Chapter 1
Ensemble Learning

Robi Polikar

1.1 Introduction

Over the last couple of decades, multiple classifier systems, also called ensemble
systems have enjoyed growing attention within the computational intelligence and
machine learning community. This attention has been well deserved, as ensemble
systems have proven themselves to be very effective and extremely versatile in
a broad spectrum of problem domains and real-world applications. Originally
developed to reduce the variance—thereby improving the accuracy—of an auto-
mated decision-making system, ensemble systems have since been successfully
used to address a variety of machine learning problems, such as feature selection,
confidence estimation, missing feature, incremental learning, error correction, class-
imbalanced data, learning concept drift from nonstationary distributions, among
others. This chapter provides an overview of ensemble systems, their properties,
and how they can be applied to such a wide spectrum of applications.

Truth be told, machine learning and computational intelligence researchers have
been rather late in discovering the ensemble-based systems, and the benefits offered
by such systems in decision making. While there is now a significant body of
knowledge and literature on ensemble systems as a result of a couple of decades
of intensive research, ensemble-based decision making has in fact been around
and part of our daily lives perhaps as long as the civilized communities existed.
You see, ensemble-based decision making is nothing new to us; as humans, we
use such systems in our daily lives so often that it is perhaps second nature to us.
Examples are many: the essence of democracy where a group of people vote to
make a decision, whether to choose an elected official or to decide on a new law,
is in fact based on ensemble-based decision making. The judicial system in many
countries, whether based on a jury of peers or a panel of judges, is also based on
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ensemble-based decision making. Perhaps more practically, whenever we are faced
with making a decision that has some important consequence, we often seek the
opinions of different “experts” to help us make that decision; consulting with several
doctors before agreeing to a major medical operation, reading user reviews before
purchasing an item, calling references before hiring a potential job applicant, even
peer review of this article prior to publication, are all examples of ensemble-based
decision making. In the context of this discussion, we will loosely use the terms
expert, classifier, hypothesis, and decision interchangeably.

While the original goal for using ensemble systems is in fact similar to the reason
we use such mechanisms in our daily lives—that is, to improve our confidence that
we are making the right decision, by weighing various opinions, and combining
them through some thought process to reach a final decision—there are many
other machine-learning specific applications of ensemble systems. These include
confidence estimation, feature selection, addressing missing features, incremental
learning from sequential data, data fusion of heterogeneous data types, learning non-
stationary environments, and addressing imbalanced data problems, among others.

In this chapter, we first provide a background on ensemble systems, including
statistical and computational reasons for using them. Next, we discuss the three pil-
lars of the ensemble systems: diversity, training ensemble members, and combining
ensemble members. After an overview of commonly used ensemble-based algo-
rithms, we then look at various aforementioned applications of ensemble systems as
we try to answer the question “what else can ensemble systems do for you?”

1.1.1 Statistical and Computational Justifications
Jor Ensemble Systems

The premise of using ensemble-based decision systems in our daily lives is
fundamentally not different from their use in computational intelligence. We consult
with others before making a decision often because of the variability in the past
record and accuracy of any of the individual decision makers. If in fact there were
such an expert, or perhaps an oracle, whose predictions were always true, we would
never need any other decision maker, and there would never be a need for ensemble-
based systems. Alas, no such oracle exists; every decision maker has an imperfect
past record. In other words, the accuracy of each decision maker’s decision has
a nonzero variability. Now, note that any classification error is composed of two
components that we can control: bias, the accuracy of the classifier; and variance,
the precision of the classifier when trained on different training sets. Often, these
two components have a trade-off relationship: classifiers with low bias tend to have
high variance and vice versa. On the other hand, we also know that averaging has
a smoothing (variance-reducing) effect. Hence, the goal of ensemble systems is to
create several classifiers with relatively fixed (or similar) bias and then combining
their outputs, say by averaging, to reduce the variance.
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Fig. 1.1 Variability reduction using ensemble systems

The reduction of variability can be thought of as reducing high-frequency
(high-variance) noise using a moving average filter, where each sample of the
signal is averaged by a neighbor of samples around it. Assuming that noise in
each sample is independent, the noise component is averaged out, whereas the
information content that is common to all segments of the signal is unaffected by the
averaging operation. Increasing classifier accuracy using an ensemble of classifiers
works exactly the same way: assuming that classifiers make different errors on each
sample, but generally agree on their correct classifications, averaging the classifier
outputs reduces the error by averaging out the error components.

It is important to point out two issues here: first, in the context of ensemble
systems, there are many ways of combining ensemble members, of which averaging
the classifier outputs is only one method. We discuss different combination schemes
later in this chapter. Second, combining the classifier outputs does not necessarily
lead to a classification performance that is guaranteed to be better than the best
classifier in the ensemble. Rather, it reduces our likelihood of choosing a classifier
with a poor performance. After all, if we knew a priori which classifier would
perform the best, we would only use that classifier and would not need to use

an ensemble. A representative illustration of the variance reduction ability of the
ensemble of classifiers is shown in Fig. 1.1.
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1.1.2 Development of Ensemble Systems

Many reviews refer to Dasarathy and Sheela’s 1979 work as one of the earliest
example of ensemble systems [1], with their ideas on partitioning the feature
space using multiple classifiers. About a decade later, Hansen and Salamon showed
that an ensemble of similarly configured neural networks can be used to improve
classification performance [2]. However, it was Schapire’s work that demonstrated
through a procedure he named boosting that a strong classifier with an arbitrarily
low error on a binary classification problem, can be constructed from an ensemble
of classifiers, the error of any of which is merely better than that of random guessing
[3]. The theory of boosting provided the foundation for the subsequent suite
of AdaBoost algorithms, arguably the most popular ensemble-based algorithms,
extending the boosting concept to multiple class and regression problems [4]. We
briefly describe the boosting algorithms below, but a more detailed coverage of these
algorithms can be found in Chap. 2 of this book, and Kuncheva’s text [5].

In part due to success of these seminal works, and in part based on independent
efforts, research in ensemble systems have since exploded, with different flavors of
ensemble-based algorithms appearing under different names: bagging [6], random
forests (an ensemble of decision trees), composite classifier systems [1], mixture
of experts (MoE) [7, 8], stacked generalization [9], consensus aggregation [10],
combination of multiple classifiers [11-15], dynamic classifier selection [15],
classifier fusion [16-18], committee of neural networks [19], classifier ensembles
[19,20], among many others. These algorithms, and in general all ensemble-based
systems, typically differ from each other based on the selection of training data for
individual classifiers, the specific procedure used for generating ensemble members,
and/or the combination rule for obtaining the ensemble decision. As we will see,
these are the three pillars of any ensemble system.

In most cases, ensemble members are used in one of two general settings:
classifier selection and classifier fusion [5, 15, 21]. In classifier selection, each
classifier is trained as a local expert in some local neighborhood of the entire
feature space. Given a new instance, the classifier trained with data closest to
the vicinity of this instance, in some distance metric sense, is then chosen to
make the final decision, or given the highest weight in contributing to the final
decision [7, 15,22,23]. In classifier fusion all classifiers are trained over the entire
feature space, and then combined to obtain a composite classifier with lower
variance (and hence lower error). Bagging [6], random forests [24], arc-x4 [25], and
boosting/AdaBoost [3, 4] are examples of this approach. Combining the individual
classifiers can be based on the labels only, or based on class-specific continuous
valued outputs [18, 26, 27], for which classifier outputs are first normalized to
the [0, 1] interval to be interpreted as the support given by the classifier to each
class [18,28]. Such interpretation leads to algebraic combination rules (simple or
weighted majority voting, maximum/minimum/sum/product, or other combinations
class-specific outputs) [12, 27, 29], the Dempster—Shafer-based classifier fusion
[13,30], or decision templates [18,21,26,31]. Many of these combination rules
are discussed below in more detail.
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A sample of the immense literature on classifier combination can be found in
Kuncheva’s book [5] (and references therein), an excellent text devoted to theory
and implementation of ensemble-based classifiers.

1.2 Building an Ensemble System

Three strategies need to be chosen for building an effective ensemble system. We
have previously referred to these as the three pillars of ensemble systems: (1) data
sampling/selection; (2) training member classifiers; and (3) combining classifiers.

1.2.1 Data Sampling and Selection: Diversity

Making different errors on any given sample is of paramount importance in
ensemble-based systems. After all, if all ensemble members provide the same
output, there is nothing to be gained from their combination. Therefore, we need
diversity in the decisions of ensemble members, particularly when they are making
an error. The importance of diversity for ensemble systems is well established
[32,33]. Ideally, classifier outputs should be independent or preferably negatively
correlated [34, 35].

Diversity in ensembles can be achieved through several strategies, although using
different subsets of the training data is the most common approach, also illustrated
in Fig. 1.1. Different sampling strategies lead to different ensemble algorithms. For
example, using bootstrapped replicas of the training data leads to bagging, whereas
sampling from a distribution that favors previously misclassified samples is the core
of boosting algorithms. On the other hand, one can also use different subsets of the
available features to train each classifier, which leads to random subspace methods
[36]. Other less common approaches also include using different parameters of the
base classifier (such as training an ensemble of multilayer perceptrons, each with a
different number of hidden layer nodes), or even using different base classifiers as
the ensemble members. Definitions of different types of diversity measures can be
found in [5,37,38]. We should also note that while the importance of diversity, and
lack of diversity leading to inferior ensemble performance has been wellestablished,
an explicit relationship between diversity and ensemble accuracy has not been
identified [38, 39].

1.2.2 Training Member Classifiers

At the core of any ensemble-based system is the strategy used to train individual
ensemble members. Numerous competing algorithms have been developed for
training ensemble classifiers; however, bagging (and related algorithms arc-x4
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and random forests), boosting (and its many variations), stack generalization and
hierarchical MoE remain as the most commonly employed approaches. These
approaches are discussed in more detail below, in Sect. 1.3.

1.2.3 Combining Ensemble Members

The last step in any ensemble-based system is the mechanism used to combine
the individual classifiers. The strategy used in this step depends, in part, on the
type of classifiers used as ensemble members. For example, some classifiers, such
as support vector machines, provide only discrete-valued label outputs. The most
commonly used combination rules for such classifiers is (simple or weighted)
majority voting followed at a distant second by the Borda count. Other classifiers,
such as multilayer perceptron or (naive) Bayes classifier, provide continuous valued
class-specific outputs, which are interpreted as the support given by the classifier
to each class. A wider array of options is available for such classifiers, such as
arithmetic (sum, product, mean, etc.) combiners or more sophisticated decision
templates, in addition to voting-based approaches. Many of these combiners can be
used immediately after the training is complete, whereas more complex combination
algorithms may require an additional training step (as used in stacked generalization
or hierarchical MoE). We now briefly discuss some of these approaches.

1.2.3.1 Combining Class Labels

Let us first assume that only the class labels are available from the classifier outputs,
and define the decision of the " classifieras d; . € {0,1},t =1,...,Tandc =1, ...,
C, where T'is the number of classifiers and Cis the number of classes. If t™ classifier
(or hypothesis) i; chooses class w., then d;, =1, and 0, otherwise. Note that the
continuous valued outputs can easily be converted to label outputs (by assigning
d;. = 1 for the class with the highest output), but not vice versa. Therefore, the
combination rules described in this section can also be used by classifiers providing
specific class supports.

Majority Voting

Majority voting has three flavors, depending on whether the ensemble decision
is the class (1) on which all classifiers agree (unanimous voting); (2) predicted
by at least one more than half the number of classifiers (simple majority); or (3)
that receives the highest number of votes, whether or not the sum of those votes
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exceeds 50% (plurality voting). When not specified otherwise, majority voting
usually refers to plurality voting, which can be mathematically defined as follows:
choose class w.*, if

T T
D dier =max. Yy d. (1.1)
=1 t=1

If the classifier outputs are independent, then it can be shown that majority
voting is the optimal combination rule. To see this, consider an odd number of
T classifiers, with each classifier having a probability of correct classification p.
Then, the ensemble makes the correct decision if at least |7/2] + 1 of these
classifiers choose the correct label. Here, the floor function | M| returns the largest
integer less than or equal to its argument. The accuracy of the ensemble is governed
by the binomial distribution; the probability of having k > T/2+41 out of T
classifiers returning the correct class. Since each classifier has a success rate of p,
the probability of ensemble success is then

T

Pens = Z (Z)pk(l_p)T_k (12)

T
k=41

Note that Pe,s approaches 1 as T — oo, if p > 0.5; and it approaches 0 if p < 0.5.
This result is also known as the Condorcet Jury theorem (1786), as it formalizes
the probability of a plurality-based jury decision to be the correct one. Equation
(1.2) makes a powerful statement: if the probability of a member classifier giving
the correct answer is higher than /5, which really is the least we can expect from
a classifier on a binary class problem, then the probability of success approaches 1
very quickly. If we have a multiclass problem, the same concept holds as long as
each classifier has a probability of success better than random guessing (i.e., p > /4
for a four class problem). An extensive and excellent analysis of the majority voting
approach can be found in [5].

Weighted Majority Voting

If we have reason to believe that some of the classifiers are more likely to be correct
than others, weighting the decisions of those classifiers more heavily can further
improve the overall performance compared to that of plurality voting. Let us assume
that we have a mechanism for predicting the (future) approximate generalization
performance of each classifier. We can then assign a weight W, to classifier /4, in
proportion of its estimated generalization performance. The ensemble, combined
according to weighted majority voting then chooses class ¢*, if

T T
Yo widier =maxc ) widse (1.3)
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that is, if the total weighted vote received by class w,= is higher than the total vote
received by any other class. In general, voting weights are normalized such that they
addup to 1.

So, how do we assign the weights? If we knew, a priori, which classifiers would
work better, we would only use those classifiers. In the absence of such information,
a plausible and commonly used strategy is to use the performance of a classifier on
a separate validation (or even training) dataset, as an estimate of that classifier’s
generalization performance. As we will see in the later sections, AdaBoost follows
such an approach. A detailed discussion on weighted majority voting can also be
found in [40].

Borda Count

Voting approaches typically use a winner-take-all strategy, i.e., only the class that
is chosen by each classifier receives a vote, ignoring any support that nonwinning
classes may receive. Borda count uses a different approach, feasible if we can rank
order the classifier outputs, that is, if we know the class with the most support (the
winning class), as well as the class with the second most support, etc. Of course,
if the classifiers provide continuous outputs, the classes can easily be rank ordered
with respect to the support they receive from the classifier.

In Borda count, devised in 1770 by Jean Charles de Borda, each classifier
(decision maker) rank orders the classes. If there are C candidates, the winning
class receives C-1 votes, the class with the second highest support receives C-2
votes, and the class with the i™" highest support receives C-i votes. The class with
the lowest support receives no votes. The votes are then added up, and the class with
the most votes is chosen as the ensemble decision.

1.2.3.2 Combining Continuous Outputs

If a classifier provides continuous output for each class (such as multilayer percep-
tron or radial basis function networks, naive Bayes, relevance vector machines, etc.),
such outputs—upon proper normalization (such as softmax normalization in (1.4)
[41])—can be interpreted as the degree of support given to that class, and under
certain conditions can also be interpreted as an estimate of the posterior probability
for that class. Representing the actual classifier output corresponding to class w,
for instance x as g.(x), and the normalized values as g.(x), approximated posterior
probabilities P (w.|x) can be obtained as

egc(x)

C ~
¥ entm Do Eim=1 (1.4)

P(welx) ~ g.(x) =
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Fig. 1.2 Decision profile for Support from all classifiers h;...h;
a given instance x for class w_ — one of the C classes.
i1 (x) \o |die(x) | = dic(x)

oP()=\[G1 (™~ [dre® | ~ drc ()]

dri(x) = |dre(x) |~ drc(x)
Support given by classifier h,
to each of the classes

In order to consolidate different combination rules, we use Kuncheva’s decision
profile matrix DP(x) [18], whose elements d; . € [0, 1] represent the support given
by the ¢ classifier to class w,. Specifically, as illustrated in Fig. 1.2, the rows of
DP(x) represent the support given by individual classifiers to each of the classes,
whereas the columns represent the support received by a particular class ¢ from all
classifiers.

Algebraic Combiners

In algebraic combiners, the total support for each class is obtained as a simple
algebraic function of the supports received by individual classifiers. Following the
notation used in [18], let us represent the total support received by class w., the ¢
column of the decision profile DP(x), as

pe(x) = F [dy (), ... dr,c ()] (1.5)

where F[H] is one of the following combination functions.

Mean Rule: The support for class w, is the average of all classifiers’ ¢ outputs,

1
pe@ = 2 3 dre®) (16)

hence the function F[-] is the averaging function. Note that the mean rule results in
the identical final classification as the sum rule, which only differs from the mean
rule by the 1/T normalization factor. In either case, the final decision is the class w,
for which the total support ji.(x) is the highest.

Weighted Average: The weighted average rule combines the mean and the weighted
majority voting rules, where the weights are applied not to class labels, but to
the actual continuous outputs. The weights can be obtained during the ensemble
generation as part of the regular training, as in AdaBoost, or a separate training
can be used to obtain the weights, such as in a MoE. Usually, each classifier &,
receives a weight, although it is also possible to assign a weight to each class output
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of each classifier. In the former case, we have T weights, wy, ..., wr, usually
obtained as estimated generalization performances based on training data, with the
total support for class w, as

1
o) = 22 3 widee ) (17)

In the latter case, there are 7' * C class and classifier-specific weights, which leads
to a class-conscious combination of classifier outputs [18]. Total support for class
w, 1s then

1
o) = 22 3 wieds o) (1.8)

tlh

where w, . is the weight of the ™ classifier for classifying class o, instances.

Trimmed mean: Sometimes classifiers may erroneously give unusually low or high
support to a particular class such that the correct decisions of other classifiers are not
enough to undo the damage done by this unusual vote. This problem can be avoided
by discarding the decisions of those classifiers with the highest and lowest support
before calculating the mean. This is called trimmed mean. For a R% trimmed mean,
R% of the support from each end is removed, with the mean calculated on the
remaining supports, avoiding the extreme values of support. Note that 50% trimmed
mean is equivalent to the median rule discussed below.

Minimum/Maximum/Median Rule: These functions simply take the minimum,
maximum, or the median among the classifiers’ individual outputs.

Me(x) = min=;__7{d;.(x)}
He(x) = max,; = r{d, (%)}
ri{d; (%)} (1.9)

Me(x) = median,;—;

where the ensemble decision is chosen as the class for which total support is largest.
Note that the minimum rule chooses the class for which the minimum support among
the classifiers is highest.

Product Rule: The product rule chooses the class whose product of supports from
each classifier is the highest. Due to the nulling nature of multiplying with zero, this
rule decimates any class that receives at least one zero (or very small) support.

1
pe = = 1, i@ (1.10)

Generalized Mean: All of the aforementioned rules are in fact special cases of the
generalized mean,

1 T 1/e
pel) = (7 > (dt,c(x))“) (L.11)
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where different choices of « lead to different combination rules. For example,
o—> -00, leads to minimum rule, and « — 0, leads to

T 1/T
pre(x) = (]"[f:l (d,,c(x))) (1.12)

which is the geometric mean, a modified version of the product rule. Fora — 1, we
get the mean rule, and @« — oo leads to the maximum rule.

Decision Template: Consider computing the average decision profile observed for
each class throughout training. Kuncheva defines this average decision profile as the
decision template of that class [18]. We can then compare the decision profile of
a given instance to the decision templates (i.e., average decision profiles) of each
class, choosing the class whose decision template is closest to the decision profile
of the current instance, in some similarity measure. The decision template for class
. is then computed as

DT. = 1/N, ZX .. DP(Xo) (1.13)

as the average decision profile obtained from X,, the set of training instances (of
cardinality N.) whose true class is w.. Given an unlabeled test instance x, we first
construct its decision profile DP(x) from the ensemble outputs and calculate the
similarity S between DP(x) and the decision template DT for each class w, as the
degree of support given to class w.

Uex) = S(DP(x),DT.),c=1,...,C (1.14)

where the similarity measure S is usually a squared Euclidean distance,

T c 2
pet) =1— i T2y Dy, (DTt i) = dri () (1.15)
and where DT,(t,i) is the decision template support given by the ™ classifier to
class w;, i.e., the support given by the ¢ classifier to class w;, averaged over all
class w. training instances. We expect this support to be high when i = ¢, and low
otherwise. The second term d; ; (x) is the support given by the " classifier to class
w; for the given instance x. The class with the highest total support is then chosen
as the ensemble decision.

1.3 Popular Ensemble-Based Algorithms

A rich collection of ensemble-based classifiers have been developed over the last
several years. However, many of these are some variation of the select few well-
established algorithms whose capabilities have also been extensively tested and
widely reported. In this section, we present an overview of some of the most
prominent ensemble algorithms.



12 R. Polikar

Algorithm 1 Bagging

Inputs: Training data S; supervised learning algorithm, BaseClassifier, integer T
specifying ensemble size; percent R to create bootstrapped training data.
Dor=1,...,T

1. Take a bootstrapped replica S; by randomly drawing R% of S.
2. Call BaseClassifier with S, and receive the hypothesis (classifier) A, .
3. Add A, to the ensemble, € < E U h;.

End
Ensemble Combination: Simple Majority Voting—Given unlabeled instance x

1. Evaluate the ensemble € = {hy, ..., hy} onx.
2. Letv,. = 1if h; chooses class w., and 0, otherwise.
3. Obtain total vote received by each class

T
v, = thl Vie, c=1,...C (1.16)

Output: Class with the highest V.

1.3.1 Bagging

Breiman’s bagging (short for Bootstrap Aggregation) algorithm is one of the earliest
and simplest, yet effective, ensemble-based algorithms. Given a training dataset
S of cardinality N, bagging simply trains 7" independent classifiers, each trained
by sampling, with replacement, N instances (or some percentage of N) from S.
The diversity in the ensemble is ensured by the variations within the bootstrapped
replicas on which each classifier is trained, as well as by using a relatively weak
classifier whose decision boundaries measurably vary with respect to relatively
small perturbations in the training data. Linear classifiers, such as decision stumps,
linear SVM, and single layer perceptrons are good candidates for this purpose. The
classifiers so trained are then combined via simple majority voting. The pseudocode
for bagging is provided in Algorithm 1.

Bagging is best suited for problems with relatively small available training
datasets. A variation of bagging, called Pasting Small Votes [42], designed for
problems with large training datasets, follows a similar approach, but partitioning
the large dataset into smaller segments. Individual classifiers are trained with these
segments, called bites, before combining them via majority voting.

Another creative version of bagging is the Random Forest algorithm, essentially
an ensemble of decision trees trained with a bagging mechanism [24]. In addition
to choosing instances, however, a random forest can also incorporate random subset
selection of features as described in Ho’s random subspace models [36].
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1.3.2 Boosting and AdaBoost

Boosting, introduced in Schapire’s seminal work strength of weak learning [3],
is an iterative approach for generating a strong classifier, one that is capable of
achieving arbitrarily low training error, from an ensemble of weak classifiers, each
of which can barely do better than random guessing. While boosting also combines
an ensemble of weak classifiers using simple majority voting, it differs from bagging
in one crucial way. In bagging, instances selected to train individual classifiers are
bootstrapped replicas of the training data, which means that each instance has equal
chance of being in each training dataset. In boosting, however, the training dataset
for each subsequent classifier increasingly focuses on instances misclassified by
previously generated classifiers.

Boosting, designed for binary class problems, creates sets of three weak classi-
fiers at a time: the first classifier (or hypothesis) /2 is trained on a random subset of
the available training data, similar to bagging. The second classifier, /i, is trained
on a different subset of the original dataset, precisely half of which is correctly
identified by A, and the other half is misclassified. Such a training subset is said to
be the “most informative,” given the decision of /;. The third classifier 43 is then
trained with instances on which %; and %, disagree. These three classifiers are then
combined through a three-way majority vote. Schapire proved that the training error
of this three-classifier ensemble is bounded above by g(¢) < 3¢ — 263, where ¢ is
the error of any of the three classifiers, provided that each classifier has an error rate
£< 0.5, the least we can expect from a classifier on a binary classification problem.

AdaBoost (short for Adaptive Boosting) [4], and its several variations later
extended the original boosting algorithm to multiple classes (AdaBoost.M1,
AdaBost.M2), as well as to regression problems (AdaBoost.R). Here we describe
the AdaBoost.M1, the most popular version of the AdaBoost algorithms.

AdaBoost has two fundamental differences from boosting: (1) instances are
drawn into the subsequent datasets from an iteratively updated sample distribution
of the training data; and (2) the classifiers are combined through weighted majority
voting, where voting weights are based on classifiers’ training errors, which them-
selves are weighted according to the sample distribution. The sample distribution
ensures that harder samples, i.e., instances misclassified by the previous classifier
are more likely to be included in the training data of the next classifier.

The pseudocode of the AdaBoost.M1 is provided in Algorithm 2. The sample
distribution, D, (i) essentially assigns a weight to each training instance x;, i = 1,
..., N, from which training data subsets S, are drawn for each consecutive classifier
(hypothesis) h;. The distribution is initialized to be uniform; hence, all instances
have equal probability to be drawn into the first training dataset. The training error
&, of classifier 4, is then computed as the sum of these distribution weights of the
instances misclassified by 4, ((1.17), where [M] is 1 if its argument is true and
0 otherwise). AdaBoost.M1 requires that this error be less than !/, which is then
normalized to obtain f;, suchthat 0 < 8, < 1for0 <g < lh.
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Algorithm 2 AdaBoost.M1

Inputs: Training data={x;, y;},i =1,..., N y; € {w1, ..., wc}, supervised learner
BaseClassifier; ensemble size T .

Initialize D,(i) = 1/N.

Dofort=1,2,...,T:

1. Draw training subset S; from the distribution D;.
2. Train BaseClassifier on S, receive hypothesis ;: X — Y
3. Calculate the error of /;:

e = ITh(xi # y)] Di(xi) (1.17)

If &, > 1/2 abort.
4. Set
ﬂ[ =8[/(1_8[) (118)

5. Update sampling distribution

Dﬁ){ﬁnﬁmwﬂ=%

D ) =
+1(0) Z; 1, otherwise

(1.19)

where Z, = Zi D, (i) is a normalization constant to ensure that D; 4 is a
proper distribution function.

End
Weighted Majority Voting: Given unlabeled instance z,
obtain total vote received by each class

1
Ve = Zuh,m:w, log (E) ,ec=1,..C (1.20)

Output: Class with the highest V.

The heart of AdaBoost.M1 is the distribution update rule shown in (1.19): the
distribution weights of the instances correctly classified by the current hypothesis
h; are reduced by a factor of B;, whereas the weights of the misclassified instances
are left unchanged. When the updated weights are renormalized by Z; to ensure
that D;4; is a proper distribution, the weights of the misclassified instances are
effectively increased. Hence, with each new classifier added to the ensemble,
AdaBoost focuses on increasingly difficult instances. At each iteration 7, (1.19)
raises the weights of misclassified instances such that they add up to !/», and lowers
those of correctly classified ones, such that they too add up to !/. Since the base
model learning algorithm BaseClassifier is required to have an error less than 1/,
it is guaranteed to correctly classify at least one previously misclassified training
example. When it is unable to do so, AdaBoost aborts; otherwise, it continues until
T classifiers are generated, which are then combined using the weighted majority
voting.
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Note that the reciprocals of the normalized errors of individual classifiers are used
as voting weights in weighted majority voting in AdaBoost.M1; hence, classifiers
that have shown good performance during training (low f,) are rewarded with
higher voting weights. Since the performance of a classifier on its own training data
can be very close to zero, ; can be quite large, causing numerical instabilities. Such
instabilities are avoided by the use of the logarithm in the voting weights (1.20).

Much of the popularity of AdaBoost.M1 is not only due to its intuitive and
extremely effective structure but also due to Freund and Schapire’s elegant proof
that shows the training error of AdaBoost.M1 as bounded above

T
Eensemble < 2T l_[ \% 8;(1 - 8{) (121)

t=1

Since &; < 1/2, Eensemble, the error of the ensemble, is guaranteed to decrease
as the ensemble grows. It is interesting, however, to note that AdaBoost.M1 still
requires the classifiers to have a (weighted) error that is less than !/ even on
nonbinary class problems. Achieving this threshold becomes increasingly difficult
as the number of classes increase. Freund and Schapire recognized that there is
information even in the classifiers’ nonselected class outputs. For example, in
handwritten character recognition problem, the characters “1” and “7” look alike,
and the classifier may give a high support to both of these classes, and low support
to all others. AdaBoost.M2 takes advantage of the supports given to nonchosen
classes and defines a pseudo-loss, and unlike the error in AdaBoost.M1, is no
longer required to be less than /5. Yet AdaBoost.M2 has a very similar upper bound
for training error as AdaBoost.M1. AdaBoost.R is another variation—designed for
function approximation problems—that essentially replaces classification error with
regression error [4].

1.3.3 Stacked Generalization

The algorithms described so far use nontrainable combiners, where the combination
weights are established once the member classifiers are trained. Such a combination
rule does not allow determining which member classifier has learned which partition
of the feature space. Using trainable combiners, it is possible to determine which
classifiers are likely to be successful in which part of the feature space and combine
them accordingly. Specifically, the ensemble members can be combined using a
separate classifier, trained on the outputs of the ensemble members, which leads to
the stacked generalization model.

Wolpert’s stacked generalization [9], illustrated in Fig. 1.3, first creates T Tier-1
classifiers, Cy, ..., Cr, based on a cross-validation partition of the training data. To
do so, the entire training dataset is divided into B blocks, and each Tier-1 classifier is
first trained on (a different set of) B — 1 blocks of the training data. Each classifier is
then evaluated on the B" (pseudo-test) block, not seen during training. The outputs
of these classifiers on their pseudo-training blocks constitute the training data for
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Fig. 1.3 Stacked generalization

the Tier-2 (meta) classifier, which effectively serves as the combination rule for the
Tier-1 classifiers. Note that the meta-classifier is not trained on the original feature
space, but rather on the decision space of Tier-1 classifiers.

Once the meta-classifier is trained, all Tier-1 classifiers (each of which has
been trained B times on overlapping subsets of the original training data) are
discarded, and each is retrained on the combined entire training data. The stacked
generalization model is then ready to evaluate previously unseen field data.

1.3.4 Mixture of Experts

Mixture of experts is a similar algorithm, also using a trainable combiner. MoE,
also trains an ensemble of (Tier-1) classifiers using a suitable sampling technique.
Classifiers are then combined through a weighted combination rule, where the
weights are determined through a gating network [7], which itself is typically trained
using expectation-maximization (EM) algorithm [8,43] on the original training data.
Hence, the weights determined by the gating network are dynamically assigned
based on the given input, as the MoE effectively learns which portion of the feature
space is learned by each ensemble member. Figure 1.4 illustrates the structure of the
MoE algorithm.

Mixture-of-experts can also be seen as a classifier selection algorithm, where
individual classifiers are trained to become experts in some portion of the feature
space. In this setting, individual classifiers are indeed trained to become experts, and
hence are usually not weak classifiers. The combination rule then selects the most
appropriate classifier, or classifiers weighted with respect to their expertise, for each
given instance. The pooling/combining system may then choose a single classifier
with the highest weight, or calculate a weighted sum of the classifier outputs for
each class, and pick the class that receives the highest weighted sum.
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1.4 What Else Can Ensemble Systems Do for You?

While ensemble systems were originally developed to reduce the variability in
classifier decision and thereby increase generalization performance, there are many
additional problem domains where ensemble systems have proven to be extremely
effective. In this section, we discuss some of these emerging applications of
ensemble systems along with a family of algorithms, called Learn™ ™", which are
designed for these applications.

1.4.1 Incremental Learning

In many real-world applications, particularly those that generate large volumes of
data, such data often become available in batches over a period of time. These
applications need a mechanism to incorporate the additional data into the knowledge
base in an incremental manner, preferably without needing access to the previous
data. Formally speaking, incremental learning refers to sequentially updating a
hypothesis using current data and previous hypotheses—but not previous data—
such that the current hypothesis describes all data that have been acquired thus far.
Incremental learning is associated with the well-known stability—plasticity dilemma,
where stability refers to the algorithm’s ability to retain existing knowledge and
plasticity refers to the algorithm’s ability to acquire new data. Improving one usually
comes at the expense of the other. For example, online data streaming algorithms
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usually have good plasticity but poor stability, whereas many of the well-established
supervised algorithms, such as MLP, SVM, and kNN have good stability but poor
plasticity properties.

Ensemble-based systems provide an intuitive approach for incremental learning
that also provides a balanced solution to the stability—plasticity dilemma. Consider
the AdaBoost algorithm which directs the subsequent classifiers toward increasingly
difficult instances. In an incremental learning setting, some of the instances
introduced by the new batch can also be interpreted as “difficult” if they carry novel
information. Therefore, an AdaBoost-like approach can be used in an incremental
learning setting with certain modifications, such as creating a new ensemble with
each batch that become available; resetting the sampling distribution based on the
performance of the existing ensemble on the new batch of training data, and relaxing
the abort clause. Note, however, that distribution update rule in AdaBoost directs the
sampling distribution toward those instances misclassified by the previous classifier.
In an incremental learning setting, it is necessary to direct the algorithm to focus on
those novel instances introduced by the new batch of data that are not yet learned by
the current ensemble, not by the previous classifier. Learn * algorithm, introduced
in [44,45], incorporate these ideas.

The incremental learning problem becomes particularly challenging if the new
data also introduce new classes. This is because classifiers previously trained on
earlier batches of data inevitably misclassify instances of the new class on which
they were not trained. Only the new classifiers are able to recognize the new
class(es). Therefore, any decision by the new classifiers correctly choosing the new
class is outvoted by the earlier classifiers, until there are enough new classifiers
to counteract the total vote of those original classifiers. Hence, a relatively large
number of new classifiers that recognize the new class are needed, so that their total
weight can overwrite the incorrect votes of the original classifiers.

The Learn tT.NC (for New Classes), described in Algorithm 3, addresses
these issues [46] by assigning dynamic weights to ensemble members, based on
its prediction of which classifiers are likely to perform well on which classes.
Learn 7T .NC cross-references the predictions of each classifier—with those of
others—with respect to classes on which they were trained. Looking at the decisions
of other classifiers, each classifier decides whether its decision is in line with the
predictions of others, and the classes on which it was trained. If not, the classifier
reduces its vote, or possibly refrains from voting altogether. As an example, consider
an ensemble of classifiers, E;, trained with instances from two classes w;, and w»;
and a second ensemble, E,, trained on instances from classes w, w,, and a new
class, w3. An instance from the new class w3 is shown to all classifiers. Since E;
classifiers do not recognize class w3, they incorrectly choose w| or w,, whereas E,
classifiers correctly recognize ws. Learn T+ .NC keeps track of which classifiers
are trained on which classes. In this example, knowing that E, classifiers have
seen w3 instances, and that E; classifiers have not, it is reasonable to believe that
E, classifiers are correct, particularly if they overwhelmingly choose w3 for that
instance. To the extent E, classifiers are confident of their decision, the voting
weights of E; classifiers can therefore be reduced. Then, E, no longer needs a
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large number of classifiers: in fact, if E; classifiers agree with each other on their
correct decision, then very few classifiers are adequate to remove any bias induced
by E;. This voting process, described in Algorithm 4, is called dynamically weighted
consult-and-vote (DW-CAV) [46].

Algorithm 3 Learn™+.NC

Input: For each dataset k = 1, ..., K, training data Sy = {x;, y;},i =1, ..., N

vi € 2={w,..

Dofork=1,..., K.

L.
2. Ifk # 1, Set t =0 and Go to Step 5 to adjust initialization weights.

Initialize instance weights w]f (i) = 1/Ny.

Dofortr=1,..., T}.

1.

@)}

End
End

Set
k k Neoo g
D, :wt/zi:lw, (i)

so that D¥ is a distribution.

Train BaseClassifier on TRX C Sy drawn from DF, receive h¥.

Calculate error
ef = T[[hf (i # yo] Df )

k

. If ek > 1 discard h* and go to Step 2. Otherwise, normalize &/ :

Normalize SIf :

Br = el (1 —¢f)

. LetC Llf be the set of class labels used in training hlf for dataset Sk.
. Call DW-CAVY to obtain the composite hypothesis H, tk .
. Compute the error of the composite hypothesis

Ef =3 T[[HF (i # )] D (xi)

. Normalize E¥: BF = Etk/(l - Etk), and update the weights:

Btk’ Htk (xi = yi)

koY — wk (i) .
Wi () = wi ) { 1, otherwise

Call DW-CAYV to obtain the final hypothesis, Hnai-

., wc }, supervised learner BaseClassifier; ensemble size 7.

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)
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Algorithm 4 DW-CAV (Dynamically Weighed—Consult and Vote).

Inputs: Instance x; to be classified; all classifiers hlf generated thus far; normalized
error values, B¥; class labels, CL¥ used in training h¥.

Initialize classifier voting weights W* = log (1/,3fC )

Calculate for each v, €{wy, ..., wc}.

1. Normalization factor:

ZC = Zk Z:z‘:c'GCLﬁc I/Vtk (127)

2. Class-specific confidence:

Zk Zr:h;{ (xX;) =, I/Vtk

P.(i) = 1.28
(i) 7 (128)
3. If Pr(i) = Pi(i),k #lsuchthat & N E= 0P (i) = Pi(i) =0
where &} is the set of classifiers that have seen class wy.
Update voting weights for instance x;
ke — 7k . _ .
WED =W T, pens 1= PeO) (1.29)
Compute final (current composite) hypothesis
) = k(i
Heinal(x) = argmax d L 37, W5 (130

Specifically, Learn ™ NC updates its sampling distribution based on the com-
posite hypothesis H ((1.25)), which is the ensemble decision of all classifiers
generated thus far. The composite hypothesis H} for the first 7 classifiers from the
k'™ batch is computed by the weighted majority voting of all classifiers using the
weights WX, which themselves are weighted based on each classifiers class-specific
confidence P. ((1.27) and (1.28)).

The class-specific confidence P.(i) for instance x; is the ratio of total weight
of all classifiers that choose class w, (for instance x;), to the total weight of all
classifiers that have seen class w.. Hence, P, (i) represents the collective confidence
of classifiers trained on class w, in choosing class w, for instance x;. A high value
of P.(i), close to 1, indicates that classifiers trained to recognize class w, have in
fact overwhelmingly picked class w., and hence those that were not trained on w,
should not vote (or reduce their voting weight) for that instance.

Extensive experiments with Learn T NC showed that the algorithm can very
quickly learn new classes when they are present, and in fact is also able to remember
a class, when it is no longer present in future data batches [46].
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1.4.2 Data Fusion

A common problem in many large-scale data analysis and automated decision
making applications is to combine information from different data sources that often
provide heterogeneous data. Diagnosing a disease from several blood or behavioral
tests, imaging results, and time series data (such as EEG or ECG) is such an
application. Detecting the health of a system or predicting weather patterns based
on data from a variety of sensors, or the health of a company based on several
sources of financial indicators are other examples of data fusion. In most data
fusion applications, the data are heterogeneous, that is, they are of different format,
dimensionality, or structure: some are scalar variables (such as blood pressure,
temperature, humidity, speed), some are time series data (such as electrocardiogram,
stock prices over a period of time, etc.), some are images (such as MRI or PET
images, 3D visualizations, etc.).

Ensemble systems provide a naturally suited solution for such problems:
individual classifiers (or even an ensemble of classifiers) can be trained on each data
source and then combined through a suitable combiner. The stacked generalization
or MoEs structures are particularly well suited for data fusion applications. In both
cases, each classifier (or even a model of ensemble of classifiers) can be trained on a
separate data source. Then, a subsequent meta-classifier or a gating network can be
trained to learn which models or experts have better prediction accuracy, or which
ones have learned which feature space. Figure 1.5 illustrates this structure.

A comprehensive review of using ensemble-based systems for data fusion, as
well as detailed description of Learn ¥ implementation for data fusion—shown
to be quite successful on a variety of data fusions problems—can be found in
[47]. Other ensemble-based fusion approaches include combining classifiers using
Dempster—Shafer-based combination [48-50], ARTMAP [51], genetic algorithms
[52], and other combinations of boosting/voting methods [53-55]. Using diversity
metrics for ensemble-based data fusion is discussed in [56].

1.4.3 Feature Selection and Classifying with Missing Data

While most ensemble-based systems create individual classifiers by altering the
training data instances—but keeping all features for a given instance—individual
features can also be altered by using all of the training data available. In such a
setting, individual classifiers are trained with different subsets of the entire feature
set. Algorithms that use different feature subsets are commonly referred to as
random subspace methods, a term coined by Ho [36]. While Ho used this approach
for creating random forests, the approach can also be used for feature selection as
well as diversity enhancement.

Another interesting application of RSM-related methods is to use the ensemble
approach to classify data that have missing features. Most classification algorithms
have matrix multiplications that require the entire feature vector to be available.
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Fig. 1.5 Ensemble systems for data fusion

However, missing data is quite common in real-world applications: bad sensors,
failed pixels, unanswered questions in surveys, malfunctioning equipment, medical
tests that cannot be administered under certain conditions, etc. are all common
scenarios in practice that can result in missing attributes. Feature values that are
beyond the expected dynamic range of the data due to extreme noise, signal
saturation, data corruption, etc. can also be treated as missing data.

Typical solutions to missing features include imputation algorithms where the
value of the missing variable is estimated based on other observed values of that
variable. Imputation-based algorithms (such as expectation maximization, mean
imputation, k-nearest neighbor imputation, etc.), are popular because they are
theoretically justified and tractable; however, they are also prone to significant
estimation errors particularly for large dimensional and/or noisy datasets.

An ensemble-based solution to this problem was offered in Learn ++ MF [57]
(MF for Missing Features), which generates a large number of classifiers, each of
which is trained using only random subsets of the available features. The instance
sampling distribution in other versions of Learn T algorithms is replaced with a
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Fig. 1.6 (a) Training
classifiers with random
subsets of the features; (b)
classifying an instance
missing feature f>. Only
shaded classifiers can be used

feature sampling distribution, which favors those features that have not been well
represented in the previous classifiers’ feature sets. Then, a data instance with
missing features is classified using the majority voting of only those classifiers
whose feature sets did not include the missing attributes. This is conceptually
illustrated in Fig. 1.6a, which shows 10 classifiers, each trained on three of the
six features available in the dataset. Features that are not used during training
are indicated with an “X.” Then, at the time of testing, let us assume that feature
number 2, f,, is missing. This means that those classifiers whose training feature
sets included f;, that is, classifiers Cy, Cs, C7, and Cg, cannot be used in classifying
this instance. However, the remaining classifiers, shaded in Fig. 1.6b, did not use f,
during their training, therefore those classifiers can still be used.

Learn **.MF is listed in Algorithm 5 below. Perhaps the most important
parameter of the algorithm is nof, the number of features, out of a total of f, to
be used to train each classifier. Choosing a smaller nof allows a larger number of
missing features to be accommodated by the algorithm. However, choosing a larger
nof usually improves individual classifier performances. The primary assumption
made by Learn T+ MF is that the dataset includes a redundant set of features,
and the problem is at least partially solvable using a subset of the features, whose
identities are unknown to us. Of course, if we knew the identities of those features,
we would only use those features in the first place.

A theoretical analysis of this algorithm, including probability of finding at least
one useable classifier in the absence of m missing features, when each classifier is
trained using nof of a total of f features, as well as the number of classifiers needed
to guarantee at least one useable classifier are provided in [57].
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Algorithm 5 Learnt+ .MF

Inputs: Sentinel value sen, BaseClassifier; the number of classifiers, 7.

Training dataset S = {x;, y;},i = 1, ..., N, with N instances of f features from
¢ classes, number of features used to train each classifier, nof;

Initialize feature distribution D, (j) = 1/f,Vj,j=1,..., f;
Dofort=1,...,T.

1. Normalize D, to make it a proper distribution.

2. Draw nof features from D, to form selected features: Fijecrion(t)-

3. Call BaseClassifier to train classifier C; using only those features in
Fvelection (t)

4. Add C; to the ensemble &

5. Obtain Perf(t) the classification performance on S. If Perf(¢) < 1/c, discard
C; and go to Step 2.

6. Update feature distribution

Dit1 (Fgelection (1)) = (nof / f) - D (Fyelection () (1.31)
End

Using trained ensemble
Given test/field data z,

1. Determine missing features M (z) =arg(z(j) ==sen), Vj
2. Obtain ensemble decision as the class with the most votes among the outputs
of classifiers C;* trained on the nonmissing features:

£(z) = arg max, Z [[M() N Fyalection®) # 9] (1.32)

1:CF )=y

1.4.4 Learning from Nonstationary Environments:
Concept Drift

Much of computational intelligence literature is devoted to algorithms that can learn
from data that are assumed to be drawn from a fixed but unknown distribution.
For a great many applications, however, this assumption is simply not true. For
example, predicting future weather patterns from current and past climate data,
predicting future stock returns from current and past financial data, identifying e-
mail spam from current and past e-mail content, determining which online adds
a user will respond based on the user’s past web surfing record, predicting future
energy demand and prices based on current and past data are all examples of
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applications where the nature and characteristics of the data—and the underlying
phenomena that generate such data—may change over time. Therefore, a learning
model trained at a fixed point in time—and a decision boundary generated by such a
model—may not reflect the current state of nature due to a change in the underlying
environment. Such an environment is referred to as a nonstationary environment,
and the problem of learning in such an environment is often referred to as learning
concept drift. More specifically, given the Bayes posterior probability of class w
that a given instance x belongs, P(w|x) = P(x|w)P (w)/P(x), concept drift can be
formally defined as any scenario where the posterior probability changes over time,
ie., Pt l(w|x) # Pl(w|x).

To be sure, this is a very challenging problem in machine learning because the
underlying change may be gradual or rapid, cyclical or noncyclical, systematic or
random, with fixed or variable rate of drift, and with local or global activity in the
feature space that spans the data. Furthermore, concept drift can also be perceived,
rather than real, as a result of insufficient, unknown, or unobservable features in a
dataset, a phenomenon known as hidden context [58]. In such a case, an underlying
phenomenon provides a true and static description of the environment over time,
which, unfortunately, is hidden from the learner’s view. Having the benefit of
knowing this hidden context would make the problem to have a fixed (and hence
stationary) distribution.

Concept drift problems are usually associated with incremental learning or
learning from a stream of data, where new data become available over time.
Combining several authors’ suggestions for desired properties of a concept drift
algorithms, Elwell and Polikar provided the following guidelines for addressing
concept drift problems: (1) any given instance of data—whether provided online
or in batches—can only be used once for training (one-pass incremental learning);
(2) knowledge should be labeled with respect to its relevance to the current
environment, and be dynamically updated as new data continuously arrive; (3) the
learner should have a mechanism to reconcile when existing and newly acquired
knowledge conflict with each other; (4) the learner should be able—not only to
temporarily forget information that is no longer relevant to the current environment
but also to recall prior knowledge if the drift/change in the environment follow a
cyclical nature; and (5) knowledge should be incrementally and periodically stored
so that it can be recalled to produce the best hypothesis for an unknown (unlabeled)
data instance at any time during the learning process [59].

Earliest examples of concept drift algorithms use a single classifier to learn
from the latest batch of data available, using some form of windowing to control
the batch size. Successful examples of this instance selection approach include
STAGGER [60] and FLORA [58] algorithms, which use a sliding window to
choose a block of (new) instances to train a new classifier. The window size can
be dynamically updated using a “window adjustment heuristic,” based on how fast
the environment is changing. Instances that fall outside of the window are then
assumed irrelevant and hence the information carried by them are irrecoverably
forgotten. Other examples of this window-based approach include [61-63], which
use different drift detection mechanisms or base classifiers. Such approaches are
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often either not truly incremental as they may access prior data, or cannot handle
cyclic environments. Some approaches include a novelty (anomaly) detection to
determine the precise moment when changes occur, typically by using statistical
measures, such as control charts based CUSUM [64, 65], confidence interval on
error [66, 67], or other statistical approaches [68]. A new classifier trained on new
data since the last detection of change then replaces the earlier classifier(s).

The ensemble-based algorithms provide an alternate approach to concept drift
problems. These algorithms generally belong to one of three categories [69]:
(1) update the combination rules or voting weights of a fixed ensemble, such as
[70,71]; an approach loosely based on Littlestone’s Winnow [72] and Freund and
Schapire’s Hedge (a precursor of AdaBoost) [4]; (2) update the parameters of
existing ensemble members using an online learner [66, 73]; and/or (3) add new
members to build an ensemble with each incoming dataset. Most algorithms fall into
this last category, where the oldest (e.g., Streaming Ensemble Algorithm (SEA) [74]
or Recursive Ensemble Approach (REA) [75]) or the least contributing ensemble
members are replaced with new ones (as in Dynamic Integration [76], or Dynamic
Weighted Majority (DWM) [77]). While many ensemble approaches use some form
of voting, there is some disagreement on whether the voting should be weighted,
e.g., giving higher weight to a classifier if its training data were in the same region
as the testing example [76], or unweighted, as in [78, 79], where the authors argue
that weights based on previous data, whose distribution may have changed, are
uninformative for future datasets. Other efforts that combine ensemble systems
with drift detection include Bifet’s adaptive sliding window (ADWIN) [80,81], also
available within the WEKA-like software suite, Massive Online Analysis (MOA)
at [82].

More recently, a new addition to Learn ™ suite of algorithms, Learn T+ .NSE,
has been introduced as a general framework to learning concept drift that does not
make any restriction on the nature of the drift. Learn *+.NSE (for NonStationary
Environments) inherits the dynamic distribution-guided ensemble structure and
incremental learning abilities of all Learn * algorithms (hence strictly follows
the one-pass rule). Learn ¥ NSE trains a new classifier for each batch of data
it receives, and combines the classifiers using a dynamically weighted majority
voting. The novelty of the approach is in determining the voting weights, based on
each classifier’s time-adjusted accuracy on current and past environments, allowing
the algorithm to recognize, and act accordingly, to changes in underlying data
distributions, including possible reoccurrence of an earlier distribution [59].

The Learn T NSE algorithm is listed in Algorithm 6, which receives the training
dataset D' = {x! € X;y! €Y}, i = l,..m', at time ¢. Hence x! is the i"
instance of the dataset, drawn from an unknown distribution P’(x,y), which is the
currently available representation of a possibly drifting distribution at time ¢. At time
t + 1, anew batch of data is drawn from P'*!(x,y). Between any two consecutive
batches, the environment may experience a change whose rate is not known, nor
assumed to be constant. Previously seen data are not available to the algorithm,
allowing Learn T .NSE to operate in a truly incremental fashion.
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Algorithm 6 Learnt*.NSE

Input: For each dataset D'  t=1,2,.
Training data {x'(i) € X; y'(i) € Y {l,...,c}},i =1, ..., m"; Supervised
learning algorithm BaseClassifier; Sigmoid parameters a (slope) and b (infliction
point).
Dofort=1,2,....

If ¢ =1, Initialize D' (i) =w'(i)=1/m", Vi, Go to step 3. Endif

1.

(98]

Compute error of the existing ensemble on new data

E = Z";l 1/m' - [[H' ™ (5" () # y' ()] (1.33)
Update and normalize instance weights
W= . { E'H'™N (@) = ' () (1.34)
m 1, otherwise
Set )
D' = wf/Zl_:l w (i) = D' (1.35)

is a distribution.

. Call BaseClassifier with D, obtain h’: X — Y.

Evaluate all existing classifiers on new data D

r m' tys ‘e e _
& = Zi:l D'(i) [[hk (x (z)) #*y (l)]] fork =1,...,t (1.36)
If ¢} _, > 1/2, generate a new h,. If ¢} _, > 1/2, set & = 1/2,

=& /(1 —é&}),fork=1,..,t >0<p, <1 (1.37)

. Sigmoid-based time averaging of normalized errors of /;: Fora, b € R

—k .
ol = 1/(1 + e_“(’_k_b)), ol = w,g/ztj,:o Wl (1.38)

k . .
B = Z', W™ BT fork =1, .1 (1.39)

Calculate classifier voting weights

Wi =log(1/B). for k=1,..1 (1.40)
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7. Compute the composite hypothesis (the ensemble decision) as

H'(x'(i)) = arg max Zk Wi [[he (X' (@) = c]] (1.41)

End Do.
Return the final hypothesis as the current composite hypothesis.

The algorithm is initialized with a single classifier on the first batch of data.
With the arrival of each subsequent batch of data, the current ensemble, H =
the composite hypothesis of all individual hypotheses previously generated, is first
evaluated on the new data (Step 1 in Algorithm 6). In Step 2, the algorithm identifies
those examples of the new environment that are not recognized by the existing
ensemble, H'~', and updates the penalty distribution D'. This distribution is used
not for instance selection, but rather to assign penalties to classifiers on their ability
to identify previously seen or unseen instances. A new classifier /', is then trained
on the current training data in Step 3. In Step 4, each classifier generated thus far
is evaluated on the training data weighted with respect to the penalty distribution.
Note that since classifiers are generated at different times, each classifier receives a
different number of evaluations: at time ¢, i’ receives its first evaluation, whereas
h! is evaluated for ™ time. We use ez,k = 1,...,1 to denote the error of hy—
the classifier generated at time step k—on dataset D’. Higher weight is given to
classifiers that correctly identify previously unknown instances, while classifiers
that misclassify previously known data are penalized. Note that if the newest
classifier has a weighted error greater than /5, i.e., if &} _, > 1/, this classifier is
discarded and replaced with a new classifier. Older classifiers, with error ef{ o= 1/,
however, are retained but have their error saturated at /> (which later corresponds
to zero vote on that environment). The errors are then normalized, creating §; that
fall in the [0, 1] range.

In Step 5, classifier error is further weighted (using a sigmoid function) with
respect to time so that recent competence (error rate) is considered more heavily.
Such a sigmoid-based weighted averaging also serves to smooth out potential large
swings in classifiers errors that may be due to noisy data rather than actual drift.
Final voting weights are determined in Step 6 as log-normalized reciprocals of
the weighted errors: if a classifier performs poorly on the current environment,
it receives little or no weight, and is effectively—but only temporarily—removed
from the ensemble. The classifier is not discarded; however, it is recalled through
assignment of higher voting weights if it performs well on future environments.
Learn T+ .NSE forgets only temporarily, which is particularly useful in cyclical
environments. The final decision is obtained in Step 7 as the weighted majority
voting of the current ensemble members.

Learn 7" .NSE has been evaluated and benchmarked against other algorithms,
on a broad spectrum of real-world as well as carefully designed synthetic datasets—
including gradual and rapid drift, variable rate of drift, cyclical environments, as
well as environments that introduce or remove concepts. These experiments and
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their results are reported in [59], which shows that the algorithm can serve as a
general framework for learning concept drift regardless of the environment that
characterizes the drift.

1.4.5 Confidence Estimation

In addition to the various machine learning problems described above, ensemble
systems can also be used to address other challenges that are difficult or impossible
using a single classifier-based systems.

One such application is to determine the confidence of the (ensemble-based)
classifier in its own decision. The idea is extremely intuitive as it directly follows
the use of ensemble systems in our daily lives. Consider reading user reviews of a
particular product, or consulting the opinions of several physicians on the risks of a
particular medical procedure. If all—or at least most—users agree in their opinion
that the product reviewed is very good, we would have higher confidence in our
decision to purchase that item. Similarly, if all physicians agree on the effectiveness
of a particular medical operation, then we would feel more comfortable with that
procedure. On the other hand, if some of the reviews are highly complementary,
whereas others are highly critical that casts doubt in our decision to purchase that
item. Of course, in order for our confidence in the “ensemble of reviewers” to be
valid, we must believe that the reviewers are independent of each other, and indeed
independently review the items. If certain reviewers were writing reviews based on
other reviewers’ reviews they read, the confidence based on the ensemble becomes
meaningless.

This idea can be naturally extended to classifiers. If considerable majority of
the classifiers in an ensemble agree on their decisions, than we can interpret that
outcome as ensemble having higher confidence in its decision, as opposed to only
a mere majority of classifiers choosing a particular class. In fact, under certain
conditions, the consistency of the classifier outputs can also be used to estimate
the true posterior probability of each class [28]. Of course, similar to the examples
given above, the classifier decisions must be independent for this confidence—and
the posterior probabilities—to be meaningful.

1.5 Summary

Ensemble-based systems provide intuitive, simple, elegant, and powerful solutions
to a variety of machine learning problems. Originally developed to improve
classification accuracy by reducing the variance in classifier outputs, ensemble-
based systems have since proven to be very effective in a number of problem
domains that are difficult to address using a single model-based system.
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A typical ensemble-based system consists of three components: a mechanism
to choose instances (or features), which adds to the diversity of the ensemble; a
mechanism for training component classifiers of the ensemble; and a mechanism to
combine the classifiers. The selection of instances can either be done completely
at random, as in bagging, or by following a strategy implemented through a
dynamically updated distribution, as in boosting family of algorithms. In general,
most ensemble-based systems are independent of the type of base classifier used
to create the ensemble, a significant advantage that allows using a specific type of
classifier that may be known to be best suited for a given application. In that sense,
ensemble-based systems are also known as algorithm-free-algorithms.

Finally, a number of different strategies can be used to combine the classifiers,
though sum rule, simple majority voting and weighted majority voting are the most
commonly used ones due to certain theoretical guarantees they provide.

We also discussed a number of problem domains on which ensemble systems can
be used effectively. These include incremental learning from additional data, feature
selection, addressing missing features, data fusion, and learning from nonstationary
data distributions. Each of these areas has several algorithms developed to address
the relevant specific issue, which are summarized in this chapter. We also described
a suite of algorithms, collectively known as Learn T family of algorithms that is
capable of addressing all of these problems with proper modifications to the base
approach: all Learn ™ algorithms are incremental algorithms that use an ensemble
of classifiers trained on the current data only, then combined through majority
voting. The individual members of Learn ™" differ from each other according to
the particular distribution update rule along with a creative weight assignment that
is specific to the problem.
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