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Abstract Effective Model Order Reduction (MOR) for geometrically nonlinear
structural dynamics problems can be achieved by projecting the Finite Element
(FE) equations on a basis constituted by a set of vibration modes and associated
second order modal derivatives. However, the number of modal derivatives gener-
ated by such approach is quadratic with respect to the number of chosen vibration
modes, thus quickly making the dimension of the reduction basis large. We show
that the selection of the most important second order modes can be based on the
convergence of the underlying linear modal truncation approximation. Given a cer-
tain time dependency of the load, this method allows to select the most significant
modal derivatives set before computing it.

1 Introduction

Several advanced structural systems often exploit nonlinear geometrical effects
rather than avoiding them. Large displacements are unavoidable for aeronautics and
aerospace structures for which the minimum weight is a key design factor. It is there-
fore important to consider nonlinearity even in the early design stage by appropriate
modeling practice. However,the nonlinear dynamic analysis of large finite element
(FE) models is an onerous task, and effective Model Order Reduction (MOR) tech-
niques are widely welcomed.

The vibration mode superposition has become a standard practice for linear dy-
namics problems. However, its straightforward extension to geometrical nonlinear
dynamic analysis poses some problems. In principle, to reduce the number of de-
grees of freedom, several vibration modes can be extracted at certain dynamic equi-
librium states and used to project the dynamic set of equations on. This approach
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bears the drawback of recomputing the modal basis too frequently to preserve accu-
racy,and the effectiveness of the method is often lost [6].

A major issue in nonlinear structural applications is the bending-stretching cou-
pling arising from the finite out-of-place displacements a slender or thin-walled
structure exhibits during operation. Typically, low frequency vibration modes are
bending dominated and they do not contain the proper membrane displacement
contribution that is necessary to accurately represent the effect of the nonlinearity.
Various workarounds have been proposed. A selection of modes, dual or compan-
ion modes, has been proposed, relying on membrane static displacements induced
by specified transverse displacements directly related to the bending modes used.
These modes, representing the membrane behavior resulting from bending are con-
sidered in the implicit condensation strategy (using companion modes) presented
by [3] and the full modeling approach usingdual modes introduced by [7]. Both
methods use bending modes in the basis. The implicit condensation method uses
only bending modes in the basis and extracts membrane modes through an assumed
quadratic functional form, while the full modeling method using dual modes adds
modes to the basis that directly describe the membrane response. A different pro-
cedure using dynamic analysis to calculate companion modes is proposed by [8].
They found that very good results are obtained using a basis formed by a combi-
nation of bending vibration modes and membrane vibration modes. Forming the
optimal basis could require the extraction of many modes, and also the selection of
the most significant ones is an issue. Moreover, for more complicated structures, a
categorization in bending modes and membrane modes might not be possible.

Past contributions [4, 5] have outlined the potential of including higher order
modes to enrich the modal basis and avoid expensive recomputing of the modal
basis during the time integration. Essentially, the modal derivatives are calculated
by differentiating the eigenvalue problem or alternatively by using finite differences
[10]. An interesting application of modal derivatives can be found in the computer-
graphics world, [1] although the attention is more focused on a realistic representa-
tion of the deformation rather than on the actual accuracy of the reduced solution.
Methods based on higher order modes are a natural extension of linear modal su-
perposition analysis. Once a good modal basis has been formed for the underlying
linear system, the corresponding second order modes are directly generated from
this basis and provide the displacement contributions that are essential to represent
the effects of the nonlinearity.

The number of modal derivatives is quadratic with respect to the size of the size
of the generating set of vibration modes. However, not all the modal derivatives are
relevant to the accuracy of the reduced response. We present in this contribution a
simple and effective selection criterion that allows to choose the most significant
modal derivatives before computing the actual shapes. The criterion is based on the
convergence of the modal truncation of the underlying linearized problem.
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2 Reduced equations of motion

We consider here the discretized N FE nonlinear dynamic equations of motion of a
general tridimensional structure. For this study, we do not consider damping and we
assume that the external force term can be expressed as a constant shape scaled by a
time dependent function. The governing FE system of equations, together with the
boundary conditions, writes: 

Mü+g(u) = fφ(t)

u(0) = u0

u̇(0) = u̇0

(1)

where u is the generalized displacement vector, M is the mass matrix, g(u) is the
nonlinear force vector and f is the applied load shape multiplied by the time function
φ(t). The initial conditions for the displacement and the velocity vector are indicated
with u0 and u̇0, respectively. We further assume that the nonlinearity of g(u) is
caused by geometrical effects only, i.e. when the displacements are so large that
a linear kinematic model does not hold. This is typically the case of thin-walled
structures, which can undergo large displacements while staying in the elastic range
of the material.

In practical applications, the system of N equations 1 is usually large. The num-
ber of unknowns can be reduced to M, with M <<N, by projecting the displacement
field u on a suitable basis Ψ of time-independent vectors, as:

u =Ψq (2)

where q(t) is the M × 1 vector of modal amplitudes. The governing equations can
then be projected on the chosen basis Ψ in order to make the residual orthogonal to
the subspace in which the solution q is sought. This results in a reduced system of
M non-linear equations:

Ψ T MΨ q̈(t)+Ψ T g(Ψq) =Ψ T fφ(t) (3)

or, equivalently,

M̂q̈(t)+ ĝ(Ψq) = f̂φ(t) (4)

We refer to the numerical solution of the full model as the full solution, while
the solution of the reduced model will be called reduced solution. The key of a
good reduction method is to find a suitable basis Ψ that is able to reproduce the full
solution with a good, hopefully controlled, accuracy.
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3 Reduction basis

We discuss is this section how to form the reduction basis Ψ . We propose a ba-
sis of vibration modes calculated around a given equilibrium position ueq enriched
by the so-called modal derivatives (MD). The two contributions will be separately
discussed.

3.1 Vibration modes

Let us consider a static equilibrium position ueq when the applied load is constant
and given by fφeq. We can then linearize the system of equations 1 around such
configuration assuming that the motion ũ around ueq is small, i.e. u= ueq+ ũ, ü= ¨̃u.
The linearized dynamic equilibrium equations become:

M ¨̃u+Keqũ = fφ̃(t) (5)

where φ̃(t) is a small load variation from φeq. The tangent stiffness matrix Keq is
defined as:

Keq =
∂g
∂u

∣∣∣
u=ueq

(6)

the associated eigenvalue problem to equation 5 writes:(
Keq −ω2

i M
)

Φ i = 0, i = 1,2, . . . ,N (7)

and its solution provides N vibration modes (VMs) Φ i and associated vibration
frequencies ω2

i .

3.2 Modal derivatives

The projection of the governing equations on a reduction basis formed by a reduced
set of VMs is a well-known technique for linear structural dynamics. The main ad-
vantage of this technique is that the resulting reduced model consists of a system of
uncoupled equations that can therefore be solved separately. As discussed in the in-
troduction, several attempts has been made to extend the vibration modes projection
for nonlinear analysis. The main limitation of such approach lies in the fact that the
vibration basis changes as the configuration of the system changes. It is therefore
required to upgrade the basis during the numerical time integration to account for
the effect of the nonlinearity.

For thin-walled structural applications as the one considered in this contribution,
the system is usually characterized by significant nonlinear bending-stretching cou-
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pling effects that are usually not captured by a reduction basis formed by linear
vibration modes only.

Since the VMs change with respect to the configuration, a natural way of ac-
counting for the main effect of nonlinearity is to compute their derivatives with
respect to the configuration around the reference state (ueq,φeq) at which the modes
are calculated. The direction for the derivatives are provided by the VMs chosen for
the linear analysis. We want to compute the modal derivatives (MDs) Φ i j:

Φ i j =
∂Φ i

∂q j
(8)

where q j is the amplitude associated to Φ j. In other words, we would like to know
how a certain mode Φ i changes if the structure is displaced according to the shape
described by mode Φ j.

A way to proceed is to differentiate the eigenvalue problem 7 with respect to the
modal amplitudes.

[
Keq −ω2

i M
] ∂Φ i

∂q j
+

[
∂Keq

∂q j
− ∂ω2

i
∂q j

M
]

Φ i = 0 (9)

It has been shown by [10] and [5] that the terms associated to the mass can be

neglected. The derivative ∂ω2
i

∂q j
is zero since the frequency variation should not be

an odd function of the modal amplitude. The term ω2
i M ∂Φ i

∂q j
is related to the iner-

tial forces associated to the second order mode Φ i j. Since these terms are typically
featuring in-plane deformations (at least for thin-walled structures), their contribu-
tion is negligible. Numerical experiments have shown that the neglecting of mass
related terms does not change the results appreciatively. By doing so, the problem 9
becomes:

Keq
∂Φ i

∂q j
=−

∂Keq

∂q j
Φ i (10)

The right-hand side pseudo-force can be calculated at element level an then as-
sembled. It can be shown that the modal derivatives are symmetric, i.e. Φ i j = Φ ji.
Therefore, given M vibration modes, R = M(M+1)/2 MD can be calculated. Note
that the matrix of coefficients can be factorized once for all and only the right-hand
sides need to be computed. This can be done at element level and subsequently
assembled, see for details [11].

3.3 Projection basis

Once a set of M VMs Φ i are calculated by solving the eigenvalue problem 7, the
MDs Φ i j can be generated by solving the linear problems 10. A reduction basis
including both VMs and MDs can be formed, as:
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Ψ = [Φ i Φ i j] , i, j = 1, . . . ,M, Φ i j = Φ ji (11)

This complete reduction basis provides a very accurate reduced model, as shown in
the numerical example. However, the number of MDs that can be generated from
a subset of M VMs is quadratic with respect to M. For complex problems when a
rather large VMs basis is required, the number of MDs quickly becomes large. We
would like to find a simple selection criterion that allows to form the best reduced
MDs set for a given problem. Specifically, we would like to answer the following
questions:

1. Given a certain time dependent load, is it possible to find the best P MDs, where
P < R?

2. Can the selection be based on the convergence of the underlying linear dynamics
problem, i.e. the convergence of the modal truncation based on the chosen M
VMs?

3. Can the most significant MDs be selected before computing them?
4. Given a reduction basis, can an error bound be devised?

We show in this contribution that the first three questions can be answered. The
selection criterion is discussed in the following section.

4 Selection criterion

Suppose we extracted a set of VMs Φ i, i = 1,2, . . .M with M ≪ N, together with
the associated frequencies ωi. The approximation of the response u(t) of the linear
system 5 is given by [2]:

u(t) =
M

∑
i=1

ΦiΦT
i f

µi

∫ t

0

sin(t − τ)
ωi

φ(τ)dτ =
k

∑
i=1

αiθi(t) (12)

where µi = ΦT
i MΦ i is the modal mass associated to the ith VM. We dropped the ˜

for clarity. The convergence of the modal truncation approximation thus depend on
two distinct contributions, namely a quasi-static contribution and a spectral contri-
bution. The first, associated to the spatial factors αi:

αi =
ΦiΦT

i f
µi

(13)

implies that the load shape f has to be nearly orthogonal to the N−M modes left out
of the approximation. The spectral type is determined by the convergence to zero of
the convolution products 12 when progressing in the eigenspectrum of the system.
The temporal factors θi(t) depend in general on the frequency content of the system
and of the applied load. Let us consider here two relevant cases:

• for a step load φ(t) = 1 for t ≥ 0:
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θi(t) =
1− cos(ωit)

ω2
i

(14)

• for a harmonic load φ(t) = cos(Ω t):

θi(t) =
ωi sin(Ω t)−Ω sin(ωit)

ωi(ω2
i −Ω 2)

(15)

We can now assume that the M VMs selected for a good accuracy for the linear
problem 5 will interact when the nonlinearity is considered. However, if the nonlin-
earity is mild, they will still roughly contribute to the solution as indicated by 12.
We can then further assume that the contribution of the MDs is of second order, and
their mutual relevance could be indicated by:

• : for step load:

bi j
step =

|αi||α j|
ω2

i ω2
j

(16)

• for harmonic load:

bi j
harm = |αi||α j|βiβ j (17)

where the generic term βk(Ω) is:

βk(Ω) =
∣∣∣ 1
(ω2

k −Ω 2)

∣∣∣+ ∣∣∣ Ω
ωk(ω2

k −Ω 2)

∣∣∣
The factors bi j

step and bi j
harm(Ω) indicate the relative amplitude of the MD mode Φ i j

given the contribution of Φ i and Φ j to the linear solution. Note that bi j
harm(0)= bstep.

The selection of the best MDs subset can be based on the magnitude of the bi j co-
efficients: the most relevant MD will be the ones with the highest values of the
corresponding bi j coefficients. This simple criterion is heavily based on the con-
vergence properties of the linear reduced problem. This implicitly assumes that the
nonlinearity effect is, in a mathematical sense, a second order effect. How far this
concept can be stretched is a problem-dependent issue. Moreover, the actual inter-
action between the modes is not investigated: we are simply assuming that two VMs
that bear a relevant part of the reduced solution are likely to interact a lot. The big
advantage of this method lies in the fact that the most important contributions can
be estimated prior the actual calculation of the MDs. In the following section we
show the potential of this method by mean of a numerical example.
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5 Numerical Example

We consider here a short cantilever plate modeled with triangular shell elements.
The geometrical nonlinearity is due to the von-Karman kinematic model adopted
[11]. The full model consists of 546 degrees of freedom. The load is applied at one
corner of the free edge in order to induce both bending and twisting modes in the re-
sponse. The geometric and material properties are reported in Figure 1 together with
the tip displacement component when the load is applied statically. The markedly
nonlinear behavior is evident. The nonlinear static FE equations are solved with the
normal flow algorithm as proposed by [9].

Fig. 1 Static nonlinear response of the short cantilever. The three components of the displacement
at the point where the load is applied are shown. The load is applied is the vertical direction
throughout the entire analysis. The stiffening is due to the axial stretching caused by the bending
deflection.

We first consider the case of a dynamic step load of a magnitude of 30 N. For all
the reduced analysis, a basis formed with the first 10 VMs is considered. The VMs
are calculated around the initial undeformed configuration, i.e ueq = 0.This gener-
ates R = 55 second order MDs Φ i j. To better illustrate the concept of MDs, the first
three VMs and the corresponding MDs are shown in 5. The results of the selection
criterion for the step load are shown in the bar plot on Figure 3. The bstep value has
been raised to 0.25 power in order to better show the smaller contributions on the
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(a) Φ1, ω1 = 83.35 rad/sec (b) Φ2, ω2 = 350.54 rad/sec (c) Φ3, ω3 = 514.80 rad/sec

(d) Φ11 (e) Φ12 (f) Φ13

(g) Φ21 (h) Φ22 (i) Φ23

(j) Φ31 (k) Φ32 (l) Φ33

Fig. 2 The first three vibration modes (VMs) and the corresponding modal derivatives (MDs).
The VMs are out-of-plane modes, featuring bending and torsion. For this specific application, the
MDs are in-plane only, and they are represented top-view to better show the non-uniform in-plane
deformation.

bar plot. Rather intuitively, the MD Φ11 is the more important. The cross terms re-
lating the first two VMs to all the other VMs are comparable to the diagonal entries,
indicating the importance of the interaction between the retained VMs. Mode 6 does
not give any contribution since it consists of a bending motion in the plane of the
plate.
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Fig. 3 Values of bstep relative to the first M = 10 vibration modes. The emphasis is put on the first
mode and its interaction with all the other modes. The values for bstep are raised to 0.25 power
to better highlight the relative contribution of all the terms. Mode 6 does not participate since it
features in-plane lateral bending. (The lower diagonal part of the symmetric bi j is set to zero for
display purposes)

The nonlinear FE dynamic equations are solved with the Implicit Newmark time
integration scheme. The results for the dynamic analysis are shown in Figure 4 for
the vertical component of the displacement at the loaded point. The nonlinear re-
duced model with a basis formed by the first 10 vibration modes and all the possible
second order MDs (M = 10, R = 55) yields a very good approximation of the full
nonlinear response. Also, a reduced analysis with the basis formed by VMs only
(M = 10) is shown (case (c)). The result is overly stiff and clearly wrong, and ap-
parently much worse than the linear analysis. This might be deceiving, since only
the vertical displacement is monitored here. In fact, unlike the nonlinear model, the
linear analysis will not reproduce any axial contribution. A stiffening axial force
is generated by the bending-only vibration modes through the nonlinear bending-
stretching coupling. Since no axially dominated second order modes are included
in the basis, there is no way to alleviate the resulting membrane tension. The out-
come is the shown overly stiff response. Several reduced responses generated by
randomly choosing a set of P = 20 second order MDs to enrich the M = 10 VMs
basis are also plotted. None of these responses provide the same accuracy as the one
resulting from the proposed selection criterion.

Similar results are shown for the case of harmonic load, see Figure 6. The fre-
quency of the applied load Ω is set as 450 rad/sec, an intermediate value between
the first and the second eigenfrequency of the system.The outcome of the selection
criterion bharm as per equation 17 is shown in Figure 5, while the load amplitude
is 60 N. In this case, the criterion places more emphasis on the second and the
third VM and their interaction. Also the interaction of the first VMs with all the
other modes is rather important. The slight discrepancy between the full nonlinear
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Fig. 4 Dynamic response at the loaded tip for a step load of magnitude φ(t) = 30 N. The uz
component is shown. (a) : basis formed with all the possible second order modes M = 10, R = 55;
(b) : basis formed with the best 20 second order fields, M = 10, P = 20; (c) : basis formed with
vibration modes only, M = 10, P = 0; (d) : basis formed with several random choices of P = 20
second order modes.

response and the complete reduced basis (M = 10 and R = 55) might be due to a
too reduced underlying basis of VMs. The response of the reduced system with the
proposed selection is rather close to the full response and much more accurate than
the responses generated with a random choice of the second order fields. The reason
for the overly stiff response of the nonlinear reduced system when using vibration
modes only is the same as explained for the case of step load.

1
2

3
4

5
6

7
8

9
10

1
2

3
4

5
6

7
8

9
10

0

0.005

0.01

0.015

0.02

0.025

0.03

i−indexj−index

b
h
a
rm

0
.2
5

Fig. 5 Values of bharm relative to the first M = 10 vibration modes and a forcing frequency Ω of
450 rad/sec. The emphasis is in this case on the second and the third mode, and their interaction
with all the other modes.( The lower diagonal part of the symmetric bi j is set to zero for display
purposes)
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Fig. 6 Dynamic response at the loaded tip for a harmonic load φ(t) = 60cos(450t) N. The uz
component is shown. (a) : basis formed with all the possible second order modes M = 10, R = 55;
(b) : basis formed with the best 20 second order fields, M = 10, P = 20; (c) : basis formed with
vibration modes only, M = 10, P = 0; (d) : basis formed with several random choices of P = 20
second order modes.

6 Conclusions and Discussion

We presented a simple and effective criterion to select the most significant second
order modal derivatives for the MOR of geometrically nonlinear structural analy-
sis. The criterion is based on the convergence of the vibration modes truncation for
the underlying linearized dynamic problem . Given a certain first order modal ba-
sis which is converged in a linear sense, the selection criterion looks at the spatial
and spectral properties of the eigenspectrum and the applied load. In this way, the
most relevant second order modes can be selected before their actual calculation.
Numerical results confirmed the effectiveness of the proposed approach.

The power of this simple yet effective method lies on the fact that the second or-
der modes enrichment can be seen as higher order expansion of the solution. There-
fore, the convergence properties of the base linearized problem should naturally
provide a guideline also for the higher order expansion.

Yet, the number of second (most significant) order modes required for a given
accuracy is in general not known. Future work will focus on the derivation of an
error bound as function of the selected second order modes as well as the spectral
properties of the linearized system.
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