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Abstract: 
Continuous-scan laser Doppler vibrometry (CSLDV) is a method whereby one continuously sweeps the 

laser measurement point over a structure while measuring, in contrast to the conventional scanning LDV 
approach where the laser spot remains stationary while the response is collected at each point.  The continuous-
scan approach can greatly accelerate measurements, allowing one to capture spatially detailed mode shapes 
along a scan path in the same amount of time that is typically required to measure the response at a single point.  
The method is especially beneficial when testing large structures, such as wind turbines, whose natural 
frequencies are very low and hence require very long time records.  Several CSLDV methods have been 
presented that employ harmonic excitation or impulse excitation, but no prior work has performed CSLDV with an 
unmeasured, broadband random input.  This work extends CSLDV to that class of input, developing an output-
only CSLDV method (OMA-CSLDV).  This is accomplished by adapting a recently developed algorithm for linear 
time-periodic systems to the CSLDV measurements, which makes use of harmonic power spectra and the 
harmonic transfer function concept developed by Wereley.  The proposed method is validated on a randomly 
excited free-free beam, where one-dimensional mode shapes are captured by scanning the laser along the length 
of the beam.  The natural frequencies and mode shapes are extracted from the harmonic power spectrum of the 
vibrometer signal and show good agreement with the first seven analytically-derived modes of the beam.  The 
method is then applied to identify the shapes of several modes of a 20kW wind turbine using a ground based 
laser and with only a light breeze providing excitation. 

1 Introduction 
Continuous-Scan Laser Doppler Vibrometry (CSLDV) is a novel method of employing a laser vibrometer 

in which the laser spot sweeps over the structure continuously while measuring, capturing the response of the 
structure from a moving measurement point.  Various methods have been devised to determine the mode shapes 
of the structure everywhere along the scan path from as few as one such measurement.  Hence, the method can 
greatly accelerate measurements from structures with low frequency modes, which require long time records at 
each measurement point when the conventional point-by-point scanning method is used.  Indeed, CSLDV may be 
the only viable method for obtaining mode shape measurements from structures that change with time or which 
are subjected to inputs that are difficult to replicate.  One may also obtain measurements with greatly increased 
spatial detail, leading to insights into the dynamics of a structure that may be helpful when performing model 
correlation and updating [1]. 

Although Sriram et al. were the first to publish regarding CSLDV in early 1990’s [2-4], the research group 
at Imperial College in London (Stanbridge, Martarelli, Ewins and Di Maio) had been working with moving sensors 
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some time previously and are responsible for most of the advancements in this area..  Stanbridge, Martarelli and 
Ewins coined the name “CSLDV” and developed a number of algorithms that extract one and two-dimensional 
operating deflection shapes from CSLDV measurements under sinusoidal and impact excitation [5-9].  Other 
notable contributions include the work by Vanlanduit et al. [10], who presented a CSLDV method that uses multi-
sine excitation (periodic broadband excitation).  Allen & Sracic explored the use of higher scan frequencies 
together with impact excitation, presenting the lifting technique that allows conventional modal analysis curve 
fitting methods and tools such as the CMIF to be applied to CSLDV measurements [11-13].  They also presented 
a method for mass-normalizing the mode vectors obtained by CSLDV when the input force has been measured 
[13, 14].  All of the existing CSLDV methods are valid only for the case where the input is either zero (free 
response) or else it follows a specific form and is carefully controlled.  In practice one cannot always apply an 
input of one of these forms to a structure, but unmeasured random input forces may be present.  For example, 
wind turbines are difficult to adequately excite due to their large size and mass, yet each day the wind provides a 
convenient, broadband source of ambient excitation. 

This work extends CSLDV to Output-only Modal Analysis (OMA), identifying modes from responses under 
an unmeasured, broadband random input.  Since the mode shapes of a linear system are functions of position, 
the CSLDV measurement appears to be from a time-periodic system when the laser spot moves in a periodic, 
closed scan path.  A few system identification strategies have been proposed for linear time-periodic systems, as 
discussed in [11].  This work utilizes a method recently presented by Allen et al. in [15, 16] that is based on the 
spectra of the output of a linear time periodic system when it is excited by a broadband random input.  The 
method utilizes the harmonic transfer function concept by Wereley and Hall, which is an extension to the concept 
of a frequency response function (FRF) to linear time-periodic systems [17-19].  This method can be thought of as 
an extension of Output-only Modal Analysis [20-25] or the Natural Excitation Technique (NExT) [26] to time-
periodic systems.   

The rest of this paper is organized as follows.  Section 2 reviews the proposed output-only identification 
technique with particular emphasis on how to interpret the response spectra of an LTP system.  In Section 3 the 
proposed technique is demonstrated by identifying the mode shapes of a free-free beam under random excitation, 
and the performance of the method and effect of the chosen scan frequency are discussed.  The method is then 
applied to a CSLDV measurement of a wind turbine blade in Section 4, and Section 5 summarizes the 
conclusions. 

2 Theoretical Basis 
 A Linear Time Invariant (LTI) structure can be modeled with the following well known equation of motion, 

 ( )My Cy Ky F t+ + =  (1) 

which can be written in an equivalent state space form as follows with 
TT T,x y y⎡ ⎤= ⎣ ⎦  
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When a laser vibrometer is used so that the velocity is measured, D = 0.   One can diagonalize the modal 
equations for the system using x Pq=  where,  

 P
Ψ⎡ ⎤

= ⎢ ⎥ΨΛ⎣ ⎦
 (3) 

with Ψ  a matrix of the complex modes of the system [ ]1 Nψ ψΨ =  and Λ  a diagonal matrix containing 

the eigenvalues of the system ( )1=diag Nλ λΛ , with 21r r r r rjλ ζ ω ω ζ= − + −
 

in terms of the rth 

natural frequency rω and damping ratio rζ  of the system.  The equations of motion become 
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The output matrix C can be taken to be a matrix with all zeros and a one at the location of the nodal point that the 
laser is measuring.   If the kth measurement point is being measured, then CP  is a 1xN matrix 

[ ]1k kNCP ψ ψ= Λ .  On the other hand, when the continuous-scan approach is employed with a periodic 

scan pattern, the laser position changes periodically with time so CP  becomes a periodic 1xN matrix of mode 
shapes that seem to change with time since the measurement point is moving.  This can be written as 

[ ]1( ) ( ) ( )NC t P t tψ ψ= Λ  with the condition that ( ) ( )r A rt T tψ ψ+ = , and where it is understood that the 

mode shapes are written as time periodic functions only because the measurement point is changing with time. 
Hence, a system under CSLDV measurement can be modeled with a set of linear time periodic (LTP) equations 
of motion.  The CSLDV system has A, B and D constant and C time varying.  In the most general case, the 
response of a linear time periodic system can be written as follows in terms of its state transition matrix. 

 ( )
0

0 0( ) ( ) ( , ) ( ) ( ) ( , ) ) ( ) ( )
t

t

y t C t t t x t C t t B u d D t u tτ τ τ τ= Φ + Φ ( +∫  (5) 

Since the state matrix A is constant and considering the modal form of the equations of motion in Eq. (4), the state 
transition matrix is simply. 

 0( )
0( , ) t tt t eΛ −Φ =  (6) 

This reveals that the eigenvalues of the structure measured using CSLDV are equal to the Floquet exponents of 
the LTP model.  Hence, both the mode shapes and natural frequencies of the structure can be determined once 
the Floquet Exponents and time periodic mode shapes of the LTP system have been identified. 

Werely [17] used Eq. (5) to extend the concept of a transfer function to linear time periodic systems.  He 
derived the concept of a harmonic transfer function (HTF) that relates the input and output of a time-periodic 
system in a transfer function type manner.  The primary difference is that, whereas a transfer function relates the 
output at a single frequency to the input at the same frequency, the HTF relates the input at a collection of 
frequencies to the output at that same comb of frequencies.   Specifically, consider the Fourier transform of the 
response y(t) shifted by nωA, 

 ( )( ) ( ) Aj jn t
ny y t e dtω ωω

∞
− −

−∞

= ∫  (7) 

An EMP signal, denoted with bold uppercase in the following, is the collection of frequency shifted copies of the 
response.  In the case of CSLDV measurements, there is only one measurement point so y(t) is a scalar.  Hence, 
the EMP representation is, 

 [ ]T1 0 1( ) y y yω −=Y   (8) 

The autospectrum of the EMP signal is found in the usual way, 

 ( )( ) E ( ) ( )H
yyS ω ω ω= Y Y  (9) 

where E() denotes the expectation and ()H denotes the Hermitian.  Allen et al. showed in [15, 16] that the output 
autospectrum can be written as follows in terms of the modes of the state transition matrix, 
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∑∑

C W C
 (10) 

This has the same mathematical form as the output autospectrum of a multi-output linear time invariant system.  
Each denominator is multiplied by its complex conjugate, so the response is a sum of modal contributions 
squared.  As with an LTI system, each numerator contains ,( )r lωW , which can be shown to be the autospectrum 

of the net force exciting the rth mode. 
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There are also two notable differences between Eq. (10) and the equivalent expression for an LTI system.  
First, the expression contains a summation over both the modes, whose eigenvalues are λr, and also a 
summation over the harmonics of ωA using the integer index l.  Hence, the autospectrum of the LTP system will 
have peaks near each natural frequency, ωr, and also at the frequencies ωr ± lωA for any integer l.  Second, the 
mode vectors ,r lC  are not the usual collections of the mode shape at different points, but have a different 

definition.  As discussed in [15, 16], the mode vectors ,r lC  are a collection of the Fourier coefficients of the rth 

observed mode vector ( ) rC t ψ  shifted by l.  Specifically, ( ) rC t ψ  is expanded in a Fourier series as follows 

 ,( ) Ajn t
r r n

n
C t C e ωψ

∞

=−∞

= ∑  (11) 

and then the Fourier coefficients are collected into ,r lC  after shifting by l. 

 , , 1 , ,1

T
r l r l r l r lC C C− − − −⎡ ⎤= ⎣ ⎦C  (12) 

Here we shall refer to the autospectrum of the EMP signal as the harmonic power spectral density or 
HPSD.  Since the HPSD has the same form as the PSD of a linear system, OMA techniques for LTI system scan 
be used to identify the modes of the system.  However, one will obtain multiple estimates for each mode since 
each mode is present at a comb of frequencies ωr ± lωA.  This can be addressed in a post processing step, but 
care must be taken since the mode vectors identified at each harmonic will not generally be of equal quality.  
Some of them will be strong and stand out above the noise while others might be weaker or contaminated by 
neighboring modes. A weighted average method can be employed to decrease the effect of the less reliable 

estimates. In addition, each of the estimates of ,r lC  can differ by a complex scale factor, so their phases should 
be aligned before averaging.  

Theoretically, one must consider an infinite number of harmonics to characterize an LTP system, yet one 
would expect that most systems can be well approximated with a finite, perhaps even small number.  When a 
range of harmonics, ...n p p= − , are used to describe the CSLDV output signal in eq. (7) and (8), the resulting 
auto spectrum matrix Syy(ω) has the dimension of [Np × Np ×Nf], where Np=2*p+1 and Nf is the number of 
frequency lines.  One is free to use any of the rows (or columns) in the power spectrum matrix to identify the [Np 

×1] vector ,r lC .  In this work, only the power spectra along the primary column ( ),0 0( ) E ( ) ( )H
yy nS yω ω ω= Y , 

are used.  Once a vector ,r lC  is found, one can reconstruct the time periodic mode shape of the system 

according to eq. (11) and then plot it against the laser path to generate the mode shape of the LTI system. 

3 Experimental Validation 

3.1 Experimental Setup 

 
Figure 1: Schematic of test setup 
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In order to validate the new OMA-CSLDV methodology, CSLDV was used to measure the modes of a 
free-free aluminum beam, as shown schematically in Figure 1 .  The beam was suspended by soft bungee cables 
so the laser scan path would remain on the beam as it was excited. The supports were made as soft as possible 
and placed at the nodes of the first analytical bending mode to minimize the effect of the support stiffness on the 
beam’s modes.  A 5.2g accelerometer (PCB J351B11) was attached at the left end of the beam (x = 6.3mm), the 
same configuration as in [13], so that the identified modes can be compared to the analytical model used in that 
previous work.  The signal from the accelerometer was not used in any of the following.  

Continuous-Scan Laser Doppler Vibrometry was employed to measure the beam’s transient response 
using a Polytec® PSV-400 scanning laser vibrometer with the customized mirror system described in [27].  To 
improve the laser signal strength and reduce noise, the front surface of the beam was covered with light weight 
retro-reflective tape (3M ScotchliteTM High Gain Reflective Sheeting 7610).  The mirror system was used to scan 
the laser along the length of the beam sinusoidally at 1.5Hz and 3Hz. The mirror driving voltage was manually 
adjusted until the laser traversed all but 19mm from the ends of beam; this ensured that the laser remained on the 
beam throughout the tests.  The beam was excited at random times and at random locations for 10mins with an 
instrumented hammer (PCB 086C01), although the force signal from the hammer was not measured. A sampling 
frequency of 2560Hz was selected to record the vibrometer signal, mirror driving signal and mirror output signal 
using a National Instruments PXI data acquisition system. To further reduce the noise, the vibrometer signal was 
filtered with a low-pass filter and down sampled to 1280Hz before processing the measurements. This sampling 
frequency appeared to be sufficient to capture all of the frequency content that stood out above the noise floor.  

3.2 Validation 
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Figure 2: CSLDV output signal under random excitation (1.5Hz scan frequency)  

Figure 2 shows the 10 minute long CSLDV output signal that was acquired at a scan frequency of 1.5Hz.  
The vibration signal appears to be random, although it drops to -3 m/s periodically during the measurement (the 
same phenomenon was noted when a 3Hz scan frequency).  This phenomenon seems to have been caused by 
the VD-03 velocity decoder used in the Polytec system, although its cause is not well understood.  Measurements 
with the VD-08 decoder did not show this feature, but the largest range setting for that decoder was inadequate 
for this system.  The output signal including these dropouts was used in the following analysis without any special 
treatment and fortunately, reasonable results were still obtained in spite of that contamination.   

To form the EMP output signal Y(ω) in eq. (8), the CSLDV output signal was exponentially modulated with 
harmonics n=-5…5 according to eq. (7). The number of harmonics required to accurately describe each mode 
shape was not known, but when low scan frequencies such as these are used, choosing a large number of 
harmonics may cause the harmonics from neighboring modes to overlap so that the mode shape cannot be 
accurately determined. Hence, one must choose the scan frequency carefully to avoid this difficulty.  The authors 
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have typically chosen the scan frequency to be large relative to the natural frequencies of interest in order to 
simplify matters [12, 28], although in this work smaller scan frequencies are explored since they make the spectra 
easier to interpret and reduce laser speckle noise [29, 30].  Other researchers, such as Stanbridge et al. typically 
use relatively small scan frequencies in their work, see [5-8] for examples.  

 The modulated CSLDV output signal was then decomposed into to 20 s long blocks to calculate Syy(ω).  
A Hanning window was applied to each of the blocks with 75% overlap, resulting in 104 blocks for each 
modulated output signal. The auto and power spectra of the modulated output signal are then calculated on each 
block and averaged over all 104 blocks, resulting in a [11×11×16385] harmonic power spectrum matrix.  Recall 
that a single CSLDV signal was measured, but it was expanded into 11 signals so the Power Spectral Density 
(PSD) for this system is an 11 by 11 matrix at each frequency. 

 
 

 
Figure 3: Harmonic PSD of CSLDV measurement at 1.5Hz scan frequency.  The pane on the left shows an 

expanded view of the measurement near 16 Hz.  

Figure 3 shows the power spectrum along the primary row of Syy(ω).  The eleven curves shown 
correspond to each of the n,kth elements of Syy for n = 0 and k = -5…5.  The spectra show clusters of strong 
harmonics around each of the natural frequencies.  The view on the left focuses on the 1st mode, whose natural 
frequency is 16.34Hz. Besides the peak at 16.34Hz, the 1st mode is also responsible for the harmonics in the 
spectrum at 13.34Hz, 14.85Hz, 17.85Hz, 19.34Hz, etc, all separated by multiples of 1.5Hz, which is the 
fundamental frequency ωA/(2π).  The peak picking method can be used to identify the Fourier coefficients ,r lC  

from the power spectra in Figure 3, and this approach was found to provide good accuracy in most cases.  
However, better results were obtained by fitting the measurements to single DOF modes using the Algorithm of 
Mode Isolation (AMI) [31].  This algorithm was modified from the version in [31] to fit squared modes to the power 
spectrum near each mode.  The AMI algorithm identified the natural frequencies, damping ratios and mode 
shapes ,r lC  

of the mode manifest at each of the peaks in the spectrum.  
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Figure 4: AMI fit of the 1st mode using a 1.5Hz scanning frequency 

Figure 4 shows an AMI fit to several of the peaks arising from the 1st mode, again for the 1.5Hz scanning 
frequency. The gray solid line indicates the composite FRF, which is the average of the 11 FRFs in 3, and the 
green dash-dot line is the AMI fit curve.  The 5 dominant harmonics of this mode are well approximated by the 
reconstructed spectrum.  A third curve shows the composite of the difference between the measurement and the 
reconstruction, revealing that the fit is superior at the three dominant peaks.  The response stands out above the 
noise (due to imperfection in the LDV and to the non-flatness of the input spectrum) by about one order of 
magnitude.  Table 1 shows the normalized Fourier coefficient vectors identified from the 5 harmonics shown in 
Figure 4.  Each of the identified coefficient vectors should contain the same Fourier coefficients ,r nC , but those 

coefficients are shifted by l in each of the identified vectors ,r lC  and each of those vectors may have a different 

complex scale factor.  The scale differences are addressed by normalizing the vector by dividing by the largest 
value and then rotating the vector to the same phase so that they can be averaged.  To minimize the noise, the 
largest value in each identified Fourier coefficient vector ,r lC  is used as the weight during the averaging.  Some 

higher order Fourier coefficients have large discrepancy because of the noise (see 1,5C  1,6C  and 1,7C in Table 1), 

but those terms are from weakly represented peaks in the spectrum and so they become much smaller applying 
the weighted average.  

Table 1 Shifted Fourier coefficient vectors of the 1st mode under 1.5Hz scanning frequency 

 
 Averaged Harmonics of 1st mode 

Frequency 16.3391 13.3372 14.8429 16.3349 17.8412 19.3392 

Weight 1 0.3629 0.0275 0.159 0.0296 0.3536 

r/l 1,0C  1,2C  1,1C  1,0C  1, 1−C  1, 2−C  

1, 7C −
 -0.0058 - 0.0013i 0.0080 - 0.0004i 0 0 0 0 

1, 6C −
 -0.0259 + 0.0087i -0.0083 + 0.0055i -0.0490 - 0.0095i 0 0 0 

1, 5C −
 -0.0030 + 0.0121i 0.0104 - 0.0119i -0.0000 - 0.0027i 0.0104 - 0.0061i 0 0 
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1, 4C −
 -0.0779 + 0.0123i 0.0536 - 0.0032i 0.0301 + 0.0034i 0.0664 - 0.0029i 0.0163 - 0.0639i 0 

1, 3C −
 0.0049 - 0.0050i -0.0055 + 0.0087i 0.1186 + 0.0559i -0.0011 + 0.0067i -0.0043 + 0.0200i -0.0065 + 0.0134i 

1, 2C −
 1 -0.9946 - 0.1034i -0.9358 - 0.0859i -0.9943 - 0.1063i -0.9944 - 0.1059i -0.9945 - 0.1051i 

1, 1C −
 -0.0729 - 0.0034i 0.0689 + 0.0082i 0.1461 + 0.0457i 0.0709 + 0.0069i 0.0421 - 0.0036i 0.0759 + 0.0083i 

1,0C  0.4464 + 0.0771i -0.4211 - 0.1139i -0.4045 - 0.1223i -0.4267 - 0.1196i -0.3882 - 0.1069i -0.4232 - 0.1175i 

1,1C  -0.0769 - 0.0185i 0.0735 + 0.0217i 0.1239 + 0.0214i 0.0723 + 0.0228i 0.1089 + 0.0242i 0.0727 + 0.0196i 

1,2C  0.9354 + 0.3048i -0.8994 - 0.3967i -0.9121 - 0.4099i -0.9077 - 0.3987i -0.8801 - 0.3941i -0.9120 - 0.4074i 

1,3C  0.0114 + 0.0180i -0.0058 - 0.0178i -0.0707 - 0.0498i -0.0107 - 0.0149i -0.0337 - 0.0465i -0.0082 - 0.0174i 

1,4C  -0.0346 - 0.0188i 0 -0.0186 + 0.0253i 0.0533 + 0.0378i 0.0645 + 0.0436i 0.0519 + 0.0333i 

1,5C  -0.0038 - 0.0009i 0 0 0.0074 + 0.0037i 0.0054 - 0.0027i 0.0040 + 0.0023i 

1,6C  0.0006 + 0.0016i 0 0 0 -0.0248 + 0.0059i 0.0000 - 0.0073i 

1,7C  -0.0009 - 0.0001i 0 0 0 0 0.0023 - 0.0019i 

 
The mode shapes reconstructed from these Fourier coefficient vectors are plotted in Figure 5, as well as 

the averaged mode shape from the weighted average of all of the Fourier coefficients.  It can be seen that the 
mode shapes from the -1 and 1 harmonics have some discrepancy from the ones from the -2, 0 and 2 harmonics.  
This is to be expected since the -1 and 1 harmonics have about 10 times smaller amplitude in Figure 4, so they 
are much more strongly influenced by noise.  Any of the other harmonics gives a reasonable estimate of this 
mode’s shape. 
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Figure 5:  Mode shapes reconstructed from each of the five groups of harmonics in Table 1.  The solid black 

line shows the mode shape computed from the weighted average of the harmonics. 

All of the other modes were identified in a similar manner.  Table 2 shows the natural frequencies of each 
of the modes that were identified from the harmonic spectra in Figure 6.  The 1.5Hz scan frequency was used for 
the first two modes, while the rest were extracted from the measurements with the 3Hz scan frequency.  With the 
higher modes it was possible to compute the harmonic autospectrum for n=-8:8 , so that was used for modes 3 
through 7.  The value in the column labeled “OMA” is the average of the natural frequency estimated at each of 
the harmonics, after shifting each by an integer multiple of ωA.  The standard deviation of the natural frequency 
estimates is also shown, which is very small in all cases, revealing that each of the harmonics gives a very similar 
estimate of the natural frequency.  The values in the column “Analytical” are the natural frequencies of a tuned 
analytical model, which is an Euler-Bernoulli beam model that was tuned to account for the mass of the 
accelerometer as described in [13].  All of the OMA identified natural frequencies agree well with the analytical 
values, the largest difference is a few Hz for the higher modes, but the analytical model was found to be 
somewhat inaccurate for these modes so the OMA result is still within the margin of error for the analytical model.   
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Table 2  Comparison of analytical and experimental modes 

No. Analytical 
Freq (Hz) 

OMA 
Freq. (Hz) Std n Scan 

Frequency MAC 

1 16.38 16.34 0.01 -5:5 1.5 1.00 
2 45.35 45.15 0.03 -5:5 1.5 0.98 
3 89.23 88.73 0.10 -8:8 3 0.95 
4 147.99 146.99 0.02 -8:8 3 0.98 
5 221.71 221.07 0.01 -8:8 3 0.95 
6 310.49 309.53 0.01 -8:8 3 0.92 
7 414.37 411.57 0.10 -8:8 3 0.92 

 
Figure 6 shows the mode shapes of each of the identified modes, as well as the shapes from the tuned 

analytical model from [13].  The mode shapes agree very well with the analytical model, except for the 3rd and 7th 
modes which show significant discrepancies.  The 3rd mode was heavily damped and the harmonics overlapped 
with each other even when using a 3Hz scanning frequency, so it was difficult to identify.  The 7th mode was 
weakly excited since the hammer force had rolled off significantly near its natural frequency, so it did not stand out 
sufficiently above the noise.  This mode was also difficult to identify using the authors original CSLDV approach, 
as described in [12]. The MAC values between the analytical mode shapes and the CSLDV mode shapes are 
listed in Table 2; the worst MAC values occur for the 6th and 7th modes, but those values are still above 0.92. 
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Figure 6  Mode shapes identified by CSLDV at 1.5Hz and 3Hz scanning frequencies.  

Solid black lines denote the analytical shapes; dots show the shapes from OMA 
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3.3 Effect of Scan Frequency  

mentioned previously, low scan frequencies were chosen in this work so that the harmonics of each mode would 
occur in a cluster, as illustrated in Figure 3. However, this may lead to difficulty if many harmonics are needed to 
describe a mode, since the harmonics from one mode may overlap with those from the neighboring modes, 
especially when the modes are close to each other.  In addition, if one mode is heavily damped, the scanning 
frequency must be large to distinguish the harmonics belonging to this mode. Figure 7 demonstrates this issue by 
comparing the spectrum near the heavily damped 3rd mode for 1.5Hz and 3Hz scanning frequencies. The 
harmonics of this mode overlap significantly when a 1.5Hz scanning frequency was used.  Though one can still 
identify the natural frequency and mode shape from the strongest harmonics, the mode shape is somewhat 
contaminated by the other nearby harmonics.  A better estimate of the mode shape is obtained with a 3Hz 
scanning frequency.  Its harmonics are better separated so the Fourier coefficients estimated from each peak are 
not as strongly affected by the neighboring peaks. 
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Figure 7:  Composites of the harmonic PSD near the 3rd mode with 1.5Hz (left) and 3Hz (right) scanning 

frequencies. 

The most straight forward approach for selecting the scan frequency is to choose one that is higher than 
the highest mode that is excited.  This assures that all of the harmonics in eq. (10) occur at distinct frequencies.  
Unfortunately, this may result in excessive noise with current lasers and for some systems the scan frequency 
needed may even exceed the capabilities of the mirror system.  On the other hand, CSLDV is most advantageous 
for systems that have low natural frequencies and hence require long time records, so limitations of the laser and 
mirror system may not be a significant concern.  A high scan frequency produces a spectrum that is a little more 
complicated than those shown above, since each of the mode peaks may be present in each frequency band for 
which nωA< ω < (n+1)ωA.  This makes the spectra more difficult to interpret visually.  In previous works the authors 
circumvented this difficulty by lifting the measurements, which effectively aliases the CSLDV signal producing a 
collection of signals that are limited to 0 < ω < ωA/2  [12].  An analog of this method has not yet been developed for 
autospectra, so in this work we have worked with the spectra directly. 

As these results illustrate, one must take some care to choose an acceptable scan frequency.  As 
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Figure 8:  Harmonic PSD of CSLDV measurement at 56 Hz scan frequency 

 Figure 8 gives an example of the measurement under 56Hz scanning frequency, where the black stars 
indicate the harmonics of the first mode (fn = 16.34Hz).  The harmonics of this mode no longer appear in a cluster 
as in Figure 3 but throughout the band for 16.34Hz ± n56Hz.  Some of the harmonics for negative n fold about 
zero frequency occurring at positive frequencies |16.34Hz - n56Hz |, complicating matters further.  Nevertheless, 
the same identification procedure can still be applied as long as the harmonics of each mode can be located.  
When reconstructing the mode shapes, one should note that the folded harmonics actually correspond to positive 
harmonics of the complex conjugate eigenvalue, so the identified vectors ,r lC  will be complex conjugates and 

have the Fourier coefficients in opposite order of those identified from the positive harmonics.  
Figure 9 shows the mode shapes that were identified from the power spectrum in Figure 8. The peak 

picking method was used to obtain the Fourier coefficient vector at each harmonic instead of AMI in this case. 
The reconstructed mode shapes still show great agreement with the analytical ones.  However, the grid on which 
the mode shapes is plotted is coarser to reflect the fact that the 2560 Hz sampling rate only produces 46 samples 
per period at a 56Hz scan frequency measurement.  A higher scan frequency could have been used to obtain a 
finer measurement grid, or if one is certain that all of the important Fourier Coefficients have been obtained then 
one could reconstruct the mode shapes with any desired spatial resolution [6]. 

57



 

 

0 200 400 600 800 1000
-4

-2

0

2

4

6
Elastic Mode Shapes

 

 

16.34Hz
45.15Hz
88.73Hz

0 200 400 600 800 1000
-4

-2

0

2

4

6

 

 

146.99Hz
221.07Hz

0 200 400 600 800 1000
-4

-2

0

2

4

6

Position (mm)

 

 

309.53Hz
411.57Hz

 
Figure 9:  Mode shapes identified by CSLDV at 56Hz scanning frequency.  Solid black lines denote the 

analytical shapes; dots show the shapes identified by OMA-CSLDV. 
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4  Application to Wind Turbine Blade 
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Photograph from CSLDV test of a wind turbine blade with a graphic illustrating the scan pattern. 

ed method was applied to identify the natural frequencies and mode shapes of a wind turbine 
n Figure 10.  The blade is one of three that comprise the turbine rotor.  For all of the tests 
 turbine rotor was locked by applying the brake and the blade of interest was pitched so that 
nally perpendicular to the chord of the blade (i.e. measuring in the flapwise direction).  The 
 as much as possible of the 4.3m long blade.  For the results shown here the laser was 66m 
e tower and the tower heights is 30m, so the total distance from the laser head to the blade is 
m. The same retro-reflective tape was applied on the blade to increase the signal strength.  
ssary to obtain any signal at all from the vibrometer, and the increased reflectivity made the 
ocate when it was on the tape.  The blade was excided purely by the wind, whose maximum 
ed to be 3.5-3.75m/s at the conclusion of testing, by a sensor mounted on the tower and which 
figure about two-blade lengths down from the top of the tower. 
uiring CSLDV measurements, the laser spot was fixed near the tip of the blade and the power 
ated using the LDV software to compute the PSD over about a 10 minute period.  The power 
in Figure 11.  At least seven peaks are seen in the spectrum, each of which is presumed to 
tural frequency of the system.  The frequencies of each of these peaks are listed in Table 3.  
z the wind apparently does not excite the system significantly as the measurement seems to 
ve that frequency.  One should note that the seven modes seen in Figure 11 are not expected 

g modes of a simple beam.  The turbine is comprised of three nominally identical blades so 
 mode occurs three times, at two or three distinct frequencies depending on the stiffness 

wer and nacelle.  
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Figure 11:  PSD of LDV output signal with the laser measuring at a fixed point near the tip of the blade 

The LDV was then set to continuously scan the blade for 10min at a time at several different scan 
frequencies ranging from 0.8Hz to 9.3Hz.  Both low and relatively high frequencies were investigated. The 
sampling frequency for these tests was 2560Hz, which was sufficient to capture the highest mode excited by the 
wind even at the 9.3 Hz scanning frequency.  
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Figure 12:  Composite of harmonic PSD of the CSLDV measurement with 1.6Hz scanning frequency 

Figure 12 shows the power spectra of the modulated CSDLV output signal using a 1.6Hz scanning 
frequency. The harmonics n=-3…3 were used to create the harmonic PSD.  As was also the case in the signal 
from the fixed test, the spectra seems to reduce to noise above about 25 Hz.   The harmonics of several modes 
are visible in the spectrum, but it is difficult to determine which harmonics go with each natural frequency since 
they are all so closely spaced.  Therefore, the point measurement in Figure 11 was used to determine which 
frequencies to search for each of the system’s modes.  The natural frequencies thus identified in the harmonic 
spectra are listed in Table 3, along with the seven frequencies identified from the tip spectrum in Figure 11.  Also 
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listed are the first 2 bending modes obtained by a conventional hammer-accelerometer test on a similar blade 
when it was mounted in a stiff fixture on the ground. 

The mode shapes constructed from the harmonic power spectra are shown in Figure 13, found by 
computing the weighted average of the Fourier coefficients identified by the peak picking method at each of the 
significant harmonics.  The mode shapes reveal that the mode at 0.81Hz is predominantly a tower bending mode, 
where the tower bends and the blade moves as a rigid body. As reported in the table, the first bending mode of a 
single blade in a stiff fixture was 3.36Hz, which is close to the frequency of the next three modes identified by 
OMA at 3.13, 3.36 and 3.62Hz.  Each of these modes shows the blade bending with the familiar shape 
reminiscent of the first mode of a cantilever beam.  However, the mode shape of the 3.62Hz mode seems to show 
some displacement at the root of the blade.  This would seem reasonable since the symmetric flapwise mode of a 
horizontal axis wind turbine such as this tends to occur at higher frequency than the yaw and tilt flapwise modes 
(see, e.g. [32, 33]).  The mode seen at 4.38Hz in the tip measurement was not identifiable in the harmonic 
autospectrum, so its mode shape could not be determined.  The first edgewise mode of this blade occurred at 
5.24 Hz when the blade was mounted in the stiff fixture, so this peak in the tip spectrum may come about due to 
edgewise motion of the blade and the fact that the blade twists from root to tip.   A 9.13Hz mode is also seen in 
the fixed point LDV test and not in the CSLDV test.  It may have been buried in the harmonics of the other modes 
or may simply be poorly excited in the CSLDV test. The last three modes that are identified have shapes that 
agree very well with the second bending mode of a cantilevered beam, and their frequencies at 10.63Hz, 10.86Hz 
and 11.29Hz are similar to that of the blade in the fixture.  All of these results were obtained from the CSLDV 
measurements at the 1.6 Hz scan frequency.  Similar results were obtained at some of the other scan frequencies. 

Table 3:  Natural frequencies of wind turbine blade 

Mode Conventional test 
in stiff fixture 

Fixed point OMA 
on tower 

CSLDV OMA 
on tower 

- - 0.81Hz 0.78Hz 

Flap Wise 
Bending 1 3.36Hz 

3.13Hz 
3.37Hz 
3.63Hz 

3.13Hz 
3.36Hz 
3.62Hz 

Edge Wise 
Bending 1 5.24Hz 4.38Hz - 

- - 9.13Hz - 

Flap Wise 
Bending 2 11.40Hz 

10.63Hz 
10.94Hz 
11.25Hz 

10.62Hz 
10.86Hz 
11.29Hz 
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Figure 13:  Mode shapes of wind turbine blade identified by CSLDV at 1.6Hz scanning frequency 

5 Conclusions 
This paper has extended Continuous Scanning Laser Doppler Vibrometry to output only measurements 

(OMA-CSLDV) by capitalizing on a recently developed system identification methodology for linear time-periodic 
systems.  As with conventional OMA, the method assumes that the forces exciting the system are random, white 
and that they sufficiently excite all of the modes of interest.  The theoretical development reveals that when 
CSLDV is used, each mode appears at several peaks in the power spectrum.  The measured CSLDV signal is 
exponentially modulated to create what is called a harmonic power spectrum, and then a standard OMA algorithm 
such as peak-picking can be used to identify the modes of the system.  Each identified mode is comprised of a 
set of Fourier coefficients that describe the variation of the mode shape as a function of time as the laser scans 
periodically.  In this work, the harmonic power spectra were processed both by peak-picking and by curve fitting 
using a least squares algorithm (the Algorithm of Mode Isolation).  Both methods gave good results for the 
systems studied here. 

The new OMA-CSLDV methodology was first validated on a free-free beam in a laboratory setting.  OMA-
CSLDV was found to give results that were very similar to those obtained by the authors’ hammer excited CSLDV 
method, identifying spatially detailed mode shapes of the first seven modes of the beam from one time record.  
Various scan frequencies were investigated and the associated issues were discussed.  The output spectra 
shown here seemed to be considerably noisier than the spectra of the free-response that was processed in the 
previous work [13], but the same has been observed when comparing conventional OMA with EMA methods 
where the input forces are measured and controlled. 

The methodology presented here was further studied by using it to measure the modes of a parked wind 
turbine.  The vibrometer was used to measure the spectrum of the response at the tip of the blade (conventional 
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fixed-point OMA) and CSLDV measurements were also acquired along the length of one blade to identify the 
mode shapes of the turbine on that blade.  Qualitatively reasonable results were obtained for seven modes of the 
turbine, which were found to correspond to a tower bending mode and the first two bending modes of the blades.  
It would have been preferable to have also measured the modes of the turbine by some other means so that the 
shapes obtained in that test could be validated, but that was not possible, so here they were only evaluated 
qualitatively. 

It is informative to consider the effort and expense that would have been required to estimate the mode 
shapes of the turbine using conventional methods.  In order to perform an OMA test using accelerometers, one 
would have to install sensors along the length of the blade and then run cables to a central data acquisition 
system (more than 30 meters if that was located on the ground).  The sensors and cabling would mass load the 
blade to some extent, and all of the instrumentation would have to be removed after the test was complete.  If 
conventional LDV were used to obtain the mode shapes, one would need at least one additional laser to serve as 
a reference.  The other laser could then be roved to obtain the power spectrum at various points along the length 
of the blade.  The laser must observe each point for at least 10 minutes to obtain a reasonable power spectrum, 
so a long test would be required to obtain even a few point measurements using that approach.  Furthermore, the 
point measurements could be contaminated if the wind conditions and hence the excitation changed significantly 
as the test progressed from one point to the next.  In contrast, the OMA-CSLDV method acquired reasonable 
mode shapes for several modes of the turbine from only two 10-minute time records (one fixed-point 
measurement at the tip and one 1.6 Hz CSLDV measurement). 

6 Acknowledgements 
This material is based on work supported by the National Science Foundation under Grant No. CMMI-

0969224.  The authors also wish to thank Renewegy LLC, www.renewegy.com, for making their facilities available 
for the testing described here and for their help and support in this regard. 

7 References 
[1] M. S. Allen and D. M. Aguilar, "Model Validation of a Bolted Beam Using Spatially Detailed Mode Shapes 

Measured by Continuous-Scan Laser Doppler Vibrometry," in 50th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials Conference Palm Springs, California, 2009. 

[2] P. Sriram, J. I. Craig, and S. Hanagud, "Scanning laser Doppler vibrometer for modal testing," 
International Journal of Analytical and Experimental Modal Analysis, vol. 5, pp. 155-167, 1990. 

[3] P. Sriram, S. Hanagud, and J. I. Craig, "Mode shape measurement using a scanning laser doppler 
vibrometer." vol. 1 Florence, Italy: Publ by Union Coll, Schenectady, NY, USA, 1991, pp. 176-181. 

[4] P. Sriram, S. Hanagud, and J. I. Craig, "Mode shape measurement using a scanning laser doppler 
vibrometer," International Journal of Analytical and Experimental Modal Analysis, vol. 7, pp. 169-178, 
1992. 

[5] C. W. Schwingshackl, A. B. Stanbridge, C. Zang, and D. J. Ewins, "Full-Field Vibration Measurement of 
Cylindrical Structures using a Continuous Scanning LDV Technique," in 25th International Modal Analysis 
Confernce (IMAC XXV) Orlando, Florida, 2007. 

[6] A. B. Stanbridge and D. J. Ewins, "Modal testing using a scanning laser Doppler vibrometer," Mechanical 
Systems and Signal Processing, vol. 13, pp. 255-70, 1999. 

[7] A. B. Stanbridge, M. Martarelli, and D. J. Ewins, "Measuring area vibration mode shapes with a 
continuous-scan LDV," Measurement, vol. 35, pp. 181-9, 2004. 

[8] M. Martarelli, "Exploiting the Laser Scanning Facility for Vibration Measurements," Ph.D. Thesis, Imperial 
College of Science, Technology & Medicine, London: Imperial College, 2001. 

[9] A. B. Stanbridge, A. Z. Khan, and D. J. Ewins, "Modal testing using impact excitation and a scanning 
LDV," Shock and Vibration, vol. 7, pp. 91-100, 2000. 

[10] S. Vanlanduit, P. Guillaume, and J. Schoukens, "Broadband vibration measurements using a 
continuously scanning laser vibrometer," Measurement Science &amp; Technology, vol. 13, pp. 1574-82, 
2002. 

[11] M. S. Allen, "Frequency-Domain Identification of Linear Time-Periodic Systems using LTI Techniques," 
Journal of Computational and Nonlinear Dynamics, vol. 4, 24 Aug. 2009. 

63

http://www.renewegy.com


 

 

[12] M. S. Allen and M. W. Sracic, "A New Method for Processing Impact Excited Continuous-Scan Laser 
Doppler Vibrometer Measurements," Mechanical Systems and Signal Processing, vol. 24, pp. 721–735, 
2010. 

[13] S. Yang, M. W. Sracic, and M. S. Allen, "Two algorithms for mass normalizing mode shapes from impact 
excited continuous-scan laser Doppler vibrometry," Journal of Vibration and Acoustics, submitted, 2010. 

[14] M. S. Allen and M. W. Sracic, "Mass Normalized Mode Shapes Using Impact Excitation and Continuous-
Scan Laser Doppler Vibrometry," in 8th International Conference on Vibration Measurements by Laser 
Techniques Ancona, Italy, 2008, pp. 7098-3. 

[15] M. S. Allen, M. W. Sracic, S. Chauhan, and M. H. Hansen, "Output-Only Modal Analysis of Linear Time 
Periodic Systems with Application to Wind Turbine Simulation Data," in 28th International Modal Analysis 
Conference (IMAC XXVIII) Jacksonville, Florida, 2010. 

[16] M. S. Allen, M. W. Sracic, S. Chauhan, and M. H. Hansen, "Output-Only Modal Analysis of Linear Time 
Periodic Systems with Application to Wind Turbine Simulation Data," Mechanical Systems and Signal 
Processing, vol. submitted Oct. 2010, 2010. 

[17] N. M. Wereley, "Analysis and Control of Linear Periodically Time Varying Systems," PhD Thesis, 
Department of Aeronautics and Astronautics, Cambridge: Massachusetts Institute of Technology, 1991. 

[18] N. M. Wereley and S. R. Hall, "Linear time periodic systems: transfer functions, poles, transmission 
zeroes and directional properties," in Proceedings of the 1991 American Control Conference Boston, MA, 
USA: American Autom. Control Council, 1991, pp. 1179-84. 

[19] N. M. Wereley and S. R. Hall, "Frequency response of linear time periodic systems," Honolulu, HI, USA, 
1990, pp. 3650-3655. 

[20] L. Hermans and H. Van Der Auweraer, "Modal Testing and Analysis of Structures Under Operational 
Conditions: Industrial Applications," Mechanical Systems and Signal Processing, vol. 13, pp. 193-216, 
1999. 

[21] E. Parloo, B. Cauberghe, F. Benedettini, R. Alaggio, and P. Guillaume, "Sensitivity-Based Operational 
Mode Shape Normalization: Application to A Bridge," in 22nd International Modal Analysis Conference 
(IMAC XXII) Dearborn, Michigan, 2004. 

[22] B. Peeters and G. D. Roeck, "Stochastic System Identification for Operational Modal Analysis: A Review," 
Journal of Dynamic Systems, Measurement, and Control, vol. 123, December 2001. 

[23] A. Fasana, L. Garibaldi, E. Giorcelli, and D. Sabia, "Z24 Bridge Dynamic Data Analysis by Time Domain 
Methods," in International Modal Analysis Conference (IMAC XIX) Kissimmee, Florida, 2001. 

[24] A. Guyader and L. Mevel, "Covariance driven subspace methods : input/output vs output-only," in 
International Modal Analysis Conference (IMAC XXII) Dearborn, Michigan, 2004. 

[25] M. Richardson and B. Schwarz, "Modal Parameter Estimation from Operating Data," in Sound and 
Vibration, 2003, pp. 28-36. 

[26] G. H. James and T. G. Carne, "Damping measurements on operating wind turbines using the natural 
excitation technique (NExT)," in 11th ASME Wind Energy Symposium presented at the Energy Sources 
Technology Conference and Exhibition. vol. 12 Houston, TX, USA: Publ by ASME, New York, NY, USA, 
1992, pp. 75-81. 

[27] A. Gasparoni, M. S. Allen, S. Yang, M. W. Sracic, P. Castellini, and E. P. Tomasini, "Experimental Modal 
Analysis on a Rotating Fan Using Tracking-CSLDV," in 9th International Conference on Vibration 
Measurements by Laser and Noncontact Techniques Ancona, Italy, 2010. 

[28] S. Yang, M. W. Sracic, and M. S. Allen, "Two algorithms for mass normalizing mode shapes from impact 
excited continuous-scan laser Doppler vibrometry," Journal of Vibration and Acoustics, vol. Submitted 
Aug 2010, 2010. 

[29] S. Rothberg, "Numerical simulation of speckle noise in laser vibrometry," Applied Optics, vol. 45, pp. 
4523-33, 2006. 

[30] S. J. Rothberg, "Laser vibrometry. Pseudo-vibrations," Journal of Sound and Vibration, vol. 135, pp. 516-
522, 1989. 

[31] M. S. Allen and J. H. Ginsberg, "A Global, Single-Input-Multi-Output (SIMO) Implementation of The 
Algorithm of Mode Isolation and Applications to Analytical and Experimental Data," Mechanical Systems 
and Signal Processing, vol. 20, pp. 1090–1111, 2006. 

[32] S. Chauhan, M. H. Hansen, and D. Tcherniak, "Application of Operational Modal Analysis and Blind 
Source Separation / Independent Component Analysis Techniques to Wind Turbines," in 27th 
International Modal Analysis Conference (IMAC XXVII) Orlando, Florida: SPIE, 2009. 

[33] J. Jonkman, "NREL 5 MW Baseline Wind Turbine," Technical report, NREL/NWTC, 1617 Cole Boulevard; 
Golden, CO 80401-3393, USA 2005. 

64


	Output-Only Modal Analysis Using Continuous-Scan Laser Doppler Vibrometry and Application to a 20kW Wind Turbine
	Abstract:
	1 Introduction
	2 Theoretical Basis
	3 Experimental Validation
	3.1 Experimental Setup
	3.2 Validation
	3.3 Effect of Scan Frequency

	4 Application to Wind Turbine Blade
	5 Conclusions
	6 Acknowledgements
	7 References


