach can also be interesting for
problems like system architecture synthesis and comparison [28], parameter synthe-
sis [16], equilibrium or steady-state position determination [4], or the coupling of
model inversion with dynamic optimization [24, 26, 27, 32]. Finally, the approach
was used in the domain of active systems [31], in industrial applications like in
aeronautics for electro-hydraulic actuators [17] or in automotive for electric power
steering and suspension systems [29, 30], and for classic and hybrid power trains
[3, 28].
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Chapter 7
Bond Graph Model-Based Fault Diagnosis

S.K. Ghoshal and A.K. Samantaray

Abstract Diagnostic search strategy is based on knowledge representation, which
is developed from a fundamental understanding of the system. For physical sys-
tems, causal or model-based knowledge may be broadly represented in qualitative or
quantitative form. In quantitative models, this understanding is expressed in terms of
mathematical and/or functional relationships between the inputs and outputs of the
system. Bond graphs are an excellent means for causal knowledge representation. In
this context, some of the recent analytical model-based fault detection and isolation
(FDI) procedures are compiled in this chapter.

Keywords Fault detection and isolation · Fault diagnosis · Hybrid systems · Bond
graph · Analytical redundancy · Unknown input observer

7.1 Introduction

A fault is defined as a departure from an acceptable range of an observed variable
or a calculated parameter associated with a process or system. The cause of a fault
is called the basic event or the root cause. These basic events or root causes are
of different types: gross parameter changes or parametric faults which arise from
disturbances to the process due to exogenous variables, structural changes due to
complete or hard failures in equipment, malfunctioning of sensors and actuators,
and malfunctioning of control hardware or software.

A component’s malfunction is called a fault, when it is possible to take appro-
priate measures (through fault-tolerant control) to recover from it without replacing
the faulty component. When the malfunctioning of the device is too severe which
causes an irrecoverable structural change to the system then it is referred to as a
failure. Some failures can be accommodated through online system reconfiguration,
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i.e., through replacement of the malfunctioning device by another device which can
give the same service without appreciable performance degradation.

Faults are classified according to their root cause. On the other hand, the fault
occurrence classification is based on temporal evolution of the system variables. An
abrupt fault means that all of a sudden a normally operating system starts behaving
abnormally; a progressive fault refers to the gradual drift in the behavior of a system
away from its normal behavior; an intermittent fault refers to abnormal behavior
for a small duration of time which is not uniformly repeated; and an incipient fault
refers to the state of a system where its behavior is in the borderline between normal
and abnormal behavior. Note that it is not always possible to categorize these faults
in a real system because the controller action may hide the faults or change the
temporal evolution of measured variables.

Sudden failures of critical systems may lead to accidents and economic losses
in an industrial scenario. Prompt detection and classification of process anomalies
at the onset of the fault minimizes the chances of total failure. Early detection of
incipient faults (also called prognostics, when fault prediction is made) to locate the
deteriorating or the deteriorated devices allows one to undertake timely remedial
action, e.g., appropriate maintenance work. However, some faults may appear all of
a sudden without any prior warning. For timely fault detection and isolation in com-
plex systems, real-time process supervision is essential. Real-time fault detection
and diagnosis (or prognosis) can help avoid abnormal event progression and reduce
productivity loss.

Real-time supervision means monitoring the condition of a system at each and
every instant. A fault in a process may cause undesired and/or uncontrollable
sequence of events and the consequences could be catastrophic. Automated fault
detection and isolation (FDI) procedures are implemented in the supervision plat-
form to ensure the safe operation of the process at all times. The diagnostic system
in an FDI framework has to quickly detect any fault which can seriously degrade
the performance of the system.

Real-time process supervision is performed by means of a set of tools and meth-
ods, which ensure safe process operation in normal situation as well as in the
presence of failures or undesired disturbances. Process supervision is conducted
by integrating several tools, each specifically designed for a specific activity. These
activities are fault detection, fault isolation, diagnosis (root cause analysis), fault
quantification (determination of the severity of the fault), and the decision making
to accommodate the fault. The presence of a fault is detected at the monitoring level,
which determines whether the process is in normal operation or not. Other tools
for fault isolation, diagnosis, etc., are executed when an abnormal process state is
detected by the process monitoring tool.

The steps executed after fault detection are termed alarm interpretation which
classify the actual fault, its characteristics (occurrence time, fault size, conse-
quences, etc.), and the root cause. Fault characterization and quantification is
required to determine the immediate process state and to determine whether the
fault can be safely accommodated at that process state. Based on this input, fault
accommodation may be performed through reconfiguration when standby devices
in healthy condition are available or through fault-tolerant control (FTC) where the
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control laws and the associated control problems are changed on the fly to maintain
the desired process state.

A diagnostic system is usually designed for a specific system and tuned accord-
ingly to produce best results. The diagnostic system must provide quick detection
and diagnosis, should be able to differentiate between various failures and classify
different faults, should be robust to various uncertainties (disturbance, noise, etc.),
should be able to adapt to newer situations and operating conditions (i.e., should be
flexible in design), should assist the human operator in explaining the origin of the
fault and actions to be taken, and should not be too resource intensive.

Alarm interpretation is based on one or more diagnostic search strategies. It is
a function of the knowledge representation scheme. Obviously, alarm interpretation
is influenced by the kind and quality of available knowledge. The most important
knowledge in this sense is the relationship between the observations or symptoms
and the failures. The knowledge representation forms a set of causal or inferen-
tial relationships. The domain knowledge may be developed from a fundamental
understanding of the process using first-principles knowledge (called deep, causal,
or model-based knowledge) or from past experience with the process (called shal-
low, compiled, evidential, or process history-based knowledge). The deep and shal-
low knowledge may be further classified as qualitative or quantitative. Quantitative
knowledge is expressed in terms of mathematical functional relationships between
the inputs and outputs of the system. On the other hand, qualitative knowledge
expresses these relationships in terms of qualitative functions. These qualitative
functions are obtained from large amount of historical process data which are trans-
formed by various means to capture key features (statistical or non-statistical) of the
data deviation due to various faults.

Different approaches for diagnosis have been developed depending on the kind
of knowledge used to describe the process model. Usually, a specific methodol-
ogy is applied for a specific process. These diagnostic methods may be broadly
classified as quantitative model-based methods, qualitative model and search-based
methods, and process history-based methods. Model-based (qualitative and quan-
titative) approaches make use of causal analysis (cause and effect/antecedents and
consequences relationships) as the basis of knowledge representation, i.e., they link
individual component malfunctions to deviations in measured values.

Online fault detection requires sensors to capture the change in states of the sys-
tem. Faults are detected only when they occur in the observable subspace of the
system’s model. Moreover, fault-tolerant control requires that the faulty part of the
system is controllable. Therefore, process supervision belongs to the broad field of
systems and control engineering. Bond graph modeling is a unified tool to handle
systems and control engineering aspects of various multi-energy domain systems,
including complex mechatronic systems.

The knowledge model used for fault diagnosis is developed from some fun-
damental understanding of the physics of the process. In this chapter, a unified
approach to bond graph model-based qualitative and quantitative FDI is addressed.
Causality in bond graph models has been exploited in different ways to arrive at var-
ious qualitative and quantitative diagnosis schemes. The relative merits and demerits
of these schemes are assessed.
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7.2 Bond Graph Model-Based Qualitative Diagnosis

When model parameters are unknown or uncertain, but the model structure is well
defined, qualitative equations may be used in place of differential equations for fault
diagnosis. The qualitative state of a parameter or variable is defined as

[+] or [1] : higher than normal, increase;

[0] : normal, no change;

[−] or [−1] : lower than normal, decrease.

The qualitative equations thus derived assume that the nominal values of param-
eters are positive and when they deviate from their nominal values, i.e., after a fault,
they still remain positive.

The fault diagnosis and isolation scheme is based on a knowledgebase devel-
oped beforehand. This knowledgebase stores the symptoms associated with faults
and serves as lookup table from which faults corresponding to observed symptoms
can be extracted. For construction of the knowledgebase, fault is assumed in each
parameter of the system (both [+] and [−] faults) and the change in qualitative
values of the measured variables is explicitly calculated using qualitative operators.

7.2.1 Knowledgebase Construction

All variables involved in a relation are divided into two classes, namely antecedents
and consequences. For any equation x = f (y,z), where f (·) is a function, the
variable(s) on the left side, e.g., x , is (are) consequence(s) whereas the variables
on the right side, e.g., y and z, are antecedents. Construction of antecedents and
consequences follows directly from the computational causalities imposed on the
bond graph model. Note that parameters always appear in the antecedents.

For example, an I -element in integral causality means the parameter (1/m or I )
and effort (e) are the antecedents and the flow ( f ) is the consequence. For the
same element in differential causality, the parameter (m or 1/I ) and flow ( f ) are
the antecedents and the effort (e) is the consequence. At a junction, the weak and
strong junction laws decide the antecedents and consequences.

For each model, a table of antecedents and consequences are prepared first. In
that table, each power variable appears only once in the antecedent and once in the
consequence classes (except for sources and measurements), whereas all parameters
appear as antecedents. This table can be constructed from the causal paths.

7.2.2 Determination of Initial Fault Set

The initial fault set is determined through traversal of causal path. The faulty
variable is first located in the consequences list and assigned a qualitative value



7 Bond Graph Model-Based Fault Diagnosis 231

([+]/1, 0 or [−]/−1). The back-propagation is done by assigning qualitative values
to corresponding antecedents. Then these newly assigned antecedents are treated as
consequences and antecedents for them are searched.

A tree-like structure thus evolves. The terminating antecedent nodes of the tree
are the parameters and variables whose qualitative value is in conflict with their
earlier qualitative value at a higher level in that tree.

7.2.3 Example of Qualitative Diagnosis

A thermo-fluid system is shown in Fig. 7.1. The fluid is under-saturated. The
pseudo-bond graph power variables (e and f ) for thermo-fluid systems are cho-
sen as e = [eH eT] = [P T ], f = [

fH fT
] = [

ṁ Ḣ
]
, where subscripts H and T

are used to represent the hydraulic and thermal domains, respectively, and the state
variables arising out of storage of mass and energy (enthalpy) are ṁ and Ḣ . P and T ,
respectively, represent pressure and temperature. The pseudo-bond graph model of
the system is shown in Fig. 7.2, where the CETF element [1] couples the hydraulic
and thermal domains.

The pressure produced at the bottom of the tanks is due to the storage of the fluid.
The pressure and the temperature in the i th tank are given as

Pi = g

Ai

∫
ṁi dt = g

A

∫
( ṁi |inlet − ṁi |outlet) dt

Ti = 1

mi cp

∫
Ḣi dt =

∫
(

Ḣi
∣
∣
inlet − Ḣi

∣
∣
outlet

)
dt

cp

∫
( ṁi |inlet − ṁi |outlet) dt

=

∫
(

ṁi |inlet cpTi
∣
∣
inlet − ṁi |outlet cpTi

)
dt

cp

∫
( ṁi |inlet − ṁi |outlet) dt

(7.1)

Fig. 7.1 A two-tank
thermo-fluid process
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Fig. 7.2 Pseudo-bond graph model of the two-tank thermo-fluid process

where Ti |outlet = Ti , i.e., the fluid leaving the tank is at the same temperature as
the fluid inside the tank. Therefore, the hydraulic capacity of the tanks is given by
CHi = Ai/g, where i = 1, 2 and A refers to the cross-sectional area. Because of
accumulation of enthalpy, the temperature of the fluid in each tank changes. The
thermal capacity is given by CTi = m.cp where cp is the heat capacity of the fluid.

The CETF element couples the hydraulic and thermal domains. The two bonds
connected to the CETF element are causalled in such a way that both of them impose
effort on the CETF element and it returns flows in both these bonds. The flows in
the two bonds are enthalpy flow rates and they are equal. The effort (temperature)
of the downstream side is not required to calculate the enthalpy flow rate. Thus,
one of the bonds (downstream side) connected to CETF element is a signal bond;
it carries only flow information. The constitutive relation for the CETF element can
be written as

Ḣinlet = Ḣoutlet = ṁcpTinlet (7.2)

Let us now consider some of the properties of thermo-fluid systems. We will
assume that in a heated tank, the inlet fluid is at a lower temperature than the fluid
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inside the tank whereas if a tank is not heated (possibly cooled) then the inlet tem-
perature is same or higher than that of the fluid inside the tank. The outlet fluid
temperature from a tank is same as the temperature of the fluid in the tank. Thus, the
outlet mass flow rate and temperature have no immediate effect on the temperature
of the fluid in the tank.

In steady state, the mass and temperature of the fluid stored in the tank are con-
stants. Then thermal equilibrium demands that the enthalpy flows are balanced, i.e.,
Q̇ + ṁ inletcpTinlet − ṁoutletcpToutlet = 0, ṁ inlet = ṁoutlet, ṁ = ṁ inlet − ṁoutlet = 0.
Since Toutlet and the mass of the stored fluid do not influence steady-state tempera-
ture, the only factors that influence steady-state fluid temperature are Q̇, ṁ inlet, and
Tinlet. Note that for same heat input, the steady-state temperature of stored fluid
increases when Tinlet is high or ṁ inlet = ṁoutlet is low.

If there is no heat transfer to/from the tank (Q̇ = 0), then steady-state fluid
temperature inside the tank is same as that of the inlet temperature. Thus, the inlet
mass flow rate has no bearing on the temperature of the stored fluid as long as
there is no heat transfer from the stored fluid; it is only the inlet fluid temperature
which influences the temperature of the stored fluid. Even if there is some kind
of heat transfer which is proportional to temperature of the fluid with a constant
coefficient of proportionality, but not related to the quantity of the stored mass (the
stored mass is anyway constant in steady state), the heat transfer does not influence
the steady-state temperature of the stored mass. The later is similar to the enthalpy
flow due to fluid flow out of the tank.

The above-discussed properties (a priori knowledge) have great significance in
diagnosis of thermo-fluid systems. In the context of qualitative diagnosis, they min-
imize the number of qualitative variables or postulates, i.e., produce a lean and
more certain list of antecedents for given consequences. The thermo-fluid system
is a nonlinear system. It is not possible to diagnose it by treating the unmeasurable
variable enthalpy as a flow variable. Thus, certain adjustments are required during
reasoning stage.

The antecedents and consequences of the thermo-fluid system shown in Fig. 7.1
can be derived from the bond graph model given in Fig. 7.2. The antecedents
and consequences list is given in Table 7.1. It is assumed that the antecedents
and consequences considered in the thermal domain pertain to steady-state
behavior.

Some of the entries in Table 7.1 are crossed-out. The crossed-out terms in item
numbers 18 and 26 mean that the stored fluid mass does not influence the steady-
state temperature of the stored fluid. Likewise, in item numbers 20 and 33, the
crossed-out entries indicate that the enthalpy flow rates out of the tanks do not influ-
ence the temperatures of the fluid (measurable quantity) although in reality, they do
influence the total enthalpy of the fluid stored in the tank. Here, the enthalpy flow
rates are treated as temperature-generating quantities. The true meaning of enthalpy
(and its flow rate) is not used. Because of steady-state assumption, the mass flow
rates are taken to be constant in the thermal domain which means the flow variable
is proportional to temperature, i.e., there is a loss of distinction between temperature
as the effort variable and a temperature proportional flow variable.
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Table 7.1 The antecedents and consequences derived from the bond graph model

Antecedents

# Parameters Power variables Consequences

1. Qp f1
2. f1 f2, f28
3. 1/CH1 f4 e4
4. e4 e2, e5, e3, e29
5. e3 P1
6. f2, − f5 f4
7. 1/RVb e6 f6
8. f6 f5, f7, f30
9. e5, −e7 e6

10. 1/CH2 f8 e8
11. e8 e7, e9, e31
12. f7, − f9 f8
13. 1/RVo e10 f10
14. f10 f9, f11, f32
15. e9, −e11 e10
16. Tin e12
17. e12, − f28 f13
18. 1/cp f15, 1/e29 e15
19. e15 e13, e14, e16, e17
20. f13, f14, − f16, − f17 f15
21. QT f14
22. 1/R1 e18 f18
23. f18 f17, f19
24. e17, −e19 e18
25. e16, f30 f20, f16
26. 1/cp f21, 1/e31 e21
27. e21 e20, e22, e24, e25
28. e24 T2
29. e22, f32 f23, f22
30. 1/R2 e26 f26
31. f26 f25, f27
32. e25, −e27 e26
33. f20, − f22, − f25 f21

The entries crossed out in item numbers 25 and 29 indicate that the inlet mass
flow rates do not influence temperature of the tanks to which they are connected
because there is no heating element in those tanks. Note that these items actually
influence the enthalpy flow rates, but they have to be crossed out at this stage. In
contrast, in item number 17, no entry is struck out because Tank1 has a heater.

The temperature of the inlet fluid to a tank does not depend on the temperature
of the fluid inside the tank, which is indicated by the struck-out entries in item
numbers 19 and 27. The entries struck-out in item numbers 24 and 32 indicate that
the environment temperature is constant (out of fault analysis domain) and should
be omitted.

The negative sign associated with mass flow rate in antecedent entry in item
number 17 emphasizes the fact that in a heated tank, positive temperature rise in
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steady state is due to less fluid inlet (same as fluid outlet). At the same time, item
25 shows that positive temperature rise in Tank2 in steady state is due to more fluid
inlet (same as fluid outlet). These are due to the assumptions made earlier about
which side temperature is higher.

Let us consider a case where the observed pressure in tank1 is higher than nom-
inal while the temperature in Tank2 is lower, i.e., P+1 and T−2 . We start by propa-
gating the fault symptom in two branches from P+1 and T−2 , and construct the fault
tree shown in Fig. 7.3. In the fault tree, qualitative values are denoted using ‘+’ for
higher and ‘−’ for lower. The conflicting nodes are represented by a cross (×) near
them.

Fig. 7.3 Fault tree for the thermo-fluid process
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To construct the fault tree, we first consider the thermal domain because this
domain shows influence of both hydraulic and thermal domain faults. As the starting
node, we locate variable T2 in the consequences and find the antecedent to be e24.
Then we consider e24 to be a consequence and find its antecedent to be e21 whose
antecedent is f21 and proceed in the same way till the tree terminates at sources,
parameters, and nodes with conflicting qualitative states (indicated by cross sign).

Thereafter we consider the hydraulic domain. The starting node in hydraulic
domain is identified by finding variable P1 in the consequences whose antecedent
is e3. Then using e3 as-consequence, we find e4 as the antecedent, and so on. Note
that the hydraulic domain can influence the thermal domain as in the model, signal
will flow from hydraulic to thermal domain only and not in the reverse direction. If
there are conflicts then the qualitative states determined from the tree constructed
from the thermal domain model will have higher precedence.

Thus the initial fault set detected from the thermal domain tree is Q+P , Q−T , R−1 ,
and R−2 . However, the initial fault hypothesized from the hydraulic domain analysis
is C−H1

, Q+P , R+Vb
, C−H2

, and R+Vo
. The common hydraulic fault in both these sets is

Q+P and it too has same qualitative state. The final fault candidate list is Q+P , Q−T ,
R−1 , and R−2 . Since single fault hypothesis is considered, Q+P should be the cause of
the fault.

Note that if the observations were P−1 and T+2 then the hydraulic domain fault
candidates are C−H1

, Q+P , R+Vb
, C−H2

and R+Vo
. The thermal domain fault candidates are

Q−P , Q+T , R+1 , and R+2 . We have no common hydraulic fault, which means there are
two fault origins, one for hydraulic and the second for thermal domain. In this case,
multiple fault hypotheses are applied and further isolation of fault is possible only
when more qualitative information about some other signals or temporal evolution
of the measured signals is considered. Qualitative reasoning (QR) using artificial
intelligence (AI) is also applied. If the tanks are covered (no possibility of some-
thing falling into the tank to decrease its capacity), the pump flow is measured and
shows normal value, and Q+T , R+1 , and R+2 being associated with thermal domain
cannot influence hydraulic domain (the reverse is possible) then the fault candidate
can be isolated as one among C−H1

, R+Vb
, C−H2

, and R+Vo
, and one among Q+T , R+1 ,

and R+2 . Note that this process of elimination of fault candidates using QR and
rules in an AI-based supervisory system does not always lead to an isolated fault
candidate.

The model-based reasoning for observations P+1 and T−2 is validated with simu-
lation by introducing a fault by increasing the value of RVb from 1.0 × 103m−1s−1

(nominal) to 2.0 × 103m−1 s−1 (faulty) at a time of 100 s and the result is plotted
in Fig. 7.4a. The nominal values of parameters, used in simulation, are given in
Table 7.2. Note that R−Vb

is a fault hypothesized from hydraulic domain, but it is not
present in thermal domain fault set. The results show that the steady-state pressure
in Tank1 increases (P+1 ) but the steady-state value of T2 does not change due to
the Vb fault, although it temporally decreases, which can be described as T−2 in
the transient regime. The reason why steady-state value of T2 does not change is
explained subsequently during discussion on tree graph. This result confirms that
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Fig. 7.4 Time response of P1 and T2 for (a) Vb blockage fault at 100 s and (b) pump fault at 100 s.

Table 7.2 Model parameters of the thermo-fluid process

Symbol Description Value

QP Constant mass flow rate from pump 0.5 kg s−1

Ai Cross-sectional area of tanks, Tanki (i = 1, 2) 7.8× 10−3 m2

RVb Resistance of valve Vb 1.0× 103 m−1 s−1

RVo Resistance of valve Vo 2.0× 103 m−1 s−1

Patm Atmospheric pressure (gage) 0 N m−2

cp Specific heat capacity at constant pressure 4186 J kg−1 K−1

Qt Constant heat input rate to Tank1 2.0× 104 J s−1

Tres Thermal resistance 1.0× 10−3 J−1 s K
Tin Ambient temperature 300 K

R−Vb
is not a fault candidate because it does not appear in the thermal domain fault

tree for the measured symptoms.
In another fault scenario simulation, the pump flow rate is abruptly increased at

a time of 100 s and the result is plotted in Fig. 7.4b. This result shows an increase in
Tank1 pressure and decrease in Tank2 temperature, which is exactly the fault which
has been postulated for the given fault symptoms (P+1 and T−2 ).

One of the major problems associated with qualitative reasoning has been the
assumptions and inferences used while constructing the table of antecedents and
consequences. At times, there is a feel that the whole exercise is intuitive rather
than being based on solid mathematical logic. A more elegant approach to postulate
steady-state behavior is to directly consider the rate equations. One such approach
is given in the next section.

7.3 Qualitative Diagnosis Through Tree Graphs

Tree graph is another form of qualitative representation of system dynamics. It is
applicable to mono-stable systems operating in the steady state. Qualitative analysis
of the tree graph predicts the new steady state under assumed failure conditions. All
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states of a mono-stable system converge to constant values at steady state. Thus, in
qualitative terms, the rate of change of states is 0 at steady state.

In a tree graph, the states of the system and the external excitations are the input
nodes and the time derivatives of the states are the output nodes. The internal nodes
of the tree are two types: algebra and function nodes (see Fig. 7.5).

Fig. 7.5 Internal nodes of a
tree graph A B

A+B
Algebra node Function node

+

F(x)

F

x

Let us consider again the thermo-fluid process shown in Fig. 7.1 and its pseudo-
bond graph model shown in Fig. 7.2. The possible faults in this model are mal-
functioning of valves, storage devices (leakages), heating and cooling devices, and
external inputs. The state equations for this model are

f4 = S f1 − R−1
Vb
. (K4 Q4 − K8 Q8)

f8 = R−1
Vb
. (K4 Q4 − K8 Q8)− R−1

V o. (K8 Q8 − Se11)

f15 = S f14+S f1cp Se12−R−1
1 (K15 Q15−Se19)−cp K15 Q15 R−1

Vb
. (K4 Q4−K8 Q8)

f21 = cp K15 Q15
K4 Q4 − K8 Q8

RVb

− cp K21 Q21
K8 Q8 − Se11

RVo

− K21 Q21 − Se27

R2

(7.3)

where

K15 = 1

CT1

= g

P1 A1cp
= P−1

1 (·) and K21 = 1

CT2

= g

P2 A2cp
= P−1

2 (·)

Qualitative equations are written in terms of functions. As an example, relation
f6 = (1/R6) (e6) is written in functional terms as f6 = R−1

6 (e6) where R−1
6 corre-

sponds to the inverse function for valve resistance. Likewise, expression like C4(Q4)
returns K4 Q4 for linear springs. These functions are often termed as constitutive
relations or characteristic functions, and they may be nonlinear. The qualitative
equation for the thermo-fluid process may be written in function form as
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d X1

dt
=U1 − R−1

Vb
(C4 (X1)− C8 (X2))

d X2

dt
= R−1

Vb
(C4 (X1)− C8 (X2))− R−1

Vo
(C8 (X2)−U2)

d X3

dt
=U3 +U1U4cp − R−1

1 (C15 (X3)−U5)− cp R−1
Vb
(C4 (X1)

−C8 (X2))C15 (X3)

d X4

dt
= cp R−1

Vb
(C4 (X1)− C8 (X2))C15 (X3)− cp R−1

Vo
(C8 (X2)

−U2)C21 (X4)− R−1
2 (C21 (X4)−U6)

(7.4)

where X1, X2, X3, and X4 are mapped to states Q4, Q8, Q15, and Q21, respectively;
U1 to U6 are mapped to inputs Sf1, Se11, Sf14, Se12, Se19, and Se27, respectively;
and the functions correspond to various elements in the model.

The tree graph that represents (7.4) is given in Fig. 7.6. The starting nodes are
the states of the system and the inputs. The terminating nodes are the derivatives of
the states.

Fig. 7.6 The tree graph of the thermo-fluid process representing the state equation

Let us now assume a failure in resistance RVb , which may be due to a blockage
and qualitatively represented as R+Vb

. However, we are dealing with inverse of the
function and thus the qualitative state is denoted by a ‘−’ sign within a box near the
function node R−1

Vb
(see Fig. 7.7). The steady-state conditions imply both d X1/dt

and d X2/dt are zero (constant). Also, the inputs have not changed. So these nodes
and those representing static parameters are qualitatively assigned 0. The fault is
then propagated according to the qualitative equations. The qualitative deviation of
signal (output of each internal node) is shown within a circle near the node. The
fault tree graph is shown in Fig. 7.7.
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Fig. 7.7 The tree graph of the thermo-fluid process showing fault propagation

The fault propagation starts from fixed nodes. Since qualitative change in d X1/dt
is zero, the output of nodes connected to it should not change. That implies the
output from function node R−1

Vb
is unchanged or qualitatively 0. However, the mag-

nitude of R−1
Vb

has qualitatively decreased. So the magnitude of input signal has
increased (+). If we start from qualitative change in d X2/dt = 0, then we observe
that qualitative change of the output from function node C8 is 0. At the node depict-
ing the difference between output from function node C4 and output from C8, it
is evident that qualitative value of output from function node C4 has increased
(+), because the output from function node C8 has not changed. This implies an
increase in value of state variable X1 (Q4 in the bond graph model). This way, the
tree propagation can be extended to all the states.

The augmented tree graph shows the output from node R−1
Vo

(flow output to con-
sumer) and the level in Tank2 remain unchanged whereas the level in the Tank1
increases. In the thermal domain, X3 (Q15) and X4 (Q21) do not change, i.e., steady-
state values of temperatures T1 and T2 remain unaltered.

To confirm these results, numerical simulation is performed with the same param-
eter values as given in Table 7.2 and the results are presented in Fig. 7.8. The valves
are modeled as linear resistances. During the simulation, a fault was introduced by
changing the value of RVb from 1.0× 103 m−1 s−1 (nominal) to 2.0× 103 m−1 s−1

(faulty) after the system has reached the steady state (at time 100 s). The results
show an increase in the value of state X1(P1) and a temporary decrease in the
value of state X2(P2) and X4(T2), which slowly return to their earlier magnitude
in the new steady state. There is absolutely no change in the response of X3(T1).
The quantitative simulation results thus validate the results obtained for steady-state
conditions through qualitative analysis.

Other faults, such as leakages from the tanks, can be likewise introduced and the
fault symptoms can be stored in the knowledgebase to be used for fault isolation
from qualitative change in observed outputs.



7 Bond Graph Model-Based Fault Diagnosis 241

Fig. 7.8 Time response of states of thermo-fluid process for Vb blockage fault

The tree graph approach is useful to address diagnosis problems for linear and
even nonlinear systems having mono-stable steady state. However, some systems
do not have mono-stable steady state and in some systems, the time constant of the
response is so large that it takes a long time to reach the steady state. Since the goal
of a good fault detection algorithm is to reliably detect faults as quickly as possible
(for example, one cannot allow a hazardous chemical to leak for appreciable amount
of time and wait for the system to reach a steady state), it is imperative that tran-
sient response features are also accounted for in the analysis. All quantitative fault
detection schemes are based on establishing correlations among the transient regime
features (measurements). Some of the qualitative fault detection schemes also use
qualitative features of the transient response. One such approach is discussed in the
next section.

7.4 Qualitative Diagnosis Through Temporal Causal Graphs

A temporal causal graph (TCG) is a linear causal graph which represents the model
structure by linking various nodes representing variables in the model. The directed
edges between nodes represent constitutive relations of elements in a bond graph
model (I , C , R, and also TF and GY) and additive constraints are represented
at the nodes. For example, an integrally causalled C-element is represented by a
branch (or edge) whose starting node is a flow variable and terminating node is
an effort variable, with the gain being (1/C)dt , where temporal variable dt indi-
cates an integration with respect to time. The time integration for each integrally
causalled storage element introduces successive delays (due to integration) in the
system’s response.
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The TCG can be traversed in both forward and backward directions from an
observed or hypothesized fault. The backward propagation is used to construct a
list of fault candidates (fault hypothesis), whereas the forward propagation derives
predictions for posteriori behavior (temporal evolution) for hypothesized faults.

Let us consider again the thermo-fluid system shown in Fig. 7.1 and its bond
graph model shown in Fig. 7.2. The thermal domain cannot be converted to TCG,
as it involves state-dependent nonlinearity. So we confine ourselves to the linear
hydraulic domain. The corresponding TCG is shown in Fig. 7.9. Let us now con-
sider a fault scenario, where the measured pressure of Tank1 is found to be above its
nominal value, i.e., in qualitative terms P+1 or e+4 . The next step is to generate dif-
ferent possibilities (fault hypotheses) for this observation. Thereafter, the temporal
evolutions would be used for each hypothesis and the trend observed in the temporal
evolutions will be matched with the actual observations.

Fig. 7.9 The temporal causal
graph

7.4.1 Hypothesis Generation

Fault hypotheses are obtained through backward propagation, i.e., tracing the path
from the each measurement node whose qualitative state is available. The propaga-
tion stops when one encounters the parameters or conflicting nodes.

When we traverse back from e+4 (see Fig. 7.9), there is a single edge with gain
(1/CH1)dt to the node f4. Since e4 is qualitatively higher, it results that Tank1
capacity is lower (C−H1

) and/or f4 is higher ( f +4 ). When a parameter is encountered,
the propagation is terminated for that branch. Then the back-propagation contin-
ues for remaining nodes, e.g. from f +4 . The complete tree representing the back-
propagation is given in Fig. 7.10. Note that during back-propagation, instantaneous
edges are given precedence. This means that if there are two paths from a common
node which again meet somewhere else (i.e., they are parallel) then the branch with
least temporal length (delays or dt terms) is propagated first. The hand symbols in
Fig. 7.10 indicate conflicts and crosses indicate impossibilities deduced from other
observations or visual inspections. The generated fault hypotheses are given as list
of fault candidates and their likely qualitative states. With single fault hypothesis,
only one parameter from the set (C−H1

, R+Vb
, C−H2

, R+Vo
) is assumed to have deviated

from its nominal value. The objective is to find which one.
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Fig. 7.10 Back-propagation on the TCG

7.4.2 Hypothesis Validation

We assume that the fault is abrupt. Then, for each fault candidate, we generate the
qualitative trend (QT), i.e., change in magnitude, slope, and so on, of the output
immediately after inception of the fault. The forward propagation of the TCG takes
account of temporal delays encountered in the path.

Let us consider the fault hypothesis R+Vb
. Starting forward propagation from the

edge immediately after parameter RVb in Fig. 7.9 (branch between e6 and f6) yields
R+Vb
→ f −5,6,7 → f +4 . After f +4 , a temporal edge (dt) is encountered and there-

fore effect on subsequent nodes is time delayed. This implies derivative of e4 is
immediately affected instead of its magnitude. This is represented as e4 ↑, where
the number of arrows represents the number of time delays encountered. The arrow
direction represents the qualitative magnitude, i.e., ‘↓’ for ‘–’ and ‘↑’ for ‘+,’ and
the number of arrows indicates number of integrations in the causal path. The for-
ward propagation is terminated when predictions are available for sufficiently higher
order. The predicted temporal qualitative trends, also called temporal signatures,
corresponding to hypothesized fault R+Vb

, are given in Fig. 7.11.

Fig. 7.11 Temporal signature corresponding to hypothesized fault R+Vb
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Temporal signatures for each hypothesized fault are listed in the knowledgebase
and are compared with the observed measurements. From Fig. 7.11, we find that
for R+Vb

, the first derivative of measured signal e4 (P1) is positive whereas the sec-
ond derivative is negative. For the author measurement, e8 (i.e., pressure in Tank2),
the first derivative is negative and second derivative is positive. In the simula-
tion results given in Fig. 7.8, these trends are visible immediately after the fault
(100–105 s).

One of the major problems associated with qualitative diagnosis using temporal
evolutions is matching the trends. Qualitative trend analysis (QTA) requires the time
history of the response to be broken into distinct parts which are then symbolically
coded by using some form of nomenclature (see Refs. [2, 3] for details). These codes
are then concatenated in the form of a chain (much like the genome sequence). The
chain may or may not contain fault symptoms. The distinct fault symptoms (sub-
chains) stored in an a priori developed database are then searched within the chains
obtained from qualitative representation of measured signals for fault detection (and
isolation, if possible). However, the fault detection algorithm has to be fine-tuned
for each specific application. There are major decisions involved in the process:
deciding the time step to break the signal into parts, the length of the fault symp-
tom sequence, the order of derivatives to be considered, and so on. Moreover, the
magnitudes of deviations have not been considered in qualitative analysis. If mag-
nitudes of deviations are small then temporal features cannot be correctly obtained
and these features may get buried inside the measurement noise. The measurement
noise may also lead to incorrect coding of the signal when the filtering or estimation
algorithm is not properly implemented. The fallouts of improper adjustments can
be misdetection of faults or false alarms (detecting faults while they are not there).
That is the reason why more detailed and complex model-based diagnostic tools
are preferred. These detailed tools perform quantitative diagnosis or a hybrid form
of diagnosis by utilizing the best features from various quantitative and qualitative
diagnosis methods.

7.5 Bond Graph Model-Based Quantitative Diagnosis

A diagnosis procedure based on evaluation of physical constraint laws derived from
bond graph models is described here. Symbolically written constraints, called ana-
lytical redundancy relations (ARRs), are expressed in terms of known variables
(measurements and inputs). ARRs are static or dynamic constraints which link the
time evolution of the known variables when a system operates according to its nor-
mal operation model. The error or deviation from the constraint model is called
a residual. The objective of quantitative diagnosis is to evaluate the residuals and
associate the fault symptoms with deviations of residuals.

Note that ARRs should not contain terms with time integration of measurements.
It is impossible to assign initial conditions to integrals because that would require
a complete state estimation, which is difficult for nonlinear systems. Therefore, the
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constraint model should avoid explicit integration. This is achieved by using pre-
ferred differential causality in the bond graph model. However, differentiation of
measurements also amplifies the signal noise and has to be treated separately with
sophisticated signal processing tools.

7.5.1 Diagnostic Bond graphs and Residual Sinks

In bond graph terminology, we have two kinds of sensors: effort sensor or detector
of effort (De element) and flow sensor or detector of flow (Df element). We fur-
ther introduce a sensor element, Ds, which measures a signal without qualitatively
assigning the nature of signal, i.e., effort or flow, to the device.

The process of deriving constraints or ARRs is based on inversion of sensor
causalities, i.e., the measurements which are outputs in a normal bond graph model
used for simulation become inputs to the constraint model used for diagnosis, i.e.,
the inputs to the diagnosis model are the measured signals from the actual plant.
New virtual sensors are added to the diagnosis model to extract residuals as its
outputs [3, 4]. In essence, diagnosis is a look-back simulation.

A sensor whose causality cannot be inverted is usually a hardware redundancy,
i.e., there is/are one or more sensor(s) whose output can be used to obtain the
measurement of the redundant sensor [3, 5]. For example, a fluid-level sensor in
a storage tank and a pressure sensor at the bottom of that tank produce correlated
measurements and one of them is a redundant sensor. It must be noted that the
causality of the output port of sensors, which may be connected to controllers, is
never inverted. The following five compositions are possible in sensor causalities:

Inverted causality in effort sensor (De),
Inverted causality in flow sensor (Df),
Non-inverted causality in effort sensor (De) due to hardware redundancy,
Non-inverted causality in flow sensor (Df) due to hardware redundancy,
Inversion of signal sensor (Ds) to signal source (Ss).

Let us consider the inverted causality in the effort sensor, De. Since it is an effort
sensor, the flow in the bond connected to De element should be zero. The expression
for this reactive flow would not involve any unknown variables (since all storage
elements are differentially causalled) and thus it becomes an ARR. In the approach
presented here, we use a residual sensor or residual sink to measure this output.
Note that residual sensors are virtual, i.e., they only have computational existence
in the diagnosis model. We represent all virtual sensors measuring the residuals as
outputs with a superscript, ‘*’, e.g., Df∗. The substitution for De element in inverted
causality is shown in Fig. 7.12. The substitution for the inverted causality in the flow
sensor is shown in Fig. 7.13.

For the effort sensor, whose causality is not inverted, the value measured by the
sensor can be determined from the measurements by the other sensors. Thus, the
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Fig. 7.12 (a) De in behavioral model, (b) De in inverted causality in the diagnosis model, and
(c) substituted representation resulting in the residual sensor Df*

Fig. 7.13 (a) Flow sensor,
Df, in inverted causality and
(b) corresponding
substitution and residual
sensor De* in the diagnosis
domain

1

Df: mf

(a) (b)

1

0 De*

MSf

mf
From process

Residual

difference between the value obtained from the expression for the effort determined
from the other sensors and the one measured by the concerned sensor is zero. This
gives rise to the residual due to hardware redundancy, which when represented in
a bond graph form, is observed by the residual sensor shown in Fig. 7.14b. For the
flow sensor, whose causality is not inverted, a similar substitution is performed and
the residual is observed by a virtual flow sensor.

The controller outputs are easily measurable and they are almost always known
to the software. The residuals for the controllers are simple comparisons of the
measured outputs and the predicted outputs. For this purpose, each signal sensor,
Ds, is always converted to a signal source, Ss. The residual is obtained using simple
comparison in a block diagram representation, as shown in Fig. 7.15.

Thus, there is a virtual residual sensor for each real sensor, i.e., the number of
residuals is equal to the number of actual sensors.
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Fig. 7.14 (a) Effort sensor, De, in non-inverted causality in diagnosis domain, and (b) correspond-
ing substitution with residual sensor De* in the diagnosis domain

Fig. 7.15 (a) Signal sensor, Ds, and (b) corresponding residual sensor, Ds*

7.5.2 An Example Application

Consider a two-tank system shown in Fig. 7.16 which consists of two tanks, Tank1
and Tank2, connected by a pipe with a valve, Vb. Two pressure sensors, P1 and
P2, are installed in Tank1 and Tank2, respectively. The fluid pressure in Tank1is
controlled by a PI level controller, which acts on a pump to maintain the pressure in
Tank1 (i.e., P1) at some constant predefined set point, SPt.
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Fig. 7.16 Process and
instrument diagram (P and
ID) of a two-tank system

The outputs from the PI controller, uP, and the pump mass flow rate (QP) are
measured as follows:

uP = Kp (SPt − P1 (t))− KI

∫
(SPt − P1 (t)) dt = PI (P1 (t)) (7.5a)

QP =

⎧
⎪⎨

⎪⎩

uP if 0 ≤ uP ≤ fmax

0 if uP ≤ 0

fmax if uP > fmax

= P (uP) (7.5b)

where Kp and KI are, respectively, the proportional and integral gains. The pump
function is represented by P and the PI controller function is defined by PI.
The quantity of water outflow to the consumer, QO, is manually controlled by a
valve, Vo. The atmospheric pressure is taken as reference, i.e., zero. The mass flow
rate, ṁ, through a valve is given by a nonlinear relation

ṁ = Cd (x)
√|�P| sign (�P) (7.6)

where �P is the pressure difference across the valve, x is the valve stem position
(between 0 and 1, where 0 means fully closed state and 1 means fully open state),
Cd is the coefficient of discharge, and ‘sign’ is the signum function.

The pseudo-bond graph model of the system, in the preferred derivative causality,
is given in Fig. 7.17. The pressures and the mass flow rates have been considered as
the generalized effort and flow variables, respectively. Performing the substitutions
defined before, we obtain a model shown in Fig. 7.18, which is called a diagnostic
bond graph (DBG) model [3, 4].

Fig. 7.17 Bond graph model
of two-tank system in
preferred differential
causality and inverted sensor
causalities
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Fig. 7.18 DBG of the
two-tank system
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7.5.2.1 Derivation of ARRs

From Fig. 7.18, f13 can be written as

f13 = Qp − A1

g

d P1

dt
− Cdb.sign(P1 − P2)

√|P1 − P2| = 0 (7.7)

which is the first ARR because it is written in terms of the known variables only.
Likewise, the second ARR is the expression for f15:

f15 = Cdb sign(P1 − P2)
√|P1 − P2| − A2

g

d P2

dt
− Cdo sign(P2)

√|P2| = 0 (7.8)

Two more ARRs can be written: one for the PI controller and the other for the
pump. We leave them apart for the time being.

7.5.2.2 Residual Structure and Sensor Placement

A residual, r , is the numerical value resulting from the evaluation of an ARR
obtained by putting in the parameter values and measured data into the ARR expres-
sion, i.e.,

ri = Eval (ARRi ) (7.9)

The fault signature matrix (FSM), S, is a binary structure which describes the
participation of various components (physical devices, sensors, actuators, and con-
trollers) in each ARR. This structure links the discrepancies in components to
changes in the residuals. The elements of matrix S are determined from the fol-
lowing analysis:

S j i =
{

1, if the i th residual is sensitive to faults in the j th component
0, otherwise

(7.10)

A fault in a component (variable) is monitorable or detectable (Mb = 1) if
it appears in at least one ARR, i.e., causes deviation of a residual. A fault in a
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component/variable can be isolated (Ib = 1) only when it is detectable and its fault
signature is different from fault signatures of all other variables/components.

The fault signature for the residual r1 of the considered example is given as K1 =
[QP, A1, Cdb, P1, P2] which may be written in terms of the components involved as
K1 = [Qp, T1, Vb, P1, P2]. Likewise, the fault signature for the residual r2 is K2 =
[Vb, T2, Vo, P1, P2]. Because K1 �= K2, residuals r1 and r2 are said to be structurally
independent. Because we have not considered controller ARRs, we will consider no
fault in controllers. Moreover, we will consider that sensors in the system are robust
so that faults in them can be ruled out. The fault signature matrix S is then derived
as shown in Table 7.3.

Note that for the two-tank system, all the faults can be monitored, i.e., detected,
since there is at least one non-zero element in the signature of each component.
However, faults in T2 and Vo are not isolatable because they have identical sig-
natures. To improve the isolation ability of the supervision platform, more sensors
should be added to the process. In this case, an output flow sensor will make all com-
ponent faults isolatable. This information can be obtained from causal path analysis
even before ARRs are derived [3, 6].

Analysis of the causal paths to each virtual residual sensor gives which elements
are traversed in the path and are going to appear in the corresponding ARR. In our
case, it starts from inputs to the diagnosis model (sources and real measurements)
and ends at virtual residual sensors. In Fig. 7.18, the causal paths to the two residuals
sensors, Df13 and Df15, are as follows:

Causal paths to r1 Causal paths to r2
Qp → f1→ f4→ f13
P1→e12→e4→e2→CT1→ f2→ f4→ f13
P1→e12→e4→e3→e5→RVb→ f5→

f2→ f4→ f13
P2→e14→e9→e6→e5→RVb→ f5→

f2→ f4→ f13

P1→e12→e4→e3→e5→RVb→ f5→
f6→ f9→ f15

P2→e14→e9→e6→e5→RVb→ f5→
f6→ f9→ f15

P2→e14→e9→e7→CT2→ f7→ f9→ f15
P2→e14→e9→e8→e10→RVo→ f10→

f8→ f9→ f15

From these causal paths, the components involved in the residuals r1 and r2 are
obtained as K1 = [Qp, T1, Vb, P1, P2] and K2 = [Vb, T2, Vo, P1, P2], respec-
tively. The fault signatures obtained from causal path analysis are identical to the
ones obtained before (Table 7.3). Thus, sensor placement problem is reduced to a

Table 7.3 Fault signature matrix of the two-tank system

R1 R2 Mb Ib

T1 1 0 1 1
T2 0 1 1 0
Vb 1 1 1 1
Vo 0 1 1 0
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causality assignment and path traversal problem. Model-builder software [7] auto-
mates ARR and FSM derivation and sensor placement algorithms presented here.

7.5.2.3 Fault Detection and Isolation

The fault signature matrix is the knowledgebase to be used in online supervision.
At every sampling step, the residuals are evaluated from ARRs by using the actual
sensor data and the process parameters. The residual values are used to formulate a
binary coherence vector C = [c1, c2, . . . , cn], where n is the number of residuals.
The elements of C are obtained by applying some decision procedure, which is the
signal treatment to decide which residuals have deviated from normal operation.
Thus, C = [ 1 (r1) , 2 (r2) , . . . ,  n (rn)] where  i is the decision procedure
applied on the i th residual. Robust decision procedures minimize misdetection and
false alarms by treating the residual noises. A simple decision procedure ( ) for all
residuals, whereby each residual, ri , is tested against a corresponding threshold, δi ,
fixed a priori, can be written as

ci =  (ri ) =
{

1, if |ri |〉δi
0, otherwise

(7.11)

A fault is detected, when C �= [0, 0, . . . , 0], i.e., at least one element of the coher-
ence vector is non-zero (alternatively, at least one residual exceeded its threshold).
When a fault is detected, an alarm is raised. This non-null coherence vector is then
matched with the fault signatures stored in the FSM to isolate the fault.

Each residual is sensitive to some faults and insensitive to some others. We
require different residuals to become sensitive to different faults. When residuals
are so designed that each residual is sensitive to only one fault and no other residual
is sensitive to that same fault, then the resulting set of residuals are called structured
residuals. In practice, it is not always possible to obtain structured residuals.

7.5.3 Generalized ARRs for Hybrid Systems

A dynamic system whose behavior evolution combines discrete and continuous
changes is called a hybrid system. Besides the continuous changes of system’s
states, a hybrid system undergoes discrete mode changes. To handle these discrete
states, diagnostic bond graph concept has been extended to formulate diagnostic
hybrid bond graphs (DHBG) [8] concept which is explained with an example.

We consider a hybrid two-tank system shown in Fig. 7.19. The pump in the sys-
tem is on–off controlled to maintain the level in Tank1 between hmax and hmin. Tank1
is equipped with an additional outlet to drain the liquid toward Tank2 when h1(t) is
higher than hD1. The resistance R3 offered by the drainage pipeline is considered
linear. Similarly Tank2 drains out liquid through an outlet of resistance R4 (linear)
if the level in Tank2, h2(t), is higher than hD2.
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Fig. 7.19 A hybrid two-tank system

The bond graph model of the hybrid system is given in Fig. 7.20. The flow
through nonlinear valves is given according to (7.6). The flow through the drains
(R3 and R4) modeled as linear resistances modulated by modes a1 and a2 are
given as

f3 = a1
ρg (h1(t)− hD1)

R3
, where a1 =

{
0 if h1(t) ≤ hD1

1 if h1(t) > hD1
(7.12)

f4 = a2
ρg (h2(t)− hD2)

R4
, where a2 =

{
0 if h2(t) ≤ hD2

1 if h2(t) > hD2
(7.13)

The DHBG of the hybrid system is shown in Fig. 7.21.

Fig. 7.20 Bond graph model of the two-tank system
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Fig. 7.21 DHBG of the hybrid two-tank system

The controller and pump input–output relations are as follows:

On–off controller : uo =
⎧
⎨

⎩

0, if h1(t) > hmax

1, if h1(t) < hmin
= o (h1)

Controlled pump : QP =
⎧
⎨

⎩

0, if uo = 0

3× uo, if uo = 1
= On–off (uo) = P (h1)

These two relations give two straight ARRs:

ARR1 : QP −P (h1) = 0

ARR2 : uo −o (h1) = 0
(7.14)

Two more ARRs are obtained from virtual sensors in the DHBG. These are
termed as generalized ARRs (GARRs) as the symbolic expression changes with
the two modes of a1 and a2. The GARRs of the system are
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GARR3 = QP − A1ρ
dh1(t)

dt
− Cd1.u1

√|ρ.g (h1(t)− h2(t))|

×sign (ρ.g (h1(t)− h2(t)))− a1
ρg (h1(t)− hD1)

R3
= 0,

GARR4 = Cd1.u1
√|ρ.g (h1(t)− h2(t))|.sign (ρ.g (h1(t)− h2(t)))− A2ρ

dh2(t)

dt

−Cd2.u2
√|ρgh2(t)| sign(ρgh2(t))+ a1

ρg (h1(t)− hD1)

R3

−a2
ρg (h2(t)− hD2)

R4
= 0

(7.15)

The fault signature matrix excluding sensor faults is given in Table 7.4, where
ai and āi (i = 1, 2) are binary and complementary to each other, i.e., ai = ¯̄ai ,
and Rdi (i = 1, . . . , 4) represent residuals. The fault signature, monitorability, and
isolatability of some components change with the operating modes of the system.
Simulation results for this system with an adaptive threshold-based decision proce-
dure are presented in the next section.

Table 7.4 Fault signature matrix of hybrid system

Rd1 Rd2 Rd3 Rd4 Mb Ib

On–off (o) 1 0 0 0 1 1
Pump (P) 0 1 0 0 1 1
Tank1 0 0 1 0 1 1
Tank2 0 0 0 1 1 0
Vb (Cd1) 0 0 1 1 1 ā1
Vo (Cd2) 0 0 0 1 1 0
R3 0 0 a1 a1 a1 0
R4 0 0 0 a2 a2 0

7.5.4 Adaptive Thresholds and Residual Post-processing

Adaptive thresholds are designed to achieve robustness in fault diagnosis. The
robustness is particularly required with respect to parameter and measurement
uncertainties (sensor noise) so that misdetections and false alarms are both mini-
mized. The active approach to robustness is based on generating residuals that are
insensitive to uncertainties, but sensitive to faults. The passive approach tries to
accomplish robustness in the decision-making stage. Adaptive threshold is a passive
approach.
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Fig. 7.22 Standard
interconnection or internal
feedback loop model

LFT 
model

Δ

u y

zw

In a standard interconnection model (Fig. 7.22), the parameter uncertainties are
separated from the nominal model and represented as feedback loops of internal
variables:

{x} = An {x} + B1 {w} + B2n {u} , {z} = C1 {x} + D11 {w} + D12 {u} ,
{y} = C2n {x} + D21 {w} + D22n {u} , {w} = �. {z} (7.16)

where B2n = Bn, C2n = Cn, D22n = Dn, {z} is an auxiliary output (internal vari-
able), {w} is an auxiliary (internal) input, and � is a diagonal matrix containing
relative uncertainties of parameters. This model is also called linear fractional trans-
formation (LFT) model. The bond graph representation of (7.16) may be done by
defining the variations as multiplicative errors where uncertain parts appear as mod-
ulated sources (internal feedback loop) on the nominal bond graph. Another way of
representing the same is an incremental bond graph [9] discussed in Chapter 4 of
this volume.

For example, when the actual value of a C-element is not perfectly known, it can
be written as Cn ±�C = Cn(1± δC ), where Cn is the average estimated (nominal)
value and ±�C = ±δC Cnis the uncertainty in the estimation. When the C-element
is in derivative causality, its constitutive relation may be written as

f = 1

Cn ±�C
ė = 1

Cn

(
1± δ1/C

)
ė = ė

Cn
± w1/C (7.17)

where δ1/C/Cn is the uncertainty in estimating the capacitance and w1/C is a distur-
bance. Such a way of separating uncertainties is termed linear fractional transforma-
tion (LFT). The bond graph representation of the C-element in derivative causality
with the uncertain parameter value is given in Fig. 7.23.

LFT forms for other elements including two ports (TF and GY) can be likewise
defined [10] (see Chapter 3, this volume). Then the DHBG of the hybrid system
given in Fig. 7.21 can be drawn in LFT form as given in Fig. 7.24.

Fig. 7.23 C-element with
derivative causality
transformed to LFT form
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Fig. 7.24 Bond graph model of two-tank system in LFT form

The GARRs from the DBG model in LFT form may be derived as follows:

GARR3 : QP − A1ρ
dh1(t)

dt
− Cd1.u1

√|ρ.g (h1(t)− h2(t))|
·sign (ρ.g (h1(t)− h2(t)))

−a1
ρg (h1(t)− hD1)

R3
± α3 = GARR3n ± α3 = 0

GARR4 : Cd1.u1
√|ρ.g (h1(t)− h2(t))|.sign (ρ.g (h1(t)− h2(t)))− A2ρ

dh2(t)

dt

−Cd2.u2
√|ρgh2(t)| sign (ρgh2(t))+ a1

ρg (h1(t)− hD1)

R3

−a2
ρg (h2(t)− hD2)

R4
± α4

= GARR4n ± α4 = 0

(7.18)

where

α3 =
∣
∣
∣
∣δA1 A1ρ

dh1(t)

dt

∣
∣
∣
∣+

∣
∣
∣δCd1

Cd1.u1
√|ρ.g (h1(t)− h2(t))|

· sign (ρ.g (h1(t)− h2(t)))| +
∣
∣
∣
∣δ1/R3.a1.
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and

α4 =
∣
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∣
∣
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∣
∣δA2 A2ρ
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∣
∣
∣
∣+

∣
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∣
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R4

∣
∣
∣
∣

define the upper and lower thresholds of the residuals, Rd3 and Rd4, respectively.
The GARRs derived above can be separated into their nominal part and uncertain

parts (α3 and α4), i.e., Rd3 = Rd3n ± α3 and Rd4 = Rd4n ± α4. The threshold
generator uses the contemporary inputs and the nominal model with uncertainties.

The nominal parameter values used in simulation are given in Table 7.5. The
value of parameter Cd1 is changed abruptly to half of its nominal value at t = 250s
in the process model (Fig. 7.20). The measured signals from Fig. 7.20 are fed to the
diagnosis model (Fig. 7.24) to compute residuals. The uncertainty in each variable
is considered to be ±2%: δA1 = δA2 = δCd1 = δCd2 = δ1/R3 = δ1/R4 = 0.02,
i.e., with 99% confidence. The sensor output from the behavioral plant model is
contaminated with band-limited white noise (with 20 dB signal-to-noise ratio) to
mimic real instrumentation. As a result, the residuals are noisy and may cause false
alarms. To avoid the false alarms the residuals are post-processed by taking their
moving average.

Table 7.5 Model parameters of the two-tank system

Symbol Description Value

hmax Maximum level set point in Tank1 2.8 m
hmin Minimum level set point in Tank1 controller 2 m
hD1 Height of the drain outlet from Tank1 2.5 m
hD2 Height of the drain outlet from Tank2 2.2 m
Ai Cross-sectional area of tanks Tanki (i = 1, 2) 1.54× 10−2 m2

g Acceleration due to gravity 9.81 m s−2

Cd1 Discharge coefficient of valve Vb 1.0× 10−2√kg m
Cd2 Discharge coefficient of valve Vo 8.0× 10−3√kg m
R3 Drainage resistance from T1 1250 m−1 s−1

R4 Drainage resistance from T2 1000 m−1 s−1

Patm Atmospheric pressure (gage) 0 N m−2

The simulation results are given in Fig. 7.25, which shows that moving averages
of both the residuals Rd3 and Rd4 are crossing their thresholds after fault at 250 s.
This results in a coherence vector C = [0, 0, 1, 1] which has a unique match in the
FSM (with a1 = 0) given in Table 7.4, thus isolating Vb blockage/leakage as the
cause of the fault.

For linear systems, there are well-developed schemes to achieve robustness using
active approach, e.g., Kalman filter and extended Kalman filter techniques. In those
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Fig. 7.25 (a): Response of residuals Rd3 and (b) Rd4 with their adaptive thresholds

approaches, an observer of the system is required for state estimation. The unknown
input observer described in the next section is an active approach for fault detection.
Although we deal with an unknown input observer for a linear system and do not
consider measurement uncertainties, it is possible to develop observers for nonlinear
systems and also to include estimators in the design.

7.6 Unknown Input Observers

An observer is defined as an unknown input observer (UIO) if its state estima-
tion error vector approaches zero asymptotically regardless of the presence of the
unknown inputs, i.e., disturbances, in the system.

Consider a linear time-invariant system described by the following equations:

ẋ(t) = Ax(t)+ Bu(t)+ Dv(t)

y(t) = Cx(t)
(7.19)

where x(t) ∈ �n is the state vector, u(t) ∈ �m is measurable input vector, v(t) ∈
�q is the unknown input vector, y(t) ∈ �p is the output vector, and A, B, C, and D
are matrices of suitable dimensions. The unknown input observer [11] is

ż(t) = Nz(t)+ Ly(t)+Gu(t)

xo(t) = z(t)− Ey(t)
(7.20)

where z(t) ∈ �n is the state vector and the matrices N, L, G, and E are of appro-
priate dimensions which are to be determined such that xo(t) converges to x(t). The
error dynamics is then given by
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e(t) = x(t)− xo(t), (7.21)

ė(t) = ẋ(t)− ẋo(t) = Ax(t)+ Bu(t)+ Dv(t)− ż(t)+ Eẏ(t)

= Ax(t)+ Bu(t)+ Dv(t)− Nz(t)− Ly(t)−Gu(t)

+ EC(Ax(t)+ Bu(t)+ Dv(t))

= Ne(t)− (NP+ LC− PA)x(t)− (G− PB)u(t)+ PDv(t) (7.22)

where P = I+ EC and I ∈ �n×n is an identity matrix. The error converges to zero
iff

PD = D+ ECD = 0 (7.23)

NP+ LC− PA = 0 (7.24)

G− PB = 0 (7.25)

From (7.23),

E = −D(CD)+ + Y(Ip − (CD)(CD)+) (7.26)

where (CD)+ is the generalized inverse of CD, Ip ∈ �p×p is an identity matrix,
and Y is an arbitrary matrix of appropriate dimension. From (7.25),

G = PB = B+ ECB (7.27)

The state error converges to zero if the poles of N are stable. Let us introduce a
matrix K such that

N = PA−KC (7.28)

Then (7.24) is satisfied iff K = L+ NE. The poles of N can be placed by prop-
erly choosing a matrix K. Thus the designed observer feedback gain is

L = K− NE = K− (PA−KC)E

= K(Ip + CE)− PAE (7.29)

Calculation of matrices N, G, and L completes the construction of the full-order
unknown input observer.

As an example, consider the two-tank system shown in Fig. 7.16 with a constant
delivery pump. We assume that the flow through valve is proportional to the pressure
difference. Four fault candidates are C : CH1 , R : RVb , C : CH2 and R : RVo for
which unknown input models are given in order in Figs. 7.26, 7.27, 7.28, and 7.29.
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Fig. 7.26 Unknown input (leakage from tank1)

Fig. 7.27 Unknown input (resulting in unknown flow) at Vb

Fig. 7.28 Unknown input (leakage from tank2)

Fig. 7.29 Unknown input (resulting in unknown flow) at Vo
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The state-space equations from Figs. 7.26, 7.27, 7.28, and 7.29, respectively, are
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The output equation is

{
P1

P2

}

=
[

C−1
H1

0

0 C−1
H2

]{
Q2

Q6

}

⇒ {y} = C {x} (7.34)

In (7.30), (7.31), (7.32), and (7.33), matrices B and C remain the same; but A
and D matrices change for different UIOs. Different values of the N, L, G, and E
matrix for UIOs are obtained using step by step procedure as given below:

Step 1: Obtain E matrix by using E = −D(CD)++Y(Ip− (CD)(CD)+). Here
Y is taken as an identity matrix.

Step 2: Obtain P matrix from P = I+ EC and G matrix from G− PB = 0.
Step 3: Obtain K matrix from pole placement using MATLAB command, place

(PA′,C′,q). Here, desired poles are placed at q = [−0.2 −0.5
]
.

Step 4: Obtain N matrix as N = PA−KC and L matrix from K = L+ NE.
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Fig. 7.30 Simulink model with UIOs

The UIO models, stacked in parallel, are shown in Fig. 7.30, where faults can
be introduced in the top part (plant model). The residuals are state estimation
errors. These errors become zero for the UIO model which actually decouples the
fault. Note that UIO for Tank2 fault has not been modeled because it is the same
as Vo fault, both these faults cannot be isolated. This is evident from (7.32) and
(7.33), where the structural form of fault injection matrix (D) is the same, i.e.,
[0 1]T . In the structural form of a matrix, all non-zero terms are replaced by 1.
The same conclusion has been drawn earlier from the FSM given in Table 7.3.
The model is simulated in MATLAB-Simulink by using the nominal parameter
values as CH1 = 1.54 × 10−3 m s2, CH2 = 1 × 10−3 m s2, RVb = 100 m−1 s−1,
RVo = 200 m−1 s−1. The nominal values are changed to faulty value (change in
matrix A) for valve blockage. To incorporate the leakage fault in the tanks a leakage
rate of −0.01 kg s−1 is added as external constant source and multiplied with a gain
matrix [0 0], [1 0], and [0 1] for no leakage, Tank1 leakage, and Tank2 leakage,
respectively.

The simulation results for Vb blockage (faulty RVb = 200 m−1 s−1) after 5 s time
are plotted in Fig. 7.31. It shows that the state estimation errors for both the states
from the first UIO is almost zero whereas those from other UIOs (one or both the
state errors) deviate from zero after 5 s. This isolates Vb fault.
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Fig. 7.31 Residual responses corresponding to Vb blockage fault

7.7 Concluding Remarks

Various approaches to bond graph model-based fault diagnosis have been presented
in this chapter. The qualitative approaches were found to postulate too many fault
candidates and the reasoning scheme is heuristically chosen based on the past
experience and some ad hoc understanding of the system dynamics. On the other
hand, quantitative approaches are based on fundamental understanding of the sys-
tem dynamics. Although the quantitative diagnosis methods appear to be the right
choice, it is often difficult to obtain proper mathematical models of complex engi-
neering phenomena (e.g., welding process) and also it is much more difficult to
obtain accurate parameter values and estimates of process and measurement uncer-
tainties. When mathematical model-based diagnosis cannot be performed, statisti-
cal approaches are used. Principal component analysis (PCA) is one of the most
popular tools for fault diagnosis. In complex engineering systems, reliability of the
diagnostic tool is very important. Therefore, many forms of diagnostic tools are
concurrently used in complex engineering systems and a voting scheme designed
by accounting for the known reliabilities of individual tools is adopted to decide on
the alarms and subsequent actions.

The methods discussed in this chapter are applicable when a single abrupt fault
appears in the system. When a particular fault cannot be isolated, temporal trends
generated from simulations with different fault hypotheses may be used to isolate
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the particular fault. This method of fault hypothesis validation and subsequent trend
analysis is used in both qualitative (e.g., temporal causal graph-based diagnosis)
and quantitative diagnostic approaches. However, the fault magnitude has to be esti-
mated in the quantitative approach so that quantitative deviations of measurements
of residuals can be used as measures for fault isolation. The fault parameter esti-
mation in a single fault scenario is a straightforward computation of the parameter
value from an ARR. It has been shown in [2] that no formal parameter identification
scheme or observer is required in the single fault scenario.

On the other hand, when more than one fault can influence the system at the same
time, advanced diagnostic methods are used. These methods are based on parame-
ter estimation. Sensitivity bond graph formulation [12] allows real-time parameter
estimation and thus it is possible not only to isolate multiple faults but also to quan-
tify the fault severities. Parameter estimation in single fault [2] or multiple fault
scenarios [12] are essential steps to be performed before fault accommodation. The
parameter estimation scheme also gives the temporal evolution of system parame-
ters. Thus, it is possible to identify and quantify different kinds of fault occurrences.
A progressive fault shows gradual drift in estimated parameter values and inter-
mittent fault shows spikes in the estimated parameter values. The advances made
in the field of control theory have made it possible to develop state and parameter
estimators for various classes of nonlinear systems. Analytical redundancy relations
may also be used in optimization loop for parameter estimation because it avoids
the need for state estimation. Interested readers may see Ref. [3] for further details
and some solved examples.
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Part III
Applications

In electrical engineering, all kinds of electrical machines have been the subject of
detailed studies. Models are commonly represented by equivalent electrical circuits.
However, electrical machines are energy transducers that are coupled to mechani-
cal systems in most applications. This view suggests to model them by means of
bond graphs. Advantages are that inherent magnetic phenomena can be explicitly
represented and that bond graph models of electrical machines can be directly con-
nected to bond graph models of other subsystems such as power electronic circuits,
mechanical loads, and the block diagram representation of a control.

The first chapter of Part III considers bond graph modelling of various types of
electrical machines and concludes with a simulation study of the induction motor.

Other engineering systems that are suitably modelled by means of bond graphs
are multibody systems composed of bodies assumed rigid that are interconnected
by different types of joints. Examples are industrial robots or mobile systems such
as walking machines. Bond graph models of multibody systems are conveniently
represented in the form of multibond graphs. Their advantage is that they enable a
clear and concise presentation of multibody systems.

If joints are also assumed to be rigid then a number of inertia elements in the bond
graph model become dependent and the mathematical model that can be derived
from a bond graph model takes the form of a set of differential algebraic equations
(DAEs). Algebraic constraints can be identified on the bond graph by looking for
certain types of causal paths called zero-order causal paths (ZCPs). In order to be
able to derive a DAE system with a minimal number of algebraic equations from
a bond graph with ZCPs, it is necessary to search for the so-called break variables
that enable to solve a maximum number of algebraic constraint equations.

Chapter 9 gives a review on how multibody systems can be modelled by means of
multibond graphs. A major contribution of the chapter is a procedure that provides
a minimum number of break variables in multibond graphs with ZCPs. For the state
variables and these break variables (also called semi-state variables) a DAE system
can be formulated that can be solved by means of the backward differentiation for-
mula (BDF) method implemented in the widely used DASSL code. The approach is
illustrated by means of a multibond graph with ZCPs of the planar physical pendu-
lum example.
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The last chapter of Part III demonstrates the potential of the bond graph
methodology by developing a true bond graph model that captures the thermo-
electrochemical processes in a solid oxide fuel cell. The result is remarkable and
worth to be pointed out because in case of thermodynamic and chemical processes
mostly pseudo-bond graph models are used. As there are inherent couplings between
various energy domains in a fuel cell, the bond graph methodology provides the
appropriate approach to the development of a model. In view of depleting petrol
resources, environmental problems, the still unsolved problem of a final deposit of
radioactive material, and accordingly an increasing search for alternative energy
resources, it is essential to understand the static and dynamic behaviour of fuel
cells. The true bond graph approach presented in this chapter provides the necessary
insight. The developed true bond graph model can be extended into a model of a
controlled overall system that includes load and power conditioning components.
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Bond Graph Modeling and Simulation
of Electrical Machines
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Abstract This chapter surveys the bond graph modeling of rotary electric
machinery. The discussion includes the DC- and AC-machines commonly found
in industrial applications ranging from a few hundreds of watts up to megawatts,
i.e., brushed DC-machines in all their connection types as well as the synchronous
and the induction machine. Most of the presentation adopts the electrical drive point
of view, but the generator operation is also addressed in some cases, as this simply
implies reversing the power flow in certain bonds, at least in the model world. Also
discussed is a variety of machines used in low-power drives, like the permanent
magnet (PM) synchronous, brushless DC, synchronous reluctance, PM stepper, and
switched reluctance motors. Different modeling techniques are illustrated when sur-
veying the different models. First, most of the bond graphs are derived from equiva-
lent electric circuits with inductances representing the magnetic phenomena. Later,
in order to explicitly show this domain, two further approaches are employed: one
that, re-using the previous bond graphs, “opens” the I-elements to expose the mag-
netics and the other that starts the modeling process from scratch. In this later case,
again two alternatives are presented, the first one interconnects components defined
from constitutive relationships and the second one derives the models from energy
conservation properties of ideal coupling fields. The chapter closes with simulation
results obtained using the models developed along with it. The intention in writing
this chapter has been to give to the reader a comprehensive overview of the subject,
to offer a compendium of useful models to the practitioner, and, simultaneously,
to provide methodological tools to help applied researchers to successfully develop
their own models.
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8.1 Introduction

This chapter presents bond graph (BG) models of rotating electrical machinery as
they appear mainly in mechatronic applications, i.e., as electrical motors. Neverthe-
less, their interpretation as electric generators being immediate, it is discussed in
some particular cases.

The great deal of modeling effort made by the electrical engineering community
after the inception, quick acceptance, and worldwide outspread of electrical machin-
ery has contributed very good models in the form of equivalent electric circuits.
Hence the question arises: if there exist such good models, why BG models then?
In most applications electrical machines are coupled with component or systems
from other physical domains. Moreover, even if from their external ports the elec-
trical machines are mainly seen as electromechanical devices, their internal physics
involves also magnetic and thermal phenomena, whose modeling is unavoidable for
certain purposes. Hence, the multidomain unified representation offered by the BG
methodology is very useful. In addition, model prototyping is very easy with BGs,
as in principle they are object-oriented non-causal graphical representations. This
permits recasting a model of no matter how complex a system by directly replacing
a portion of it with another BG with a different degree of dynamic details. All these
features are advantageously used in this chapter. Furthermore, BGs are very helpful
in the graphical analysis of dynamic properties and controller synthesis thanks to
the causal, structural, and energy-related information they convey, see [1–5] among
many other references. Other advantages are pointed out below.

Section 8.2 surveys BG models of electrical machines derived from their standard
equivalent circuits as found in the major literature on machine dynamics. On the
one hand, this takes advantage of and simultaneously renders tribute to the above-
mentioned modeling contributions of the electrical engineering community; on the
other hand, this seems to be most convenient to facilitate an easy understanding of
these BG models to BG newcomers. Main obvious advantage of these BG models
(as compared to their equivalent circuit counterparts) is that they can be directly
interconnected with (sub)models from other physical domains in the same, and con-
sequently, unified graphical modeling language. Also the possibility of direct extrac-
tion of (structural, energetic, computational) information in an algorithmic way is
of importance. Models of the following types of machines are presented: brushed
direct current (DC permanent magnet; independently, series, parallel, and compound
excited) machines; alternating-current synchronous and induction machines (IM);
as well as the permanent magnet synchronous and reluctance motors, the sinusoidal
brushless DC-motor, and the stepper motors.

One shortcoming of equivalent circuits is that the magnetic phenomena occur-
ring in electrical machines are shown encapsulated in externally equivalent elec-
trical components or subsystems. The BG symbology can be as well used to rep-
resent these magnetic phenomena in their specific domain, producing submodels
which can be coupled to the electrical and mechanical domains. The BG commu-
nity has contributed some results in this sense, with an approach that focuses more
directly on the physics rather than on equivalent circuit metamodels, see [6] and
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[7, Chapter 11], for instance. Some of these models are presented in Section 8.3.
They are more complex than those in the previous sections and are intended or well
suited to perform studies demanding more modeling details, like effects of magnetic
phenomena and misbehavior due to faults. The induction machine and the switched
reluctance motor are treated as example.

Some simulation results are presented in Section 8.4 preceding the conclusions
in Section 8.5.

8.2 Bond Graphs from Classical Equivalent Circuit Models
of Electrical Machines

Presenting the models of the permanent magnet (PM) and the independently excited
DC-motors, this introduction simultaneously helps to illustrate some features com-
mon to other machine models. The complex construction of their armature (mechan-
ical commutator) confers good operational properties and control characteristics
to these brushed DC-machines. Their dynamic behavior is very well predicted by
an armature equivalent circuit like that given in Fig. 8.1 as part of the perma-
nent magnet direct current (PMDC) motor model. The constructive features and
the modeling assumptions leading to this simple equivalent circuit are discussed
almost everywhere in the literature on electric machines [8, 9]. Its simplicity allows
including it as an application example of industrial relevance even in textbooks
on general physical system modeling and BG [7, 10–12]. The following notation
is used: Va, ia, ra, and La denoting the armature voltage, current, resistance, and
inductance, respectively; e, the counter-electromotive force (cemf) or, technically,
the speed-voltage induced by the rotor speed ω; Tem and TL, the electromagnetically
generated and the load torques; θ , the rotor angular position; J , the moment of
inertia of all the masses rotating about the rotor axis; b, a friction coefficient (linear
dependence on ω has been assumed, but any other friction law can be modeled
with the dissipator R). The same notation will be used throughout this chapter when
pertinent.

At the heart of the model is the gyrator GY, the power-conserving BG-element
described by the constitutive relationships in (8.1a), the first one capturing the
generation of the electromagnetic torque and the second one the creation of the

Fig. 8.1 Permanent magnet DC-motor. (a) Idealized physical system; (b) BG
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Fig. 8.2 Separately excited DCM. (a) Equivalent circuit; (b) field magnetizing curve; (c) BG with
MGY

counter-electromotive force on the torque-producing coil. The constant excitation
flux along with constructive parameters determines the conversion constant Km in
(8.1a). The gyrator modeling the electromechanical power exchange will appear
in almost all the machine models presented in this chapter, in most cases in its
modulated version MGY, necessary to take into account a variable excitation flux.
The separately excited DC-motor, see Fig. 8.2a, provides a simple example of this
situation. The MGY has the constitutive relationships given in (8.1b), where K is
a constructive coefficient depending on physical and geometrical parameters. As
the air gap in the excitation magnetic circuit is small, magnetic saturation must
be taken into account in the excitation field model. Neglecting hysteresis in the
magnetic circuit yields a static field magnetic curve g(·) relating the flux linkage
ψf to the field current if, as qualitatively illustrated in Fig. 8.2b. In the case of a
linear magnetic circuit, or operation restricted to the linear magnetic zone, the curve
becomes a straight line described by ψf = L fif where L f is the field inductance.
The BG of Fig. 8.2c explicitly shows the calculation of (Kψf), the modulus of
the MGY, through a detailed signal path linking the 1-junction associated with the
excitation current and the MGY. In order to improve the readability of the BG, the
details of this kind of signal paths will be omitted from here on. In some cases only
a bare signal line will be drawn to suggest this calculation, in other cases the signal
path will be completely elided. The benefits of doing so will be appreciated when
modeling more complex machines, as in general the number of (M)GY is correlated
with the number of coils carrying the torque-producing current.

Tem = Kmia , e = Kmω (8.1a)

Tem = Kψfia , e = Kψfω (8.1b)

Section 8.2.1 immediately following this short introduction presents more mod-
els of DC-machines while Section 8.2.2 deals with AC synchronous and induction
machines, the latter being discussed in more detail. Both are the kind of machines
most likely to be encountered in industrial systems converting power in the range
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from a few hundreds of watts to megawatts. Section 8.2.3 deals with special, mostly
low-power machines for positioning and other servo tasks.

8.2.1 DC-Machines: Brushed DC-Motors: Separately, Parallel,
Series, and Compound Excited DC-Motors

Table 8.1 presents the equivalent circuits and BGs of several configurations of DC-
motors with variable excitation, each configuration being defined by the way in
which the excitation circuit is connected. The models are accompanied with some
explanatory comments. The same principles and laws given by (8.1b) are valid for
the MGY in all cases. As done in this table, in many of the models to follow, the
BG of the mechanical subsystem will be omitted. The bond representing the net
mechanical power flowing out of the motor (or into the generator) will be presented
free and available to connect the BG to (the model of) any mechanical system cou-
pled to the machine axis (this includes the machine’s own inertia and friction).

8.2.2 AC-Machines: Synchronous and Asynchronous
or Induction Machines

The synchronous machine functioning as generator is the main means employed
worldwide to obtain electrical energy from mechanical sources (hydro-, steam-,
or gas turbines and/or internal combustion engines). Conversely, covering a large
power spectrum in most industrial applications, mechanical energy is recov-
ered from electrical sources via induction motors. However, it should be noted
that both machine types are employed in the inverse sense of power conver-
sion as well. Indeed, besides traditional industrial applications of high-power
synchronous motors, there is a growing employment of permanent magnet syn-
chronous motors (PMSM) in variable speed- or position-control systems [13].
The rotor-wound doubly fed induction generator driven by a wind turbine is
probably the most relevant example today for asynchronous machines used as
generators [14–16].

In the sequel, some general issues concerning AC-machines modeling, mainly
change of variables through coordinate transformation (reference-frame theory, see
[8]) are discussed. This is followed by the presentation of machine schematics in
machine variables and equivalent circuits in transformed variables of both the syn-
chronous and the induction machines, under detailed modeling assumptions. This
is accompanied by the corresponding BG models of both machines in transformed
variables. Finally, simplified models of the induction motor usually encountered in
control system applications are addressed.
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Table 8.1 Equivalent circuits and BG of DC-motors
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8.2.2.1 General Considerations About AC-Machine Modeling

Even under simplifying assumptions such as perfect symmetry of certain windings,
perfect sinusoidal distribution of magnetomotive force (mmf), absence of magnetic
saturation and hysteresis, the models of AC-machines in machine variables are quite
involved due to the nonlinear dependency of some inductances on the variable rotor
position. A change of variables is commonly performed in order to obtain constant
equivalent inductances and, thus, to facilitate the machine’s analysis. The so-called
general reference-frame theory comprises most of the changes of variables devel-
oped over the years in the theoretical analysis of AC-machines [8]. All of them can
be interpreted as rotational coordinate transformations. Nevertheless, it should be
noted that nonlinear theoretical approaches to solving control system synthesis and
design problems do provide coordinate transformations which are not comprised by
the reference-frame theory [17, 18]. Besides coordinate transformation, it is also
common practice to refer variables and parameters of a stator winding to a rotor
winding (or vice versa), as a function of the ratio of Ns and Nr, the equivalent
numbers of turns of the stator and rotor windings, respectively. This is a conver-
sion of the transformer type. Both the coordinate transformation and the turns-ratio
conversions allow for a galvanic representation with constant inductances of the
actual variable magnetic coupling, which yields much simpler models than those
built using machine variables.

Reference-Frame Geometry

Consider a cross-section on a plane transversal to the machine’s longitudinal axis
of rotation o, as suggested in Fig. 8.3a. Because of the usual modeling assump-
tions, the magnetic phenomena are considered to be uniformly distributed along the
longitudinal axis, hence they are analyzed with a 2D approach on the plane of the
cross-section [9, chapter 10]. In Fig. 8.3 some notation is fixed for further refer-
ence. The cartesian (x, y)-coordinate system (axes at 90◦ electrical to each other)
is fixed to the stator. The 3-phase (star- or Y-connected) stator winding shown in

Fig. 8.3 (a) AC-machine cross-section; (b) (x, y)- and (c) (d, q)-coordinate systems of the corre-
sponding magnetic plane
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Fig. 8.3b has its three magnetic axes on this plane (120◦ apart from each other)
with its a-axis (aligned with the x-axis) as reference. A (d, q)-system rotating at
an arbitrary speed ωF (t) is shown, in Fig. 8.3c, whose instantaneous position is
defined by the angle ρ(t) = ∫

ωF (t) between the d- and the x-axes. The subindex
F stands for the general arbitrary reference frame which is obtained augmenting the
(d, q)- to a (d, q, 0)-coordinate system. The (x, y, 0)-coordinate system is referred
to as the stationary coordinate system. As will be explained later, it is helpful to
think the 0-axis aligned with the axis of rotation o. Also the electromagnetic torque
developed by the machine and its speed can be thought as vectors aligned with this
axis. Finally, a vector u lying on the plane is shown along with its components ud,q

and ux,y in the (d, q)- and (x, y)-systems, respectively.
Turns-ratio conversion and coordinate transformation are explained with the help

of Fig. 8.3 and the arrangement of two 3-phase symmetrical (a, b, c)-windings, one
on the stator (subscript s) and one on the rotor (subscript r), as suggested in Fig. 8.4
for a 2-pole machine. Magnetic linearity and ideal sinusoidally wound coils whose
magnetic axes are 120◦ apart from each other are considered, with phase resistances
rs,r and equivalent number of turns Ns,r, see [8] and [9] for further details on stan-
dard assumptions. The variables associated with the electromagnetic magnitudes on
each of these axes are called machine variables. For a 2-pole machine, the electrical
rotor speed ωr shown in the figure coincides with the actual rotor speed, i.e., ω = ωr,
and the rotor instantaneous angular position is θ = θr =

∫
ωr dt . For the general

case of a machine with P poles or, equivalently, np = P/2 pole pairs, the general
relationships are as given in (8.2):

ω = ωr/np and θ = θr/np (8.2)

Fig. 8.4 Symmetrical
3-phase windings and
arbitrary reference frame
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Turns-Ratio Conversion

This is a conversion of the scaling type that can be quickly grasped just imagining
that the rotor is locked, then the machine behaves like a (3-phase) transformer. As in
any transformer, the parameters of one side get converted into equivalent parameters
reflected on the other side through multiplication by the square of the transformer
modulus, and the variables by the transformer modulus itself, which depends on
the quotient between the equivalent number of turns, i.e., Ns/Nr or Nr/Ns. The
precise relationships providing these equivalences will be given together with each
of the models. For details on this subject see [8] or any standard book on electric
machines. Considering only this conversion, the rotor electromagnetic variables and
parameters appearing in the equivalent models presented in the sequel would repre-
sent scaled physical magnitudes. But an additional difference is introduced by the
coordinate transformation discussed next.

Coordinate Transformation

Both stator and rotor variables are transformed to a common arbitrary reference
frame. Consider a generic triple of machine variables {uas, ubs, ucs} pertaining to the
stator, later on they will be particularized to be voltages, currents, or flux linkages.
Following the arbitrary reference-frame theory, a new triple {uds, uqs, u0s} is intro-
duced here, which is related to the former by the transformation Ms = M(ρ(t)),
according to (8.3). The inverse matrix satisfies M−1

s = MT
s , where the superscript

T denotes matrix transposition. Because of this property, the instantaneous 3-phase
powers calculated in machine and transformed variables are identical. Hence, the
transformation is said to be power invariant (or symmetric). This is a generaliza-
tion of Park’s transformation, originally defined to transform stator variables to a
reference frame fixed in the rotor with a factor 2/3 instead of

√
2/3. Similar trans-

formations with other factors exist [19], but using the one given in (8.3) is mandatory
when modeling in the BG domain because of its power invariance, see [20] and [21],
for instance.

⎡

⎣
uds
uqs
u0s

⎤

⎦ =
√

2

3

⎡

⎢
⎢
⎣

cos (ρ) cos (ρ − 2π
3 ) cos (ρ + 2π

3 )

− sin (ρ) − sin (ρ − 2π
3 ) − sin (ρ + 2π

3 )

1√
2

1√
2

1√
2

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Ms

⎡

⎣
uas
ubs
ucs

⎤

⎦ (8.3a)

⎡

⎣
uas
ubs
ucs

⎤

⎦ =
√

2

3

⎡

⎢
⎢
⎣

cos (ρ) − sin (ρ) 1√
2

cos (ρ − 2π
3 ) − sin (ρ − 2π

3 )
1√
2

cos (ρ + 2π
3 ) − sin (ρ + 2π

3 )
1√
2

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
M−1

s

⎡

⎣
uds
uqs
u0s

⎤

⎦ (8.3b)
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A geometric interpretation of the transformation M(ρ) is instructive and helpful.
Imagine that the machine variables are vectors, each one along its corresponding
a-, b-, or c-axis. Do the same for the {d, q}-variables with respect to the (d, q)-
axes depicted in Fig. 8.4. Then, a d-variable (q-variable) can be considered as the
sum of the corresponding (ρ-dependent) projections of the {a, b, c}-vectors onto the
d-axis (q-axis) weighted by the coefficient

√
2/3. The 0-variables do not have this

trigonometric interpretation, but just a ρ-independent arithmetic one. The geometric
interpretation with the a-, b-, and c-phase variables as vectors along their axes has
its physical correlation in the space-vector theory of electrical machines [22], which
for reasons of space cannot be further explained here; also see [19], for instance, for
exhaustive discussions on this subject.

Having this geometric interpretation in mind it is easy to see that the interconver-
sion between the rotor machine and arbitrary reference-frame variables is obtained
using the matrix Mr = M(ρ(t)− θr(t)) and its inverse, as given in (8.4), where the
projection depends on the angle (ρ − θr):

⎡

⎣
udr
uqr
u0r

⎤

⎦ =
√

2

3

⎡

⎢
⎢
⎣

cos (ρ − θr) cos (ρ − θr − 2π
3 ) cos (ρ − θr + 2π

3 )

− sin (ρ − θr) − sin (ρ − θr − 2π
3 ) − sin (ρ − θr + 2π

3 )

1√
2

1√
2

1√
2

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Mr

⎡

⎣
uas
ubs
ucs

⎤

⎦ ,

(8.4a)

⎡

⎣
uas
ubs
ucs

⎤

⎦ =
√

2

3

⎡

⎢
⎢
⎣

cos (ρ − θr) − sin (ρ − θr)
1√
2

cos (ρ − θr − 2π
3 ) − sin (ρ − θr − 2π

3 )
1√
2

cos (ρ − θr + 2π
3 ) − sin (ρ − θr + 2π

3 )
1√
2

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
M−1

r

⎡

⎣
uds
uqs
u0s

⎤

⎦ (8.4b)

It is useful to think of M(ρ) as the result of applying two successive transforma-
tions, as indicated in (8.5). The first one, known as the Clarke–Concordia transfor-
mation, converts the {a, b, c}-variables to the intermediate set of {x, y, 0}-variables,
and the second one transforms the latter to the {d, q, 0}-variables. Figure 8.3 helps to
gain a geometric interpretation of the intermediate transformation. Mutatis mutan-
dis, the same applies to the rotor variables.

⎡

⎣
uxs
uys
u0s

⎤

⎦ =
√

2

3

⎡

⎢
⎢
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1 − 1
2 − 1
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0
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√
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2
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2

1√
2

1√
2

⎤

⎥
⎥
⎦

⎡

⎣
uas
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ucs

⎤

⎦ (8.5a)
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⎡

⎣
uds
uqs
u0s

⎤

⎦ =
⎡

⎢
⎣

cos (ρ) cos (ρ) 0

− sin (ρ) cos (ρ) 0

0 0 1

⎤

⎥
⎦

⎡

⎣
uxs
uys
u0s

⎤

⎦ (8.5b)

As the BG models will be developed in {d, q, 0}-variables, matrix M−1
s , respec-

tively, M−1
r , must be used to graphically show the stator, respectively, rotor,

{a, b, c}-variables in the graph. To show the connection of a {d, q, 0}-BG model
to a power source imposing the voltages Vsa,b,c to the stator, then one of the BG
power-conserving structures shown in Fig. 8.5 must be inserted between the power
source and the model (multibond notation used in the figure). The (M)TF matrix
moduli have been written as to transform effort vectors. Recall that the transposed
matrices should be used for the transformation of the conjugate variables, the flow
vectors. It is clearly seen that there is a need to use the power-conserving coordinate
transformations when modeling in the BG domain, as indicated before.

Fig. 8.5 (a) Two-stage and (b) one-stage interconnection of {d, q, 0}-BG models to {a, b, c}-
sources

8.2.2.2 Synchronous Machines

The 3-Phase Salient-Pole Synchronous Machine

Figure 8.6 shows the schematics of this machine as adapted from [8, chapter 5]. The
main difference with that reference is that here, instead of the q-axis, the d-axis is
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Fig. 8.6 Schematics of synchronous machine

used to define the angle with respect to the stator a-axis, which locates the reference
frame. The modeling assumptions are as follows: magnetic linearity, symmetrical
stator (subscript s for its parameters and variables) with sinusoidally distributed,
Y-connected windings, salient rotor (a 2-pole rotor is shown) equipped with a field
or excitation winding (subscript f d) and a damper or amortisseur winding (sub-
script kd) in the same magnetic axis (d-axis), and two damper windings (kq1 and
kq2) in the q-axis, 90◦ ahead of the d-axis. Voltages, currents, equivalent resis-
tance, and number of turns are noted as Vsubscript, isubscript, rsubscript, and Nsubscript,
respectively.

A rotor-fixed reference frame is most commonly chosen for this machine. It has
its d-axis aligned with the magnetic axis of the excitation winding and the q-axis
90◦ electrical ahead. The stator transformation matrices (8.3) specialize in this case
to (8.6), whose application yields the equivalent circuit of Fig. 8.7. The inductances
Lmd,q are the magnetizing inductances of each axis. The round-rotor machine has
the same model but with Lmd = Lmq = Lm because of the rotor symmetry. The
inductances with l as first subscript are leakage inductances. The notation for the
variables and the other parameters basically follows the criteria employed at the
beginning of this section for the DC-machine models, hence, it is self-explanatory.
The superscript r on the variables means that the reference frame is aligned with the
rotor. It is also used for the rotor variables even though no coordinate transformation
has been applied to them. The rotor variables and parameters, however, are turns-
ratio referred to the stator circuit (according to (8.7)), which is suggested by the ’ in
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Fig. 8.7 Equivalent circuit of np-pole pair, 3-phase synchronous machine in rotor-fixed reference
frame, generator convention

their notation. Frequently superscripts r and ’ are dropped, on the one hand because
the turns-ratio conversion is always performed and on the other hand because the
coordinate transformation is univoquely put in evidence by theωr-dependent voltage
sources appearing in the circuits whose variables have been transformed. Notice the
cross-incidence of the stator d- and q-fluxes on the q- and d-circuits through these
speed-voltage sources, which express the electromotive forces (emf) induced in the
stator by the rotor movement.

Ms =
√

2

3

⎡

⎢
⎢
⎣

cos (θr) cos (θr − 2π
3 ) cos (θr + 2π
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r ′r =
3

2

(
Ns

Nr

)2

rr (8.7a)

L ′lr =
3

2

(
Ns

Nr

)2

L lr (8.7b)

v′r =
Ns

Nr
vr (8.7c)
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ψ ′r =
Ns

Nr
ψr (8.7d)

i ′r =
2

3

Nr

Ns
ir (8.7e)

The electromagnetic torque is expressed in the rotor-fixed reference-frame vari-
ables according to (8.8a), where the stator flux components are calculated according
to (8.8b) and (8.8c), cf. the circuit in Fig. 8.7. Notice that the 0-variables do not
contribute to the torque:

Tem = np

(
ψr

dsi
r
qs − ψr

qsi
r
ds

)
(8.8a)

ψr
ds = −L lsi

r
ds + Lmd(−i r

ds + i ′rf d + i ′rkd) (8.8b)

ψ r
qs = −L lsi

r
qs + Lmq(−i r

qs + i ′rkq1 + i ′rkq2) (8.8c)

Stator current and stator flux linkage space vectors can be (formally) introduced
as the geometric vectors irs and ψ r

s specified in (8.9a) in the (d, q)-plane (see them
as special cases of vector u introduced in Fig. 8.3). The vector-product interpreta-
tion of the electromagnetic torque given in the first equation of (8.10) can thus be
easily derived from (8.8a). Moreover, as the vectors themselves are independent of
the coordinate system in which they are described, this vector- or external-product
expression is valid in any coordinate system or frame, a fact indicated in the second
equation of (8.10) with superscript F. With the current vector leading the flux vector
(positive sense defined by positive θr or ρ) the torque vector would appear as in
Fig. 8.3, i.e., in the positive motoring sense.

irs = (i r
ds, i

r
qs) (8.9a)

ψ r
s = (ψ r

ds, ψ
r
qs) (8.9b)

Tem = n pψ
r
s(t)× irs(t) (8.10a)

Tem(t) = n pψ
F
s (t)× iFs (t) (8.10b)
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BG of Synchronous Machine in Rotor Reference Frame

The BG on Fig. 8.8a is directly derived from the equivalent circuit given in Fig. 8.7.
The voltage-dependent sources shown as electrical dipoles in the circuit are in fact
2-port elements, the port not shown in the circuit being the mechanical one. This
is easily seen comparing the torque expression in (8.10) and the emf expressions
shown in the equivalent circuit. This explains the two MGY linking the 1-junctions
associated with the d- and q-stator currents and the 1-junction associated with ωr.
Applying the SCAP to assign preferred integral causality to the BG on the left pro-
duces derivative causality in one I-element in each of both the d- and the q-axes.
The BG on the right (Fig. 8.8b) avoids this thanks to the introduction of an implicit
I-field in each axis. Each field incorporates the leakage inductances of the circuits
to the mutual, or magnetizing, or air gap inductances Lmd and Lmq . The induc-
tance matrices given in Fig. 8.8b are symmetric. Hence, the constitutive relations
of both inductive I-fields satisfy Maxwell’s reciprocity conditions [10, chapter 8], a
well-known property of energy conserving energy stores. For generator convention
the two MSes associated with the voltages vr

d,qs are to be interpreted as sinks or
electrical loads and the mechanical Se as the primary mover. For motor convention,

Fig. 8.8 BG of n p-pole pair, 3-phase synchronous machine in rotor-fixed reference frame, genera-
tor convention. (a) Using single-port I’s implies derivative causality and (b) using I-fields avoids it
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with the positive direction of the stator currents into the stator positive terminals,
they must be interpreted as (possibly controlled) sources of voltages imposed on
the motor and as a mechanical load, respectively. In order to be consistent with the
motor convention, the power flow on each of the bonds leading from the voltage
sources over the two MGYs and the TF to the mechanical effort source should
be inverted, as well as the power flow on each of the bonds connecting the stator
1-junctions with the auxiliary 0-junctions (used in Fig. 8.8 to get on their right-side
bonds the sign of the stator currents inverted and, thus, power flow into the I-fields,
as required for the Maxwell reciprocity conditions to be satisfied).

8.2.2.3 Induction Machines

The Symmetrical 3-Phase Induction Machine

Unlike the synchronous machine, the induction machine (IM) has no independently
fed excitation winding. Figure 8.9 shows a scheme of a 2-pole induction machine
with symmetrical 3-phase winding in both stator and rotor. This model has proven
to be correct also for squirrel-cage machines. The same modeling assumptions are
made for these windings as for the synchronous machine stator winding. Magnetic
isotropy (due to material isotropy and round rotor geometry, uniform air gap, etc.)
in both stator and rotor is assumed as well as magnetic linearity. The criteria for the

Fig. 8.9 Schematics of symmetrical 3-phase asynchronous or induction machine



8 Bond Graph Modeling and Simulation of Electrical Machines 285

Fig. 8.10 Equivalent circuit
of n p-pole pair symmetrical
3-phase induction machine in
arbitrary reference frame,
superscript F dropped in all
variables

notation of the machine variables and parameters are the same as in the synchronous
machine, which makes self-explanatory their definition in Fig. 8.9. For squirrel-
cage or short-circuited wound-rotor machines, the voltages Va,b,cr are identically
null. There is no a priori particularly preferred (d, q, 0)-coordinate system for this
machine, so that the equivalent circuit presented in Fig. 8.10 has been obtained using
(8.3) and (8.4) to convert stator and rotor variables, respectively, to the arbitrary ref-
erence frame shown in Fig. 8.9. This yields the equivalent circuit of Fig. 8.10, show-
ing ports to connect any electrical systems to both stator and rotor. Because of the
magnetic isotropy and uniform air gap there is a unique 3-phase mutual or magne-
tizing inductance Lm common to both axes d and q. The superscript ’ denotes rotor
variables and parameters referred to the stator according to (8.11). No superscript
has been used to label the reference frame. The second expression for the electro-
magnetic torque given in (8.10) is also valid for this machine for any arbitrary choice
of the frame F, particularly, for that determined by the angle ρ in Fig. 8.9. In this
case, the stator flux components must be calculated as ψF

ds = (L ls+ Lm)iF
ds+ Lmi ′Fdr

and ψF
qs = (L ls + Lm)iF

qs + Lmi ′Fqr, according to the equivalent circuit in Fig. 8.10.

r ′r =
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Nr

)2

rr (8.11a)

L ′lr =
(
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Nr
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L lr (8.11b)

v′r =
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Nr
vr, (8.11c)

ψ ′r =
Ns

Nr
ψr, (8.11d)
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i ′r =
Nr

Ns
ir (8.11e)

The adaptation of Fig. 8.10 to the particular case of a squirrel-cage or short-
circuited wound rotor is presented in Fig. 8.11. It shows also a simple model of a
mechanical subsystem and the conversion of electrical to mechanical speed means
a gearbox-like device. Note though that, despite the use of a mechanical symbol
to suggest it, this conversion is of an electromagnetic nature, as it is due to the
geometric disposition of the machine poles.

Fig. 8.11 Arbitrary reference frame equivalent circuit of n p-pole pair symmetrical 3-phase induc-
tion motor with short-circuited rotor

BG of Induction Motor in Arbitrary Reference Frame

The BG of Fig. 8.12 corresponds to the idealized physical system in Fig. 8.11. It
has been enlarged with the coordinate transformation (8.3) in order to have a model
ready to be fed by the (a, b, c)-variables directly representing the applied stator
voltages.

Multi-BG of IM in Arbitrary Reference Frame

Using component fields and vector or multibonds the compact BG in (d, q)-
coordinates of Fig. 8.13 can be constructed for the kind of induction motor used
in standard industrial electrical drives. These normally are Y-connected machines
with isolated stator and rotor centers, which implies that all 0-variables vanish (see
their arithmetic definition through the third line of matrices Ms and Mr). Hence,
dropping all the 0-variables, a BG with 2D multibonds can be constructed. The
resistances and inductances of the 2D electrical R- and I-fields are 2×2-diagonal
matrices with obvious entries; the coupling I-field has the inductance matrix L2
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Fig. 8.12 BG of induction motor model of Fig. 8.11

Fig. 8.13 Vector or multibond graph of induction motor (d, q)-coordinates

specified in (8.12b). The voltages, currents, and flux linkages are vectors with (d, q)-
components. The gyrator modulus M(ψ ′r) defined in (8.13) gives the counter-emf
e to the rotor circuit when multiplied by ωr, and the electromagnetic torque when
transposed premultiplies the rotor current vector i ′r. Both modulated effort sources
compute the (vector) speed voltages due to the reference-frame rotation speed ωF as
the product of a rotated stator or rotor flux vector J2ψs,r times the speed ωF. J2 is
the 2×2 antisymmetric matrix given in (8.13). The derivative causality on the I-field
can be avoided deleting the I-elements modeling the leakage inductances L ls and
L lr and subsuming these phenomena into a new I-field with the inductance matrix
L1 in (8.12a), where Ls = L ls + Lm and L ′r = L ′lr + Lm.

L1 =

⎡

⎢
⎢
⎣

Ls 0 Lm 0
0 Ls 0 Lm

Lm 0 L ′r 0
0 Lm 0 L ′r

⎤

⎥
⎥
⎦ (8.12a)
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L2 =

⎡

⎢
⎢
⎣

Lm 0 Lm 0
0 Lm 0 Lm

Lm 0 Lm 0
0 Lm 0 Lm

⎤

⎥
⎥
⎦ (8.12b)

J2 =
[

0 −1
1 0

]

(8.13a)

M(ψ ′r) = n p J T
2 ψ
′
r (8.13b)

BG of IM in the Stationary and Rotor-Field Oriented Reference Frames

The rotor-field oriented and the (x, y)- or stationary reference frames (the latter
sometimes also referred to as (a, b) or (α, β) in the literature on electrical machines)
are of common use in control system applications. The BG for the second case is
directly obtained from Fig. 8.12 imposing the condition ρ(t) ≡ 0 (see Figs. 8.3
and 8.9), implying ωF(t) ≡ 0 as well. Hence, the four modulated effort sources in
Fig. 8.12 disappear and the MTF becomes a simple TF whose modulus is given by
the constant matrix in (8.5). As its name suggests, the former reference frame has
its d-axis aligned with the rotor flux linkage vector, i.e., with the vector having the
components ψ ′dr = L ′ri ′dr + Lmids and ψ ′qr = L ′ri ′qr + Lmiqs, where L ′r = L ′lr + Lm
(see equivalent circuits in Figs. 8.10 and 8.11, recall Fig. 8.3 for the definition of
space vectors, and take (8.9a) as example). The module “IM” in Fig. 8.14 stands for
the BG of Fig. 8.12, for instance, complemented with the calculation (8.14) of the
rotor flux linkage vector angular speed [9], which is used to modulate the speed-
voltage sources and to obtain through time integration the frame angular position
ρ needed to accomplish the coordinate transformation. The division by the rotor
flux amplitude in (8.14a) shows that this model is not defined when the machine is
demagnetized (at start-up, for instance), i.e., when this flux is null. This is consistent
with the fact that the reference frame itself is not defined when the rotor flux is zero.

Fig. 8.14 Rotor-field oriented BG of induction motor



8 Bond Graph Modeling and Simulation of Electrical Machines 289

ωF = ρ̇ = n pω + Lm

Tr

ids

ψ ′dr
(8.14a)

Tr = L r

rr
(8.14b)

Multi-BG of Doubly Fed Induction Machine in Arbitrary Reference Frame

Well known since a long time, the doubly fed induction machine (DFIM) [9] is
experiencing a renaissance because of its integration in both autonomous and grid-
connected energy conversion systems as an asynchronous generator powered by
variable speed wind turbines [14, 23]. Figure 8.15 provides a multi-BG of this
machine. It is in motor convention but a simple and obvious change of the power
flow yields the generator convention. There are two (modulated) effort sources asso-
ciated with the impressed (a, b, c) stator and rotor voltages v̄s = [vsa, vsb, vsc]T and
v̄r = [vra, vrb, vrc]T, respectively. Hence, the associated bonds are 3D multibonds.
As it is assumed that both stator and rotor 3-phase circuits are Y-connected with
isolated neutral, the identically vanishing 0-components of the (d, q, 0)-system are
not considered in the v̄F

s , v̄F
r , īF

s , and īF
r vectors, which consist then of only two

components, namely the pertinent (d, q)-variables. Hence, the multibonds associ-
ated with these vectors are 2D multibonds, as well as the remaining multibonds in
the graph. The matrix Ms,2×3 is just the matrix Ms with its third file deleted. It
is used to convert the voltage vector v̄s into the vector v̄F

s . The conjugate conver-
sion of the current vector īF

s into the vector īs is accomplished by the transposed
matrix MT

s,2×3 which is just MT
s with its third column deleted. The power invariance

is maintained because all the 0-components identically vanish. With the pertinent
changes the same holds for the MTF in the rotor side. The electrical inertia field I

Fig. 8.15 Doubly fed induction machine
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has the inductance matrix L1 given in (8.12a), as it integrates both stator and rotor
leakage fluxes (cf. Fig. 8.13, which uses matrix L2 because the leakage inductances
are explicitly represented). The transformer TF: diag(Ns/Nr) has been introduced
(cf. Fig. 8.13) to explicitly perform in the BG domain the turns-ratio scaling to
the stator of the rotor electrical variables and parameters on its right, which are
then written unprimed. On the left of this TF there are stator or stator-scaled rotor
variables and parameters (like L ′r in matrix L1, for instance). Because of the scaling
of rotor flux and current (see (8.11)), the following holds for the electromagnetic
torque Tem = n pi′Fr (t)× ψ ′Fr = n piFr (t)× ψF

r . This implies that the unscaled rotor
flux must intervene in the module of the MGY responsible for the electromechanical
power exchange, as the latter is linked to the 1-junction representing the unscaled
rotor current. Finally, the modulated sources impressing the speed voltages induced
by the rotating frame have been replaced by a MTF interconnection of the īF

s and
īF
r 1-junctions. It has been shown in [21] that the net power contributed to the BG

model by these two sources is identically zero (in a non-BG context, this fact had
already been conceptually established in the IM passivity study presented in [24],
which is a rather obvious fact considering that they are a mere consequence of an
arbitrary observational choice). This means that the power of both sources cancels
each other, a concept that is better captured by the power exchange between the
stator and rotor subcircuits through the MGY, as shown in the figure. The MGY
matrix modulus is indicated in (8.15). A BG model featuring this characteristic has
been presented in [25] for a particular reference frame.

G =

⎡

⎢
⎢
⎢
⎣

0 −ωFLs 0 −ωF
Nr
Ns

Lm

ωFLs 0 ωF
Nr
Ns

Lm 0

0 ωF
Nr
Ns

Lm 0 ωFL r

−ωF
Nr
Ns

Lm 0 −ωFL r 0

⎤

⎥
⎥
⎥
⎦

(8.15)

8.2.2.4 Simplified Models of AC-Machines

There are a wide spectrum of AC-machine models ranging from the previously
presented full-order, over reduced order, down to static or zero-order models, each
of them being used according to the system analysis aims. The order reduction is
largely based on heuristical or engineering considerations of experimental data as
related to the full-order models, see [26], for instance. In the sequel only two of such
models will be presented for the induction motor with short-circuited rotor. The first
is a nonlinear static one, and the second is the former augmented with a first-order
dynamics. For more details on the subject of this section, see [9, chapters 3 and 10].

When supplied with sinusoidal symmetrical 3-phase stator voltages and loaded
with an admissible (to be specified later) constant torque, the induction machine
reaches a steady state where the electromagnetic machine variables are sinusoidal
and the torque and angular speed are constant. The so-called per phase steady-state
equivalent circuit of Fig. 8.16 can be derived from the dynamic model of Fig. 8.12
particularized for the stationary reference frame (or from Fig. 8.13 with ρ = 0
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Fig. 8.16 Per phase
steady-state equivalent circuit
of IM

instead of satisfying (8.14)). It represents the steady state of any of the a, b, or
c single phases of the machine. All the variables in the figure are described with
phasors having in common the angular frequency ω1 of the stator voltage supply,
whose phasor of root mean square (RMS) value U1 is denoted Ũ1. The rotor vari-
ables in the circuit have the same frequency because they are also in the station-
ary reference frame. All the parameters have been already defined, except the slip
coefficient s given in (8.16), where ω2 is the slip frequency, the angular frequency
of the actual rotor variables. The equivalent resistance {r ′r(1 − s)/s} reflects the
effect of the mechanical constant load on the electrical side. This circuit is clearly a
dynamic system, but it should be stressed that in this context it should be exclusively
understood as a (graphical) means to represent the sinusoidal steady state of the
machine (in the electrical engineering’s tradition), i.e., it does not make much sense
to compute machine transients with this circuit! What it is good for is to provide
the steady-state external characteristics of both external ports of the machine: the
Heyland’s or Ossanna’s circle for the stator electrical port (not to be discussed here,
it relates the phasors Ĩ1 and Ũ1 on a circle parameterized by the load through the
slip coefficient, see e.g. [9]) and the torque–speed curve (parameterized by U1 and
ω1) for the mechanical port, to be presented next.

s = ω1 − ωr

ω1
= ω1 − n pω

ω1
= ω2

ω1
(8.16)

With the simplifying assumption of zero stator resistance the equivalent expres-
sions T̄em(s), T̄em(ω2), and T̄em(ωr ) given in (8.17) for the steady-state torque T̄em
can be derived. The meaning of the pull-out slip sp and its equivalents, the frequency
ω2p and the rotor electrical speed ωrp, becomes evident in the torque–speed curves
given in Fig. 8.17: they correspond to the maximum torque T̂em that the machine can
develop in steady state, which puts an upper limit to the admissible load torques.
Noticing the dependency of T̂em on (U1/ω1)

2 (which, neglecting the stator resis-
tance, equals the square of the stator-flux-linkage RMS value) and the independence
of ω2p on any input parameter, it is easy to understand that this steady-state curve
shifts along the abscissae conserving its shape if U1 and ω1 change in such a way
that their quotient (U1/ω1) remains constant. This fact is the idea behind the steady-
state operation strategy called “U/f = constant,” basically a constant flux strategy
to operate at different speeds adjusting ω1 while keeping (U1/ω1) = (U0/ω0), the
subscript 0 indicating the rated values of the machine stator voltage and frequency,
see [9, chapter 12] for details.



292 S. Junco and A. Donaire

Fig. 8.17 IM steady-state torque vs. (a) slip, (b) slip frequency, and (c) rotor electrical speed

T̄em(s) = np
3

2

1− σ
σ Ls

U 2
1

ω2
1

2

s/sp + sp/s
= T̂em

2

s/sp + sp/s
(8.17a)

sp = rr

ω1σ L r
= 1

ω1σTr
(8.17b)

T̄em(ω2) = T̂em
2

σTrω2 + 1/[σTrω2] (8.17c)

T̄em(ω2) = T̂em
2

σTrω2 + 1/[σTrω2] (8.17d)

T̄em(ωr) = T̂em
2

σTr(ω1 − ωr)+ 1/[σTr(ω1 − ωr)] (8.17e)

The steady-state torque equation just discussed is the base to build simplified
models of the IM in order to analyze/simulate systems where (part or all of) the
motor dynamics can be neglected because it is considered too fast in face of the
evolution rate of the overall system and its excitation. An example is the soft starting
of an IM where stator voltage and frequency are softly increased until they reach
the operating values. Even a starting with direct connection to the network could
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be well reproduced by simulation under the presence of an important mechanical
inertia (due to the load). The simplified models presented next are just BG versions
of the block diagrams given in [9, chapters 3 and 10].

Nonlinear Static BG of IM

The simplest BG of the IM given in Fig. 8.18 features a non-standard, ad hoc sug-
gested BG-element denoted NIS, whose constitutive relationship is the static curve
of Fig. 8.17c with its ordinate divided by np, as this gain is incorporated in the
TF on the right. This means that the effort y(t) at the element port is the torque
per pole pair. The element NIS should be interpreted as a non-ideal source (motor
operation) or sink (brake or generator operation). Even if it is mostly considered a
torque source, as done in Fig. 8.18, its causality is not a priori fixed because neither
T̄em nor ωr can be thought of as independently imposed on the rest of the system.

Fig. 8.18 Nonlinear static
BG of IM

First-Order Nonlinear BG of IM

This is a first-order upgrade of the precedent BG, whose element NIS has been
equipped with a first-order lag at its output in order to obtain a new (again, non-
standard) element denoted NISdyn in Fig. 8.19. Assuming motor operation, the out-
put torque y(t) of this non-ideal dynamic source/sink is described by either (8.18)
or the block diagram given in the figure. The parameter T ′r = σTr = σ L r/rr is the
rotor transient time constant, with σ the machine’s total leakage coefficient.

T ′r ẏ + y = 3

2

1− σ
σ Ls

U 2
1

ω2
1︸ ︷︷ ︸

T̂em/np

2

σTr(ω1 − ωr)+ 1/[σTr(ω1 − ωr)] (8.18)

Fig. 8.19 (a) Simplified first-order nonlinear BG of IM; (b) block diagram of NISdyn element
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8.2.3 Motors for Low-Power Drives: Permanent Magnet
Synchronous Motor, Brushless DC-Motors, Synchronous
Reluctance, and Permanent Magnet Stepper Motors

This section discusses some machines more and more frequently encountered in
low-power inverter-fed drives. While constructively some machine types are almost
indistinguishable, they are known and treated differently in the literature according
to the way they are operated when integrating a drive system. This is the case of
the permanent magnet synchronous motor (PMSM) and the sinusoidal brushless
DC-motor (BLDCM), where the PMSM is supplied with a controlled symmetrical
(in steady state, sinusoidal) 3-phase stator system while BLDCMs are controlled
impressing DC-currents simultaneously to only two of the three stator windings. In
order to synchronize the electrical supply with the PM field, a BLDCM is equipped
with (inductive, optical, or Hall effect) absolute rotor position detectors, used to
derive the inverter control signals. The set inverter plus rotor position sensors oper-
ate like an electronic commutator conferring to the whole drive a brushed DC-
motor-like behavior, hence the name BLDCM, see [28, p. 523, 29]. A common
model for both the PMSM and the sinusoidal BLDCM is presented in this section
as a special case of the general model of the synchronous machine already discussed.
There is another kind of BLDCM called non-sinusoidal (trapezoidal) BLDCM (the
different names pointing to the different spatial distribution of the stator windings),
which is not dealt with here, see [30–32] for (non-BG) models of this machine
involving multiple reference frames.

In reluctance machines the main torque component is magnetically generated
by the rotor tendency to align with the stator along paths of minimal reluctance
defined by the saliencies in rotor and/or stator. The 3-phase synchronous reluctance
motor as well as several variable reluctance motors fall in this category. There is
no universally employed classification for the last group, some authors distinguish
stepper, variable reluctance, and switched reluctance motors while others consider
all as variants of stepper motors, even if this concept refers to the stepwise rotor
operation rather than to constructive features, and the position of some of these
machines can be continuously varied. The 3-phase synchronous reluctance motor
model is also presented here as a special case of the general model of the syn-
chronous machine. The switched reluctance motor (SRM) differs considerably from
the latter, as constructively it is a doubly saliency machine (with projecting poles in
both stator and rotor), with stator coils rather concentrated than distributed as in the
machines treated so far. A BG of the SRM is presented in the next section giving
an energy conservation modeling approach. This section ends deriving a BG of the
stepper motor from an equivalent circuit.

8.2.3.1 The PMSM and Sinusoidal BLDCM Model

The schematics of this machine is not shown, as it is much like the one in
Fig. 8.6, except for the rather round-rotor shape of the PMSM (for further comments
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regarding this issue, please see below) with all the rotor circuits deleted and having,
instead, a permanent magnet on it with flux ψr

PM. Consequently, all the rotor side
subcircuits in Fig. 8.7 disappear, as well as the 0-sequence subcircuit because of the
isolated stator neutral. Thus, the stator flux components in the expressions of the
dependent voltage sources on the stator and in the torque equation (8.8a) become
ψ r

ds = (L ls + Lmd)i r
ds + ψ r

PM = Ldi r
ds + ψ r

PM and ψ r
qs = (L ls + Lmq)i r

qs = Lqi r
qs.

With this, the BG of Fig. 8.8a simplifies to that shown in Fig. 8.20 (motor convention
adopted).

Fig. 8.20 Rotor-fixed
reference-frame BG of
PMSM and sinusoidal
BLDCM

The permanent magnet of a PMSM is either buried or surface mounted (in two
variants, inset and projecting) on its round rotor. Depending on this constructive
feature, the inductances Ld and Lq can be approximately equal (projecting), very
different (buried, Lq � Ld ), or they can have values in-between (inset), see dis-
cussion in [32]. Replacing in (8.8a) the expressions just introduced for the stator
linkage flux components clearly shows that the difference between the direct and
quadrature axes inductances produces a reluctance torque. This fact is exploited in
the construction of the synchronous reluctance machine presented in Section 8.2.3.2.

8.2.3.2 The 3-Phase Synchronous Reluctance Machine

There is no permanent flux in this machine, hence, ψr
PM = 0. Further, assuming

eddy currents in the rotor, modeled with one equivalent damper winding in each of
both the d- and the q-axes, results in the BG of Fig. 8.21, again with motor power
flow convention.

8.2.3.3 The Stepper Motor

Following [28], stepper motors can be classified as reluctance-, permanent magnet,
and hybrid stepper motors. All of them have stator phases wound on stator salien-
cies, the first one has rotor saliencies without permanent magnetization, the second



296 S. Junco and A. Donaire

Fig. 8.21 Rotor-fixed
reference-frame BG
of synchronous reluctance
motor

one has no saliencies but permanent magnets on the rotor, and the third one com-
bines saliencies and permanent magnets on the rotor. In the following a PM stepper
motor model is discussed. Figure 8.22a shows a simplified sketch of such a machine
with np = 1 (one pole pair on the rotor) and two stator phases, adapted from
[28, p. 517]. The equivalent circuit in machine variables of Fig. 8.22b assumes
no coupling between the phases, no magnetic saturation, and constant inductance
(independent from rotor position). The MGYs linking the electrical and mechani-
cal subsystems in the BG of Fig. 8.23 are immediately understood comparing the
expressions for the cemf on each of the stator phases with that of the motor torque
given in (8.19). The independent torque source represents the so-called detente
torque Td (8.20), a pure magnetically induced reluctance torque which, even without
currents flowing in the stator, tries to align the PM with the stator saliencies.

Fig. 8.22 (a) PM stepper motor; (b) equivalent circuit diagram
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Fig. 8.23 BG model of the PM stepper motor

Tem = Km
[
cos (npθ)i2 − sin (npθ)i1

]
(8.19)

Td = Kd sin (4npθ) (8.20)

8.3 Constructing BG Models of Electrical Machines
from Physical Principles

This section reviews some contributions made by the BG community with an
approach that focuses more directly on the physics rather than on equivalent cir-
cuit metamodels. Some modeling techniques are illustrated on examples solving
a problem that has been already pointed out, namely that BG based on equiva-
lent circuits do mask behind I-elements the internal phenomena happening in the
magnetic domain and only show their external electrical effects at the ports of the
I-elements.1 Generally speaking, the models in this section are more complex than
those in previous sections. They are intended to perform studies demanding more
physical details and well suited to be enhanced with more of them. The first three
results reviewed in the sequel address two opposed ways of modeling magnetic
phenomena in their own domain. While the first and the third start the modeling
process introducing BG elements derived from the very nature of each physical
phenomenon and proceed further interconnecting them, the second one re-uses a BG
already derived from an equivalent circuit digging down the electrical I-elements to
expose the magnetics. A fourth example is used finally in Section 8.3.1 to present
a very general modeling technique for electromechanical devices which is based
on energy conservation principles. Readers interested in developing models with
more physical details than those presented in the previous section (like magnetic

1 This is also true for thermal phenomena related to dissipation in the electric, magnetic, or
mechanical domain, mostly represented as port equivalent elements in these domains.
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nonlinearity, thermal phenomena) should pay special attention to the techniques
illustrated in the sequel, particularly by the first, third, and fourth examples. Indeed,
they constitute paradigmatic cases of the technique of BG modeling from physical
principles.

8.3.1 BG Models of the IM Explicitly Displaying Magnetic
Phenomena

8.3.1.1 Induction Motor BG Modeling Starting from Magnetic Circuit

A 2-phase 4-pole induction motor is modeled in [33] starting with the magnetic
circuit comprising stator, rotor, and air gaps. The modeling procedure is next suc-
cinctly described, for more details refer to [33]. Figure 8.24 shows a geometric
sketch of this motor having a preliminary BG of its magnetic circuit superimposed
on it. Neglecting the reluctance of all metallic parts and keeping that of the air gap,
this BG reduces to the one shown in Fig. 8.25a, which can be further simplified
as shown in Fig. 8.25b, after choosing one 0-junction as reference for the magnetic
potentials. The resulting submodel is then interconnected to the electrical one, which
is derived using Faraday’s law of induction relating the electric fields induced along
each of the closed magnetic circuits and the changing magnetic fluxes. This proce-
dure yields (8.21a) and (8.21b) for the stator X - and Y -components, and (8.21c) and
(8.21d) for the homologous rotor subcircuits. Next, in the usual way, GY-elements

Fig. 8.24 A 2-phase 4-pole
IM with superimposed BG
of its magnetic circuit
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Fig. 8.25 Reduced BGs of
2-phase 4-pole IM magnetic
circuit

modulated by the number of turns of the respective windings are employed to link
1-junctions on the magnetic submodel to 1-junctions on the electric one. On the
magnetic side, these junctions represent the rate of change of the fluxes appearing in
(8.21), while on the electric side they represent stator and rotor currents. The model
is finally completed connecting the electromagnetic subsystem to the mechanical
one over MGY impressing the speed voltages of (8.21) on the magnetic side and
their counterpart, the torque components, on the mechanical side.

Vxs = −ns
dψxs

dt
= −nsψ̇xs (8.21a)

Vys = −ns
dψys

dt
= −nsψ̇ys (8.21b)

Vxr = −nr(ψ̇xs + ωψys) (8.21c)

Vyr = −nr(ψ̇ys − ωψxs) (8.21d)

The overall model is shown in Fig. 8.26 (Figure 6 in the quoted work). The rotor
variables and parameters have not been (turns ratio) scaled, but the variables have
been transformed to the stationary frame, which introduces dependent sources in the
rotor circuits so that the link to the mechanical subsystem happens over MGYs. With
adequate parameter definition this model also represents the (x, y)-BG of a 3-phase
machine. The C-elements with associated magnetic reluctances Kair gap represent
the storage of magnetic energy in the air gap as seen from the stator. ψ̇xs,ys is the
rate of change of the air gap fluxes ψxs,ys and Rcore represents the losses in the
core (stator and rotor). The power conjugate variables on the bonds adjacent to
the junctions 1ψ̇xs,ys

are magnetomotive forces. Hence, the variables at the other
end of the gyrators with the number of turns as moduli are voltages and currents.
When seen from these opposite gyrator ends, the magnetic phenomena appear as the
inductances in the precedent models. With this fact in mind it is easy to recognize
that, neglecting the core losses, this BG becomes equivalent to the (d, q)-submodel
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Fig. 8.26 BG model of the
induction motor

in Fig. 8.12, provided the stationary reference frame is specified in the latter, i.e.,
ρ = 0 (which implies, of course, ωF = 0), and that the turns-ratio scaling has been
performed in the former, as done in [33].

8.3.1.2 Physical Correspondence with Magnetic Details Through
Manipulation of an Equivalent Circuit-Based BG of IM

The opposed modeling direction is followed in [34] where an existing BG of a
symmetrical 3-phase squirrel-cage induction motor essentially equivalent to that in
Fig. 8.12 (without the 0-component sub-BG) was manipulated with the declared
intention of showing a one-to-one correspondence between motor components
and bond graph elements. Spanning electrical, magnetic, and mechanical energy
domains, and explicitly representing the stator coils, the squirrel-cage rotor bars,
and the magnetic flux routing section, the resulting BG was shown to correctly
simulate shorted stator coils and broken rotor bars. Yet more important, this BG
was later experimentally validated on an induction motor-driven centrifugal pump
system undergoing faults in the IM stator circuit and in the hydraulic piping [35].
The existing BG [36] was prototyped by moving and adding BG-elements in order
to achieve the explicit representation looked for. First, three 1-junctions represent-
ing the machine (a, b, c)-phase currents were introduced in order to have explic-
itly represented the resistances of the three (a, b, c)-stator phases instead of their
equivalents associated with the transformed (x, y)-stator currents. A conceptually
similar but technically more involved procedure was used to show the currents asso-
ciated with the five rotor bars and their respective resistances. Five new modulated
gyrators were used in place of the two original ones in order to recalculate the
electromagnetic torque as a function of the five rotor currents. In a third step, the
2-port I-fields representing the (x, y)-axes inductances were replaced with equiva-
lent combinations of gyrators and two 2-port C-elements representing interactions
between magnetic flux and magnetomotive force of the stator and rotor. Finally,
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Fig. 8.27 BG model of the induction motor

losses in the stator magnetic circuit were included which required some position
exchange between the above-mentioned gyrators and the transformers used for the
stator (a, b, c) ↔ (x, y) transformation. The resulting BG is shown in Fig. 8.27.
Just notice that the subscripts α, β correspond to the x , y notation used in this
chapter, for the rest see notation in [34, figure 6] or in [35, figure 2].

8.3.1.3 A BG Model of the DFIM Introducing a New BG-Element
from Constitutive Relations

This brief review considers also the results in [37], where a new BG field element
called “axis rotator” (AR) has been introduced to represent “the interaction between
the magnetic fields produced by spatially separated windings in relative motion to
each other as exists on a rotating machine.” A BG presented in [37, figure 4] for a
3-phase DFIM is shown in Fig. 8.28 with the AR-element at its center. The electrical
variables have neither been transformed nor scaled, i.e., they are machine variables.
While balanced symmetrical 3-phase voltage sources are shown at the stator and
rotor ports, the model is also valid for arbitrary waveforms. Linear dissipators model
copper losses in both stator and rotor. Both electric subdomains are connected with
the magnetic one via gyrators having the number of the corresponding winding turns
as gains. The parameter Λm of the AR-element represents mutual permeance at the
air gap while the Λother-subscripts associated with the C-elements represents perme-
ance of stray magnetic paths of each of the windings. It should be emphasized that
the AR-element is an energy-storing coupling field in the magnetic domain, a kind
of C-multiport, probably not declared as such because, as shown by (8.22), it is
controlled by the electrical rotor angle θr, a variable external to it, see discussion
in [10, Section 2.5.3] regarding the nonexistence of controlled conservative energy
stores. Its governing laws are given by (8.22), where the flows are magnetic flux
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Fig. 8.28 Bond graph model of the doubly fed 3-phase induction motor

rates and the efforts are magnetomotive forces. Notice the time differentiation in
these equations, which corresponds to the derivative causality of the AR-element
in the BG. Also notice that the electromagnetic–mechanic interaction does not hap-
pen over power bonds or inside energy fields. Instead, it happens through signal
paths, in one direction over the already mentioned modulation of the AR-element
by θr, in the other sense via the function fn(isabc, irabc, θr) controlling the modulated
source of effort driving the mechanical subsystem. In the article under consideration
the torque equation is not given but merely indicated by the unspecified function
fn(isabc, irabc, θr) on the BG. Nevertheless, an adequate expression can be found in
any text dealing with the dynamics of the induction machine, like (8.23), taken from
[8, equation (4.3.7)], which can be immediately used after replacing the primed
(because referred to the stator) rotor currents by their natural values, i.e., using
i ′r = Nr

Ns
ir, the last of the equations in (8.11).

f1= d
dt

(
Λm

(
e1+e2 cos ( 2π

3 )+e3 cos ( 4π
3 )+e4 cos (θ)+e5 cos (θ+ 2π

3 )+e6 cos (θ+ 4π
3 )

))
(8.22a)

f2= d
dt

(
Λm

(
e1 cos ( 4π

3 )+e2+e3 cos ( 2π
3 )+e4 cos (θ+ 4π

3 )+e5 cos (θ)+e6 cos (θ+ 2π
3 )

))
(8.22b)

f3= d
dt

(
Λm

(
e1 cos ( 2π

3 )+e2 cos ( 4π
3 )+e3+e4 cos (θ+ 2π

3 )+e5 cos (θ)+e6 cos (θ+ 4π
3 )

))
(8.22c)

f4= d
dt

(
Λm

(
e1 cos (θ)+e2 cos (θ+ 4π

3 )+e3 cos (θ+ 2π
3 )+e4+e5 cos ( 2π

3 )+e6 cos ( 4π
3 )

))
(8.22d)

f5= d
dt

(
Λm

(
e1 cos (θ+ 2π

3 )+e2 cos (θ)+e3 cos (θ+ 4π
3 )+e4 cos ( 4π

3 )+e5+e6 cos ( 2π
3 )

))
(8.22e)
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f6= d
dt

(
Λm

(
e1 cos (θ+ 4π

3 )+e2 cos (θ+ 2π
3 )+e3 cos (θ)+e4 cos ( 2π

3 )+e5 cos ( 4π
3 )+e6

))
(8.22f)

Tem = − np Lm

{[

i ′as

(

i ′ar −
1

2
i ′br −

1

2
i ′cr

)

+ ibs

(

i ′br −
1

2
i ′ar −

1

2
i ′cr

)

+

ics

(

i ′cr −
1

2
i ′br −

1

2
i ′ar

)]

sin (θr)+
√

3

2

[
ias(i

′
br − i ′cr)+ ibs(i

′
cr − i ′ar)+

ics (i
′
ar − i ′br)

]
cos (θr)

}
(8.23)

The derivative causality and the hidden power interaction between the electro-
magnetic and the mechanic subsystems are seen as two drawbacks of this model.
The derivative causality assigned to the AR-element representing the energy stored
in the air gap hinders the proper initialization of an already magnetized machine.
It is also undesirable because of the severe computational burdens due to the cum-
bersome equations of the system dynamics when written in machine variables (just
look at (8.23) and consider (8.22) which, moreover, are part of the causal paths
forcing the derivative causality). The second drawback is a more conceptual one,
as a BG model should clearly show a power interaction. Despite these objections,
it seems that further work could help improving these results, particularly because
the newly introduced AR-element together with the conservation of the machine
variables potentially could help to include magnetic nonlinearities in the model, a
feature that cannot be properly addressed in Park’s models.

8.3.2 BG Modeling of Electrical Machines Based on Energy
Conservation Principles

Except the last one, all the previous models represent electromagnetic–mechanical
coupling with gyrators, that is static components, linking electric and mechanical
ports. This is a consequence of the transformation of machine variables to some
rotating reference frame. But, excluding the unavoidable losses and other parasitic
phenomena, all these machines can be thought of as conservative energy-storing
power converters. Hence, a physically more proper approach would be to invoke
energy conservation principles in order to derive the essential models and then sup-
plement them with losses and other secondary effects. While the general literature
on technical systems widely uses this approach to obtain force or torque expressions
for transducers or converters, see [8] for instance, in much of the bond graph liter-
ature it is current practice to derive complete models in this way. This approach is
applied next to the switched reluctance motor (SRM) sketched in Fig. 8.29a. For
a general bond graph model describing many electromagnetic–mechanical devices
see [6].

For simplicity, consider first the elementary case of Fig. 8.29b, consisting of
a two-saliencies, soft-iron rotor with no magnets or windings and a two-phase
stator (only one phase shown). The instantaneous power into this device and the
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Fig. 8.29 (a) Switched reluctance motor configuration, one tooth per pole, 8/6 (Stat/Rot-
saliencies); (b) elementary SRM; (c) BG of the electromagnetic–mechanic conversion in the ele-
mentary device

corresponding increment in the energy stored in the coupling field is given in (8.24)
and (8.25), where θ is the rotor position, M the magnetomotive force due to the
stator current i , and ψ the flux in the air gap. The magnetic circuit is strongly non-
linear [38], but it is current practice to assume linearity in order to gain a conceptual,
tractable model. Under this assumption, the energy, which is magnetically stored in
the air gap, can be written as in (8.26) in terms of the flux and the rotor position-
dependent reluctance R(θ). From a BG point of view, the dependency E = E(θ, ψ)
of the energy on the rotor angle and the flux suggests the 2-port C-element shown in
Fig. 8.29c as model of the electromagnetic–mechanic interaction. The constitutive
relationships of this C-field can be derived by comparison of d E(θ, ψ) in (8.27)
(the total differential of the energy) with (8.25). By replacing (8.26) in the general
expressions of (8.28a) the torque and magnetomotive laws of (8.29) are obtained.
Figure 8.29c also shows the link between the electric and magnetic domains via the
gyrator with gain Ns, with Ns the number of stator-winding turns. Clearly, masking
the gyrator and the magnetic side of the C-field makes it look as an IC-field, for
which the inductance L(θ) should be used instead of the reluctance R(θ).

P(t) = Temθ̇ + Mψ̇ (8.24)

d E = Temdθ + Mdψ (8.25)

E = 1

2
R(θ)ψ2 = E(θ, ψ) (8.26)

d E(θ, ψ) = ∂E

∂θ
dθ + ∂E

∂ψ
dψ (8.27)
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Tem = ∂E

∂θ
(8.28a)

M = ∂E

∂ψ
(8.28b)

Tem = 1

2
ψ2 d R(θ)

dθ
(8.29a)

M = R(θ)ψ (8.29b)

Using the relation reluctance–inductance (8.30) and assigning derivative causal-
ity to the bond on the magnetic side of the C-field in Fig. 8.29c, the expression in
(8.31) for the voltage v(t) on the stator winding is obtained by standard BG-causal
equation formulation. Using current and inductance instead of flux and reluctance
to express the torque yields (8.32) instead of the first of the equations (8.29). These
last are the two expressions that can be found in the literature for the per-phase
voltage (under assumption of magnetic linearity and no mutual coupling with the
other stator inductances) and the electromagnetic torque, see [39, eqs. (8.24) and
(8.25)], for instance. If constructing a BG from equations, following (8.31) it would
be tempting to represent the coupling to the mechanical side with a MGY with[

d L(θ)
dθ i

]
as modulus, as the second term in the right-hand side of (8.31) is a speed

voltage. But this would be wrong, as it would yield a torque of twice the (correct)
value given in (8.32).

R(θ) = N 2
s

L(θ)
(8.30)

v = L(θ)
di

dt
+ θ̇ d L(θ)

dθ
i (8.31)

Tem = 1

2

d L(θ)

dθ
i2 (8.32)

The BG of a SRM with multiple stator phases and rotor saliencies can now
be constructed. Considering, for instance, the one treated in [40, 41] with four
phases and Nr saliencies, the BG is obtained just by replicating four times the
BG of Fig. 8.29c, one for each stator winding, and adding the corresponding volt-
age sources and dissipators due to electric resistance of the windings, as well as
the model of the mechanical subsystem. The result is shown in Fig. 8.30a using
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Fig. 8.30 (a) BG of a SRM; (b) phase inductance

scalar bonds, but it could be presented in a more compact way using multibonds
on the electromagnetic side. If the center of stator phase #1 serves to measure the
rotor angle, its phase inductance would be like that of the single-phase winding
in Fig. 8.29b, and the others would have the same expression successively shifted
90◦ each. The basic expression itself depends on the constructive features of the
machine. In its triangular part, Fig. 8.30b, adapted from Fig. 3.15 in [38], is consis-
tent with (8.33) for θ around the alignment position in Fig. 8.29b (formula adapted
from (11.23) related to Fig. 11.10 in [7]). In [40], (8.34) is used, a first harmonic
approximation that, replaced in (8.32), yields (8.35) for the torque.

L1(θ) = L0 + N 2
s μ0 D

(
Ds − ρθsgn(θ)

)

2ρ
(8.33)

L j (θ) = L0 − L cos

(

Nrθ − π( j − 1)

2

)

(8.34)

Tem = NrL

2

4∑

j=1

i2
j sin

(

Nrθ − π( j − 1)

2

)

(8.35)

A brief theoretical exposition of an electromechanical system modeling technique
along these lines together with its application to the BG modeling of an elementary
AC-generator (in both, the field winding and the permanent magnet versions) can be
found in [42], where an IC-element models the energy-conserving coupling field.
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8.4 BG-Based Simulation of Electrical Drives

This section presents two sets of simulations showing the IM behavior using dif-
ferent BG models. While in the first set the machine is supplied directly from a
3-phase AC-line, in the second set it is supplied by a power electronic converter,
the whole configuring an electrical drive under closed loop speed control. Thus,
the simulations not only demonstrate the behavior of the continuous BG models of
the machines, but also that the switched power systems involved in their controlled
supply can be as well modeled in the BG domain and simulated in a BG-friendly
environment. The simulations have been performed using the 20sim [27] library
presented in [43], which is available online at [44] together with all the models
built up for the simulations reported here. The simulation data have been exported
to and edited within Matlab only for plotting purposes. The first set of simulations
corresponds to the same open-loop experiment performed on three IM models: the
full-order dynamics BG of Fig. 8.12 in the (x, y)- or stationary reference frame
(ωF = 0 and ρ = 0) with null 0-components and the static and the first-order
dynamic BGs of Figs. 8.18 and 8.19, respectively. The second set of experiments
shows the behavior of the full-order model under closed loop control. The follow-
ing machine parameters have been used [45]: 7.5 HP, 440 V line voltage, 50 Hz
line frequency, 1440 rpm rated speed (np = 2), 37.2 Nm rated torque, 9.53 A rated
current, rs = 0.974�, L ls = 6.4 mH, Lm = 0.219 H, rr = 1.213�, L lr = 6.4 mH,
J = 0.042 Kgm2.

8.4.1 First Experiment: IM Behavior Undergoing
Free Acceleration from Stall, Stepwise Loading,
and Speed Reversal

The input events are at t = 0, direct connection to the network with the machine at
rest and unloaded; at t = 0.3 s, loading with the rated torque; at t = 0.5 s, switching
of two stator phases, equivalent to supply frequency reversal from 50 to −50 Hz.
Figure 8.31 shows the evolutions of the rotor speed ω and electromagnetic torque
Tem predicted by the three models. Due to the rather low value of J , different set-
tling times are clearly observed, that of the static model being the shortest, followed
by the first and the full-order dynamic models. Also, the strong oscillations of the
torque predicted by the latter are not completely filtered by the small inertia value
and manifest themselves in the speed evolution. Loading the machine produces a
permanent drop from the no-load speed corresponding to zero slip frequency to
a lesser value. The frequency inversion produces a speed reversal and brings the
machine to generator operation, because in reverse operation the external torque
being still applied injects energy, while Tem acts in the opposed sense of rota-
tion. A better insight into this behavior is provided by the (ω, Tem)-plane shown
in Fig. 8.32, where the slight difference between the steady states predicted for the
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Fig. 8.32 Trajectories in the (ω, Tem)-plane

loaded machine by the full order and the simplified models is due to the fact that the
last two are derived under the assumption of zero stator resistance.

It is instructive to compare the torque evolution and the electromagnetic mag-
nitudes in the rotor field-oriented reference frame, see Fig. 8.33, because they are
constant at steady state. The strong interaction between the (d, q)-components of
the stator current vector appreciated during the wide speed range sweeping start-up
and speed-reversal transients is due to the cross-influence of the ωF-dependent non-
linear voltage sources already commented, which can be appreciated in the BGs
of Figs. 8.12 and 8.13, with ωF defined by (8.14). On the contrary, there is no
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Fig. 8.33 Rotor flux and stator currents in rotor field-oriented reference frame

(d, q)-coupling at steady state, where – through its correlation at steady state with
the rotor flux amplitude (80 times amplified) – the current isd is observed to magne-
tize the rotor and isq to provide for torque generation (it is zero at no-load after the
start-up transient). Also, a slight coupling is observed during the loading transient,
which is explained by the small excursion of the speed in that time interval (ωr is
part of ωF, see (8.14)).

Figures 8.34 and 8.35 show the trajectories of the rotor flux and stator current
(x, y)-components over the whole experiment range and a limited time window,
respectively. In the zoomed trajectories the 90◦ phase-shift between the x- and y-
components can be appreciated, as well their 50 Hz frequency at steady state.

Finally, Fig. 8.36 shows the evolution of the rotor flux vector in the (x, y)- and
(d, q)-planes from time t = 0.4 s to t = 1 s. The vectors noted as ψr1 and ψr2
represent the rotor flux at steady state before and after the supply frequency reversal,
respectively. The figure on the left clearly shows the rotating field phenomenon
typical in AC-machines. Particularly, the effect of the supply frequency reversal
on the rotor flux vector can be appreciated: the counter-clockwise rotation gives
place to a transient that finally results in a clockwise rotation, including amplitude
variation during the transient and at the new steady state as well.
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8.4.2 Second Experiment: IM Behavior as Part
of an Electrical Drive

Figure 8.37a shows a generic technological sketch of an electrical drive or motion
control system in closed loop. Figure 8.37b is a functional representation of the
particular case of a simple constant V/f speed-control law for an IM. The output
of the PI-regulator acts as a reference (∗) for the slip speed ω2 = ω1 − npω (see
(8.16)), from which the stator 3-phase (in steady-state sinusoidal) voltage reference
is built in amplitude and angle (after modulo-2π integration of the stator frequency
reference). A standard 3-phase VSI (voltage source inverter, see [29]) converts these
references into the stator voltages. The 20sim-based simulation model of the control
system of Fig. 8.37b was implemented using the full-order dynamics BG model of
the IM, and a switched power junction (SPJ)-based BG model of the VSI inverter
(see [46] for the basics on SPJ and [47] and [44] for its 20sim-implementation and
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Fig. 8.37 (a) General setup of a Motion control system, (b) V / f control of induction motor

updates). A short description of the SPJs and its use to model a VSI is given in
the Appendix, along with a simple simulation example illustrating the voltage and
current waveforms produced by the VSI.

Figure 8.38 shows the evolution of the rotor speed and the torque in response to a
soft starting from standstill at no load, induced by the sigmoid-like speed reference,
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Fig. 8.38 Speed reference, rotor speed, and electromagnetic torque
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to a rated loading at t = 0.4 s. Figure 8.39 shows the (ω, Tem)-plane, where the
light-gray and black lines are the simulation results with and without the power
electronic devices, respectively. Now, due to the presence of the PI-regulator in the
closed loop, the speed recovers its setpoint value when the motor is loaded, unlike
in the open-loop case. The ripple observed in the torque (see the amplified time
window in Fig. 8.38) is due to the PWM-modulated rectangular wave supplied to the
IM by the inverter. Due to the high frequency of the PWM-carrier wave employed
(5 KHz) the machine leakage inductance is able to filter this input. Nevertheless,
a small ripple is still observed in the stator currents (see Fig. 8.40 and details in
Fig. 8.41), which are solely responsible for the torque ripple. Indeed, the higher
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Fig. 8.40 Stator currents
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Fig. 8.41 Detail of stator currents

frequency components have been completely filtered at the rotor flux level, which
shows no ripple at all (Fig. 8.42). The upper parts of Figs. 8.40 and 8.42 show the
50 Hz fundamental components of the steady-state stator current and rotor flux in
the stationary reference frame, whereas the lower part of Fig. 8.42, showing the
rotor flux wave as seen from a frame moving with the rotor at ωr (i.e., seen from
the rotor natural frame), indicates that its true (steady-state) frequency is null when
the machine is unloaded and about 2 Hz when the machine is loaded. This latter
value is the supplementary slip frequency f ∗2 = ω∗2/2π (see Fig. 8.37b) added by
the controller in order to avoid a speed drop when the motor is loaded.

This section shows that all the power processing components of an electrical
drive, even the switched power electronics, can be advantageously modeled in the

Fig. 8.42 Rotor flux in the stationary frame (top) and in a frame fixed to the rotor (d-axis aligned
with the rotor a-axis, q-axis 90◦ ahead) (bottom)
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BG domain, and that the whole system can be successfully simulated in a BG-
friendly environment allowing to specify other subsystems in their natural ways,
as equations or block diagrams, for instance.

8.5 Conclusions

A broad survey on bond graph modeling of rotary electric machinery has been given
in this chapter. The review includes classical DC- and AC-machines with emphasis
on the induction machine, on the one hand due to its overwhelming presence in
all kinds of applications (as prime mover, controlled drive, doubly fed induction
generator, etc.) and on the other hand because of its complexity, which allows
to introduce standard modeling techniques in a paradigmatic way transferable to
other machine types. The presentation of the PMSM, BLDCM, synchronous reluc-
tance, stepper, and switched reluctance machine models allows to provide a mis-
cellany of bond graphs of motors increasingly employed in low-power drives under
closed loop control and also to confront several bond graph modeling techniques for
electromagnetic–mechanical devices. Although the matter surveyed in this chapter
in no way exhausts the subject, the authors believe that the background provided will
help the interested reader to tackle similar or more complex problems concerning
the analytical handling and bond graph modeling of electric machinery.

Acknowledgments The authors would like to thank Matías Nacusse, a PhD student at FCEIA-
UNR supervised by S. Junco, for his valuable help in performing many of the simulations presented
in this chapter.

Appendix: Bond Graph Modeling and Simulation of a Power
Electronic Inverter Using Switched Power Junctions

Switched Power Junctions

A switched power junction (SPJ, [46]) is a 0- (or 1-) BG-junction having a graph-
ical representation that admits incoming effort (or flow) in more than one of their
adjacent bonds. This fact does not imply a causal conflict because one and only one
of these bonds is enabled at a given time instant, so that the bonds with outcoming
efforts (flows) receive a uniquely determined effort (flow) information at each time
instant. The symbols for these non-standard BG-elements are 0S and 1S , as shown
in Fig. 8.43. They have associated a set of control variables that enable and disable
the adjacent bonds impressing effort on the 0S , respectively flow on the 1S . The
control variables Ui (i = 1, . . . , n) take on values in the set {0, 1}; only one of the
Ui is allowed to have the value 1 at a given time instant, all the others are null. The
constitutive relationships of 0S and 1S are given in (8.36) and (8.37), respectively.
Clearly, the SPJs behave like standard BG-junctions when any of the bonds #1 to
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Fig. 8.43 Switched power junctions: (a) 0S , (b) 1S

#n is enabled by the associated control variable (all the others disabled). Thus, each
one of these SPJs has n states or modes, which are called commutation modes.

Junction effort = U1e1+U2e2+· · ·+Unen; fi = Ui ( fn+1+ fn+2); i = 1, ..., n
(8.36)

Junction flow = U1 f1 +U2 f2 + · · · +Un fn; ei = Ui (en+1 + en+2); i = 1, ..., n
(8.37)

It is interesting to notice that any SPJ can be constructed using standard BG-
elements, as shown in Fig. 8.44 for the examples of Fig. 8.43. This can be immedi-
ately verified checking (8.36) and (8.37). But this is not convenient when it comes
to the practice, as the user is obliged to build their own SPJs in an ad hoc manner.
To overcome this problem, 0S and 1S have been programmed as standard compo-
nents of the 20sim library using the programming language SIDOPS+, see [48] for
details. They can be configured in 20sim as any standard BG component, including
the causality assignment to all their bonds.

Fig. 8.44 Representation of SPJs with standard BG-elements: (a) 0S , (b) 1S
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3-Phase Inverter

The basic transistor inverter in Fig. 8.45 is modeled in Fig. 8.46 assuming that each
transistor–diode pair behaves like an ideal switch, which results in complementary
binary states for each converter half-bridge. The modeling with SPJs is explained
in Fig. 8.47 on one of its three identical half-bridges or columns that are associ-
ated with the “a” inverter-output terminal. The 1S-junctions model the switching of
each diode–transistor pair current between the line current ia (switch “on”) and zero
Ampère (switch “off”). The 0S-junction models the corresponding switching of the
terminal voltage between the DC-link voltages +E and −E .

Fig. 8.45 Switched 3-phase transistor inverter with load

In order to illustrate its behavior, this inverter model has been used to simulate
the supply to a �-connected 3-phase RL-load with a six-step inverter modulation
policy providing the control signals Ui to the transistor bases Bi , cf. Figs. 8.45 and
8.46 for this notation (in the example of Section 8.4 in this chapter, instead of a
six-step modulation, the control signal to the inverter is provided by a PWM sig-
nal commanded by the motor-controller output). Figure 8.48 shows the simulation
model of inverter-RL-load system.

The few waveforms shown in Fig. 8.49 allow to appreciate the correctness of
the results and the advantage of the object-oriented feature of BG modeling. The
first plot is the DC-link current ICC flowing through the constant supply inverter
source. The piecewise constant function in the middle, assuming three levels, is the
line-to-line voltage Vab. The plot at the bottom is the line current ia , a piecewise
composition of first-order exponential functions due to the stepwise inverter supply
to the linear RL-load. It is clearly seen that, as all circuit components and variables
are represented in the BG, any variable of interest can be observed at any moment.
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Fig. 8.46 SPJ BG model of switched 3-phase inverter
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Fig. 8.47 SPJ model of inverter half-bridge
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Six Step
Modulation

Fig. 8.48 BG model of inverter-supplied electrical system

Fig. 8.49 Simulated waveforms in inverter-supplied system
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It should be noticed that, under the assumptions made, a simpler model for the
inverter could have been constructed, using only the 0S-junction for each inverter
column. This is easily understood considering that the role of each of the two 1S is
to commute the current through the corresponding switch from zero to that flowing
through the load terminal when the latter is connected to the DC-line and vice versa
when it is disconnected. But this is already done by the 0S when performing these
reconnections. That is, both 1S are redundant. The reason for the construction of
the model in Fig. 8.49 is to have a more object-oriented model, as the 1S can be
seen each in correspondence with each transistor–diode pair. These two elements
would be also necessary when assuming more complex situations regarding the
commutation of the pair of switches in each column (no logical complementarity
due to the insertion of commutation dead times to protect the DC-source against
possible short circuits in the columns).
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Chapter 9
Simulation of Multi-body Systems
Using Multi-bond Graphs

Jesus Felez, Gregorio Romero, Joaquín Maroto, and María L. Martinez

Abstract The use of multi-bond graphs (MBGs) has an increasing importance in
the development of large mechanical systems, called multi-body systems (MBS),
composed of a finite number of rigid bodies interconnected by kinematical con-
straints. The constitutive relationships of multi-bond resistors, transformers, and
gyrators give way to zero-order causal paths (ZCPs) whose most important peculiar-
ity is that their associated topological loops involve more than one direction. Two
different methods are used to solve the ZCPs. With the first one, Lagrange multipli-
ers are introduced by means of new flows and efforts as break variables of causal
paths, adding constraint equations. With the second one, break variables are used
directly to open the ZCPs. The procedure used solves the problem and implies the
presence of new variables and constraint equations. Several algorithms have been
developed to obtain the set of equations. The result is a set of differential–algebraic
equations (DAEs) solved using a backward differential formulae (BDF) numerical
method. An application to multi-body systems with a combination of classes of
ZCPs will be shown.

Keywords Break variables ·Differential–algebraic systems · Lagrange multipliers ·
Multi-body system ·Multi-bond graphs · Zero-order causal paths

9.1 Introduction

Multi-bond graphs are a vectorial extension of one-dimensional bond graphs. The
main objective of this chapter is the modeling of multi-body systems using multi-
bond graphs and how to solve the problem that these systems present when zero-
order causal paths (ZCPs) appear.
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The first part of the chapter describes how multi-body systems are modeled using
MBGs. There is an explanation of how the basic bond graph of a rigid body is
constructed in space and how kinematic constraints are set. Also included is how to
simplify these models when planar movement is considered.

The second part of the chapter deals with how to obtain the dynamic equations
of this kind of system and how to solve the ZCPs that appear.

Initially, flows corresponding to inertances and displacements associated with
compliances are used to establish the dynamic equations and to find the zero-order
causal paths of the system. Two different methods are used to solve the ZCPs
[1, 2]. With the first one, Lagrange multipliers are introduced by means of new
flows and efforts as break variables of causal paths, adding constraint equations.
With the second one, break variables are used directly to open the ZCPs.

9.2 Modeling Multi-body Systems

This section details how a basic bond graph is constructed for defining the move-
ment of a rigid body in space. For modeling MBS, multi-bond graphs will be used.
Also explained is how kinematic constraints are set and the section includes how to
simplify these models in planar movement.

9.2.1 Multi-bond Graph Formulation

Multi-bond graph formulation represents an extension of the single bonds. This way,
a multi-bond is formed by a set of single bonds, as Fig. 9.1 shows. The multi-bond
elements are represented by a double line arrow. The orientation of the multi-bond
indicates the direction of transmission of positive power (P > 0) and is represented
by a line at the end of the bond like the half arrow of the single bond.

The multi-bond graph notation, introduced by Breedveld [3, 4], has major advan-
tages. First, it enables the bond graph to be viewed in a more compact and concise
manner. Second, it enables matrix elements to be inserted, and all the mathematical
power implied by such.

Therefore, the power transmitted through a multi-bond will be the sum of the
power transmitted by each of its single bonds. Therefore,

P =
∑

i

Pi =
∑

i

ei fi = �eT · �f (9.1)

Fig. 9.1 Representation
of multi-bonds
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9.2.1.1 The Storage Field [C]

The field [C] is the generalization of element C to n-dimensions. Its graphic repre-
sentation and constitutive equations appear in Fig. 9.2.

ei = gi (q1, . . . , q j , e j+1, . . . , en)

i = 1, . . . , j

qk = gk(e1, . . . , e j , q j+1, . . . , qn)

k = j + 1, . . . , n

(9.2)

Fig. 9.2 The energy field [C]

9.2.1.2 The Storage Field [I]

Its description is similar and it supposes the extension to n-dimensions of element
I . Its representation and constitutive equations appear in Fig. 9.3.

fi = gi (p1, . . . , p j , f j+1, . . . , fn)

i = 1, . . . , j

pk = gk( f1, . . . , f j , p j+1, . . . , pn)

k = j + 1, . . . , n

(9.3)

Fig. 9.3 The energy field [I ]

9.2.1.3 The Dissipative Field [R]

A field [R] is an element of n-ports whose constitutive laws relate the efforts to the
n flows of its ports. Its representation and constitutive equations appear in Fig. 9.4.

ei = gi ( f1, . . . , f j , e j+1, . . . , en)

i = 1, . . . , j

fk = gk(e1, . . . , e j , f j+1, . . . , fn)

k = j + 1, . . . , n

(9.4)

Fig. 9.4 The dissipative field [R]
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9.2.1.4 Extensions of TF and GY to the Multi-bond
Graph Formulation

If elements TF and GY are extended to the multi-bond graph formulation, they
become multi-port elements (Fig. 9.5). Their constitutive equations are as follows
in (9.5) and (9.6):

Fig. 9.5 Elements [TF] and
[GY]

�fout = [TF] �fin

�ein = [TF]T �eout
(9.5)

�eout = [GY] �fin

�ein = [GY]T �fout
(9.6)

9.2.1.5 Extensions of 0- and 1-Junctions to the Multi-bond
Graph Formulation

The continuity of flows and efforts represented by the 0- and 1-junctions can be
rapidly generalized. The continuity of flows in the 1-junction implies that

i = 1, . . . , n∑

j
ei

j = 0, j = 1, . . . ,m

f i
k = f i

1 , j = 2, . . . ,m

(9.7)

And the continuity of efforts for the 0-junction implies

i = 1, . . . , n∑

j
f i

j = 0, j = 1, . . . ,m

ei
k = ei

1, j = 2, . . . ,m

(9.8)

The n-dimensional 0- and 1-junctions are represented in Fig. 9.6.

9.2.2 Modeling Rigid Bodies

In this section, a standard bond graph will be developed for a free rigid body with
three-dimensional movement in which multi-bond graphs will be used. To define
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Fig. 9.6 Definition of the
0- and 1-junctions in
multi-bond graph notation

the movement of a rigid body an arbitrary point of reference will be used. The case
of the point of reference located at the center of mass will also be particularized.

9.2.2.1 Nomenclature

The vector variables are represented generically as �v. A subscript will be used to
indicate the point referred to and a superscript to specify the system of coordinates
to which it is referred. For example, �v1

P is the position vector of point P in respect
of the reference system 1.

9.2.2.2 Bond Graph of a Free Rigid Body

This section will develop the bond graph of a mechanical elements system. This
system represents the free movement of a rigid body, with a local reference system
designated as 1, which has its center of mass at point G. A generic point P will
also be defined to serve as an example of the junction point with another rigid body.
Finally, an inertial reference frame centered at point 0 will also be defined (Fig. 9.7).

The kinematic relations for the velocity of a generic point P of a body are

�v1
P = �v1

1 + �ω1
1 × �x1

P (9.9)

Fig. 9.7 Inertial and local
references
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By expressing the cross product of the previous equation in its matrix form, it
can be written as

�ω1
1 × �x1

P =

⎡

⎢
⎢
⎣

0 x1z
P −x1y

P

−x1z
P 0 x1x

P

x1y
P −x1x

P 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ω1x
1

ω
1y
1

ω1z
1

⎤

⎥
⎥
⎦ (9.10)

which when compacted in vector form gives

�v1
P = �v1

1 +
[

X
(
�x1

P

)]
�ω1

1 (9.11)

where

[
X

(
�x1

P

)]
=

⎡

⎢
⎢
⎣

0 x1z
P −x1y

P

−x1z
P 0 x1x

P

x1y
P −x1x

P 0

⎤

⎥
⎥
⎦ (9.12)

To construct the bond graph of the rigid body a series of 1-junctions is set at the
different points where velocities or velocity components are defined. So, in Fig. 9.8,
1-junctions are set that are associated with the body’s absolute angular velocity �ω1

1,

Fig. 9.8 Kinematic relations
in the bond graph of a single
rigid body
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the absolute velocity of the point of reference �v1
1, the absolute velocity of the body’s

center of mass �v0
G and �v1

G expressed in the inertial and local reference systems,
respectively, the absolute velocity of point P, �v1

P , and the velocities due to rotation:
the velocity of the center of mass �v1r

G and the velocity of points P, �v1r
P . All the

velocities are described in coordinates of the fixed reference to the rigid body except
the absolute velocity of the center of mass which is also expressed in coordinates of
the inertial reference.

The absolute velocity of the center of mass is formed by superimposing the
absolute velocity of the body’s point of reference and the velocity of the center
of mass due to its rotation. In Fig. 9.8 this velocity is represented by a 0-junction.
The velocity due to rotation is obtained in the multi-bond model by means of a
multi-port transformer with a coefficient matrix obtained in accordance with (9.12).

In this 0-junction, the absolute velocity of the center of mass �v1
G is described in

coordinates of the fixed frame to the body. In order to also represent it in coordinates
of the inertial reference �v0

G , a transformation of coordinates will be applied using an
MTF coefficient matrix element [A0,1] (9.13). The value of the coefficients of the
preceding matrix will be seen further on:

�v1
G =

[
A0,1

]
�v0

G (9.13)

Regarding the velocities associated with the 1-junctions that represent the abso-
lute velocities of the points of junction with other bodies, their description is equiv-
alent to the description of the velocity of the center of mass (Fig. 9.8).

The elements representing the element dynamic properties of the system will then
be added. These elements are the translational inertance and the rotational inertance
of the body, an effort source representing the forces on the center of mass, and an
element representing the inertial forces.

The sum of all the external forces is equal to the time variation of the linear
moment at the body’s center of mass. This sum of forces can be obtained from the
two 1-junctions that represent the velocity of the center of mass. The 1-junction
above describes the velocity of the center of mass described in coordinates of the
fixed frame to the body. In this junction, the forces acting on the generic point P are
added together with a negative sign due to the chosen orientation of the three bonds
assembled at this 1-junction. The 1-junction below represents the velocity of the
center of mass in coordinates of the inertial frame. In this 1-junction, the external
force of gravity Se is applied. The inertance element associated with the masses,
with a diagonal matrix in this case, is connected to the same 1-junction.

The torques acting on the body are added together in 1-junction which represents
the absolute angular velocity of the body. The forces intervening on the body with
a line of action that does not pass through the center of mass also generate torque.
In the bond graph this torque is obtained through the MTF elements that convert
angular into linear velocity due to rotation.

The translational inertia of the body taken into account is connected in the center
of mass and is represented by diagonal matrix that will have the total mass of the
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body in each of its components. The inertia vector is connected to the 1-junction
which represents the absolute velocity of the center of mass in coordinates of the
inertial frame.

If it is wished to establish the inertia in the non-inertial reference system, the
translational inertia must be transformed through the MTF representing the change
of coordinates from �v0

G to �v1
G . This transformation results in an inertia that is equal

to the translational inertia and an asymmetric gyristor with a matrix of coefficients
of expression (9.14), as can be seen in Fig. 9.9:

(b)(a)

Fig. 9.9 (a) Partial bond graph with the two 1-junctions, an MTF and the mass matrix. (b) Virtual
inertia and GYS

�eGr = [Gr ] �v1
G =

⎡

⎢
⎢
⎣

0 −m · ω1z
P m · ω1y

P

m · ω1z
P 0 −m · ω1x

P

−m · ω1y
P m · ω1x

P 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

v1x
G

v
1y
G

v1z
G

⎤

⎥
⎥
⎦ (9.14)

The GYS has an asymmetric matrix corresponding to the Euler equations. Its
structure can be represented by three one-dimensional MGYs [5, 6] called an EJS
(Eulerian junction structure), as Fig. 9.10 shows.

The rotational inertia, which is defined with respect to the center of mass and
a fixed reference to the body, will be constant if it is defined in coordinates of
this latter frame. It will consequently be added to the 1-junction representing the
absolute angular velocity of the body of the frame of fixed coordinates to the body.

Fig. 9.10 Eulerian junction
structure and its
representation by a gyristor

mω mω

mω

e

v
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Given that the rotational inertia and the angular velocity are expressed in the local
reference system, a GYS element appears similar to that in (9.14) with the following
expression:

�eGr = �ω1
1 ×

[
J 1

G

]
�ω1

1 =
[

X
([

J 1
G

]
�ω1

1

)]
�ω1

1 =
[

X
( �L1

G

)]
�ω1

1 = [EJS] �ω1
1 (9.15)

As with the mass matrix, the gyristor can be modeled as a ring of one-
dimensional MGYs because its constitutive matrix is antisymmetric. In this case,
the MGY is modulated by the angular moment �L1

G as Fig. 9.11 and [5, 6] show.

Fig. 9.11 EJS modulated by
the angular moment

ω

ω ω

Therefore, the bond graph of a single rigid body is as illustrated in Fig. 9.12.
If the point of reference (point 1) coincides with the center of mass (point G), the

displacement vector between point 1 and point G is null. The transformer relating
the velocity due to rotation of point G disappears resulting in the bond graph in
Fig. 9.13.

Fig. 9.12 Bond graph of a single rigid body
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Fig. 9.13 Bond graph with the point of reference coinciding with the center of mass

9.2.2.3 Rigid Body with Three Degrees of Freedom in Planar Movement

This section shows how to simplify the bond graph when movement on the x–y
plane is taken into account.

If velocity of the center of mass referred to the inertial system, the rigid body
planar model is formed by a body where the two movements of the center of mass
and the rotation of the body in respect of this point are considered to be degrees
of freedom. The velocity of the center of mass is expressed in coordinates of the
inertial reference of the system. It is represented in Fig. 9.14.

If the velocity of the center of mass is in coordinates of the fixed system of
reference to the body, the resulting bond graph is that shown in Fig. 9.15.

9.2.2.4 Choosing the System of Coordinates

There are various ways to obtain the coordinates that unequivocally define the loca-
tion of the body. Due to the way the bond graph is constructed, the most appropriate
are the coordinates of the point of reference and in particular, the Euler angles or the
Cardan angles. These types of coordinates are formed by a set of three coordinates
that define the position of a point of reference in space, usually the center of mass,
and by another set of coordinates that define the orientation of the body in space.

The position of the body’s center of mass will be found by direct integration of
the velocity �v0

G .
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Fig. 9.14 Body with three planar degrees of freedom

Fig. 9.15 Body with three degrees of planar freedom with the velocities of the center of mass
expressed in coordinates of the fixed reference to the body
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To determine the orientation of the fixed local reference to the body, Euler angles
or Cardan angles can be used. Every rotation can be reconstructed by using three
consecutive rotations about three specific axes. In particular, in order to define the
transformation of the global reference to the local one, an initial rotation must be
defined θ0z

0′ about the z-axis of the 0 global reference giving the 0’ frame, a sec-

ond rotation θ0′y
0′′ about the y-axis and about the intermediate 0’ frame resulting in

the 0” frame and a rotation θ0′′x
1 about the x-axis of the 0” frame. This way, the

transformation
[
A1,0

]
of the global reference to the local reference will be defined

by

�e1 =
[

A1,0′′
] [

A0′′,0′
] [

A0′,0
]
�e0 =

[
A1,0

]
�e0 (9.16)

where

[
A1,0′′

]
=

⎡

⎢
⎢
⎣

1 0 0

0 cos θ0′′x
1 sin θ0′′x

1

0 − sin θ0′′x
1 cos θ0′′x

1

⎤

⎥
⎥
⎦ (9.17)

[
A0′′,0′

]
=

⎡

⎢
⎢
⎢
⎣

cos θ0′y
0′′ 0 − sin θ0′y

0′′

0 1 0

sin θ0′y
0′′ 0 cos θ0′y

0′′

⎤

⎥
⎥
⎥
⎦

(9.18)

[
A0′,0

]
=

⎡

⎢
⎢
⎣

cos θ0z
0′ sin θ0z

0′ 0

− sin θ0z
0′ cos θ0z

0′ 0

0 0 1

⎤

⎥
⎥
⎦ (9.19)

This way, the angular velocity of the fixed local frame to the body can be
expressed as a function of the three angular velocities of the Cardan angles:

�ω1
1 =

⎡

⎢
⎢
⎣

ω0′′x
1

0

0

⎤

⎥
⎥
⎦+

[
A1,0′′

]

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0

ω
0′y
0′′

0

⎤

⎥
⎥
⎦+

[
A0′′,0′

]

⎡

⎢
⎢
⎣

0

0

ω0z
0′

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ (9.20)

By inverting these equations a set of three differential equations is obtained that
enable the Cardan angles to be found by taking the body’s angular velocity in coor-
dinates of the moving frame:
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⎡

⎢
⎢
⎢
⎣

θ̇0′′x
1

θ̇
0′y
0′′

θ̇0z
0′

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

1 sin θ0′′x
1 tan θ0′y

0′′ cos θ0′′x
1 tan θ0′y

0′′

0 cos θ0′′x
1 − sin θ0′′x

1

0 − sin θ0′′x
1 / cos θ0′y

0′′ cos θ0′′x
1 / cos θ0′y

0′′

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ω0′′x
1

ω
0′y
0′′

ω0z
0′

⎤

⎥
⎥
⎥
⎦

(9.21)

9.2.3 Kinematic Constraints

Kinematic constraints are defined by setting a velocity condition equal to zero in the
degree of freedom that they constrain. There are several ways to model the kinematic
constraints by setting this condition of zero velocity.

The first way is to insert special elements called zero compliances (ZC) [7]. These
elements are physically equivalent to infinite stiffness dampers where the relative
displacement is zero (and therefore so is the velocity). These elements introduce new
variables into the system that are the forces of reaction in the kinematic constraints.
The form of the equations to be obtained by using these elements will be seen in the
following section.

The second way is to establish the continuity of velocities in the direction in
which the movement is constrained. If this technique is used, some causality con-
flicts will appear, it being necessary to open the causality loops that appear.

The following section of this chapter describes the form of the equations that are
obtained in each case and a detailed description of how to deal with each of the
procedures.

By way of example, Fig. 9.16 illustrates two types of constraints and the resulting
bond graph in each case.

Fig. 9.16 Kinematic constraints
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9.3 Methods for Obtaining the Dynamic Equations

In one-dimensional bond graphs, some different techniques have been used in the
literature to generate the simulation models of systems with causal problems. The
first technique is the stiff-compliance approach [8]. The second one consists of using
the Lagrange multipliers approach [7, 9, 10]. The introduction of residual sinks [11]
presents the same nature of solution as Lagrange multipliers. Other option is to open
the topological loops associated with the ZCPs that could appear.

The stiff-compliance approach avoids the appearance of class 1 ZCPs by connect-
ing finite but stiff compliances to the BG model in such a way that all inertances
become integral causality. The state equations so obtained are ODEs of the form
f (x, ẋ,U, t) = 0, where x is the state variables, ẋ the time derivatives, U the
inputs, and t the time variable.

9.3.1 The Lagrange Multipliers Method

There are several ways to introduce the Lagrange multipliers into the system. One
of them is the use of zero compliance elements [7]. These elements establish con-
straint equations between flows with causal problems and introduce new variables
corresponding to the Lagrange multipliers.

Let us see how the mechanical system of Fig. 9.17a is solved with Lagrange
multipliers. It consists of two interconnected masses m1 and m2 oscillating in a
vertical direction on a spring C1. A causal dependence between inertances I1 and
I2 appears. Figure 9.17b shows the associated bond graph. Finally, in Fig. 9.17c a
ZC is introduced between I1 and I2; in this way, both inertances become integral
causality.

(a) (b) (c)

Fig. 9.17 (a) Physical system. (b) Associated BG. (c) Lagrange multiplier approach
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The system equations for the bond graph in Fig. 9.17c are

ẋ1 = S f1 − x2 (9.22a)

m1 ẋ2 = m1g + K x1 − x4 (9.22b)

m2 ẋ3 = m2g + x4 (9.22c)

0 = x2 − x3 (9.22d)

where x1 is the displacement of the compliance C1, x2 and x3 are the velocities of
the inertances I1 and I2, and x4 is the Lagrange multiplier associated with the ZC
element, with the meaning of the constraint force between mass 1 and mass 2. Both
masses move with the same velocity (9.22d), which derives from the fact that they
are rigidly attached to each other.

The use of Lagrange multipliers implies that the number of equations increases
by the same amount as the number of Lagrange multipliers and the index of nilpo-
tency of the mathematical model also increases.

9.3.2 The ZCPs Opening Method

The classification of zero-order causal paths originates from the research work car-
ried out by van Dijk and Breedveld [10, 12].

The following classification is based on [10, 12], but differs from the fact that no
distinction between essential and non-essential causal cycles is stated [13, 14].

Class 1 ZCPs: The causal path is set between storage ports with integral causality
and storage ports with differential causality. The associated topological loops are
flat loops (Fig. 9.18).

Fig. 9.18 Class 1 ZCPs

Class 2 ZCPs: The causal path is set between elements whose constitutive relations
are algebraic (resistors are the most typical case). The topological loops are flat
(Fig. 9.19).
Class 3 ZCPs: It is a causal cycle whose topological loops are open (only one of the
two variables associated with each bond is used). The causal path starts and ends in
the same port of an element (R1 in Fig. 9.20).
Class 4 ZCPs: It is a causal cycle whose topological loops are closed (Fig. 9.21).
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Fig. 9.19 Class 2 ZCPs

Fig. 9.20 Class 3 ZCPs

Fig. 9.21 Class 4 ZCPs

For an easy comprehension of the ZCP opening method, let us now have a very
simple mechanical system consisting of a mass hung on top of two vertical dampers
(Fig. 9.22). This bond graph shows the existence of one class 2 ZCP between resis-
tors R1 and R2.

The differential equation of the inertia, with x1 being the velocity of m1, is the
following:

m1 ẋ1 = m1g + eR2 (9.23)

The effort in R2(eR2), the flow in 01( f01), and the flow in R1( fR1) are

eR2 = r2 · f01 (9.24a)

f01 = S f1 − x1 − fR1 (9.24b)

fR1 = eR1/r1 (9.24c)
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(a) (b)

Fig. 9.22 (a) Mass – double damper system. (b) Its associated bond graph

Since (9.24a) depends on (9.24c) and vice versa, an algebraic loop has been con-
stituted. There is a class 2 ZCP between resistors R1 and R2.

Let us now take the flow in R2( fR2 = f01) as a break variable z1. In this way,
systems (9.23) and (9.24) are transformed to the DAE system:

m1 ẋ1 = m1g + r2z1 (9.25a)

z1 = S f1 − x1 − r2z1/r1 (9.25b)

The opening procedure of causal loops produces systems of differential–
algebraic equations (DAE). These systems are composed of

• Differential equations coming from energy storage elements
• Constraint equations relating the derivative and integral causality ports in systems

with ZCP class 1
• Algebraic equations that relate the break variables with one another by means of

algebraic assignments along the existing topological loops in systems with ZCP
classes 2, 3, and 4

9.3.3 Mathematical Difficulties to Solve Systems with ZCPs

The resulting equations of systems containing algebraic loops can be reduced to a
DAE in semi-explicit form:
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ẋ = f (x, z,U, t) (9.26a)

g(x, z,U ) = 0 (9.26b)

where z is the vector of semi-state variables (break variables) resulting from the
opening of the topological loops and U is a time-dependent source vector.

This DAE system can be solved by means of numerical methods used for stiff
ODE systems [15]. BDF methods replace ẋ by a polynomial approximation. The
DASSL solver [16], which employs this technique, is our used numerical code.

The index of nilpotency [17] is the number of times the semi-state part has to be
differentiated to obtain an ODE system. The index of a DAE measures its singular-
ity. Systems of indices 0 and 1 can easily be solved using BDF methods. Systems of
index 2 can only be solved if ∂g/∂z = 0 in (9.26). In addition, DAE systems with
an index greater than 0 require consistent initial conditions.

The index of nilpotency of the systems as predicted by the number of ZCPs is
the following:

• Systems without ZCPs (ODE systems): Index= 0

• Systems with class 1 ZCPs: Index= 0 or 1

• Systems with class 2 ZCPs: Index= 1

• Systems with class 3 ZCPs: Index= 0 or 1

• Systems with class 4 ZCPs: Index= 0, 1, or 2

In (9.26), the lower the number of break variables, the easier it is to solve this
system. The purpose of the following algorithms is to open all the existing causal
loops in the bond graph by means of the minimum number of break variables. In
a later step, the mathematical model will be automatically obtained based on these
break variables. These algorithms have been conceived to deal with one-dimensional
and multi-bond graph systems.

9.3.4 Algorithms for Solving Systems with ZCPs
in One-Dimensional Bond Graphs

Before applying these algorithms, the bond graph model must be causally aug-
mented. In [13, 14] an improved causality assignment procedure is explained.
Causality will drive the search of ZCPs. Two algorithms are used to obtain the
mathematical models of bond graph systems.

9.3.4.1 Algorithm 1: Assigning Break Variables

The purpose of this first algorithm is to obtain the smallest number of break variables
that open all the ZCPs of the system in a systematic way. Achieving this is made pos-
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sible by applying an iterative method that decides which variables simultaneously
break more ZCPs.

The procedural steps for one-dimensional bond graph are the following:

(1) Searching for the origin port of energy storage ports:
The associated flows or efforts in the origin port of the energy storage ports
become a state variable, regardless of their causality.

The bond graph in Fig. 9.23 is shown as an example.

Fig. 9.23 Search for the
origin port of energy storage
ports

The origin ports of both inertance elements are 11 and 02. The efforts gath-
ering in 11 and the flows in 02 form the second term of two state equations
defining the system. Any effort signal topological loop involving efforts in 11
or any flow signal loop involving flows in 02 are broken by these state variables
x1 and x2. Of course, the class 1 flat loop established between storage elements
is opened by these equations.

(2) While class 2 or 3 ZCPs exist:
Class 2 ZCPs, i.e., those causal paths that begin and end in resistor ports, are
sought. Once all the resistors associated with classes 2 or 3 have been analyzed,
the program will select as break variable the flow or effort associated with the
resistor whose origin port belongs to the greatest number of topological loops
of classes 2, 3, and 4 (sum of them). This sum is required to obtain a minimum
number of break variables.

The bond graph in Fig. 9.24 shows an example.

(a) If the flow in the origin port of R1(02) was taken as break variable then

• class 2, 3, and 4 non-open loops having the following ports as initiator:

1. R1: 0
2. R2: 1 class 4 (loop in efforts)
3. R3: 1 class 4 (loop in efforts)

• Quantity of non-open topological loops: 2
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Fig. 9.24 Bond graph with ZCP class 2

(b) If the effort in the origin port of R2 (12) was taken as break variable then

• class 2, 3, and 4 non-open loops having the following ports as initiator:

4. R1: 1 class 4 (loop in efforts) +1 class 2 (loop between R1 and R3)

5. R2: 0
6. R3: 1 class 2 (loop between R3 and R1)

• Quantity of non-open topological loops: 3

(c) If the effort in the origin port of R3(11) was taken as break variable then

• class 2, 3, and 4 non-open loops having the following ports as initiator:

7. R1: 1 class 4 (loop in flows)
8. R2: 0
9. R3: 0

• Quantity of non-open topological loops: 1

Therefore, the effort in R3 is chosen as break variable since it opens the only
topological loop that appears. So, the first constraint equation of the example is

r3 · z1 = e11 (9.27)

where r3 is the linear resistor parameter, z1 is the flow in R3, and e11 stands for
the sum of efforts gathering in the node 11.

(3) While class 4 ZCPs exist with resistors and storage elements as path initiators:
If no class 2 or 3 ZCPs exist or they have already been opened, the mechanism
to open the class 4 ZCPs will be the following: from all the GJS ports belonging
to this class of ZCP, those flows or efforts in the ports with most associated class
4 topological loops will be chosen as break variables.
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The same example of Fig. 9.23 will be considered. As the effort in the origin
port of R3(e11) has been chosen as break variable of the class 4 topological loop
in efforts, there still remains one class 4 topological loop in flows having R1 as
initiator. The possible port candidates to open this algebraic loop are the flows
gathering in 01, 02, and at the input port of the transformer.

The program chooses as second break variable, for sequential reasons, the
flows in 01. Therefore, the second constraint equation of the example is

z2 = f01 (9.28)

where f01 stands for the sum of flows gathering in the junction port 01.
(4) END

Equations (9.27) and (9.28) define the bond graph in Fig. 9.24. The values of
e11 and f01 are

e11 = r1 (S f1 − z1 − t1z2)+ Se1 + r3z1/t1 (9.29a)

f01 = Se1/r2 + r3z1/ (t1r2)− S f1 + z1 + t1z2 (9.29b)

So, the system equations are

r3z1 = r1 (S f1 − z1 − t1z2)+ Se1 + r3z1/t1 (9.30a)

z2 = Se1/r2 + r3z1/ (t1r2)− S f1 + z1 + t1z2 (9.30b)

Therefore, the general form of this system is

Z = f (z,U, t) (9.31)

9.3.4.2 Algorithm 2: Iterative Searching of Causal Paths

The purpose of this second algorithm is to follow in an iterative way all the causal
paths to compute the values of the auxiliary variables that Algorithm 1 will use as
a reference to obtain the break variables. These variables are able to open all the
existing topological loop classes in the model.

Algorithm 1 calls up this algorithm. The call is made from a path initiator port.
This algorithm finishes once all the still non-open topological loops initiating in that
port are explored.

9.3.5 Multi-bond Graph Systems with Topological Loops

The purpose of this section is the treatment of systems modeled using MBG where
some ZCPs appear.
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Various authors have publications about systems modeled with multi-bond
graphs [4, 7, 9, 18–21]. A typical scenario where ZCPs appear in MBG modeling is
in multi-body systems [7, 9].

The causal augmentation in multi-bond elements determines their constitutive
relationships. These relations will be described in terms of the input and output
signals at each port.

9.3.5.1 Coupling Relations in Multi-bond Elements

We use the following notation:

S fi , Sei , Ki, j , Ii, j , Ri, j , TFi, j , GYi, j : elements of the constitutive parameter
matrix for the different ports.

fi , ei : input flows and efforts in direction i to the ports (excluding
TF and GY elements).

f j
i , e j

i : flows and efforts in the i-direction of the j-port ( j = 1: input
port; j = 2: output port) of elements TF and GY.

In order to show how these relations are obtained, a uniform and a non-uniform
causality case of the three-dimensional transformer is shown.

Consider the transformer in Fig. 9.25.

Fig. 9.25 Uniform causality in a transformer

General form of flow relations:
[

f 2
]
= [TF]

[
f 1

]
(9.32)

Detailed flow relations:

f1
2 = TF1,1 f1

1 + TF1,2 f2
1 + TF1,3 f3

1

f2
2 = TF2,1 f1

1 + TF2,2 f2
1 + TF2,3 f3

1

f3
2 = TF3,1 f1

1 + TF3,2 f2
1 + TF3,3 f3

1

(9.33)

General form of effort relations:
[
e1

]
=

[
TFT

] [
e2

]
(9.34)
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Detailed effort relations:

e1
1 = TF1,1e1

2 + TF1,2e2
2 + TF1,3e3

2

e2
1 = TF2,1e1

2 + TF2,2e2
2 + TF2,3e3

2

e3
1 = TF3,1e1

2 + TF3,2e2
2 + TF3,3e3

2

(9.35)

Consider now the non-uniform causality assignment in Fig. 9.26.

Fig. 9.26 Example of non-uniform causality in a transformer

We will obtain the flow relations for this TF.

• Known variables (the values come from the rest of the system):

[ f1
1 f2

1 f3
2]

• Unknown variables:

[ f1
2 f2

2 f3
1]

• Solution of unknown variables:

f1
2 = B/A, f2

2 = C/A, f3
1 = D/A (9.36)

where

A =

∣
∣
∣
∣
∣
∣
∣
∣

−1 TF1,2 TF1,3

0 TF2,2 TF2,3

0 TF3,2 TF3,3

∣
∣
∣
∣
∣
∣
∣
∣

B =

∣
∣
∣
∣
∣
∣
∣
∣

−TF1,1 f1
1 TF1,2 TF1,3

−TF2,1 f1
1 + f2

1 TF2,2 TF2,3

−TF3,1 f1
1 + f3

2 TF3,2 TF3,3

∣
∣
∣
∣
∣
∣
∣
∣

C =

∣
∣
∣
∣
∣
∣
∣
∣

−1 −TF1,1 f1
1 TF1,3

0 −TF2,1 f1
1 + f2

1 TF2,3

0 −TF3,1 f1
1 + f3

2 TF3,3

∣
∣
∣
∣
∣
∣
∣
∣
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D =

∣
∣
∣
∣
∣
∣
∣
∣

−1 TF1,2 −TF1,1 f1
1

0 TF2,2 −TF2,1 f1
1 + f2

1

0 TF3,2 −TF3,1 f1
1 + f3

2

∣
∣
∣
∣
∣
∣
∣
∣

In conclusion, in both cases flows (and efforts) in direction 1 are related to flows
(and efforts) in directions 2 and 3. These constitutive relationships show a signal
interchange among the directions.

This causal dependency between different directions is extensible to the rest of
bond graph elements.

As a result of these relationships, let us analyze the simple three-dimensional
subgraph in Fig. 9.27.

Fig. 9.27 MBG model with ZCPs class 5.4

The following ZCPs, not considered so far in the literature, are declared:

• ZCP 1: bonds {2.1, 3.1, 3.2, 2.2, 2.1}
• ZCP 2: bonds {2.2, 3.2, 3.3, 2.3, 2.2}

9.3.5.2 Classification of the Different Types of ZCPs in an MBG

One of the most important conclusions of Section 3.5.1 is that R, TF, and GY ports
can change the direction guide in the search for causal paths. This characteristic
usually produces a very important increment in the number of causal loops.

These constitutive relationships inside multi-bond elements make way for the
new class 5 ZCPs. The new subclasses 5.1, 5.2, 5.3, and 5.4 will be defined as the
generalization of classes 1, 2, 3, and 4 of one-dimensional systems.

In the representation of MBG models, the bond number is described as a number
inside a circle. Just in case of doubt, the multi-bond direction is placed next to the
corresponding bond. In case of homogeneous causality, the dimension of the bond
is written inside the multi-bond. The number of the elements will be described with
a subscript next to the element (i.e., C2).

In MBG, the bond notation will consist of their number, followed by a period and
a number indicating the direction of the bond (i.e., bond 5.2).

Regarding the ports notation, it will be described with a subscript indicating the
number of the element, a comma, and another subscript that indicates the analyzed
direction (i.e., R4,1).
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Fig. 9.28 Class 5.1 ZCPs

Class 5.1 ZCPs: The causal path is established between storage ports with integral
and differential causalities. The associated topological loops are flat loops. In MBG
systems, the two extreme ports of the path can correspond to different directions.
An example of an MGB model with class 5.1 ZCPs is shown in Fig. 9.28.

Class 5.1 ZCPs of the previous model are

• Path 1: bonds 6.1, 5.1, 5.2, 7.2 (from C1,1 to C2)

• Path 2: bonds 6.3 ,5.3, 5.2, 7.2 (from C1,3 to C2)

Class 5.2 ZCPs: The causal path sets between resistors. The corresponding topologi-
cal loops are flat. In MBG systems, the two extreme ports of the path can correspond
to different directions.

An example of an MBG model with class 5.2 ZCPs is shown in Fig. 9.29.
Class 5.2 ZCPs of the previous model are

• Path 1: bonds 2.1, 4.1, 6.3, 7.3 (from R1 to R2,3)

• Path 2: bonds 2.1, 4.1, 4.2, 5.2, 11.2 (from R1 to R3)

• Path 3: bonds 7.1, 6.1, 6.2, 8.2, 10.2, 11.2 (from R2,1 to R3)

• Path 4: bonds 7.3, 6.3, 6.2, 8.2, 10.2, 11.2 (from R2,3 to R3)

Two additional class 2 and 3 ZCPs exist (there is no change of direction, so they
are not classes 5.2 and 5.3):

• Path 5: bonds 2.1, 4.1, 6.1, 7.1 (from R1 to R2,1)

• Path 6: bonds 11.2, 5.2, 4.2, 6.2, 8.2, 10.2, 11.2 (from R3 to R3)

Class 5.3 ZCPs: It is a causal cycle whose topological loops are open (only one of
the two variables associated with each bond is used). In MBG systems, the origin
and final ports of the causal cycle are the same. In addition, the direction of these
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Fig. 9.29 Class 5.2 ZCPs

origin and final ports must be the same. However, a change of direction occurs along
the causal paths.

In an MBG, ZCPs that begin and end in the same resistor port but in different
directions of this port are considered class 5.2 and not 5.3. An example of an MBG
model with class 5.3 ZCPs is the one shown in Fig. 9.30.

Fig. 9.30 Class 5.3 ZCPs
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Fig. 9.31 Class 5.4 ZCPs

Class 5.3 ZCP of the previous model is shown below:

• Path 1: bonds 1.1, 2.1, 4.1, 6.1, 7.1, 7.2, 3.2, 2.2, 2.1, 1.1 (from R1 to R1)

Class 5.4 ZCPs: It is a causal cycle along the ports that forms part of a GJS. The
topological loops are flat. In MBG systems, a change of direction will occur along
the causal paths. The associated topological loops do not necessarily belong to a
closed loop of bonds along the same direction. An example of an MBG model with
class 5.4 ZCPs is the one shown in Fig. 9.31.

Class 5.4 ZCP of the previous model is

• Path 1: bonds 8.1, 8.2, 10.2, 10.1, 8.1 (from 02,1 to 02,1)

9.3.5.3 Algorithms for Solving Multi-bond Systems with ZCPs

Basically, the procedure used for one-dimensional bond graph can be used to auto-
matically obtain the minimum number of break variables to generate the system
equations in MBG systems. The peculiarities of the procedure in MBG will be the
following:

1. The information related to the elements (number of their ports, causality, dimen-
sion, etc.) is stored in variables in multi-dimensional form.
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2. The constitutive relations in MBG elements described in Section 3.5.1 give way
to a large number of combinations to create class 5 ZCPs in an MBG.

3. The path initiator ports in an MBG will be chosen sequentially in each one of the
directions of the environment ports R, C , and I .

9.3.6 Application Example

In order to show the mathematical model of an application in a concise way, a rela-
tively simple and pedagogic example has been developed.

The proposed example consists of a pendulum with a weight at the end of a mass
rod that moves in the X–Y plane. This system exhibits one degree of freedom and
five generalized coordinates: two translation velocities of the mass, two translation
velocities of the center of mass of the rod, and the angular velocity of the pendu-
lum. In Figs. 9.32 and 9.33, the physical model and the bond graph are presented,
respectively.

Fig. 9.32 Physical model

9.3.6.1 ZCPs in the Model

The translation velocity of the weight in the Y -axis (x5) has been taken as degree of
freedom. This way, the ZCPs in the model are the following:

Class 5.1 ZCPs:

• Bonds 17.2, 16.2, 16.1, 17.1 (from I3,2 to I3,1)

• Bonds 17.2, 16.2, 10.2, 11.2, 3.2, 2.2, 4.3, 6.3 (from I3,2 to I1)
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Fig. 9.33 Associated bond graph model to Fig. 9.31

• Bonds 17.2, 16.2, 10.2, 11.2, 12.2, 13.1, 14.1 (from I3,2 to I2,1)

• Bonds 17.2, 16.2, 10.2, 11.2, 12.2, 13.2, 14.2 (from I3,2 to I2,2)

Class 5.4 ZCPs:

• Bonds 2.2, 4.3, 8.3, 9.2, 11.2, 3.2, 2.2

9.3.6.2 State and Constraint Variables

Break variable of class 5.4 ZCP: effort in Y -axis of 12.
Therefore, the mathematical model is composed of

• four constraint equations corresponding to four inertia ports with derivative
causality (variables x1, x2, x3, x4);

• one state equation for the inertia port with integral causality (variable x5); and
• one algebraic equation associated with the break variable (variable z1).

The topological loop in flows of this class 5.4 ZCP is opened by the flow in the
inertia I1, which corresponds to the state variable x1.

9.3.6.3 DAE System of the Model

The simulation model is composed of five state equations and the restriction equa-
tion. This DAE system in matrix form is the following:



352 J. Felez et al.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −m2 tan x6 m2 0

J1
r −m1 sin x6 m1 cos x6 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ẋ1
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ẋ3

ẋ4
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9.4 Conclusions

The main objective of this chapter has been the modeling of multi-body systems
modeled using multi-bond graphs and how to solve the problem that these systems
present.

The first part of the chapter described how multi-body systems are modeled using
multi-bond graphs.

The second part of the chapter described how to obtain the dynamic equations of
this kind of system and specially how to solve the ZCPs that appear.

The constitutive relationships of multi-bond resistors, transformers, and gyra-
tors give way to ZCPs whose most important peculiarity is that their associated
topological loops involve more than one direction. In medium–large models these
relationships produce a combinatory explosion of causal paths only treatable via
software.

Two different methods are used to solve the ZCPs. With the first one, Lagrange
multipliers are introduced by means of new flows and efforts as break variables of
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causal paths, adding constraint equations. With the second one, break variables are
used directly to open the ZCPs.

Several algorithms have been developed to obtain the set of equations. The result
is a set of differential–algebraic equations (DAEs) solved using a backward differ-
ential formulae (BDF) numerical method.

An application example of a multi-body system including a combination of the
new classes of ZCPs has been included in order to show the proposed method.
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Chapter 10
Bond Graph Modelling of a Solid
Oxide Fuel Cell

P. Vijay, A.K. Samantaray, and A. Mukherjee

Abstract Fuel cells are environmentally friendly futuristic power sources. They
involve multiple energy domains and hence bond graph method is suitable for their
modelling. A true bond graph model of a solid oxide fuel cell is presented in this
chapter. This model is based on the concepts of network thermodynamics, in which
the couplings between the various energy domains are represented in a unified man-
ner. The simulations indicate that the model captures all the essential dynamics of
the fuel cell and therefore is useful for control theoretic analysis.

Keywords Solid oxide fuel cell · Bond graph · Network thermodynamics ·
Electrochemical reaction · Fuel utilization

Notation

Ac Effective cell area (m2)
cp, cv Specific heat capacity at constant pressure and volume (J kg−1 K−1)
E Activation energy (J mol−1)

F Faraday’s constant (C mol−1)

G Gibbs free energy (J)
h Specific enthalpy (J kg−1)

H Enthalpy (J)
i Current (A)
K Valve coefficient (m s)
m Mass (kg)
ṁ Mass flow rate (kg s−1)

M Molar mass (g)
n Number of moles (mol)
ne Number of electrons participating in the reaction
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p Pressure (N m−2)

R Specific gas constant (J kg−1 K−1)

R Universal gas constant (J mol−1 K−1)

s Specific entropy (J kg−1 K−1)

S Entropy (J K−1)

Ṡ Entropy flow rate (J K−1s−1)

T Temperature (K)
u Specific internal energy (J kg−1)

U Internal energy (J)
v Specific volume (m3 kg−1)

V Volume (m3)

V̇ Volume flow rate (m3 s−1)

w Mass fraction
x Valve stem position (m)
ν Stoichiometric coefficient
η Over-voltage (V)
μ Chemical potential (J kg−1)

ψ Pre-exponential coefficient (A m−2)

ξ Reaction advancement coordinate (mol)
ζf, ζo Fuel and oxygen utilisations
β Charge transfer coefficient
λ Convection heat trans. coefficient (J m−2 s−1 K−1)

Subscripts

ai Anode side inlet
an Anode
ao Anode side outlet
act Activation
AS Air source
b Bulk
ca Cathode
ci Cathode side inlet
co Cathode side outlet
conc Concentration
d Downstream side
ENV Environment
gen Generated
H Hydrogen gas
HS Hydrogen source
I1 Interconnect on anode side
I2 Interconnect on cathode side
L Limiting
M Membrane electrode assembly



10 Bond Graph Modelling of a Solid Oxide Fuel Cell 357

N Nitrogen gas
ohm Ohmic
O Oxygen gas
PL Polarisation losses
r Reaction
TPB Triple phase boundary
u Upstream side
W Water vapour

Superscripts

i Inlet
o Outlet
r Reaction
ref Reference state
0 Initial state

10.1 Introduction

The ever-increasing energy requirements of mankind and rapidly depleting natural
resources combined with the detrimental effects of increased atmospheric pollu-
tion have motivated scientists and engineers to develop cleaner and more efficient
energy conversion mechanisms. In this context, fuel cells, which are efficient and
environmentally friendly power-generating systems that produce electrical energy
by combining fuel and oxygen electrochemically, are alternatives worthy of consid-
eration. Fuel cell research is attracting much greater effort and attention today than
ever before in its long history.

A fuel cell is an energy conversion device where the reactants are continuously
supplied and the products are continuously removed. The electrodes and electrolyte
do not participate in the chemical reaction but they provide the surfaces on which
the reactions take place and they also serve as conductors for the electrons and ions.
Therefore, a fuel cell can be defined as a thermo-electrochemical device, which
converts chemical energy from the reaction of a fuel with an oxidant directly and
continuously into electrical energy.

The basic components of a general fuel cell are two porous electrodes, i.e. anode
and cathode, which are separated by a solid or liquid electrolyte. The electrolyte
is impervious to gases. Fuel is supplied to the anode side and air is supplied to
the cathode side. The oxidation reaction is made possible by conduction of ions
through the electrolyte. Although the basic principle behind the operation of a fuel
cell is quite simple, many challenges have to be overcome before its successful
implementation.

The solid oxide fuel cell (SOFC) is one of the types of fuel cells which
are of considerable interest since it has considerably high system efficiency in
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comparison to other fuel cell systems with cogeneration. The high efficiency of
SOFC systems is a result of high operating temperatures and negligible deteriora-
tion in performance over several years. The design and handling of complex SOFC
systems require efficient control strategies to promote safe and reliable operation.
The development of powerful control algorithms is based on an exact knowledge
of the operating behaviour, which can be obtained from dynamic system models.
The fuel cell system involves multiple energy domains such as chemical, thermal,
electrical, hydraulic and mechanical. Furthermore, it involves several phenomena
with radically different time scales.

Modelling and applying control theory to such a multidisciplinary system is a
challenging task. The bond graph technique is ideally suited for modelling such
systems that involve multiple energy domains. Bond graph modelling of SOFC
systems ensures that the models are energetically consistent as the conservation
laws are built into the bond graph junction structure. Moreover, subsequent mod-
ifications to the model can be easily incorporated and the causal structure of the
bond graph aids in computer simulation of the system. The simulations are valuable
in helping to understand the competing physical processes that are responsible for
controlling the cell performance. Such understanding can assist in the cell design
and optimisation as well as interpreting the experimental observations. In this chap-
ter, a true bond graph model of the SOFC is presented [12, 13, 15]. This model
represents the couplings between the various energy domains in a unified manner
and captures all the essential dynamics of the SOFC. The chapter is organised in
the following fashion. The description of the SOFC process is given followed by
which the important assumptions involved in the modelling are explicitly stated. The
formulation of the energy-storing C-field and the entropy-generating R-field that
are required for constructing the true bond graph model of the SOFC is discussed
next followed by which the true bond graph of the SOFC is presented. Finally, the
static and dynamic characteristics of the cell, obtained from the simulations, are
discussed.

10.2 Bond Graph Model of the SOFC

10.2.1 Process Description and Modelling Approach

The basic components of the SOFC are the anode, the cathode and the electrolyte,
as shown in Fig. 10.1. They are together referred to as the membrane electrode
assembly (MEA). Fuel (hydrogen) is supplied to the anode side and air is supplied
to the cathode side. At the cathode–electrolyte interface, oxygen molecules accept
electrons coming from the external circuit to form oxide ions. The solid electrolyte
allows only oxide ions to pass through. At the anode–electrolyte interface, hydrogen
molecules present in the fuel react with oxide ions to form steam, and electrons get
released. As a result of the potential difference set up between anode and cathode
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Fig. 10.1 Schematic of an SOFC

due to the resultant excess and scarcity of electrons at anode and cathode, respec-
tively, electric current flows in the external circuit through which they are connected
and thus the circuit is closed. Because the reaction is exothermic, heat is evolved as
a by-product.

The current drawn from the fuel cell and the temperatures of the anode and
cathode channel exhaust gases are the variables that are measured for controlling
the valves shown in Fig. 10.1. The pressures in the inlet and the outlet sides are
assumed to be known constants and the inlet side temperature is also assumed to be
a known constant.

The model presented here is a zero-dimensional bond graph model of a single
cell, which is suitable for system dynamics studies and will be helpful in developing
control strategies. The cell is considered to be at the centre of the stack such that
no edge effects are present. The anode channel volume, through which the supplied
hydrogen and the produced water vapour flow, is represented as a single volume and
is referred to as the anode channel volume. Similarly the cathode channel volume
through which the air flows is represented as a single volume and is referred to
as the cathode channel volume. The intensive variables, temperature, pressure and
chemical potential, for each gas are assumed to be uniform throughout the control
volume. The interconnect plates form the interface between the cells in a stack and
also form the channels through which the gases flow. The thermal capacitances of
the solids (anode, cathode, electrolyte and interconnect) are lumped. The convective
heat transfer taking place between the gases and the MEA and also between the
gases and the interconnect plates is modelled. The supply and the removal of gases
to and from the channel volumes are through four different controlled valves as
shown in Fig. 10.1.
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10.2.2 Modelling Assumptions

Some of the important assumptions involved in the modelling are as follows:

1. The water formed due to the reaction is in the vapour form. All the gases involved
are assumed to be ideal. This assumption is valid because of the low pressure and
high operating temperatures.

2. The fuel considered in this model is pure hydrogen. The oxidant is air with oxy-
gen and nitrogen as its primary constituents.

3. As the cell is well insulated, the heat loss to the surrounding is neglected.
4. As the fast dynamics are irrelevant from control perspective, the diffusion pro-

cess is modelled through an approximation.

10.2.3 Storage of a Two-Species Gas Mixture

The SOFC channels on the anode side contain the hydrogen and water vapour,
while the cathode side has nitrogen and oxygen. On the anode side hydrogen is
consumed in the electrochemical reaction and the water vapour is produced, while
on the cathode side oxygen is consumed. The nitrogen on the cathode side does
not participate in the reaction. A storage element capable of representing the energy
storage in a two-species gas mixture is necessary for modelling this scenario. Such
a C-field representation is presented in [12, 13, 15]. This is an extension of the
C-field representing a single gas species presented in [4, 6, 8]. In this section, the
constitutive relations for a bond graph C-field representing the energy storage by two
species of gases in a control volume are derived. The two gas species are represented
by subscripts 1 and 2. The C-field for the two-species gas mixture proposed here
models the following scenario. A mixture of two gases is contained in a collapsible
chamber, which allows heat transfer from and to the surroundings. In the general
scenario modelled here, it is assumed that individual gases can independently flow
either into or out of the chamber. Allowing the individual gas mass flow rates in pro-
portion to their mass fractions in the mixture can also incorporate the mass flow of
the mixture as a whole. Although the constitutive relations are given by considering
a mixture of two gas species, it can be extended for a mixture of any number of gas
species.

The change of internal energy of the two gases in the mixture in terms of time
derivatives is given by

U̇ = ∂U

∂V
V̇ + ∂U

∂S
Ṡ + ∂U

∂m1
ṁ1 + ∂U

∂m2
ṁ2 (10.1)

From well-known thermodynamic relations, ∂U/∂V = −p, ∂U/∂S = T ,
∂U/∂m1 = μ1 and ∂U/∂m2 = μ2, it is evident that the internal energy of
the volume of the gases changes due to four distinct power exchanges which can
be represented by the products of the corresponding effort and flow variables.
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Fig. 10.2 Two species of
gases represented in a C-field

Therefore, the energy storage in the gas mixture can be represented as a four-port
C-field as shown in Fig. 10.2. This C-field has four power ports: the flow and effort
variables for the mechanical port are V̇ and p, respectively; those for the thermal
port are Ṡ and T , respectively; and those for the material ports are ṁ’s and μ’s,
respectively.

According to the fundamental thermodynamic relation [18], the change in the
specific entropy of an ideal gas (gas species #1) in terms of the specific internal
energy, the specific volume, the partial pressure and the equilibrium temperature is
given by

ds1 = du1

T
+ p1dv1

T
(10.2)

Using the ideal gas equation of state (pv = RT ) and the definition of specific
heat capacity at constant volume (du = cvdT ), (10.2) may be rewritten as

ds1 = cv1dT

T
+ R1dv1

v1
(10.3)

Integrating (10.3) from an initial state (indicated by superscript 0) to a final state
with the assumption of constant specific heat capacities and then writing the specific
quantities in terms of the absolute quantities gives

s1 = S0
1

m0
1

+ ln

⎧
⎨

⎩

(
T

T 0

)cv1
(

V m0
1

V 0m1

)R1
⎫
⎬

⎭
(10.4)

Similarly, for gas species #2, which occupies the same volume and is at the same
temperature, we obtain

s2 = S0
2

m0
2

+ ln

⎧
⎨

⎩

(
T

T 0

)cv2
(

V m0
2

V 0m2

)R2
⎫
⎬

⎭
(10.5)

Multiplying (10.4) with m1 and (10.5) with m2, we get the following expressions
for the entropies of the gas species #1 and #2:
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S1 − S0
1 m1

m0
1

= ln

⎧
⎨

⎩

(
T

T 0

)m1cv1
(

V m0
1

V 0m1

)m1 R1
⎫
⎬

⎭
(10.6)

and

S2 − S0
2 m2

m0
2

= ln

⎧
⎨

⎩

(
T

T 0

)m2cv2
(

V m0
2

V 0m2

)m2 R2
⎫
⎬

⎭
(10.7)

The total entropy of a mixture of gases is given by the sum of the entropies of the
individual gases:

S − S0
1 m1

m0
1

− S0
2 m2

m0
2

= ln

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
V

V 0

)m1 R1+m2 R2
(

m0
1

m1

)m1 R1

(
T

T 0

)m1cv1+m2cv2
(

m0
2

m2

)m2 R2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10.8)

where S = (S1 + S2).
From (10.8), the temperature of the gases is given as a function of the four state

variables (m1, m2, V and S):

T = T 0 exp

(
S

m1cv1 + m2cv2
− m1S0

1

m1m0
1cv1 + m0

1m2cv2
− m2S0

2

m1m0
2cv1 + m0

2m2cv2

)

×
(

V

V 0

)−(α1+α2)
(

m1

m0
1

)α1
(

m2

m0
2

)α2

(10.9)

where α1 = m1 R1/(m1cv1 + m2cv2) and α2 = m1 R1/(m1cv1 + m2cv2). The inter-
nal energy of the gas mixture is obtained as the sum of the internal energies of both
the gases in the chamber, i.e. U = m1cv1T + m2cv2T , or

U = (m1cv1 + m2cv2) T 0
(

V

V 0

)−(α1+α2)
(

m1

m0
1

)α1
(

m2

m0
2

)α2

(10.10)

× exp

(
S

m1cv1 + m2cv2
− m1S0

1

m1m0
1cv1 + m0

1m2cv2
− m2S0

2

m1m0
2cv1 + m0

2m2cv2

)

The total pressure in the chamber is then obtained by summing the partial pres-
sures, i.e. p = m1 R1T/V +m2 R2T/V , where T is given by (10.9). The same result
can also be obtained by taking the partial derivative of the total internal energy in
(10.10) with respect to the total volume:
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p = T 0
(

m1 R1 + m2 R2

V

)

× exp

(
S

m1cv1 + m2cv2
− m1S0

1

m1m0
1cv1 + m0

1m2cv2
− m2S0

2

m1m0
2cv1 + m0

2m2cv2

)

×
(

V

V 0

)−(α1+α2)
(

m1

m0
1

)α1
(

m2

m0
2

)α2

(10.11)

Likewise, the chemical potentials of the gases can be obtained by taking the
partial derivative of U with respect to their corresponding masses. That leads to a
cumbersome formula. Alternatively, the chemical potential of gas #1 can be given
as

μ1 = u1 + p1v1 − T s1 = cv1T + R1T − T s1 (10.12)

Equation (10.12) can be written as

μ1 = h1 − T s1 (10.13)

Substituting h1 = h0
1 +

∫
cpdT and s1 = s0

1 +
∫ (

cp/T
)

dT − R1 ln
(

p1/p0
1

)
in

(10.13), we get

μ1 = μ0
1 (T )+ R1T ln

(
p1

p0
1

)

(10.14)

where μ0
1 (T ) is purely a function of the temperature. The partial pressure of the

gas species #1 and the temperature of the mixture in (10.14) are written in terms of
the state variables by using the earlier expressions (refer to (10.9) and (10.11)). The
chemical potential of gas #2 is obtained in a similar fashion as

μ2 = μ0
2 (T )+ R2T ln

(
p2

p0
2

)

(10.15)

Equations (10.9), (10.11), (10.14) and (10.15) are the constitutive relations of the
four-port C-field as they give the effort variables (μ1, μ2, p and T ) in terms of the
four state variables (m1, m2, V and S), which are obtained by integrating the flow
variables in the bonds of the four-port C-field.
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10.2.4 An Entropy-Generating R-field to Represent
the Convection of a Gas Mixture

In this section, an R-field formulation for representing the convection of a two-gas
mixture is given [12, 13, 15]. This is an extension of the bond graph formulation
for the forced convection of a compressible ideal gas given in [6]. The details of the
sub-model for modelling the convection of a two-component gas mixture are given
in Fig. 10.3. The most important element in the expanded model of the MR ele-
ment is the RS-field element (see Fig. 10.3). This element receives the downstream
side temperature and the information of the valve position (x), the upstream side
chemical potentials and temperature, and the downstream side chemical potentials
to calculate the mass and entropy flow rates. Note that all these variables are inputs
to the MR element. To maintain the clarity of the figure, the connections needed to
explicitly show these modulations are not drawn.

From the causal analysis, this sub-model receives six effort variables and com-
putes six flow variables without the use of integration and/or differentiation. There-
fore, this sub-model can be represented as an encapsulated R-field (a six-port ele-
ment MR in Fig. 10.3). From the continuity equation, the mass flow rate of a partic-
ular gas is the same for the inlet and the outlet side. This reduces the total number
of independent flow variables to four (see Fig. 10.3). Then the constitutive relation
of the non-linear resistive field element is given as

(
Ṡu, Ṡd, ṁ1, ṁ2

)T = R
{
(Tu, Td, μ1u, μ1d, μ2u, μ2d)

T} (10.16)

where, R is a vector-valued function. The individual relations between the input
and the output variables are derived as follows.

The overall mass flow rate (ṁ) of the mixture is imposed at the 1ṁ junction by
the modulated RS-field element in Fig. 10.3 and it is given by the linear nozzle
equation:

ṁ = K (pu − pd) (10.17)

Fig. 10.3 Bond graph representation for convection of a two-component gas mixture
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Note that although the total upstream and downstream side pressures are needed
in (10.17), they can indeed be calculated from the chemical potentials and temper-
atures. These calculations are given later in this section (see (10.24) and (10.25)).
The individual mass flow rates of the two gases are then realised through the modu-
lated transformer elements shown in Fig. 10.3 as ṁ1 = ṁw1u and ṁ2 = ṁw2u.
The upstream mass fractions w1u and w2u are obtained from the upstream side
storage element, i.e. w1u = m1u/(m1u + m2u), w2u = m2u/(m1u + m2u) and
w1u + w2u = 1, where m1u and m2u are the contemporary masses (state variables)
in the upstream side control volume.

The entropy flow rate associated with the mass flow rate is calculated by means
of a transformer element (between junctions 1Ṡ and 1ṁ), which is modulated by
the specific entropy of the upstream side gases. This information of the upstream
side specific entropy either can be obtained directly from the upstream side storage
element or, if a standalone scheme is required, can be calculated from the upstream
side μ’s and T ’s (which are inputs of the MR element) as

su = cp1w1u + cp2w2u − (μ1uw1u + μ2uw2u)

Tu
(10.18)

The entropy flow rate from the upstream side is given as Ṡu = ṁsu. The R-
field represents the change in the intensive variables between the upstream and the
downstream sides. The temperatures, pressures and the chemical potentials of the
gas mixture in the upstream and the downstream sides are imposed by the storage
elements on the corresponding sides. Due to this, there is an enthalpy difference
between the upstream and the downstream sides, which can be represented as the
relation between the changes in the intensive variables by using the Gibbs–Duhem
equation [5] as

v (pu − pd) = su (Tu − Td)+ w1u (μ1u − μ1d)+ w2u (μ2u − μ2d) (10.19)

This relation is enforced by the 1ṁ junction in Fig. 10.3. Due to the enthalpy
difference between the upstream and the downstream side gases, entropy is gener-
ated in the resistive field. Using the principle of power conservation, the irreversible
entropy generated Ṡgen can be given as

Ṡgen = ṁv (Pu − Pd)

Td
(10.20)

Substitution of (10.20) into (10.19) gives

Ṡgen = ṁ (su (Tu − Td)+ w1u (μ1u − μ1d)+ w2u (μ2u − μ2d))

Td
(10.21)

where su (Tu − Td) + w1u (μ1u − μ1d) + w2u (μ2u − μ2d) and Td are effort inputs
to the RS-element and ṁ is calculated internally from the constitutive relation of the
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RS-element (see (10.17)). The downstream side entropy flow rate is the sum of the
upstream side entropy flow rate (Ṡu imposed at 1Ṡ junction by the MTF element) and
the irreversible entropy generated (Ṡgen in (10.21)). This sum is realised by means
of the zero junction shown in Fig. 10.3.

The upstream and downstream pressures, which are needed in (10.17), can either
be read directly from the upstream and downstream side storage elements or be
calculated as functions of μ’s and T ’s (the input variables to the MR element) as
follows. The change in the upstream side specific entropy of a given mass of gas
species #1 is given by

s1u − s0
1u = ln

⎛

⎝
(

Tu

T 0
u

)cv1
(
vu1

v0
u1

)R1
⎞

⎠ (10.22)

Substitution of s1u = Cp1 − μ1u/Tu in (10.22) and rearrangement gives

vu1 = v0
u1 exp

(

− μ1u

Tu R1
+ μ0

1u

T 0
u R1

)(
Tu

T 0
u

)− cv1
R1

(10.23)

The upstream side partial pressure of gas species #1 is given as

p1u = R1Tu

vu1
= p0

u1 exp

(
μ1u

Tu R1
− μ0

1u

T 0
u R1

)(
Tu

T 0
u

)cv1
R1

(10.24)

Similarly, the upstream partial pressure of gas #2 is

p2u = R2Tu

vu2
= p0

u2 exp

(
μ2u

Tu R2
− μ0

2u

T 0
u R2

)(
Tu

T 0
u

)cv2
R2

(10.25)

The total upstream side pressure is pu = p1u + p2u. The total downstream side
pressure can also be expressed similarly.

10.2.5 True Bond Graph Model of the SOFC

The true bond graph model of the SOFC system is given in Fig. 10.4. This model
uses the four-port C-field (presented in Section 10.2.3) for representing the energy
storage of the gases inside the anode and the cathode flow channels. It also uses the
R-field representation discussed in Section 10.2.4 for modelling the convection at
the inlet and the outlet of the SOFC channels.

Representing a thermodynamic system in terms of true bond graph involves
the concepts of network thermodynamics [9]. The true bond graph model of
the SOFC, shown in Fig. 10.4, is constructed by using the concepts of network
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Fig. 10.4 True bond graph model of the SOFC

thermodynamics. As the volumes of both the channels remain constant, the mechan-
ical ports of the C-fields are not shown in Fig. 10.4. The mass and entropy balances
of the anode and cathode channel control volumes are given by the corresponding
zero junctions in Fig. 10.4. The 0Tan and the 0Tca junctions give the entropy balances
for the anode channel and the cathode channel control volumes, respectively. The
0μH , 0μW , 0μO and 0μN junctions give the mass balances for the hydrogen, water
vapour, oxygen and nitrogen gases, respectively, in the control volumes. The 0TM

junction gives the entropy balance at the MEA solid control volume.
The capacitive elements and fields in the model represent equilibrium thermody-

namics part of the model. As the simulation proceeds, the matter inside the control
volume represented by these elements changes reversibly from one equilibrium state
to the next, i.e. the process is assumed to be quasi-static. The R-fields represent
the non-equilibrium parts of the model, and they introduce the irreversibilities into
the system. The R-field elements represented by ‘MR’ in Fig. 10.4 introduce the
irreversibility due to mass convection into the system (refer to Section 10.2.4). The
R-field element represented by ‘RS’ in Fig. 10.4 introduces the irreversibility due to
the over-voltage phenomena (ohmic, concentration and activation losses). The other
R-field elements introduce the irreversibilities due to the heat transfer phenomena.

The inlet and outlet valve resistances are modelled by the MR-fields described in
Section 10.2.4, where subscripts mentioned in the nomenclature identify them. The
valve resistances in the MR-fields may be controlled by modifying the variables for
the stem positions. Note that although only hydrogen gas flows through the anode



368 P. Vijay et al.

side inlet valve, the information of chemical potential of water vapour (μW) inside
the anode channel is required for computing the downstream side pressure, which is
supplied by an information bond in Fig. 10.4. Similarly, the additional information
of the chemical potentials of nitrogen and oxygen in the atmosphere is required in
the anode channel outlet valve model to calculate the downstream side pressure,
which is provided by the source of efforts as shown in Fig. 10.4. The downstream
side entropy flow is the sum of the upstream side entropy flow and the entropy
generated due to the enthalpy difference between the upstream and the downstream
sides (10.21).

In this model, the chemical potentials of the gases not only drive the electrochem-
ical reaction but also, along with temperatures, determine the flow of the gases in
and out of the channels. This is because, though the mass flow through the MR-field
element is determined from the upstream and downstream side pressures (10.17),
the individual pressures can be written as functions of the chemical potential and
the temperature ((10.24) and (10.25)). Thus, the coupling between the chemical,
thermal, mechanical and the hydraulic domains, which is encountered in a fuel cell
system, is effectively represented in a unified manner by using true bond graphs.

The transformation of power from the chemical domain into the electrical domain
is implemented by the 1ξ junction and the transformers surrounding it as shown in
Fig. 10.4. This transformation is discussed in the following. The change in the Gibbs
free energy of the system is given as

dG = V dp − SdT + μdm (10.26)

Using (10.26) and the assumption of constant temperature and pressure, the
change in the Gibbs free energy of the reaction is obtained as

dG = ∂G

∂nW
dnW − ∂G

∂nH
dnH − ∂G

∂nO
dnO (10.27)

Note that the temperature and the pressure of the system may change during the
system’s dynamics. However, (10.27) is assumed to be valid for each instantaneous
values of pressure and temperature of the system. A quantity called the reaction
coordinate (ξ ) is defined such that dnH = −νHdξ , dnO = −νOdξ and dnW = νWdξ .
Using these relations and the definition of the chemical potential, (10.27) becomes

dG = (μWνW − μHνH − μOνO) dξ (10.28)

As the quantities in (10.28) are state functions, the equation can be written as

�G = (μWνW − μHνH − μOνO)�ξ (10.29)

If unit mole of fuel (hydrogen) is considered then�ξ = 1. Therefore, the change
in the Gibbs free energy per mole of fuel is given by
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�G = μWνW − μHνH − μOνO (10.30)

Note that the chemical potentials are in J mol−1 in (10.30). Under reversible
conditions, this change in the Gibbs free energy is converted entirely into electri-
cal energy. Therefore, from the energy balance, the reversible cell voltage can be
obtained as

Vr = −�G

ne F
(10.31)

where the denominator gives the charge of the total number of electrons participat-
ing in the reaction per mole of the fuel. Equation (10.31) can further be written in
terms of the partial pressures of the reactant and the product gases and is called the
Nernst equation. The Nernst equation is used to calculate the effect of the change in
the partial pressures of the reacting species on the reversible cell voltage. Note that
the minus sign in (10.31) is required to obtain a positive value of voltage because
the change in the Gibbs free energy per mole as defined in (10.30) is negative (as
the free energy of the products is less than the free energy of the reactants).

The chemical potentials are calculated in J kg−1 in the anode and cathode channel
C-fields of the model. The three transformers shown in the effort-activated bonds
around the 1ξ̇ junction have factors of ‘1000/Mi ’ in order to convert the chemical

potentials to J mol−1. The 1ξ̇ junction shown in Fig. 10.4 enforces the following
relationship, which defines the negative of the change in Gibbs free energy per mole
of fuel for the reaction:

−�G = νH MHμH + νO MOμO − νW MWμW

1000
(10.32)

The reversible cell voltage, which is defined by the Nernst equation, is realised by
means of a transformer element (with modulus ne F) in Fig. 10.4. When the reaction
system is in equilibrium, the change in the molar Gibbs free energy (�G) is zero.
Therefore, the reversible voltage as predicted by the Nernst equation is also zero.
When the reaction system is forced out of equilibrium (i.e. when the concentrations
of the reactants and the products differ from the equilibrium concentrations), the
reversible open-circuit voltage (Vr) can be calculated by using the Nernst equation.
However, the reaction cannot proceed as the circuit is not closed. But once the circuit
is closed (as we try to draw current from the cell), the irreversibilities come into play
and result in voltage losses.

The mole flow rate of the reaction (ξ̇ ), which can be considered as the reaction
rate, is related to the mole flow rates of consumption and production of the reactants
and products, respectively, as

ξ̇ = ṅr
W

νW
= − ṅr

H

νH
= − ṅr

O

νO
(10.33)
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The reaction mole flow rate and the current (i) are related as

i = ξ̇ne F (10.34)

Therefore, the relations between the mass flow rates (in kg s−1) of hydrogen,
oxygen and water vapour taking part in the reaction and the current drawn by the
load are given as

i = 1000ne Fṁr
W

νW MW
= −1000ne Fṁr

H

νH MH
= −1000ne Fṁr

O

νO MO
(10.35)

and they are realised through the 1ξ̇ junction and the set of transformers in the
flow-activated bonds surrounding it as shown in Fig. 10.4. The current, i , drawn by
an un-modelled external load is represented by a source of flow.

The theoretical open-circuit voltage (Vr) is the maximum voltage that can be
achieved by a fuel cell under specific operating conditions. However, the voltage of
an operating cell, which is equal to the voltage difference between the cathode and
the anode, is generally lower than this. As current is drawn from a fuel cell, the cell
voltage falls due to the internal resistances and over-voltage losses. The electrode
over-voltage losses are associated with the electrochemical reactions taking place at
the electrode/electrolyte interfaces and can be divided into concentration and acti-
vation over-voltages. The actual cell voltage is generally obtained by subtracting all
the voltage losses from the open-circuit voltage.

Three different kinds of voltage losses or over-voltages contribute to the cell
irreversibility. Activation over-voltage refers to the over-potential required to exceed
the activation energy barrier so that the electrode reactions proceed at the desired
rate [17]. The anodic and the cathodic activation over-voltages are governed by the
Butler–Volmer equation [3] which in its general form is given as

i = i0

{

exp

(
βne Fηact

RT

)

− exp

(− (1− β) ne Fηact

RT

)}

(10.36)

If the transfer coefficient (β) is 0.5, which is normally the case, the anodic and
cathodic activation over-voltages can be obtained from (10.36) as

ηact,an = 2RTM

ne F
sinh−1

(
0.5i

i0,an

)

(10.37)

and

ηact,ca = 2RTM

ne F
sinh−1

(
0.5i

i0,c

)

(10.38)
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where the anodic and the cathodic exchange currents are given as

i0,an = ψan Ac

(
pH

pamb

)(
pW

pamb

)

exp

(−Ean

RTM

)

and

i0,ca = ψca Ac

(
pO

pamb

)0.25

exp

(−Eca

RTM

)

It is clear from (10.37) and (10.38) that the contribution of the activation over-
voltage to the overall voltage loss is significant at low currents. The ohmic over-
voltage (ηohm) is due to the resistance to the transport of ions in the electrolyte and
to the flow of electrons through the electrodes and current collectors. It is governed
by Ohm’s law:

ηohm = iRohm (10.39)

where Rohm is the resistance per unit area. The ohmic over-voltage comes into play
typically at the middle range of current densities within which the fuel cell is usually
designed to operate. However, due to load fluctuations during operation, the fuel cell
may have to be operated at low and high current density conditions, where other
kinds of over-voltages are predominant.

The reactants, i.e. hydrogen and oxygen, in the flow channels have to dif-
fuse through the porous anode and cathode, respectively, to reach the electrode–
electrolyte interface where the reaction occurs. Similarly, the product of the reaction,
i.e. water vapour, which is formed at the anode–electrolyte interface, has to diffuse
through the porous anode so as to reach the flow bulk in the anode channel. If the
cell is functioning reversibly, the partial pressures of the reactant and the product
gas species are same at the flow bulk in the gas channels and at the triple phase
boundary (TPB) where the actual reaction takes place (called so because of the
presence of three phases, viz. the solid nickel or lanthanum strontium manganite of
the electrodes, the solid yttria-stabilised zirconium oxide phase of the ceramic elec-
trolyte and the gas phase of either the reactants or the products). But when current
is drawn from the cell, the partial pressures of the gas species at the TPB differ from
their corresponding partial pressures in the bulk due to limitations imposed by the
diffusion process (refer to Fig. 10.5). The voltage lost due to this pressure difference
between the bulk and the TPB is called as the concentration over-voltage.

By assuming that the pressure loss of one of the reactants, say hydrogen, deter-
mines the concentration over-voltage and that the pressure drop between the bulk
and the TPB region is linear, a simple expression for the concentration over-voltage
can be derived as follows. If the system is at steady state, then the absolute rate
of diffusion of the gas for a unit of geometric area must be equal to the current.
Therefore

i = k(pH,b − pH,TPB) (10.40)
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Fig. 10.5 Schematic showing
the variation of the partial
pressures of hydrogen and
water vapour through the
anode and oxygen through
the cathode

Moreover, pH,TPB tends to zero as the current ‘i’ tends to a limiting value ‘iL’.
So we can write

pH,b = iL

k
(10.41)

Substituting (10.41) into (10.40), we get

pH,TPB = (iL − i)

k
(10.42)

The difference in the Nernst voltages calculated by using the partial pressures
of the reacting gas species at the bulk and the TPB gives the concentration over-
voltage. The reversible Nernst voltage of the cell is represented in terms of the
species partial pressures and temperature as

Vr = −�G0

ne F
− RT ln

(
pνW

W

pνH
H pνO

O

)

(10.43)

where�G0 = μ0
WνW−μ0

HνH−μ0
OνO, which is the change in the Gibbs free energy

of the reaction at the reference state. The concentration over-voltage is obtained by
subtracting the Nernst voltage (10.43) obtained by using the partial pressures at the
flow bulk and those at the TPB as

ηconc = −RT ln

(
pνW

W,b

pνH
H,b pνO

O,b

)

+ RT ln

(
pνW

W,TPB

pνH
H,TPB pνO

O,TPB

)

(10.44)

It is assumed that the pressure loss of hydrogen alone is significant and is respon-
sible for the concentration over-voltage. Imposing this assumption on (10.44) results
in

ηconc = RTM

ne F
ln

(
pH,b

pH,TPB

)

(10.45)
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Substitution of (10.41) and (10.42) into (10.45) yields

ηconc = RTM

ne F
ln

(
iL

iL − i

)

= − RTM

ne F
ln

(

1− i

iL

)

(10.46)

The concentration over-voltage is significant only at high currents. From (10.46),
it can be understood that the concentration over-voltage is very less when i << iL.
It becomes significantly high when the value of the current approaches the limiting
current. Note that (10.46) is not valid for i = iL.

All these over-voltages are modelled by the RS-field shown in Fig. 10.4. The
effort output (for the port with current as the flow input) of the RS-field is given as

η = RTM

ne F

(

2 sinh−1
(

0.5i

i0,a

)

+ 2 sinh−1
(

0.5i

i0,c

)

− ln

(

1− i

iL

))

+ i Rohm

(10.47)

and the flow output (for the port with temperature as the effort input), i.e. the entropy
flow rate which goes to the heat transfer part of the model, is given as

ṠPL = i R

ne F

(

2 sinh−1
(

0.5i

i0,a

)

+ 2 sinh−1
(

0.5i

i0,c

)

− ln

(

1− i

iL

))

+ i2 Rohm

TM

(10.48)

The 0TM junction shown in Fig. 10.4 represents the temperature of the MEA
solid. Convection is an important means of heat transfer in an SOFC as the gases
flow through the anode and the cathode channels. Due to the ideal gas assumption
and the low velocities, the flow in a fuel cell is usually laminar. The bond graph
model shown in Fig. 10.4 includes the convective heat transfers between the anode
and cathode channel gases, the MEA and the interconnects. The R-fields, Rcv2 and
Rcv4, model the convective heat transfers between the gases and the MEA and the
R-fields, Rcv1 and Rcv3, model the convective heat transfers between the gases and
the interconnects denoted by I1 and I2, respectively, in Fig. 10.4. The constitutive
relations of the R-field, Rcv1, are given as [8, 11]

Ṡ3 = λan Ac (TI1 − Tan)

Tan
(10.49)

and

Ṡ4 = λan Ac (TI1 − Tan)

TI1
(10.50)

The constitutive relations for the other R-field elements defining the convection
heat transfer (Rcv2, Rcv3 and Rcv4) are defined in a similar fashion. The thermal
capacity of the MEA is represented by the compliance element CM in Fig. 10.4.
The constitutive relation of thermal capacity [7, 11] of CM element is given as



374 P. Vijay et al.

TM = T 0
M exp

(
SM − S0

M

mMcM

)

(10.51)

The thermal capacitance of the interconnect plates is represented by the two
capacitive elements CI1 and CI2. The constitutive relation of CI1 (that of the other is
similar) is given as

TI1 = T 0
I1 exp

(
SI1 − S0

I1

mI1cI1

)

(10.52)

The enthalpy of the reaction is given as

�H = �G + T�S (10.53)

where the part T�S is released as heat when the fuel cell operates reversibly. Under
irreversible operation (under all realistic circumstances), the change in the Gibbs
free energy of the reaction (�G) is not completely converted into useful electrical
work. Rather, some of it ends up as heat energy. These irreversibilities, which are
called over-voltages, give rise to entropy generation and are taken care of by the RS-
field element in the model. In order to account for the entropy change of the reaction,
the following entropy flow rate is added to the MEA by means of a modulated source
of flow in Fig. 10.4:

Ṡr = ṁr
H (hH − μH)

Tan
+ ṁr

O (hO − μO)

Tca
− ṁr

W (hW − μW)

Tan
(10.54)

where the specific enthalpies are expressed as follows [2]:

h = R
(

a1T + a2T 2 + a3T 3 + a4T 4 + a5T 5
)
+ h0 (10.55)

The values of the coefficients a1, . . . , a6 and h0 for the different gases are taken
from [2]. The source of flow MSf:Ṡr is modulated with signals i (to calculate ṁr

H,
ṁr

O and ṁr
W according to (10.54)), μW, μH, μO, Tan and Tca (the later five are

calculable from state variables). Note that these modulating signals are not shown
in Fig. 10.4 to maintain the visual clarity of the figure.

Unlike the pseudo-bond graphs, the energetic consistency of the true bond graph
presented in Fig. 10.4 is apparent. The continuity of energy flows across different
domains and across different interfaces is ensured because the effort and the flow
variables correspond to the power variables in the corresponding energy domains
throughout the bond graph model. All the storage elements in the global model
given in Fig. 10.4 are in integral causality. There is no causality violation at any
place in the junction structure. This ensures the energy consistency in the model.
Moreover, this integrally causalled model does not have algebraic or causal loops,
which ensures that this model is well computable.
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10.3 Open- and Closed-Loop Dynamic Simulations

10.3.1 Model Initialisation

In this section, the true bond graph model of the SOFC described in Section 10.2.5
is simulated to obtain the static characteristic curves and dynamic responses to a
step change in the load current. In order to simulate the steady-state operation of
the SOFC, the single port C-elements in the true bond graph model have to be ini-
tialised with the values of generalised displacements (initial entropies in this case).
Similarly, the two C-field elements have to be initialised with the values of the initial
masses of the constituent gases and their entropies.

The fuel utilisation (FU) and oxygen utilisation (OU) are two of the most impor-
tant control variables of the fuel cell. Fuel utilisation (ζf) is defined as the ratio of the
mass flow rate of the fuel taking part in the reaction to the mass flow rate of the fuel
supplied to the cell. Oxygen utilisation (ζo) is defined as the ratio of mass flow rate
of oxygen consumed by the reaction to the mass flow rate of oxygen supplied to the
cell. According to the operational requirement of the SOFC, FU must be maintained
constant. Normally, FU of 0.8–0.9 is desired. In this case, a value of 0.8 is chosen
for the FU and a value of 0.125 is chosen for the OU.

For obtaining the static performance curves of the SOFC, the variables such as
the operating temperature, the desired current density, the desired total anode and
cathode channel pressures (p0

an,p0
ca), the FU (ζf), the OU (ζo), the source and the sink

pressures (pHS, pAS, pENV) and the species mass fractions at the air source (wO,AS
and wN,AS) are considered as the known variables. We need to establish relation-
ships between the steady-state values of these known variables and the steady-state
partial pressures of the individual gas species in the channels so as to obtain the
steady-state characteristic curves corresponding to different operating conditions.

In order to establish the desired relations, the steady-state mass balances for the
anode and the cathode channels are written. From those mass balance equations,
the valve coefficients (which are unknown variables) which will lead to the desired
steady-state operation are obtained. In the following discussions, the superscript
‘0’ refers to the desired steady-state value of the variable which needs to be set
for obtaining the desired static characteristic curves. The steady-state mass bal-
ance in the anode channel by taking into consideration the required value of FU is
given as

ṁi
H = ṁr

H + ṁo
H (10.56)

ṁr
W = ṁo

W (10.57)

and

ṁr
H = ζfṁi

H (10.58)
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where the hydrogen inlet and outlet mass flow rates and the water vapour outlet
mass flow rate are given by the linear nozzle flow equations:

ṁi
H = Kai

(
pHS − p0

an

)
(10.59)

ṁo
H = Kaow

0
H,an

(
p0

an − pENV

)
(10.60)

ṁo
W = Kaow

0
W,an

(
p0

an − pENV

)
(10.61)

Note that in (10.56), (10.57), (10.58), (10.59), (10.60) and (10.61), the unknown
variables are Kai, Kao, w0

H,an and w0
W,an. However, the total steady-state mass in

the anode channel can be calculated using the ideal gas law because the desired
anode channel pressure, temperature and the volume are known. Therefore, the three
equations (10.56), (10.57) and (10.58) are solved for the two valve coefficients (Kai
and Kao) and for the ratio of the mass fractions, i.e.

w0
W,an

w0
H,an

= m0
W,an

m0
H,an

= n0
W,an MW

n0
H,an MH

(10.62)

Solving (10.56), (10.57) and (10.58), we get the expressions for the inlet and
outlet valve coefficients as

Kai = ṁr
H

ζf pHS − ζf p0
an

(10.63)

and

Kao = ṁr
W

w0
W,an p0

an − w0
W,an pENV

(10.64)

and the ratio of the partial pressures of the two gas species in the anode channel is
found to be

n0
H,an

n0
W,an

= p0
H

p0
W

= 1− ζf
ζf

(10.65)

As we know the total pressure in the anode channel, we can calculate the individ-
ual partial pressures of hydrogen and water vapour, thus establishing the relationship
between the FU and the partial pressures of individual species.

Similarly, the mass balance equations for the cathode channel volume result in
the expressions for the cathode channel inlet and outlet valve coefficients as

Kci = ṁr
O

ζo
(
wO,AS pAS − wO,AS p0

ca

) (10.66)
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and

Kci = ṁr
O

ζo
(
wO,AS pAS − wO,AS p0

ca

) (10.67)

and also the ratio of the partial pressures of the two gas species as

n0
N,AS

n0
O,AS (1− ζo)

= n0
N,ca

n0
O,ca

= p0
N

p0
O

(10.68)

By assuming that nN,AS/nO,AS is fixed and equal to that of the normal atmo-
spheric air at sea level (i.e. 3.76), the partial pressures of nitrogen and oxygen in
the cathode channel can be obtained from the known total pressure of the cathode
channel. Thus, the steady-state values of the partial pressures of the gas species
at the anode and the cathode gas channels are derived as functions of the SOFC
operating conditions such as the temperature, the anodic and cathodic pressures, the
load current, the FU and the OU. Therefore, it is possible to simulate the steady-state
operation of the SOFC with the desired operating conditions.

Static characteristics of a fuel cell system are used to determine its operating
regime. The partial pressures of the hydrogen and water vapour in the anode channel
are set to obtain desired FU, i.e. pH/pW = (1− ζf)/ζf. The OU is set to zero (i.e.
there is sufficient air flow such that the rate of oxygen consumption in the reac-
tions can be neglected). This is achieved by setting the partial pressures of nitrogen
and oxygen in the cathode channel in such a way that pN/pO is equal to the ratio
0.79/0.21, which is the same ratio as in the normally available atmospheric air.

The initial partial pressures of the constituent gases, the initial temperatures of
the mixture and the volume of the channels are the input parameters of the C-fields.
The initial masses of the constituent gases are calculated from these inputs by using
the ideal gas law. For example, the initial mass of hydrogen in the anode channel is
given by

m0
H =

p0
HVan

RHT 0
an

(10.69)

where the value of p0
H is known from the calculations discussed earlier (refer to

(10.65)) and T 0
an is the desired steady-state temperature. The initial masses of other

gas species are similarly calculated. The initial entropy of the anode channel gas
mixture (hydrogen and water vapour) is calculated as

S0
an = Sref

H + Sref
W + ln

⎧
⎪⎪⎪⎪⎪⎨
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T ref
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H RH
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⎫
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(10.70)
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and the initial entropy of the cathode channel gas mixture (oxygen and nitrogen)
is calculated in a similar manner. The values of all entropies at reference states are
obtained from tables [2]. The initial entropy of the element CM representing the
thermal capacity of the MEA is given as

S0
M = Sref

M + mMcM ln

(
T 0

M

T ref
M

)

(10.71)

and the initial entropies of the capacitance elements CI1 and CI2 are also initialised
in similar fashion.

10.3.2 Static Characteristics

The simulations were performed using the software SYMBOLS ShaktiTM[10]. The
readers may refer to [12, 13, 15] for the parameters used in the simulations.

In Fig. 10.6, the polarisation and power density curves obtained from the model
are compared with the data from [1] in which the fuel considered was CH4 and the
fuel composition for obtaining the static characteristic curves was fully reformed
steam and methane mixture. It can be seen that the difference between the results
is small because the principal gaseous species in the anode channel are still H2
and H2O, which is a valid assumption. A part of the small difference between the
results can also be attributed to the difference in the calculations of the activation
over-voltage between this model and [1].

Figure 10.7 shows the reversible cell voltage as a function of the FU with the
system pressure as the parameter. From these curves, it is evident that the reversible
cell voltage decreases with the increase in the FU and also that increasing system
pressure results in increased Nernst voltage. However, this increase is quite small.

Fig. 10.6 Polarisation and
power density curves of the
SOFC
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Fig. 10.7 Characteristic
curves showing the variation
of Nernst voltage as a
function of FU

Moreover, high-pressure operation may lead to other complications. Therefore, the
cell pressure is kept slightly above the atmospheric pressure. It can also be seen that
the reversible cell voltage drops significantly for FUs near the value of unity. That
is why, a FU of more than 0.9 is normally not desired. On the other hand, a low FU
is economically unviable. Some other static characteristic curves of the SOFC can
be referred to in [12, 13, 15].

10.3.3 Dynamic Responses

The dynamic response of the fuel cell to a step change in the load current is shown in
Fig. 10.8. The dynamic response study helps us in understanding the various phys-
ical processes involved in the functioning of the fuel cell and ultimately guides us
in developing efficient control strategies to improve SOFC system’s load following
capability.

The valve coefficients for the four valves are fixed at the values given by (10.63),
(10.64), (10.66) and (10.67) to obtain the open-loop dynamic response of the SOFC.
Step changes are made in the load current from 100 to 80 A at 500 s and from 80 to
90 A at 2000 s. The dynamic responses of the cell voltage, current, FU and OU to
the step changes of load current, the data being normalised with respect to the initial
steady-state conditions (Voltage = 0.609036 V, Current = 100 A, FU = 0.8 and
OU = 0.125), are shown in Fig. 10.8a.

When the current is decreased, the combined effect of the changes in the partial
pressures and the polarisation losses results in the increase of the cell voltage. It is
observed that the cell voltage initially overshoots before settling to a steady-state
value. The FU and the OU, which are proportional to the current, also decrease. The
reverse phenomena are observed with the increase in the external load current. The
sudden decrease in the load current results in the decrease in the rate of hydrogen
and oxygen consumption and the rate of water vapour formation. In other words, the
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Fig. 10.8 Dynamic response
curves for (a) voltage,
current, FU and OU
normalised to their initial
values and (b) species partial
pressures and cell
temperature

reaction rate decreases. This results in the accumulation of hydrogen and oxygen in
the chambers and hence their partial pressures increase almost abruptly. At the same
time, the partial pressure of water vapour falls, as shown in Fig. 10.8b.

The decrease in the current also results in the decrease in the polarisation losses
and the decrease in the reaction entropy flow rate (Ṡr) (due to reduced mass flow
rates) and thereby results in the fall of the system temperature. The reverse phe-
nomena are observed (at time 2000 s in Fig. 10.8) when the load current density is
increased.

It can be seen from Fig. 10.8b that the hydraulic (pressure) dynamics is much
faster than the thermal (temperature) dynamics. Although the entropy flow due to
the ohmic losses and the reaction is directly proportional to the current, the entropy
flow due to the activation and concentration losses depends upon the gas species
partial pressures. Therefore, the change in the heat production does not happen
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instantaneously with the change in the current. Further, the solid components of
the SOFC have high thermal capacities. Due to these reasons, it usually takes a long
time (in the order of several minutes) for the cell temperature to settle down to a
steady-state value after a disturbance. On the other hand, the pressure dynamics is
faster due to the reason that the changes in the inlet and outlet mass flow rates are fast
(only the small time delay associated with valve actuation, which is not modelled in
this work, can affect it).

10.4 Conclusions

The systematic development of a zero-dimensional true bond graph model of a
SOFC by using the concepts of network thermodynamics was presented in this
chapter. A C-field for representing the energy storage in a two-species gas mix-
ture is formulated, which is used in the construction of a bond graph model of the
SOFC. An R-field formulation for representing the convection in two-species gas
mixtures was also presented. The couplings between the various energy domains
in a fuel cell system have been represented in a unified manner by using the true
bond graphs. The developed model ensures energy balance at all physical process
interfaces, e.g. entropy generation due to mixing, entropy generation due to heat
transfer, charge transport and diffusion phenomena. The true bond graph model pre-
sented in this chapter clearly exposes the physical structure and process dynamics of
the SOFC.

The developed model will be useful in designing integrated model-based control
strategies for the overall system by including the load and power conditioning com-
ponents. Moreover, various other control theoretic tools, fault detection algorithms
and fault tolerant and robust control algorithms can be readily applied to the bond
graph model. Because this model is based on the second law of thermodynamics
of the system and the principles of network thermodynamics, it can be used for
performing exergy-based system optimisation studies.

The model is properly initialised and simulations are performed to obtain the
static characteristics and dynamic responses of the SOFC. For obtaining the static
characteristic curves of the SOFC, the FU and the OU have been interpreted in terms
of the partial pressures of the gas species in the channels, for a given set of known
and input parameters. The application of the true bond graph model presented in
this chapter for the optimisation of the operational efficiency of a SOFC system
consisting of the cell, the after-burner and two pre-heaters under varying loads can
be consulted in [12, 14, 16]. Readers may also refer to [12, 15] for a control scheme
to improve the dynamic performance of the SOFC using the true bond graph model
presented in this chapter.
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Part IV
Software for Bond Graph Modelling

and Simulation

The last part of this book presents a specific way in which bond graph modelling of
engineering systems can be supported by software programs.

Roughly speaking, available software relevant for bond graph modelling can be
categorised into fully integrated (multi-formalism) modelling and simulation envi-
ronments especially supporting bond graph modelling such as 20sim R© or Symbols
Shakti R© or MS1 R©, just to mention some of them, into bond graph preprocessors
such as CAMP-G, or into software that is dedicated to other purposes but can be
used for bond graph modelling with some intermediate help.

For bond graphs of small or medium size, differential algebraic equations (DAEs)
can be manually derived in a systematic manner. Furthermore, causal bond graphs
can be systematically converted into block diagrams or can be described in an
object-oriented modelling language such as Modelica R©. For such reasons, various
software programs not dedicated to bond graph modelling can be used for further
processing once a bond graph model has been systematically developed following
the rules of bond graph methodology.

An elaborated survey and discussion of simulation languages, modelling lan-
guages, and various ways of software support for bond graph modelling can be
found in Chapter 11 of the Editor’s 2010 Springer book titled Bond Graph Methodo-
logy – Development and Analysis of Multidisciplinary Dynamic System Models.

Chapter 11 of this book illustrates the systematic development of bond graphs,
the derivation of state space equations, how the bond graph preprocessor CAMP-G
can support bond graph modelling, and how its interfacing with MATLAB R© and the
block diagram-based simulation program Simulink R© enables to use the features of
the latter programs for symbolic and numerical analysis. In other words, CAMP-G
provides a graphical user interface for the creation of bond graphs and can generate
files that are accepted as input files by MATLAB and Simulink for further model
processing.

In the case of linear system models, the combination of CAMP-G, MATLAB,
and the Symbolic Math ToolboxTM can generate state space matrices as well as
transfer functions in symbolic form from a bond graph. MATLAB in conjunction
with the Symbolic Math Toolbox can also be used for the incremental bond graph
approach presented in Chapter 4.
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Nonlinear bond graph models may be created and processed by CAMP-G in
conjunction with Simulink and S-functions. Bond graph elements may be linear or
nonlinear. Nonlinear constitutive element equations will have to be added to files
generated by CAMP-G before a simulation run can be performed by Simulink.



Chapter 11
Automating the Process for Modeling
and Simulation of Mechatronics Systems

Jose J. Granda

Abstract Automating the modeling process of mechatronics systems can be
achieved by the use of a two-step process. First, a systematic modeling technique
for modeling systems with components in the mechanical, electric, hydraulic, ther-
mal domains and second, the use of software to automate the process. The chapter
presents the modeling process using block diagrams and bond graph methods so
that a common understanding develops between the readers used to block diagrams
and those used to bond graph methods. It guides the reader to automate the cre-
ation of computer models and then to computer simulation using software tools
such as CAMPG, MATLAB, SIMULINK, and SYSQUAKE. Using an automated
process, it guides the reader to perform simulation in the time and also in the fre-
quency domain. Applications for nonlinear and complex mechatronics systems are
presented.

Keywords Automated modeling · Simulation · Mechatronics systems · Computer
generated differential equations · Transfer functions · State space · CAMPG · Bond
graph · Block diagrams ·MATLAB · SIMULINK · SYSQUAKE

11.1 Introduction

The existence of software tools such as CAMPG, MATLAB, SIMULINK, and
SYSQUAKE facilitates nowadays the modeling and simulation process of mecha-
tronics systems. The idea that with a single set of simple symbols, I, C, R, TF, GY,
SE, SF, 0, and 1, it is possible to represent physical elements, their connections,
and the differential algebraic equations that conform a mechatronics system in the
fields of electrical, mechanical, hydraulic, and thermal systems offers great attrac-
tion and simplicity. In the past, engineering practices dealing with multi-energy
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domain systems usually were handled by different departments in industry. Nowa-
days mechanical engineers need to talk and understand what their counterparts in
electrical, hydraulic, and thermal engineering are doing on the design and devel-
opment phase of a project involving mechatronics systems. When using the block
diagrams technology to represent such systems, all elements that store potential
energy, that store kinetic energy, and that dissipate energy are represented in the
form of block diagrams that represent the individual constitutive relations of each
component in graphical form assembled with the connections between them. Using
this technology, one needs to know the equations first in order to build the block
diagram. These are specific for each element in the different energy domains. When
using the bond graph technology, the same kind of elements are described with
generalized symbols. For example, element I represents elements storing kinetic
energy, C represents potential energy-storing elements, and R represents resistive
or energy-dissipating elements. The TF symbol is used for transformers, the GY for
gyrators, SE and SF are the sources, and finally the 0 and 1 junctions represent the
connections with each other and how these integrate the whole system. Here the
approach is a little different; we start with the physics of the system and stay close
to the physics of the system to generate a topological representation of the elements
and their interconnections. The bond graph then contains the system and output
equations and lends itself for an automated process presented herein. Reference
[3, 14] present a wide overview of the theory and practice of bond graph modeling
and [15] offers a compendium of research in the field.

11.2 Fundamental Methods to Generate Models

The block diagram method is presented first to set a framework of reference for the
reader. Block diagrams are an important tool since they offer a common language
to represent differential equations that come from the physics of a system as well as
to integrate the logic of control systems. Block diagrams are not necessary to use
bond graph modeling; the knowledge of block diagrams representing equations of
systems is to understand the fundamentals of modeling and simulation. One starts
with the physical laws that apply to a particular system and then develops the alge-
braic and differential equations that represent the system. Bond graph modeling
also contains the algebraic and differential equations. Both methods join at the
simulation language stage because from both, computer models using simulation
languages such as MATLAB, SIMULINK, and SYSQUAKE can be developed and
implemented to obtain dynamics simulations on the time and frequency domain.
Both methods represent the same physics of the system.

11.2.1 Modeling Process with Block Diagrams

Let us first review block diagram methods so that the reader can compare and under-
stand the advantages and disadvantages of each.
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Fig. 11.1 Simple two degrees of freedom dynamic system

A simple example of a mechanical system shown in Fig. 11.1 is to be modeled
and we are interested in knowing the positions, velocities, and forces of the different
elements of the system as time goes on. In order to do that, one would need to know
the differential equations that control the motion and then solve them to know the
positions, velocities, accelerations, and forces of interest during the time interval in
which the motion is analyzed. Using block diagrams it is necessary to set up a com-
puter simulation based on the graphical representation of the differential equations
and their solution.

Using the block diagram approach, one would expect to follow the following
steps to model and simulate the system:

1. Identify the elements that make up the system
2. Draw a free body diagram for each mass indicating the applied forces
3. Apply physics principles to derive the differential equations
4. Generate a block diagram
5. Enter the block diagram logic graphically using SIMULINK or program them

into a simulation language such as MATLAB or SYSQUAKE

Steps 1 and 2. Make a free body diagram with the forces applied to each mass as
shown in Fig. 11.2.

Fig. 11.2 Free body diagram and applied forces
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Step 3. Manually derive the differential equations from the free body diagrams
using Newton’s laws of motion:
For m2

− k2x2 − b2 ẋ2 − k1(x2 − x1)− b1(ẋ2 − ẋ1) = m2 ẍ2 (11.1)

For m1

k1(x2 − x1)+ b1(ẋ2 − ẋ1) = m1 ẍ1 (11.2)

Step 4. Using the equations, a block diagram would have to be generated.
Step 5. Enter the block diagram manually in SIMULINK. One possible diagram

of that is shown in Fig. 11.3.

Fig. 11.3 Block diagram entered in SIMULINK from the manually derived free body diagram and
differential equations

Step 6. This block diagram was generated considering the two differential equa-
tions as fundamental summation blocks upon which all the other terms con-
verge. From that starting point, the other integration blocks and those rep-
resenting the different output variables were drawn so that there is a clear
relation to these two second-order differential equations and the desired out-
puts. In order to perform the simulation, one needs to enter the initial condi-
tions and the physical parameter values. Double clicking on the scopes will
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(a) (b)

Fig. 11.4 Computer simulation of positions (a) and velocities (b) of m1 and m2

give the display to plot the desired variables, here position and velocities
(Fig. 11.4) due to initial displacement of m2.

11.2.2 Modeling Process with Direct Programming and Integration
of the Differential Equations

Another possibility is to directly solve by double integration and programming the
equations that were obtained from the free body diagram. In order to do that we
would have to create manually a computer program ourselves and generate some
.m files which contain the equations and the appropriate commands for solving the
equations and specifying the output variables. The outline of such a procedure would
look like the following:

1. Identify the elements that make up the system
2. Draw a free body diagram for each mass indicating the applied forces
3. Apply physics principles to derive the differential equations
4. Manually program the solution of the equations such as using MATLAB, ACSL,

EASY5, SYSQUAKE or create your own program.

In this case, following the syntax of the integration in MATLAB, we further
have to manually program the first-order differential equations in order to properly
integrate them. This may look something like the displays of Fig. 11.5

Here the variables x1dot, x2dot, x3dot, and x4dot correspond to the derivatives
of the state variables, in this case positions and velocities for the two masses. The
expressions for this variable represent the four first-order differential equations of
the system. These are integrated and the solution calculated using the ODE45 func-
tion in MATLAB. The values of the initial conditions and physical parameters need
to be entered into another .m file to initialize the simulation in MATLAB and to enter
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Fig. 11.5 Manually programming the differential equations in MATLAB

values for the physical parameters. This file also will serve to execute the integration
and the graphical displays of the simulation, thus obtaining plots similar to those of
Fig. 11.4.

Execution of the scripts shown in Fig. 11.5 and in Fig. 11.6 in the form of .m
files leads to a solution that will produce the same graphical results as using the
SIMULINK approach. The main difference here obviously is the amount of pro-
gramming in logical order which needs to take place in order to obtain the simulation
in MATLAB. Using this procedure one can plot the same results as in Fig. 11.4.

11.2.3 Automating the Modeling Process Using Bond Graphs

The objective here is to guide the reader to a systematic modeling process and an
automated simulation process so that using the bond graph method one can generate
a model so close to the physics of the system and let the computer take over the
tasks of generating a computable model. Automation process for generation of the
simulation model is a primary objective. The steps to take on this approach are as
follows:

1. Identify the kind of elements that make up the system
2. Lay out a bond graph showing how the elements are connected keeping in mind

the kinematic constraints (summation or addition of velocities)
3. CAMPG automatically generates a computable model containing

– Model (.m) files for time domain simulation
– Differential equations in explicit symbolic form
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Fig. 11.6 Setup of the solution of differential equations and integration

– State space models
– Transfer functions
– S-functions
– Block diagrams

4. CAMPG interfaces automatically with a simulation language (MATLAB,
SIMULINK, SYSQUAKE, EASY5, ACSL, SIMULINK) or the user’s own sim-
ulation program

11.2.3.1 Systematic Bond Graph Generation for Mechanical Systems

Let us look at the same mechanical example with the focus on this systematic
approach to generate a bond graph with an automatic generation of a simulation
model.

Step 1. Identify the elements that make up the system (Fig. 11.7). Here the masses
(I ) are elements for the bodies that store kinetic energy, the springs (C) are
elements for storing potential energy, and the dampers (R) are the elements
that dissipate energy.
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I

I

C

R

I

x1

x2

C

R

Fig. 11.7 Identified elements

Step 2. Use a 1 junction (Fig. 11.8) to represent the distinct velocities of the
system.

1

(m1 velocity)

1

(m2 velocity)
1

(vwall  =  0)

Fig. 11.8 Layout of the 1 junctions

Step 3. Attach the physical elements that move with the distinct velocities
(Fig. 11.9).

Fig. 11.9 Draw first set of elements attached to the 1 junctions
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Step 4. Represent the difference of velocities (relative velocities) with 0 junctions
(Fig. 11.10). Keep in mind the sign conventions. These relative velocities are
also represented with 1 junctions.

Fig. 11.10 Draw 0 junctions

Step 5. Attach the elements that move with those relative velocities (Fig. 11.11).

Fig. 11.11 Draw elements attached to relative velocities

Step 6. Complete the power flow connections (Fig. 11.12). Note that 1 junctions
also represent the summation of forces. (Do not worry about causal marks at
this point.) Enter this bond graph model in CAMPG (Fig. 11.13).

Fig. 11.12 Complete power flow
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Fig. 11.13 Bond graph entered in CAMPG. Causal marks automatically completed

CAMPG assigns preferred integral causality so that the system ends up with
an explicit set of differential equations (Fig. 11.14). However, if the system was
assembled with dependent elements, those are assigned in the corresponding deriva-
tive causality form. It produces readymade MATLAB .m files which are used for
computer simulation.

Fig. 11.14 CAMPG automatically generated differential equations
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The task that was programmed manually as shown in Figs. 11.5 and 11.6, now,
is automatically produced by CAMPG, resulting in .m files which control the sim-
ulation and describe the differential equations in MATLAB code and syntax form.
Abstracts are shown as Figs. 11.14 and 11.15.

The results are displayed in Fig. 11.16. One can compare Fig. 11.16(a) to Fig.
11.14(a) and Fig. 11.16(b) to Fig. 11.14(b).

Fig. 11.15 CAMPG-generated model control file (campgmod.m)

Fig. 11.16 Graphical displays of same variables obtained with the block diagram method and
simulated with SIMULINK (Fig. 11.4); (a) positions and (b) velocities of both masses subject to
initial displacement of m2
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11.2.3.2 Systematic Bond Graph Model Generation for Electrical Systems

What follows is the recommended systematic procedure for modeling electrical sys-
tems starting with the physical system and generating the bond graph. Let’s try a
circuit as those shown in [2].

Step 1. Recognize the type of elements that make up the system. Here the induc-
tors (I ) are the elements which store kinetic energy, the capacitors (C) are
elements for storing potential energy, and the resistors (R) are the elements
that dissipate energy (Fig. 11.17).

Fig. 11.17 Electrical circuit schematic

Step 2. Use a 1 junction to represent each distinct current of the system
(Fig. 11.18). (1 junctions represent the summation of voltages.)

1

1

(i1 current)(i1 current)

(i1 current)

1

Fig. 11.18 Place a 1 junction for each current

Step 3. Attach the physical elements that experience the distinct currents
(Fig. 11.19), this time also with power directed into each element.
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Fig. 11.19 Attach physical elements to 1 junctions

Step 4. Represent the difference of currents with 0 junctions (Fig. 11.20). Keep
in mind the sign conventions. These “relative” currents are also represented
with 1 junctions.

Fig. 11.20 Draw 0 junctions for the current differences

Step 5. Attach the elements that experience those relative currents (Fig. 11.21).
These are represented by 1 junction also. Assign power into those elements.
Complete power flow connec-tions if necessary. (Do not worry about causal-
ity marks at this point.)
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Fig. 11.21 Attach elements to the current differences

Step 6. Enter this model in CAMPG (Fig. 11.22).

Fig. 11.22 Complete CAMPG bond graph model with causality marks, power flow, and automat-
ically assigned bond numbers

11.2.3.3 Systematic Bond Graph Generation for Hydraulic Systems

A recommended systematic procedure for the generation of hydraulic system mod-
els is given.
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Step 1. Recognize the elements that make up the system. Here the hydraulic iner-
tias (I ) are elements that store kinetic energy, the tanks (C) are elements
that store potential energy, and the valves (R) are the elements that dissipate
energy (Fig. 11.23).

q = Kq y

C R

SEI,R

C

Fig. 11.23 Schematic of a hydraulic system

Step 2. Superimposing the construction of the bond graph on the physical sys-
tem, now a 1 junction is used to represent each distinct volume flow rate
(Fig. 11.24) (1 junctions represent the summation of pressures.)

1

1 1

Fig. 11.24 1 junctions represent each distinct flow

Step 3. Attach to the 1 junctions the physical elements that experience the distinct
volume flow rates (Fig. 11.25). These include the sources and sinks. Note
the activated bond on the SE, indicating that no pressure is exerted into the
system at the discharge point.

1SF

SE

R

I R

1 1

Fig. 11.25 Attach physical elements to the 1 junctions
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Step 4. Represent the differences between volume flow rates with 0 junctions
(Fig. 11.26). Keep in mind the sign conventions. These differences in “rela-
tive” volume flow rates are also represented with 1 junctions.

1

1 10 0

1

1

SF

SE

R
I R

Fig. 11.26 Use 0 junctions for the differences of flows

Step 5. Attach the elements that experience those relative volume flow rates
(Fig. 11.27). Those are also represented by 1 junctions. Do not worry about
bond numbers and causal marks at this point.

1

1 10 0

C

1

1C

SF

SE

R

I R

Fig. 11.27 Attach elements that experience volume flow differences. Here the two C elements
represent the tanks

Step 6. Check that the power flow directions are complete and enter the bond
graph in CAMPG (Fig. 11.28). At this point any through power bonds may
be simplified as a single bond but it is not required. The bond numbers and
the causality will be assigned automatically.
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Fig. 11.28 Complete the bond graph power flow

Some observations for hydraulic systems. First the “1” junction represents the
locations where the flow is the same but represents the summation of pressures
keeping mathematical consistency with the actual directions of the flows. Consistent
with the physics, at a 1 junction, the sum of the pressures has to be equal to zero.
The “0” junctions are the place where the pressures are the same but the sum of the
volume flow rates is equal to zero.

The bond graph model is superimposed on the physical system in Figs. 11.24,
11.25, 11.26, and 11.27. These figures show the reader how close bond graph mod-
eling is to the physics of the system. The principle is valid also for mechanical and
electrical systems, but intentionally waited until the hydraulic example to give it
more relevance and show it alone.

The process presented is completely consistent with that for the mechanical and
electrical systems shown earlier. The idea here is that a common systematic proce-
dure establishes a systematic bond graph modeling generation process for mecha-
tronics systems, which have components different in nature. This procedure is as
close as possible to the physics of real physical systems. Therefore, the principle
established here allows us to model very diverse and complex systems. At this point
in the modeling process, we have built a skeleton of the real systems without con-
sidering whether the systems are linear or nonlinear. Such consideration is entered
once the skeleton of the model and its explicit differential–algebraic equations have
been automatically generated using the CAMPG software.
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11.2.4 Mathematical Equivalence Between the Block Diagram
Method and the Bond Graph Method

11.2.4.1 Differential Equations from the Block Diagram Model

In an effort to provide a complete understanding of the equivalence between the
block diagram method and the bond graph method, for those not familiar with bond
graphs, let us look at an illustrative example of the mathematical equivalency before
more complex systems are analyzed. To this end, let us apply the basic principles
of physics to establish the differential equations in first-order form using the free
body diagram as part of the block diagram process. Then, the plan is to apply the
automated bond graph modeling process outlined earlier and find the equations from
the bond graph model to prove there is equivalence.

Using the system shown in Fig. 11.29, one recognizes that it is a fourth-order
system. Considering it has two degrees of freedom, two second-order differential
equations can be obtained by simply applying Newton’s law. Once the system is
represented in state variable form (first-order form), then four first-order differential
equations, one for each state variable, would be generated.

Fig. 11.29 Airplane landing gear suspension

Using a free body diagram and applying Newton’s law, summation of forces in
the vertical direction equals the rate of change of momentum yields:

∑
F = d(mv)

dt
(11.3)

Using the free body diagram we derive the following differential equations:

b1(ẋ2 − ẋ1)+ k1(x2 − x1)− m1g = m1 ẍ1 (11.4)

−b1(ẋ2 − ẋ1)− k1(x2 − x1)+ k2x2 − m2g = m2 ẍ2 (11.5)

These second-order differential equations can be solved using a simulation pro-
gram; they can also be transformed into block diagrams and a simulation can be
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done using SIMULINK. The software would perform integration of the second-
order equations. In order to prove the mathematical equivalence, the equations can
be transformed into first-order form or state space form. Changing variables and
using the following transformations yield the following equations:

y1 = x1 and
dy1

dt
= y2 (11.6)

y3 = x2 and
dy3

dt
= y4 (11.7)

dy2

dt
= d2 y1

dt2
= d2x1

dt2
= ẍ1 (11.8)

Applying them to (11.4) then yields

dy2

dt
= b1

m1
(ẋ2 − ẋ1)+ k1

m1
(x2 − x1)− m1

m1
g (11.9)

Therefore,

dy2

dt
= b1

m1
(y4 − y2)+ k1

m1
(y3 − y1)− m1

m1
g (11.10)

Now the fourth equation is obtained

dy4

dt
= d2 y3

dt2
= d2x2

dt2
= ẍ2 (11.11)

and using (11.5)

dy4

dt
= − b1

m2
(ẋ2 − ẋ1)− k1

m2
(x2 − x1)+ k2

m2
x2 − m2

m2
g (11.12)

Therefore,

dy4

dt
= − b1

m2
(y4 − y2)− k1

m2
(y3 − y1)+ k2

m2
y3 − m2

m2
g (11.13)

It is clear that (11.6), (11.7), (11.10), and (11.13) form a set of state space equa-
tions in first-order form written in the Cauchy form. These set of equations derived
by a conventional method such as applying Newton’s equations can be solved also
using conventional solutions using MATLAB and its tools tailored to first-order
differential equations. These equations can also be arranged in matrix form. That is
presented next as we compare the two methods.
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Fig. 11.30 Physical system (landing gear suspension) (a) corresponding bond graph (b)

11.2.4.2 Differential Equations from the Bond Graph Model

Now, based on the principles outlined earlier with the bond graph method, the sys-
tem is described in a topological way outlining the element types and the way they
are connected. Figure 11.30 shows the landing gear suspension with its correspond-
ing bond graph in the schematic form and the bond graph form. The mass spring,
damper system, and its equivalent bond graph are outlined in the dotted boxes. The
1 junctions indicate the velocities, the SE elements represent the force of gravity, the
I (mass), R (damper), and C (spring). Now the bond graph is entered into CAMPG
and the differential equations are computer generated. These computer-generated
equations using the power variables and state variables notation (p momentum and
q position) are

dQ2 = SF1-P5/I5 (11.14)

dQ9 = P5/I5-P12/I12 (11.15)

dP12 = P5/I5*R8-P12/I12*R8+Q9/C9-SE11 (11.16)

dP5 = Q2/C2-SE4-P5/I5*R8+P12/I12*R8-Q9/C9 (11.17)

It is as simple as entering the bond graph in graphical form as an input to
obtain the equations above. So, the next step is to prove that these equations are
in fact equivalent to those state space equations obtained from the set of equa-
tions displayed in (11.6), (11.7), (11.10), (11.13). If these are in fact equivalent, the
automated process behind the bond graph method has sound advantages that such
demonstration establishes because now the manual task of finding the mathematical
representation of the system has been automated and free of errors in the derivation.

In order to prove this point let us compare (11.6), (11.7), (11.10), and (11.13)
with (11.14), (11.15), (11.16), and (11.17). These equations are in the Cauchy form
of the differential first-order equations, but can be arranged into matrix form for the
typical state variable representation of the dynamics of the system. Here we will



11 Automating the Process for Modeling and Simulation of Mechatronics Systems 405

use such form for the comparison and equivalency. In comparing the two sets, let us
arrange them into matrix form.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dy1
dt

dy3
dt

dy2
dt

dy4
dt

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

− k1
m1

k1
m1

− b1
m1

b1
m1

k1
m2

(
k1
m2
− k2

m2

)
b1
m2

− b1
m2

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1

y3

y2

y4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11.18)

State space system matrix A obtained from the block diagram method

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dq2
dt

dq9
dt

dp12
dt

dp5
dt

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 − 1
I5

0 0 − 1
I12

1
I5

0 1
C9

− R8
I12

R8
I5

1
C2
− 1

C9

R8
I12

− R8
I5

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q2

q9

p12

p5

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11.19)

State space system matrix A obtained from bond graph method and computer
generated from CAMPG using (11.14), (11.15), (11.16), and (11.17).

These two systems are equivalent. Let us look at the equivalence of variables.
The computer-generated equations from the bond graph use different sets of state
variables. Substituting the physical variable definitions of the bond graph variables,
position (q) and momentum (p), in the bond graph system should produce the other
state variable system. Consider then the first row of (11.19); equation (11.14) should
be equivalent to (11.7):

dq2

dt
= − 1

I5
p5 → dx2

dt
= − 1

m2
m2 ẋ2 (11.20)

∴ dy3

dt
= y4 which is (11.7) (11.21)

Now consider the second row of (11.19); (11.15) should be equivalent to (11.6):

dq9

dt
= p5

I5
− p12

I12
(11.22)

dx2

dt
− dx1

dt
= 1

m2
m2 ẋ2 − 1

m1
m1 ẋ1 (11.23)

Rearranging yields

dx1

dt
= dx2

dt
− 1

m2
m2 ẋ2 + 1

m1
m1 ẋ1 (11.24)

∴ dy1

dt
= y2 which is (11.6) (11.25)

Now consider the third row of (11.19); (11.16) should be equivalent to (11.10):
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dp12

dt
= 1

C9
q9 − R8

I12
p12 + R8

I5
p5 − m1g (11.26)

m1 ẍ1 = k1(x2 − x1)− b1

m1
m1 ẋ1 + b1

m2
m2 ẋ2 − m1g (11.27)

dy2

dt
= k1

m1
(y3 − y1)− b1

m1
y2 + b1

m1
y4 − m1g

m1
(11.28)

which is (11.10). Finally, consider the fourth row of (11.19); (11.17) should be
equivalent to (11.13):

dp5

dt
= 1

C2
q2 − 1

C9
q9 + R8

I12
p12 − R8

I5
p5 − m2g (11.29)

m2 ẍ2 = k2x2 − k1(x2 − x1)+ b1

m1
m1 ẋ1 − b1

m2
m2 ẋ2 − m2g (11.30)

dy4

dt
= k2

m2
y3 − k1

m2
(y3 − y1)+ b1

m2
y2 − b1

m2
y4 − m2g

m2
(11.31)

which is (11.13). This demonstrates that there is a one-to-one correspondence in the
systems of equations from the bond graph technique and the state variable equations
developed from Newton’s laws used for the block diagram method. The automated
computer-aided process is a precise method for generating models automatically
and reliably. This approach is extensively explained in reference [1, 4].

There is also another consequence of this demonstration. Since MATLAB and
SIMULINK utilize the state space form to describe dynamic systems, it follows
that once the files are generated in MATLAB from the bond graph in (.m) files
form, all the tools of MATLAB and SIMULINK are immediately available for use
on the computer-generated model. Moreover, reference [13, 17] shows that from
this symbolic computer-generated state space form, it is possible to obtain com-
puter generated block diagrams from CAMPG to SIMULINK. This approach while
not necessary in this automated process serves to bridge the gap in understanding
between the two technologies and allows the engineer to work in either environ-
ment. In block diagram form, most engineers and technical staff can understand the
model whether or not they have an understanding of bond graph modeling. At the
same time, bond graph modelers can understand the state space representation of
the equations to be equivalent to those of the block diagram method.

11.3 Implementing the Automated Process Using Different
Software Tools

11.3.1 The CAMPG/SYSQUAKE Interface

Using the process presented earlier, let us implement it with the goal of generat-
ing computer models with a systematic process combined with different simulation
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software to produce computer-generated models ready for simulation. CAMPG
delivers the computer-generated models to several software packages. SYSQUAKE
is one of them. This program is used to study the influence of physical param-
eters on the time and frequency response so that the user has a quick idea of
how the system behaves before simulation that is more detailed if performed. The
CAMPG/SYSQUAKE requires that the user enters the bond graph model in graph-
ical form and then choose the SYSQUAKE interface.

CAMPG will automatically link to SYSQUAKE as the two programs also share
the same working space. The SYSQUAKE model keeps the same notation and
names of the variables from the original bond graph. Shown below is the display
of the CAMPG message window and the SYSQUAKE graphics window that is
generated as CAMPG directs the SYSQUAKE display. There are four windows in
Fig. 11.31. The CAMPG message window, the SYSQUAKE graphics window, the
CAMPG icons, and the SYSQUAKE model generated by CAMPG are shown.

Fig. 11.31 CAMPG/SYSQUAKE interface and instructions, top left. CAMPG environment con-
trol, bottom left. SYSQUAKE time and frequency response, top right. Bottom right, actual
computer-generated code that CAMPG delivers so that SYSQUAKE can perform the simulation
and display results in real time

11.3.1.1 Parameter Sensitivity in the Time and Frequency Domain Using
CAMPG/SYSQUAKE

Once SYSQUAKE receives the model from CAMPG, the user is presented with a
screen for time and frequency response that automatically can be displayed as the
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physical parameter changes are implemented via sliders. SYSQUAKE allows the
user to change the physical parameters by the use of sliders and see immediately the
response in the time and frequency domain.

Let us take the example in Fig. 11.30a to illustrate the use of this software
package. Entering the bond graph model of Fig. 11.30b in CAMPG, we obtain the
following display shown in Fig. 11.32.

Fig. 11.32 Landing suspension example, initial parameter set

Here the output is e2 (force on the tire) and the input is SF1, velocity input from
the ground. The step response in the time domain and the Bode plots for frequency
response are shown on the right. This display is an initial display with nominal
values of the physical parameters, which can be initially set at any reasonable value.
Let us say we would like to know what happens to the time and frequency response
if we change the parameter 1/C2, which is the stiffness k of the tire. A decrease
in C2 means an increase in k. Setting C2 to 0.025 will produce the display shown
in Fig. 11.33. The expected response shows a high-frequency oscillation and higher
natural frequency. A decrease in k is represented on the right. Setting the value of C2
using the sliders we could adjust the system to the point of almost no oscillations.
Such value was found to be C2 = 0.228 as shown on the right of Fig. 11.34.

If the value of C2 is increased (decrease of k), we will see immediately that the
system will oscillate with greater amplitude and lower frequency, a typical response
since the stiffness is reduced. The same thing can be done for any transfer function
of the system, a relationship of any force (effort) or velocity (flow) and any of the
two inputs as the sliders are displayed for all the inputs. The ability to study the
system parameter sensitivity is a very valuable tool for the study of how the system
responds to physical parameter changes, a very important study particularly for the
design of control systems.
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Fig. 11.33 Value of stiffness increased

Fig. 11.34 Value of stiffness decreased (no oscillations)
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11.3.2 CAMPG/MATLAB Interface

CAMPG delivers the computer-generated models to MATLAB in the form of (.m)
files. See details in [10]. Once the bond graph model has been entered into CAMPG
as described for different examples in Fig. 11.19, Fig. 11.22 or Fig. 11.28. The
MATLAB interface is chosen from several simulation languages in the menu. The
CAMPG/MATLAB interface works with a graphics window and a console window.
The console window is used to display guiding messages to the user after CAMPG
has started the prepossessing of input files to MATLAB. CAMPG/MATLAB will
automatically produce (.m) files and interface to MATLAB opening the MATLAB
command console. The (.m) files are opened in the MATLAB editor. These four
files are displayed in an editing window with tabs inside the MATLAB editor. Here
the CAMPG-generated models can be completed and adjusted if there are nonlinear
elements. The outputs and corresponding plots are indicated with examples. The
engineer determines here additional outputs and simulation conditions which ulti-
mately will determine the design of the system.

The computer-generated CAMPG files in (.m) (MATLAB) form are

– campgmod.m model parameter initialization/plot control
– campgequ.m model differential equations. Nonlinear simulation
– campgsym.m symbolic state space model matrices, transfer functions
– campgnum.m numerical state space model, transfer functions, matrices

11.3.2.1 CAMPG/MATLAB in the Time Domain

The campgmod.m and campgequ.m are used for linear or nonlinear simulation in
the time domain. These files will open automatically when MATLAB starts. The
user can also open them independently by entering “campgmatlab” or “cag2mat” at
the MATLAB command prompt or by clicking the MATLAB icon on the CAMPG
icons group.

It is useful to work with a display that looks like the one illustrated in Fig. 11.35
which offers a nice console for working on the simulation of the system. Work-
ing with a console of four windows displayed simultaneously allows the user to
have the bond graph model in one window, the MATLAB console command on
another window, the CAMPG icons set in another window, and the (.m) files in
the MATLAB editor environment in another window. This allows working with the
model of the physical systems as one can easily refer to the bond graph which has
a one-to-one correspondence with the physical system and identify which output
variables the simulation will display. The MATLAB window offers the numerical
display, the ability to enter MATLAB command, and the ability to edit any of the
(.m) files displayed in a list on the left-hand side. The CAMPG icons allow one to
display the tutorial and run all other tools associated with the CAMPG/MATLAB
environment. The graphical results will appear in several popup windows as MAT-
LAB executes the simulation. This setup as shown in Fig. 11.35 is achieved by
clicking on the option in Windows to rearrange the open windows horizontally or
vertically.
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Fig. 11.35 CAMPG/MATLAB interface with bond graph window

Let us demonstrate the output of the simulation of the same systems using the
MATLAB interface. Using the campgmod.m and the campgequ.m files we obtain
the time response for e2 using the same parameters as with SYSQUAKE. Such a
result is shown in Fig. 11.36.
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Fig. 11.36 Time domain simulation with dependency on stiffness value

Working on the four windows setup as indicated above, it is easy to change the
conditions and parameters on the campgmod.m file, run the time domain simulation,
and see the results of changes displayed graphically and numerically.
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11.3.2.2 CAMPG/MATLAB in the Frequency Domain

Let us look now at an example of an electromechanical system and implement the
systematic process outlined herein with the automated computer-generated model
shown below. Let us try a piezoelectric sensor and setup as an objective to find the
frequency domain response to find out on which frequency range the sensor will
measure accurately; this means in which frequencies the relation between input and
output should be one.

The device such as the one shown in Fig. 11.37 consists of an oscillating mass
with damping and stiffness effects enclosed in housing. The force acting on the
mass is transmitted to a piezoelectric material in the form of a wafer attached to
the oscillating mass. When such material is loaded, it produces an electric charge
associated with the mechanical deformation. Since such a charge is small, it requires
an operational amplifier in order to be measured and to find a relation to the accel-
eration, which the device is trying to measure.

iq ia = 0

i2
i2 ir

icC

R

U

U2
A

Housing

Piezoelectric
Crystal Operational

Amplifier

Oscillator
ü

ÿ

Fig. 11.37 Piezoelectric sensor, mechanical components, and amplification circuit

There are essentially three parts to the sensor. One is the mechanical part, the
second is the piezoelectric transformation, and the last one is the electronics nec-
essary to produce the amplification. The oscillating mass is a second-order mass,
damper, stiffness system. Let us consider now the models of each of these sections
with the aim at putting them together as a multidisciplinary mechatronics model.

From the bond graph representation shown above, one can make the equivalence
of the equations that control the operation of the amplifier obtained from physical
principles and those obtained using the bond graph model notation. Basic opera-
tion of the operational amplifier requires that the input current be zero. In order
to achieve this, the operational amplifier has to have very high input impedance.
Representing the voltage at the input node, U2 (Fig. 11.38a) is a small voltage and
in an ideal case the whole current iq flows through the resistor and the capacitor so
that the current ia is zero. Modeling operational amplifiers using bond graphs are
presented in [16].

The piezoelectric transformation is a direct relation between the displacement of
the mass and the charge generated in the capacitor so that it would yield

q = Kq y (11.32)
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Fig. 11.38 (a) Operational amplifier. (b) Operational amplifier bond graph

and thus

dq

dt
= Kq

dy

dt
(11.33)

This represents the piezoelectric transformation between the velocity of the oscil-
lating mass and the current, which is the input to the operational amplifier. This
equation in bond graph notation is represented by a transformer element, which
transforms the input force into voltage proportional to the acceleration. This can be
represented in (Fig. 11.39)

Fig. 11.39 Piezoelectric transformation bond graph

The mechanical model consists of the housing and a mechanical oscillator with
stiffness and damping. The physical system and bond graph are shown in Fig. 11.40.

Here the velocities ẏ and u̇ are absolute velocities with respect to an iner-
tial frame. Considering that the piezoelectric effect is produced by the relative
displacement of the mass on the piezoelectric material, it then makes sense to
express the bond graph and indeed the equations of motion of the mass in terms

Fig. 11.40 Sensor mechanical section and equivalent bond graph model
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of the relative motion with respect to the housing. This means that a simplification
of the model is useful, without considering the mass of the housing, but consider-
ing that the housing transmits acceleration to the mass. The bond graph shown in
Fig. 11.41 represents this. The forces described on the bond graph of Fig. 11.41 help
to demonstrate the equivalence of the differential equations that one can obtain using
the free body diagram of the mass, damper spring system. The 1 junction represents
the summation of forces in the same way as using Newton’s law in the following
format.

m ˙̈yr + bẏr + kyr = −mü (11.34)

Fig. 11.41 Bond graph in terms of relative motion (a). Simplified version (b)

All three sections of the sensor explained earlier are put together as a single
mechatronics model shown in Fig. 11.42. In order to find the frequency response
that will allow us to know the range of frequencies we need a transfer function
between the voltage on bond 12 and the input of bond 1. The bond graph is entered
in CAMPG in graphical form using the icons on the left as shown in Fig. 11.42. One
of those is a special one, OP which is specifically designed to model an operational
amplifier. This element has the property of suppressing the input current and thus the
activated bond but amplifying the voltage which is the function of the OP amplifier.
More examples in [16].

The effort variables of the mechanical section represent the forces and the effort
variables of the piezoelectric transformation represent the relation between the
forces, which the sensor is subjected to and the voltage produced because of the
piezoelectric effect. These variables in the electrical section represent the distinct
voltages at any node in the circuit. Respectively, the flow variables represent the
velocities and the currents involved. This approach considers the system as a whole
so that the state matrix involves all three sections of the sensor, a mechanical section,
a piezoelectric, and an electrical, a complete mechatronics system. CAMPG can
obtain the desired transfer functions using the computer-generated state matrices
derived in symbolic form. The Laplace transform is applied to the state space form
and the transfer functions are obtained in symbolic and also in numeric form for
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Fig. 11.42 Complete sensor model as entered in CAMPG

analysis in the frequency domain. Details of use of the MATLAB control tool box
are found in [6–8]. They are obtained using the matrix operations of the form

H = C(s I − A)−1 B + D (11.35)

where H is the vector or matrix of transfer functions depending on how many inputs
the system has. It is important to note that the approach proposed here can obtain
several transfer functions simultaneously since for every row of the C matrix, a
transfer function will be generated which relates that output to each input of the
system so the approach is valid for SISO (single input, single output) or MIMO
(multi input, multi output) systems.

The computer-generated transfer function for the voltage across the capacitor
crosses two different energy domains without separation since the model is all
together. The transfer function is obtained in one step in symbolic form. CAMPG
generated the code for the A, B, C , D matrices which are displayed in MATLAB.
Any other transfer function for the efforts and flow output variables can be obtained.
More details are presented in [11]. At this point, the computer-generated model
becomes so versatile that all the linear control theory operations implemented in the
MATLAB Control Systems Toolbox can be used on the entire mechatronics model.

For example, a Bode plot can be generated using the computer-generated transfer
function or the A, B, C , D matrices in order to do a frequency response analysis.
Root locus, pole placement, and other operations such as controllability and observ-
ability using the state space form are possible also using the model produced by the
approach presented in this chapter. The result of the above matrix operations can be
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used directly in MATLAB or can also be generated in the form that SIMULINK uses
to analyze such transfer function. The transfer function, which relates the output
voltage e11(s) to the input force e1(s) using the bond graph notation, is

– ( + T5 x 6)*C3*R13s

(C3*C12*R13*I4)s3
 + (C3*C12*R13*R2+C3*I4)s2

 + (C3*T5 × 6^2*R13 + C12*R13 + C3*R2)s + 1

Transfer Fcn e11(s)/e1(s)

Fig. 11.43 Computer-generated transfer function

Note that this is a simplified transfer function where the high gain OP does not
appear, because during the derivation of this transfer function the high-gain terms
get eliminated.

There are other benefits of this approach. The denominator of this transfer func-
tion is the characteristic equation of the system. Figure 11.43 shows it in symbolic
form. The coefficients of each power of S are displayed in terms of the physical
parameters in symbolic form. This means that each coefficient of S is the result of
the physical parameter combined mathematical operations. What this means is that
we now know the influence each physical parameter has on the coefficients and their
dependencies, which can be used for the study of parameter sensitivities in relation
to simulation results. This of course impacts directly the system design to fulfill the
functional requirements.

A computer simulation using the CAMPG computer-generated transfer function
was carried out using the symbolic transfer function and the state matrices. The
Bode plot shown in Fig. 11.44a indicates the frequency range in which the sensor
output tracks the input precisely and can measure it accurately. The magnitude and
phase angle are plotted showing a natural frequency of about 10,000 Hz and the
reliable range of frequencies. This reveals that the sensor is accurate in frequencies
below the natural frequency. Around this frequency, deviations in the magnitude as
well as in the phase play a role in the accuracy of the measurements of the accel-
eration. In this case the correct choice of the damping constants ensures that such
deviations do not occur prior to 10,000 Hz. The lower limit is indicated by the pass
band frequency.

Using this model, different sensors of higher resonance can be designed, keeping
in mind the influence of the piezoelectric crystal. Sensors capable of higher frequen-
cies can be accomplished with small values of damping. Hoffman [18] studied this
using a different method. Such a model was tested against this bond graph method
to verify the model and the results.

If one uses the CAMPG computer-generated transfer function we also obtained
the step and impulse responses shown in Fig. 11.44b to study the transient response
of the sensor. This demonstrates the theory and application of the proposed system-
atic and automated process. This example also verified the results in the frequency
and the time domain, respectively.

Another electromechanical example is shown in [5].
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Fig. 11.44 Bode plot of sensor dynamics (a). Step and impulse response (b)

11.3.3 The CAMPG/SIMULINK Interface

The SIMULINK blocks shown in Fig. 11.45 summarize the CAMPG/SIMULINK
interface.

Fig. 11.45 CAMPG/SIMULINK interface

The CAMPG interface to SIMULINK follows the same format as the one for
MATLAB. The user enters a bond graph model utilizing the menu as for the other
simulation programs; then SIMULINK interface is chosen under the INTERFACE
menu.

CAMPG generates the following files for the SIMULINK interface:

– campgini.m Model parameter and A, B, C , D matrices initialization
– campgnum.m Matrices and transfer functions Initialization
– campgtfn.mdl CAMPG/SIMULINK transfer function
– campgsst.m CAMPG/SIMULINK state space form

These files describe the model for SIMULINK. Since SIMULINK and MATLAB
share the same work space, the initialization of parameters in the campgini.m file
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initialize not only the physical parameters for simulation but also CAMPG has set
up the initialization of the system A, B, C, D matrices.

These are generated in symbolic form and have other uses not related to the type
of simulations presented here. This can be used to program real-time simulations
with hardware in the loop where the mathematical model of the controlled device is
programmed using the state space form of the equations of the physical system, in
this case produced by CAMPG in symbolic form.

SIMULINK and MATLAB share the same workspace. The state space matrices
can be initialized with values using simple (.m) files, which when executed transfers
the values in the workspace to SIMULINK state space blocks. The campgnum.m
generated the transfer functions, which are also initialized on the SIMULINK trans-
fer function block.

The idea here is that using CAMPG we can let the computer derive the differen-
tial equations not only in the Cauchy form for time domain simulation, but also in
state space form which can be used in SIMULINK either in the time domain or in
the frequency domain. Finally CAMPG will produce computer-generated transfer
functions which can also be used by SIMULINK for time and frequency domain
calculations (Fig. 11.46).

The model transferred from CAMPG to SIMULINK in the state space form
follows the same order of the state space vector as the state variable vector gen-
erated in CAMPG and displayed in the campgini.m file and in the campgnum.m
file. The rows of those matrices correspond to the rows of the state variable vector
generated in those two files. The state space model in SIMULINK requires two

Fig. 11.46 CAMPG/SIMULINK state space and transfer function



11 Automating the Process for Modeling and Simulation of Mechatronics Systems 419

additional blocks, Multiplexer for the input vector and a Demultiplexer for the vec-
tor of outputs. Both of these are already included in the (.mdl) files that open as the
CAMPG/SIMULINK interface executes.

Since the equations are in symbolic form, they can be used for nonlinear systems
where time dependent parameters variations are present. In case of discontinuties,
the “campgequ.m” file can be changed to describe non-linearities and discontinuities
as shown in detail in [12].

11.3.3.1 The CAMPG and SIMULINK S-Functions for Complex
Nonlinear Systems

SIMULINK S-functions generated from CAMPG are used for the simulation of
complex nonlinear systems. The explanation here is a summary of the necessary
parts of an S-function which are necessary to simulate nonlinear systems using a
combination of bond graph modeling and the tools in SIMULINK. There are four
basic sections to an S-function. These four sections are the main section, initializa-
tion section, derivative section, and Output section. Reference [13] presents a more
detail description.

Let us illustrate the use of these functions and other tools utilizing the
CAMPG/SIMULINK system using a nonlinear hydraulic system example. The sys-
tem under consideration here is a 4-way closed-center spool valve. The valve shown
in Fig. 11.47 is connected to a hydraulic ram.

Fig. 11.47 Four-way hydro-mechanical control valve

The system has a hydraulic fluid source that is supplied at a constant pressure to
the system. The spool valve can be moved back and forth. When the spool valve is
moved in either direction, a port that leads to the hydraulic ram is opened. At the
same time on the other side of the ram a port that leads to a hydraulic fluid return
tank opens. In actuality, there is really only one port on each side of the hydraulic
ram. Each is used as either a supply or a return port depending on the direction the
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spool valve is displaced. Figure 11.47 shows how the flow is diverted into the ram
or the flow from the low-pressure side of the ram is diverted away from the supply
and into the return tank.

The spool valve movement creates flows into one of the ram chambers. This in
turn causes a pressure difference across the ram. The pressure difference is equalized
and fluid flows from the other side of the ram chambers resulting in a displacement
of the ram piston. Since the ram piston is connected directly to the spool valve
housing, it also moves, imparting an output force much greater than the input force
that was applied and used to move the spool valve. Damping and inertia effects are
lumped into the constants B and M, respectively. It is worth noting that the return
tank is at a gauge pressure of 0, and the supply line is at a gauge pressure of 1000
psi. A constant pressure pump pumps fluid from the return tank to the supply line.
Using the systematic method outlined at the beginning of the chapter for hydraulic
systems, the bond graph model shown in Fig. 11.48 is generated.

Fig. 11.48 Four-way control valve bond graph model

Looking at the system shown in Fig. 11.47, the notation for the physical param-
eter variables is as follows:

Ps = supply pressure Pr = return pressure
Xv = input displacement of the spool valve
Qcl = hydraulic fluid flow to the left ram chamber
Qcr = hydraulic fluid flow to the right ram chamber
Pcl = pressure in the left ram chamber
Pcr = pressure in the right ram chamber
Xc = output displacement of the spool valve housing
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The bond graph as seen in Fig. 11.48 was developed considering each subsystem
separately and then assembling them together. More details of the bond graph model
itself are discussed in [13, 19].

11.3.3.2 Spool Valve Nonlinear Relations

The following nonlinear resistive valve relations are used. These not necessarily
follow the basic relations of linear bond graph elements but their own:

Rls =
√

Ps − Pcl

Kv (Xu + Z)
left supply (11.36)

Rlr =
√

Pcl − Pr

Kv (Xu − Z)
=

√
Pcl

Kv (Xu − Z)
left return (11.37)

Rrs =
√

Ps − Pcr

Kv (Xu − Z)
right supply (11.38)

Rrr =
√

Pcl − Pr

Kv (Xu + Z)
=

√
Pcl

Kv (Xu + Z)
right return (11.39)

where

Kv = Cdω
√

2gc/rho (11.40)

Xv = Xu+ Z = valve underlap; Cd = discharge coefficient; ω = valve port width;
rho = fluid density.

Dransfield presents these relations in more detail in [20].

Qf = Kv Xv�P1/2 (11.41)

11.3.3.3 Hydraulic Ram

Leakage that occurs in the piston is considered. This leakage is to be constant and
is modeled by an R element. The transformer, which represents the transformation
from the fluid pressures and volume flows to the mechanical forces and velocities, is
equal to the area of the piston in the hydraulic ram, Ap. The fluid compressibility is
modeled by a C element. However, this is a very nonlinear relation as demonstrated
by Dransfield [20] and Karnopp et al. [14]:

C = V/BM �P = −BM

V
�V (11.42)

�Pcl = −BM

Vlo + Xc Ap
�V ∴ C = Vlo + Xc Ap

BM
(11.43)

where
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V = instantaneous volume
BM = bulk modulus
Vlo = initial volume of the fluid in the left ram cylinder

The completed bond graph was entered into CAMPG and processed for inter-
face with SIMULINK. From there the S-function file called campgsfn.m was
created along with the parameters input file called campgini.m. The latter needs
values for the constants, initial conditions, and the physical system parameters
specified. Due to the nature of the nonlinearities of this system, the S-function
itself needs to be edited. The nonlinear valve orifice area variation equations were
entered in MATLAB format. The flow into the left cylinder (Qcl = F4) is con-
trolled by a nonlinear constitutive relation modeled using SHUT1 and SHUT2 (i.e.,
F4 = SHUT1*E4/R4). SHUT1 is what determines the sign of the flow (into or
out of) depending on whether the port area is increasing or decreasing. The actual
implementation of FCNSW and SHUT1 and SHUT2 can be seen in the actual code
of the modified S-functions.

11.3.3.4 S-Functions from the Bond Graph

Once the bond graph has been entered, selection of the SIMULINK interface will
generate a SIMULINK S-function campgsfn.m and an initialization file campgini.m
where the parameters’ numerical values need to be entered. The files generated by
CAMPG contain a set of question marks that point to the variables that need to be
initialized.

The SIMULINK model in the form of an S-function was generated by CAMPG
automatically as shown in Fig. 11.49. The 4-way valve and ram model becomes a
SIMULINK S-function block with the CAMPG-generated function underneath.

Fig. 11.49 CAMPG S-function model
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Parameters are entered into this system by double clicking on the 4-way spool
valve block in the center of the window. This window has been modified for the
actual simulation to run by adding the input and output blocks. All of the initial
conditions, constants, and physical system parameters are entered into this system
by double clicking on the 4-way spool valve block in the center of the window.

The computer-generated block is created with its graphical (.mdl) file and the
corresponding S-function files. The user needs to complete the systems for the out-
put variables or specify other nonlinearities before the simulation is performed. This
can be done modifying the S-function generated by CAMPG.

11.3.3.5 Four-Way Hydraulic Control Valve Simulation Validation

The simulation was compared to that in [19], which was developed by an entirely
different method. Using the physical parameter values, the simulation was verified.
Using the S-function created by interfacing CAMPG with SIMULINK, the follow-
ing plots are created.

Figure 11.50 shows the maximum flow rate to the left cylinder. This maximum
flow occurs when the step input is triggered. This makes sense because this is when
the valve orifice opening is the maximum. After this, the actuator housing displaces,
causing the valve to close once again. The bottom plot of Fig. 11.50 depicts the
actual pressure in the left cylinder. This plot also makes physical sense because the
pressure starts to increase as soon as the valve is opened. The step-input effect is
clearly seen. It takes time for the hydraulic fluid that has just started to flow into the
left cylinder to begin building up pressure.

Fig. 11.50 Flow (a) and pressure (b) rates – left cylinder

The spool displacement relative to the ground is shown in Fig. 11.51. It appears
as a line step input. The other line shows how the housing is displaced relative to the
ground. Figure 11.51 shows that the housing movement should lag a little behind the
step input. It also shows that as the housing approaches the step input displacement,
the velocity of the housing slows. This is due to the fact that the valve allowing the
fluid flow into the left cylinder closes as the housing moves, thus causing the fluid
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flow rate to decrease. The pressure in the left cylinder also decreases. This effect
is verified as one observes Fig. 11.50. These results are completely consistent with
those of [19] and were used to validate the results.

Fig. 11.51 Spool valve and housing displacement relative to ground

This is an extensive and complex system, which can be analyzed in many differ-
ent ways including additional SIMULINK functions for each nonlinearity.

11.4 Automatically Generated Block Diagrams from Bond
Graph Models

One can argue that it is not necessary to convert bond graph models into block
diagrams and vice versa because both technologies are independent and can carry
out complete simulations on their own. The equivalence between them has been
demonstrated at the beginning of the chapter in section 11.2.4. However, this chapter
has two objectives in this discussion. First to bridge and deepen the understanding of
bond graphs for those familiar with the block diagram technology. Such conversion
allows those experts in block diagrams an environment completely familiar to them
and still they can take advantage of the automated process presented herein. In other
words, experts on both technologies can find a common ground to talk to each other.
The second objective is to demonstrate how the Cauchy form of the differential
equations produced in state variable (first-order) form from bond graph models are
suitable for conversion into block diagrams in a systematic and organized way for
not only the differential equations but also all the output equations.

11.4.1 Principles Behind the Generation of Block Diagrams
from Bond Graphs

The electrical system shown in Fig. 11.52 is used to illustrate basic principles
between the two technologies. Using Kirchhoff’s laws, we obtain the second-order
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(a) (b)

Fig. 11.52 Physical system (a) and corresponding bond graph (b)
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Fig. 11.53 Circuit block diagram as entered in SIMULINK

differential equation shown in (11.44). The corresponding block diagram from this
equation is shown in Fig. 11.53. This block diagram implements the solution of
the two state equations of the system into a single combined block diagram. It is
compatible with the well-known solution of a second-order differential equation in
terms of the charge for the electrical circuit of Fig. 11.52.

(i1 − i2)R + 1

C

∫
(i1 − i2)dt = L

d2 Q

dt2
(11.44)

where i1 is the input I (t).

∴ L Q̈ + RQ̇ + 1

C
Q = I

(

R − 1

C

)

= f (t) (11.45)

Using this equation, the block diagram shown in Fig. 11.53 can be generated and
entered in SIMULINK. This is the conventional approach using block diagrams. A
simple conversion method for bond graphs is shown in [9].

Now something different is presented here. The idea is that CAMPG can pro-
duce all of the constitutive individual relations and junction relations of the bond
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graph, thus creating an equivalent set of equations which are completely equivalent
to those of (11.44), something demonstrated at the beginning of the chapter section
11.2.4. It follows from this that such logical form can be transformed into a block
diagram, using the same approach as (11.44) was. The differential equations and
output equations of this type generated by CAMPG for the circuit of Fig. 11.52 are
shown in Fig. 11.54.

Inputs vector  
u  =  [  SE1 ]  

State variables vector  
p_q   =  [Q4;P2]; 

Number of States 2 

Differential Equations 
dQ4  =  SF1–P2/I2 
dP2  =  Q4/C4  +  SF1*R5–P2/I2*R5 

Output Equations 
f1  =  SF1 
f2  =  P2/I2 
e4  =  Q4/C4 
f3  =  SF1–P2/I2 
f4  =  SF1–P2/I2 
f5  =  SF1–P2/I2 
e5  =  SF1*R5–P2/I2*R5 
e3  =  Q4/C4  +  SF1*R5–P2/I2*R5 
e2  =  Q4/C4  +  SF1*R5–P2/I2*R5 
e1  =  Q4/C4  +  SF1*R5–P2/I2*R5 

Fig. 11.54 Cauchy form differential equations and output equations

These equations are used by CAMPG to produce the SIMULINK-compatible
block diagrams and the SIMULINK S-functions. The latter are SIMULINK’s link
to the bond graph non-linear elements equations because S-functions can be pro-
grammed based on specific structures that are defined in a SIMULINK block.
CAMPG takes advantage of this fact to produce such functions.

11.4.2 Block Diagrams from CAMPG

Using the Cauchy form, we proceed for the differential equations (Fig. 11.54) and
the output equations. Each derivative is a linear combination of symbolic factors,
state variables p’s and q’s, and the inputs. Such factors contain relations between
the physical parameters. This approach proposes to treat such factors as feedback
gains to compose each differential equation at a summation point where the states
with their gains and the inputs with their gains produce differential equations in
first-order form. These in turn are integrated to produce the solution of the states.
CAMPG produces also for each internal effort (e’s) or flow (f’s) relations as output
equations in the Cauchy form. These are also functions of the states and the inputs
with their corresponding gain factors. It follows that block diagrams consistent with
the same format as the state space differential equations can also represent these.

In the approach proposed here, to represent the two first-order differential equa-
tions every result of integration (state variable) is defined as a “write store block” in
SIMULINK and every feedback signal, which must be multiplied by a gain to make
up the differential equation, as a “read store block.” The computer-generated block
diagram is shown in Fig. 11.55.

When a block diagram is manually derived using equations derived by New-
ton or Lagrange methods, there are some complexities to be considered. While the
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Fig. 11.55 Computer-generated block diagram

representation is accurate, building block diagrams manually as is the usual case
produces block diagrams of different topology depending on the engineer. The set
of connecting lines made by the engineer can take many complex and unpredictable
paths with crossover lines to the point of being difficult to read. For these reasons,
the computer generation of block diagrams based on the state equations produced by
the bond graph approach presented here offers a much cleaner, predictable structure
and suppresses many crossover and connecting lines typical of manually derived
block diagrams, besides being error free. The structure presented in Fig. 11.55 is
valid for all state variables and all output variables which by default are computer
generated.

11.4.3 Building an Organized Block Diagram with Submodels
from Bond Graphs: From Computer-Generated Subsystems

Since the complexity of block diagrams escalates with the number of elements and
the number of differential–algebraic equations it is helpful to have an organized
and hierarchical block diagram where one could easily navigate through the block
diagrams representing the differential equations as well as those representing the
output equations.

In order to achieve this goal the CAMPG approach seeks to define each differen-
tial equation as a SIMULINK subsystem connected by data store in data read and
data write formats. CAMPG then adjusts to this new method presented herein in the
production of system block diagrams including subsystems. The intention here is to
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Fig. 11.56 Computer-generated subsystems and output equations

provide many opportunities to add pertinent blocks, which will define nonlineari-
ties or other specialized user blocks from the SIMULINK library or user defined
S-functions. Having each equation as a subsystem which will open in separate
windows facilitates this task very efficiently. The implementation of this concept
is shown in Fig. 11.56.

This provides the user with a tool, which allows the maximum use of all capa-
bilities contained in SIMULINK as well as in the MATLAB environment since all
of the bond graph signals, efforts, and flows between elements and junctions are
defined also in terms of the states and the inputs. Therefore, they can also be defined
as subsystems in order to use such structure to represent nonlinearities.

The bond graph differential equations appear on a set of side-by-side individual
windows which form a kind of system model control panel. On the left-hand side we
have icons that link to subsystems representing each differential equation and each
output variable. If one clicks on one of these icons representing the subsystems,
the block diagram representing that differential equation or that output equation is
displayed in a separate window. The system simulation control panel and two win-
dows corresponding to two differential equations (dp2 and dq4) and two windows
corresponding to two outputs (f3 and e5) are shown in Fig. 11.56.

11.5 Chapter Summary

The reader has been presented with an overview of several simple principles of mod-
eling and simulation using bond graphs and block diagrams, some for simple and
others for complex topics in an effort to provide methodologies that will help bridge
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the understanding and appreciation of the strengths of the bond graph technology
and at the same time communicate with others who are familiar with knowledge of
block diagrams.

The successful derivation of a computer model relies very heavily on how
accurately one can represent the physics behind dynamic systems. The usual
approach is to represent the physics and transform it into some mathematical
form of differential–algebraic equations which can be solved in different ways.
One way as shown here at the beginning is to program these and using a simu-
lation language solve such equations. Another way presented herein is to trans-
form these equations into block diagrams and then use these in a program like
SIMULINK to perform computer simulations from block diagrams. The discussion
at the beginning focused in taking these principles and methods and demonstrat-
ing that bond graphs produce differential–algebraic equations that are completely
compatible and equivalent to those of block diagrams. Once such was demon-
strated, the examples and methods guide the reader to take advantage of the auto-
mated process to produce computer models ready for simulation using bond graph
models.

The explanation of the automated approach starting with a bond graph and com-
bining it with CAMPG (Computer Aided Modeling Program with Graphical Input)
shows that models are generated in detail so close to the physics of the systems
that an organized procedure is presented to generate such bond graphs from scratch.
The physics of a system is described by bond graphs and the difference is that such
models once entered in CAMPG produce automatically not only the differential
equations and output equations, but the transfer functions and S-functions that can
be used in the frequency domain in either MATLAB or SIMULINK.

This approach gives also hindsight of the systems’ properties themselves without
performing any simulation. For example, assembling a bond graph with power flow
and causality as done in CAMPG can show the engineer whether the system is con-
nected properly, whether an explicit set of equations can be generated, or whether
there will be computational problems with algebraic loops or dependent elements
which will produce implicit equations. This is something that one cannot discover
using block diagrams prior to simulation. Many times the author has seen models
generated in block diagrams which contain derivative forms or implicit algebraic
loop which is only discovered at the simulation stage. What we are saying here is
that bond graph modeling will predict these problems before going ahead with the
simulation and rather investigate the model or the representation of the details of the
system to solve these problems prior to investing a lot of time in the simulation.

The chapter presented several demonstrations in different ways to show the
equivalency of block diagrams and bond graph models. This equivalence has been
extended in practice so that the reader will be capable to analyze systems in the time
domain and in the frequency domain. Several systems in several energy domains
with their combinations and nonlinearities have been presented in order to provide
a methodology which facilitates the solution of complex nonlinear mechatronics
systems. The reader is encouraged to try these on his/her own and experience the
advantages that the automated process using bond graph technology has to offer.
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Smith-McMillan factorization, 200
Software, 385
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State, 30
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State-feedback, 187
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State-space equations, 261
State space form, 406
State space models, 391
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Structured residuals, 251
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System parameter sensitivity, 408
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