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Preface 

Modal Analysis Topics represents one of six clusters of technical papers presented at the 29th IMAC, A 
Conference and Exposition on Structural Dynamics, 2011 organized by the Society for Experimental 
Mechanics, and held in Jacksonville, Florida, January 31 - February 3, 2011.  The full proceedings also 
include volumes on: Advanced Aerospace Applications; Linking Models and Experiments; Civil 
Engineering, Rotating Machinery, Structural Health Monitoring, and Shock and Vibration, and Sensors, 
Instrumentation, and Special Topics. 
 

 
IMAC covers the wide variety of subjects that are related to the broad field of Structural Dynamics.  It is 
SEM’s mission to disseminate information on a broad selection of subjects.  To this end, research and 
application papers in this volume relate to the broad field of Structural Dynamics.  Modal Analysis is a 
major enabling technology in this area and consequently is a significant component of this volume. 
 
The organizers would like to thank the authors, presenters, session organizers and session chairs for their 
participation in this track. 
 
 
Bethel, Connecticut              Dr. Thomas Proulx 

Society for Experimental Mechanics, Inc 
 

Each collection presents early findings from experimental and computational investigations on an 
important area within Structural Dynamics. The current volume on Modal Analysis Techniques includes 
studies on Modal Analysis, Modal Parameter Identification, Modal Parameter Estimation, Modal Testing 

Vibration Damping 
Methods, Processing Modal Data, Experimental Techniques, Active Control, Nonlinear Systems, and 
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Selecting Appropriate Analytical Mode Basis for
SEREP-Expansion of Experimental Modes

Anders T. Johansson, Thomas J.S. Abrahamsson

Abstract Since being introduced in 1986, the System Equivalent Reduction Expan-
sion Process (SEREP) has been used to expand experimental eigenvector elements
to the number of degrees-of-freedom of an associated FE-model. In fact, expansion
for interpolation and extrapolation was its original purpose. Since then, studies of
SEREP and other reduction/expansion methods have been abundant. A remarkable
number of these have concentrated on the selection of master degrees of freedom
for model reduction. Few have however considered the modal basis best used when
SEREP is used for expansion.

Expanded experimental modes are expected to correlate well with their analytical
siblings. However, we argue that the degree of global correlation should only be in
parity with the local correlation between the analytical and experimental modes at
locations where measurements are made. Since SEREP is a method which basically
approximates a measured mode by a linear combination of analytical modes, per-
fect agreement between the expanded experimental and analytical modes is easily
achieved, e.g. by simply using only one single mode for expansion. Of course, in
this way the expanded mode normally has very little in common with the measured
mode. On the other hand, using too many modes may result in something similar
to the well known problem of fitting a high-order polynomial to noisy data: Per-
fect agreement at measurement locations is achieved at the expense of unrealistic
deviations and large curvatures between these. To make sure that the experimental
mode has been expanded in a manner faithful to the actual measurements, it is there-
fore reasonable to use a correlation based criterion in the selection of the expansion
basis. Such a criterion is presented in the present paper.

Anders T. Johansson
Chalmers University of Technology, Department of Applied Mechanics, SE-412 96 Göteborg,
Sweden e-mail: anders.t.johansson@chalmers.se
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1 Introduction

The System Equivalent Reduction Expansion Process (SEREP) was introduced in
the late eighties by O’Callahan et al. [16, 17] and, slightly altered, by Kammer [9].
Its use as an expansion method for experimental modes will be discussed here. As-
sume that the i:th experimental eigenvector φ X

L,i exists on some local level L defined
as a subset of the degrees of freedom (DOFs) of an FE model, where the full set
of FE DOFs is denoted the global level, G. Using a set of analytical modes in the
modal matrix ΦA

G, the SEREP expansion of φ X
L,i is

φ X
G,i = ΦA

G(ΦA
L )+φ X

L,i (1)

Where superscript (·)+ denotes the Moore-Penrose pseudoinverse.

The method has been used and discussed vividly within the structural dynamics
community. To mention a few examples of its use, Yun et al. [20] used SEREP re-
duction in a damage detection application, Mitra et al. [14] applied it to fit a piezo-
electric beam into a control algorithm, and Das and Datt [7] presented a modified
version of SEREP adapted to rotating machinery applications.

SEREP, both by construction and name, is an expansion as well as a reduction
method, and much work has been directed at reduction, with an emphasis on the
choice of master nodes, i.e. the nodes to be retained in a reduction process, see for
instance [3, 6]. The latter article, by Bonisoli et al., touches the subject of modal
incompleteness, which by extension, or perhaps rather reversion, leads to the choice
of basis for expansion.

In fact, quite a few authors have noted the importance of the reduction/expansion
basis. Noor [15] wrote:

The effectiveness of reduction methods depends, to a great extent, on the appropriate choice
of the global approximation vectors (or reduced-basis subspace).

Which is to say that the choice of modal basis is highly important (also when us-
ing SEREP as a reduction method). Sastry et al. [19] considered this in devising a
method for an efficient choice of modal basis when using a reduced model to try
and reproduce time-domain system responses with a high frequency band-limited
content.

In studying expansion methods for experimental modes, Balmès ([4, 5]) also pin-
pointed the main drawback of SEREP as being the sensitivity to the selection of
FE modes that should form the expansion basis (the term used is ”modal meth-
ods” - Balmès distinguishes between the work presented by O’Callahan, know as
SEREP, [16, 17] and that by Kammer, known as Modal [9] - the difference being
that Modal keeps the eigenvector elements at local DOF:s from measurements as is,
while SEREP filters them by the FE-modes). Kammer [10, 11] also noted that the
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accuracy of modal methods is dependent on the accurate correlation between ana-
lytical and experimental modes, that is; the goodness of the analytical modal basis
used for expansion.

Balmès therefore discards modal methods in favor of a Least Squares framework
minimizing the difference between the expanded model response and the measure-
ments at local level, a methodology also advocated by Levine-West et al. [13].
Kammer went on to devise a Hybrid method which combines static expansion with
Modal [10]. In contrast, we try to select an optimal basis of FE modes to achieve a
good expansion.

Pascual et al. [18] discussed such a selection of expansion basis for the specific
purpose of damage detection. In their article, a metric defined by the maximum
residual energy of a particular expansion is evaluated to verify that the expansion
basis is large enough.

When comparing experimental eigenvectors to analytical ditto, it is commonplace
to use a correlation metric such as the Modal Assurance Criterion (MAC, [1]). In
particular, and in constraining the discussion to the modal expansion methods, such
a metric is most likely to be used in practice to select the set of analytical modes to
be used for expansion. Realizing this, it is but a small step to include this informa-
tion into a discrete optimization scheme aimed at selecting the best modal base for
SEREP-expansion.

2 Selection through optimization

This article aims to improve the performance of the SEREP modal expansion
method by approaching the selection of FE modes forming the basis of the ex-
pansion as a discrete optimization problem. Let the analytical modes be sorted in
ascending frequency order. If there are n analytical modes available such that the
full set of analytical modes can be defined by the numbers:

S := {k ∈ N∗|k ≤ n} (2)

The problem is to find I ⊂ S, a set of indices defining a subset of the analytical
modes such that the i:th experimental mode φ X

L,i, is expanded as well as possible
(using ΦA

G,I in (1)). The problem of finding the optimal set of analytical modes I?

for SEREP expansion of φ X
L,i is:

I? = argmin
I⊂S

J (I) (3)

Where J is the cost function defined below. Note that the optimization procedure
hence needs to be rerun for each mode i to be expanded. The number of optimiza-

3



tion problems which needs to be solved is hence equal to the number of measured
modes. Below, the steps for expanding a mode i are described; letting i run over all
measured modes, the entire set is expanded. Note that all entities including i or j,
which includes all correlations and candidate sets, hence both I:s and J , will vary
for each experimental mode φ X

L,i to be expanded.

While the optimization perspective comes with standard performance aids such as
the use of constraints, the key to successful optimization is the cost function, the
quantity to be minimized by the optimization routine. For the purpose of this article,
the cost function is created from a correlation metric which quantifies the agreement
between local and global levels. The cost function’s purpose is to assess the quality
of the mode expansion, and so ideally, it should compare the actual measured mode
at the full set of FE DOFs with the expanded mode. Since by its nature, the mea-
sured mode is defined at measured DOFs only, this metric is not available, and so
the more indirect approach of including correlation comparisons using different sets
of DOFs is needed.

2.1 Cost function

Above, we state that an expanded experimental mode should correlate with its an-
alytical counterpart only as well as to the degree of correlation between analytical
and experimental modes at the DOFs where measurements were made. Upon defin-
ing the full FE model DOFs as the global level and the subset where measurements
have been taken the local level, this can be concisely expressed in the following
proposition:

Proposition 1. The correlation between a measured mode and its analytical coun-
terpart at the global level should be similar to their correlation at the local level.

Several things combine to complicate this, however. Foremost is the fact that corre-
lation between two modes may be defined in several ways. An interesting article by
Allemang, [2], provides an overview of correlation metrics in use in modal analysis.
We performed the comparisons of this article with several of the metrics described,
achieving best results using the most well known of them, the Modal Assurance
Criterion, MAC, introduced by Allemang and Brown 1982 [1] and deduced origi-
nally in a linear regression setting. It is calculated as

MAC(φa,φb) =
|φ H

a φb|2

(φ H
a φa)(φ H

b φb)
(4)

Where φa and φb are two modal vectors and (·)H denotes Hermitian transpose.

At face value, the construction of a cost function from a correlation metric is
straightforward. Recall that we try to find the optimal basis for expanding mode
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i, φ X
L,i. Let φ A

L, j be the analytical mode which correlates best with it at local level,
and define the scalar correlations at local and global level as

mL = MAC(φ X
L,i,φ A

L, j) (5a)

mG = MAC(φ X
G,i,φ A

G, j) (5b)

A cost function in keeping with proposition 1 is:

J = ‖mG −mL‖ (6)

Where ‖ · ‖ is a user-defined norm.

But what if φ X
L,i does not correlate well with any one of the analytical modes? If

the FE model is poor, this is a likely situation. But even if the analytical model is
of high quality, this can occur when modes are present that correspond to closely
spaced eigenvalues. To incorporate as much valuable information as possible into
the cost function it may be beneficial to include other MAC values, i.e. degrees of
correlation between the measured mode and analytical modes other than the one
which correlates best with φ X

L,i.

Recall that the experimental mode to be expanded, φ X
L,i, correlates best with ana-

lytical mode j. The index set of all modes except j becomes:

S\ j := S\{ j} (7)

At this point, we can define the two correlation arrays:

ML = MAC(φ X
L,i,ΦA

L,S\ j
) (8a)

MG = MAC(φ X
G,i,ΦA

G,S\ j
) (8b)

And a cost function similar to that of equation (6) can be written as:

J = W1‖mG −mL‖+W2‖MG −ML‖ (9)

Most of the analytical modes will however have very low correlation with a given
experimental mode. Furthermore, in increasing the number of degrees of freedom,
we expect the correlation between two separate eigenvectors to drop because of the
orthogonality properties of the eigenvectors. The second term in (9) may then force
the correlation to be higher than desirable. To prevent this, it can be beneficial to
include only analytical modes whose correlation with the experimental mode to be
expanded, at the local level, is above a certain limit. Thus, the set S\ j modifies to:

S̄\ j := {k ∈ S\ j|MAC(φ X
L,i,φ A

L,k) > σ} (10)
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Where 0 < σ < 1 is a user-defined limit value. The user must also set the relative
weights W1 and W2, and define which norm to use. If taking the `2-norm, (9) can
be generalized further to the quadratic form J = εTWε popular in engineering
sciences, where εT = [(mG−mL) (MT

G −MT
L )] and W is a positive definite weighting

matrix.

2.2 Reduction of candidate sets

The number of index sets I satisfying I ⊂ S is vast. If a brute-force method is to be
used for the solution of this problem, with n analytical modes under consideration,
the number of combinations N to be compared is

N =
n

∑
k=1

n!
(n− k)!k!

(11)

Even for a relatively moderate number of FE modes, this becomes prohibitive
computational-wise. For instance to include up to 30 FE modes as basis would re-
quire considering just over one billion combinations. To examine the entire solution
space must therefore be considered impractical, if not outright impossible.

We propose to circumvent this through considering only combinations of analyti-
cal eigenvectors such that the corresponding eigenvalue indices make up an interval
I := [ jmin, jmax] (such that I ⊂ S). This reduces the number of combinations needed,
and yet it still requires the evaluation of a great many uninteresting sets, such as ones
that do not contain the analytical eigenvector which correlates best with the mode to
be expanded. Thus, the concept of an iterative method of candidate set construction
arose.1

2.2.1 Constructing candidate sets

The candidate set construction algorithm proposed here is based on closed frequency
intervals; that is, to include all analytical modes in a frequency range. The optimiza-
tion problem of (3) is then reduced to finding the limits of that frequency band. The
algorithm consists of two steps; the first step expands the candidate set, while the
second translates the frequency band in the frequency domain.

1 An idea inspired by Kammer’s method of Effective Independence [12] for sensor placement. A
candidate set construction algorithm based on a methodology more closely resembling the EFI, in
which the analytical eigenvector making the largest impact on the cost function was added without
restricting the candidate sets to be intervals, was also tested. In this context, it did not perform as
good as the algorithm in the subsequent section, however, and was left out.
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Fig. 1 Concept of sequential construction of candidate sets consisting of frequency intervals.

Step 1: Expanding the candidate set In step 1, the candidate sets are created
through sequential expansion, starting at a set including only the mode with the
highest correlation with mode i and iteratively increasing the interval through adding
that of the two modes adjacent to the set which affects the cost function the most: Let
the initial set consist only of j, the analytical eigenvector with the highest correlation
to experimental mode i, so that I1 := { j}. This will result in a global diagonal MAC
1, see (5b). Next, add the mode adjacent to j which together with j gives the lowest
cost function value to create set number two. Hence,

I2 := { j−1 , j} , or I2 := { j , j +1} (12)

Assume I2 := { j−1 , j}. To form I3, consider the modes adjacent to I2; denote the
set of these two modes Γ2, where in this example

Γ2 := { j−2 , j +1} (13)

Include the mode in Γ2 which together with I2 gives the lowest cost function. Con-
tinue the process until a = NDOF . See Figure 1.

Step 2: Translating the candidate set When the number of analytical modes ex-
ceeds the number of measured DOFs, SEREP (1) corresponds to an over-determined
least-squares problem. To avoid the problems associated, the size of each candidate
set Ia must be less than or equal to the number of DOFs at local level, NDOF . If there
are still analytical modes to be tried when a = NDOF , the mode adjacent to INDOF

which gives the lowest cost function value can be added, compensated by through
removing the last index at the other end of the set to render the next candidate set.
In effect, this means sweeping the frequency window up or down the frequency axis.

Concisely, the candidate set construction algorithm can be written as:

7



Step 1

1.1) I1 := { j}

1.2) k? = argmin
k

Ji(Ia ∪{k}) , k ∈ Γa

Γa := {s ∈ {S(Ia) | ∃t ∈ Ia s.t. s = arg min
u∈{S(Ia)

‖t −u‖}

1.3) Ia+1 := Ia ∪{k?}

1.4) Repeat 1.2) and 1.3) until:

a = NDOF

Step 2

2.1) k? = argmin
k

Ji(Ia ∪{k}) , k ∈ Γa \
a⋃

r=1

Ir

2.2) Īa+1 := Ia ∪{k?}

Ia+1 := Īa+1 \{s ∈ Ia | s = extremum∗(Īa+1)}

2.3) Repeat 2.1) and 2.2) until:

Γa \
a⋃

r=1

Ir = /0

∗ Extremum is here defined as the largest and smallest value of the set, i.e. maximum
and minimum.

Each candidate set calculated is stored, as an array of indices, along with the corre-
sponding cost function values. The set with the lowest cost function value is denoted
I?; the expansion of φ X

L,i is then φ X
G,I?,i.

Unfortunately, the algorithm described above does not yield monotonically de-
creasing cost function values, wherefore this cumbersome approach is necessary.
Whether (3) is actually fulfilled, that is, whether I? is the optimal solution in the
solution space of all sets I ⊂ S, is not further investigated.
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2.2.2 Constraints

Constraints on the feasible domain is standard in optimization. In (3), the feasible
domain is defined by I ⊂ S. Constraining I further, the feasible domain becomes:

I ⊂ Ŝ ⊂ S (14)

Where Ŝ is a proper subset of S. In effect, this means excluding certain analytical
eigenvectors from the full eigensolution. On what grounds can such an exclusion be
justified? We have come up with two potential scenarios:

First, if an analytical eigenvector is not observable at the local (measurement) level,
its contribution to system motion cannot be identified from the measurements, and
it should be excluded. Using the observability metric proposed by Hamdan and
Nayfeh [8], the subset Ŝ becomes:

Ŝ := {s ∈ S | os > σ} (15a)

where

os = max
k

|ckφ A
G,s|

‖ck‖‖φ A
G,s‖

=
|{φ A

G,s}k|
‖φ A

G,s‖
(15b)

Where σ is a user-defined limit value and ck is the k:th row of the observation ma-
trix relating the local and global levels. Hence, ck is a row vector with unit value
at the position of the DOF corresponding to measurement DOF k and zeros other-
wise, which makes the observability metric simply the normalized local-level high-
est value of the analytical mode under scrutiny; the second identity in (15b).

Second, if for some reason an analytical eigenvector correlates extremely little with
the measured mode to be expanded at the local level, its use as one of the basis
vectors is likely to be limited. Using MAC exclusion, the subset Ŝ becomes:

Ŝ := {s ∈ S | max
k

MAC(φ A
L,s,φ X

L,k) > σ} (16)

Where again σ is user-defined. In using these excluding constraints, simply replace
S with Ŝ in the candidate set construction algorithm above (making the Ia:s intervals
only in transferred sense, i.e. such that Ia := [ jmin, jmax]∩ Ŝ).

Apart from excluding modes from the potential set, we also have the option of
adding proper constraints, such that the optimization problem of equation (3) mod-
ifies to:

I?
i = argmin

I⊂Ŝ
Ji(I)

s.t. gi(I) ≤ 0
(17)

Two constraints of this type have been considered. One verifies the numerical sound-
ness of SEREP: When the expansion has been successful, the expanded mode should
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resemble the original mode very closely at the local level (this is not applicable when
using the Modal version of SEREP, see the discussion regarding differences between
SEREP and Modal in the introduction):

MAC(φ X
I,L,i,φ X

L,i) > σ (18)

Where σ is a user-defined limit value somewhat smaller than unity.

As for the other one, recall that in equation 10, we created a modified set S̄\ j which
excluded modes with low local level correlation from the cost function, since we ex-
pected the correlation to drop as the number of DOFs increased. These can instead
be kept below their initial value (with some slack):

MAC(φ A
G,k,φ

X
I,i)−MAC(φ A

L,k,φ
X
L,i) ≤ σ , ∀k ∈ S\ (S̄\ j ∪{ j}) (19)

Again, σ is a small user-defined limit value.

Sets which do not comply with these constraints are deemed infeasible and dis-
carded, provided that a feasible set can be found. If a feasible set cannot be found,
the constraints are disregarded and the mode set with the lowest cost function value
is used for expanding mode i.

3 Numerical validation

The procedure described in the previous section has been evaluated on two simple
numerical examples. In both cases, results are compared to ”SEREP classic”, inter-
preted as using the same set of analytical modes in the expansion of every experi-
mental mode, letting the set of analytical modes included in the expansion basis start
at the first mode and be a proper interval up to a given mode, such that the highest
number of modes is accurately expanded. This is ensured in the following examples.

The first example (see Figure 2) consists of a single flat 153x299.5mm titanium
plate (E = 108GPa, ν = 0.22), which was modeled using 1352 plate elements with
FEMAPr and MD NASTRANT M . The analytical model represents a 10mm thick
plate, while a 12mm plate model emulates measurements. Emulated sensing is taken
perpendicular to the plate at the 15 locations shown in figure 2, with added normal
distribution eigenvector errors of a magnitude of 2% of the maximum magnitude
vector element of each mode. In-plane modes are not included in the measured set.
Using the method described above with W1 6= 0 and W2 = 0, exclusion based on ob-
servability with a limit value corresponding to 0.5% of the maximum observability
value and the constraint ensuring a MAC-value when comparing the expanded mode
with its original no lower than 0.99, all 36 observable eigenvectors below 19000Hz
are accurately expanded, see Table 1. When increasing eigenvector element error
levels to 5%, all experimental modes except for eigenvector number 25 are accu-

10



Fig. 2 Basic FE-model of
planar plate used for valida-
tion, numerical example one.
The bold dots indicate mea-
surement locations.

rately expanded. Eigenvector 25 is not accurately expanded due to the fact that, at
the local level, it has MAC correlation of 0.99 with the second eigenvector of the
analytical mode shape basis. When noise levels increase, a mode mismatch occurs.
In comparison, the original SEREP algorithm accurately expands only at most 15
modes (several choices gave 15 accurate modes), see Table 2. The poor results of
SEREP classic in this example are due to the fact that the analytical modal basis in-
cludes modes that are not observable at the local level - modes perpendicular to the
measurement direction. Since these are zero vectors at the local level, bar numerical
errors, SEREP is unable to calculate their contribution to the solution.

Table 1 MAC values of SEREP-expanded modes and the modes used to emulate measurements.
Results for example 1 with 2% white gaussian noise. First 38 modes used in SEREP classic.

Mode optim classic 38 Mode optim classic 38

1 1.00 0.00 19 1.00 1.00
2 1.00 0.01 20 1.00 1.00
3 1.00 0.00 21 1.00 1.00
4 1.00 0.00 22 1.00 0.00
5 1.00 1.00 23 1.00 1.00
6 1.00 0.00 24 1.00 1.00
7 1.00 0.02 25 1.00 0.00
8 1.00 1.00 26 1.00 1.00
9 1.00 0.00 27 1.00 1.00
10 1.00 0.01 28 1.00 0.01
11 1.00 0.00 29 1.00 1.00
12 1.00 0.01 20 1.00 0.00
13 1.00 0.00 31 1.00 1.00
14 1.00 1.00 32 1.00 1.00
15 1.00 1.00 33 1.00 0.00
16 1.00 1.00 34 1.00 0.01
17 1.00 0.00 35 1.00 0.00
18 1.00 0.00 36 1.00 0.00

The second example is an assembly consisting of three titanium plates rigidly con-
nected at their intersections. The resulting model, seen in figure 3, was made up of
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Table 2 MAC values comparing expanded modes and the modes used to emulate measurements.
Results for example 1 with 5% white gaussian noise. First 38 modes used in SEREP classic.

Mode optim classic 38 Mode optim classic 38

1 1.00 0.01 19 1.00 0.99
2 0.99 0.01 20 1.00 1.00
3 1.00 0.01 21 1.00 0.99
4 1.00 0.00 22 1.00 0.00
5 1.00 0.99 23 1.00 0.99
6 1.00 0.00 24 1.00 0.98
7 0.99 0.01 25 0.01 0.00
8 1.00 1.00 26 1.00 1.00
9 0.99 0.00 27 1.00 0.99
10 1.00 0.01 28 1.00 0.01
11 0.99 0.00 29 1.00 0.99
12 0.99 0.01 20 1.00 0.00
13 1.00 0.00 31 1.00 0.99
14 1.00 1.00 32 0.96 0.98
15 0.99 0.99 33 1.00 0.00
16 1.00 1.00 34 1.00 0.01
17 1.00 0.00 35 1.00 0.00
18 1.00 0.00 36 1.00 0.00

3380 plate elements at a grand total of 21222 DOFs. The model emulating measure-
ments is such that the left plate in Figure 3 has 12mm thickness, while the other
two plates are 10mm thick. By contrast, all of the plates in the analytical model are
10mm thick. This means in effect that we are using a symmetric model as a basis for
expanding non-symmetric modes. The experimental mode set consists of the first 34
elastic modes (the first 40 from FEM minus 6 rigid body modes). For the analytical
solution, ten more modes were included, making the number of analytical candidate
modes 44.
In this case, all 44 elastic analytical candidate modes are observable, so no exclusion
was used. The weighting parameters were set to W1 =W2 to account for the problem
of finding a best fit symmetric or anti-symmetric counterpart to the non-symmetric
mode to be expanded. No analytical modes were left out of the cost function. Fur-
thermore, the constraint was again used with the local-level correlation after expan-
sion no lower than 0.99, and the constraint with keeping off-diagonal MAC-values
low was used for all modes with a local-level correlation below 0.7 and a slack vari-
able of σ = 0.05. The measurements are taken in a symmetric pattern at 33 nodes
measuring in the direction normal to the plates; in total three measurements are per-
pendicular to the smaller plate. Again, 2% normal distribution eigenvector element
error was added. At most, the classical SEREP routine managed to accurately ex-
pand 22 modes out of the first 34 flexible. Using the proposed method, 31 out of
34 were accurately expanded. The three modes that were not expanded properly,
modes 24, 25 and 27, were such that the main deformation in the two larger plates
was in-plane, i.e. largely unobservable. See Table 3. Figure 4 shows mode 23 as an
example of a mode where the proposed method clearly outperforms SEREP classic.
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Fig. 3 Basic FE-model used
for validation, numerical ex-
ample two. The bold dots
indicate measurement loca-
tions.

153x111.5mm 153x299.5mm

It should be noted that the results in this section are somewhat sensitive to the

Table 3 MAC values comparing expanded modes and the modes used to emulate measurements.
Results for example 2. First 24 modes used in SEREP classic.

Mode optim classic 24 Mode optim classic 24

1 0.99 0.97 18 0.97 1.00
2 0.99 0.99 19 0.99 0.99
3 0.99 0.99 20 0.99 0.99
4 0.99 0.99 21 0.98 0.98
5 1.00 1.00 22 0.99 0.99
6 0.99 0.99 23 1.00 0.30
7 1.00 1.00 24 0.88 0.82
8 1.00 1.00 25 0.67 0.02
9 1.00 1.00 26 1.00 0.01
10 0.99 0.99 27 0.59 0.02
11 0.99 0.99 28 1.00 0.09
12 1.00 0.99 29 0.98 0.03
13 1.00 1.00 30 0.97 0.00
14 0.99 0.99 31 0.96 0.01
15 1.00 0.99 32 0.99 0.00
16 0.98 0.99 33 1.00 0.01
17 1.00 0.99 34 0.95 0.00

noise realization. For different realizations of the first example with 5% error, for
instance, there were cases where both mode 2 and mode 25 were inaccurately ex-
panded, and there were cases where they were both expanded correctly. Other times,
other modes could not be properly expanded at this error level.
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Actual                                  SEREP optim                       SEREP classic 24

Fig. 4 Comparison of mode number 23, numerical example 2. First 24 modes used in SEREP
classic.

4 Conclusions and further work

The most important contribution of this work is the focus on the basis selection in
modal expansion methods. A first example highlights the importance of excluding
analytical modes that are not observable at measurement locations from the expan-
sion set. A second example illustrates that even an FE model whose normal modes
correlate quite poorly with the measured modes can be successfully used as an ex-
pansion basis. The original SEREP method also works quite well for this example
in the lower end of the frequency range.

The method proposed in this paper clearly outperformed the classical SEREP ex-
pansion method in the comparisons performed. Its drawbacks are however its com-
putational inefficiency as an abundance of candidate expansions are to be tested for
each mode and the extensive input needed to set the user-defined limit values of the
various constraints.

In the future, we hope to compare this methodology with other methods such as
those proposed by Balmès [4, 5] and Kammer [10, 11]. As the latter method also
uses a modal basis, it would also be interesting to investigate the effects of basis
selection on it as well.
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Tutorial Guideline VDI 3830: Damping of
Materials and Members

Lothar Gaul

Committee Background

It was Nov 10, 1982 when Prof. Federn, Prof. Gaul, Prof. Mahrenholtz, and
Dr. Pieper VDI decided to work out a guideline on damping in the VDI/FANAK
C13 Committee “Material Damping”. They were joined by Prof. Ottl, Prof. Krae-
mer, Prof. Pfeiffer, Prof. Markert, Prof. Wallaschek, and Mr. Hilpert VDI lateron in
their names order. The idea was to comprise distributed theoretical and experimen-
tal knowledge and to homogenize the nomenclature of this subject.

At the very beginning, important knowledge was provided by the books

J.D. Ferry: Viscoelastic Properties of Polymers
John Wiley & Sons, New York, 1960
B.J. Lazan: Damping of Matrials and Members in Structural Mechanics
Pergamon Press, Oxford, 1968

Important contributions to the subject were made at conferences in the USA, such
as

– Damping
Lynn Rogers

– The Role of Damping in Vibration and Noise Control, ASME Boston
Lynn Rogers, Lothar Gaul

– Damping Sessions at IMAC
Lothar Gaul et al

and in Germany by the colloquium

Lothar Gaul

Institute of Applied and Experimental Mechanics, University of Stuttgart, Pfaffenwaldring

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 17  
DOI 10.1007/978-1-4419-9299-4_2, © The Society for Experimental Mechanics, Inc. 2011

9, 70569 Stuttgart, Germany e-mail: gaul@iam.uni-stuttgart.de
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– Daempfungsverhalten von Werkstoffen und Bauteilen
Kolloquium, TU Berlin, 1975 VDI-GKE
H. Fuhrke, K. Federn, R. Gasch

Results of five guidelines worked out by the named committee

VDI-Richtlinie 3830, Blatt 1-5

have been presented at the conference

Schwingungsdaempfung (Vibration Damping)
October 16 and 17, 2007, Wiesloch near Heidelberg

providing information about

– modelling
– numerical methods (Finite Elements, Boundary Elements, Modal Analysis)
– experimental techniques for determining material damping properties from mea-

sured components or system characteristics

along with

– passive and adaptive practical applications.

The guideline VDI 3830 “Damping of Materials and

Members”

The guideline VDI 3830 consists of the following parts:

Part 1 Classification and survey

Part 2 Damping of solids
Preliminary note

1 Physical phenomena
2 Linear models
3 Nonlinear models

Part 3 Damping of assemblies
Preliminary note

1 From the material to the homogeneous member
2 Laminated members
3 Damping in joints
4 Damping due to fluids
5 Damping by squeezing
6 Assemblies

Part 4 Models for damped structures
Preliminary note

1 Basic model
2 Structures with finite number of degrees of freedom
3 Calculation of viscoelastic components using the boundary element method
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Part 5 Experimental techniques for the determination of damping characteristics
Preliminary note

1 Remarks on experimental techniques
2 Experimental techniques and possible instrumentation
3 Special experimental techniques for determining damping characteristics under

aggravated conditions
4 Experimental Modal Analysis (EMA)
5 Experimental techniques for the damping measurement of subsoil

Introduction

All dynamic processes in mechanical systems are more or less damped. Conse-
quently, damping is highly relevant in those fields of technology and applied physics
which deal with dynamics and vibrations. These include

• machine-, building-, and structural dynamics,
• system dynamics,
• control engineering, and
• technical acoustics,

because damping in these cases often has a considerable effect on the time history,
intensity, or even the existence of vibrations. Important applications are:

• transient vibrations (transient effects associated with the onset or decay of vibra-
tions, shock-induced vibrations, reverberation effects)

• resonance vibrations (unavoidable with random excitation)
• wave propagation
• dynamic-stability problems

Accordingly, a multitude of scientific publications dealing with damping, or tak-
ing it into account at least, are found in technical literature. Due to different the-
ory approaches, objects, and task definitions in the applications listed above, the
designations, the characterisation of damping, the experimental techniques, and the
analytical and numerical methods are not harmonised.

The dynamic behaviour of damped structures can, in special cases, be calculated
using generally valid material laws for inelastic materials based on continuum me-
chanics taking into account boundary effects (e.g. joints). In general, this approach
is too elaborate or expensive, or not at all practicable. In most cases, therefore,
phenomenological equivalent systems or mathematical models tailored to the task
definition are used which are only valid assuming a special state of stresses and/or
a special time history. Harmonic (sinusoidal) time histories are a preferred special
case where complex quantities describe the elastic and damping properties. These
depend on a number of parameters: material data, rate of deformation, frequency,
temperature, number of load cycles, etc. In the case of nonlinear behaviour there is
also a dependence on the amplitude.
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For certain problems, it is sufficient to state, for one deformation cycle, the energy
dissipated in a unit volume or within the system, or the energy released into the
environment at the system boundaries, often related to a conveniently chosen elastic
energy in a unit volume or in the system as a whole. In structural dynamics, the
use of modal damping ratios has proven useful, which do no longer contain detailed
information about the damping.

This guideline is not a textbook; it cannot be a compilation of generally manda-
tory rules. It is intended

• to contribute to a better understanding of the physical causes of damping,
• to facilitate interdisciplinary cooperation by defining harmonised terms and

pointing out the relations between different approaches to the modelling of damp-
ing, and

• to allow an overview of the state of knowledge and experience gathered in various
fields of application and research,

in order to promote the application of existing knowledge.

This guideline is structured in accordance with its objective. It starts off with the
notion of damping and the causes of damping before dealing with different mod-
elling approaches for the linear and nonlinear behaviour of solids, and establishing
cross-references between these approaches. Linear viscoelastic materials being the
best investigated. Their behaviour is discussed in great detail. They are followed by
the damping of assemblies, relevant to the user, by its mathematical characterisation
and its relation to material damping. Models for damped structures are discussed
next, and the application of the boundary element method (BEM) is explained. Fi-
nally, as statements on damping rely on experiments, Part 5 describes established
experimental techniques, possible instrumentation for the determination of damp-
ing characteristics, and analytical methods.

The notion of damping

Damping in mechanical systems is understood to be the irreversible transition of
mechanical energy into other forms of energy as found in time-dependent processes.
Damping is mostly associated with the change of mechanical energy into thermal
energy. Damping can also be caused by releasing energy into a surrounding medium.
Electromagnetic and piezoelectric energy conversion can also give rise to damping
if the energy converted is not returned to the mechanical system.
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Classification of damping phenomena

The physical causes of damping are multifarious. In addition to friction, wave prop-
agation or flow effects, other possible causes are phase transitions in materials or en-
ergy conversion by piezoelectric, magnetostrictive, or electromechanical processes.

Forces associated with damping are non-conservative. They can be internal or ex-
ternal forces. If both action and reaction forces in a free body diagram the damping
force, are effective within the system boundaries, the effect is said to be an internal
damping effect. Where the reaction force is effective outside the system boundaries,
the effect is an external damping effect.

Examples of internal damping are:

• material damping due to nonelastic material behaviour
• friction between components, e.g. in slide ways, gears, etc.
• conversion of mechanical vibration energy into electrical energy by means of the

piezoelectric effect and dissipation due to dielectric losses

Examples of external damping are:

• friction against the surrounding medium
• air-borne-sound radiation into the environment
• structure-borne-sound radiation into the ground

Phenomenologically, the damping in a mechanical system can be composed of the
following contributions:

• Material damping
The energy dissipation within a material, due to deformation and/or displace-
ment, is called material damping. Its physical causes are, in essence:

– in solids
• heat flows induced by deformation (thermomechanical coupling)
• slip effects
• microplastic deformations
• diffusion processes

– in fluids
• viscous flow losses

• Contact-surface damping
Relative motion, friction
Contact-surface damping is caused by relative motions in the contact surfaces of
joined components such as screwed, riveted, and clamped joints. The physical
causes are:

– friction due to relative motions in the contact surface
– pumping losses in the enclosed medium due to relative motion in a direction

normal to the contact surface (e.g. gas pumping)

The term “structural damping” includes:
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• Damping in guides
This includes energy dissipation in longitudinal guides (e.g. slides) and circular
guides (e.g. journal bearings).

• Electromechanical damping
Electromechanical damping can be caused by piezoelectric, magnetostrictive, or
electromagnetic effects.

• Energy release to the surrounding medium
This includes:

– air damping
– fluid damping
– bedding damping

Notes on modern, computer-based analytical and

measurement programs

Whereas the mass and stiffness matrices of relatively complex structures can be
readily determined nowadays using three-dimensional CAD drawings, automatic
grid generation, and subsequent FEM analysis, an appropriate calculation model
cannot usually be established which sufficiently precise information on damping.
More precise damping parameters contains can be determined experimentally.

“Experimental Modal Analysis” (EMA) has become established as the suitable
tool worldwide. It uses measured frequency-response curves between appropriately
chosen excitation points and measuring points, and modern curve-fitting techniques
for identifying the modal parameters: natural frequencies, eigenmodes, and modal
damping ratios. In the case of simple structures, the system can be excited by means
of a hammer inpact. In the case of complex components and considerable damping,
excitation using one or several exciters has proven convenient, allowing to control
exciter amplitudes and energy distribution for selected frequency ranges. The sys-
tem response is often measured by means of piezoelectric accelerometers or laser-
optical sensors.

Modern measurement and analytical systems offer the possibility to identify dis-
crete damping couplings provided that the substructures have been separately inves-
tigated beforehand.

Link modules allow to establish the connection between the results of exper-
imental modal analysis and the calculated FEM analysis (e.g. matching of nodal
points and coordinate axes through interpolation). Quality criteria such as MAC
(Modal Assurance Criterion) compare the relations (such as orthogonality) between
the eigenmodes found in terms of the scalar product of the eigenvectors. Additional
normalisation using the mass or stiffness matrix allows a quantitative assessment.

After model updating on the modal level, including damping ratios determined
by experiment, operation vibrations can be calculated for any load function. The
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simulation model which was developed step by step can thus be verified under prac-
tical conditions.

Content of tutorial

The content of the guideline VDI 3830 is explained in the tutorial along with
physics, theory, numerical approaches, and practical applications taken from review
articles and archival publications of the tutor and his coworkers focussed on damp-
ing topics.

1. L. Gaul: The Influence of Damping on Waves and Vibrations
Mechanical Systems and Signal Processing (1999) 13(1), 1-30
Wave propagations and vibrations are associated with the removal of energy by
dissipation or radiation. In mechanical systems damping forces causing dissi-
pation are often small compared to restoring and inertia forces, However, their
influence can be great and is discussed in the present survey paper together with
the transmission of energy away from the system by radiation. Viscoelastic con-
stitutive equations with integer and fractional time derivatives for the descrip-
tion of stress relaxation and creep of strain as well as for the description of
stress-strain damping hysteresis under cyclic oscillations are compared. Semi-
analytical solutions of wave propagation and transient vibration problems are
obtained by integral transformation and elastic-viscoelastic correspondence prin-
ciple. The numerical solution of boundary value problems requires discretization
methods. Generalized damping descriptions are incorporated in frequency and
time domain formulations for the boundary element method and the finite ele-
ment method.

2. L. Gaul and R. Nitsche: The Role of Friction in Mechanical Joints
Appl Mech Rev vol 54, no 2, March 2001, 93-109
Vibration properties of most assembled mechanical systems depend on frictional
damping in joints. The nonlinear transfer behavior of the frictional interfaces of-
ten provides the dominant damping mechanism in a built-up structure and plays
an important role in the vibratory response of the structure. For improving the
performance of systems, many studies have been carried out to predict, measure,
and/or enhance the energy dissipation of friction. This article reviews approaches
for describing the nonlinear transfer behavior of bolted joint connections. It gives
an overview of modeling issues. The models include classical and practical engi-
neering models. Constitutive and phenomenological friction models describing
the nonlinear transfer behavior of joints are discussed. The models deal with the
inherent nonlinearity of contact forces (e. g. Hertzian contact), and the nonlin-
ear relationship between friction and relative velocity in the friction interface.
The research activities in this area are a combination of theoretical, numerical,
and experimental investigations. Various solution techniques, commonly applied
to friction- damped systems, are presented and discussed. Recent applications
are outlined with regard to the use of joints as semi-active damping devices for
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vibration control. Several application areas for friction damped systems due to
mechanical joints and connections like shells and beams with friction boundaries
are presented. This review article includes 134 references.

3. A. Schmidt and L. Gaul: Finite Element Formulation of Viscoelastic Constitutive
Equations Using Fractional Time Derivatives
Nonlinear Dynamics 29, 37-55, 2002
Fractional time derivatives are used to deduce a generalization of viscoelas-
tic constitutive equations of differential operator type. These so-called frac-
tional constitutive equations result in improved curve-fitting properties, espe-
cially when experimental data from long time intervals or spanning several fre-
quency decades need to be fitted. Compared to integer-order time derivative con-
cepts less parameters are required. In addition, fractional constitutive equations
lead to causal behavior and the concept of fractional derivatives can be physically
justified providing a foundation of fractional constitutive equations. First, three-
dimensional fractional constitutive equations based on the Grünwaldian formula-
tion are derived and their implementation into an elastic FE code is demonstrated.
Then, parameter identifications for the fractional 3-parameter model in the time
domain as well as in the frequency domain are carried out and compared to inte-
gerorder derivative constitutive equations. As a result the improved performance
of fractional constitutive equations becomes obvious. Finally, the identified ma-
terial model is used to perform an FE time stepping analysis of a viscoelastic
structure.

4. L. Gaul and M. Schanz: A comparative study of three boundary element ap-
proaches to calculate the transient response of viscoelastic solids with unbounded
domains
Comput. Methods Appl. Mech. Engrg. 179 (1999), 111-123
As an alternative to domain discretization methods, the boundary element method
(BEM) provides a powerful tool for the calculation of dynamic structural re-
sponse in frequency and time domain. Field equations of motion and boundary
conditions are cast into boundary integral equations (BIE), which are discretized
only on the boundary. Fundamental solutions are used as weighting functions in
the BIE which fulfil the Sommerfeld radiation condition, i.e., the energy radi-
ation into a surrounding medium is modelled correctly. Therefore, infinite and
semi-infinite domains can be effectively treated by the method. The soil rep-
resents such a semi-infinite domain in soil-structure-interaction problems. The
response to vibratory loads superimposed to static pre-loads can often be cal-
culated by linear viscoelastic constitutive equations. Conventional viscoelastic
constitutive equations can be generalized by taking fractional order time deriva-
tives into account. In the present paper two time domain BEM approaches in-
cluding generalized viscoelastic behaviour are compared with the Laplace do-
main BEM approach and subsequent numerical inverse transformation. One of
the presented time domain approaches uses an analytical integration of the elas-
todynamic BIE in a time step. Viscoelastic constitutive properties are introduced
after Laplace transformation by means of an elasticviscoelastic correspondence
principle. The transient response is obtained by inverse transformation in each

24



time step. The other time domain approach is based on the so-called ‘convolu-
tion quadrature method’. In this formulation, the convolution integral in the BIE
is numerically approximated by a quadrature formula whose weights are deter-
mined by the same Laplace transformed fundamental solutions used in the first
method and a linear multistep method. A numerical study of wave propagation
problems in 3-d viscoelastic continuum is performed for comparing the three
BEM formulations.

5. L. Gaul, H. Albrecht and J. Wirnitzer: Semi-active friction damping of large
space truss structures
Shock and Vibration 11 (2004), 173-186
The authors dedicate this paper to the memory of Professor Bruno Piombo. We
commemorate him as a vital contributor to our science. From the experience of
sharing conferences and workshops with Bruno since many years, learning from
his expertise and appreciating his advice, the first author mourns the loss of a
good friend whose works and words will be kept in our minds and hearts.
The present approach for vibration suppression of flexible structures is based on
friction damping in semi-active joints. At optimal locations conventional rigid
connections of a large truss structure are replaced by semi-active friction joints.
Two different concepts for the control of the normal forces in the friction inter-
faces are implemented. In the first approach each semi-active joint has its own
local feedback controller, whereas the second concept uses a global, clipped-
optimal controller. Simulation results of a 10-bay truss structure show the poten-
tial of the proposed semi-active concept.
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Optimal second order reduction basis selection
for nonlinear transient analysis

Paolo Tiso

Abstract Effective Model Order Reduction (MOR) for geometrically nonlinear
structural dynamics problems can be achieved by projecting the Finite Element
(FE) equations on a basis constituted by a set of vibration modes and associated
second order modal derivatives. However, the number of modal derivatives gener-
ated by such approach is quadratic with respect to the number of chosen vibration
modes, thus quickly making the dimension of the reduction basis large. We show
that the selection of the most important second order modes can be based on the
convergence of the underlying linear modal truncation approximation. Given a cer-
tain time dependency of the load, this method allows to select the most significant
modal derivatives set before computing it.

1 Introduction

Several advanced structural systems often exploit nonlinear geometrical effects
rather than avoiding them. Large displacements are unavoidable for aeronautics and
aerospace structures for which the minimum weight is a key design factor. It is there-
fore important to consider nonlinearity even in the early design stage by appropriate
modeling practice. However,the nonlinear dynamic analysis of large finite element
(FE) models is an onerous task, and effective Model Order Reduction (MOR) tech-
niques are widely welcomed.

The vibration mode superposition has become a standard practice for linear dy-
namics problems. However, its straightforward extension to geometrical nonlinear
dynamic analysis poses some problems. In principle, to reduce the number of de-
grees of freedom, several vibration modes can be extracted at certain dynamic equi-
librium states and used to project the dynamic set of equations on. This approach
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bears the drawback of recomputing the modal basis too frequently to preserve accu-
racy,and the effectiveness of the method is often lost [6].

A major issue in nonlinear structural applications is the bending-stretching cou-
pling arising from the finite out-of-place displacements a slender or thin-walled
structure exhibits during operation. Typically, low frequency vibration modes are
bending dominated and they do not contain the proper membrane displacement
contribution that is necessary to accurately represent the effect of the nonlinearity.
Various workarounds have been proposed. A selection of modes, dual or compan-
ion modes, has been proposed, relying on membrane static displacements induced
by specified transverse displacements directly related to the bending modes used.
These modes, representing the membrane behavior resulting from bending are con-
sidered in the implicit condensation strategy (using companion modes) presented
by [3] and the full modeling approach usingdual modes introduced by [7]. Both
methods use bending modes in the basis. The implicit condensation method uses
only bending modes in the basis and extracts membrane modes through an assumed
quadratic functional form, while the full modeling method using dual modes adds
modes to the basis that directly describe the membrane response. A different pro-
cedure using dynamic analysis to calculate companion modes is proposed by [8].
They found that very good results are obtained using a basis formed by a combi-
nation of bending vibration modes and membrane vibration modes. Forming the
optimal basis could require the extraction of many modes, and also the selection of
the most significant ones is an issue. Moreover, for more complicated structures, a
categorization in bending modes and membrane modes might not be possible.

Past contributions [4, 5] have outlined the potential of including higher order
modes to enrich the modal basis and avoid expensive recomputing of the modal
basis during the time integration. Essentially, the modal derivatives are calculated
by differentiating the eigenvalue problem or alternatively by using finite differences
[10]. An interesting application of modal derivatives can be found in the computer-
graphics world, [1] although the attention is more focused on a realistic representa-
tion of the deformation rather than on the actual accuracy of the reduced solution.
Methods based on higher order modes are a natural extension of linear modal su-
perposition analysis. Once a good modal basis has been formed for the underlying
linear system, the corresponding second order modes are directly generated from
this basis and provide the displacement contributions that are essential to represent
the effects of the nonlinearity.

The number of modal derivatives is quadratic with respect to the size of the size
of the generating set of vibration modes. However, not all the modal derivatives are
relevant to the accuracy of the reduced response. We present in this contribution a
simple and effective selection criterion that allows to choose the most significant
modal derivatives before computing the actual shapes. The criterion is based on the
convergence of the modal truncation of the underlying linearized problem.
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2 Reduced equations of motion

We consider here the discretized N FE nonlinear dynamic equations of motion of a
general tridimensional structure. For this study, we do not consider damping and we
assume that the external force term can be expressed as a constant shape scaled by a
time dependent function. The governing FE system of equations, together with the
boundary conditions, writes: 

Mü+g(u) = fφ(t)

u(0) = u0

u̇(0) = u̇0

(1)

where u is the generalized displacement vector, M is the mass matrix, g(u) is the
nonlinear force vector and f is the applied load shape multiplied by the time function
φ(t). The initial conditions for the displacement and the velocity vector are indicated
with u0 and u̇0, respectively. We further assume that the nonlinearity of g(u) is
caused by geometrical effects only, i.e. when the displacements are so large that
a linear kinematic model does not hold. This is typically the case of thin-walled
structures, which can undergo large displacements while staying in the elastic range
of the material.

In practical applications, the system of N equations 1 is usually large. The num-
ber of unknowns can be reduced to M, with M <<N, by projecting the displacement
field u on a suitable basis Ψ of time-independent vectors, as:

u =Ψq (2)

where q(t) is the M × 1 vector of modal amplitudes. The governing equations can
then be projected on the chosen basis Ψ in order to make the residual orthogonal to
the subspace in which the solution q is sought. This results in a reduced system of
M non-linear equations:

Ψ T MΨ q̈(t)+Ψ T g(Ψq) =Ψ T fφ(t) (3)

or, equivalently,

M̂q̈(t)+ ĝ(Ψq) = f̂φ(t) (4)

We refer to the numerical solution of the full model as the full solution, while
the solution of the reduced model will be called reduced solution. The key of a
good reduction method is to find a suitable basis Ψ that is able to reproduce the full
solution with a good, hopefully controlled, accuracy.
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3 Reduction basis

We discuss is this section how to form the reduction basis Ψ . We propose a ba-
sis of vibration modes calculated around a given equilibrium position ueq enriched
by the so-called modal derivatives (MD). The two contributions will be separately
discussed.

3.1 Vibration modes

Let us consider a static equilibrium position ueq when the applied load is constant
and given by fφeq. We can then linearize the system of equations 1 around such
configuration assuming that the motion ũ around ueq is small, i.e. u= ueq+ ũ, ü= ¨̃u.
The linearized dynamic equilibrium equations become:

M ¨̃u+Keqũ = fφ̃(t) (5)

where φ̃(t) is a small load variation from φeq. The tangent stiffness matrix Keq is
defined as:

Keq =
∂g
∂u

∣∣∣
u=ueq

(6)

the associated eigenvalue problem to equation 5 writes:(
Keq −ω2

i M
)

Φ i = 0, i = 1,2, . . . ,N (7)

and its solution provides N vibration modes (VMs) Φ i and associated vibration
frequencies ω2

i .

3.2 Modal derivatives

The projection of the governing equations on a reduction basis formed by a reduced
set of VMs is a well-known technique for linear structural dynamics. The main ad-
vantage of this technique is that the resulting reduced model consists of a system of
uncoupled equations that can therefore be solved separately. As discussed in the in-
troduction, several attempts has been made to extend the vibration modes projection
for nonlinear analysis. The main limitation of such approach lies in the fact that the
vibration basis changes as the configuration of the system changes. It is therefore
required to upgrade the basis during the numerical time integration to account for
the effect of the nonlinearity.

For thin-walled structural applications as the one considered in this contribution,
the system is usually characterized by significant nonlinear bending-stretching cou-
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pling effects that are usually not captured by a reduction basis formed by linear
vibration modes only.

Since the VMs change with respect to the configuration, a natural way of ac-
counting for the main effect of nonlinearity is to compute their derivatives with
respect to the configuration around the reference state (ueq,φeq) at which the modes
are calculated. The direction for the derivatives are provided by the VMs chosen for
the linear analysis. We want to compute the modal derivatives (MDs) Φ i j:

Φ i j =
∂Φ i

∂q j
(8)

where q j is the amplitude associated to Φ j. In other words, we would like to know
how a certain mode Φ i changes if the structure is displaced according to the shape
described by mode Φ j.

A way to proceed is to differentiate the eigenvalue problem 7 with respect to the
modal amplitudes.

[
Keq −ω2

i M
] ∂Φ i

∂q j
+

[
∂Keq

∂q j
− ∂ω2

i
∂q j

M
]

Φ i = 0 (9)

It has been shown by [10] and [5] that the terms associated to the mass can be

neglected. The derivative ∂ω2
i

∂q j
is zero since the frequency variation should not be

an odd function of the modal amplitude. The term ω2
i M ∂Φ i

∂q j
is related to the iner-

tial forces associated to the second order mode Φ i j. Since these terms are typically
featuring in-plane deformations (at least for thin-walled structures), their contribu-
tion is negligible. Numerical experiments have shown that the neglecting of mass
related terms does not change the results appreciatively. By doing so, the problem 9
becomes:

Keq
∂Φ i

∂q j
=−

∂Keq

∂q j
Φ i (10)

The right-hand side pseudo-force can be calculated at element level an then as-
sembled. It can be shown that the modal derivatives are symmetric, i.e. Φ i j = Φ ji.
Therefore, given M vibration modes, R = M(M+1)/2 MD can be calculated. Note
that the matrix of coefficients can be factorized once for all and only the right-hand
sides need to be computed. This can be done at element level and subsequently
assembled, see for details [11].

3.3 Projection basis

Once a set of M VMs Φ i are calculated by solving the eigenvalue problem 7, the
MDs Φ i j can be generated by solving the linear problems 10. A reduction basis
including both VMs and MDs can be formed, as:
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Ψ = [Φ i Φ i j] , i, j = 1, . . . ,M, Φ i j = Φ ji (11)

This complete reduction basis provides a very accurate reduced model, as shown in
the numerical example. However, the number of MDs that can be generated from
a subset of M VMs is quadratic with respect to M. For complex problems when a
rather large VMs basis is required, the number of MDs quickly becomes large. We
would like to find a simple selection criterion that allows to form the best reduced
MDs set for a given problem. Specifically, we would like to answer the following
questions:

1. Given a certain time dependent load, is it possible to find the best P MDs, where
P < R?

2. Can the selection be based on the convergence of the underlying linear dynamics
problem, i.e. the convergence of the modal truncation based on the chosen M
VMs?

3. Can the most significant MDs be selected before computing them?
4. Given a reduction basis, can an error bound be devised?

We show in this contribution that the first three questions can be answered. The
selection criterion is discussed in the following section.

4 Selection criterion

Suppose we extracted a set of VMs Φ i, i = 1,2, . . .M with M ≪ N, together with
the associated frequencies ωi. The approximation of the response u(t) of the linear
system 5 is given by [2]:

u(t) =
M

∑
i=1

ΦiΦT
i f

µi

∫ t

0

sin(t − τ)
ωi

φ(τ)dτ =
k

∑
i=1

αiθi(t) (12)

where µi = ΦT
i MΦ i is the modal mass associated to the ith VM. We dropped the ˜

for clarity. The convergence of the modal truncation approximation thus depend on
two distinct contributions, namely a quasi-static contribution and a spectral contri-
bution. The first, associated to the spatial factors αi:

αi =
ΦiΦT

i f
µi

(13)

implies that the load shape f has to be nearly orthogonal to the N−M modes left out
of the approximation. The spectral type is determined by the convergence to zero of
the convolution products 12 when progressing in the eigenspectrum of the system.
The temporal factors θi(t) depend in general on the frequency content of the system
and of the applied load. Let us consider here two relevant cases:

• for a step load φ(t) = 1 for t ≥ 0:
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θi(t) =
1− cos(ωit)

ω2
i

(14)

• for a harmonic load φ(t) = cos(Ω t):

θi(t) =
ωi sin(Ω t)−Ω sin(ωit)

ωi(ω2
i −Ω 2)

(15)

We can now assume that the M VMs selected for a good accuracy for the linear
problem 5 will interact when the nonlinearity is considered. However, if the nonlin-
earity is mild, they will still roughly contribute to the solution as indicated by 12.
We can then further assume that the contribution of the MDs is of second order, and
their mutual relevance could be indicated by:

• : for step load:

bi j
step =

|αi||α j|
ω2

i ω2
j

(16)

• for harmonic load:

bi j
harm = |αi||α j|βiβ j (17)

where the generic term βk(Ω) is:

βk(Ω) =
∣∣∣ 1
(ω2

k −Ω 2)

∣∣∣+ ∣∣∣ Ω
ωk(ω2

k −Ω 2)

∣∣∣
The factors bi j

step and bi j
harm(Ω) indicate the relative amplitude of the MD mode Φ i j

given the contribution of Φ i and Φ j to the linear solution. Note that bi j
harm(0)= bstep.

The selection of the best MDs subset can be based on the magnitude of the bi j co-
efficients: the most relevant MD will be the ones with the highest values of the
corresponding bi j coefficients. This simple criterion is heavily based on the con-
vergence properties of the linear reduced problem. This implicitly assumes that the
nonlinearity effect is, in a mathematical sense, a second order effect. How far this
concept can be stretched is a problem-dependent issue. Moreover, the actual inter-
action between the modes is not investigated: we are simply assuming that two VMs
that bear a relevant part of the reduced solution are likely to interact a lot. The big
advantage of this method lies in the fact that the most important contributions can
be estimated prior the actual calculation of the MDs. In the following section we
show the potential of this method by mean of a numerical example.
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5 Numerical Example

We consider here a short cantilever plate modeled with triangular shell elements.
The geometrical nonlinearity is due to the von-Karman kinematic model adopted
[11]. The full model consists of 546 degrees of freedom. The load is applied at one
corner of the free edge in order to induce both bending and twisting modes in the re-
sponse. The geometric and material properties are reported in Figure 1 together with
the tip displacement component when the load is applied statically. The markedly
nonlinear behavior is evident. The nonlinear static FE equations are solved with the
normal flow algorithm as proposed by [9].

Fig. 1 Static nonlinear response of the short cantilever. The three components of the displacement
at the point where the load is applied are shown. The load is applied is the vertical direction
throughout the entire analysis. The stiffening is due to the axial stretching caused by the bending
deflection.

We first consider the case of a dynamic step load of a magnitude of 30 N. For all
the reduced analysis, a basis formed with the first 10 VMs is considered. The VMs
are calculated around the initial undeformed configuration, i.e ueq = 0.This gener-
ates R = 55 second order MDs Φ i j. To better illustrate the concept of MDs, the first
three VMs and the corresponding MDs are shown in 5. The results of the selection
criterion for the step load are shown in the bar plot on Figure 3. The bstep value has
been raised to 0.25 power in order to better show the smaller contributions on the
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(a) Φ1, ω1 = 83.35 rad/sec (b) Φ2, ω2 = 350.54 rad/sec (c) Φ3, ω3 = 514.80 rad/sec

(d) Φ11 (e) Φ12 (f) Φ13

(g) Φ21 (h) Φ22 (i) Φ23

(j) Φ31 (k) Φ32 (l) Φ33

Fig. 2 The first three vibration modes (VMs) and the corresponding modal derivatives (MDs).
The VMs are out-of-plane modes, featuring bending and torsion. For this specific application, the
MDs are in-plane only, and they are represented top-view to better show the non-uniform in-plane
deformation.

bar plot. Rather intuitively, the MD Φ11 is the more important. The cross terms re-
lating the first two VMs to all the other VMs are comparable to the diagonal entries,
indicating the importance of the interaction between the retained VMs. Mode 6 does
not give any contribution since it consists of a bending motion in the plane of the
plate.
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Fig. 3 Values of bstep relative to the first M = 10 vibration modes. The emphasis is put on the first
mode and its interaction with all the other modes. The values for bstep are raised to 0.25 power
to better highlight the relative contribution of all the terms. Mode 6 does not participate since it
features in-plane lateral bending. (The lower diagonal part of the symmetric bi j is set to zero for
display purposes)

The nonlinear FE dynamic equations are solved with the Implicit Newmark time
integration scheme. The results for the dynamic analysis are shown in Figure 4 for
the vertical component of the displacement at the loaded point. The nonlinear re-
duced model with a basis formed by the first 10 vibration modes and all the possible
second order MDs (M = 10, R = 55) yields a very good approximation of the full
nonlinear response. Also, a reduced analysis with the basis formed by VMs only
(M = 10) is shown (case (c)). The result is overly stiff and clearly wrong, and ap-
parently much worse than the linear analysis. This might be deceiving, since only
the vertical displacement is monitored here. In fact, unlike the nonlinear model, the
linear analysis will not reproduce any axial contribution. A stiffening axial force
is generated by the bending-only vibration modes through the nonlinear bending-
stretching coupling. Since no axially dominated second order modes are included
in the basis, there is no way to alleviate the resulting membrane tension. The out-
come is the shown overly stiff response. Several reduced responses generated by
randomly choosing a set of P = 20 second order MDs to enrich the M = 10 VMs
basis are also plotted. None of these responses provide the same accuracy as the one
resulting from the proposed selection criterion.

Similar results are shown for the case of harmonic load, see Figure 6. The fre-
quency of the applied load Ω is set as 450 rad/sec, an intermediate value between
the first and the second eigenfrequency of the system.The outcome of the selection
criterion bharm as per equation 17 is shown in Figure 5, while the load amplitude
is 60 N. In this case, the criterion places more emphasis on the second and the
third VM and their interaction. Also the interaction of the first VMs with all the
other modes is rather important. The slight discrepancy between the full nonlinear
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Fig. 4 Dynamic response at the loaded tip for a step load of magnitude φ(t) = 30 N. The uz
component is shown. (a) : basis formed with all the possible second order modes M = 10, R = 55;
(b) : basis formed with the best 20 second order fields, M = 10, P = 20; (c) : basis formed with
vibration modes only, M = 10, P = 0; (d) : basis formed with several random choices of P = 20
second order modes.

response and the complete reduced basis (M = 10 and R = 55) might be due to a
too reduced underlying basis of VMs. The response of the reduced system with the
proposed selection is rather close to the full response and much more accurate than
the responses generated with a random choice of the second order fields. The reason
for the overly stiff response of the nonlinear reduced system when using vibration
modes only is the same as explained for the case of step load.
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Fig. 5 Values of bharm relative to the first M = 10 vibration modes and a forcing frequency Ω of
450 rad/sec. The emphasis is in this case on the second and the third mode, and their interaction
with all the other modes.( The lower diagonal part of the symmetric bi j is set to zero for display
purposes)
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Fig. 6 Dynamic response at the loaded tip for a harmonic load φ(t) = 60cos(450t) N. The uz
component is shown. (a) : basis formed with all the possible second order modes M = 10, R = 55;
(b) : basis formed with the best 20 second order fields, M = 10, P = 20; (c) : basis formed with
vibration modes only, M = 10, P = 0; (d) : basis formed with several random choices of P = 20
second order modes.

6 Conclusions and Discussion

We presented a simple and effective criterion to select the most significant second
order modal derivatives for the MOR of geometrically nonlinear structural analy-
sis. The criterion is based on the convergence of the vibration modes truncation for
the underlying linearized dynamic problem . Given a certain first order modal ba-
sis which is converged in a linear sense, the selection criterion looks at the spatial
and spectral properties of the eigenspectrum and the applied load. In this way, the
most relevant second order modes can be selected before their actual calculation.
Numerical results confirmed the effectiveness of the proposed approach.

The power of this simple yet effective method lies on the fact that the second or-
der modes enrichment can be seen as higher order expansion of the solution. There-
fore, the convergence properties of the base linearized problem should naturally
provide a guideline also for the higher order expansion.

Yet, the number of second (most significant) order modes required for a given
accuracy is in general not known. Future work will focus on the derivation of an
error bound as function of the selected second order modes as well as the spectral
properties of the linearized system.
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ABSTRACT 

 

The design verification of a newly-developed nuclear fuel assembly requires a long-term endurance test 
under thermo-hydraulic test condition simulating power reactor core. For this verification test, vibration of the 
test fuel assembly inside the simulated test core should be measured under high system temperature (over 
200 °C), high system pressure (over 2.5 MPa) and fast moving coolant flow (over 5 m/s). To measure the 
vibration, we use specially fabricated accelerometers, various sealing techniques and conduit channel design for 
signal cable protection. The effects of the flow rate, coolant temperature, pre-sized support clearance on the test 
fuel vibration response and orbit motion were discussed. The measured data is used for fuel compatibility 
evaluation and a basis for endurance verification, as well as the validation tool for theoretical response 
prediction model. 
 
 
1. Introduction 

Nuclear fuel assembly is a mechanical cluster of fuel rods grouped by the series of intermediate spacer grids. 
Fig. 1 shows a nuclear power plant with a reactor cross-cut and a typical fuel assembly. Fuel assembly absorbs 
the energy from the axial upward coolant flow in the power reactor core and vibrates with relatively small 
amplitude. Even small vibration can lead to fatal mechanical damage on the fuel cladding tube at the support 
point [1]. Not only does the flow-induced vibration of a fuel assembly engaged in complex fluid-structure 
interaction and inter-rod physical coupling through medium, the vibration responses can become more complex 
due to the change of support condition and the flow disturbances by intermediate spacer grids with flow mixer. 
Although the averaged response can be estimated with the aid of stochastic finite element analysis method 
combined with experimental measurement for hydrodynamic forces, results of theoretical prediction which is 
limited to the simple problem have large scatter [2]. Thus, experimental validation for theoretical model is 
essential and functional verification tests are required for each fuel assembly design.  

The design verification of a newly-developed nuclear fuel assembly requires a long-term endurance test 
under thermo-hydraulic test condition simulating power reactor core using a real scale fuel test model. Design 
compatibility to the neighboring fuel assembly and wear resistance capability of cladding tube can be assured by 
measuring a vibration response in transient test flow condition and an accumulated wear of the test rods in long-
term steady-state test flow condition [3]. For this verification test, vibration of the test fuel assembly in the 
simulated test core has to be measured under high system temperature (over 200 °C), high system pressure (over 
2.5 MPa) and fast moving coolant flow (over 5 m/s). The proper selection of the sensors based on the 
measurement requirements, gauge installation, signal cable protection had a key role in a successful data 
measurement for final test purposes.  

The paper deals with the flow-induced vibration measurement of test fuel assemblies in the power reactor 
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simulating test condition and discuss spectral response characteristics and orbit motion of the interconnected test 
rod in an assembly according to the test flow rate, the amount of pre-sized support clearance of the grid support 
and coolant temperature.  

 

 
 

Fig. 1 Nuclear power plant, reactor vessel cross-cut, and nuclear fuel assembly 
 

 
Fig. 2 Hydraulic test facility (PLUTO); Hx:Heat Exchanger, MCP: Main Coolant Pump 

 
2. Test and measurement overview 

The hydraulic test facility consists of a test housing, pressure vessel, pumps, heat exchanger, loop heater and 
expansion tank. Working fluid is de-ionized water with a typical chemistry and purity requirements. Fig. 2 
shows a schematic diagram of the test facility. Four centrifugal pumps circulate the working fluid with vertical 
upward flow while passing through the flow housing. The flow rate is controlled by variable frequency pump 
drives. The heat sources of working fluid are the pump blade's frictional work and complementary loop heater. 
The maximum operating temperature and pressure are 210 °C and 3 MPa, respectively. The maximum system 
flow rate is about 1400 m3/hr. All components within pressure boundary were designed in accordance with 
Section VIII of the ASME Boiler and Pressure Vessel Code and ANSI/ASME Standard B31.1 for power piping. 
The flow housing is mounted inside the test vessel. Two neighboring test fuel assemblies can be placed inside 
the flow housing.  

42



Test fuel assembly consisted of the most non-instrumented dummy rods and some instrumented rods 
embedded with special accelerometer to measure lateral vibration. Instrument rod has a small cylindrical shape, 
high temperature biaxial accelerometer with built-in metal cables. Fig. 3 represents the photo of biaxial 
accelerometer insertion, a schematic drawing of the instrument rod and vibration sensor installation. Pre-
clearance (deformation) from 0.025 mm to 0.25 mm at the rod-support points can simulate the fuel’s and grid's 
degradation from corrosion, irradiation deformation, and thermal relaxation in the power reactor core. The 
measurement locations of the two test assemblies were selected as 8 points along assembly length and across the 
cross-sectional loading pattern based on the reference data to be compared. 

 

 
 

Fig. 3 Instrument rod embedded with accelerometer 
 
Initial preparation to protect signal cable and to reduce cable movement noise by clamping cables to the bar 

frame inside the vessel was failed. Excessive vibration and large strain leads to fatigue-induced and wear-
induced failure of the signal cable as shown in Figure 4(the lower left). Final remedy for this problem was to 
divide flow channel into two separate regions (flow channel and conduit channel) so that the signal cable inside 
shield pipe was located at the inner face of the vessel and do not to meet the main coolant flow. Fig. 4 shows the 
broken signal cable, the initial and final measures to protect signal cables. 

The test will be performed to obtain fuel rod vibration characteristics. The loop setup and operation 
temperature will remain the same for both the transient vibration test and the long-term wear test. The loop was 
operated at a coolant temperature of 193 °C. The loop pressure should be maintained at a value to avoid 
vaporization. Before the test begins, the working fluid should be heated up to test temperature for 12 hours.  

 

 
 

Fig. 4 Intial and final measures for signal cable protection 
 

3. Results and Discussion 
   Figure 5 shows typical frequency response spectrums of a test rod during the upward flow sweep at hot test 
condition. As the system flow rate increases, the average power level is gradually growing due to the increase of 
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flow (turbulence) excitation energy and the frequency bandwidth of dominant response components become 
slowly wider. Frequency separation among dominant response component groups in the low flow rate becomes 
weaker with the increase of flow; this can be interpreted that the test assembly’s and rod's damping increase with 
the flow rate. While detail damping mechanisms and their respective contribution to the response cannot be 
identified from the test results, it can be said that viscous damping between rod and fluid, squeeze film damping 
in the clearance at the support and frictional damping at the rod-support determine the fuel rod damping[4, 5]. 
Periodic response components corresponding to motor-induced frequency and pump blade passing frequency 
appeared with relatively small amplitude.  

Dominant power components in the measured response spectrum can be classified into two distinguished 
groups; components with sharp spike and components with distributed side band. Generally, the flow periodics 
from far and near field excitation sources such as motor rotation, pump blade passing frequency, and their 
harmonics generates clear response peaks, of which frequency varied with flow rate, in the response spectrum. It 
can be said that distributed response comes from fluid coupling and dissipation of the fluid-coupled-system 
damping. Interesting things was that the dominant power components in the response spectrum were 
concentrated on the frequency ranges associated with test assembly's and test rod's modal frequencies. Test fuel 
assemblies act as band pass filter and vibrate near or at their own natural frequencies. This implies that the 
pressure fluctuation, which was known as a primary excitation mechanism of the axial flow-induced vibration, 
in the turbulent boundary layer of the flow channel has relatively uniform excitation power distribution over the 
frequency range of interest.  
 

 
 

Fig. 5 Typical sweep vibration response of a test rod according to the flow rate 
 

Figure 6 represents the normalized vibration displacement of various instrument rods measured at different 
locations according to the flow rate. Normalized displacement was calculated from measured acceleration by 
double integration of optional sampling filter. The vibration of the test rod gradually increases with the flow rate 
and has a location-dependent nature. Averaged time domain responses measured at mid region show relatively 
higher amplitude. Variation of coolant temperature did not make noticeable differences in the measured response 
for the same measurement target while the fluid viscosity experiences considerable changes (decrease) 
according to the coolant temperature.  

Pre-sized support clearance applied to all mid-grids spring support along the target instrument rod had the 
frequency of the dominant power components moved to the lower frequency region in the response spectrum. 
This is because of the reduction of fuel rod's modal frequency due to the decrease of support stiffness from the 
support gap. Figure 7 shows the time-domain orbit locus (for 120 seconds) of test rods according to the different 
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pre-sized support gap at the same operational flow condition. Orbit displacement was transformed from 
measured acceleration by double integration of optional sampling filter. They gave motion traces and range of 
the test rod vibration. The accumulated orbit shape was close to elliptic, but the orbit shape changed with the 
amount of pre-sized support gap and measurement locations of the test rod.  

 
Fig. 6 Vibration amplitude of instrument rod in the test assembly 

 
 

 
Fig. 7 Vibration orbit of the test rod according to the pre-sized support clearance 

 
The reason for an elliptic pattern of the orbital motion must be due to the 1st mode cross sectional modal 

pattern of the test bundle assembly and pre-sized support gap. Most figures leaned toward a certain direction 
except the zero clearance. It can be seen that the orbital motion of the test rod in the assembly will take an 
orientation according to the position of active grid support or pre-sized inactive support with clearance and its 
support direction. If the orbital trace of the fuel rod has a dependency on a specific direction, it might increase 
the possibility of a fuel fretting at a location with a larger sliding distance according to the support configuration 
and the neighboring flow condition.  
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4. Conclusion 
 

As a design verification test, vibration of the test fuel assembly inside the simulated test core was measured 
under high system temperature (over 200 °C), high system pressure (over 2.5 MPa) and fast moving coolant 
flow (over 5 m/s). Specially fabricated accelerometers, various sealing techniques and conduit channel design 
for signal cable protection were used to measure the vibration. The effects of the flow rate, coolant temperature, 
pre-sized support clearance on the test fuel vibration response and orbit motion were discussed.  

As the system flow rate increases, the average vibration level was gradually growing due to the increase of 
flow (turbulence) excitation energy and the frequency bandwidth of dominant response components became 
slowly wider because of the increase of flow-dependant damping. The dominant power components in the 
response spectrum were concentrated on the frequency ranges associated with test assembly's and test rod's 
modal frequencies. Test fuel assemblies acted as band pass filter and vibrated near or at their own natural 
frequencies. Variation of coolant temperature did not make noticeable differences in the measured response for 
the same measurement target. Pre-sized support clearance had the frequency of the dominant power components 
moved to the lower frequency region in the response spectrum. The accumulated vibration orbit had nearly 
elliptic shape; its size increased with the amount of pre-sized support gap and measurement locations of the test 
rod. The measured data is used for fuel compatibility evaluation and a basis for endurance verification, as well 
as the validation tool for theoretical response prediction model. In the future, theoretical model development to 
estimate steady-state fuel response is needed based on the acquired test results.  
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Abstract: 
Continuous-scan laser Doppler vibrometry (CSLDV) is a method whereby one continuously sweeps the 

laser measurement point over a structure while measuring, in contrast to the conventional scanning LDV 
approach where the laser spot remains stationary while the response is collected at each point.  The continuous-
scan approach can greatly accelerate measurements, allowing one to capture spatially detailed mode shapes 
along a scan path in the same amount of time that is typically required to measure the response at a single point.  
The method is especially beneficial when testing large structures, such as wind turbines, whose natural 
frequencies are very low and hence require very long time records.  Several CSLDV methods have been 
presented that employ harmonic excitation or impulse excitation, but no prior work has performed CSLDV with an 
unmeasured, broadband random input.  This work extends CSLDV to that class of input, developing an output-
only CSLDV method (OMA-CSLDV).  This is accomplished by adapting a recently developed algorithm for linear 
time-periodic systems to the CSLDV measurements, which makes use of harmonic power spectra and the 
harmonic transfer function concept developed by Wereley.  The proposed method is validated on a randomly 
excited free-free beam, where one-dimensional mode shapes are captured by scanning the laser along the length 
of the beam.  The natural frequencies and mode shapes are extracted from the harmonic power spectrum of the 
vibrometer signal and show good agreement with the first seven analytically-derived modes of the beam.  The 
method is then applied to identify the shapes of several modes of a 20kW wind turbine using a ground based 
laser and with only a light breeze providing excitation. 

1 Introduction 
Continuous-Scan Laser Doppler Vibrometry (CSLDV) is a novel method of employing a laser vibrometer 

in which the laser spot sweeps over the structure continuously while measuring, capturing the response of the 
structure from a moving measurement point.  Various methods have been devised to determine the mode shapes 
of the structure everywhere along the scan path from as few as one such measurement.  Hence, the method can 
greatly accelerate measurements from structures with low frequency modes, which require long time records at 
each measurement point when the conventional point-by-point scanning method is used.  Indeed, CSLDV may be 
the only viable method for obtaining mode shape measurements from structures that change with time or which 
are subjected to inputs that are difficult to replicate.  One may also obtain measurements with greatly increased 
spatial detail, leading to insights into the dynamics of a structure that may be helpful when performing model 
correlation and updating [1]. 

Although Sriram et al. were the first to publish regarding CSLDV in early 1990’s [2-4], the research group 
at Imperial College in London (Stanbridge, Martarelli, Ewins and Di Maio) had been working with moving sensors 
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some time previously and are responsible for most of the advancements in this area..  Stanbridge, Martarelli and 
Ewins coined the name “CSLDV” and developed a number of algorithms that extract one and two-dimensional 
operating deflection shapes from CSLDV measurements under sinusoidal and impact excitation [5-9].  Other 
notable contributions include the work by Vanlanduit et al. [10], who presented a CSLDV method that uses multi-
sine excitation (periodic broadband excitation).  Allen & Sracic explored the use of higher scan frequencies 
together with impact excitation, presenting the lifting technique that allows conventional modal analysis curve 
fitting methods and tools such as the CMIF to be applied to CSLDV measurements [11-13].  They also presented 
a method for mass-normalizing the mode vectors obtained by CSLDV when the input force has been measured 
[13, 14].  All of the existing CSLDV methods are valid only for the case where the input is either zero (free 
response) or else it follows a specific form and is carefully controlled.  In practice one cannot always apply an 
input of one of these forms to a structure, but unmeasured random input forces may be present.  For example, 
wind turbines are difficult to adequately excite due to their large size and mass, yet each day the wind provides a 
convenient, broadband source of ambient excitation. 

This work extends CSLDV to Output-only Modal Analysis (OMA), identifying modes from responses under 
an unmeasured, broadband random input.  Since the mode shapes of a linear system are functions of position, 
the CSLDV measurement appears to be from a time-periodic system when the laser spot moves in a periodic, 
closed scan path.  A few system identification strategies have been proposed for linear time-periodic systems, as 
discussed in [11].  This work utilizes a method recently presented by Allen et al. in [15, 16] that is based on the 
spectra of the output of a linear time periodic system when it is excited by a broadband random input.  The 
method utilizes the harmonic transfer function concept by Wereley and Hall, which is an extension to the concept 
of a frequency response function (FRF) to linear time-periodic systems [17-19].  This method can be thought of as 
an extension of Output-only Modal Analysis [20-25] or the Natural Excitation Technique (NExT) [26] to time-
periodic systems.   

The rest of this paper is organized as follows.  Section 2 reviews the proposed output-only identification 
technique with particular emphasis on how to interpret the response spectra of an LTP system.  In Section 3 the 
proposed technique is demonstrated by identifying the mode shapes of a free-free beam under random excitation, 
and the performance of the method and effect of the chosen scan frequency are discussed.  The method is then 
applied to a CSLDV measurement of a wind turbine blade in Section 4, and Section 5 summarizes the 
conclusions. 

2 Theoretical Basis 
 A Linear Time Invariant (LTI) structure can be modeled with the following well known equation of motion, 

 ( )My Cy Ky F t+ + =  (1) 

which can be written in an equivalent state space form as follows with 
TT T,x y y⎡ ⎤= ⎣ ⎦  

 
x Ax Bu
y Cx Du
= +
= +

 (2) 

When a laser vibrometer is used so that the velocity is measured, D = 0.   One can diagonalize the modal 
equations for the system using x Pq=  where,  

 P
Ψ⎡ ⎤

= ⎢ ⎥ΨΛ⎣ ⎦
 (3) 

with Ψ  a matrix of the complex modes of the system [ ]1 Nψ ψΨ =  and Λ  a diagonal matrix containing 

the eigenvalues of the system ( )1=diag Nλ λΛ , with 21r r r r rjλ ζ ω ω ζ= − + −
 

in terms of the rth 

natural frequency rω and damping ratio rζ  of the system.  The equations of motion become 

 
1q q P Bu

y CPq

−= Λ +
=

 (4) 
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The output matrix C can be taken to be a matrix with all zeros and a one at the location of the nodal point that the 
laser is measuring.   If the kth measurement point is being measured, then CP  is a 1xN matrix 

[ ]1k kNCP ψ ψ= Λ .  On the other hand, when the continuous-scan approach is employed with a periodic 

scan pattern, the laser position changes periodically with time so CP  becomes a periodic 1xN matrix of mode 
shapes that seem to change with time since the measurement point is moving.  This can be written as 

[ ]1( ) ( ) ( )NC t P t tψ ψ= Λ  with the condition that ( ) ( )r A rt T tψ ψ+ = , and where it is understood that the 

mode shapes are written as time periodic functions only because the measurement point is changing with time. 
Hence, a system under CSLDV measurement can be modeled with a set of linear time periodic (LTP) equations 
of motion.  The CSLDV system has A, B and D constant and C time varying.  In the most general case, the 
response of a linear time periodic system can be written as follows in terms of its state transition matrix. 

 ( )
0

0 0( ) ( ) ( , ) ( ) ( ) ( , ) ) ( ) ( )
t

t

y t C t t t x t C t t B u d D t u tτ τ τ τ= Φ + Φ ( +∫  (5) 

Since the state matrix A is constant and considering the modal form of the equations of motion in Eq. (4), the state 
transition matrix is simply. 

 0( )
0( , ) t tt t eΛ −Φ =  (6) 

This reveals that the eigenvalues of the structure measured using CSLDV are equal to the Floquet exponents of 
the LTP model.  Hence, both the mode shapes and natural frequencies of the structure can be determined once 
the Floquet Exponents and time periodic mode shapes of the LTP system have been identified. 

Werely [17] used Eq. (5) to extend the concept of a transfer function to linear time periodic systems.  He 
derived the concept of a harmonic transfer function (HTF) that relates the input and output of a time-periodic 
system in a transfer function type manner.  The primary difference is that, whereas a transfer function relates the 
output at a single frequency to the input at the same frequency, the HTF relates the input at a collection of 
frequencies to the output at that same comb of frequencies.   Specifically, consider the Fourier transform of the 
response y(t) shifted by nωA, 

 ( )( ) ( ) Aj jn t
ny y t e dtω ωω

∞
− −

−∞

= ∫  (7) 

An EMP signal, denoted with bold uppercase in the following, is the collection of frequency shifted copies of the 
response.  In the case of CSLDV measurements, there is only one measurement point so y(t) is a scalar.  Hence, 
the EMP representation is, 

 [ ]T1 0 1( ) y y yω −=Y   (8) 

The autospectrum of the EMP signal is found in the usual way, 

 ( )( ) E ( ) ( )H
yyS ω ω ω= Y Y  (9) 

where E() denotes the expectation and ()H denotes the Hermitian.  Allen et al. showed in [15, 16] that the output 
autospectrum can be written as follows in terms of the modes of the state transition matrix, 
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∞
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⎡ ⎤ ≈⎣ ⎦ − − − −
∑∑

C W C
 (10) 

This has the same mathematical form as the output autospectrum of a multi-output linear time invariant system.  
Each denominator is multiplied by its complex conjugate, so the response is a sum of modal contributions 
squared.  As with an LTI system, each numerator contains ,( )r lωW , which can be shown to be the autospectrum 

of the net force exciting the rth mode. 

49



 

 

There are also two notable differences between Eq. (10) and the equivalent expression for an LTI system.  
First, the expression contains a summation over both the modes, whose eigenvalues are λr, and also a 
summation over the harmonics of ωA using the integer index l.  Hence, the autospectrum of the LTP system will 
have peaks near each natural frequency, ωr, and also at the frequencies ωr ± lωA for any integer l.  Second, the 
mode vectors ,r lC  are not the usual collections of the mode shape at different points, but have a different 

definition.  As discussed in [15, 16], the mode vectors ,r lC  are a collection of the Fourier coefficients of the rth 

observed mode vector ( ) rC t ψ  shifted by l.  Specifically, ( ) rC t ψ  is expanded in a Fourier series as follows 

 ,( ) Ajn t
r r n

n
C t C e ωψ

∞

=−∞

= ∑  (11) 

and then the Fourier coefficients are collected into ,r lC  after shifting by l. 

 , , 1 , ,1

T
r l r l r l r lC C C− − − −⎡ ⎤= ⎣ ⎦C  (12) 

Here we shall refer to the autospectrum of the EMP signal as the harmonic power spectral density or 
HPSD.  Since the HPSD has the same form as the PSD of a linear system, OMA techniques for LTI system scan 
be used to identify the modes of the system.  However, one will obtain multiple estimates for each mode since 
each mode is present at a comb of frequencies ωr ± lωA.  This can be addressed in a post processing step, but 
care must be taken since the mode vectors identified at each harmonic will not generally be of equal quality.  
Some of them will be strong and stand out above the noise while others might be weaker or contaminated by 
neighboring modes. A weighted average method can be employed to decrease the effect of the less reliable 

estimates. In addition, each of the estimates of ,r lC  can differ by a complex scale factor, so their phases should 
be aligned before averaging.  

Theoretically, one must consider an infinite number of harmonics to characterize an LTP system, yet one 
would expect that most systems can be well approximated with a finite, perhaps even small number.  When a 
range of harmonics, ...n p p= − , are used to describe the CSLDV output signal in eq. (7) and (8), the resulting 
auto spectrum matrix Syy(ω) has the dimension of [Np × Np ×Nf], where Np=2*p+1 and Nf is the number of 
frequency lines.  One is free to use any of the rows (or columns) in the power spectrum matrix to identify the [Np 

×1] vector ,r lC .  In this work, only the power spectra along the primary column ( ),0 0( ) E ( ) ( )H
yy nS yω ω ω= Y , 

are used.  Once a vector ,r lC  is found, one can reconstruct the time periodic mode shape of the system 

according to eq. (11) and then plot it against the laser path to generate the mode shape of the LTI system. 

3 Experimental Validation 

3.1 Experimental Setup 

 
Figure 1: Schematic of test setup 
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In order to validate the new OMA-CSLDV methodology, CSLDV was used to measure the modes of a 
free-free aluminum beam, as shown schematically in Figure 1 .  The beam was suspended by soft bungee cables 
so the laser scan path would remain on the beam as it was excited. The supports were made as soft as possible 
and placed at the nodes of the first analytical bending mode to minimize the effect of the support stiffness on the 
beam’s modes.  A 5.2g accelerometer (PCB J351B11) was attached at the left end of the beam (x = 6.3mm), the 
same configuration as in [13], so that the identified modes can be compared to the analytical model used in that 
previous work.  The signal from the accelerometer was not used in any of the following.  

Continuous-Scan Laser Doppler Vibrometry was employed to measure the beam’s transient response 
using a Polytec® PSV-400 scanning laser vibrometer with the customized mirror system described in [27].  To 
improve the laser signal strength and reduce noise, the front surface of the beam was covered with light weight 
retro-reflective tape (3M ScotchliteTM High Gain Reflective Sheeting 7610).  The mirror system was used to scan 
the laser along the length of the beam sinusoidally at 1.5Hz and 3Hz. The mirror driving voltage was manually 
adjusted until the laser traversed all but 19mm from the ends of beam; this ensured that the laser remained on the 
beam throughout the tests.  The beam was excited at random times and at random locations for 10mins with an 
instrumented hammer (PCB 086C01), although the force signal from the hammer was not measured. A sampling 
frequency of 2560Hz was selected to record the vibrometer signal, mirror driving signal and mirror output signal 
using a National Instruments PXI data acquisition system. To further reduce the noise, the vibrometer signal was 
filtered with a low-pass filter and down sampled to 1280Hz before processing the measurements. This sampling 
frequency appeared to be sufficient to capture all of the frequency content that stood out above the noise floor.  

3.2 Validation 
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Figure 2: CSLDV output signal under random excitation (1.5Hz scan frequency)  

Figure 2 shows the 10 minute long CSLDV output signal that was acquired at a scan frequency of 1.5Hz.  
The vibration signal appears to be random, although it drops to -3 m/s periodically during the measurement (the 
same phenomenon was noted when a 3Hz scan frequency).  This phenomenon seems to have been caused by 
the VD-03 velocity decoder used in the Polytec system, although its cause is not well understood.  Measurements 
with the VD-08 decoder did not show this feature, but the largest range setting for that decoder was inadequate 
for this system.  The output signal including these dropouts was used in the following analysis without any special 
treatment and fortunately, reasonable results were still obtained in spite of that contamination.   

To form the EMP output signal Y(ω) in eq. (8), the CSLDV output signal was exponentially modulated with 
harmonics n=-5…5 according to eq. (7). The number of harmonics required to accurately describe each mode 
shape was not known, but when low scan frequencies such as these are used, choosing a large number of 
harmonics may cause the harmonics from neighboring modes to overlap so that the mode shape cannot be 
accurately determined. Hence, one must choose the scan frequency carefully to avoid this difficulty.  The authors 
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have typically chosen the scan frequency to be large relative to the natural frequencies of interest in order to 
simplify matters [12, 28], although in this work smaller scan frequencies are explored since they make the spectra 
easier to interpret and reduce laser speckle noise [29, 30].  Other researchers, such as Stanbridge et al. typically 
use relatively small scan frequencies in their work, see [5-8] for examples.  

 The modulated CSLDV output signal was then decomposed into to 20 s long blocks to calculate Syy(ω).  
A Hanning window was applied to each of the blocks with 75% overlap, resulting in 104 blocks for each 
modulated output signal. The auto and power spectra of the modulated output signal are then calculated on each 
block and averaged over all 104 blocks, resulting in a [11×11×16385] harmonic power spectrum matrix.  Recall 
that a single CSLDV signal was measured, but it was expanded into 11 signals so the Power Spectral Density 
(PSD) for this system is an 11 by 11 matrix at each frequency. 

 
 

 
Figure 3: Harmonic PSD of CSLDV measurement at 1.5Hz scan frequency.  The pane on the left shows an 

expanded view of the measurement near 16 Hz.  

Figure 3 shows the power spectrum along the primary row of Syy(ω).  The eleven curves shown 
correspond to each of the n,kth elements of Syy for n = 0 and k = -5…5.  The spectra show clusters of strong 
harmonics around each of the natural frequencies.  The view on the left focuses on the 1st mode, whose natural 
frequency is 16.34Hz. Besides the peak at 16.34Hz, the 1st mode is also responsible for the harmonics in the 
spectrum at 13.34Hz, 14.85Hz, 17.85Hz, 19.34Hz, etc, all separated by multiples of 1.5Hz, which is the 
fundamental frequency ωA/(2π).  The peak picking method can be used to identify the Fourier coefficients ,r lC  

from the power spectra in Figure 3, and this approach was found to provide good accuracy in most cases.  
However, better results were obtained by fitting the measurements to single DOF modes using the Algorithm of 
Mode Isolation (AMI) [31].  This algorithm was modified from the version in [31] to fit squared modes to the power 
spectrum near each mode.  The AMI algorithm identified the natural frequencies, damping ratios and mode 
shapes ,r lC  

of the mode manifest at each of the peaks in the spectrum.  
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Figure 4: AMI fit of the 1st mode using a 1.5Hz scanning frequency 

Figure 4 shows an AMI fit to several of the peaks arising from the 1st mode, again for the 1.5Hz scanning 
frequency. The gray solid line indicates the composite FRF, which is the average of the 11 FRFs in 3, and the 
green dash-dot line is the AMI fit curve.  The 5 dominant harmonics of this mode are well approximated by the 
reconstructed spectrum.  A third curve shows the composite of the difference between the measurement and the 
reconstruction, revealing that the fit is superior at the three dominant peaks.  The response stands out above the 
noise (due to imperfection in the LDV and to the non-flatness of the input spectrum) by about one order of 
magnitude.  Table 1 shows the normalized Fourier coefficient vectors identified from the 5 harmonics shown in 
Figure 4.  Each of the identified coefficient vectors should contain the same Fourier coefficients ,r nC , but those 

coefficients are shifted by l in each of the identified vectors ,r lC  and each of those vectors may have a different 

complex scale factor.  The scale differences are addressed by normalizing the vector by dividing by the largest 
value and then rotating the vector to the same phase so that they can be averaged.  To minimize the noise, the 
largest value in each identified Fourier coefficient vector ,r lC  is used as the weight during the averaging.  Some 

higher order Fourier coefficients have large discrepancy because of the noise (see 1,5C  1,6C  and 1,7C in Table 1), 

but those terms are from weakly represented peaks in the spectrum and so they become much smaller applying 
the weighted average.  

Table 1 Shifted Fourier coefficient vectors of the 1st mode under 1.5Hz scanning frequency 

 
 Averaged Harmonics of 1st mode 

Frequency 16.3391 13.3372 14.8429 16.3349 17.8412 19.3392 

Weight 1 0.3629 0.0275 0.159 0.0296 0.3536 

r/l 1,0C  1,2C  1,1C  1,0C  1, 1−C  1, 2−C  

1, 7C −
 -0.0058 - 0.0013i 0.0080 - 0.0004i 0 0 0 0 

1, 6C −
 -0.0259 + 0.0087i -0.0083 + 0.0055i -0.0490 - 0.0095i 0 0 0 

1, 5C −
 -0.0030 + 0.0121i 0.0104 - 0.0119i -0.0000 - 0.0027i 0.0104 - 0.0061i 0 0 
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1, 4C −
 -0.0779 + 0.0123i 0.0536 - 0.0032i 0.0301 + 0.0034i 0.0664 - 0.0029i 0.0163 - 0.0639i 0 

1, 3C −
 0.0049 - 0.0050i -0.0055 + 0.0087i 0.1186 + 0.0559i -0.0011 + 0.0067i -0.0043 + 0.0200i -0.0065 + 0.0134i 

1, 2C −
 1 -0.9946 - 0.1034i -0.9358 - 0.0859i -0.9943 - 0.1063i -0.9944 - 0.1059i -0.9945 - 0.1051i 

1, 1C −
 -0.0729 - 0.0034i 0.0689 + 0.0082i 0.1461 + 0.0457i 0.0709 + 0.0069i 0.0421 - 0.0036i 0.0759 + 0.0083i 

1,0C  0.4464 + 0.0771i -0.4211 - 0.1139i -0.4045 - 0.1223i -0.4267 - 0.1196i -0.3882 - 0.1069i -0.4232 - 0.1175i 

1,1C  -0.0769 - 0.0185i 0.0735 + 0.0217i 0.1239 + 0.0214i 0.0723 + 0.0228i 0.1089 + 0.0242i 0.0727 + 0.0196i 

1,2C  0.9354 + 0.3048i -0.8994 - 0.3967i -0.9121 - 0.4099i -0.9077 - 0.3987i -0.8801 - 0.3941i -0.9120 - 0.4074i 

1,3C  0.0114 + 0.0180i -0.0058 - 0.0178i -0.0707 - 0.0498i -0.0107 - 0.0149i -0.0337 - 0.0465i -0.0082 - 0.0174i 

1,4C  -0.0346 - 0.0188i 0 -0.0186 + 0.0253i 0.0533 + 0.0378i 0.0645 + 0.0436i 0.0519 + 0.0333i 

1,5C  -0.0038 - 0.0009i 0 0 0.0074 + 0.0037i 0.0054 - 0.0027i 0.0040 + 0.0023i 

1,6C  0.0006 + 0.0016i 0 0 0 -0.0248 + 0.0059i 0.0000 - 0.0073i 

1,7C  -0.0009 - 0.0001i 0 0 0 0 0.0023 - 0.0019i 

 
The mode shapes reconstructed from these Fourier coefficient vectors are plotted in Figure 5, as well as 

the averaged mode shape from the weighted average of all of the Fourier coefficients.  It can be seen that the 
mode shapes from the -1 and 1 harmonics have some discrepancy from the ones from the -2, 0 and 2 harmonics.  
This is to be expected since the -1 and 1 harmonics have about 10 times smaller amplitude in Figure 4, so they 
are much more strongly influenced by noise.  Any of the other harmonics gives a reasonable estimate of this 
mode’s shape. 
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Figure 5:  Mode shapes reconstructed from each of the five groups of harmonics in Table 1.  The solid black 

line shows the mode shape computed from the weighted average of the harmonics. 

All of the other modes were identified in a similar manner.  Table 2 shows the natural frequencies of each 
of the modes that were identified from the harmonic spectra in Figure 6.  The 1.5Hz scan frequency was used for 
the first two modes, while the rest were extracted from the measurements with the 3Hz scan frequency.  With the 
higher modes it was possible to compute the harmonic autospectrum for n=-8:8 , so that was used for modes 3 
through 7.  The value in the column labeled “OMA” is the average of the natural frequency estimated at each of 
the harmonics, after shifting each by an integer multiple of ωA.  The standard deviation of the natural frequency 
estimates is also shown, which is very small in all cases, revealing that each of the harmonics gives a very similar 
estimate of the natural frequency.  The values in the column “Analytical” are the natural frequencies of a tuned 
analytical model, which is an Euler-Bernoulli beam model that was tuned to account for the mass of the 
accelerometer as described in [13].  All of the OMA identified natural frequencies agree well with the analytical 
values, the largest difference is a few Hz for the higher modes, but the analytical model was found to be 
somewhat inaccurate for these modes so the OMA result is still within the margin of error for the analytical model.   
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Table 2  Comparison of analytical and experimental modes 

No. Analytical 
Freq (Hz) 

OMA 
Freq. (Hz) Std n Scan 

Frequency MAC 

1 16.38 16.34 0.01 -5:5 1.5 1.00 
2 45.35 45.15 0.03 -5:5 1.5 0.98 
3 89.23 88.73 0.10 -8:8 3 0.95 
4 147.99 146.99 0.02 -8:8 3 0.98 
5 221.71 221.07 0.01 -8:8 3 0.95 
6 310.49 309.53 0.01 -8:8 3 0.92 
7 414.37 411.57 0.10 -8:8 3 0.92 

 
Figure 6 shows the mode shapes of each of the identified modes, as well as the shapes from the tuned 

analytical model from [13].  The mode shapes agree very well with the analytical model, except for the 3rd and 7th 
modes which show significant discrepancies.  The 3rd mode was heavily damped and the harmonics overlapped 
with each other even when using a 3Hz scanning frequency, so it was difficult to identify.  The 7th mode was 
weakly excited since the hammer force had rolled off significantly near its natural frequency, so it did not stand out 
sufficiently above the noise.  This mode was also difficult to identify using the authors original CSLDV approach, 
as described in [12]. The MAC values between the analytical mode shapes and the CSLDV mode shapes are 
listed in Table 2; the worst MAC values occur for the 6th and 7th modes, but those values are still above 0.92. 
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Figure 6  Mode shapes identified by CSLDV at 1.5Hz and 3Hz scanning frequencies.  

Solid black lines denote the analytical shapes; dots show the shapes from OMA 
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3.3 Effect of Scan Frequency  

mentioned previously, low scan frequencies were chosen in this work so that the harmonics of each mode would 
occur in a cluster, as illustrated in Figure 3. However, this may lead to difficulty if many harmonics are needed to 
describe a mode, since the harmonics from one mode may overlap with those from the neighboring modes, 
especially when the modes are close to each other.  In addition, if one mode is heavily damped, the scanning 
frequency must be large to distinguish the harmonics belonging to this mode. Figure 7 demonstrates this issue by 
comparing the spectrum near the heavily damped 3rd mode for 1.5Hz and 3Hz scanning frequencies. The 
harmonics of this mode overlap significantly when a 1.5Hz scanning frequency was used.  Though one can still 
identify the natural frequency and mode shape from the strongest harmonics, the mode shape is somewhat 
contaminated by the other nearby harmonics.  A better estimate of the mode shape is obtained with a 3Hz 
scanning frequency.  Its harmonics are better separated so the Fourier coefficients estimated from each peak are 
not as strongly affected by the neighboring peaks. 
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Figure 7:  Composites of the harmonic PSD near the 3rd mode with 1.5Hz (left) and 3Hz (right) scanning 

frequencies. 

The most straight forward approach for selecting the scan frequency is to choose one that is higher than 
the highest mode that is excited.  This assures that all of the harmonics in eq. (10) occur at distinct frequencies.  
Unfortunately, this may result in excessive noise with current lasers and for some systems the scan frequency 
needed may even exceed the capabilities of the mirror system.  On the other hand, CSLDV is most advantageous 
for systems that have low natural frequencies and hence require long time records, so limitations of the laser and 
mirror system may not be a significant concern.  A high scan frequency produces a spectrum that is a little more 
complicated than those shown above, since each of the mode peaks may be present in each frequency band for 
which nωA< ω < (n+1)ωA.  This makes the spectra more difficult to interpret visually.  In previous works the authors 
circumvented this difficulty by lifting the measurements, which effectively aliases the CSLDV signal producing a 
collection of signals that are limited to 0 < ω < ωA/2  [12].  An analog of this method has not yet been developed for 
autospectra, so in this work we have worked with the spectra directly. 

As these results illustrate, one must take some care to choose an acceptable scan frequency.  As 
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Figure 8:  Harmonic PSD of CSLDV measurement at 56 Hz scan frequency 

 Figure 8 gives an example of the measurement under 56Hz scanning frequency, where the black stars 
indicate the harmonics of the first mode (fn = 16.34Hz).  The harmonics of this mode no longer appear in a cluster 
as in Figure 3 but throughout the band for 16.34Hz ± n56Hz.  Some of the harmonics for negative n fold about 
zero frequency occurring at positive frequencies |16.34Hz - n56Hz |, complicating matters further.  Nevertheless, 
the same identification procedure can still be applied as long as the harmonics of each mode can be located.  
When reconstructing the mode shapes, one should note that the folded harmonics actually correspond to positive 
harmonics of the complex conjugate eigenvalue, so the identified vectors ,r lC  will be complex conjugates and 

have the Fourier coefficients in opposite order of those identified from the positive harmonics.  
Figure 9 shows the mode shapes that were identified from the power spectrum in Figure 8. The peak 

picking method was used to obtain the Fourier coefficient vector at each harmonic instead of AMI in this case. 
The reconstructed mode shapes still show great agreement with the analytical ones.  However, the grid on which 
the mode shapes is plotted is coarser to reflect the fact that the 2560 Hz sampling rate only produces 46 samples 
per period at a 56Hz scan frequency measurement.  A higher scan frequency could have been used to obtain a 
finer measurement grid, or if one is certain that all of the important Fourier Coefficients have been obtained then 
one could reconstruct the mode shapes with any desired spatial resolution [6]. 
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Figure 9:  Mode shapes identified by CSLDV at 56Hz scanning frequency.  Solid black lines denote the 

analytical shapes; dots show the shapes identified by OMA-CSLDV. 
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4  Application to Wind Turbine Blade 

 
Figure 10:  Photograph from CSLDV test of a wind turbine blade with a graphic illustrating the scan pattern. 

The proposed method was applied to identify the natural frequencies and mode shapes of a wind turbine 
blade as depicted in Figure 10.  The blade is one of three that comprise the turbine rotor.  For all of the tests 
described here, the turbine rotor was locked by applying the brake and the blade of interest was pitched so that 
the laser was nominally perpendicular to the chord of the blade (i.e. measuring in the flapwise direction).  The 
laser scanned over as much as possible of the 4.3m long blade.  For the results shown here the laser was 66m 
from the base of the tower and the tower heights is 30m, so the total distance from the laser head to the blade is 
approximately 72.5m. The same retro-reflective tape was applied on the blade to increase the signal strength.  
This tape was necessary to obtain any signal at all from the vibrometer, and the increased reflectivity made the 
laser spot easy to locate when it was on the tape.  The blade was excided purely by the wind, whose maximum 
speed was measured to be 3.5-3.75m/s at the conclusion of testing, by a sensor mounted on the tower and which 
can be seen in the figure about two-blade lengths down from the top of the tower. 

Before acquiring CSLDV measurements, the laser spot was fixed near the tip of the blade and the power 
spectrum was estimated using the LDV software to compute the PSD over about a 10 minute period.  The power 
spectrum is shown in Figure 11.  At least seven peaks are seen in the spectrum, each of which is presumed to 
correspond to a natural frequency of the system.  The frequencies of each of these peaks are listed in Table 3.  
Beyond about 25 Hz the wind apparently does not excite the system significantly as the measurement seems to 
reduce to noise above that frequency.  One should note that the seven modes seen in Figure 11 are not expected 
to be seven bending modes of a simple beam.  The turbine is comprised of three nominally identical blades so 
each blade bending mode occurs three times, at two or three distinct frequencies depending on the stiffness 
properties of the tower and nacelle.  
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Figure 11:  PSD of LDV output signal with the laser measuring at a fixed point near the tip of the blade 

The LDV was then set to continuously scan the blade for 10min at a time at several different scan 
frequencies ranging from 0.8Hz to 9.3Hz.  Both low and relatively high frequencies were investigated. The 
sampling frequency for these tests was 2560Hz, which was sufficient to capture the highest mode excited by the 
wind even at the 9.3 Hz scanning frequency.  
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Figure 12:  Composite of harmonic PSD of the CSLDV measurement with 1.6Hz scanning frequency 

Figure 12 shows the power spectra of the modulated CSDLV output signal using a 1.6Hz scanning 
frequency. The harmonics n=-3…3 were used to create the harmonic PSD.  As was also the case in the signal 
from the fixed test, the spectra seems to reduce to noise above about 25 Hz.   The harmonics of several modes 
are visible in the spectrum, but it is difficult to determine which harmonics go with each natural frequency since 
they are all so closely spaced.  Therefore, the point measurement in Figure 11 was used to determine which 
frequencies to search for each of the system’s modes.  The natural frequencies thus identified in the harmonic 
spectra are listed in Table 3, along with the seven frequencies identified from the tip spectrum in Figure 11.  Also 
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listed are the first 2 bending modes obtained by a conventional hammer-accelerometer test on a similar blade 
when it was mounted in a stiff fixture on the ground. 

The mode shapes constructed from the harmonic power spectra are shown in Figure 13, found by 
computing the weighted average of the Fourier coefficients identified by the peak picking method at each of the 
significant harmonics.  The mode shapes reveal that the mode at 0.81Hz is predominantly a tower bending mode, 
where the tower bends and the blade moves as a rigid body. As reported in the table, the first bending mode of a 
single blade in a stiff fixture was 3.36Hz, which is close to the frequency of the next three modes identified by 
OMA at 3.13, 3.36 and 3.62Hz.  Each of these modes shows the blade bending with the familiar shape 
reminiscent of the first mode of a cantilever beam.  However, the mode shape of the 3.62Hz mode seems to show 
some displacement at the root of the blade.  This would seem reasonable since the symmetric flapwise mode of a 
horizontal axis wind turbine such as this tends to occur at higher frequency than the yaw and tilt flapwise modes 
(see, e.g. [32, 33]).  The mode seen at 4.38Hz in the tip measurement was not identifiable in the harmonic 
autospectrum, so its mode shape could not be determined.  The first edgewise mode of this blade occurred at 
5.24 Hz when the blade was mounted in the stiff fixture, so this peak in the tip spectrum may come about due to 
edgewise motion of the blade and the fact that the blade twists from root to tip.   A 9.13Hz mode is also seen in 
the fixed point LDV test and not in the CSLDV test.  It may have been buried in the harmonics of the other modes 
or may simply be poorly excited in the CSLDV test. The last three modes that are identified have shapes that 
agree very well with the second bending mode of a cantilevered beam, and their frequencies at 10.63Hz, 10.86Hz 
and 11.29Hz are similar to that of the blade in the fixture.  All of these results were obtained from the CSLDV 
measurements at the 1.6 Hz scan frequency.  Similar results were obtained at some of the other scan frequencies. 

Table 3:  Natural frequencies of wind turbine blade 

Mode Conventional test 
in stiff fixture 

Fixed point OMA 
on tower 

CSLDV OMA 
on tower 

- - 0.81Hz 0.78Hz 

Flap Wise 
Bending 1 3.36Hz 

3.13Hz 
3.37Hz 
3.63Hz 

3.13Hz 
3.36Hz 
3.62Hz 

Edge Wise 
Bending 1 5.24Hz 4.38Hz - 

- - 9.13Hz - 

Flap Wise 
Bending 2 11.40Hz 

10.63Hz 
10.94Hz 
11.25Hz 

10.62Hz 
10.86Hz 
11.29Hz 
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Figure 13:  Mode shapes of wind turbine blade identified by CSLDV at 1.6Hz scanning frequency 

5 Conclusions 
This paper has extended Continuous Scanning Laser Doppler Vibrometry to output only measurements 

(OMA-CSLDV) by capitalizing on a recently developed system identification methodology for linear time-periodic 
systems.  As with conventional OMA, the method assumes that the forces exciting the system are random, white 
and that they sufficiently excite all of the modes of interest.  The theoretical development reveals that when 
CSLDV is used, each mode appears at several peaks in the power spectrum.  The measured CSLDV signal is 
exponentially modulated to create what is called a harmonic power spectrum, and then a standard OMA algorithm 
such as peak-picking can be used to identify the modes of the system.  Each identified mode is comprised of a 
set of Fourier coefficients that describe the variation of the mode shape as a function of time as the laser scans 
periodically.  In this work, the harmonic power spectra were processed both by peak-picking and by curve fitting 
using a least squares algorithm (the Algorithm of Mode Isolation).  Both methods gave good results for the 
systems studied here. 

The new OMA-CSLDV methodology was first validated on a free-free beam in a laboratory setting.  OMA-
CSLDV was found to give results that were very similar to those obtained by the authors’ hammer excited CSLDV 
method, identifying spatially detailed mode shapes of the first seven modes of the beam from one time record.  
Various scan frequencies were investigated and the associated issues were discussed.  The output spectra 
shown here seemed to be considerably noisier than the spectra of the free-response that was processed in the 
previous work [13], but the same has been observed when comparing conventional OMA with EMA methods 
where the input forces are measured and controlled. 

The methodology presented here was further studied by using it to measure the modes of a parked wind 
turbine.  The vibrometer was used to measure the spectrum of the response at the tip of the blade (conventional 
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fixed-point OMA) and CSLDV measurements were also acquired along the length of one blade to identify the 
mode shapes of the turbine on that blade.  Qualitatively reasonable results were obtained for seven modes of the 
turbine, which were found to correspond to a tower bending mode and the first two bending modes of the blades.  
It would have been preferable to have also measured the modes of the turbine by some other means so that the 
shapes obtained in that test could be validated, but that was not possible, so here they were only evaluated 
qualitatively. 

It is informative to consider the effort and expense that would have been required to estimate the mode 
shapes of the turbine using conventional methods.  In order to perform an OMA test using accelerometers, one 
would have to install sensors along the length of the blade and then run cables to a central data acquisition 
system (more than 30 meters if that was located on the ground).  The sensors and cabling would mass load the 
blade to some extent, and all of the instrumentation would have to be removed after the test was complete.  If 
conventional LDV were used to obtain the mode shapes, one would need at least one additional laser to serve as 
a reference.  The other laser could then be roved to obtain the power spectrum at various points along the length 
of the blade.  The laser must observe each point for at least 10 minutes to obtain a reasonable power spectrum, 
so a long test would be required to obtain even a few point measurements using that approach.  Furthermore, the 
point measurements could be contaminated if the wind conditions and hence the excitation changed significantly 
as the test progressed from one point to the next.  In contrast, the OMA-CSLDV method acquired reasonable 
mode shapes for several modes of the turbine from only two 10-minute time records (one fixed-point 
measurement at the tip and one 1.6 Hz CSLDV measurement). 
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ABSTRACT 
 

 

The vibrational behavior of a lightweight compliant structure with low damping is 

strongly influenced by contact with parts of the human body. In this work, a close look 

is taken at the influence of the hand-arm system in the context of cycling sports. Force 

transmitted to the hand, along with hand-arm vibration, generates discomfort and 

sometimes results in injury. Designing structural changes in a given road bike 

component with the goal of reducing discomfort requires a clear understanding, in this 

case, of the interaction mechanisms between the hand-arm system and the handlebar 

(the coupled structure). 

This paper describes an experimental investigation of this type of interaction between 

the hands and a handlebar using an FRF Based Substructuring method (FBS) to 

calculate the resulting dynamic behavior of the coupled structure. The equations 

supporting the FBS method for this particular application are presented. The compliant 

structure and the hand-arm system are individually characterized by mechanical 

mobility Frequency Response Functions (FRF) in the frequency range of 20-400 Hz. 

Hand mobility is obtained by using the FBS method in a reverse manner. The 

influence of the hands and the upper body position on hand-arm mechanical mobility 

is considered. The merits and limitations of using FBS are discussed. 
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INTRODUCTION 
 
 
In a recent trend, the cycling sports market has witnessed the emergence of rider 

comfort as the most desirable characteristic in a bike along with performance. Rider 

comfort is a subjective human experience, and although traditional evaluations have 

been carried out by expert panels, most notably in the automotive industry, no similar 

studies have been done in the cycling field. As a consequence, objective evaluation 

indicators and universal design guidelines have not yet been developed. Quantification 

of human sensitivity in evaluating rider comfort using measured physical values thus 

emerges as an interesting avenue for research [1]. Recent evaluation methods focusing 

on vibration sensitivity characteristics and human vibration characteristics have 

attracted intense scrutiny. For future developments and designs, there is a need to 

establish a clear understanding of the dynamic involved, and a method to evaluate 

rider comfort that focuses on the improvement of specific bike components. 

 

In the context of functioning as a system in tandem with the human body, the dynamic 

behavior of a lightweight structure changes radically from its original uncoupled 

condition. The dynamic behavior of the human body has to be taken into account in 

order to evaluate how the system is modified and to evaluate the response in terms of 

transmitted force or measured velocity at the interface points. Furthermore, vibrations 

transmitted to the human body through the structure generate discomfort, can also 

reduce performance or even cause injury.   

  

The purpose of this study is to establish the basic mechanical knowledge of the 

coupling between a structure and a unit or dynamic system of the human body. Rider 

comfort would thus take into account human sensitivity as well as the dynamic 

behavior of an entire system composed of various units. 

 

In this work, the FBS technique (Frequency Response Function Based Substructuring) 

is used in an investigational manner to couple a structure assembled from both 

mechanical components and human body parts. This technique was chosen because it 

enables us to couple various components from an overall structure using their 

individual dynamic behaviors. It also allows us to classify these elements in terms of 

vibration isolation capacity. An original element in this paper is that this technique has 

been used with the human hand-arm system, which is known to be nonlinear. 

Moreover, this method can be used when only mobility data at the connecting points 

are known, which is the case with the human body where only the interface points are 

of interest. Since this approach is an investigational one, the merits and limitations of 

using the technique with human involvement will be discussed. 
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There are only three contact points between the cyclist and the bike: hand-transmitted 

vibration is thus one of the major concerns for road bike comfort. In this paper, the 

coupling between the cyclist and the bike at the points of the handlebar has been 

examined. Road excitation is predominant along the vertical Z–axis, therefore the 

excitation considered in this paper will be limited to this direction. 

 

Hand position and direction, along with other factors, have a strong influence on the 

dynamic behavior of the hand-arm system [2; 3]. For the sake of accuracy when using 

the FBS method, hand mobility data that represent real operating conditions must be 

used. However, this data does not exist in the literature. A technique employing the 

FBS method in a reverse manner has therefore been selected to obtain hand-arm input 

mechanical mobility. 

 

A bike’s dynamic behavior is also strongly influenced by the cyclist’s position and 

posture [4]. A typical cycling position was used and posture was controlled for by 

measuring the cyclist’s leaning vertical DC force applied to the stem.  

 

The merits and limitations of this approach will be examined by comparing 

experimental values obtained with the assembled structure to the data calculated using 

the FBS method. Results show solid agreement which confirms that this method is 

promising. 

 

 

COUPLING METHODOLOGY USING THE FBS INTERFACE EQUATIONS 
 
 
To obtain the dynamic behavior of a complete structure using the dynamic 

contribution of its components, a generalized frequency domain substructure synthesis 

was used. This well known technique, also referred to as FBS (Frequency Based 

Substructuring), combines the response FRF data of each component to analyze the 

dynamics of an assembled structure. The dynamic behavior of the assembled structure 

can be synthesized through the method presented here. This method is based on an 

implicit statement of the force and velocity continuity considerations at the connection 

nodes and enables substructures to be coupled by considering interface characteristics 

only [5; 6]. The two substructures involved in this paper (the hands and the handlebar) 

can be effectively characterized separately by measuring their respective input 

mobilities. The methodology is thus ideally suited to the analysis of hands-on-

handlebar coupling. 

 

Let’s consider two substructures as shown in Fig. 1. 

67



 
Figure 1. Diagram of two coupled substructures A and B with interface coupling 

interface I 

 

 

The known mathematical expression of the mobility FRF coupling method is: 

 

 

 










































































Y
Y
Y

YY
Y
Y
Y

Y
YY
YY

YYY
YYY
YYY

b
IB

a
II

a
IA

T

b
II

a
II

b
BI

a
II

a
AI

b
BB

a
II

a
IA

a
AI

a
AA

ab
BB

ab
BI

ab
BA

ab
IB

ab
II

ab
IA

ab
AB

ab
AI

ab
AA

1

00

0

0

 

(1) 

 

 

where superscripts a and b identify the two substructures involved.. For the subscripts: 

A is the set of internal degrees of freedom of structure a, 

I is the set of interface contact points degrees of freedom between the substructures a 

and b and 

B is the set of internal degrees of freedom in structure b. 

 

 

In this paper, substructure a represents a handlebar connected to a stem which is 

clamped to a rigid steel table. The stem handlebar end is identified as point A1. This 

point will be used to apply an external force and is part of the internal set of the 

degrees of freedom A of structure a. Substructure b is the hand-arm system. The 

contact points between the two structures (hands and handlebar) are designated I1 and 

I2. They represent the set of interface contact point degrees of freedom I, as illustrated 

in Fig. 2. 
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Figure 2. Symbolic coupling of the two substructures with the points of interest 

 

 

The context of this study is the transmission of vibration to the cyclist. Only the 

contact points between the hand and the handlebar are of interest and consequently 

only one specific term from Eq. (1) is relevant: 
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where Y ab
IA corresponds to an excitation force applied in A and a velocity response in I 

for the assembled structure ab. Considering that set A contains point A1, and set I 
points I1 and I2, Eq. 2 becomes: 
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(3) 

 
 
Assumptions 
 
 
 Hands are uncoupled ( 021 Y b

II ; 012 Y b
II ). 

 Only vertical axis Z is considered for the excitations or the responses 

 There are no couplings between the three directional axes (X, Y, and Z) for each 

substructure. All measurements are along the vertical Z axis. 

 Left and right hand measurements are identical because YY b
zzII

b
zzII 2211  . 
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Formulation 
 
 
Using the assumptions, the following expression is obtained:  
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Specific method to obtain the dynamic characteristics of the hands 
 
 
In Eq. 4, the only term related to the hands is Y b

zzII 11 . In practice, this term cannot be 

measured directly [7]. Hand mobility is influenced by several factors such as the 

direction the hands are facing, grip, and the push forces. A specific technique to 

evaluate this term was developed so that measurements using a typical and realistic 

posture could be taken. Using the same setup as described previously, the handlebar 

was replaced by a stiff, short hollow tube long enough for the placement of both 

hands. This new structure, a short tube connected to a stem clamped to a stiff table, is 

called structure c.  This structure does not have any mode in the frequency range of 

interest. Using Eq. 4 and replacing structure a by structure c, Eq. 5 can be obtained.  
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All the terms from this equation can be measured and Y b
zzII 11 can be computed. This is 

a sort of reverse way of using the FBS method. Instead of using the dynamic behavior 

of two substructures b and c to calculate the dynamic behavior of the assembled 

structure cb, measurements from structures cb and c are used to calculate the dynamic 

behavior of substructure b. 

 

 

EXPERIMENTATION 
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Figure 3. Diagram of the measurement system  

 

 

1) LMS Test.Lab software Rev 10A (Spectral Testing, Random Excitation, 

Hanning Windowing, 0.5 Hz resolution) 

2) Power amplifier type 2706 from Brüel & Kjaer for the shaker 

3) Vibration exciter type 4809 from Brüel & Kjaer (shaker) 

4) Force sensor 208C03 type ICP from PCB Piezotronics 

5) Accelerometer 356B11 type ICP from PCB Piezotronics 

6) Instrumented stem with strain gauges to obtain the static vertical push force 

from the hands 

7) Signal conditioning amplifier type 2310 from Vishay for the stem 

8) Fluke 112 True RMS multimeter to allow the subject to control his posture 

 

 

Dynamic characterization of the hands 
 
 
This section of the paper describes the materials and the procedure used to get the term 

Y b
zzII 11  which represents the dynamic characteristic of the hand (structure b).  

The intrinsic dynamic characteristics of the hands were obtained using the 

measurement system. The handlebar was replaced by a hollow aluminum tube long 
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enough for both hands. The tube has a circular section with a diameter of 2.54 cm; it is 

20 cm long with a wall thickness of 3.18 mm. 

 

Figure 4 shows the diagram of the measurement showing the stiff hollow tube and the 

measurement location C1, I1 and I2. The accelerometer was placed under the tube but 

it was assumed that the acceleration levels at the top and bottom of the tube are the 

same.  

 

 

Figure 4. Experimental setup to measure the dynamic behavior of the hands Y b
zzII 11   

 

Typical cyclist position was used and the posture was controlled by measuring the 

cyclist’s leaning vertical DC force applied to the instrumented stem. Looking at the 

monitored DC force value, the cyclist was asked to keep the force constant at a level 

of 110 N. The data was obtained in 2 steps with 2 configurations: 

 

 Tests on structure c , meaning that no hands are touching the tube to measure 

Y c
zzCI 11 ,Y c

zzCI 12 ,Y c
zzII 11 , Y c

zzII 21 ,Y c
zzII 12 ,Y c

zzII 22  

 Tests with the hands on the tube, corresponding to structure cb to getY cb
zzCI 11 ,

Y cb
zzCI 12  
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Dynamic characterization of structure a and measurement on structure ab 
 
 
The objective of this paper is to investigate the FBS method (Eq. 4) to determine if it 

can provide accurate results when a compliant low damped mechanical structure and a 

human body segment are involved.  

This section presents the method used to obtain the dynamic characteristics of the 

other structure (structure a stem-handlebar) and to obtain this measurement when both 

structures are coupled (a and b). 
For the sake of simplicity in this investigational work, a simple homemade handlebar 

was manufactured. As shown in Figure 5, we used a hollow aluminum tube with a 

circular section of 2.54 cm in diameter, a wall thickness of 1.59 mm and a total length 

of 55 cm. The modal behavior of a real road handlebar was tested to measure its first 

natural frequency. This information was used to select the mass (0.68 kg) of two steel 

cylinders fixed at both ends of the tube. The objective was to obtain a similar first 

natural frequency for the custom-made handlebar. The same measuring system is used 

and an input force is applied on A1. Fig. 5 shows the custom-made handlebar along 

with the measurement points A1, I1, I2. 

 

 

 
Figure 5. Experimental setup for measurement on structure a (handlebar- clamped 

stem) 
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Two sets of measurements were also done using the structure shown in Fig.5  

 

 Tests on structure a to measure Y a
zzAI 11 ,Y a

zzAI 12 ,Y a
zzII 11 ,Y a

zzII 21 , Y a
zzII 12 ,Y a

zzII 22  

 Tests on the structure shown in Fig.5 with the hands on the handlebar which 

corresponds to structure ab to get  ( Y ab
zzAI 11 ,Y ab

zzAI 12 ) 

The same position and posture as described previously were used in this test.  

 
 
RESULTS 
 
 

- Dynamic characterization of the hands 

 

The Fig. 6 shows the mobility obtained at point I1 for the structure b (the hands) using 

the FBS technique in a reverse way. Results show various damped peaks mainly in the 

frequency range of 50 - 200 Hz. They reveal the dynamic behavior of the hand-arm 

system for a specific cyclist position and push force. There is no data available for 

comparison in the published scientific literature. 

 

 
Fig. 6. Mobility of Y b

zzII 11  
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- Dynamic characterization of structure a 

 

The Fig. 7 shows the mobility between points A1 and I1 which was measured on 

structure a (handlebar-clamped stem). This result along all the other measured 

mobilities Y a
zzAI 11 , Y a

zzAI 12 , Y a
zzII 11 , Y a

zzII 21 , Y a
zzII 12 , Y a

zzII 22  
provide the intrinsic 

dynamic characteristic of structure a. This undamped structure has 2 modes as shown 

in Fig.7 by the two peaks at 56 Hz and 280 Hz. On Fig. 7, the mobility Y ab
zzAI 11  

measured with the hands in contact to handlebar is provided. This shows the influence 

of the hands on the structure a. The hands essentially add damping to the 2 modes.  

Fig. 7. Mobility measured between point A1 and I1. 

Solid line: structure a (handlebar-clamped stem)  

Dashed line: structure ab: hands grip the handlebar 

 

- Measured and calculated results 

 

The Figs. 8 and 9 show results in relation to the main objective of this paper. Two 

mobility curves are presented. The solid line represents the calculated results for the 

assembled structure ab obtained by using the intrinsic characteristics of both structures 

a and b using Eq. 4. The dashed line represents the measured curve when the hands 

were grasping the handlebar. The agreement between the curves is satisfactory at this 

stage of development in the ongoing project.  
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Fig. 8. Mobility measured between points A1 and I1 on structure ab.  

Solid line: calculated results; Dashed line: measure where hands are on the handlebar  

 
Fig. 9. Mobility measured between points A1 and I2 on structure ab.  

Solid line: calculated results; Dashed line: measure where hands are on the handlebar  
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DISCUSSION 
 
 
Figures 8 and 9 show that the FBS method succeeds in providing reliable results which 

gives a strong indication that coupling between a human body part and a compliant 

structure is possible using this method. These results cannot invalidate the assumptions 

that the hands are well uncoupled; that for a vertical excitation, only Z axis results 

need to be considered and finally, that the left and right hand have similar intrinsic 

characteristics and the same influence on structure a. 

 

This work highlights the following characteristics of the FBS method 

 Merits:  

- Direct use of shaker test data 

- Combination of substructures when only interface data is known 

- Direct and relatively simple calculation 

 Limitation 

One important disadvantage of the technique is the requirement of measuring a full 

matrix of FRFs for all the points and degrees of freedom involved. According to the 

results in some specific cases such as the one described in this paper, only degrees of 

freedom of interest would be needed to be considered to get appropriate results. 

 

The hand-arm systems input mobilities are sensitive to several factors such as position, 

orientation, etc. Also, the human body input mobility depicts some non-linear 

behavior. The technique used in this paper to measure the hand-arm dynamic 

characteristics allows us to obtain data while taking into account the specific real life 

posture, attitude and hand preload of the cyclist. It is believed that this minimizes the 

non-linear effect and enables measurements under real operating conditions. Another 

interesting feature of this approach is that it does not require any complex setups or 

instrumentation using large electromagnetic shakers, instrumented handles, etc. 

because in this case, the same basic structure studied (stem) is also used to get the 

hand-arm characteristics. However, a legitimate question is: are these results 

fundamentally intrinsic to the hand-arm segment. Answering this question will require 

further investigation.  

Despite its limitation and the need to process a large amount of data when several 

structures are coupled through several contact points, the preliminary results disclosed 

in this work indicate that the FBS method is a promising solution to study vibration 

interaction mechanisms between a structure and a human body part. 
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ABSTRACT 

Prior to performing a modal survey test, pretest analysis is typically performed to determine the optimal 
number and location of response measurements (usually acceleration) and reference measurements 
(dynamic loads). This pretest analysis begins with the preparation of an accurate finite element model 
(FEM). Typically, the test measurement set cannot practically contain more than several hundred degrees 
of freedom (DOF) (although some recent tests have used as many as a thousand), so any method of 
pretest analysis should extract the best possible candidate locations from the initial FEM. Automated sen-
sor selection algorithms first up-select to a candidate set of potential degrees of freedom that are several 
times larger than the final set of sensors. The methods then down-select from this candidate set to an 
optimal set of sensors. This paper presents the methods used to arrive at an initial candidate set for 
measurements, from the perspective of a practicing test engineer. Specifically, the iterative residual 
kinetic energy (IRKE) method is compared to manual DOF selection, noting the advantages and 
drawbacks of each. While some test articles may lend themselves to simple manual DOF selection (i.e., 
symmetric structures such as aircraft), others are far more asymmetric and may require more rigorous 
analytic methods to complement or entirely replace any manual selection of a candidate set. This paper 
utilizes an "iron bird" demonstration test article as a tool to compare and contrast these candidate DOF 
selection methods. 

INTRODUCTION 

To increase the chances of a successful test, modal survey tests should often be prefaced with an accu-
rate pretest analysis of the test article. A variety of tools and methods are available to select an optimized 
set of acceleration response measurements. Pretest analyses begin with a cursory examination of the 
dynamic FEM to determine the target modes that must be extracted to complete a successful test pro-
gram. Once these target modes are identified, a mass-reduced test-analysis model (TAM) is generated 
by determining an accelerometer set (ASET) that uniquely describes the target modes. The number of 
accelerometers that can be used may be limited by resources such as available test time, budget, and 
data acquisition channels. Generally, no more than ten accelerometers per target mode will be necessary 
to adequately capture all target modes. 

While purely analytical methods exist to generate a TAM and a highly efficient ASET that minimizes the 
ASET and maximizes the quality of extracted modes, practical considerations influence the final ASET 
development. Analytically generated TAMs may select measurement DOF that are not physically realiz-
able on the test article. For example, selected measurement DOF may include inaccessible locations 
such as internal components, locations that are unreachable on large test articles, or locations that 
cannot physically accommodate the dimensions of available accelerometers. Manual effort can be spent 
to remove these inaccessible locations from consideration in the automated selection of the candidate 
set. 

Often, analytically selected measurement DOF are accessible but accelerometer installation may still be 
difficult or cause unnecessary delays in the test program. Examples of such measurement DOF may 
include: 

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 79  
DOI 10.1007/978-1-4419-9299-4_7, © The Society for Experimental Mechanics, Inc. 2011



 

1. Locations requiring the removal of paneling to access internal components. 

2. Locations requiring technical support personnel to operate a manlift. 

3. Locations that are not easily referenced to identifiable features of the test article such as rivet 
lines, edges or corners; with additional time and effort, such locations may still be identified by a 
template or laser tracker. 

This paper discusses the compromises that can be made when developing the TAM in order to success-
fully extract all target modes while minimizing the difficulty of installing the sensors. The ultimate figure of 
merit for a successful pretest is the pseudo-orthogonality, defined in the following section. Holding the 
number of accelerometers constant, a purely analytically derived TAM will produce the best possible pre-
test pseudo-orthogonality. A TAM that has been adjusted to allow for an easily installed and maintained 
ASET may have a slightly degraded, but still sufficient, pseudo-orthogonality. The following sections 
describe the pretest analysis process, including the iterative residual kinetic energy (IRKE) method to 
select the candidate accelerometer locations, the genetic algorithm for down-selecting to an optimal set of 
accelerometers, and how these relate to the construction of the test display model (TDM). The specific 
test article studied in this paper is the “iron bird,” which was fabricated by ATA Engineering, Inc., (ATA) as 
an internal development and training tool that simulates the dynamics and form factor of a fighter jet. 
While only the FEM of the iron bird is studied in this paper, the physical test article is depicted in Figure 1 
undergoing a modal test. 

 

DESCRIPTION OF ANALYTIC PRETEST PROCESS 

A successful pretest analysis results in an optimized ASET that captures all pretest target modes, as evi-
denced by the pseudo-orthogonality: 

 [ ] [ ] [ ][ ]2112 ΦΦ= AA
T MO  Equation 1 

Figure 1. ATA “iron bird” test article. 
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where [Φ1] and [Φ2] are full FEM mode shape matrices parsed to the ASET DOF, and [MAA] is the TAM 
analytical mass matrix. Ideally, the on-diagonal terms of this matrix should be 0.95 or greater, and the off-
diagonal terms should be less than 0.10.  

The ASET is derived from the test article’s dynamic FEM, which may contain several hundred thousand 
DOF. Once the target modes are defined, the IRKE method can be used to generate an initial candidate 
ASET from the full FEM. The IRKE method is particularly useful for test articles with complex form factors 
and multiple mass simulators, such as large satellites. The IRKE method functions by assessing the 
modal kinetic energy of all translational DOF in the test article FEM, and iteratively determining which 
DOF are most important with respect to the supplied target modes [1]. The user inputs an initial DOF set 
(this is generally very small—it need only be a single DOF) and requests a final number for the candidate 
ASET DOF. Additional DOF are selected that are not included in the initial DOF set, and the process is 
repeated until the final user-requested DOF set is completed. All IRKE analyses presented in this paper 
were completed using NX NastranTM.  

Once the IRKE method is completed, the pseudo-orthogonality of the candidate ASET must be checked. 
If the pseudo-orthogonality does not meet the aforementioned numeric quality, this is likely due to an 
insufficient number of requested DOF for the candidate ASET; the user must regenerate the candidate 
ASET, requesting a larger number until a satisfactory pseudo-orthogonality is achieved. 

Once the initial candidate ASET is established, additional analytic methods exist to reduce the ASET to 
the final measurement ASET, if the candidate set is purposely too large. The genetic algorithm (GA) is 
used frequently to establish a final ASET that is within the available accelerometer budget [2]. As with the 
initial IRKE analysis, the pseudo-orthogonality of the final TAM must be checked to verify that all target 
modes will be attainable during testing. 

The use of the IRKE up-selection and GA down-selection methods generates an efficient ASET for a pre-
determined accelerometer budget. To prepare for an efficient test program, a more heuristic approach is 
needed, and both of these methods can provide guidance in arriving at a practical TAM. The following 
section discusses the complete pretest process on the iron bird test article, highlighting this heuristic 
approach from the viewpoint of a practicing test engineer. 

PRETEST ANALYSIS OF THE IRON BIRD TEST ARTICLE 

The iron bird FEM is comprised of 6194 nodes and 6057 elements (mostly quadrilateral plate elements—
CQUAD4). Only translational DOF were considered in the development of the TAM, bringing the maxi-
mum possible candidate set to 6194 * 3 = 18582. The prior modal test on the physical test article required 
105 test DOF, so this number is used as the target ASET size for this current pretest study. All modes up 
to 55 Hz were considered target modes (including the six rigid body modes), resulting in a total of 26 tar-
get modes based on an analysis of the full dynamic FEM. 

The IRKE method was run on the dynamic FEM, with six initial seed DOF located at the wingtips, tail tips, 
and fuselage. The IRKE method was run with a requested 1000 ASET DOF. The pseudo-orthogonality of 
this result was checked, verifying that this 1000-DOF TAM is nearly identical to the full FEM. GA was 
applied to this TAM with ASET requests of 105, 95, 85, 75, and 65 measurement DOF. Based on the 
pseudo-orthogonality results, the 75-DOF TAM yielded a quality ASET; the result is displayed in Figure 2. 
The pseudo-orthogonality is displayed at the top of the figure and the FEM at the bottom. Values less 
than 0.01 are not displayed in the pseudo-orthogonality. The arrows plotted on the FEM represent 
selected accelerometer locations. While the pseudo-orthogonality verifies whether the TAM quality is 
good, the ASET—generalizing the result displayed in Figure 2 to many different types of test articles 
encountered by ATA—has the following practical disadvantages. 

1. The accelerometer spacing is uneven and irregular. This will require individual measurements for 
locating and marking each accelerometer in the ASET, requiring an excessive amount of test set-
up time. 
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2. The selected accelerometer locations may not correspond to easily identifiable hardware features 
such as rivet lines, edges, or mass simulator edges or corners. Additionally, these locations may 
not reference convenient local displacement coordinate systems, which would otherwise allow 
accelerometer installations that are normal or parallel to test article surfaces. 

3. The selected accelerometer locations may be difficult or impossible to access. Inaccessible loca-
tions may include internal components or unreachable surfaces. Other difficult locations may 
include locations on tall structures requiring technical support (e.g., the use of a manlift and 
accompanying operator support). 

Instead of the fully automated IRKE and GA selection method, the ASET can be selected manually based 
on test engineering experience. The TDM, ASET, and TAM were generated manually for the initial modal 
test of the iron bird. The 105-DOF ASET and pseudo-orthogonality are presented in Figure 3. The 
accelerometers are deliberately located on the edges of the test article and are spaced evenly for a 
convenient and simple test setup. However, the pseudo-orthogonality indicates that the TAM is not 
sufficient—and that the ASET may not adequately capture all target modes. To verify that the manual 
TDM ASET selection is insufficient, the pseudo-orthogonality was checked by including all three DOF for 
every node in the TDM. The 243-DOF result is displayed in Figure 4. Since this represents the best-case 
scenario for the manual TDM selection, a GA reduction is irrelevant until the initial TAM is improved. 

Modes 15, 16, 25, and 26, which are plotted in Figure 5, are the modes requiring additional instrumenta-
tion. These four modes are wing modes. Both the plotted mode shapes in Figure 5 and the IRKE/GA 
result provide guidance for the next step in the pretest process. Specifically, accelerometers placed 
manually in the center of the wings and tails should sufficiently strengthen the TAM. If the accelerometer 
budget must be held constant at 105, the TAM may be improved by adding 126 additional candidate DOF 
at 42 regularly spaced locations on the centers of the wings and tails, and running a GA reduction. The 
TAM is checked again with this new 369-DOF candidate set, and the result is shown in Figure 6. The 
pseudo-orthogonality now demonstrates that the TAM is sufficient to proceed with a GA reduction to 105 
DOF.  
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Figure 2. IRKE-selected and GA-reduced 75-DOF ASET. The pseudo-orthogonality and FEM are displayed. 
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Figure 3. Manually selected ASET. The pseudo-orthogonality and FEM are displayed.
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Figure 4. Manually selected ASET, including all three DOF. The pseudo-orthogonality still indicates an insufficient TAM, so 
a GA reduction will not be productive.
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Figure 5. The pseudo-orthogonality of the manual ASET selection indicates that modes 15, 16, 25, and 26 are not 
sufficiently represented in the TAM. All four modes are wing modes. 
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After adding 126 candidate DOF to locations in the wing and tail centers, the GA reduced the ASET to the 
105-measurement DOF budget. A final pretest iteration is displayed in Figure 7. Predictably, the GA 
selected DOF that corresponded closely with the original manual selection, consisting of mostly acceler-
ometers perpendicular to the various iron bird surfaces. The pseudo-orthogonality demonstrates that this 
TAM is sufficient to capture all target modes. The IRKE/GA result provided guidance in arriving at this 
final TAM, but since the ASET was still manually selected, none of the drawbacks of irregularity and 
inaccessibility will be encountered in the test setup. While the final TAM includes thirty more 
accelerometers than the IRKE/GA-derived TAM, this is a small cost to bear for a convenient, practical, 
and easily maintained test setup. 

The four TAMs are summarized in the following list as well as in Table 1. 

1. IRKE/GA-selected ASET, 75 DOF (Figure 2). 

2. Manually selected ASET, 105 DOF (Figure 3). 

3. Manually selected ASET, 243 DOF. All three translational DOF from every TDM node were 
included to check the viability of any possible manual TDM-derived ASET (Figure 4). 

4. Manually selected ASET, 369 DOF. Additional candidate DOF were added to the wings and tail 
sections, and all three translational DOF from every TDM node were included (Figure 6). 

5. Manually selected ASET, reduced via GA to 105 DOF (Figure 7). 

Table 1 condenses the four results studied above by displaying only the on-diagonal pseudo-
orthogonality results and the FEM/TAM frequency comparisons. The IRKE/GA result clearly produced the 
best TAM, as evidenced by the pseudo-orthogonality. Additionally, a fully manual ASET selection resulted 
in an insufficient TAM. Studying the IRKE/GA result was useful to augment the manual and heuristic 
development of an ASET that would be sufficient to capture all target modes. While TAM 5 (Figure 7) 
requires thirty additional accelerometers, it has a comparable pseudo-orthogonality to the IRKE/GA result 
and is both sufficient and practical for a successful test program. 

Further manual iterations on the TAM were not completed for this paper, but the IRKE/GA result suggests 
two additional modifications to bolster the pseudo-orthogonality and perhaps even lower the channel 
count. First, accelerometers may not be needed along the most inboard locations on the wings. Second, 
the mid-section of the fuselage could possibly be de-emphasized, though additional accelerometers may 
be placed towards the forward and aft areas of the fuselage. 
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Figure 6. Manually selected ASET, including all three DOF. Additional DOF were added to the wings and tails, and the 
pseudo-orthogonality indicates a sufficient TAM. 

88



 

 

Figure 7. Final ASET, derived from the manual 369-DOF TDM, with accelerometers added to the wings and tails and then 
reduced via GA. 
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DISCUSSION 

The analytic tools for pretest, such as IRKE and GA, can guide a manual pretest process. A flowchart 
depicting the complete analytical and manual TAM development process is shown in Figure 8. The 
pretest analysis can take either an analytic path, with later adjustments influenced by practical test 
program considerations, or a manual path that is influenced as necessary by the analytic results. 

This paper has focused on the iron bird test article, but actual pretest analyses require collaboration with 
the customer—the owner of the test article. In the iron bird study, all 26 modes below 55 Hz were 
accepted as target modes of equal importance. Other test articles may have modes of variable impor-
tance, which can affect the manual ASET selection. For example, if the iron bird fuselage breathing 
modes were determined to be of low value (due to future correlation efforts or relatively high modal fre-
quencies), additional DOF may have been subtracted from the ASET. This hypothetical determination, 
which would be made with customer and analyst concurrence, has the advantage of reducing the size of 
the ASET. 

Table 1. Condensed TAM results. 
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Additionally, should such a determination be made, the selected ASET may still be sufficient to visualize 
the target mode shapes. This is checked initially through observation of the analysis modes. TAM 2 has 
sufficient measurement DOF to visualize the second wing torsion modes, but if TAM 2 was used in an 
actual test, test engineers could not expect the final test-extracted mode list to pass rigorous 
orthogonality checks. The importance of such a data-quality check (successful visualization of all target 
modes and perhaps a high-quality modal assurance criteria check) is again subject to negotiation 
between the customer and analysis engineers, with the goal of having a successful yet practical test 
program. 

Measurement DOF that may be difficult or time-consuming to install, such as those requiring manlifts or 
test article disassembly (and the accompanying customer technical support), should also be considered 
for exclusion from the ASET if the TAM results allow for such a compromise. The customer should work 
with the test engineers prior to the test program to provide as much information, including drawings and 
pictures, about the test article as possible. Test engineers and the customer should be cognizant of the 
additional time and resources required by both parties for accelerometers that are difficult to install and 
maintain. 

In the iron bird study, the GA was used to reduce the manual TDM set. Additional manual DOF rear-
rangements and pseudo-orthogonality checks may be performed to further improve the ASET. Like with 
the IRKE method, the GA may produce a highly efficient, but irregular, ASET, and manual adjustments 
should be made to regularize and simplify the final ASET—within the constraints of a sufficient TAM. 

REFERENCES 

[1] Tuttle, R., T. Cole, and J. Lollock, “An Automated Method for Identification of Efficient Measurement 
Degrees-of-Freedom For Mode Survey Testing,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics & Materials Conference, Austin, Texas, 2005. 

[2] Stabb, M., and P. Blelloch, “A Genetic Algorithm For Optimally Selecting Accelerometer Locations,” 
13th International Modal Analysis Conference, Nashville, Tennessee, 1995. 

Figure 8. Flowchart depicting the pretest process. The dashed grey lines indicate that analysis results can influence a 
manual TAM development, and vice versa. 

91



Modal Impact Testing of Ground Vehicle Enabling Mechanical Condition Assessment 
 
 
 

Alan Meyer, Bryan Wang, Sean Britt, Ridwan Kazi, Dr. Douglas E. Adams 
Purdue Center for Systems Integrity (PCSI) 

Purdue University 
1500 Kepner Drive 
Lafayette, IN 47905 

 
 

 
ABSTRACT 
 
Military tactical wheeled vehicles must operate on wide ranging terrains under varying payload driving conditions, which 
lead to high dynamic loads in the wheels and suspension.  High loads can, in turn, lead to mechanical and structural failures.  
The ability to quickly detect damage in a vehicle in the field can be extremely advantageous for condition-based 
maintenance.  In this paper, the use of modal impact testing to characterize the modal properties of an H1 chassis in its 
healthy and faulty conditions was studied.  The results show that five modes of vibration – bounce, pitch, roll and two 
flexible body modes of the frame – can be identified using the Complex Mode Indicator Function.  Frequency response 
functions are measured by applying modal impacts to the chassis and measuring the response using a roving set of 
accelerometers on the wheel, body, and chassis.  The frame of the vehicle was impacted at three locations and response 
accelerations were measured at 19 points on the chassis, vehicle body, suspension and wheels.  The sprung mass vibrations in 
roll, bounce, pitch, beaming and torsional shake were estimated to have modal frequencies of 2.0 Hz, 3.5 Hz, 4.1 Hz, 9.8 Hz 
and 13 Hz, respectively.  The experiments also indicated that modal impact testing has the ability to detect faults in the 
vehicle, such as low tire pressure.  The results suggest that modal impact testing on ground vehicles is a feasible means of 
identifying the operational deflection shapes and certain types of mechanical damage.  Furthermore, this knowledge could be 
used by onboard structural health monitoring systems to effectively analyze operational data to identify damage in operation. 
 
INTRODUCTION 
 
The ability to accurately characterize the free dynamic response characteristics of a vehicle is invaluable in the development 
of a ground vehicle or the modification of a vehicle suspension system.  Modal hammer impact testing is often thought to be 
limited in its ability to provide accurate results for large, heavily damped structures, such as an H1 military vehicle.  
However, this study shows that good estimates of the modal properties can be gleaned from impact testing of a large vehicle 
in a relatively quick and inexpensive fashion.  Modal impact testing was conducted on a military, Hummer H1 vehicle.  
Faults were induced in the Hummer H1 to determine if the FRFs would suggest that there was some sort of fault within the 
vehicle.  These tests indicated that faults could be observed by analyzing the discrepancies in the faulted and un-faulted 
vehicle frequency response functions.  To obtain the baseline frequency response, modal impact testing was employed using 
an impact sledge hammer at three specific points on the H1.  This work will be useful long term in the creation of a vehicle 
health monitoring system, which has the potential to reduce the maintenance costs of the vehicle and increase asset readiness. 
 
Operating Deflection Shapes 
In the article by Schwarz and Richardson on operating deflection shapes [1], an operating deflection shape (ODS) is defined 
as any forced motion of two or more points on a structure.  In other words, the specification of the motion of two or more 
points defines a shape; more generally, a shape is the motion of one point relative to all other points.  Operating deflection 
shapes are measured to identify the modes of vibration, which superimpose to produce the operating shapes when a structure 
is driven by various forcing functions.  Mode shapes are inherent properties of a system, whereas ODSs depend on the forces 
or loads applied to a system.  The ODSs are measured in the time domain using a multi-channel data acquisition system to 
simultaneously acquire the responses at certain degrees of freedom, including reference (fixed) responses across all of the 
measurements. 
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Fig. 1  Local pitch, bounce, and roll angles [3]�

Complex Mode Indicator Function 
The Complex Mode Indicator Function (CMIF) is a simple algorithm based on singular value decomposition (SVD) methods 
applied to multiple reference frequency response measurements [2]. CMIF properly identifies the existence of real normal or 
complex modes and the relative magnitude of each mode, particularly when there are closely spaced or repeated modal 
frequencies by maximizing the use of spatial data.  The SVD approach does not require multiplication of the FRF matrix by 
the Hermitian as in [H(ω)]•[H(ω)]H.  By taking the SVD of the FRF matrix at each frequency, the following expression is 
obtained [2]: 
 

[ ] [ ][ ][ ]HVUH )()()()( ωωωω ∑=      (1) 

where: 
 

[ ])(ωH  is the FRF matrix of size No (number of response points) by Ni (number of excitation points) 

[ ])(ωU  is the left singular value matrix (unitary) 

[ ]∑ )(ω  is the singular value matrix (diagonal) 

[ ])(ωV  is the right singular vector matrix (diagonal) 

 
Vehicle Vibrations 
Common low frequency vibrations of the sprung mass of a 
vehicle as a rigid body consist of pitch, bounce, and roll.  
Pitch is the angular component of vibration of the sprung 
mass, or vehicle body, about the vehicle y-axis [3].  
Bounce is the translational component of ride vibrations of 
the sprung mass in the direction of the vehicle z-axis, 
while roll is the angular component of ride vibrations of 
the sprung mass about the vehicle x-axis.  Vibrations of the 
sprung mass as a flexible body include torsional shake and 
beaming.  Beaming is a mode of vibration involving 
predominantly bending deformations of the sprung mass 
about the y-axis.  Torsional shake is a mode of vibration 
involving twisting deformations of the sprung mass about 
the x-axis.     

 
THEORY 

The quarter-car model provides an excellent basis to analyze and estimate the body bounce and wheel hop; it consists of a 
quarter of the vehicle body, ms (sprung mass) and one wheel of the vehicle, mu (unsprung mass), where each mass is 
permitted to undergo vertical motion only.  The spring stiffness ks and shock absorber with damping coefficient cs represent 
the stiffness and damping of the independent suspension system.  The unsprung mass, mt, kt and ct represent the stiffness and 
damping of the tire.  The theoretical model is different from typical quarter car models due to a unique experimental setup.  
The governing equations of motion and transfer functions when modal-impacting a quarter-car are: 
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For this set of equations, the road input zin is zero, since the external excitation only occurs on the body of the HMMWV.  
However, it should be noted that this model does not accurately represent the real operating conditions of the vehicle.   

 
Fig. 2  Theoretical quarter-car model of vehicle and impact locations 

 
Since it was deemed too difficult to excite the wheels directly using the equipment on hand, it was decided to use a modal 
sledge hammer to excite the vehicle frame instead. Methods using the road simulator to apply initial conditions to the vehicle 
wheels are also being explored for possible use in impulse testing.  The wheels were kept in contact with the floor.  Assuming 
reciprocity, three impact points were identified on the vehicle frame:  left and right front frame rails and the rear bumper.  
The hood of the vehicle was removed to expose the front frame rails so they could be impacted with the hammer in Fig. 2. 
 
EXPERIMENTAL APPLICATION 
 
Six DC accelerometers were placed at various locations on the vehicle because the expected vehicle vibration modes were 
low in frequency (< 20Hz).  Super glue was used to attach the sensors.  The vehicle frame was then impacted at each of the 
three locations described above and the responses were recorded. The ODS measurement method was applied and the 
accelerometers were moved to different positions on the vehicle and the impacts were repeated to obtain more spatial data.  
Overall, three sets of data were collected.  There was also one unique point from the fault testing portion of the experiment, 
yielding a total of 19 spatial response points.  The locations of the accelerometers in each set are listed in Table 1 and Fig. 3. 

 
TABLE 1  Sensor locations and descriptions for each measurement set 

Location Number Description 
Coordinates 

X Y Z 

D
at

a 
Se

t 1
 

1 Right front frame 0 -27.25 0 

2 Vehicle body (next to left front body isolation mount) -50 0 0 

3 Left front lower control arm (near shock connection pt) -9.5 7 -10.5 

4 Left rear - back bumper -180 0 0 

5 Left front wheel spindle -16 25 -12 

6 Left front frame 0 0 0 

D
at

a 
Se

t 2
 

7 Left front frame near shock tower -14.5 0 0 

8 Right front frame near shock tower -14.5 -27.25 0 

9 Bottom of LH side frame rail - mid vehicle -72.75 0 -6 

10 Right rear frame near shock tower -154 -27.25 0 

11 Right front wheel spindle -16 -50 -12 

12 Left rear frame near shock tower -154 0 0 

D
at

a 
Se

t 3
 

13 Left front upper control arm -20 11 3 

14 Bottom Frame middle cross member -88 -17 -5 

15 Right rear lower control arm -159 -40 -11 

16 Right rear body - next to body isolation mount -176 -39 2 

17 Right rear wheel spindle -149 -56 -12 

18 Right rear frame -102 -27.25 -6 

Fault Analysis 19 Left front shock tower (outside top of spring) -12 9 5 

• The origin for all coordinates listed above is at response point 6, which is the left front frame rail (Impact Point 1) 

• Positive x points towards forward vehicle driving direction, y points towards driver side, z points up toward ceiling 
• Right hand coordinate system and all measurements in INCHES 
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Fig. 3  Sensor locations for each measurement set 

 
To excite the vehicle suspension, the modal sledge hammer was used to impact the frame.  After experimenting with different 
hammer tips, a soft rubber tip was used to obtain the most uniform low frequency energy input [4].  A force threshold of 5 lbs 
was also applied to the input force.  This threshold caused the data acquisition system to ignore any forces that are less than 5 
lbs resulting in a smoothed input power spectrum, as shown in Fig. 4.  The figure also shows the desired shape of a typical 
hammer impact.  The roll off in the frequency domain should be smooth and consistent to indicate a clean impact.  An effort 
was also made to impact with a consistent amplitude.  The data acquisition software was programmed to screen for double 
hits and to only accept impacts that fell within a specified range.  All impacts fell between 1,850 and 2,150 lbs.  A total of 
five impacts were averaged at each location.  Since only the vertical motion of the vehicle was measured, care was taken to 
ensure that each hit was as “square” as possible to avoid exciting modes in other degrees of freedom (other than vertical). 
 

 
Fig. 4  Hammer tips and force threshold comparison 
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The CMIF was used to analyze the closely spaced and heavily damped modes of vibration of the vehicle as shown in Figure 
5.  The function also provided an estimate of the mode shapes contained in the left singular matrix in Eq.(1).  The estimated 
modal vectors were obtained from the left singular matrix at each corresponding frequency and input (reference) location.  
The mode shapes were then animated using the modal vectors to more easily interpret the motion at each frequency.  The 
modes listed in Table 2 were animated and still images of the deflection shapes were plotted in Figure 7 for the pitch mode at 
4.125 Hz.  Figure 6 is the un-deformed shape of the vehicle based on the response points collected for each measurement set. 
 

 
Fig. 5  CMIF plot for three reference points and identified modal frequencies 

 
 

 
 

Fig. 6  Representation of un-deformed geometry of the vehicle 
 

In Figure 6, the blue lines represent the vehicle frame or chassis.  The red lines represent the suspension, the black line 
represents the left front shock absorber and the green line represents the vehicle body or cab structure. 
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Fig. 7 Pitch mode at 4.125 Hz 

 
Five modes of vibration of the vehicle sprung mass were identified in Table 2.  These five modes determine the ride and 
shake characteristics of the vehicle as defined by SAE J670e [3]. 
 

TABLE 2  Identified vehicle modes of vibration 
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Due to the location of the modal impact excitation on the vehicle frame, the theoretical model was analyzed using typical 
vehicle parameters to determine whether or not differences existed for the impact location and road input location.  For 
comparison, Figure 9 revealed that the second peak of the green line, which corresponded to the tire degree of freedom 
(wheel hop), was non-existent in the FRF of the modal impact location (Xsprung/Fhammer).  These observations indicated that the 
wheel hop mode of vibration would also not be evident in the experimental data.   

 
Fig. 8  Theoretical model comparing modal impact and road input locations 

 

 
Fig. 9  Verification of reciprocity assumption for vehicle chassis 

 
Figure 10 shows the FRF for the input at location 1 and response at input location 2 as well as the FRF for the input at 
location 2 and response at input location 1.  The fact that these plots lay on top of one another verifies the assumption of 
reciprocity across the vehicle chassis.   
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FAULT IDENTIFICATION 

In the second half of the experiment, a fault was induced on the vehicle and the change in its response to a frame excitation 
was measured.  All the accelerometers were mounted at points around the front driver side wheel and suspension as shown in 
Table 3 and Figure 11.  The modal hammer was used to impact the frame in the manner described previously.  Again, all 
three impact points were used.  However, in this case the tire pressure was reduced from 30 psi to 10 psi in both front tires.  
Since the two front tires are connected to a central air pressure system, it was not possible to reduce the pressure on one tire 
only.  The rear tires were left unchanged.  The vehicle was impacted again to study the effect of low tire pressure on the 
response. 
 

Table 3  Fault analysis sensor locations 
 

Location Number Description 
Coordinates 

X Y Z 

F
au

lt
 

A
na

ly
si

s 

13 Left front upper control arm -18 9.5 4 
7 Left front frame near shock tower -14.5 0 0 
3 Left front lower control arm (near shock connection pt) -9.5 7 -10.5 
6 Left front frame - Impact pt 1 0 0 0 
5 Left front Wheel Spindle -16 25 -12 
19 Left front shock tower (outside top of spring) -12 9 5 

• The origin for all coordinates listed above is at response point 6, which is the left front frame rail (Impact Point 1) 
• Positive x points towards forward vehicle driving direction 
• Positive y points towards the driver side of vehicle 
• Positive z points up toward the ceiling 
• Right hand coordinate system and all measurements in INCHES 
 

 
 

Fig. 10  Sensor locations for low tire pressure fault analysis 
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Figure 12 illustrates a comparison between estimates of modal frequencies with the front tires at the standard 30 psi pressure 
in contrast to the 10 psi faulted pressure.  This plot indicates that several modes especially the vehicle bounce mode were 
sensitive to changes in tire pressure because the bounce mode shifted from 3.5 to 3.0 Hz.   
 
 

 
Fig. 11  Comparison of CMIF and modal frequencies with front wheels at 30 psi vs. 10 psi 

 
CONCLUSION 
 
One of the fundamental assumptions that was made at the beginning of the experiment was that inputs on the tire footprint 
would produce the same dynamic response characteristics as inputs on the frame. However, the experimental data and the 
model showed that this assumption does not hold across the suspension system.  The fact that the wheel hop mode was not 
seen in the mode shapes indicates that the vehicle suspension may be isolating the un-sprung mass and preventing enough 
energy from reaching the tire to excite wheel hop. 
 
This experiment showed that although the first choice would probably have been to use a shaker test, the modal impact 
method still produced meaningful results.  The data collected revealed bounce, pitch, roll, and two flexible body modes of the 
frame.  Modal impact testing can be used on a vehicle to quickly investigate the modal properties of the suspension and 
frame. 
 
The data indicates that modal testing may also have the ability to detect faults in the vehicle suspension.  When the front tire 
pressure was reduced, the frequency of the bounce mode dropped from 3.5Hz to 3Hz.  This result is logical because a 
reduction in the tire pressure should reduce the overall stiffness of the suspension.  This reduction in stiffness, in turn, would 
lower the natural frequency as was observed experimentally in this study.  
 
REFERENCES 
 
[1]  B. Schwarz, M.H. Richardson, “Measuring Operating Deflection Shapes Under Non-Stationary Conditions” Proceedings 

of IMAC XVIII, February 7-10, 2000. 
 
[2]  Allemang, Randall J. "Vibrations: Experimental Modal Analysis." A Complete Review of the Complex Mode Indicator 

Function (CMIF) with Applications. University of Cincinnati, Cincinnati. 12 Apr. 2010. Lecture. 
 
[3]  Gillespie, T. D. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992. Print. 
 
[4]  Adams, Douglas E. Health Monitoring of Structural Materials and Components Methods with Applications. Chichester: 

Wiley, 2007. Print. 

0 2 4 6 8 10 12 14
10

-4

10
-3

10
-2

X: 12.75
Y: 0.01675

Frequency (Hz)

C
M

IF

Front Tire Pressure at normal 30 psi

X: 4.125
Y: 0.003913

X: 9.75
Y: 0.007385

X: 3.5
Y: 0.005169

X: 13
Y: 0.002315

0 2 4 6 8 10 12 14
10

-4

10
-3

10
-2

 

 X: 12.5
Y: 0.01156

Frequency (Hz)

C
M

IF

Front Tire Pressure Reduced to 10 psi

X: 4
Y: 0.003716

X: 10
Y: 0.01109

X: 3
Y: 0.00504

X: 12.63
Y: 0.001873

101



Identifying parameters of nonlinear structural dynamic systems using linear time-
periodic approximations 

 
 
 

Michael W. Sracic 
Graduate Research Assistant, Ph.D Candidate 

mwsracic@wisc.edu 
& 

Matthew S. Allen 
Assistant Professor 

msallen@engr.wisc.edu 
Department of Engineering Physics 
University of Wisconsin-Madison 

534 Engineering Research Building 
1500 Engineering Drive 

Madison, WI 53706 
 
 
ABSTRACT 
 
While numerous mature parametric identification methods are available for linear systems, there are only a few methods 
capable of identifying parametric models for multiple degree of freedom nonlinear systems.  In a previous work, the authors 
proposed a new identification routine for nonlinear systems based on harmonically forcing a system in a periodic orbit and 
then recording deviations from that orbit.  Under mild assumptions one can model the response about the periodic orbit using 
a linear time-periodic system model that is relatively easy to identify from the measurements using a variety of techniques.  
The method provides an estimate of the time periodic state coefficient matrix of the system which gives direct information on 
the order of the system and the nonlinear-parameters.  A prior work explored the method in detail for a single degree-of-
freedom system, but it has only been applied to an MDOF system with a limited set of excitation conditions.  This work 
explores a range of possible excitation signals using an analytical model of a cantilever beam with a cubic spring at its tip.  
Numerical continuation techniques are used to find the stable and unstable periodic responses of the beam and different 
excitation strategies are explored.  Additionally, the method is validated on the analytical model with a conventional 
approach for nonlinear system identification.  The most promising strategies are then applied to a real beam with a significant 
geometric nonlinearity. 

1. Introduction 
 
Most dynamical systems behave nonlinearly in the most general scenario.  This can be observed in various structural 
dynamic systems such as an airplane wing that flutters wildly near a stall point bifurcation [1], in rotor dynamic systems with 
bearing contact nonlinearities [2], in biomechanics systems such as the human body which has muscles that produce 
nonlinear forces that move joints through large angles [3-5], or in social science systems such as psychology [6] and 
economics [7].  While many techniques are available to extract linear time-invariant mathematical models from experimental 
measurements of these systems, the linear models cannot correctly characterize some of the complex nonlinear phenomena 
exhibited.  Therefore, nonlinear models are needed and nonlinear identification methods are required to extract the nonlinear 
models from measurements.   
 
A few methods for experimental identification are currently available.  Some notable time domain techniques have been 
successfully applied experimentally such as the restoring force surface method [8], the Hilbert and Huang-Hilbert transforms 
[9], and the NARMAX method [10].  The former three methods cannot be easily applied to higher order systems while the 
latter method requires one to assume a form for the nonlinearity in the system prior to the identification.  The notable 
frequency domain techniques consist of the Volterra and Weiner series techniques, the Conditioned Reverse Path method, 
and the Nonlinear Identification through Feedback of the Output method, all of which were reviewed in [10].  The Volterra 
and Weiner series techniques require very large amounts of data for even low order nonlinearities.  The other two methods 
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require one to first assume a form of the nonlinearity.  A nonlinear normal-modal based technique has also been proposed 
and is currently being investigated [10, 11].  
 
The authors recently proposed an alternative to these approaches that may overcome some of these limitations.  It is a 
frequency domain technique [12] based on spectra that are similar to linear frequency response functions.  Because of this 
similarity, it allows many concepts from linear system identification to be applied to nonlinear systems and the analyst can 
distinguishthe features in the spectra that are due the nonlinear response rather than measurement noise.  The method 
provides direct information on the order of the system, the nonlinear parameters, and does not require an a priori assumption 
regarding the form of the nonlinearities.  The basic idea is to drive the nonlinear system so that it responds in a stable periodic 
orbit and then to perturb the system slightly from the periodic orbit.  If the nonlinearities are sufficiently smooth and the 
deviations from the periodic orbit are sufficiently small, the resulting response can be well approximated with a linear time-
periodic model.  A number of techniques are then available for identifying a linear time-periodic model for the system.  This 
work utilizes the Lifting and Fourier Series Expansion (FSE) methods, which were both proposed by Allen in [13].  These 
techniques are appealing because the linear time-periodic response can be shown to be mathematically equivalent to the 
response of an augmented linear time invariant system.  Therefore, a linear time-invariant parameter extraction method can 
be used to estimate the linear time-periodic system model, making this parameter estimation step quite convenient.  The 
linear time-periodic model is used to construct the state transition matrix and state coefficient matrix for each state along the 
original periodic orbit.  Finally, the constructed state coefficient matrix can be used to calculate an estimate of the nonlinear 
system parameters.   
 
The original work by the authors [14] verified the method on simulated measurements of a second order analytical Duffing 
oscillator, and some original efforts were made to apply the method to a fourth order analytical nonlinear cantilever beam 
[12].  This work more thoroughly explores the performance of the method for systems with multiple degrees of freedom, and 
also applies the method to real experimental measurements of a high order system.  The experimental system consists of a 
cantilever beam with a strip of spring steel connected between its free end and a fixture.  The spring steel provides a 
geometric stiffening nonlinearity.  The measurements are probed and found to contain clear evidence of time-periodic effects 
that are distinguishable from noise.  A few different harmonic forcing conditions are considered and the state coefficient 
matrix is estimated, revealing the level of accuracy that is required to obtain meaningful results.  Furthermore, in all of the 
preceding works the authors identified the periodic limit cycle but then used it only to define the state of the system.  
However, the limit cycle itself is strongly dependent on the nonlinear dynamic model for the system and could be used to 
perform nonlinear identification with a conventional algorithm.  This work explores this possibility, using a variant on the 
restoring force surface method to compute the net nonlinear restoring force on each mass.  That restoring force is then used to 
validate the results of the more detailed model that is found using the proposed linear time-periodic approximation.  The 
following section provides the background theory that supports the technique.  Then Section 3introduces the nonlinear beam 
for the experimental setup and the analytical model and applies the identification to simulated and experimental 
measurements of the beam.  The results are presented and discussed, and finally some conclusions are provided. 

2. Theory 

2.1 Linear Time-Periodic Approximations of Nonlinear Systems 
 
Generally, a forced nonlinear system can be represented in state space with the following equation 

 
 
 

,

,

x f x u

y h x u






 (1) 

where f and h are functions that describe how the time-dependent state of the system, x(t), and the time-dependent inputs 
applied to the system, u(t), influence the dynamics of the system.  Assuming that the system has a periodic solution 
x (t+T)= x (t), then one can define a periodic orbit , which is a trajectory in the state space that contains the state x for every 
time t.  If a small input is applied to perturb the system from , then the state and input of the system can be described as 
small deviations from the periodic orbit, x x x    and u u u   .  If the nonlinearities are C1 (at least one time continuously 
differentiable), then eq. 1 can be expanded in a Taylor series, and if the perturbation is sufficiently small the higher order 
terms can be neglected to obtain the following. 
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The shorthand notation i jf x     is used for the partial derivative matrices meaning that the component in the ith-row and 
jth-column is the partial derivative of the ith component of f with respect to the jth component of x.  Generally, the these 
matrices may depend on both x and u and would need to be evaluated at both x  and u , but typical structural dynamic 
systems do not contain this type of cross coupling.  The approximate model given by the previous equation is that of a linear 
time-periodic state space system with ( ) i jA t f x     , ( ) i jB t f u     , ( ) i jC t h x     , and ( ) i jD t h u     .  The 

solution of such a system is governed by the state transition matrix 0( , )t t , which transfers the state of the system from an 
initial time t0 to time t.  For this work, the disturbance force is impulsive such that 0u   after the impulse.  Then, the solution 
to eq. (2) is given by the following equation. 

 0 0

0 0

( , )
( ) ( , )

x t t x
y C t t t x
 

 

 
 

 (3) 

2.2 Review of System Identification Methods for Linear Time-Periodic Systems 
 
When a system is well approximated as linear time-periodic without any degenerate modes, its state transition matrix can be 
represented using Floquet theory [13, 15-17] in summation form as  
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where n is the order of the system and [R(t)]r is the rth residue matrix corresponding to the rth Floquet exponent, r, and is 
composed of the product of the rth time-periodic right Floquet eigenvector {(t)}r and rth constant left Floquet eigenvector 
{(t0)}r of the state transition matrix.  Allen has suggested two techniques for extracting a model from such a system.  The 
first is called the Fourier Series Expansion technique and the second is called the Lifting technique, and both result in a 
representation of the response that is linear time-invariant.  The methods are summarized briefly here and are provided with 
further details in [13]. 

2.2.1 Fourier Series Expansion Technique 
 
The residue matrix [R(t)]r in the previous equation is periodic because of the periodicFloquet eigenvectors  {(t)}r and can 
therefore be expanded in a Fourier series.  After exchanging the order of summation and simplifying terms, the result is 

   0( )( )
0

1
( , )

B

B

Tr
Nn

im t t
m r

r m N
t t B e   

 
     (5) 

where [Bm]r is the mth Fourier coefficient matrix of the rth mode and T=2/T is the period frequency.  To be exact, the 
Fourier expansion must include an infinite number of terms, but in practice a finite number of Fourier terms, m=-NB,…,NB, 
will sufficiently approximate the expansion [12, 13].  The Fourier Series Expansion representation of the response is 
equivalent to a linear modal model with n*(2*NB+1) eigenvalues r+imT. 

2.2.2 Lifting technique 
 
If the measured response of a time-periodic system is resampled at an integer number of points per period T, then an analysis 
can be performed based on “lifting” augmented signals from the full linear time-periodic response.  Suppose that the response 
y(t) has been sampled M times per period for an integer Nc cycles of the fundamental period.  The lifted response y l

m is the 
vector such that  
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where yk for k=0,..,M-1  is the response vector at tj with j=k+mM and m ranges from 0 to Nc-1 [13].  In the absence of an input 
force the lifted response can be arranged as 

  
1

n
l ld
m r

r

rmTy R e


  (7) 

where {Rld}r is the residue vector of size M times the number of outputs of the response.  One should note that {Rld}r must 
account for the delay between the initial time and the kth time instant as discussed in [13].  The advantage of this approach is 
that the lifted response retains the order of the original linear time-periodic system.  The eigenvalues may be aliased, but the 
aliased eigenvalues still provide a valid representation for the linear time-periodic system. 
 

2.2.3 Constructing the System Model from Experimental Measurements 
 
In [13], Allen discusses how the state transition matrix can be constructed from either of the models above assuming that one 
has measured the displacement of the system.  The state vector of such a system consists of the measured displacement states 
as well as the corresponding velocity states, but the velocities are not typically measured, so Allen differentiated the Fourier 
Series Expansion model of the system to find the velocity states needed to form the state vector of the system.  In this work, 
acceleration measurements are considered.  When this is the case, the Fourier series expansion model for the free acceleration 
response is written as 

    0( )( )

1

B

B

r T
NN

im t t
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    (8) 

 
where N is the number of degrees of freedom and {Bm}r is the residue vector.  In order to create a full state vector that 
consists of N position states xd and N velocity states xv, one can integrate the previous equation two times successively to 
calculate the velocity and position states. 
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 (9) 

 
Then, the state transition matrix and state coefficient matrix can be calculated as in [13]. 
 

2.2.4 Calculating the equation of motion from A(t) 
In eq. (2), the original nonlinear system model was differentiated to obtain the time-varying coefficient matrices of the linear 
time-periodic model, which resulted in a total derivative form for the system. 

 f fdf dx du
x u
 

 
 

 (10) 

In this work, only the linearized model ( ) i jA t f x     has been identified, so a model for the first term in the previous 

equation can be used to estimate that terms contribution to the nonlinear equations of motion.   It was assumed that the 
coefficient matrix i jf x     depended only on x and i jf u    only on u.  Using this assumption, the periodic orbit state 

vector and input components, which are known, can be used to integrate the linear time-periodic system and define the 
following, 
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where ai,j(xj) is the integral of the component in the ith row and jth column of A(t) and is taken with respect to the jth 
component of the state vector for all the states within the original periodic orbits.  The terms in the first N rows of the [ai,j] 
matrix define the identity relationships of the state vector components, but those in the lower N rows define the force 
relationship of the ith degree of freedom with respect to the jth state vector component.  So this method allows these dynamic 
forces to be individually calculated from the identified time-periodic model.  The total dynamic force that acts on a degree of 
freedom of the system is then equal to the sum of a single row of the matrix [aij], and is a function of the position and velocity 
states of the system. 

 
1

( , ) ( )
n

d v j j
j

a x x a x


   (12) 

In the previous equation, aj is the jth column of the matrix, [aij].  This function is directly related to the total restoring force of 
the system, since the following equation 

 ˆ ( , ) ( , )d v
ff x u a x x du
u


 
  (13) 

Fully defines the reconstructed nonlinear equations of motion.   

2.2.5 Modified Restoring Force Surface Method for Periodic Response 
 
In this section a method is developed based on the restoring force surface approach [8] for solving for the net restoring forces 
over the periodic orbit from the measured periodic response.  The restoring force surface method is based on the following 
equation of motion, which is valid for a broad range of structural systems. 

  , ( )a RF d vMx g x x F t   (14) 

Assuming that the acceleration of each of the nodes of the system has been measured as well as the applied force F(t), the 
restoring forces can be found as follows if one has an estimate for the mass matrix M. 

  , ( )RF d v ag x x F t Mx   (15) 

The restoring forces are functions of the displacement and velocity, and since xa is known, xd and xv can be found by 
integrating xa.  Since xa is the periodic response, it can be readily described by a Fourier series.  As long as the constant term 
in the series is zero, then the Fourier series model can be integrated as in eq. (9) and then the restoring force can be plotted 
versus xd and xv or versus time over the periodic orbit.  

3. Nonlinear cantilever beam system 
 
The proposed identification method was evaluated by applying it to measurements from a nonlinear beam.  Figure 1 below 
shows a top view photograph of the actual experimental setup.  An aluminum 6061 beam is bolted to a steel mounting block, 
shown on the left side of the image.  A small strip of spring steel is bolted to the free end of the cantilever and clamped to 
another steel mounting block.  Both of the mounting blocks are bolted to a massive steel tube.  The steel tube and mounting 
blocks approximate the fixed support of an ideal cantilever.  The whole setup rests on a foam pad on a massive table top.  The 
beam is oriented such that the bending axis is parallel to the plane of the table top.  Figure 2 shows a close top and front view 
of the spring steel between the tip of the beam and the right hand side support.  Table 1 below provides the physical 
dimensions of the beam and the spring steel in millimeters.  
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Fig. 1 Top view of the experimental nonlinear beam setup 

 

 
(a) 

 
(b) 

Fig. 2  Top view (a) and front view (b) of the spring steel connected to free end of the cantilever beam 
 

Table 1 Aluminum 6061 beam and blue-finished and polished 1095 spring steel dimensions in millimeters 
Dimension Al 6061 Beam 1095 Spring Steel 
Length 1016 53.2 
Width 25.4 25.4 
Thickness 9.5 0.0762 

 
 
The spring steel on the tip of the beam adds stiffness at that point that is geometrically nonlinear.  This setup was originally 
proposed in [18] and other researchers have studied similar beam setups [10, 19, 20]. 
 
Figure 3 below shows a schematic of the system, which is modeled as a uniform, prismatic cantilever beam with material 
density , elastic modulus E, cross sectional area Ab, bending area moment of inertia I, and length L.  The position along the 
length of the beam is given by the variable ‘x’.  The deflection of the beam is designated with the variable y.  The beam has a 
nonlinear tip spring with stiffness knl that is assumed to be a function of the tip displacement. 
 

 
 

Fig. 3  Schematic of the nonlinear beam 

knl 

x 
Fd 

, E, Ab, I, L 

y 
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3.1 Ritz-Galerkin Discrete Model 
A Galerkin approach was used to create a finite-order model for the beam that exhibits similar properties of the experimental 
system.  Assuming that the beam behaves linear-elastically, mode shapes corresponding to transverse bending motion were 
used as shape functions to construct the Ritz-Galerkin representation [21].  The displacement of the beam at a position x was 
approximated as 

      
1

,
N

r
r

m

ry x t x q t


   (16) 

where r(x) is the rth Euler-Bernoulli beam mode shape for a cantilever, qr(t) is the rth generalized coordinate, and Nm is the 
number of modes used.  The system’s undamped equations of motion are provided in Eq. (17), where the coordinates are the 
amplitudes of the basis functions.   

    3 ( )ext rb f
EIA L M q K q Q f x
L

      (17) 

Modal damping was added to the equation by performing an eigenvector analysis on the linear system and then using,  

          2 T( ) 2 br rb bC A L M diag M            (18) 

where [b] is a matrix containing the eigenvectors in the columns, r is the rth circular natural frequency, and r is the rth 
desired damping ratio.  The generalized force vector Q is a sum of the product between all external forces and the value of 
the shape functions at the point where the force is applied, xf.  Therefore, Q includes Ritz series formulated contributions 
from Fd in Figure 3 as well as the restoring force due to the spring [21]  The beam provides linear stiffness at the tip due to its 
flexural rigidity, so the spring stiffness was chosen to be purely nonlinear as given below. 

 2
3 ( )nlk k y L  (19) 

The physical restoring force due to the spring is then equal to  

 3
3 ( )spf k y L . (20) 

The generalized force vector then has components corresponding to the nonlinear spring {Qsp} located at x=L and the 
externally applied force {Qext} located at x=xf. 
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The external force is given by the following. 

      sin 2 sin pD impulseF t A ft A t t

    
 

 (22) 

where A is the amplitude and f is the frequency of the periodic forcing term, and Aimpulse is the amplitude of the impulsive 
forcing term, which is used to perturb the system from the periodic orbit.  The impulsive force has duration  and is initiated 
at tp. 
 
After using the Ritz-Galerkin method to form the discrete beam model and to account for the nonlinear applied force of the 
spring, the equations of motion were transformed back into physical coordinates using the relationship in eq. (16).  The 
differential equations of motion can then be arranged in state space format. 
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The matrix   has the numerical values of the mode vectors for specific position coordinates on the beam.  Since this matrix 
must be square in order to form an inverse, it is convenient to choose the number of degrees of freedom in the system to be 
equal to the number of modes used in the Galerkin expansion.  Then,   can contain shape functions evaluated at the nodal 
degrees of freedom on the beam.  In this study the number of mode shapes used in the expansion and the number of degrees 
of freedom used to model the beam was Nm=N=2.  The degrees of freedom were located at the center and tip of the beam.   
 
In order to mimic the experimental system, the following parameters were used in the model, which are based on the nominal 
properties of the experimental hardware: =2700 kg/m3, E=68e9 N/m2,  Ab=3.23e-4 m2, I = 4.34e-9 m4, L = 1.016 m.  Using 
these properties with the Ritz-Galerkin method, the two linear natural frequencies of the system are 1/(2)= 9.97 Hz and 
2/(2)=62.51 Hz.  The transverse stiffness contribution of the spring steel on the experimental beam is approximated in the 
model as k3=1.4764e9 N/m3.  A derivation of this approximation can be found in the appendix. 

3.2 Simulated Measurements 
In order to apply the proposed nonlinear identification, the nonlinear beam must first be driven to respond in a periodic orbit. 
However, there are many possible periodic orbits that this system may be driven in so it is desirable to consider all of the 
possible periodic orbits for different forcing configurations.  In a companion paper [22], the authors used a numerical 
continuation technique to calculate the periodic solutions of the beam model for forcing amplitude of A=1 Newton and for 
forcing frequencies in the band 6-70 Hz.  The results of the computation are shown in Figure 4.  In (a) and (b), the response 
curve near the first linear natural frequency is plotted.  The red and blue curves in (a) correspond to the displacement initial 
conditions of the first and second degree of freedom, respectively.  The green and black curves in (b) are the analogous 
velocity initial conditions.  This color format is repeated in (c) and (d) for the frequency band near the second linear natural 
frequency.  The curves quantify the resonant responses of the first and second modes of the nonlinear beam (referenced to 
zero phase of the force), but they also provide the initial state vector for a specific frequency that one can integrate in time to 
achieve a periodic orbit.  A detailed discussion of the dynamics of the frequency response curves is provided in [22].  The 
important implications of these nonlinear frequency response curves is that the resonance peaks tend to bend towards higher 
frequencies for this system, which causes regions where multiple periodic orbits are possible for a single forcing frequency, 
and for this system one of those possible solutions is unstable (unstable solutions are designated in the plots with the dashed 
lines).  The forcing configuration needs to be carefully selected in order to achieve a successful identification of the nonlinear 
parameters.  Guidelines for selecting forcing configurations for the system identification method used here are discussed in 
detail in [14] for a single degree of freedom system, and those guidelines apply equally well here.   
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Fig. 4 Initial conditions that result in periodic responses for A=1 plotted versus forcing frequency 

 
The nonlinear frequency response curves were used to understand what types of periodic orbits were possible, and a few of 
the different alternatives were selected for study.  It is desirable to drive the system in a stable periodic orbit that is 
sufficiently nonlinear and isolated from other nearby stable periodic orbits.  Sracic and Allen [14] showed that periodic orbits 
on the larger amplitude branch of the bent resonance peak tend to provide suitable periodic orbit conditions to use for the 
identification procedure for a hardening resonance such as that of the peak in Figure 4(a).   Therefore, a forcing frequency of 
f1=15.4 Hz was chosen on the first resonance peak of Figure 4(a).  Since the beam model has two modes that produce 
resonance responses, a second forcing frequency of f3=60.9 Hz, which is just below the second resonance peak of Figure 4(c), 
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was chosen to explore the results of the identification when the periodic orbits from different modes are used.  For each case, 
the procedure that was employed in [14]  is also used here to simulate the response and perform the identification.  First, the 
acceleration periodic and periodic plus perturbation responses are simulated using MATLAB’s 4-5th order Runge-Kutta 
integrator function ‘ode45’.  (Although the discrete system is derived for a state vector consisting of all the displacement and 
velocity states, ‘ode45’ allows one to extract the acceleration states of the system from the calculation as well.)  For each 
response, the amplitude of the harmonic forcing was A=1 N and the amplitude, duration, and time of initiation of the 
impulsive force were Aimpulse=10 N,  = 0.02 seconds, and tp=0 seconds (the impulsive force was set to zero when computing 
the periodic response).  The response was calculated for a time history that was long enough for the perturbation to decay 
such that only the underlying periodic orbit response remained.  
  
Case 1:  
The responses were calculated from initial conditions [ ]y y =[-3.517e-5; -1.223e-4; 3.639e-2; 0.1160], which define the 
periodic orbit at 15.4 Hz relative to zero phase on the forcing function, and the solution was sampled at a 616.4 Hz, which 
gave 40 samples per period of the periodic orbit.  Figure 5 shows the time history of the tip degree of freedom both early (a) 
and late (b) in the response.  The periodic response is plotted with the dashed blue curve and the periodic plus perturbed 
response is plotted with the solid red line.  The difference between the periodic and perturbation responses is plotted in (c) 
with the solid black line, and this plot shows that the perturbation is small compared to the periodic response and that it 
eventually decays to approximately zero, meaning the response has returned to the periodic orbit.  The responses of the beam 
midpoint degree of freedom are not shown, but they were in phase with the tip responses shown here and have similar 
characteristics but smaller extreme amplitudes. 
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Fig. 5 Tip responses of the beam model for forcing frequency f1=15.4 Hz 

 
The spectra of the perturbed responses and those of the difference between the perturbed and the periodic response were 
calculated with the Fast Fourier Transform (FFT) algorithm in MATLAB and are plotted in Figure 6(a) and (b) for the 
midspan and tip degrees of freedom, respectively.  The perturbed responses are plotted with the solid red lines and the 
perturbed minus the periodic responses are plotted with the dashed black curves.  The red curves contain a number of sharp 
peaks at the frequencies 15.4, 46.2, 77, 107.8, and 138.6, and the magnitudes of these peaks diminish with increasing 
frequency.  These frequencies correspond to the forcing frequency and a few of its odd harmonics (e.g. 3*15.4 Hz = 46.2 
Hz).  The spectra of the red and black curves also contain a number of broad peaks near 12.6, 18.2, 43.4, 49, 65.8, 74.2, 79.8, 
96.6, 110.6, and 127.4 Hz in both degrees of freedom, at 35 Hz in the first degree of freedom, and at 105 Hz in the second 
degree of freedom.  
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Fig. 6 Response spectra of the nonlinear beam simulation for forcing frequency f1=15.4 Hz 

 
The response of the beam is strongly nonlinear, since a single harmonic input was applied at 15.4 Hz, and the system 
responded at that frequency as well as at a number of its harmonics.  The broad peaks in the response all seem to have the 
characteristics of linear mode peaks; Eqs. (5) and (8) can be used to understand that many of these peaks are due to time-
periodic effects of the perturbation about the periodic orbit.  For example, the peaks at 12.6 and 18.2 Hz have similar 
characteristics to the peaks at 43.4 and 49, and the two peak clusters are separated by 30.8 Hz, which is twice the 
fundamental frequency of the periodic orbit.  These two peak cluster seems to be repeated at intervals of 30.8 Hz, although 
the magnitudes of the peaks change.  The peaks at 35, 65.8, and 96.6, and 127.4 Hz are also increasing in frequency by 30.8 
Hz and have similar characteristics albeit different magnitudes.  The fact that many of these peaks seem to be related and 
occur at frequencies that can be linked by the fundamental periodic orbit frequency is strong evidence that the system is 
behaving time-periodically about the orbit.  Noise or some other artifact in the response is not likely to have the characteristic 
shape of a mode nor to occur at frequencies that are related by the periodic orbit frequency.   
 
In order to fit a time-periodic model to the perturbed minus the periodic responses, the lifting technique [13] was used to 
resample the responses into a set of ‘lifted responses’ that are exemplary of the responses exhibited by a lower-order linear 
time-invariant system.  The composite spectra (or average) of the lifted responses is plotted in Figure 7 with the solid black 
line, and it contains one prominent peak near 2.8 Hz and a much weaker, broader peak near 4.2 Hz.  The Algorithm of Mode 
Isolation (AMI) [23] identified two modes in the composite response spectra.  A reconstruction of the two mode fit is plotted 
in the figure with the dashed line.  The difference between the response curve and the fit is plotted with the dashed-dot gray 
curve, and it shows that the two-mode fit approximates the response very well.  AMI identified two eigenvalues 1= -0.7310 
+17.6158i and 2= -3.9901 +26.2590i, natural frequencies |1|/(2)=2.806 Hz and |2|/(2)=4.227 Hz, and damping ratios 
0.0415 and 0.1502, respectively. 
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Fig. 7 Composite spectrum and AMI fit of the lifted responses forr forcing frequency f1=15.4 Hz 

 
The lifting technique is advantageous because any peaks in a response that are due to time-periodic mode effects are collected 
to a single peak, so the underlying order of the system is more easily determined; even though the spectra in Figure 6 contain 
many peaks, the composite spectrum of the lifted responses shows clearly that the system has only two dominant modes.  The 
modal fit obtained by AMI provides the time-periodic mode shapes of the system for one full period of the underlying 
periodic orbit.  The next step towards constructing the state transition matrix and state coefficient matrix of the linear time-
periodic system is to expand the identified mode shapes in a Fourier series and to determine which Fourier coefficients 
contribute meaningful information to the response.  This process is clearer if the identified time periodic modes are first 
unaliased (a discussion of aliasing due to lifting can be found in [13, 24]). 
 
After the identified modes were unaliased, they were expanded in a Fourier series.  Figure 8 shows a plot of the amplitudes of 
each of the coefficients in the Fourier series expansion of Mode 1 (a) and Mode 2 (b).  The open blue circles designate all of 
the coefficients calculated in the expansion.  The red dots designate the Fourier coefficients that will be retained in the linear 
time-periodic model when computing A(t).   
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Fig. 8 Fourier series expansions of the identified modes for forcing frequency f1=15.4 Hz 

 
For the first mode, the dominant coefficients were easily determined because of their large amplitude relative to the others.  
One can verify that these coefficients are important to the response by interrogating the spectra in Figure 6(a) and (b) for the 
corresponding peaks.  It was determined that the unaliased Floquet exponent was attributed to the peak at 18.2 Hz, so this is 
the m=0 harmonic in the Fourier series expansion.  The peaks at 49, 79.8, and 110.6 Hz can be attributed to the m = +2, +4, 
and +6 harmonics (i.e. 18.2+2*15.4= 49, 18.2+4*15.4 = 79.8, and etc.).  The peaks at 12.6, 43.4, 74.2, 105 Hz can be 
attributed to the m=-2, -4, and -6 harmonics since for example, 18.2-2*15.4= -12.6 and negative frequencies reflect back to 
positive frequencies.  The Fourier series expansion in Figure 8 reveals that the harmonics m=-4,-2,0,+2,and +4, have larger 
amplitude than the baseline noise, so only those are retained when forming A(t).   
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The dominant coefficients of the second mode (b) are more ambiguous.  One might presume from Figure 8(b) that only the 
m=0 term is significant.  However, the spectra from Figure 6(a) and (b) show that there are significant time-periodic peaks at 
35, 96.6, and 127.4 Hz that can be resolved from the noise.  Since the Floquet exponent of this mode is 65.8 Hz, these peaks 
correspond to the m=-2, +2, and +4 harmonics of the expansion, and because the peaks in the spectra can be resolved from 
noise they are physically meaningful and should be retained in the Fourier series expansion of the mode. 
 
After the Fourier series models of the identified modes have been formed, they were integrated twice according to Eq. (9) in 
order to obtain a description of the modes in terms of displacement.  Then, the state transition matrix and state coefficient 
matrix were constructed based on the method in [13].  An analytical model for the state coefficient matrix was also 
constructed using the same method as in [14].  The system is fourth order, so the state coefficient matrix is a 4x4 time 
dependent matrix.  The lower left 2x2 block corresponds to scaled stiffness components of the model.  The (3, 2) and (4, 2) 
components of the state coefficient matrix, which are the stiffness coefficients that multiply the beam tip degree of freedom 
are plotted versus time in Figure 9.  The components that were estimated using the proposed identification method are plotted 
with open circles, and the analytical coefficient values are plotted with a solid line. The analytical (3, 2) component of the 
matrix (black line) varies over the periodic orbit by approximately 30% of its initial value of 3.46e4 [N/(kg-m)], and the 
analytical  (4, 2) component varies by approximately 51% of its initial value of -5.26e-4 [N/(kg-m)], so the system is quite 
time periodic based on the analytical model.  The estimated coefficients for the (3, 2) and (4, 2) terms of the state coefficient 
matrix agree fairly well with the analytical values.  The (3, 2) term differs from the analytical term by at most about 8.5% and 
the (4, 2) term differs by at most about 12.5%.  
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Fig. 9 Time-periodic state coefficient matrix components for forcing frequency f1=15.4 Hz 

 
The (3, 1) and (4, 1) terms of the state coefficient matrix are also related to the stiffness of the system, but for brevity they are 
not shown.  The analytical (3, 1) and (4, 1) terms are constant, but their estimates showed between 8% and 14% variation 
with time, although they were relatively accurate in an average sense.   
 
Because the damping in the system is linear, the lower right 2x2 block of the true analytical state coefficient matrix is also 
composed of terms that are constant with time.  The estimates of these damping terms from the identification method vary 
significantly with time.  Each of the four terms varies by an amount that is at least an order of magnitude larger than the 
constant value predicted by the analytical model, and they did not tend to agree very well in an average sense either.  
However, the identified STM matched the decay of the actual response well, so the error seems to arise when estimating A(t) 
from the STM. 
 
The identified state coefficient matrix can now be used to calculate its force contributions to the equations of motion of the 
nonlinear system according to eq. (11).  This was done using MATLAB’s ‘cumtrapz’ function, which is an approximation of 
the cumulative integral using the trapezoidal method.  The lower left-2x2 block of the matrix in eq. (11) is plotted in Figure 
10 versus the corresponding displacement term.  Since these terms were integrated with respect to the displacement 
components of the state vector, they are the scaled force-displacement functions of the system.  The top row of plots relates 
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to the first degree of freedom (DOF) and the bottom row the second DOF.  The identified scaled force-displacement curves 
are plotted with the open blue circles.  The analytical state coefficient matrix was also integrated according to eq. (11).  The 
scaled force-displacement curves for the analytical system are plotted with the blue lines.  The underlying periodic orbit 
defines the displacement of the DOFs, and the first DOF displaces between about 0.5mm ( (a) and (c) ), while the second 
DOF displaces farther, between about 1.2mm ((b) and (d)).  The restoring force on the first DOF (a1,1) has a negative 
correlation with y1 displacement.  This is also seen for the a2,2 versus y2 relationship, while both the cross terms (a1,2 and a2,1) 
are positively correlated.  The magnitudes of the [a1,1, a1,2] and [a2,1, a2,2] force components oscillate between about 50 N/kg 
and 90 N/kg, respectively.  All the force-displacement curves are predominantly linear, except for the a2,2 component in (d).  
The identified force-displacement relationships agree exceptionally well with the analytical relationships. 
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Fig. 10 Scaled force-displacement relationships acting on the beam DOFs for forcing frequency f1=15.4 Hz 
 
The forced-displacement curves can be directly linked to the dynamics of the system and how the DOFs interact.  These 
functions completely characterize the nonlinear equation of motion of the system.  According to these results, only the beam 
tip is subjected to nonlinearity, and this is consistent with the location of the nonlinear spring.  It is significant that these 
results were obtained without any a priori assumption regarding the shape of the force-displacement relationships. 
 
The force displacement relationships that have been identified for the system can be validated to some degree by using them 
to compute the total restoring force in the system at each point within the periodic limit cycle.  This sum of the restoring 
forces can also be computed using the method described in Section 2.2.5, and the two can be compared to validate the results.  
To do this, each block of terms must be premultiplied by the analytical mass matrix to achieve the same scaling.  This puts 
the terms into units of force rather than units of acceleration.  The restoring forces have components due to the stiffness of the 
beam and due to the dissipative effects of damping.  The total restoring force acting on a degree of freedom is the sum of 
these, but it has already been noted that the damping estimates are questionable, so the restoring forces were computed both 
with and without the damping terms.  Figure 10 shows the restoring forces versus time for one cycle of the periodic orbit.  
The total restoring force estimate (RFLTP Total) is plotted with the open blue circles.  The estimate that excludes the velocity 
related forces is labeled (RFLTP Disp.) and plotted with open black squares.  The total restoring forces computed using the 
RFS method outlined in Section 2.2.5 are also shown with the solid blue line.  In the first half of the orbit, the restoring force 
on the beam tip leads the restoring force on the beam center, which initially remains near zero, but both forces are in phase 
and increase to a maximum near 0.017 seconds.  The maximum value of the analytical restoring force is near 5 N for the 
beam center and 2 Newton for the beam tip.  After the maximum, both restoring forces decrease towards zero, and the force 
on the beam center reaches the near zero around 0.03 seconds, while the force of the beam tip goes through zero near the half 
period time of 0.033 seconds.  The restoring forces during the second half of the period are antisymmetric to the first half.  In 
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general, the estimated total restoring force that acts on the beam center agrees very well with the force computed using the 
RFS method.  However the estimate at the beam tip shows significant discrepancies when the damping terms are included.  
This reveals that the damping in the linear time-periodic model has not been accurately identified, but the actual damping is 
small so we can verify that the displacement dependent terms have been properly identified.    
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Fig. 11 Time-periodic restoring forces acting on the beam degrees of freedom for forcing frequency f1=15.4 Hz 

 
Discussion 
 
Using the proposed identification method, a functional form of the force-displacement and force-velocity (not shown) 
relationships was directly calculated.  Each term of the state coefficient matrix that was directly related to a parameter of the 
system was integrated individually to produce a force relationship.  This approach also allows one to separate the effects of 
stiffness and damping, thereby using only the trustworthy identified parameters.  For example, the components of the 
estimated state coefficient matrix that related to damping contained a measurable amount of error, so those terms could be 
approximated with some other method to achieve a more trustworthy model.  Additionally, this method allows one to 
evaluate how errors in each identified state coefficient component are transferred to the force relationships.  Even though the 
estimated (4,2) term of A(t) was different than the analytical term by up to 12.5%, the estimated a2,2 force-displacement curve 
compares remarkable well to the analytical model.  Finally, the method provides important information on the interaction of 
the multiple-degrees of freedom.  The a2,2 curve provided evidence that DOF y2 was subjected nonlinear effects, and it could 
be used to extract the functional form of the nonlinearity.   
 
 
Case 2:  
 
The system may also be driven in a periodic orbit near the second resonance condition, which will also produce a large 
amplitude response that maps a large portion of the state space.  In order to assess the results of the identification when using 
different resonance conditions, a second simulation case was considered with forcing at f2=60.9 Hz.  The system was 
simulated from initial conditions [ ]y y =[-8.631e-5; 1.217e-4; 9.103e-2; -1.345e-1], and the same procedure as Case 1 was 
used to calculated the periodic and perturbed responses for the same harmonic forcing amplitude and impulsive forcing 
configuration.  The time histories in this case were similar to those shown for the previous case, only now the two 
measurement points are out of phase since the second mode dominates the response.   
 
The spectra of the perturbed responses and those of the difference between the perturbed and the periodic response responses 
were calculated with the FFT function, and those curves are plotted in Figure 12(a) and (b).  The periodic response at the 
drive frequency 60.9 Hz and at the third harmonic of the drive frequency, 187.2 Hz, are both clearly visible, as well as several 
peaks due to the time-periodic effects caused by the nonlinearity.  The lifting technique was applied as before, and the 
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composite spectrum of the lifted responses is plotted in Figure 12(c) with the solid black line. The lifting technique again 
results in a much simpler spectrum, and there are two prominent peaks at 1.85 Hz and 11.6 Hz and a very weak peak at 23.2 
Hz in the composite of the lifted responses.  There also seems to be some high amplitude response near the zero frequency 
line.  AMI identified two modes in the responses with eigenvalues 1= -3.9850 +11.5712i and 2= -0.6290 +72.8480i, natural 
frequencies |1|/(2)= 1.9478 Hz and |2|/(2)=11.5945 Hz, and damping ratios 0.3256 and 0.0086, respectively, and a 
composite of the reconstruction of the responses from the two mode fit is plotted with the dashed red curve.   The subtraction 
residual is substantially reduced by the two mode fit, but some artifacts remain near the zero frequency line and near 23.1 Hz. 
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Fig. 12  Response spectra for forcing frequency f2=60.9 Hz 

 
The spectra from the perturbed response contain far fewer peaks than with the Case 1 forcing.  The peak near 11.6 Hz in (a) 
and (b) directly corresponds to the 11.6 Hz peak in the composite of the lifted responses, so AMI identified an unaliased 
eigenvalue for this mode in this case.  The peaks at 110.2 and 133.4 Hz in (a) and (b) can be attributed to the m=-2 and +2 
harmonics of the time periodic mode at 11.6 Hz, since 11.6-2*60.9 Hz = -110.2 Hz, which reflects back to a positive value, 
and 11.6+2*60.9 Hz = 133.4 Hz.  The broad peak at 62.8 Hz becomes aliased in the composite spectrum of the lifted 
responses and corresponds to the peak at 1.85 Hz in (c).  This eigenvalue can be unaliased by adding 2*60.9 rad/s to the 
imaginary part of the eigenvalue for this peak, which results in the natural frequency |-3.985 +394.4i |/(2) = 62.77 Hz that 
matches the peak in (a) and (b).  The other notable peaks at 37.8 Hz in (b) and 84 Hz in (a) and (b) cannot be attributed to 
time-periodic effects of the identified modes.  These peaks differ from the drive frequency by -23.1 Hz and +23.1 Hz for the 
37.8 and 84 Hz peaks, respectively, so they both alias to 23.1 Hz in the composite of the lifted responses. Those peaks may 
be [14] caused by the domain of attraction [25] of a nearby (in state space), strong, and stable periodic orbit (e.g. the 
perturbation about the limit cycle may not be sufficiently small).  The cause of such artifacts and their quantitative effect on 
the identification results will be a focus of future works. 
 
The responses for this forcing case contain fewer time periodic effects than in the previous case, and thus the Fourier series 
expansion models of the mode shapes are quite straightforward to construct.  The Fourier series were formed for each mode 
shape, and the m=-2, 0, and +2 terms were retained for the 11.6 Hz mode (2 from AMI) and only the m=0 term was retained 
for the 62.8 Hz mode (1 from AMI before unaliasing).  Then, the Fourier series expansions of the modes were integrated 
twice to get displacement models and used to construct the state transition matrix and state coefficient matrix of the time-
periodic model.  The estimated values of the (3, 2) and (4, 2) terms of the identified state coefficient matrix are plotted in 
Figure 13 with the open circles.  The analytical state coefficient model was also calculated for this forcing case, and the 
values of the analytical coefficients are plotted with solid lines.  The analytical (3, 2) coefficient varies throughout the period 
by about 3% of its minimum magnitude, and the analytical (4, 2) coefficient varies by about 11%, so this model is not as 
strongly time-periodic as the model from forcing Case 1.  The terms from the estimated state coefficient matrix agree well 
with the analytical model, differing by about 2% and 7% over the course of the periodic orbit, respectively.  The (3, 1) and (4, 
1) terms from the estimated state coefficient matrix vary by relatively small amounts over the course of the period, but their 
mean values over time agree very well with the constant analytical values for those matrix terms.  Like forcing Case 1, the 
estimates for the state coefficient terms that are related to damping (in the lower right 2x2 block) tend to vary over the course 
of the period with large errors.  However, fluctuations in these terms are not as large as those of forcing Case 1.   
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Fig. 13  Time-periodic state coefficient matrix components for forcing frequency f2=60.9 Hz 

 
The estimated state coefficient matrix was used to calculate the restoring forces using the same method as for forcing Case 1.  
The left-2x2 block of the resulting function g is plotted in Fig. 14 for the estimated and analytical force-displacement 
relationships using open black squares and solid black lines, respectively.  The force-displacement results from the Case 1 
identification are also shown with open blue circles and solid blue lines for the estimated and analytical results.  The 
displacements of the DOFs for this periodic orbit are much smaller than the previous case, and correspondingly the 
magnitudes of the restoring forces are also smaller.  The force-displacement curves for Case 2 have the same correlation with 
the DOFs as Case 1, with the diagonal terms that are plotted correlated negatively and the off diagonal terms correlated 
positively.  Although the Case 2 estimated force-displacement values agree very well with the Case 2 analytical values, there 
appears to be some offset between curves from Case 1 and Case 2.  However, the slopes of the curves between the 
displacements that are shared for both cases agree very well 
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Fig. 14 Time-periodic restoring forces acting on the beam degrees of freedom for forcing frequency f2=60.9 Hz  (the Case 1 

results are shown for comparison) 
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Discussion 
When the system was excited with a frequency near the second nonlinear resonance, a very different periodic orbit was 
produced.  The DOF responses were out of phase, and the magnitudes of the displacements were smaller.  Despite the 
differences of the periodic orbit and interaction of the DOF, the procedure was still very straightforward to apply, and a 
trustworthy time-periodic model was identified.  Due to the smaller amplitudes of the DOFs, the model contained less time-
periodic effects, and the force-displacement relationships that were constructed were only weakly nonlinear.  Nevertheless, 
these curves did match the linear slope of the Case 1 force displacement model providing good evidence that the two models 
are in agreement.  It is clear from the results that the Case 1 forcing configuration provides better opportunity to identify a 
nonlinear model of the system.  The higher frequency can be used, but the system must then be forced at higher amplitude in 
order to better excite the nonlinearity. 

3.3 Experimental Measurements 
 
The identification method was next applied to the experimental system.  Harmonic excitation was applied to the beam with a 
model 2100E11-100 lb Modal Shaker from The Modal Shop, Inc.  The beam was approximated as a having a fixed support, 
so the shaker was freely hung from a lateral excitation stand, as recommended in [26] for shaker excitation.  A thin steel 
stinger was used to transmit the excitation from the shaker to the beam.  One end of the stinger was clamped inside the shaker 
armature and the other end was fixed to a force transducer, model 208C04 from PCB Piezotronics, Inc. (PCB), which was 
bolted to the beam at a location x = 508 mm from the fixed end of the beam.  Harmonic forcing was provided by a Textronix 
model 3022 arbitrary function generator, amplified by a model 2050E05 power amplifier from The Modal Shop, Inc., and 
input to the modal shaker.  The amplitude and frequency of the excitation were varied to find forcing conditions that drove 
the beam to respond in a desirable stable periodic orbit.  A modally tuned impulse hammer, model 086C01 from PCB was 
used to impact the beam at various locations to disturb the response from its periodic orbit.  The response was measured with 
an Endevco model 66A12 triaxial accelerometer (z-channel was used) located at x = 508 mm (beam center) and with an 
Edevco model 256-100 isotron accelerometer located near the free end of the beam at x = 984mm (beam tip).  All the 
accelerometers were secured to the beam with wax.  The measurements were acquired using a Photon II portable dynamic 
signal analyzer by LDS Dactron.  This system was also used to apply sine-sweep forcing signals. 
 
An initial sine sweep test was performed to evaluate the frequency response of the beam from 1-150 Hz.  The Photon II 
output voltage was set to 0.2 Volts for this test (the gain on the amplifier was held at a constant level for all tests).  The 
frequency was swept from 1-150Hz in a period of 699 seconds, and the acceleration responses of the beam and the applied 
force response were measured during this sweep.  The Hilbert Transform was applied to these signals to determine the 
instantaneous amplitude and frequency for all time instants during the sweep.  Then, a moving average with a ten sample 
bandwidth was applied to the results of the transformed signals and the ratio of the response to the force was calculated at 
each frequency line.  Figure 15 shows the nonlinear frequency response computed in this way, with the beam center degree of 
freedom plotted with the blue curve and the beam tip plotted with the red curve.  There are a number of peaks in the spectra 
below 150 Hz, including two broad peaks near 17 and 43 Hz, two very weak peaks near 30 and 60 Hz, and a prominent sharp 
peak near 120 Hz.  Both of the broad peaks are very noisy despite the smoothing that was applied to the signals.  The lowest 
frequency peak in particular is very irregular below 17 Hz in both degrees of freedom.  Near 37 Hz, there appears to be a 
large discrete jump in the amplitude of degree of freedom one and a small jump in the amplitude of the tip.   
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Fig. 15 Nonlinear frequency response of the experimental nonlinear beam for DOF 1(midspan) and DOF 2(tip) 

 
The peaks in the nonlinear frequency response can be deciphered using knowledge of the underlying linear system.  The third 
linear bending mode of a cantilever will tend to have significant tip response but minimal beam center response (due to a 
nearby node), so the peak near 120 Hz could be related to the third linear bending mode and appears to be predominantly 
linear.  The peaks at 17 and 43 Hz could then be related to the first and second linear bending modes, respectively.  All the 
remaining artifacts in the responses must be attributed either to noise or the nonlinearity of the system.  The jump in the 
amplitude of the responses is a typical characteristic of nonlinear systems, so it can be assumed that the system responds 
nonlinearly when forced near these frequencies.  The jaggedness of the curve below 17 Hz seems to be caused both by super 
harmonic resonances in that region and by limitations of the shaker and setup at these low frequencies.  Therefore, a forcing 
frequency of 20 Hz was selected to drive the system and apply the proposed identification, since it is near the 17 Hz peak and 
both degrees of freedom are adequately excited at this frequency. 
 
The function generator was used to drive the system at 20 Hz with amplitude of 0.2 Volts.  The impact hammer was used 
apply an impulsive force at the free end of the beam (at x= 990 mm), and the force transducer signal and two accelerometer 
signals were sampled at a frequency of 2.56 kHz over a window of approximately 12.8 seconds.  The sampling frequency 
provided measurements at 128 samples per cycle of the periodic orbit, and the time window allowed enough time for the 
perturbed response to decay until only the underlying periodic orbit remained.  In order to determine the underlying periodic 
orbit and match its phase to that of the perturbed responses, the second half of the time histories, which consisted of only the 
periodic orbit, were used to find the true frequency of the periodic orbit based on a minimization search with MATLAB’s  
‘fminsearch’ function.  This frequency was found to be 20.0000 Hz, and it was used to fit a multi-harmonic sinusoid to the 
periodic orbit (i.e. over the second half of the time histories).  This fit can be used to recreate the periodic orbit over the entire 
time series (assuming that it is stationary).  This process produces the underlying periodic orbit and assures that its phase is 
aligned with that of the underlying periodic orbit.  The reconstructed periodic orbit, the perturbed response, and the difference 
between the two are plotted for the tip degree of freedom in Figure 16 with the same format that was used previously.  The 
perturbation about the periodic orbit can clearly be seen in the early time response, since its relative magnitude is somewhat 
large compared to the periodic orbit magnitude.  At late times the perturbed signal is almost indistinguishable from the 
periodic orbit.  Note also that the periodic orbit is far from a pure sinusoid (as one would expect for a linear system).  Several 
high frequency oscillations are present.  
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Fig. 16 Tip responses of the experimental beam for forcing frequency fexp=20 Hz 

 
The FFTs of the perturbed response and the perturbed minus the periodic responses were calculated, and those spectra are 
plotted in Figure 17 using the same format that was used previously.  A number of sharp peaks occur in the perturbed 
response at 20 Hz and all of the harmonics of that frequency (i.e. 40, 60, 80 Hz, etc.) that are shown in the plots.  Although 
the 20 Hz peak is the largest, the remaining peaks do not appear to diminish with increasing frequency.  Since a single 20 Hz 
frequency sinusoid was used to force the system, this suggests that the system is highly nonlinear.  There are many other 
artifacts that occur in the spectra, but a few coherent peaks can be seen at 28.2 and 188.2 Hz in (a) and (b) as well as 48.2 and 
68.2 Hz in (b).  A prominent peak occurs in both plots at 122.1 Hz, and two peaks of similar characteristics but much smaller 
magnitudes occur at 102.1 Hz and 162.2 Hz in plot (b).  In each group of peaks previously listed, the peaks are separated by 
integer multiples of the scan frequency, and therefore are likely due to time-periodic effects. 
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Fig. 17 Response spectra of the nonlinear beam measurements for forcing frequency fexp=20 Hz 

 
The peaks at 28.2 Hz and 122.2 Hz can be attributed to the m=0 harmonics of the two time-periodic modes of this system.  
The peaks at 48.2, 68.2, and 188.2 Hz can be attributed to m= +1, +2, and +8 harmonics of the former, and the peaks at 102.2 
and 162.2 Hz can be seen as the m= -1 and +2 harmonics of the latter.  The lifting method was applied to the perturbed minus 
periodic responses, and the FFT of the lifted responses was calculated.  The composite spectrum of the lifted responses is 
plotted in Figure 18 with the solid black line.  AMI identified two modes in the responses with eigenvalues 1= -2.777 
+13.491i and 2= -6.966 +51.553i, natural frequencies |1|/(2)= 2.192 Hz and |2|/(2)=8.280 Hz, and damping ratios 0.2016 
and 0.1339, respectively.  The plot also shows the reconstruction of the composite spectrum based on the fit and the 
subtraction residual, which is significantly reduced by the two mode fit.  This reveals that a linear-time periodic model fits 
the response of this highly nonlinear system very well about the limit cycle. 
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Fig. 18 Composite spectrum of lifted responses and AMI fit of the lifted responses for the nonlinear beam simulation for 

forcing frequency forcing frequency fexp=20 Hz 
 
The first eigenvalue can be deciphered to be an aliased version of the mode at 122.1, since 2.192 +6*20 = 122.192, and the 
second eigenvalue is the aliased version of the mode at 28.2 Hz, since 8.280+1*20 = 28.280.  The time-periodic modes that 
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AMI extracted from the measurements were very noisy, so when they were expanded in a Fourier series, the previous 
information was used to retain only those harmonics that were clearly represented in the measurements.  Different time 
varying state matrices would be obtained depending on which terms were retained in the model for the state transition matrix.  
To illustrate this, the state transition matrix and state coefficient matrix were constructed based on using one, two, and three 
Fourier terms for this system.  The Fourier coefficients that were used to construct these models are defined in the legend for 
modes 1 (denoted m1) and 2 (denoted m2).  The (3, 2) and (4, 2) coefficients of the resulting estimated state coefficient 
matrices are plotted in Figure 19.  The estimated models with a single m=0 Fourier term have linear time-invariant 
coefficients, and as more terms are included in the expansion, the coefficients show increasing variation with time.  With the 
three Fourier term model, the (3, 2) term of the state coefficient matrix varies by 85% of its minimum magnitude and the (4, 
2) term varies by 30%. 
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Fig. 19  Estimated time-periodic state coefficient matrix components for forcing frequency fexp=20 Hz 

 
The proposed identification method assumes that the system is oscillating in a stable periodic limit cycle.  As mentioned 
previously, the limit cycle is measured by capturing the response of the system after the perturbation has decayed.  The 
Fourier coefficients of the periodic limit cycle are then obtained and used in the analysis.  Those Fourier coefficients are used 
to calculate the restoring forces using eq. (13), and also to compute the total restoring forces using eq. (15) as part of the 
validation step described in Section 2.2.5.  The two measured acceleration signals and the measured force signal are plotted 
with blue dots in Figure 20.  Each cycle of the assumed periodic response is overlaid, so the the time window shown 
corresponds to only one period of the steady state force and response.  The Fourier series fit to each signal is also plotted with 
a solid red line.  The acceleration of the beam’s midspan (Accel 1) and tip (Accel 2) DOFs ranges between about 10m/s2 
and 40m/s2, respectively.  The input force ranges between about 5 N.  There is significant uncertainty due to noise in all 
three signals, yet each signal also seems to contain some high frequency fluctuations that are quite repeatable as well.    These 
fluctuations are responsible for the high frequency harmonics seen in Figure 17.  The harmonics describing the periodic orbit 
do not seem to diminish substantially in magnitude as frequency increases.  Although it is not shown, these peaks are present 
at the integer multiples of the forcing frequency for the entire sampling bandwidth. 
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Fig. 20  Measured periodic signals and harmonic fits plotted period and overlaid for fexp=20 Hz 

 
 
Discussion 
 
The signals plotted in the figure seem to indicate that the accelerations in this system fluctuate wildly over the limit cycle, 
especially at the midspan of the beam.  Hence, many harmonics are needed to define the periodic limit cycle, and so one 
would expect that the linear time-periodic model of the system about this limit cycle must also contain many harmonic terms.  
Although linear time-periodic behavior was clearly visible in the experimental measurements, only a few harmonics were 
discernible from the noise, so a trustworthy estimate of the A(t) matrix could not be obtained.  In any event, the accuracy with 
which the limit cycle is known seems questionable, so any measure of the dynamics about that limit cycle would have limited 
value.  It seems that more care must be taken to obtain a valid limit cycle before the proposed system identification technique 
can be applied to this system.  It would also be preferable to have a limit cycle that is described by a smaller number of 
harmonics.  Furthermore, i this work we have proposed to validate the nonlinear model identified by linear time-periodic 
identification using the restoring force surface method, but that method was also found to give meaningless results due to the 
fluctuations in the measured accelerations and input force.  Future works will seek to refine the test methodology to produce 
more reliable measurements in order to address these issues.  Even then, it is also interesting to note that very clear linear 
time-periodic behavior was visible in this system’s response (e.g. Figures 17 and 18), even though the measurements were 
not of sufficient quality to allow that behavior to be related to the system’s nonlinear equation of motion. 

4. Conclusions 
This work explores a new system identification strategy for nonlinear systems that is based on approximating the system’s 
dynamics as linear time-periodic about a stable limit cycle.  A variant of the restoring force surface method was proposed that 
estimates the total restoring forces in the system over the periodic orbit, which can be helpful in validating the nonlinear 
model found by the linear time-periodic identification approach.  The approach was applied to simulated measurements from 
a two DOF cantilever beam and found to be capable of identifying the force-displacement relationships in the system from 
simulated measurements.  However, the damping forces were not accurately estimated and the method was sensitive to the 
number of terms used in the state transition matrix of the linear time-periodic model.  Even then, it is significant that the 
method identifies the nonlinear force displacement relationships in the system without any a priori assumption regarding the 
form of the nonlinearity or the order of the system.  Two different excitation strategies were explored, which illustrated that it 
is important to choose an excitation that strongly activates the nonlinear parameters over a large range of motion in order to 
observe the nonlinearity.  Additionally, the simulations revealed that it was important to assure that the perturbation from the 
underlying periodic orbit was small enough so that it could be modeled as linear time-periodic. 
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The methods were also applied to experimental measurements from a nonlinear beam with a geometric nonlinearity at its tip.  
Measurements from this system showed clear signs of time-periodic behavior.  However, the system was found to deviate 
significantly from the periodic limit cycle and that cycle itself was not very repeatable, so neither the proposed linear time-
periodic identification method nor the restoring force surface method gave reasonable results.  The authors are presently 
studying this issue and mapping the periodic orbits that are possible (see [22]) to better understand how to best apply the 
proposed identification methodology to experimental measurements from high order systems. 
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 Appendix 
 
The spring steel on the tip of the beam acts as a tension on element, and transfers force by its line of action which is assumed 
to always be straight.  When the beam tip is deflected by a small amount , then so is the spring steel element, and it forms a 
small angle with the right support, .  A diagram of this geometry is shown in Figure 21.   The spring steel which had original 
length ls is assumed to strain by an amount ls due the tension force F in the element.  By the force displacement relationship 
of a tensile element, ls=Fls/(EsAs) where Es is the elastic modulus of the spring steel and As is the cross section area of the 
strip.  Therefore, the tensile force is F = EsAs/ls*ls.  Next,the strain can be related to the geometry of the tip deflection.   
 

 
Fig. 21 Geometry for beam tip deflection and interaction of the strip of spring steel 

 
The tip of the beam has a deflection of , which can be used to write the strain in the spring steel as a function of the 
undeformed length. 
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The vertical contribution of the tensile force is Fv=Fsin(), or using the geometry of the figure and the previous relationship, 
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In order approximate the vertical force displacement relationship about small tip deflections of the beam, the previous 
equation was expanded in a Taylor series about =0 for terms to O(3), and the higher order terms were neglected.  This 
results in the following expression for the vertical force contribution of the spring steel. 
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The nonlinear spring constant can therefore be approximated as k3=EsAs/(2ls

3). 
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ABSTRACT 
A B-spline based FE model updating procedure is proposed. The approach is based on the least squares minimization of an 
objective function dealing with residues, defined as the difference between the model based response and the experimental 
measured response, at the same frequency. The B-spline FE model can make it possible to limit the number of dofs. A con-
straint model and a damping model are proposed, being parameterized by means of B-spline functions. The incompatibility 
between the measurement dofs and the model dofs is also taken into consideration. An example dealing with a composite car 
front spoiler is reported, considering the presence of random noise. Results are critically discussed. 
 
1. Introduction 
Finite Element (FE) models are commonly used to predict the system response of mechanical systems, but theoretically de-
rived mathematical models may often be inaccurate, in particular when dealing with complex structures. Several papers on 
FE models based on B-spline shape functions have been published in recent years [1-5]. 
Estimated data from measurements on a real system, such as frequency response functions (FRFs), can be used to improve 
FE model response. Although there are many papers in the literature dealing with FE updating [6-10], several open problems 
still exist. Some issues concerning the use of FRF residues are the selection of frequency data [11-12], the ill-conditioning of 
the resulting system of equations [13] and the choice of measurement degrees of freedom (dofs) [7]. Although many fre-
quency data in measured FRFs are available to set an over-determined system of equations, a limited number of frequency 
points are usually adopted for practical reasons. However, it should be pointed out that a sufficient number of data are re-
quired in order to avoid an ill-defined system of equations and the consequent adoption of regularization methods. The pa-
rametrization of the finite element model is a critical issue to cover to avoid an ill-conditioned system of equations. It is im-
portant that the updating parameters should be able to model the expected system response while avoiding a non-physical 
solution. The modeling of boundary conditions [8] and the damping of structures [14] is sometimes difficult to effectively pa-
rameterize, and such issues are not covered to a great extent in the literature to the authors’ knowledge. 
Furthermore, the incompatibility between the measurement dofs and the model dofs is an issue common to many FRF updat-
ing techniques. Reduction or expansion techniques are a common way to treat this kind of incompatibility [7]. A more gen-
eral approach should also take into account the adoption of different dofs in the two models [15]. In this paper a composite 
shell B-spline based FE model updating procedure is proposed. The approach is based on the least squares minimization of an 
objective function dealing with residues, defined as the difference between the model based response and the experimental 
measured response, at the same frequency. The boundary conditions and the system damping are modeled by employing 
B-spline functions. A B-spline FE model is adopted to limit the number of  dofs. The incompatibility between the measured 
dofs and the model dofs is also dealt with. 
An example dealing with a composite car front spoiler is reported, considering the presence of random noise. Results are crit-
ically discussed. 
 
2. B-spline laminate shell finite element model 
A shell geometry can be efficiently described by means of B-spline functions mapping the parametric domain ( ), ,ξ η τ  
( )0 , , 1≤ ≤with ξ η τ  into the tridimensional Euclidean space (x,y,z). The position vector of a single B-spline surface patch, 
with respect to a Cartesian fixed, global reference frame O, {x,y,z}, is usually defined by a tensor product of B-spline func-
tions [16]: 

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 127 
DOI 10.1007/978-1-4419-9299-4_10, © The Society for Experimental Mechanics, Inc. 2011



 
1 1

( , ) ( ) ( )
= =

 
 

= = ⋅ ⋅ 
 
 

∑∑ ijr P
x m n

p q
y i j

i j
z

r
r B B
r

ξ η ξ η , (1) 

involving the following parameters: 

• a control net of ×m n  Control Points (CPs) ijP ; 

• the uni-variate normalized B-spline functions ( )p
iB ξ of degree p, defined with respect to the curvilinear coordinates 

ξ  by means of the knot vector { }1 1 1
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The degenerate shell model is a standard in FE commercial software because of its simple formulation [17]. The position 
vector of the degenerate shell can be expressed as: 
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where the versors 
ij

3v  and the thickness values ijt  can be calculated from the interpolation process proposed in [18]. 
The displacement field can be defined by following the isoparametric approach [17]: 
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where δ is the vector collecting the 5= ⋅ ⋅m n  generalized dofs: 

 { }11 11 11 11 11=δT
mn mn mn mn mnu v w u v wα β α β , (4) 

( )1 2 3
ij ij ijv , v , v  refer to orthonormal sets defined on Pij  starting from the vector 3

ijv [19], uij, vij and wij are translational dofs, ijα  

and ijβ  are rotational dofs.  
The equation of motion can be obtained by means of the principle of minimum total potential energy as shown in [15]: 
 ( )⋅ + ⋅ =+fM δ FK ∆K , (5) 
the only difference being the derivation of the elasticity matrix for the laminate shell model: 
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where Kk is the contribution of the k-th lamina: 
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det= ⋅ ⋅ Ω∫ T

Ω

K B E B
k

k k J d , (7) 

Ωk  being the restriction to the k-th lamina of solid geometry Ω under analysis and Ek  is the plane stress constitutive matrix 
in the global reference frame: 

 ⋅ ⋅T 'E = T E Tk k k k , (8) 

Tk is the transformation matrix from the k-th lamina local material reference frame (1,2,3) to the global reference frame 
(x,y,z) [17]. The plane stress constitutive matrix 'Ek  in the local material reference frame is obtained according to the Mindlin 
theory [20]: 
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where E represents the Young moduli and G the shear moduli. 
 
2.1 Modeling of boundary conditions  
Distributed elastic constraints are taken into account by including, in the functional of the total potential energy, the potential 
energy ∆W  of the constraint force per unit surface area CΦ , assumed as being applied on the external surface of the shell 
model: 

 − ⋅CΦ = R d , (10) 

where R is the matrix containing the stiffness coefficients ra of a distributed elastic constraint, modeled by means of B-spline 
functions: 

 ij
1 1= =

= ⋅ ⋅∑∑
a a

a a
m n

p q a
a i j

i j
r B B κ , (11) 

where 
ap

iB  and 
aq

jB  are the uni-variate normalized B-spline functions defined by means of the knot vectors, respectively, Ua 
and Va : 

 ( )1 1∆W ( )
2 2
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Cd Φ δ R δT

S S

dS dS . (12) 

The stiffness matrix due to the constraint forces is: 

 
( )= ⋅ ⋅∫ T∆K R

S
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The introduction of this last term in the equation of motion yields: 

 ( )⋅ + ⋅ =+fM δ FK ∆K . (14) 
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2.2 Modelling of system damping 
For lightly damped structures, appropriate results may be obtained by imposing the real damping assumption (real mode-
shapes). The real damping assumption is imposed by adding a viscous term in the equation of motion: 

 (15) 

where the damping matrix C is: 

 1(2 )− −= ⋅ ⋅C Φ diag ΦT ζω , (16) 

and 

 (17) 

where Φ is the matrix of the eigen-modes Φi  obtained by solving the eigen-problem: 

 ( )2−K M Φ = 0i iω , (18) 

and 2
iω  is the i-th eigen-value of Eq.(18). Modal damping ratios iζ can be evaluated from: 

 ( ) ( )2= = ⋅i i ifζ ζ ζ π ω , (19) 

where the damping ( )fζ  is defined by means of control coefficients zγ and B-spline functions zB defined on a uniformly 
spaced knot vector: 
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where fST and fFI are, respectively, the lower and upper bound of the frequency interval in which the spline based damping 
model is defined. In order to take into account the contribution to the FRF of modes outside the input data frequency interval,  

( )1.2= ⋅ST MAXf f  is considered, where MAXf  is the maximum frequency adopted in the input data. 
 
3. Updating 
The parametrization adopted for the elastic constraints and for the damping model is employed in an updating procedure 
based on Frequency Response Functions experimental measurements. 
The  measured FRFs ( )X

bH ω , with b=1,…, , are collected in a vector ( )hX ω : 

 (21) 

The dynamic equilibrium equation in the frequency domain, for the spline-based finite element model, can be defined by 

Fourier transforming Eq.(15), where ( )
~

( ) =F : 

 (22) 

where ( )Z ω is the dynamic impedance matrix and ( ) ( )( ) 1−
=H Zω ω is the receptance matrix. 

Since the vector contains non-physical displacements and rotations, the elements of the matrix ( )H ω  cannot be directly 
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compared with the measured FRFs ( )X
qH ω . The analytical FRFs related to physical dofs of the model can be obtained by 

means of the FE shape functions. Starting from the input force applied and measured on the point ( , , )=iP s i i iξ η τ  along a di-
rection φ  and the response measured on the point ( , , )=rP s r r rξ η τ  along the direction ψ , the corresponding analytical FRF 
is: 

 (23) 

where φ  and ψ can assume a value among u, v or w (Eq.3). 
The sensitivity of the FRF ,

,ψ φ
r iH  with respect to a generic parameter kp  is: 

 (24) 

where { }1=p p

T

n
p p is the vector containing the updating parameters pk. 

Since each measured FRF ( )X
bH ω  corresponds to a well-defined set { }, , ,φ ψi r , it is possible to collect, with respect to each 

measured FRF, the corresponding analytical FRFs in the vector:  
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The elements of ( ),ah pω are generally nonlinear functions of p. The problem can be linearized, for a given angular fre-

quency ωi, by expanding  ( ),ah pω  in a truncated Taylor series around p=p0: 
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in matrix form: 

 (27) 

or: 

 ⋅ =S ∆p ∆hi i , (28) 

where Si is the sensitivity matrix for the i-th angular frequency value ωi. 

It is possible to obtain a least squares estimation of the np parameters pk, by defining the error function e: 
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and by minimizing the objective function g: 
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 ( )g min= ⋅ →e eT . (30) 

Since the updating parameters pk can have very different sensitivities, ill-conditioned updating equations may result. A nor-
malization of the variables was employed to prevent ill-conditioning of the sensitivity matrix and, in order to avoid updating 
parameters assuming non-physical values during the iterative procedure, a proper variable transformation is adopted to con-
strain the parameters in a compact domain without using additional variables [15]. 
Since FRF data available from measurement are usually large in quantity, a least squares estimation of the parameters can be 
obtained by adopting various FRF data at different frequencies. The proposed technique is iterative because a first order ap-
proximation was made during derivation of Eq.(26). 
 
4. Applications 
The numerical example concerns a front car spoiler. It is an E-glass fiber reinforced plastic component modeled with a single 
B-spline surface employing third degree B-spline functions and 21x10 CPs (blue dot in Fig.2) for which the adopted material 
properties are: 9 9 8 3

1 2 12 13 23 1253.78 10 , 17.93 10 , 4.3 10 , 1470 / 0.25= ⋅ = ⋅ = = = ⋅ = =E Pa E Pa G G G Pa Kg m andρ ν .
 Because of FRF experimental measurement unavailability, a set of experimental measurements was obtained by numerical 

simulation, in the frequency range [0, 800] Hz, assuming the input force applied on point 1 along z direction and four re-
sponse dofs (along z direction, red squares in Fig.2)  
The simply supported constraint was modelled as a distributed stiffness acting on a portion of the bottom surface of the 
shell ( )0=τ : 

 (31) 

where R is the matrix containing the stiffness of distributed spring acting only in vertical direction z: 

 
( )

0 0 0
0 0 0
0 0 ,

 
 =  
  

R
r ξ η

. (32) 

The distributed stiffness r  is modelled by means of B-spline functions: 

 ( ) ( )
1 4

0 2
ij

1 1= =

= ⋅ ⋅∑∑ i j
i j

r B B κξ η , (33) 

where 11 2 210 1.1 10 2.8 10 5 5= ⋅  ⋅ ⋅ κ , and the associated B-spline functions are defined on the knot vectors 

{0,0.03}=κU  and {0,0,0,0.5,1,1,1}=κV . The distribution of the spring stiffness is plotted in Fig.3. The modal damping ra-
tio values reported in Fig.4 were employed for the first 8 eigen-modes. 
 
 

 
Fig. 1 Fiberglass composite front car spoiler model. 

( ) d= ⋅⋅ ⋅∫ T∆K + R +
S

S , 

132



 
Fig. 2 The B-spline FE model with the 21x10 CPs (blue dot) and the 4 measurement response dofs (red squares). 

 

 
Fig. 3 Distributed stiffness values (vertical-axis) of the simply supported constraint employed to generate the measure-

ments. 

 
Fig. 4 Modal damping ratio values adopted to simulate the measurements. The values refer to the first 8 modes. 
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Fig. 5 Comparison of (input in dof 1; output in dof 3) FRF before updating: the input data (black continuous line) and 
the model (red dotted line). 

 
Fig. 6 Evolution of the stiffness parameters jκ (j=1,...,4 in the legend) during iterations by adopting the proposed up-
dating procedure. Example without considering noise. 

4.1 Measurement simulation: noise not included 
Coefficients in vector κ  and damping coefficients zγ  (quadratic B-spline functions, nz=5, 0=STf Hz  and 

( )1.2 800= ⋅FIf Hz  in Eq.20) are assumed as the updating identification variables. The updating procedure is started by put-
ting all of the coefficients in κ  equal to 128 10⋅ Pa and all of the damping coefficients equal to 0.02. The comparison of the 

resulting FRFs is reported in Fig.5. The gradient of C with respect to the stiffness parameters is disregarded, i.e. ∂C

k

 if 

≠k zp γ . All four measurement dofs (Fig. 2) are considered as input. The value of the identification parameters at each step, 
adopting the proposed procedure, is reported in Fig.6 for the stiffness coefficients, and in Fig.7 for the zγ  coefficients; Fig.8  

∂p
=0
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Fig. 7 Evolution of the damping parameters zγ  (z=1,...,5 in the legend) during iterations by adopting the proposed up-
dating procedure. Example without considering noise. 

 

 
Fig. 8 Comparison of the modal damping ratio used to simulate the measurements (red squares) and the identified 

( )fζ  (black line; green filled squares refer to B-spline curve control coefficients). Example without considering 
noise. 

 

refers to the comparison of the modal damping ratio used to simulate the measurements (red squares) and the identified curve 
(black line). The negative values of some parameters can lead to non physical stiffness matrix ∆K  so that instabilities may 
occur during the updating procedure. The transformation of variables [15] does not allow stiffness coefficients to assume 
negative values. The comparison of theoretical and input FRF after updating is reported in Fig.9. 
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4.2 Measurement simulation: noise contribution 
In this simulation, the same updating parameters of the previous examples are considered with the same starting values. A 
random noise is added in FRFs, by considering a normal distribution with a standard deviation equal to 10% of the signal 
RMS value. Four FRFs data (dofs from 1 to 4, Fig.2) are employed in the updating process. 
When 10% noise is added, the value of the identification parameters at each step, adopting the proposed procedure, is 
reported in Fig.10 for the stiffness coefficients, and in Fig.11 for the zγ  damping coefficients; Fig.12 refers to the comparison 
of the modal damping ratio used to simulate the measurements (red squares) and the identified curve (black line) where the 
green filled squares are the B-spline control coefficient zγ . Fig.13 refers to the comparison of the input and updated FRFs. 
 

 
Fig. 9 Comparison of (input dof 1; output dof 3) FRF after updating (example with 4  measurement  response dofs 
without noise): the input data (black continuous line) and the updated model (red dotted line). 

 

 
Fig. 10 Evolution of stiffness parameters jκ  (j=1,...,4 in the legend) during iterations by adopting the proposed updat-
ing procedure. Example with 10% noise. 
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Fig. 11 Evolution of the damping parameters zγ (z=1,...,5 in the legend) during iterations by adopting the proposed 
updating procedure. Example with 10% noise. 

 

 
Fig. 12 Comparison of the modal damping ratio used to simulate the measurements (red squares) and the identified 

( )fζ (black line; green filled squares refer to B-spline curve control coefficients). Example with 10% noise. 

 

5. Critical discussion and conclusions 
An updating procedure of a B-spline FE model of a car front spoiler was proposed, the updating parameters being the coeffi-
cients of a distributed constraint stiffness model and the damping ratios, both modeled by means of B-spline functions. The 
optimization objective function was defined by considering the difference between the measured (numerically synthesised) 
FRFs and the linearized analytical FRFs. The incompatibility between the measured dofs and the non-physical B-spline FE 
model dofs was overcome by employing the same B-spline shape functions, thus adding a small computational cost.  
A test case was investigated by simulating the experimental measurements by model based numerical simulations consider-
ing random noise as well. Experimental measurement data were simulated by adopting the same B-spline analytical model  
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Fig. 13 Comparison of (input dof 1; output dof 3) FRF considering noise (10% case) after updating (4 measurement 
response dofs): the  input data (black line) and the updated model (red line). 

 
used as the updating model. Numerical results showed good matching of the FRFs after the updating process with only four 
measurement dofs, when noise is not considered. The updated FRFs showed a good matching with the input FRFs even with 
the adoption of four measurement dofs and noisy data as input in the updating procedure. The parameterization proposed for 
boundary condition and damping model can be efficiently adapted to the modeled structures regardless of the number of FE 
dofs. The proposed procedure requires that the structural system to be updated is lightly damped. 
The approach needs to be tested by adopting true measurement data as input, in order to assess the effect of model errors, 
measurement dofs spatial distribution and measurement estimate. Future applications will be addressed towards both the 
adoption of real measurement data and the optimal selection of the frequency measurement data. 
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ABSTRACT 
 
Recently a method has been developed to measure surface dynamic strain and stress fields by using a 
contactless 3D scanning laser Doppler vibrometer. Assuming a free visible surface of the test specimen this 
method, a combination of advanced measurement technique and a post-processing algorithm, enables the 
assessment of high resolution dynamic surface loadings including quantity and direction of strain/stress 
distributions.  
 
The first part of the article describes the basic principles of the method. The second part informs about the 
validation work of the measurement results. Different steps were performed in order to measure real structures. A 
numerical model was the base for correlation with measured deflection-shapes, strain- and stress-fields. During 
this analysis, the different influencing parameters for measuring the strain information could be analyzed 
systematically. The third part presents a comparison of vibrometer measurements to strain gauge values.  
 
The validation of the method shows a high level of agreement between measured values compared to numerical 
strain and stress results. The correctness of the absolute strain values could be validated by the comparison with 
strain gauges. Further research will be done to close the gap between simulation and measurement. 
 
 

1. INTRODUCTION 
 
For a safe and reliable design of structures the knowledge of mechanical stresses under structural usage is 
inevitable. Especially for dynamically loaded structures precise information about maximum stresses is important 
in order to design robust components.  
 
A newly developed technique based on a 3D-Scanning Laser Doppler Vibrometer (3D-SLDV) enables the 
contactless measurement of surface stresses of a vibrating structure. The primarily measured information is the 
3D deflections at all surface grid points of the measured structure. The 3D deflection components are used to 
calculate strain and stress distributions in a post-processing routine. This procedure has first been proposed by 
Mitchell et al. [1]. The basic principles of the method and details on the post-processing routine have been 
published by Meitzner [2] and Cazzolato et al. [3].   
 
In this work, the focus is on the validation of the method.  
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2. THEORETICAL BASICS 
 
The 3D-SLDV (see fig. 1) measures the three-dimensional vibration vectors at all specified surface points. It 
consists of three 1D-SLDVs. For the measurement three lasers are directed simultaneously to one point. Each 
vibrometer measures the vibration vector in the direction of its laser beam. The three vibration vectors are then 
transformed into a global orthogonal coordinate system. All points are measured sequentially; therefore, the 
object vibration must be repeated for the measurement of each point. The method has been described by Bendel 
et al. [4]. 
 

 
 
Fig. 1: Test setup comprising the three scanning heads and a digital camera (left) and a test specimen, mounted 

on an electromagnetic shaker (right) 
 
 
Fig. 2 shows the basic principle of the strain measurement with the 3D-SLDV. To position the lasers, the 
geometry data of the object is imported from the FE-model. For the measurement a routine called 
VideoTriangulation has been developed; this routine uses image processing of a high resolution video camera to 
ensure that the three lasers are on the same spot. From the updated laser angles, the geometry data of the real 
object can be obtained.  
 
Once the three lasers are on the same spot, the three vibrometers acquire data simultaneously. The raw data is 
transformed into the global coordinate system of the object.  
 
The next step is an optional smoothing. As the following strain calculation requires a spatial differentiation of the 
data, it is very sensitive to noise. Sophisticated smoothing algorithms reduce the noise prior to strain calculation. 
 
The raw data for the strain calculation is the 3D displacement vectors. These vectors are transformed into a local 
coordinate system which is aligned with the local geometry of the object’s surface. From the local in-plane 
displacement and the geometry, strain is calculated for each surface triangle. 
 
The final step is the transformation of the strain data into the object’s global coordinate system, this allows for 
displaying and analyzing the data. The results can be directly compared to the results of the FE calculation. 
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Fig. 2: Basic principle of the strain measurement with a 3D-SLDV 
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An example for the measurement is shown in fig 3. It shows the third bending mode (mode 6) of the hereafter 
described test specimen at 7.8 kHz.  
 

  
 

Fig. 3: Deflection shape and strain distribution of test specimen at 7.8 kHz 
 
 

3. VALIDATION OF THE STRAIN AND STRESS MEASUREMENT 
 
In order to determine the validity and the limits of the method for structural measurements, extensive validation 
work has been performed. 
 
The validation work has been performed in three main steps: 
 

1. Validation of the post-processing routine 
2. Correlation of the Vibrometer measurement with FE-simulation 
3. Correlation of the Vibrometer measurement with a strain gauge 

 
The validation has been performed on a symmetric cantilever test structure (fig. 4). A 3 mm thin rectangular plate 
was used to identify and validate modal strain distributions. To achieve well defined boundary conditions the test 
specimen contains a 15 mm thick base. A fillet radius of 9.4 mm helps pushing the maximum strains away from 
the fixed base. 

 

Fig. 4: Drawing and photograph of the test specimen, the applied strain gauge can be seen in the photograph 
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3.1 Validation of the post-processing routine 
 
The first step in validation work was to validate the strain calculation post-processing routine. For this purpose a 
3D numerical simulation model of the test specimen has been build, using the FE-Software CalculiX [6] (fig. 5). 
 
After performing a numerical modal analysis [5], the calculated mode shapes and the strain and stress 
distributions have been available directly from Calculix. Those calculated mode shapes have been used to 
validate the post-processing routine which calculates surface strains from the measured surface displacement 
values (fig. 6). 
 
The post-processing routine has been validated by a calculation of the Modal Assurance Criterion (MAC) with the 
strain values calculated by CalculiX. 
 
The obtained MAC-values are shown in fig. 7. All linear strain values are 0.999 which proofs the post-processing 
routine to be correctly implemented. Some shear strain values are below 0.99, this fact can be attributed to very 
high gradients at the edges of the structure which can be better resolved by the FE simulation due to a higher 
point density. 
 

                                  
 

Fig. 5: Simulation model of the test specimen 
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Fig. 7: MAC values between the post-processing routine and CalculiX 
 
 

3.2 Correlation of the Vibrometer measurement with FE-simulation 
 
In order to perform a measurement, the specimen has been mounted on an electromagnetic shaker (see fig. 1). A 
measurement with broad-band excitation has been performed at a single point to find the exact resonance 
frequencies. At each resonance frequency, the deflection shape has been measured with sine excitation. 
 
As described above, the deflection shapes have been post-processed to calculate strain and stress distributions. 
In the following, those post processed measurement values are referred to as measured strain and stress 
distributions. 
 
The measured strain and stress distributions have been compared to those from simulation. The procedure of this 
validation step is shown in fig. 8. The results of the MAC analysis are shown in fig. 9. The results of the visual 
comparison for one mode are displayed in Table 1.  
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Fig. 6: Validation of the post-processing routine 
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Fig. 8: Validation of the strain and stress measurement 
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Fig. 9: MAC values between simulation and measurement 
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Simulation Measurement Simulation Measurement 

 

 

 

 

Displacement Strain X (vertical) 

 

 

 

 

Strain Z (horizontal) Strain ZX 

 

 

 

 

Von Mises Stress Stress X (vertical) 

 

 

 

 

Stress Z (horizontal) Stress ZX 

 

Table 1: Visual comparison between measurement and simulation for the third bending mode at 7.8 kHz 
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3.3 Comparison of the Vibrometer measurement with strain gauges 
 
Strain gauge measurements are well established in durability testing. However, determining the absolute strain 
value with strain gauges means to get an integral value from the gauge’s sensitive area. A single strain gauge 
provides furthermore only information in its spatial validity. The newly developed technique based on 3D-
deflection measurements provides the complete information about directions and quantitative strains. 
 
To confirm the validity of the absolute strain values, measured with the 3D-SLDV, a strain gauge has been 
applied on the back of the double symmetric test specimen (see fig. 3, left). The strain values have been 
measured simultaneously with the 3D-SLDV on the front of the test specimen. For the comparison, the point, 
opposite to the strain gauge has been analyzed together with the values from the strain gauge. Fig. 10 shows the 
measured values for the modes up to 10 kHz. 
 

                            
 

Fig. 10: Measured values from the strain gauge and the 3D-SLDV 
 
Both methods show a very good agreement, it could not been analyzed if the differences stem from the 
measurement or from asymmetries of the test specimen. 
 
 
 

4. INFLUENCE OF DATA SMOOTHING 
 
As shown in fig. 2, an optional smoothing of the measured vibration data is in the process of calculating strain and 
stress distributions from the measured vibration data. The purpose of smoothing is to minimize measurement 
noise which becomes apparent in the strain data, as the post-processing routine is a numerical differentiation. 
 
The smoothing has a great influence on the quality of the results. To adjust the strength of smoothing a radius 
parameter must be specified in millimeters. Table 2 shows strain values with different filter settings for a sample 
measurement. It can be seen that for the chosen example, a filter radius of 2.5 mm is optimum. For a filter radius 
of 5 mm, the smoothing effects are better, but it can be seen that the maximum strain values are significantly 
reduced by the smoothing. 
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Simulation No smoothing 1.5 mm 2.5 mm 5.0 mm 

 

    

 
Table 2: Influence of the smoothing filter radius for Strain_X of the third bending mode at 7.8 kHz 
 
 
 
A qualitative research of the influence of the smoothing filter radius has been performed by MAC- analysis. After 
calculating the strain values by post- processing, the MAC- values with the simulated strain distributions have been 
calculated. For the chosen example, the optimum filter setting is at 2.5 mm (fig. 11), which confirms the visual 
analysis above. 
 

                        
 
Fig. 11: Influence of the filter size on the MAC values for Strain_X of the third bending mode at 7.8 kHz 
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5. CONCLUSIONS 
 
A method to optically measure strain and stress values has been presented. The validation of this method showed 
a high level of agreement between the measured values and the simulation results and the measured strain 
gauges. Based on the high sensitivity of the 3D-SLDV, high resolution surface dynamic strain measurements can 
be performed. An accurate structural validation between numerical simulations and high resolution measurement 
results is possible. This contactless measurement device helps to reduce costs concerning instrumentation work 
and leads to reliable data even under rough measurement conditions. The complete measurement can be 
performed within a few hours. 
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ABSTRACT 
Tuned vibration absorbers, in various disguises, still form the basis of vibration suppression for light and flexible 
structures. These simple auxiliary components may be tuned at critical frequencies of the structure to be 
controlled. Tuning frequencies may be constant (in case of passive absorbers) or varied (in case of semi-active 
and active absorbers).Tuning ensures a strong interaction, and facilitates the transfer of the harmful energy from 
the problem structure to the absorber. The task then becomes to dissipate the transferred energy rapidly in the 
absorber, before it has a chance to return the energy back to the structure.  
 
Returning the energy back to the structure, when the rate of dissipation in the absorber is not fast enough, 
manifests itself as a beat, significantly deteriorating the control performance. The obvious solution to avoid the 
undesirable beat is to include dissipative components in the design of the tuned absorber. However, such an 
inclusion has two consequences. First, the effectiveness at the tuning frequency is sacrificed, at a level 
proportional to the amount of damping in the absorber. Second, and more critically, dissipative components are 
high maintenance components by nature, rendering the damped tuned absorber to be less practical.  
 
A particle damper is presented in this paper which can dissipate energy rapidly while maintaining the tuning of the 
absorber effectively. Simple experiments are detailed to demonstrate the tuning, and the level of dissipation.  

1. INTRODUCTION 
Tall and flexible structures (such as high-rise buildings, long-span bridges, communication/transmission towers 
and even monuments) are susceptible to large oscillations caused by wind and ground disturbances. Due to the 
physical dimensions of these structures, the critical frequencies of concern may be below 1 Hz.  
 
Tuned vibration absorbers in various configurations have been used for suppression of excessive oscillations of 
tall and flexible structures. The primary principle of design of this popular remedy, is to add an auxiliary oscillator 
to the structure of concern, and tune the critical frequency of the auxiliary oscillator to the critical frequency of the 
structure. Such tuning ensures strong interaction and rapid extraction of harmful energy from the structure to the 
sacrificial oscillator. This harmful energy then needs to be dissipated rapidly, as tuning also ensures the flow of 
the harmful energy back to the structure if it is not dissipated in the absorber.  
 
An undamped tuned vibration absorber is a simple, and therefore practical, structure in its passive form. Its 
deficiency is to periodically return the extracted harmful energy back to the structure to be controlled. Hence, the 
oscillation envelopes of the absorber and the structure “beat” out-of-phase from each other, resulting in poor 
control. Generally, the beat period depends upon the ratio of the mass of the absorber and that of the structure, 
resulting in longer periods for larger mass ratios.  
 
Effectiveness of a tuned absorber can be enhanced significantly by including dissipative elements in it. 
Historically, studies suggested procedures to determine the optimum damping from the classical reference of 
DenHartog in 1940’s [1], in the comprehensive treatments of Hunt [2] and Snowdon [3], to just about any textbook 
on the study of structural vibrations. Contributions in this academically intriguing area still continue to trickle even 
in the last decade [4]. In all of these studies, a damping level in the order of about 20% of the equivalent critical 
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damping is demonstrated to be quite effective. This level, however, is quite high, difficult to achieve in a practically 
small size and, once achieved, to maintain it at the desired level. The difficulty is the nature of dissipative 
elements by design. Dissipative elements mostly work on the general principle of generating large pressure 
differentials in different fluid chambers. Energy is dissipated by moving the fluid agents back-and-forth between 
these chambers. Such a process induces mechanical wear and need frequent maintenance. Active components 
which can be programmed to act like dampers, are excluded in this argument, due to their inherent requirements 
of sensing and computing.  
 
An experimental investigation is presented in this paper dealing with a rolling tuned vibration absorber, as an 
alternative to the more conventional classical tuned absorbers. Rolling dampers have been reported earlier in 
Pirner [5] and Legeza [6] where a solid ball inside a spherical hollow chamber was used as an alternative to 
pendulum type of tuned vibration absorbers. The primary advantage of these rolling balls was their compact 
design, whereas a classical pendulum absorber would require impractically long arms, to achieve tuning at low 
frequencies. Both References 5 and 6 report effective suppression during forced vibrations where a phase 
opposition between the structure and the rolling ball is responsible for the control action. Dissipation in such a 
geometry is due to contact friction, and it is quite marginal. In contrast, the rolling element in this study includes 
dissipative agents in the form of granular particles placed inside a hollow cylindrical container. Experiments are 
detailed in the next section. Then experimental observations are reported.  
 

2. EXPERIMENTS 
The structure in Figure 1(a) consists of long flexible strips (1) cantilevered from the floor. A platform (2) is formed 
at the free tip, to accommodate a curved track (3). The rolling element is a simple hollow cylinder (4) with granular 
particles inside. The curvature of the track is the critical design parameter to tune the rolling cylinder’s natural 
frequency, whereas the granules inside the cylinder are primarily responsible for energy dissipation. A sheet of 
200-grit sandpaper is used to line the contact surfaces of the track to limit slip. Lentils are used as dissipative 
granular agents. A photograph of the curved track is given in Figure 1(b). The relevant parameters are listed in 
Table 1.  
 
The experiments consisted of displacing the cantilevered structure by 56 ± 0.5 mm and observing the resulting 
free decay of oscillations. A stop block (item 5 in Figure 1(a)) ensured repeatable initial displacements. A non-
contact displacement gage (6) enabled capturing the history of structural displacements with a digitizing board 
and a personal computer. The output of the displacement gage was sampled at 100 Hz, for 4096 points. Figure 2 
is a close-up photograph of a cylindrical container and the lentils used in the experiments. The lentils have a 
geometry of circular disks with a nominal diameter of about 6 mm and thickness of about 2mm in their center. 
 
 
Table 1. Relevant geometric and structural parameters. 
——————————————————————————————————————————————— 
Diameter of the cylinder     : 56 mm  
Diameter of the track      : 475 mm 
Cantilevered beams     : 2mm thick, 35 mm deep (perforated with 10 mm holes), and 

  710 mm tall, mild steel 
 
Mass of beams      : 397 g each (~ 100 g equivalent mass, in the first mode) 
Mass of track with platform and connectors : 2.157 kg (± 0.1 g) 
Mass of hollow cylinder     : 83.2 ± 0.1 g  
Mass of 140-count lentils    : 15.4 ± 0.1 g 
 
Mass ratio of the hollow cylinder with structure   : 0.0832/2.357 ≅ 0.03  
Mass ratio of the lentils with structure    : 0.0154/2.357 ≅ 0.006  
 
Structural natural frequency    : 0.95 ± 0. 01 Hz - measured 
Structural equivalent stiffness     : 83.6 N/m - calculated 
Structural equiv. viscous critical damping ratio   : 0.011± 0.003 – measured  
 
——————————————————————————————————————————————— 
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Figure 1. Showing (a) the experimental setup and (b) a close-
up photograph of the curved track and the rolling container at 
rest. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Photograph of the container and 140-count lentils. 

(a) (b) 
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3. EXPERIMENTAL OBSERVATIONS 
The history of transient oscillations of the uncontrolled structure is given in Figure 3(a). The uncontrolled structure 
has relatively poor inherent damping (approximately 1 % of the equivalent critical viscous damping), and the 
resulting the transient oscillations persist even at the end of the 40-second sampling period. The natural 
frequency of the structure is 0.95 Hz, as clearly indicated in its the frequency spectrum in Figure 4(a). 
 
Figure 3(b) corresponds to the case where the empty cylindrical container is introduced in the curved track. The 
container’s mass is approximately 3% of that of the structure.  With the rolling container, the envelope of 
oscillations changes quite  drastically from the slow exponential decay of the uncontrolled case in Figure 3(a). The 
container is able to extract the kinetic energy of the structure effectively, but unable to dissipate this energy rapidly 
enough. As a result, the kinetic energy is returned back to the structure periodically causing a beat, and a 
relatively poor performance.  
 
At the start, container rests at the bottom of the track, at the position of least potential energy. After the structure 
is released from rest, container starts to roll back-and-forth in its track energetically, while structure’s 
displacements are attenuated quite drastically.  By the third cycle, the container starts to lose its energy, returning 
it back to the structure, resulting in the beat. The beat period in Figure 3(b) is approximately 5 s, as may be 
confirmed by the 0.2 Hz difference in the two spectral peaks shown in Figure 4(b). 
  
At the end of the sampling period, the displacement magnitudes of the case in Figure 3(b), are only marginally 
smaller than those of the uncontrolled case in Figure 3(a). The decay is due to energy dissipation by some slip 
between the container and the track. Including a sheet 200-grit sandpaper limited this slip, but not eliminated it 
entirely. Sandpaper is shown in Figure 1(b).  
 
The displacement history with a 140-count lentil in the container, is given in Figure 3(d). The lentils occupy just 
under 5% of the available volume inside the container, with a mass of 1/5th of that of the container. The relevant 
dimensions are given in Table 1.  
 
Similar to the case in Figure 3(b), the container eagerly receives the kinetic energy from the structure, after its 
release. However, dissipation due to the “flow” of granular material is so effective that the oscillations practically 
stop by the 4th cycle. The equivalent damping ratio of the structure with the granular material is about 8%, an 8-
fold increase from the uncontrolled case. The drastic increase in structural damping is also apparent in the 
frequency spectrum given in Figure 4(d). 
 
The motion of the granular particle bed is similar to that of the oscillations of a pendulum, much like the rolling 
oscillations of the container on its track. As the container tumbles many times on its track for each period of the 
structure, the particle bed simply oscillates inside the container displacing by no more than 30o at its peak. The 
predominant motion of the particle bed, is sliding relative to the inside walls of the container. No particle is 
airborne at any time.  
 
It should be mentioned that the most effective control corresponds to the case in Figure 3(d). With different size 
containers, it is possible to achieved tuning similar to that given in Figure 3(b). However, there seems to be a 
clear preference to the container used for this case. The dimensions given in Table 1 result in approximately 8 full 
tumbles of the container for each period of the structure. During the same period, there is approximately three full 
cycles of oscillation of the particle bed inside the container. Hence, with the inclusion of the particle bed, there is a 
configuration of a two-tier pendulum. There is also a two-tier of tuning between the two pendulums and the 
structure. This intriguing point requires more attention to receive the most control benefit.   
 
By increasing the number of particles, or volume fraction of fill, it is possible to significantly increase the capacity 
to increase the rate of energy dissipation. The best case in Figure 3(d) corresponds to a small fraction of this full 
capacity of dissipation. A typical case is shown in Figure 3(e) where the amount of lentil is doubled to a 280-count. 
The increased rate of dissipation is clearly detrimental to the control action. As the container starts to roll from its 
rest position, the rate of dissipation is so fast that it can only climb a fraction of the full height on its track, before it 
rolls back to the rest position to stay.  Hence, the container simply rests on the track, unable to receive the 
harmful energy from the structure. This case is quite similar to any overly damped tuned absorber where the 
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absorber is simply an added mass to the structure to be controlled. In Figure 4(e), the spectral distribution of the 
displacement confirms this assertion, with a comparably large spectral peak to the uncontrolled case, at a lower 
frequency.  
 
Amplitude distribution of the four cases is given in Figure 5, in same order as in Figures 3 and 4. The uncontrolled 
case, Figure 5(a), and the over-damped case, 5(e), have very similar broad distributions. The empty cylinder case 
in Figure 5 (b) is somewhat distorted, due to its strong beat. The most effectively controlled case of 140-count 
lentils, has approximately three times larger frequency count at the rest position, with significantly narrower 
spread than those of the other three cases.  
 

4. CONCLUSIONS 
Simple experiments are described in this paper to explore the potential of granular flow as an energy sink for 
structural control applications. A tuned absorber, in the form of a cylindrical rolling container, is first designed. 
Then, the granular flow is introduced in the container to provide the required energy dissipation. With an 
approximately 3.5% addition to the mass of the structure, it is possible to increase the structural damping by an 8-
fold. Hence, these preliminary experiments are encouraging and certainly warrant continued investigation. 
 
Although not presented, experiments also involved using a (2 orders of magnitude) larger structure than the one 
presented here, with similar control effect. The objective was to scale and to predict performance for practical 
implementation. Scaling is one of the current design challenges. 
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Figure 3. Displacement histories of the structure (a) uncontrolled, (b) with the empty container, (c) with 140-count 
lentils and (d) 280-count lentils. 
Vertical axis units are arbitrary, but  all correspond to a 56 mm initial displacement.  
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Figure 4. Same as in Figure 3, but for the frequency spectra. 
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Figure 5. Same as in Figure 3, but for the frequency of occurrence.  
Displacement units are the same as those in Figure 3.  
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ABSTRACT 
Robotic operations have undeniable advantages of speed and precision in machining. However, such operations 
are generally limited by the self-excited tool chatter problem. When uncontrolled, chatter leaves a rough machined 
surface, accelerates wear of the cutter and creates unacceptably loud noise levels. A conventional approach to 
suppress chatter is to slow the waste removal rate. Such an action is usually successful to avoid chatter, but 
causes increased production time and cost. Therefore, it is desirable to maintain a reasonably fast rate of 
production and employ a chatter control measure. A simple semi-active parameter control technique is 
investigated numerically in this study. The proposed method is effective and requires no additional hardware to 
implement at the actuated joints such as those in robotic structures. 

1. INTRODUCTION 
Currently, manufacturing robots are generally used for simple, repetitive tasks of low added value, which 
substitute for unskilled operations. There is growing interest in robotic applications in machining. On the other 
hand, in such tasks, robotic structures may have to endure excessive oscillations in the form of machine-tool 
chatter. Motivation for the present work is to provide stimulus to effectively deal with the problem of chatter in such 
structures.  
 
Tool chatter is an undesirable dynamic instability. It is usually the result of aggressive machining conditions where 
rapidly removed waste material leads to excessive vibrations of the tool relative to the workpiece. Tool chatter 
causes accelerated wear of the cutting tool, irritating noise levels and leaves a rough surface which requires 
additional machining to provide the dimensional accuracy and acceptable surface finish. 
  
A common solution to the tool chatter problem is to lower the cutting speed, to take advantage of the enhanced 
frictional interaction between the workpiece and the cutter. However, low speeds decrease production rate, and 
consequently, increase production costs. Selection of cutting conditions with respect to surface finish, tool life and 
rate of production, is a compromise at best. Therefore, effective control to delay the onset of chatter still 
represents a well-justified contribution to applied science. 
 
The analysis, prediction and control aspects of the chatter phenomenon have received considerable attention in 
the literature, and only a brief summary will be given here for completeness. One approach for chatter control is to 
monitor the cutting process on-line, and to change cutting parameters upon detection of chatter. Improvements 
are reported when the detection parameters are "tuned empirically" to the particular cutting parameters [1]. An 
effective control can be achieved by varying the parameters of the otherwise passive system, rather than 
imposing control with force actuators. Therefore, control effort can be quite minimal and the problem of instability 
can be avoided. In a recent research, Cardi et al. report experiments to investigate the mechanism responsible for 
the transition between a stable cut to unstable chatter [2]. By experimentally measuring the variation in chip 
thickness history, they demonstrate that the phase difference (between the workpiece velocity and the variation in 
uncut chip thickness) is a reliable indicator of the presence of chatter. They also observe that it is possible to 
implement control within the first revolution of the workpiece.  Mei [3] has analytically studied active regenerative 
chatter phenomenon and its suppression in boring.  Through simulations, a wave controller is designed to cause 
discontinuity of reflected vibration waves, and control robustness is demonstrated for broad spectrum of 
conditions.  
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Although very limited, several studies have considered robotic machining processes. Fields et al. [4] have 
presented the design of a flexible robotic drilling system for aircraft sheet metal parts. Requiring active end point 
recalibration, the system has been shown to be very flexible, allowing drilling in three dimensions while 
maintaining good positioning accuracy and repeatability. Pan et al. [5] have investigated chatter in robotic 
machining processes both analytically experimentally, giving guidelines to avoid “mode coupling” as the dominant 
source of vibrations. Olgac and Sipahi [6] have recently studied variable-pitch cutters in milling process and 
provided guidelines to combine tool design features (pitch angle) and operational selections (the spindle speed 
and the axial depth of cut) to optimize productivity without sacrificing machining quality. Anderson et al. [7] have 
proposed a new design procedure to enhance the chatter stability of an end mill cutter. In this research, the 
principle objective is to incorporate an adaptor to enhance chatter stability of a cantilevered cutter. Altintas and 
Weck [8] provide a comprehensive review of chatter vibrations in cutting and grinding processes and its control in 
industry. 
 
Simple semi-active control technique is reported in this paper to delay the onset of chatter when turning with a 
two-link robotic arm. For control, it is proposed to manipulate the joint stiffness of a two-link robotic arm using a 
simple on-off type strategy. The control is implemented at pre-determined instances. The two primary advantages 
of the proposed control are robustness and requiring no additional hardware (by applying the control by using 
already existing joint actuators). In the following, the modeling and control methods are discussed briefly. Then 
representative numerical predictions are discussed to demonstrate the level of suppression.  
 
2. A SIMPLIFIED NONLINEAR FEEDBACK CUTTING MODEL 
 
The cutting forces in turning a rigid disk are illustrated in Figure 1. Waste is removed, while the workpiece rotates 
in the counter-clockwise direction. The resulting cutting force F makes an angle β  from the Y  direction which is 
normal to the cut surface. Although this angle is expected to be (a rather weak) function of the cutting tool 
geometry, it is assumed to be constant. Here, the useful component of the force, to shear the chip from the 
workpiece, is the tangential component in X  direction.   
 
After each pass, the tool feeds in the radial direction by hav, and leaves behind an undulated surface due to the 
oscillations of the structure holding the tool. Hence, hav is the intended constant chip thickness, and Yn

 
and  Yn-1 

represent the surface left behind the cutter as a result of the current pass ‘n’, and the preceding pass ‘n-1’, 
respectively. The magnitude of the resulting cutting force F(t) is proportional to the instantaneous chip thickness 
h(t)  

                   F = C • b • h(t)                     (1) 
 
where C is specific resistance of the workpiece [18]. C is a function of the tool geometry and the material of the 
workpiece. It is normally provided empirically and has a unit of force per unit cross sectional area of the chip. 
Cross sectional area, b•h(t), is a time variant where b is the width of cut in a normal direction to the view shown in 
Figure 1.  
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Yn 
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Figure 1. Cutting model used in the 
simulations.
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Equation 1 represents the primary feedback between the cutting force and the oscillations of the cutting tip 
relative to the cut surface. As the cut progresses in the radial direction, a secondary feedback mechanism 
emerges through the most critical parameter, the instantaneous chip thickness h(t). This chip thickness is a 
function of hav and the surface undulations  

h(t) = hav – Yn + Yn-1         (2) 

where Yn-1 and Yn represent the topography of the cut surface at the same angular position in the last two passes. 
However, as the cut progresses, more than one preceding cut may be involved to determine h(t).  Thus, equation 
(2) is modified for such cases as 

        h(t) = Ymin - Yn           (3) 

 

where Ymin is the smallest of (hav + Yn-1), during the second pass; (2hav + Yn-2), during the third pass; (3hav + Yn-3), 
during the fourth pass;  etc. 
 
In Equation (3), there is a possibility that Ymin is smaller than Yn, and consequently (Ymin- Yn) is negative. This 
condition indicates that the cutter runs out of material, as it oscillates in the direction away from the workpiece. A 
negative (Ymin- Yn) requires that the cutting force be set to zero, to represent free vibrations, until contact is 
reestablished. This intermittency is the primary non-linearity included in the cutting model.  
 
The undulations of the wavy cut surface contain the natural frequency of the structure, as they are generated 
during the transients. It may be worthwhile to remember that the frequency of the undulations is ‘read’ by the 
cutting force during the next pass of the cutter. Hence, the frequency content of the surface undulations plays a 
critical role in the secondary feedback, to lead to the occurrence of chatter. This particular aspect of the 
secondary feedback forms the rationale of the proposed control described in Section 4. 
 
3  NUMERICAL MODEL  
 
Robots are powered by electric motors in series with harmonic drives, couplings and belt drives. Inherent flexibility 
in these components can produce undesired oscillations, even when the linkages are designed to be rigid. Control 
of these undesired oscillations can be challenging in the presence of changing structural dynamics, measurement 
inaccuracies and complex modeling requirements. 
 
The model of the arm investigated in this paper is shown in Figure 2. It consists of two rigid beams, connected by 
revolute joints at the elbow and at the base. Torsional springs at elbow, Kelbow,  and at base, Kbase, represent the 
joint resilience of the arm. Torsional viscous dampers are also included to model frictional dissipation at the joints 
(not shown for clarity). In addition, a 0.5% critical viscous damping for the first two modes is incorporated in the 
structural model to represent the inherent dissipation [19]. The arm is assumed to move in the horizontal plane to 
avoid the effect of gravity. Lumped masses Mtip and Mmotor model the cutter mass and elbow motor mass, 
respectively. Driver components at the base joint are assumed to be a part of a rigid base, and are not modeled. 
Relevant parameters are summarized in Table 1. 

A structural model has been developed using standard finite-element method as [20] 

                (4) 

where ,  and  are the global mass, damping and stiffness matrices;  represents the generalized 
coordinate vector; and  represents the generalized force vector. Overdot indicates time derivative. 
 
Matrix equations of motion are numerically integrated by using the Newmark-β scheme [22], in MATLAB [21] 
environment with a custom-coded program. Feedback of the cutting process is implemented according to 
Equations 1 to 3. Starting with zero initial conditions, a perfectly smooth surface is assumed during the first pass. 
An unstable state of cut is identified when the envelope of cutter oscillations is divergent. Chatter stability is 
determined over a period of 8 full passes (turns) of the workpiece which has been observed to be sufficient to 
indicate stability.  
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Figure 2. Two-link arm model. 
 
 
Table 1. Structural and cutting parameters. 
 
Length of each arm, L 

 
0.25 m 

Width of each arm, b 0.05 m 
Mass/length, m 0.85 kg/m 
Number of finite elements for each arm 10 
Cutter  Mass, Mtip 0.5 kg 
Actuator mass, Mmotor 0.5 kg 
Elbow stiffness, Kelbow 400*103 Nm/rad 
Base stiffness, Kbase  200*109 Nm/rad (rigid) 
Equiv. viscous damping ratio- structural  0.005 
Elbow viscous damping  1 Nm/rad/s 
Chip thickness, hav  0.015 mm 
Cutting stiffness, C  2000 N/mm2  [18] 
Cutting angle, β 70o  [18] 
Workpiece speed, n 600 rpm (0.1 s/pass) 

 
One of the features of a two-link manipulator arm is its varying elbow angle. With the elbow angle, the orientation 
of the resultant cutting force changes, affecting the relative magnitudes of the transverse and axial components. 
Numerical trials have indicated that the elbow angle of 150 is significantly more stable than the open arm case 
(which was initially employed as a comparison base). Hence, all predictions are reported for the 150 elbow angle.  
 

β
Cutter

Workpiece

Link-2

Base

Kbase 

F
α-elbow angle

Link-1

Elbow

Kelbow

Y
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4.     A SIMPLE ON-OFF CONTROL  
 
Tool chatter is a self-excited vibration problem where the excitation is the cutting force which is necessary to 
perform the turning operation. The magnitude of the cutting force is a function of the instantaneous thickness of 
the chip to be removed from the workpiece. In turn, the thickness of the chip is determined by the relative 
oscillations between the cutter and the workpiece, caused by the cutting force. This circular reference, termed the 
primary feedback, is clearly significant.  
 
As discussed in relation to Figure 1, the undulations left behind from previous passes, also play an important role 
as a secondary feedback, to impose an additional variation of the instantaneous chip thickness. These 
undulations invariably correspond to the natural frequency of the structure, as they are initiated by the transient 
response of the structure.  
 
If the cutting parameters are light, the transient oscillations of the cutter would decay due to the presence of 
damping of the system. The result is a stable cut. When the cutting parameters are severe, however, the transient 
response of the structure is large, and the inherent damping is insufficient to dissipate it quickly enough. As a 
result, cutting force eagerly acquires the natural frequency of the structure from the surface undulations of the 
previous passes, and excites the structure with growing magnitudes at its resonance. The result is an unstable 
cut.  
 
If the dominant structural natural frequencies are varied in time, it may be possible to avoid the secondary 
feedback, before the cutting force is able to acquire the (now varying) natural frequency of the structure. A semi-
active vibration controller to modulate the structural natural frequencies, is used in this paper to delay chatter. This 
modulation is accomplished by varying the elbow stiffness at each pass in a step-wise fashion. The objective of 
the control technique is to avoid the secondary feedback.  
 
The proposed concept is similar to that of varying the speed of the workpiece. Variable speed cutting has been 
reported to increase the stability of cutting process by changing the wavelength of the surface undulations [18]. 
The drawback of this technique is the need for excessive reserve power to impose large enough fluctuations of 
the cutting speed to be effective. On the other hand, changing the stiffness properties of the structure can be a 
much simpler proposition to implement, with no additional hardware for a robotic arm. Since source of structural 
flexibility is the elbow joint, and since the effective stiffness of the elbow joint can be manipulated with the torque 
resistance of the actuator, the stiffness variation can simply be programmed to the joint actuator. In addition, no 
sensing is required to decide on the instant of actuation, as the stiffness change is required at known intervals, for 
each pass of the tool. 
 
5. NUMERICAL PREDICTIONS  
 
Numerical predictions are presented in Figure 3 for the uncontrolled case. The relevant structural and cutting 
parameters are given in Table 1. The elbow stiffness is kept constant at its highest value in Table 1, to be 400 103 
Nm/rad.  Chip width, b, is varied from 0.5 mm to 0.75 mm in Figures 3(a) and 3(b) to search for the limit of 
stability.  
 
In Figure 3(a), with chip width of 0.5 mm, the envelope of oscillations gradually decay, representing a stable cut. 
The divergence is well established for the chip width of 0.75 mm, in Figure 3(b). Transition from a stable to an 
unstable cut is quite abrupt. Simulations performed with 0.05 mm increments determined the uncontrolled limit of 
stability to be 0.70 mm. It may be of interest to remember that the simulations presented in Figure 3 correspond to 
the 15o elbow angle of the arm. The limit of stability is around 0.1 mm for the open arm configuration (0o elbow 
angle).  
 
The next series of investigations refer to the controlled cases where the elbow stiffness is modulated between its 
uncontrolled 400 103 Nm/rad and lower values. As mentioned earlier, the semi-active control strategy is based on 
modulating the structural stiffness in a stepwise fashion for each pass of the cutter. The rationale of such 
modulation is to avoid the structural resonance through the undulations left on the cut surface due to transient 
response of the cutter’s structure. It should be emphasized that practical implementation of such a stiffness 
change, is simply a result of modulating the torque resistance of the elbow joint from its controller. Hence, 
implementation of the control should only be a software issue rather than requiring additional hardware.  
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The uncontrolled and controlled displacement histories of the cutter  are  shown  in Figure 4 for b = 1.75 mm, the 
largest stable controlled width of cut. This width of cut is clearly into the unstable region for the uncontrolled arm in 
Figure 4(a), with a severely divergent envelope.  The cutter starts jumping off the surface of the workpiece during 
the third pass. Then the cutter starts spending increasingly longer portion of its time off-contact with the 
workpiece. When the cutter is off contact, there is opportunity to  dissipate energy through inherent damping 
which eventually leads to some decay of the oscillation envelope after the 5th pass.  
 
In Figure 4(b), the displacement history of the cutter is  presented  for  the controlled case in which the elbow 
stiffness  is reduced from  its largest 400 103 Nm/rad to 250 103 Nm/rad at 0.1 s, and then back to 400 103 Nm/rad 
at 0.2 s, and continued changing between these two stiffnesses periodically at the end of each pass. As a result, 
the tip displacements  of the controlled case has a convergent envelope with significantly smaller magnitudes than 
those of Figure 4(a). The 1.75 mm chip width represents an improvement of approximately 2.5 times, over the 
uncontrolled limit of 0.7 mm.  
 
Considering that the changing stiffness is simply accomplished by programming appropriate torque resistance of 
the elbow actuator, there is no reason why the control should be limited to only two stiffnesses. In fact, any 
number of stiffness changes should be just as practical to implement as two. Numerical experiments with three 
stiffnesses, has not yet shown much enhancement of the 1.75 mm, the limiting width of cut with the dual control. 
However, significant other advantages could be observed as demonstrated in Fig. 4(c).  
 
In Figure 4(c), the variation described for Figure 4(b), is supplemented with a third value of 200 103 Nm/rad, 
following the first two passes of 400 103 Nm/rad and 250 103 Nm/rad. Hence, the elbow stiffness is now varied in 
periodic blocks of three. This new sequence of stiffness changes, brings a beat whenever two close stiffness 
values follow each other (every third pass when 250 103 Nm/rad is followed by 200 103 Nm/rad). The response 
with triple stiffness, is suppressed more effectively than that of the dual stiffness leading to a smoother surface.   
  
The cutting force has a critical role on the dynamics of cutting process. Tip force histories of  Figure 4 are plotted 
in Figure 5 for completeness. The mean force and its standard deviation of the uncontrolled and two controlled 
cases are 55.9 N and 62.5 N, 52 N and 3.1 N (dual stiffness),  and 51.9 N and 2.4 N (triple stiffness), respectively. 
It is worth noting that the standard deviation of the uncontrolled case in Figure 5(a) is larger than its mean, very 
frequently fluctuating down to zero magnitude, indicating jumping off contact, starting from the third pass.  In 
contrast, both controlled cases suppress the force fluctuations very effectively, with the triple stiffness doing a 
better job than that of the dual stiffness. (It is further worth noting that the cutting force for a perfectly rigid 
structure would be 52.5 N.) 
 
6.   CONCLUSIONS 
 
A novel semi-active controller is presented to delay chatter oscillations to improve the cutting performance and the 
tool life when turning with a two-link robotic arm. The results show that considerable improvements are possible. 
The proposed method may facilitate the use of robots in machining industry more extensively.  
 
Current predictions in this paper suggest a performance improvement of about 2.5 times over an uncontrolled 
case. In addition, the implementation of the suggested control is an ideal add-on item, requiring no additional 
hardware when programmable joint actuators are already available. Control actuation requires no detection effort. 
It is implemented at pre-determined regular intervals, syncronised with the speed of the workpiece. These findings 
are encouraging and certainly warrant continued investigation and experimental verification. 
 
REFERENCES 
1. Lin, S.C. and Hu, M.R., Low vibration control system in turning, International Journal of Machine Tools and 

Manufacture, 32(5),  629-640, 1992. 
2. Cardi, A.A., Firpi, H.A., Bement, M.T. and Liang, S.Y., Workpiece dynamic analysis and prediction during 

chatter of turning process, Mechanical Systems and Signal Processing 22, 1481–1494, 2008. 
3. Mei, C., Active regenerative chatter suppression during boring manufacturing process, Robotics & Computer-

Integrated Manufacturing, 21, 153–158, 2005.  

166



 
 
4. Fields, A.,  Toumi, K.Y. and Asada, H., Flexible fixturing and automatic drilling of sheet metal parts using a 

robot manipulator, Robotics & Computer-Integrated Manufacturing, 5(4), 371-380, 1989. 
5. Pan, Z., Zhang, H., Zhu Z. and Wang, J., Chatter analysis of robotic machining process, Journal of Materials 

Processing Technology, 173, 301-309, 2006.  
6. Olgac, N. and Sipahi, R., Dynamics and stability of variable-pitch milling, Journal of Vibration and Control, 13-

7, 1031-1043, 2007. 
7. Anderson, C.S., Semercigil, S.E. and Turan, Ö.F., A passive adaptor to enhance chatter stability for end mills, 

International Journal of Machine Tools & Manufacture 47, 1777–1785, 2007. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. History of tip displacement for (a) 0.5 mm and  
(b) 0.75 mm chip width. 
 

 
 
 

16. Tobias, S.A., Machine-Tool Vibration, Blackie & Son Ltd, Glasgow, 1965.  
17. Tlusty, J., Handbook of High-Speed Machining Technology, R. I. King, Chapman & Hall Ltd, New York, 1985. 
18. Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1982. 
19. Thomson, W.T., Theory of Vibrations with Applications, fourth ed, Prentice-Hall, Englewood Cliffs, NJ, 1993. 
20. Matlab, MATLAB, The Language of Technical Computing, Using MATLAB Version 5, The MathWorks, Inc, 

MA, 1997. 
21. Craig, R.R., Structural Dynamics, An Introduction to Computer Methods, Wiley, USA, 1981. 

 

(b) 

(a) 

8. Altintas, Y. and Weck, M., Chatter stability 
of metal cutting and grinding, CIRP Annals 
- Manufacturing Technology Volume 53-2, 
619-642 2004. 

9. Yang, F., Zhang, B. And Yu, J., Chatter 
suppression via an oscillating cutter, 
Journal of Manufacturing Science and 
Engineering, 55-60, 1999. 

10. Soliman, E. and Ziaei, R., Chatter 
suppression in five-axis machining of 
flexible parts, International Journal of 
Machine Tools and Manufacture, 42, 115-
122, 2002. 

11. Tarng, Y.S., Kao, J.Y. and Lee, E.C., 
Chatter suppression in turning operations 
with a tuned vibration absorber, Journal of 
Materials Processing Technology, 105, 55 
–60, 2000. 

12. Book, W.J., Controlled motion in an elastic 
world, ASME Journal of Dynamic Systems, 
Measurement and Control 113, 252–261, 
1993. 

13. Andeen, G.B., editor in chief, Robot design 
handbook, McGraw-Hill Book Company, 
New York, 1988.  

14. Wang, D. and Vidyasagar, M., Passive 
control of a stiff flexible link, The 
International Journal of Robotics Research 
11 (12), 572–578, 1992. 

15. Hong, S. and Park, Y., Vibration reduction 
for flexible manipulators using torque 
wheel mechanism, Proceedings of the 
Third International Conference on Motion 
and Vibration Control, Chiba, Japan, 364–
369, 1996. 

16. Matsuoka, S., Shimizu, K., Yamazaki, N. 
and Oki, Y., High-speed end milling of an 
articulated robot and its characteristics, 
Journal of Materials Processing 
Technology, 95, 83-89, 1999.  

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-7

Time[s]

Ti
p 

di
sp

la
ce

m
en

t[m
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1

0

1

2

3

4

5

6

7

8
x 10

-7

Time[s]

Ti
p 

di
sp

la
ce

m
en

t[m
]

167

(b)

(a)



  

 
Fi

gu
re

 4
. 

H
is

to
rie

s 
of

 t
ip

 d
is

pl
ac

em
en

t 
w

ith
 b

= 
1.

75
 m

m
 f

or
 (

a)
 t

he
 

un
co

nt
ro

lle
d 

ca
se

, 
an

d 
co

nt
ro

lle
d 

ca
se

s 
(b

) 
w

ith
 d

ua
l 

st
iff

ne
ss

 o
f 

40
0/

25
0 

10
3  N

m
/ra

d 
an

d 
(c

) 
w

ith
 t

rip
le

 s
tif

fn
es

s 
of

 4
00

/2
50

/2
00

 1
03  

N
m

/ra
d.

 
 

   
 F

ig
ur

e 
5.

 S
am

e 
as

 in
 F

ig
ur

e 
4 

bu
t t

he
 c

ut
tin

g 
fo

rc
e.

 
 

(b
) 

(a
) (c

) 

(a
) 

(b
) 

(c
) 

168



An Identification Method for the Elastic Characterization of Materials 

David Yang 
Research Associate 

Day Software Systems, Inc. 
209 Shelter Rock Rd 
Stamford, CT  06903 

 
ABSTRACT 

A driving point dynamic load non destructive test can be used to determine a structure’s first modal stiffness and indirectly 
the material’s coefficient of elasticity.  Such a dynamic test will be shown to be theoretically equivalent to a static load 
destructive test that directly determines the coefficient of elasticity.  Assuming linear, elastic dynamic analysis is appropriate 
then knowing the first modal stiffness from experimental modal data and a numerical model of the structure with known 
geometric dimensions, an exact solution for the coefficient of elasticity can be determined when the frequency equations are 
available and depends on one elastic constant.  The solutions for the coefficient of elasticity for uniform beams in axial 
deformation, torsion and bending as a function of the first modal stiffness will be given. 

INTRODUCTION 

There are several methods to determine the coefficient of elasticity of a pavement’s sub grade soil from dynamic load non 
destructive tests.  The frequency sweep method [8] uses the driving point frequency response to correlate to the static 
response of a pavement from a plate load test.  The frequency sweep method uses a weighted average of the driving point 
frequency response to determine the equivalent static response.  This paper uses the concept of correlating the response from 
a dynamic test to the static response from a conventional test but uses the zero frequency response of the dynamic test to 
compare to the static response of a conventional test.  Results are shown for uniform beams but in the future will be extended 
to composite materials and in particular multiple elastic layered pavement systems.  

DYNAMIC MODAL MODEL 

The response of a multiple degree of freedom system under forced harmonic vibration ([1],[2],[6]), given by the general 
dynamic modal model is 
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For the special case when there is only one harmonic load at the sth degree of freedom and the mode shapes are normalized 

with respect to that location of the load, then snφ  = 1 for n = 1,2,…,N and dF  = 0 for all d <> s and dF  = F  when d=s.  The 

driving point response is 
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The driving point response can be written as the sum of the magnitudes and phases of the individual modes 
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The driving point response can also be written directly as the total system magnitude and phase 
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When the load is harmonic, the response is harmonic and the magnitude and phase of the response has contributions from the 
individual modes.  In theory, the magnitude of the frequency response at a frequency of zero corresponds to the static 
deflection due to a unit force.  The zero frequency response [7] is defined as 

∑
=

==
N

n nK
HH

1

1
)0()0(

      

)13(  

The zero frequency response is equivalent to the static deflection (flexibility) under a unit load of N springs in series where 

the spring constants, nK , n = 1,2,…N, are the modal spring constants.  The system stiffness is simply the inverse of the zero 

frequency response. 

STATIC RESPONSE OF UNIFORM BEAM 

The basic mechanical tension, compression, torsion and bending tests of uniform beams to determine the coefficient of 
elasticity are based on the following equations of static equilibrium [4]. 
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Axial Tension/Compression 
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Poisson’s Ratio can be determined by the relation 
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DYNAMIC RESPONSE OF UNIFORM BEAM IN BENDING 

From the available frequency equation of a simply supported uniform beam bending at mid span ([1],[2],[6]) 
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If the static response for a simply supported uniform beam bending under a static force at mid span is equal to the zero 
frequency response for a simply supported uniform beam bending under a dynamic force at mid span then 
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If the above equation is to be valid then must show that 
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is 0 when n is even and 1 when n is odd. 

With the aid of Fourier series, it can be shown that the above is true. 
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Since 4x  is an even function then none of the sine terms can be present and after integrating (25) by parts 
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Substituting 0=x  and π=x  into )(xf gives two equations 
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Subtracting the (30) from the (31) has only values when n is odd 
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The static response is equal to the zero frequency response of the simply supported uniform beam in bending at mid span and 
can be expressed as a function of the first modal stiffness 
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And finally the coefficient of elasticity as a function of the first modal stiffness is 
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DYNAMIC RESPONSE OF UNIFORM BEAM IN AXIAL DEFORMATION 

For axial deformation the available frequency equation ([1],[2],[6]) for a beam fixed at x=0 and free at x=L is  
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Setting the static response equal to the zero frequency response at x=L 
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The following can also be shown to be true by using Fourier series.
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The static response is equal to the zero frequency response of the beam and can be expressed as a function of the first modal 
stiffness 

1

2

8KEA

L π=
        

)41(  

And finally the coefficient of elasticity as a function of the first modal stiffness is 

A

LK
E

2
18

π
=

        
)42(  

DYNAMIC RESPONSE OF UNIFORM BEAM IN TORSION 
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For torsion the frequency equation ([1],[2],[6]) for a cylindrical beam fixed at x=0 and free at x=L is similar to the axial 
frequency equation 
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Knowing E  and G , Poisson’s ratio can be determined as 
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DAMPING 

After introducing viscous damping into the axial equations of motion [6], the coefficient of elasticity is independent of the 
rate of loading as determined by the dynamic test.  The damping coefficient determines the response due to the rate of 
loading. 
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So the modal damping coefficient is  
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0a  and 1a should be constant for all modes if the above model is valid.  1a  is a property of the material and 0a  is a property 

of the system. 
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For hysteretic damping, the coefficient of elasticity is also independent of the rate of loading.  Once again the damping 
coefficient determines the response due to the rate of loading. 










∂
∂

+=
t

a
E x

xx

ε
ω

εσ 3  where ω is the excitation frequency  )53(  

SQUARE PLATE IN BENDING 

A simply supported uniform plate bending due to a center load [5] 
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At the center of the plate 
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UNIFORM BEAM IN BENDING QUARTER SPAN 

Previously the zero frequency response was not determined by the mode shapes being normalized with respect to the load 
point.  For the uniform beam when the mode shapes are normalized with respect to the load point the following are the 

expected measured nK  for the experimental modal data for mid span and quarter span. 

The general mode shape is 
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The zero frequency response when 
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When 
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From statics [4], the quarter span elastic deformation is related to the mid span elastic deformation 
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Reciprocity is valid because the zero frequency response when 
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From statics [4], the quarter span deformation due to the load at the mid span is related to the mid span elastic deformation. 
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SUMMARY 

The solutions for the coefficient of elasticity for uniform beams in axial deformation, torsion and bending as a function of the 
first modal stiffness were presented.  This enables the determination of the elastic properties of uniform beams from 
knowledge of the first modal stiffness.  The first modal stiffness is assumed to be derived from parameter estimation using 
experimental modal data [3].  The experimental modal data can be from any dynamic test using a time domain or frequency 
domain parameter estimation technique.  After introducing viscous damping into the equations of motion, the coefficient of 
elasticity remains constant but the dynamic response is dependent on two additional constants, a stiffness proportional 
constant and a mass proportional constant.  The stiffness proportional constant is dependent on the material and the mass 
proportional constant is dependent on the system.   
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Nomenclature 
 
x  State vector 
Ad  State matrix 
y  Measurement vector 
f  Unknown force vector 
υ  Measurement noise vector 
λi   ith pole of the system 
Ts  Sampling Period 
Φ  Mode shapes of the system 
Ryy  Correlation matrix of the measurements 
τ  Time lag 

a
yyR   Augmented correlation matrix 

La, Ra  Left and Right factors of augmented correlation matrix, containing information about mode 
  shape. 
D  Diagonal matrix such that aaa

yy RDLR ][τ= , contains information about system poles. 
 
 
 
ABSTRACT 
 
In a former paper (“Second Order Blind Identification (SOBI) and its relation to Stochastic Subspace Identification (SSI) 
algorithm”, 28th IMAC, 2010), the authors established the link between the popular SSI algorithm used in output-only modal 
analysis and the Second Order Blind Identification (SOBI) algorithm  developed for blind source separation in the field of 
signal processing. It was concluded that the two algorithms, although seemingly very different, are actually jointly 
diagonalizing the same covariance matrix over a range of time-lags. This is explicit in SOBI and implicit in SSI. One main 
difference, however, is that SOBI focuses on estimating the (real) modal matrix as a joint diagonalizer, but without taking 
advantage of the specific structure of the covariance matrix formed by the Markov coefficients and by incorrectly assuming 
no-damping or very low damping. On the other hand, SSI specifically exploits the covariance matrix structure so as to 
estimate complex modes, but puts less emphasis on the “joint diagonalizing” property of the modal matrix. The aim of this 
communication is to introduce a new algorithm based on Alternating Least Squares (ALS) approach that combines 
advantages of both SOBI and SSI in order to return improved estimates of modal parameters. It is shown in this work that 
this algorithm is capable of identifying complex modes, closely spaced modes and heavily damped and can also be expanded 
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to deal with the cases where there are less number of sensors available than the number modes to be estimated. The suggested 
approach therefore is a step towards expanding the applicability of BSS based approaches to Operational Modal Analysis 
applications. 

 
1. Introduction 
 
Several recent works have shown how second order blind source separation (SO-BSS) techniques, such as Second Order 
Blind Identification (SOBI) [1, 2], can be utilized for the purpose of output-only modal analysis [3-7]. However, in spite of 
encouraging results shown by these algorithms, applicability of BSS based algorithms for OMA purposes has been quite 
limited. This can be attributed to certain limitations associated with BSS based algorithms for OMA. Mathematical 
formulation of SO-BSS based OMA algorithms suggest that they are more suitable for lightly damped systems having real 
normal modal vectors. The fact that SO-BSS algorithms only estimate real modal vectors is a serious issue as this is seldom a 
case in real life. A methodology based on Hilbert transform is suggested in [8] to estimate complex mode shapes. However, 
the robustness of the method is yet to be ascertained. Yet another issue which restricts applicability of these algorithms is that 
they can only estimate as many modes as the number of output responses being measured. 

Despite these limitations SO-BSS techniques present an interesting outlook with regards to operational modal analysis, as 
they differ from traditional OMA algorithms in terms of estimating the modal parameters of a system. In [9], the authors 
showed how SO-BSS algorithms, such as SOBI, are related to well known Stochastic Subspace Identification (SSI) algorithm 
[10, 11]. In this work it was shown that whereas SSI estimate the modes of a system by putting a constraint on the poles of 
the system, SO-BSS based algorithms use a joint diagonalization procedure to obtain the modal parameters by estimating 
orthogonal vectors that diagonalize the correlation matrices of observed responses. These orthogonal vectors are estimates of 
the modal vectors which are then used to obtain modal frequencies and damping by means of modal expansion theorem [12]. 
Since the two algorithms, SSI and SO-BSS, that share similar mathematical foundations, estimate modal parameters using 
different approaches, it is intriguing to pursue an algorithm that can combine the advantages of both the algorithms.  

In this paper, an Alternative Least Squares (ALS)  [13] based algorithm is proposed that combines the advantages of SO-BSS 
and SSI algorithms in order to overcome the limitations SO-BSS algorithms suffer from in terms of their application for 
OMA purposes. This algorithm can be explained within the framework of Parallel Factor (PARAFAC) theory  [14]. 
Mathematical development of this algorithm is presented in the next section and preliminary results of this algorithm are 
shown in Section 3 by means of studies conducted on an analytical system. Finally, conclusions are made, in light of the 
results obtained and performance of the algorithm in general, with regards to its further development and suitability for OMA 
applications. 

 
2. A PARAFAC based BSS Algorithm for OMA 
 
2.1 General Background 
 
This section recalls the main results and notations used in [8] as these results serve as the background and main motivation 
for the ALS based PARAFAC algorithm suggested in this paper. 

Consider the following n degree of freedom (DOF) discrete-time state-space system, 
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where x[k] is the 12 ×n  state vector, y[k] the 1×m  measurement vector, f[k] the unknown force vector, νννν[k] the 
measurement noise vector, and Ad the nn 22 ×  state matrix. Let  
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be the eigenvalue decomposition of the state-matrix where the nn 22 ×  diagonal matrix, where 
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(Ts = sampling period and *= conjugate operator) contains the modal parameters of interest, ( )ndiag λλ ,...,1=Λ  with λi 

the i-th pole of the system, and  
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contains the mode shapes of the structure in the columns of Φ . 

It has been shown in [8] that the correlation matrix of the measurements y[k] takes the following simple form under the 
assumption of white noise excitation. 

0    ,][ >Σ= ττ τ RLR dyy     (5) 

where the left and right factors read 
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respectively, with ]0[qqR  the (unknown) correlation matrix of the modal coordinate ][][ 1 kk xΨq −= . Such factorization of 

the correlation matrix, if it can be performed, returns all information about global parameters (modal frequency and damping) 

in the diagonal entries of τ
dΣ , and the information about (unscaled) mode shapes through the left factor L .  

Since only m modes are recoverable in theory, one obvious shortcoming of the above approach is in cases where the number 

of measurements is less than twice the number of dof’s of the system, i.e. nm 2< . This can however be dealt by considering 
the augmented correlation matrix as shown below 
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This augmented correlation matrix can be factorized as 
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where aL  and aR  are now nmK 21 ×  and 22 mKn ×  matrices which contain all information about the m modes of the 

system provided that nmK 21 ≥  and nmK 22 ≥ , with 1K  and 2K  set arbitrarily large by the user.  

The next subsection describes an Alternating Least Squares (ALS) based PARAFAC algorithm that can achieve the proposed 
factorization on the empirical correlation matrix (or the augmented correlation matrix (Eqn. 7)) estimated from the measured 
data. 

 
2.2 PARAFAC factorization 
Let ][ˆ τa

yyR be the empirical correlation matrix estimated from the (finite-length) measurement vector y[k]. The objective is 

then to find three matrices aL , aR  and ττ dΣ=][D  such that the product aa RDL ][τ is as close as possible to ][ˆ τa
yyR  for a set 

of time-lags { } 0... ,,..., 00 >>>=∈ τττττ KKT . Note that matrix ][τD  is diagonal, but not semi-positive definite in general 

because its diagonal elements will contain an imaginary part as soon as damping is present in the system. For the same reason, 

the right factor aR  is in general different from the transpose of the left factor aL  and allowed to be complex-valued. This 
precludes the factorization to be solved by a joint diagonalization procedure, as done in SO-BSS and revisited in Ref.  [9]. 
Clearly, this is a difficult non-linear problem, yet hopefully with a unique solution, provided that the set of considered time-
lags T is large enough. 

This type of problem has been studied in the statistical literature as parallel factor analysis or PARAFAC. In short, 
PARAFAC generalizes the eigenvalue decomposition of a matrix to a similar decomposition of a cube. The three dimensions 

of concern in operational modal analysis are the two spatial directions of the correlation matrix ][ˆ τa
yyR  (column and raw 

indices corresponding to sensor labels) and the time-lag direction. 
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The investigation of efficient algorithms to solve the PARAFAC problem is a current and active topic of research  [15] [16]. 
For the sake of simplicity, the simplest algorithm is described here, based on alternative least squares (ALS)  [13]. ALS 
consists in iteratively estimating one of the three matrices entering in the factorization assuming that the other two are fixed. 
This way, the minimization problem turns out linear in the parameters and is easily solved by least-squares. The algorithm is 
described in a step-by-step manner as follows: 
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where, in the last line,  
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3) Stop iterating if the relative errors aa
ii )()1( LL −= , aa

ii )()1( RR −+  and aa
ii )()1(

DD −
+

are all smaller than a predefined 

value. 

 

At this point, it is important to mention a few remarks about the convergence of the ALS algorithm, which also happens to be 
one the limitations of the suggested approach.  

• First it is clear that there is no guarantee of convergence to a global minimum. Hence, the final estimates will 
strongly depend on the quality of the starting values. It has been observed by the authors that reasonable estimates 
are returned after initializing matrix D with the resonance frequencies obtained from a simple peak-picking method, 

with assumed zero damping ratios. Matrices 
aL  and 

aR  have been initialized randomly, although better strategies 

could perhaps be investigated such as using results from SO-BSS.  
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• Second, ALS is known to exhibit a low convergence speed, which is the price to pay for its simplicity. Accelerating 
strategies have recently been proposed in the literature, but this is outside the scope of this paper. Indeed, it is 
underlined that ALS is only one possible technique to solve the PARAFAC problem, and that more efficient 
algorithms are expected to come in the near future. Hence, this should not lower the interest of the proposed 
approach.  

One apparent weakness of the proposed PARAFAC approach, however, is that it places no constraint on the estimated D 
matrix to be an actual correlation matrix, i.e. with elements in the form { }si Tτλexp  or conjugate of. But this is also where the 

limit lays between a fully BSS approach and an ad hoc approach such as SSI purposely designed for operational modal 
analysis. Based on this work, the authors are of the opinion that involving further efforts into forcing such a constraint would 
quickly drive the analysis into the realm of SSI algorithms, where the simplicity of BSS approaches would be lost. 

 
3. Results and Discussions 
 
A simple 3 degree of freedom (DOF) system with following [M], [C] and [K] matrices is used in this study. It should be 
noted that the damping matrix [C] is chosen randomly. 
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Table 1 shows the theoretical eigen frequencies and corresponding modal shapes of the system. Note that the mode shapes 
are normalized with respect to the first DOF. 

Table 1: Theoretical System Parameters (Frequency, Damping and Mode Shapes) 

Eigen Freq Freq (Hz) Damping (%) DOF 1 DOF 2 DOF 3 

-0.1244 + 0.4852i 0.4852 24.83 1 + 0i 1.7959 + 0.0205i 2.2325 + 0.0488i 

-0.0861 + 1.4005i 1.4005 6.14 1 + 0i 0.4438 + 0.0133i -0.8033 + 0.0096 

-0.0784 + 2.0265i 2.0265 3.86 1 + 0i -1.2454 - 0.0327i 0.5512 + 0.0521i 

 

The system is excited by means of a random uncorrelated set of input at all 3 degrees of freedom. The response time history 
and corresponding auto spectra is shown in Figure 1. 
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Figure 1: Response time histories and corresponding autospectra 

As mentioned in Section 2.2, ALS based PARAFAC algorithm requires initial estimates of L, D and R matrices. For this 
study L and R and initialized by means of random complex matrices and D is initialized by means of peak picking the 
frequencies from the summation of the three autospectra. It should be noted that regular joint diagonalization as in SOBI can 
be used as a preprocessing step to get the initial estimates of D, however this step is not performed in present study. 

Table 2 compares results obtained from ALS algorithm with theoretical values of modal parameters. 

Table 2: Comparison of Estimated (A) and Theoretical (T) Modal Parameters (Frequency, Damping, Mode Shapes) 

Mode #  Freq (Hz) Damping (%) DOF 1 DOF 2 DOF 3 

T 0.4852 24.83 1 + 0i 1.7959 + 0.0205i 2.2325 + 0.0488i 
Mode 1 

A 0.4883 25.50 1 + 0i 1.7955 + 0.0226i 2.2231 + 0.0499i 

T 1.4005 6.14 1 + 0i 0.4438 + 0.0133i -0.8033 + 0.0096i 
Mode 2 

A 1.4060 6.28 1 + 0i 0.4443 + 0.0257i -0.8041 + 0.0192i 

T 2.0265 3.86 1 + 0i -1.2454 - 0.0327i 0.5512 + 0.0521i 
Mode 3 

A 2.0310 4.01 1 + 0i -1.2392 - 0.0312i 0.5505 + 0.0414i 

 

Mode shape comparison is also shown by means of Figure 2, which shows very good agreement with theoretical mode 
shapes. 
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Figure 2: Mode Shape Comparison 

The performance of ALS algorithm with regards to estimation of modal frequency and damping can also be evaluated by 
comparing the estimated D matrix with theoretical solution. This is shown in Figure 3.  

 
Figure 3: Comparison of D matrices 
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Modal parameters estimated using the proposed algorithm are in very good agreement with the theoretical modal parameters. 
These simulations show that the algorithm handles the heavily damped modes very well and is also able to estimate complex 
mode shapes. This is a definite improvement over SO-BSS algorithms such as SOBI whose performance is not satisfactory 
while dealing with cases of heavy damping or complex mode shapes. Based on these results it can be said that the 
performance of the suggested algorithm is very encouraging and augurs well for further development of the algorithm.  
Further development of this algorithm needs to address the limitations which this algorithm suffers in its current formulation. 
These limitations are on account of the simple ALS based approach used for factorizing the covariance matrices using 
PARAFAC framework. First major concern is convergence of this algorithm. The fact that since the ALS algorithm requires 
initial estimates of L, D and R, it is possible that if these initial estimates are not chosen carefully, the algorithm might not 
converge or converge to a local minimum. To avoid this scenario, it is suggested that SOBI can be performed as a pre-
processing step and its results can be used as initial estimates of L, D and R. In the current simulation, even when only D is 
initialized with intelligent estimates based on peak-picking the frequencies (L and R are initialized randomly), the results are 
very satisfactory. However, it needs to be verified if this procedure can be generalized to work for all kind of systems and 
situations. The performance of the algorithm is also required to be evaluated in presence of noisy data and for some real 
world cases, to have a more definite word regarding its suitability for OMA. As mentioned before, ALS is a very simple 
algorithm for performing PARAFAC based factorization. A more robust algorithm with better convergence properties might 
be another step in this research. 
 
4. Conclusions 
 
This paper proposes a Parallel Factor based Alternating Least Squares Blind Source Separation algorithm for Operational 
Modal Analysis applications. Development of this algorithm follows from the previous work by the authors that establishes 
and explores the fundamental relationship between second order BSS algorithms and Stochastic Subspace Iteration algorithm.  
It is shown by means of a simulated system that this algorithm is capable of estimating heavily damped modes and complex 
mode shapes. These results are very encouraging and serve as great motivation to further improve and optimize the proposed 
algorithm and test it on more realistic scenarios in order to use it for OMA purposes. 
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Automated interpretation of stabilization diagrams

E. Reynders, J. Houbrechts and G. De Roeck

K.U.Leuven, Dept. of Civil Engineering, Kasteelpark Arenberg 40, B-3001 Leuven, Belgium

Abstract Modal parameter estimation requires a lot of user interaction, especially when parametric system identification meth-
ods are used and the modes are selected in a stabilization diagram. In this paper, a fully automated, three-stage clustering
approach is developed for interpreting such a diagram, that does not require any user-specified parameter or threshold value.
The three stages correspond to the three stages in a manual analysis: setting stabilization thresholds for clearing out the dia-
gram, detecting columns of stable modes, and selecting a representative mode from each column. A validation study, where
nine real-life noisy operational modal bridge data sets are both automatically and manually analyzed, illustrates the accuracy
and robustness of the proposed automatization strategy.

1 Introduction

The estimation of modal parameters from measured vibration data involves a substantial amount of user interaction. This
prevents the further spread of modal testing to applications such as fault detection at mechanical production lines, or health
monitoring of crucial infrastructure, where lots of data need to be processed in a short amount of time. Automating the modal
parameter estimation process is therefore an important research objective, and it is the subject of this paper.

In most of the literature on automated modal testing, no clear distinction is made between modal parameter estimation
(MPE), which is the estimation of modal parameters from (a single record of) measured data, and modal tracking, i.e., tracking
the evolution of the modal parameters of a structure or a group of similar structures through repeated MPE. Automated modal
tracking algorithms often need baseline modal parameters to start from, in which case they can not be used for modal parameter
estimation based on a single data record. This work is concerned with automated MPE and as such it is assumed that only a
single data record is available.

Based on the type of excitation, a distinction can be made between experimental, operational, and combined modal analysis.
In experimental modal analysis (EMA), all forces acting on a structure are recorded, and unmeasured forces are regarded as an
unwanted noise source that needs to be removed. For in-situ measurements, operational modal analysis (OMA) is often more
appropriate. In such test, the response of the structure to the unknown operational loading is recorded, and the modal parameters
are extracted from these output-only data, based on additional assumptions on the nature of the unknown forces. A combined
approach, where in the identification process, both measured and unmeasured forces are accounted for, yields optimal results,
and contains EMA and OMA as special cases [16]. This approach is often called operational modal analysis with exogenous
inputs (OMAX). For each analysis type, a wide range of modal parameter identification algorithms is available. A distinction
can be made between parametric and nonparametric methods. Nonparametric methods are in general straightforward and
physically intuitive, but simulation studies have confirmed that parametric models yield far more accurate modal parameter
estimates [15, 16]. In this work, a general automatization strategy is set up for parametric modal parameter estimation, that is
independent from the type of test and the identification algorithm used.

All parametric modal parameter estimation techniques require at least one user-defined integer: the model order n, which
equals the number of eigenvalues present in the model, hence, in theory, twice the number of positive eigenfrequencies. In con-
trol theory, several model validation techniques are available that allow choosing n in an automated way, so that the prediction
capacity of the identified model is maximized. However, in modal testing applications, one is not primarily interested in the
prediction capacity of an identified model as such, but rather in the physical relevance of the individual modes that constitute
the model. An alternative approach has therefore been developed, based on the empirical observation that in a very large num-
ber of modal identification problems, the physical modes of the structure appear at nearly the same eigenfrequency when the
model order is over-specified, while the other, spurious modes, do not [21]. Parametric models are then identified for a wide
range of model orders, most of which are larger than the number of modes in the considered frequency band, and the modes of
all these models are plotted in a model order vs. eigenfrequency diagram, called a stabilization diagram. The physical modes
should then show up as vertical lines in this diagram. Although the stabilization diagram has become a key tool in modal test-
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ing, see, e.g., the textbooks [1, 10], its interpretation, i.e., the selection of physical modes as columns in the diagram, is often
not straightforward, the results may depend on the judgement of the analyst and possible additional validation criteria may be
needed.

The automated interpretation of a stabilization diagram constitutes the goal of this work. In particular, the developed ap-
proach should obey the following five criteria:

1. not rely on more than one data record or on a priori estimates for any of the modal parameters;
2. be as physically intuitive as possible and follow the course of a manual analysis;
3. produce similar results as in a manual analysis;
4. be of use in an EMA, OMA and OMAX framework;
5. not contain parameters that need to be specified or tuned by the user.

All automated MPE methods known to the authors breach at least one of these five targets. In particular, they all need user-
specified parameter or threshold values. The only exception is the partitioning approach of Verboven et al. [24] and Vanlanduit
et al. [23] for splitting the modes, estimated with frequency-domain Maximum Likelihood Estimation (MLE) for a single model
order n, into two categories: physical and spurious. However, it is not directly clear whether this approach can be extended to
the process of picking modes from a stabilization diagram.

In this paper, we present a fully automated approach for the interpretation of stabilization diagrams, involving clustering in
three stages:

1. All modes in the stabilization diagram are classified into two categories: probably physical and spurious modes. Hereto,
a partitioning method is employed that makes use of as many relevant single-mode validation criteria as possible. The
modes that are classified as spurious are removed from the diagram. This first stage automates the setting of the stabilization
thresholds, performed by the user to obtain a clear diagram.

2. Similar modes in the cleared stabilization diagram are grouped together. Hereto, hierarchical clustering is used, where the
cut-off distance is not a user-defined quantity, but based on the result of stage 1. This stage corresponds to the visual
inspection of the stabilization diagram by the user, in order to detect vertical lines of stable modes.

3. The clusters are grouped into two categories, those containing physical and those containing spurious modes, and a single
mode is chosen from each physical cluster. Cluster validation criteria such as the number of modes in a cluster are employed.
This stage corresponds to the selection by the user of a representative mode from columns of stable modes in the diagram.

The text is organized as follows. The validation criteria that are used in stage one of the automated approach are presented in
section 2. The three stages of the automated approach are detailed in section 3. Section 4 contains a validation study, where nine
real-life noisy operational modal bridge data sets are both automatically and manually analyzed. Finally, section 5 concludes
the paper.

2 Single-mode validation criteria

This section provides an overview of validation criteria that may be used in stage 1 of the proposed automated approach. They
are termed single-mode validation criteria since they are used here to determine whether a particular mode from a stabilization
diagram is physical or spurious, rather than to assess the completeness or accuracy of a modal model, i.e., a set of identified
modal parameters for the considered frequency range. Some of these single-mode criteria are hard criteria, yielding a binary
answer (such as stability), while other are soft criteria, yielding a range of values (such as relative frequency difference).

2.1 Eigenfrequency, damping ratio and mode shape distance measures

Let fu j, ξ j and φφφ jjj denote the undamped eigenfrequency (in Hz), damping ratio (dimensionless), and unscaled mode shape (in
any suitable output quantity), respectively, belonging to a particular mode j. Obvious dimensionless distance measures between
two modes j and l are the relative eigenfrequency and damping ratio differences:

d( fu j, ful) =
| fu j − ful|

max(| fu j|, | ful |)
and d(ξ j,ξl) =

|ξ j − ξl|

max(|ξ j|, |ξl |)
. (1)

Alternatively, a distance between the continuous-time eigenvalues λc j and λcl of modes j and l, respectively, could be used:
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d(λc j,λcl) =
|λc j −λcl|

max(|λc j|, |λcl |)
. (2)

This distance incorporates both eigenfrequency and damping ratio information, since [16]

λc j =−|2π fu j|ξ j +2iπ fu j

√
1− ξ 2

j . (3)

For comparing the unscaled mode shapes, the modal assurance criterion (MAC) [2], which is the (dimensionless) correlation
coefficient between both mode shapes, is a commonly used tool:

MAC(φφφ jjj,φφφ lll),
|φφφ∗

jjjφφφ lll |
2

||φφφ jjj||
2
2||φφφ lll ||

2
2

. (4)

When the mass is approximately equally distributed and the damping is proportional, one has that, when φφφ jjj and φφφ lll are mode
shapes belonging to different modes, their MAC value should be close to zero. The MAC is commonly used for measuring the
distance between eigenvectors in a stabilization diagram, for comparing identified and calculated modes, and for validating the
identified set of modal parameters. Note that 0 ≤ MAC(φφφ jjj,φφφ lll)≤ 1.

The classic stabilization criteria are the distance in eigenfrequency, damping ratio, and mode shape of a mode at a certain
model order to the closest mode at the closest lower model order. As a combined, dimensionless measure of the distance
between two modes, we propose to use

d( j, l) = d(λc j,λcl)+ 1−MAC(φφφ jjj,φφφ lll). (5)

2.2 Measuring mode shape complexity

When a structure is proportionally damped, the mode shape components of a single mode lie on a straight line in the complex
plane. For double modes, i.e., two modes with exactly the same eigenfrequency, this is not the case, but such modes occur very
rarely in practice, except for double symmetric structures; for nearly axisymmetric structures, valid mode shapes that tend to
form a circle in the complex plane have been identified [6]. Mode shape collinearity is a very powerful single-mode validation
criterion, but it should be used with care.

The complexity of a mode shape can be measured with the modal phase collinearity (MPC):

MPC(φφφ jjj) =
||Re

(
φ̃φφ jjj

)
||22 +

1
εMPC

Re
(

φ̃φφ T
jjj

)
Im
(

φ̃φφ jjj

)(
2
(
ε2

MPC +1
)

sin2 (θMPC)−1
)

||Re
(

φ̃φφ jjj

)
||22 + ||Im

(
φ̃φφ jjj

)
||22

(6)

where

φ̃ jo = φ jo −
∑ny

o=1 φ jo

ny
, εMPC =

||Im
(

φ̃φφ jjj

)
||22 −||Re

(
φ̃φφ jjj

)
||22

2Re
(

φ̃φφT
jjj

)
Im
(

φ̃φφ jjj

) , and

θMPC = arctan

(
|εMPC|+ sign(εMPC)

√
1+ ε2

MPC

)
.

A detailed motivation of this expression can be found in [13]. MPC values are dimensionless; they lie between 0 (not collinear
at all) and 1 (perfect collinearity).

Alternatively, the mean phase (MP) of the mode shape components can be computed, and the mean phase deviation (MPD),
i.e., the mean (weighted) deviation of these components from the mean phase. Approximate expressions for these are provided
in [10], but they fail when a mode shape component has a large imaginary and a small real part, which may occur for instance
when a mode shape is well identified in an EMA or OMAX test, but its mass-normalization is of poor quality. Therefore, we
derive new expressions. The mean phase can be computed as the angle of the best straight line fit through the mode shape in the
complex plane, in the sense that the orthogonal regression is minimal (see fig. 1). This boils down to the following total least
squares problem [22]
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Re(φφφ jjj)

Im(φφφ jjj)

MP(φφφ jjj)
Re(φφφ jjj)

Im(φφφ jjj)

MP(φφφ jjj)

∆θo

φ jo

Fig. 1 The mean phase is determined such that the orthogonal distance of the mode shape components to the corresponding straight line fit, is
minimized (left). The mean phase deviation is determined as a weighted mean of the phase deviations ∆θo of the individual mode shape components
φ jo from the mean phase MP(φφφ jjj).

MP(φφφ jjj) = arg min
θ

‖Im(φφφ jjj)− tan(θ )Re(φφφ jjj)‖
2
2

1+ tan(θ )
, (7)

that can be solved as [9]

MP(φφφ jjj) = arctan

(
−V12

V22

)
, UUUSSSVVV T =

[
Re(φφφ jjj) Im(φφφ jjj)

]
, (8)

where UUU ∈Cny×2, SSS ∈R2×2 and VVV ∈C2×2 constitute a singular value decomposition, i.e., SSS is a diagonal matrix with decreasing
entries along the diagonal, and UUU and VVV have orthonormal columns. V12 and V22 denote the elements (1,2) and (2,2) of VVV . The

deviation of the phase of φφφ jo from the mean phase can be easily computed from the scalar product between
[
Re(φ jo) Im(φ jo)

]T
and

[
1 tan

(
MP(φφφ jjj)

)]T
. The mean phase deviation is then obtained as:

MPD(φφφ jjj) =

∑ny
o=1 wo arccos

∣∣∣∣∣Re(φ jo)+tan(MP(φφφ jjj))Im(φ jo)√
1+tan2(MP(φφφ jjj))|φ jo|

∣∣∣∣∣
∑ny

o=1 wo
, (9)

where wo are weighting factors, that may be chosen equal to |φ jo| in order to give mode shape components with a larger
amplitude a higher weight.

2.3 Modes appearing in complex conjugate pairs

It is well known that, for every physical mode of a structure with continuous-time eigenvalue λc j, mode shape φφφ jjj, and

continuous-time modal participation vector lllc j , the structure has a second mode with parameters λc j, φφφ jjj, and lllc j , where � de-
notes the complex conjugate [1, 7, 10, 12]. The presence of such a complex conjugate mode can be used as a hard single-mode
validation criterion. Also the discrete-time eigenvalues λd j and modal participation vectors llld j appear in complex conjugate
pairs.

2.4 Measuring the contribution of a mode to the total response

The term modal transfer norm (MTN) was introduced in [17] to denote a scalar measure for the contribution of a particular
identified mode to the total response. Two variants of the MTN may be discriminated: they are denoted as MTN∞ and MTN2,
respectively. MTN2 j equals the root mean square value of the autocorrelations of the response of mode j to white loading [8];
it is not used in this paper. MTN∞ j equals the peak gain of a transfer function containing mode j only. In an EMA context, this
may be the mobility of mode j, so that, when the measured outputs are velocities, one has:

MTNd
∞ j = max

ω
σ
(
HHHmob, j(ω)

)
= maxσ

(
φφφ jjjlll

T
d j

z−λd j

∣∣∣∣∣
z=eiω jT

)
,
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where σ(�) denotes the set of singular values, T the sampling period, and ω j the damped circular eigenfrequency of mode j.
When some measured outputs are not velocities, the corresponding components of the mode shape φφφ jjj should be divided by (in
case of accelerations) or multiplied by (in case of displacements) the continuous-time eigenvalues λc j. In an OMA context, the
modal contribution to the positive power spectral density (PSD+), in physical units of velocity, can be measured:

MTNs
∞ j = max

ω
σ
(

SSS+ysys, j(ω)
)
= maxσ

(
φφφ jjjggg

T
d j

z−λd j

∣∣∣∣∣
z=eiω jT

+
φφφ jjjggg

TTT
d j

λd j

)
, (10)

where gggd j is the discrete stochastic participation vector of mode j. When some measured outputs are not velocities, the cor-
responding components of the mode shape φφφ jjj and the stochastic participation vector gggd j should be divided by (in case of
accelerations) or multiplied by (in case of displacements) the continuous-time eigenvalues λc j. In an OMAX context, both
MTNd

∞ j and MTNs
∞ j can be used; a combined criterion has also been defined [17], but it might perform less well in some cases

since HHH jjj(ω) and SSS+ysys, j(ω) have different physical units and may therefore be of completely different orders of magnitude.
Several well-established algorithms are available for computing the maxima in the MTN∞ definitions, see, e.g., [3, 4].

A stabilization diagram in which only the modes with the highest values of a modal transfer norm are plotted, is usually
very clear, as illustrated with simulated and experimental examples in [5, 8, 17, 19]. Since a modal transfer norm is a positive
definite quantity belonging to a particular mode, a relative difference in modal transfer norm between modes,

d(MTN j,MTNl) =
|MTN j −MTNl |

max(MTN j|, |MTNl)
, (11)

can be used as a stabilization criterion, or to distinguish modes from each other.
In [8], it is shown that, when for a certain mode, the poles and the zeros at all outputs coincide, the corresponding modal

transfer norm is zero. Since pole-zero cancelation is a typical symptom of spurious modes, this provides another explanation of
why modal transfer norms of spurious modes tend to have a low value. However, modal contribution criteria should be applied
with care, since weakly excited or highly damped physical modes may exhibit low values.

2.5 Stability

In normal operating conditions, structures are strictly stable, hence the damping ratios of the physical modes should be positive.
Stability is therefore a very useful hard single-mode validation criterion. On the other side, modes that are nearly critically
damped are rarely encountered in practice. In nearly all modal testing applications, damping ratios larger than 20% are not
physically realistic.

2.6 Other criteria

Several other validation criteria have been proposed, some of which can only be used when measured forces are available, or
only in conjunction with a particular system identification algorithm. Although only the criteria that have been discussed in the
previous section will be used further on in this text, the proposed strategy is general enough to include additional or alternative
single-mode validation criteria.

3 Automated interpretation of a stabilization diagram in 3 clustering stages

3.1 Automated clearing of a stabilization diagram

When all identified modes would be plotted in a stabilization diagram, it would look very busy and complex, and it would be
very difficult to select a set of physical modes from the diagram, cfr. figs 2(a,c,e), 3(a,c,e) and 4(a,c,e). In a manual analysis,
the user therefore chooses a set of threshold values for the stabilization criteria and possibly other single-mode validation
criteria discussed in section 2, and modes that do not pass the thresholds are classified as spurious and removed from the
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diagram. Setting these threshold values judiciously is a task that is hard to automate, especially when many validation criteria
are considered, because different sets of data require different sets of threshold values in order to obtain a clear diagram in
which all relevant modes are present.

For clearing out the stabilization diagram, we therefore propose a different approach, which consists of the following steps:

1. Selection of as many relevant single-mode validation criteria as possible.
2. Automated classification of the modes as certainly spurious or possibly physical, using the soft validation criteria and a

clustering algorithm.
3. Application of the hard validation criteria to the set of possibly physical modes.

Suppose that nvs soft and nvh hard validation criteria have been selected and computed for each mode in step 1. In step 2, each
mode is represented by an nvs-dimensional vector containing its soft validation criteria, i.e., mode j is represented by a point in
Rnvs , in which the clustering will take place. Table 1 shows the soft validation criteria that are used in this paper. In order to give
each criterion equal weight, the variables VS3, VS4, VS5 and VS6 are subtracted by their minimum and divided by their range,
so that they produce values in the interval [0,1]. A partitioning method is then employed for classifying the modes into two
clusters: one of them containing the certainly spurious modes and the other one containing the possibly physical modes. In this
work, a k-means clustering algorithm with k = 2 clusters is employed, but alternative partitioning methods may be employed
as well.

criterion value ideal physical ideal spurious
VS1 d(λ j,λl) 0 1
VS2 MAC(φφφ jjj,φφφ lll) 1 0
VS3 MTNd

∞ j large (1) 0
VS4 MTNs

∞ j large (1) 0
VS5 MTNd

2 j large (1) 0
VS6 MTNs

2 j large (1) 0
VS7 MPC(φφφ jjj) 1 0
VS8 MPD(φφφ jjj)/90 0 1

Table 1 List of soft validation criteria that are used in this paper, and the values they take for an ideal physical and an ideal spurious mode. The values
between brackets are the ideal values after re-scaling, i.e., subtracting the parameters VS3 till VS6 by their minimum value and dividing them by their
range.

The 2-means clustering algorithm minimizes the sum of the squared Euclidian distances between each mode j, represented
by a point ppp jjj ∈ Rnvs , and the nearest cluster centroid pppck, i.e., the centroid of the cluster to which the mode belongs. In other
words, the centroid of the cluster of possibly physical modes, denoted as pppc1, and the centroid of the cluster of certainly spurious
modes, denoted as pppc2, are computed as

{pppc1, pppc2}= args min
pck

2

∑
k=1

nm(k)

∑
j=1

‖pppj,c − pppck‖
2
2, (12)

where the number of modes in each cluster k is denoted as nm(k), the modes belonging to the cluster of possibly physical modes
are members of the set {pppj,1}= {pppjjj| ‖pppjjj − pppc1‖ ≤ ‖pppjjj − pppc2‖}, and the modes belonging to the cluster of certainly spurious
modes are members of the set {pppj,2} = {pppjjj|pppjjj /∈ {pppj,1}}. The objective function in (12) is minimized locally in an iterative
minimization process, where the starting points for pppc1 and pppc2 are chosen according to their ideal values listed in table 1. Each
iteration consists of two stages:

1. The Euclidian distance between each point pppjjj and each cluster center pppck is computed, and point pppjjj is assigned to the set
{pppj,1} or {pppj,2}.

2. The centroids are computed so as to minimize the total squared Euclidian distance within each cluster, i.e., they are computed
as in (12), but for fixed sets {pppj,1} and {pppj,2}.

The modes that belong to {pppj,2} after convergence of the partitioning method are classified as certainly spurious, and they are
removed from the stabilization diagram.

In the third and final step, the stabilization diagram is cleared out further by applying the nvh hard validation criteria. Only
the modes that meet all hard criteria are retained in the diagram as possibly physical modes. It is important to perform steps 2
and 3 in the correct order, since the application of the hard validation criteria (step 3) may remove all of the spurious modes,
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and as a result physical modes may be lost in the partitioning (step 2). Table 2 lists the hard validation criteria that are used in
this paper.

criterion value possibly physical certainly spurious
VH1 ξ j > 0 1 0
VH2 ξ j < 20% 1 0
VH3 complex conjugate mode present? 1 0

Table 2 List of hard validation criteria that are used in this paper, and the boolean values they take for a possibly physical and a certainly spurious
mode.

3.2 Grouping similar modes in a cleared stabilization diagram

After a stabilization diagram has been cleared out as described in the previous section, similar modes in the diagram are
grouped together with a hierarchical clustering approach. Hierarchical clustering of stabilization diagrams is not a new idea,
but the main difference with previously reported approaches is that the current approach does not contain any parameter that
needs to be specified by the user. The different steps of the proposed approach are:

1. All modes from the cleared stabilization diagram are put in separate clusters, and the mutual distance between all clusters is
computed according to (5).

2. The two clusters that are closest together are collected in a single cluster, and the mutual distance between all clusters is
recomputed as the average distance between their elements.

3. Step 2 is continuously repeated until the distance between the closest clusters exceeds

3(pc1(1)+ 1− pc1(2)), (13)

where pc1(1) and pc1(2) are the first and second elements of pppc1, the centroid of possibly physical modes obtained in the
previous clustering stage, according to table 1. Note that the term between brackets in (13) corresponds to the distance
between a typical physical mode in the analyzed data set, and the closest mode at a lower model order, according to the
distance measure (5).

As a result, the hierarchical clustering stage yields a set of similar mode sets from the cleared stabilization diagram.

3.3 Selecting a final set of physical modes

The sets of modes obtained in stage 2 are split into two clusters: one containing the sets of physical modes, and one containing
the sets of spurious modes. Since in contrast to spurious modes, physical modes are ideally identified at each model order from
a certain model order on, it can be expected that the sets of physical modes contain many elements, while the sets of spurious
modes do not. In order to avoid that a threshold number of elements needs to be specified by the user, again a partitioning
method, e.g., k-means clustering with k = 2, is employed for performing the clustering. Since stage 2 may yield physical mode
sets only, an additional number of empty sets is added, equal to the number of mode sets containing more than one fifth of the
maximum number of modes in any set. As a result, there are nh mode sets in total, some of which are empty.

If the number of modes in set j is denoted as nh j, j = 1, . . . ,nh, the 2-means algorithm computes the centroid of the cluster
of physical mode sets nhc,1, and the cluster of spurious mode sets nhc,2, as

{nhc,1,nhc,2}= args min
nhc,k

2

∑
k=1

nS(k)

∑
j=1

(nh j,c − nhc,k)
2, (14)

where the number of mode sets in each cluster k is denoted as nS(k), the modes belonging to the cluster of possibly physical
modes are members of the set {nh j,1} = {nh j| (nh j − nhc,1)

2 ≤ (nh j−hc,2)
2}, and the mode sets belonging to the cluster of

spurious modes are members of the set {nh j,2}= {nh j|nh j /∈ {nhc,1}}. The objective function in (14) is minimized in an iterative
local minimization process, as explained in section 3.1, and the starting points are chosen to be nhc,1 = max j(nh j) and nhc,2 = 0.
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Finally, a representative element is chosen from each set of similar physical modes that results from the partitioning. In this
work, the mode with the median damping value is chosen. When real normal modes are expected, the mode with the highest
MPC or MPD value can be alternatively chosen as the representative element.

4 Validation example: the Z24 bridge

4.1 The structure

The Z24 bridge was part of the road connection between the villages of Koppigen and Utzenstorf, Switzerland, over-passing the
A1 highway between Bern and Zürich. It was a classical post-tensioned concrete two-cell box-girder bridge with a main span of
30 m and two side spans of 14 m. The bridge, that dated from 1963, was demolished at the end of 1998, because a new railway
adjacent to the highway required a new bridge with a larger side span. Before complete demolition, the bridge was subjected to
a short-term progressive damage test, and after each applied damage scenario, a full forced and ambient operational vibration
test were performed.

The data from one of these scenarios (no. 8) were presented as benchmark data for assessing the performance of system
identification methods for (operational) modal analysis; here, we will analyze the benchmark data from the ambient vibration
test. In this test, 291 degrees of freedom have been measured in total: three acceleration components on the pillars, and mainly
vertical and lateral accelerations on the bridge deck. The data were collected in 9 different setups using 5 channels that were
common to all setups. In each setup, 65536 data samples were collected at a sampling rate of 100 Hz, using an analog anti-
aliasing filter with cut-off frequency of 30 Hz.

More information on the structure, the experimental setup, the short-term progressive damage tests and a long-term vibration
monitoring test that was performed as well, and reported benchmark results, can be found in [18].

4.2 Identification results

The data from each of the 9 setups have been processed with the reference-based covariance-driven stochastic subspace identifi-
cation (SSI-cov/ref) algorithm [14]. The 5 channels that were common to each setup were chosen as reference channels, ı = 50
was chosen as half the number of block rows in the data Hankel matrix, and a model order range from 2 to 160 in steps of 2
was chosen for the construction of the stabilization diagrams. These diagrams were then interpreted with the fully automatic
three-stage approach proposed in section 3, for which no user-defined parameters are needed.

Figures 2, 3 and 4 show the full stabilization diagrams before and after clearing them out according to step 1 of the auto-
mated approach. The automatically selected eigenfrequencies are plotted as vertical lines on top of the cleared out stabilization
diagrams. It can be noticed that they coincide with columns of stabilized modes, as in a manual analysis.

In the automated analysis, 6 modes are found in all 9 setups. They all have eigenfrequencies below 14 Hz. It appears that
the higher modes are not always well excited by the ambient forces. This is in agreement with benchmark results reported in
the literature, where, based on a manual stabilization diagram analysis, only the first 5 modes are used for damage assessment
[11, 20]. Figure 5 shows the global mode shapes, obtained after merging the partial mode shapes obtained in all setups in a
least-squares sense. The corresponding eigenfrequency and damping ratio values, obtained through averaging over all setups,
are also listed.

In order to assess the performance of the automated analysis, a manual analysis, where the stabilization diagrams are cleared
out by means of user-defined thresholding, and stable modes are picked from the diagram, was performed as well. It should
be noted that, since the manual interpretation of a stabilization diagram depends on the experience and engineering judgement
of the analyst, the result of such analysis is user-dependent; only one such result is reported here, but it agrees very well with
results reported by other expert users that have analyzed the same benchmark data, cfr. [18] and the references therein. In the
manual analysis, only 6 modes were found in all 9 setups, so the automated analysis was able to retrieve all relevant modes.
Table 3 offers a quantitative comparison between the results obtained from the automated and manual analyses. The quality of
the identified eigenfrequency and damping ratio values, measured in terms of the sample standard deviation over all 9 setups, is
very similar, except for mode 6, where the eigenfrequency estimate is more accurate in the manual analysis, while the damping
ratio estimate is more accurate in the automated analysis; this is probably due to the fact that, in the last step of each automated
analysis, the mode with the median damping value is chosen as the representative from each set of similar physical modes. The
MPC values for the merged mode shapes are also plotted; they are again very similar except for mode 6, where the manual
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Fig. 2 Z24 bridge: (a-c-e) full stabilization diagrams and (b-d-f) automatically cleared stabilization diagrams for (a-b) setup 1, (c-d) setup 2 and (e-f)
setup 3. The automatically selected eigenfrequencies are plotted as vertical lines on top of the cleared diagrams.
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Fig. 3 Z24 bridge: (a-c-e) full stabilization diagrams and (b-d-f) automatically cleared stabilization diagrams for (a-b) setup 4, (c-d) setup 5 and (e-f)
setup 6. The automatically selected eigenfrequencies are plotted as vertical lines on top of the cleared diagrams.
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Fig. 4 Z24 bridge: (a-c-e) full stabilization diagrams and (b-d-f) automatically cleared stabilization diagrams for (a-b) setup 7, (c-d) setup 8 and (e-f)
setup 9. The automatically selected eigenfrequencies are plotted as vertical lines on top of the cleared diagrams.
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mode 1 - 3.86Hz - 0.8% mode 2 - 4.90Hz - 1.4% mode 3 - 9.76Hz - 1.4%

mode 4 - 10.30Hz - 1.3% mode 5 - 12.41Hz - 2.8% mode 6 - 13.25Hz - 3.2%

Fig. 5 Z24 bridge: eigenfrequency, damping ratio, and mode shape estimates, obtained through an automated stabilization diagram analysis.

analysis yields a higher value. Finally, the merged mode shapes are compared by means of the MAC; it can be concluded that
mode shapes 1 tot 5 are identical while mode shape 6 is almost identical.

mode µ( fu j,a) σ ( fu j,a) µ( fu j,m) σ ( fu j,m) µ(ξ j,a) σ (ξ j,a) µ(ξ j,m) σ (ξ j,m) MPCa MPCm MAC
[Hz] [Hz] [Hz] [Hz] [%] [%] [%] [%] [−] [−] [−]

1 3.86 0.006 3.86 0.006 0.8 0.1 0.8 0.1 1.000 1.000 1.00
2 4.90 0.013 4.89 0.012 1.4 0.2 1.4 0.1 0.991 0.996 0.99
3 9.76 0.020 9.76 0.022 1.4 0.2 1.4 0.2 0.966 0.967 1.00
4 10.30 0.095 10.30 0.080 1.3 0.3 1.3 0.2 0.934 0.942 1.00
5 12.41 0.200 12.39 0.182 2.8 0.4 2.9 0.4 0.951 0.950 0.99
6 13.25 0.230 13.35 0.145 3.2 1.4 3.6 1.7 0.877 0.960 0.94

Table 3 Z24 bridge: mean values (µ) and standard deviations (σ ) of the undamped eigenfrequencies ( fu j) and damping ratios (ξ j), computed from
the values obtained for each setup with a manual ( m) or automated ( a) analysis of the stabilization diagrams. The MPC values of the merged mode
shapes are also tabulated, as well as the MAC values between the mode shapes obtained in the manual and the automated analysis.

5 Conclusions

In this paper, a fully automated, three-stage clustering approach is developed for interpreting stabilization diagrams, that obeys
the following five target criteria:

1. not rely on more than one data record or on a priori estimates for any of the modal parameters;
2. be as physically intuitive as possible and follow the course of a manual analysis;
3. produce similar results as in a manual analysis;
4. be of use in an EMA, OMA and OMAX framework;
5. not contain parameters that need to be specified or tuned by the user.

As a nice side result, improved formulae for computing the mean phase and mean phase deviation of a mode shape were
derived (8-9). A validation study was performed, where nine real-life benchmark operational modal bridge data sets were
analyzed, and the resulting modal parameters were compared with those obtained from a manual analysis by an expert user.
With the automated approach, all relevant modal parameters were recovered with an accuracy that is almost identical as in the
manual analysis. Additional validation studies on other structures are required, however, in order to confirm the accuracy and
robustness of the proposed automatization strategy.
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ABSTRACT 
For modal analysis (including SISO, MIMO, OMA), the accuracy of modal parameters depends mainly on the estimators 
used. Different parameters will be extracted even by the same user with the same method at different time. Here a criterion is 
presented which can compare the accuracy of the identification results. An optimization method is put forward by which all 
identification results of different methods can be approximately unified. The difficult problem for the optimization of MIMO 
test, to calculate modal participation factors by the modal frequency and damping independently, is solved in the paper. An 
optimization mechanism is put forward by which the mathematical poles can be deleted automatically during the 
optimization process. By this way, the autonomous identification of modal parameter for SISO, MIMO, OMA test can be 
realized, the best identification result can be obtained which only depends on the frequency bands of interest without relation 
to analysis methods and user. Two examples, a car brake disk of MIMO test and a real bridge of OMA test, are used to testify 
the optimization and autonomous analysis method and are proven successful. 

1 INTRODUCTION 
The main methods for multi-input-multi-output(MIMO) modal analysis are ERA[1] (Eigensystem Realization Algorithm)，
PolyMAX[2] (Poly-reference Least Square Complex Frequency Domain method), PRCE[3] (Poly-reference Complex 
Exponential method). The stabilization diagram will be used for all these methods, the dimension of characteristic matrix will 
be chosen first, when choosing different poles at stabilization diagram different modal parameters will be obtained. To get the 
correct modal parameters the user with high academic level and aplenty measuring experience is required. In a word, 
different analysis method will cause different modal parameters. Different modal parameters will be identified even by the 
same user with the same analysis method at different time.  

Given a reasonable and practical criterion of optimization for modal parameters, through optimization, the modal parameters 
identified by different methods can be optimized to an almost unified result. 

In MIMO modal analysis, the modal participation factors are identified at the same time with modal frequency and damping, 
and the vibration shape is identified at last. The different poles in stabilization diagram correspond to different modal 
frequency, damping and participation factor. Only the user with high academic level and aplenty measuring experience can 
choose the correct poles and get reliable modal parameters. 

The optimization method suitable for SIMO and MISO which optimized characteristic roots and vibration shapes has been 
put forward recently [4]. This method cannot be extended to MIMO directly because in MIMO there is modal participation 
factor which is correlated to modal shape, the optimization method for MIMO need to be adjusted. 

The different modal parameters identified by different method can be unified by optimization theoretically. After the 
optimization, the identified modal parameters have no relation with initial analysis method. But in practice, the situation is 

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 203  
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not always in this way. For example, by the limitation of user’s academic level and measuring experience, some important 
modes is lost in analysis, this error cannot be corrected by optimization. 

To ensure the identified modal parameters have no relation with analysis method and user, the only way is autonomous 
analysis. Based on the optimization method, optimization mechanism by which pseudo modes will be deleted automatically 
is put forward.  As long as an initial solution is given including all the physical poles, through the optimization mechanism, 
all the mathematical poles will be deleted automatically, only the physical poles are left, and the optimal modal parameters 
will be identified and the MIMO autonomous analysis is realized. 

2 OPTIMIZATION OF MIMO MODAL PARAMETERS 
For MIMO analysis, assuming the number of responding points is  and the number of exciting points is . There are 

 FRFs or half spectrum [5]. When characteristic roots (r=1, 2,… ) are known, the FRF or half spectrum can be 

written as:  
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Considering all spectral lines at the same time, the （r=1, 2，…,n） will be solved by the least-squares (LS) method. 

With the new characteristic roots, modal participation factors  can be solved by a new algorithm 

introduced below, modal vibration shapes  be solved by equation (1) with LS method, as well as lower and upper 

rds

rr dss + }{ rw

}{ rv
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residues  modeling the influence of the out-of -band modes in the considered frequency band. ][],[ URLR

Modal shapes and modal participation factors are related with each other, so for MIMO modal analysis, the characteristic 
roots, modal shape and modal participation factor cannot be optimized at the same time. 

The optimization method of only considering (r=1, 2, …n), keeping modal shapes and modal participation factors 

unchanged, can be used for optimization of MIMO modal parameters. The number of terms need to optimized is decreased 
greatly. 

rs

Define a frequency fitting coefficient as 

HHEEFit HH
f /=                                           (5) 

where E  and H  including all spectral lines in the considered frequency band, and the matrices  is arranged in 

only one column. The value of the frequency fitting coefficient is the smaller the better. This coefficient can be used as the 
object of optimization, or to compare the accuracy of modal parameters estimated by different methods. 

HE,

According to Parseval’s theorem, if all spectrum lines are taken into account, the frequency fitting coefficient can be looked 
as a time fitting coefficient. 

In equation (4) and (5), each lines in E and H can be weighted according to frequency. There are  five 

types, which are decided by the measurements and the FRFS or half-spectrum used. For example, if the measurements are 

accelerations, the FRFs or half spectrums for fitting are displacement, the weighting mode should be . 

212 ,,1,, −− ωωωω

2−ω

The modal parameters identified by different methods are looked as the initial solution of the optimization method. The 
frequency fitting coefficient can be used to compare the accuracy of different methods. The method with the smaller 
frequency fitting coefficient is the better, and the optimization process is fast. 
The whole optimization procedure is as follows:  

While modal frequencies and dampings are known, we get characteristic roots (r=1, 2,…, n) rs

)2(1)2( 2
rrrrr fjfs πξξπ −+−=                              (6) 

where rrf ξ, is the frequency and damping of mode r. 

If FRFs or half-spectrum are calculated by applying the exponential window [6], which is defined as 

( )SF
iExp

i eExpW −
=                                          (7) 

with , the sampling frequency, the points number of the impulse response function 

corresponding to FRF or cross correlation function corresponding to half spectrum, Exp is the exponential window 
coefficient.  

1,,2,1,0 −= Ni L SF N

Therefore, the characteristic roots are rs

)2(1)2( 2
rrrrr fjExpfs πξξπ −+−−=                           (8) 

Thereafter the modal participation factors can be calculated. When modal participation factor is known, the modal shapes 

205



}{ rv (r=1, 2,…, n) as well as lower and upper influencing residues can be calculated by the LS method with 

equation (1). The frequency fitting coefficient can be calculated with equation (5). and can be calculated by the 

LS method with equation (4). 

][],[ URLR

rds *
rds

rr dss + is used as the new characteristic roots for the next iteration.  

The optimization will stop when the frequency fitting coefficient doesn’t decrease any more. 

The difficulty of MIMO optimization is to get participation factors with modal frequency and damping known. There are 
algorithms based on PolyMAX, PRCE or ERA. 

The PolyMAX method needs FRFs or half spectrum as primary data and identifies a right matrix-fraction model: 
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With z transform, , tsez ∆= t∆  is the sampling interval. Where ( ) pqCzH ×∈][  is FRF or half spectrum matrix 

containing the FRFs or half spectrums between all inputs and outputs, p q p
ok R ×∈ 1β  the numerator row-vector 

polynomial of output , and  the denominator matrix polynomial. o [ ] pp
k R ×∈α

By the PolyMAX algorithm, L+1 matrices [ ]  (k=0,1,2,…L) can be extracted. L must satisfy . To 

ensure optimization quality, L should be large enough. 
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,  is a diagnostic matrix. The vector corresponding to the smallest singular value  is the modal 

participation factor{ }. 

[ ][ ][ ]HVSUA = qqCU ×∈

[ ] qqCV ×∈ [ ] qqRS ×∈ }{ rV

rw
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By singular value decomposition, the modal participation factor { }rw  can be solved. 

For complete double roots situation, i.e. there are two identical roots rλ , using two vectors responding the two }{ rV
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smallest singular values as modal participation factors{ }rw . 

If all characteristic roots rλ (r=1, 2,…n) are known，how to get the participation factor by ERA algorithm is shown below: 
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We construct the Hankel matrix , . )0(H )1(H
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with the impulse response function or cross correlation function between input)( khij j  and output for time . i k

2nd step: By singular value decomposition, choose as order, we get matricesn2 A , B and . C
TUSVH =)0(                                       (14) 

Where , is diagnostic matrix， . prprRU ×∈ qsprRS ×∈ qsqsRV ×∈

According to the diagnostic element value of , choose largest orders, we get S n2
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3rd step: According to 

]][[][ φλφ =A                                      (17) 

We get eigenvector ][φ  by LS method. Modal participation matrix is 
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[ ] [ ] BW qn
1

2
−

× = φ                                          (18) 

 
3 AUTONOMOUS MODAL ANALYSIS 

By tracking all poles’ changing tendency as the model order increases, an effective optimization mechanism can be designed 
to make the distinction between the physical and mathematical modes, to realize the automated modal analysis.  

The poles which are near physical poles move to physical poles quickly and stabilize soon in the optimization process. 

The tendency of mathematical poles is unstable. There are 3 probabilities for mathematical poles, can be distinguished with 
physical poles and deleted during the optimization process.   

1st possibility: Move to a physical pole, cause one real mode with two physical poles, these two poles is very close and the 
vibration shape very similar. In modal test, if measured points are enough, the vibration shapes of different modes are nearly 
orthogonal. By the value of MAC of two closely poles this situation can be found. Set a threshold value of MAC, such as 0.5, 
when the MAC value of two closely poles is greater than this threshold, delete the pole with less modal energy. 

2nd possibility: The damping ratio becomes greater step by step. Set a maximum damping value, such as 10%, if a pole’s 
damping is greater than this value, delete this pole. 

3rd possibility: The energy corresponding to a pole becomes smaller step by step. According to modal important index 

MII[7]， ，the value ranges from 0 to1，  is the vibration mean energy of mode r， is the maximum 

one among all poles. After physical poles stabilized, the energy of mathematical poles will become less and less, so set an 

energy threshold, such as 0.001, when  is smaller than this, delete this pole.  

max/ EEMII rr = rE maxE

rMII

The principle for initial poles is preferable superabundance than shortage. We can get the initial poles from the stability chart. 
First we set a threshold value, if the number of stable poles in a very closely frequency band is greater than that value, we set 
one of the stable poles as an initial pole. Decreasing the threshold will produce more mathematical poles but the physical 
poles will not be lost. The mathematical poles will be deleted during optimization process. 

MIMO autonomous analysis process is summarized as bellow: 

1st step: Calculate FRFs or half spectrum for all measurements. 

2nd: Choose the frequency band of interest for analysis. In the band, we get the initial poles from the stabilization diagram. 
To prevent too many mathematical poles exist or physical poles to be lost, the Multivariate Mode Indicator Function (MIF) 
can be plotted on the stability chart for reference [8, 9]. Only when value of MIF is less than a threshold, such as 0.5，the 
poles will be reserved as initial poles. Check the local minima of all MIF lines, if there is no initial pole near a local minimum, 
add one pole from the stabilization diagram which is closest to the local minimum point in frequency domain. 

3rd step: Optimize as the method introduced in part 1. During optimization, delete mathematical poles as introduced above. 

4th step: When frequency fitting coefficient does not decrease any more, stop the optimization process, and the autonomous 
analysis is completed. 

 
4 ENGINEERING EXAMPLE 

MIMO example: 
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To testify the algorithm, MIMO test for a brake disk with closed modes is analyzed with autonomous analysis and the modal 
parameters optimization. 

The brake disk is shown in figure 1, its size is: 

Outer diameter R=15cm, inner diameter R=9cm, hole diameter R=4cm, height=6cm, thickness of bottom=1cm, thickness of 
wall=0.7cm, thickness of top=0.5cm. 

 

Figure 1:  the brake disk for MIMO test 

There are total 160 measurement points. By roving a hammer to impact at each point and keeping 4 reference accelerometers 
fixed，4 sets of FRF for MIMO modal analysis are obtained. 

The frequency band of interest is up to 5000Hz. 

Table 1 is the modal parameters comparing with ERA and PolyMAX methods, before and after optimization, as well as 
autonomous analysis. 

From table 1，we can find two methods is very accurate, the left space for optimization is small. After optimization, the 
frequency fitting coefficient is improved from 18.59% to17.27% and from 17.66% to17.06% respectively, both improved. 
After optimization, the accuracy of frequency fitting coefficient is very close，modal frequency and damping ration is much 
more in accordance(except 1 pole). If poles in two methods are not chosen suitable, the initial frequency fitting coefficient 
will be greater obviously, but after optimization, it can still reach the level in table 1. Furthermore, if there are mathematical 
poles at the beginning, the mathematical poles can be deleted during the optimization process.  

In autonomous analysis the initial poles is obtained by ERA stabilization diagram, which including many mathematical poles, 
these mathematical poles are deleted automatically during the optimization process. The identified parameters are listed in 
table 1 ERA (optimized). In autonomous analysis, PolyMAX algorithm is used for calculating modal participation factors, L 
is set 50，MAC threshold value is 0.5, the maximum damping is 10%，energy coefficient value is 0.0001.The MIF threshold 
value is 0.4 which will affect the initial poles. 

 

209



Table 1:  Modal parameters identified using ERA /PolyMAX before and after optimization as well as autonomous analysis 
Modal freq.(Hz) and damping ratio(%)  

modes 
ERA  

ERA 
(Optimized) 

PolyMAX 
PolyMAX 

(Optimized) 
Autonomous 

Analysis 
1 899.608  0.753 900.236  0.760 900.143  0.680 900.278  0.733 900.331  0.752 

2 918.114  0.255 918.890  0.278 918.878  0.297 919.042  0.275 919.089  0.275 
3 1112.055  0.643 1113.031  0.568 1112.600  0.540 1113.015  0.553 1113.172  0.556 
4 1370.353  0.715 1371.023  0.713 1371.977  0.729 1371.356  0.717 1371.126  0.709
5 1388.493  0.526 1388.854  0.526 1390.588  0.495 1389.271  0.520 1388.857  0.523

6 1439.577  0.378 1440.377  0.389 1439.913  0.393 1440.364  0.393 1440.488  0.391

7 1446.522  0.263 1447.307  0.251 1446.465  0.219 1447.093  0.246 1447.354  0.245
8 2005.728  0.271 2007.233  0.213 2005.645  0.268 2006.891  0.226 2008.724  0.155
9 2016.708  0.607 2016.274  0.536 2016.154  1.431 2009.274  1.082 2014.714  0.425

10 2025.363  0.483 2025.696  0.491 2025.571  0.495 2025.752  0.488 2025.193  0.467
11 2034.539  0.391 2035.119  0.389 2035.716  0.437 2036.097  0.425 2036.212  0.424
12 2113.402  0.183 2115.304  0.151 2114.112  0.202 2115.231  0.159 2115.653  0.137
13 2555.327  0.223 2557.386  0.180 2556.622  0.152 2557.257  0.155 2557.805  0.153
14 2571.578  0.224 2573.699  0.178 2574.428  0.152 2574.370  0.152 2574.244  0.158
15 2899.162  0.659 2900.761  0.599 2901.171  0.572 2900.935  0.586 2900.921  0.591
16 2905.860  0.410 2906.501  0.417 2906.803  0.403 2906.730  0.412 2906.657  0.415
17 3708.427  0.134 3708.554  0.148 3706.795  0.179 3708.006  0.164 3708.601  0.151
18 3726.574  0.170 3725.947  0.158 3725.467  0.156 3725.798  0.156 3725.945  0.155
19 3948.062  0.405 3949.087  0.431 3949.236  0.459 3949.136  0.442 3950.312  0.425
20 3987.571  0.507 3986.147  0.510 3989.689  0.458 3988.616  0.505 3986.409  0.491
21 4003.776  0.280 4004.340  0.264 4008.950  0.313 4005.559  0.263 4004.072  0.251
22 4043.685  0.346 4039.308  0.290 4043.716  0.453 4037.911  0.444 4042.064  0.177

Fit(f) 18.59% 17.27% 17.66% 17.06% 17.09% 
Fit(t) 56.40% 56.10% 56.18% 56.05% 56.06% 

If the MIF threshold is set to be lower, there is less mathematical poles among the initial poles, and the optimization be 
completed sooner. However if MIF threshold is set small enough, physical poles may be lost. So observing the MIF curve and 
averaged power spectrum of FRF or half spectrum is of importance. In this case, averaged FRF power, MIF and frequency 
band of interest is shown in figure 2. Some modal shapes are shown in figure 3. 

 
Figure 2:  Averaged FRF power, MIF and frequency band of interest 

210



 

 

 

 

Figure 3:  Modal shapes 
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OMA Example: 
The Lupu bridge, located in Shanghai, China, illustrated as Figure 4, is the longest span concrete-filled steel tubular arch 
bridge in the world now. The bridge is composed of a central span of 500m, two lateral spans of 100m and transition 
span of 41m, resulting in a total length of 750m. Measuring the acceleration along the 3 orthogonal directions in all the 
points represented in Figure 5, two reference points permanently located at points 15/34, other accelerometers are roved 
to obtain four datasets. 5 methods are used for analysis, they are SSI[10], PolyMAX, EFDD[11], PZM[12] and PPM[13]. 
The most important 12 modes are obtained in the frequency range up to 2Hz. 

 
Figure 4:  Lupu Bridge 
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Figure 5:  Layout of measuring points and reference points 
 

The comparison of optimized method and 5 algorithms for Lupu Bridge OMA test are listed in Table 2. The identified modal 
frequencies are very close for different algorithms, and damping ratios are different slightly. Using the modal parameters by 
the different algorithm as initial solution, after optimization, all the algorithms produced the same optimized parameters. 
After optimization, the vibration shapes are more harmonized. 
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Table 2：The comparison of Optimized method and 5 algorithms for Lupu Bridge OMA test 
Modal frequency(Hz) and Damping(%) 

modes 
SSI PolyMAX EFDD PZM PPM 

Optimized 

f 0.362 0.362 0.362 0.362 0.361 0.362 
1 

ξ 0.264 0.171 0.364 0.153 0.220 0.131 

f 0.401 0.401 0.402 0.402 0.402 0.401 
2 

ξ 0.497 0.288 0.360 0.347 0.309 0.206 
f 0.600 0.600 0.591 0.598 0.599 0.600 

3 
ξ 0.639 0.489 1.906 0.579 0.831 0.543 
f 0.704 0.700 0.698 0.699 0.699 0.701 

4 
ξ 1.183 1.330 0.585 0.550 0.565 1.300 
f 0.894 0.892 0.892 0.892 0.895 0.893 

5 
ξ 1.530 1.310 1.749 0.990 1.349 1.617 

f 0.989 0.991 0.990 0.992 0.990 0.989 
6 

ξ 0.848 0.850 0.857 0.800 1.037 0.883 
f 1.111 1.114 1.118 1.108 1.117 1.126 

7 
ξ 1.415 1.307 2.168 1.767 2.559 2.644 
f 1.174 1.173 1.175 1.174 1.175 1.175 

8 
ξ 0.422 0.214 0.649 0.237 0.227 0.165 
f 1.339 1.336 1.338 1.337 1.338 1.338 

9 
ξ 0.323 0.253 0.316 0.294 0.317 0.239 
f 1.483 1.477 1.467 1.479 1.481 1.474 

10 
ξ 1.041 1.051 1.466 1.488 1.356 1.393 
f 1.616 1.627 1.625 1.617 1.622 1.616 

11 
ξ 1.317 0.853 0.973 0.786 1.211 1.791 
f 1.815 1.819 1.812 1.822 1.812 1.819 

12 
ξ 0.673 0.176 0.353 0.391 0.594 0.880 

Fit(f) 21.11% 22.25% 24.99% 22.10% 20.71 16.90% 
Fit(t) 68.49% 71.59% 69.43% 70.92% 67.31% 65.70% 

 

5 CONCLUSIONS 

The autonomous modal analysis in the past is based on stabilization diagram [14], the mathematical poles are difficult to 
distinguish automatically, and the identified parameters can’t be optimized further. By using the methods introduced bellow, 
these two problems are solved. 

1．Put forward a frequency fitting coefficient. By which the accuracy of the identified parameters can be compared. It is the 
mathematical base for the modal parameters optimization. 

2．Put forward a MIMO optimization method. By keeping participation factors and vibration shapes unchanged, optimize the 
modal frequency and damping. The difficulty of this method is to calculate the participation factors with known modal 
frequency and damping. By using PolyMAX, PRCE or ERA algorithms, this problem is solved. Through optimization, the 
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identified parameters by different methods are almost the same. 

3． Put forward an optimization mechanism of deleting mathematical poles automatically. Helped by modal important index 
(MII) and multivariate mode indicator function (MvMIF), the autonomous modal analysis can be realized. The modal 
parameters identified by autonomous method are free from mathematical poles. 
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ABSTRACT 
Significant levels of vibration in civil engineering floors under human-induced excitations often cause annoyance to their 
occupants. Various Active Vibration Control (AVC) strategies have been investigated in the past for mitigating the effect of 
such vibrations in some problematic floors; for example, control laws making use of acceleration feedback and velocity 
feedback schemes. The research presented in this paper aims to demonstrate that the use of the Independent Modal Space 
Control (IMSC) approach, previously tried and implemented in marine applications, can be invaluable to isolating and 
controlling specific modes of vibration in civil engineering floors.  

This approach may prove attractive particularly in floors with very close modes of vibrations where only certain modes prove 
to be problematic under human-induced excitations. The IMSC technique is implemented in a reduced order model (ROM) of 
a laboratory structure and two sets of studies with this technique are presented here. In the first study, only the first mode of 
vibration of the laboratory structure is targeted, while in the second study, both the first and second vibration modes of the 
laboratory structure are targeted.  

1 INTRODUCTION 

Civil engineering structures, particularly floors, have become prone to human-induced vibrations as a result of advancements 
in structural technology enabling design of light and slender structures often spanning long distances. Many contemporary 
floor structures also comprise more open-plan layouts with less inherent damping thereby increasing their susceptibility to 
such vibrations (Bachmann 1992, Nyawako and Reynolds 2007).  

There has been significant research in recent years into passive, semi-active and active control of vibrations in civil 
engineering structures (Bachman and Weber 1995, Setareh 2002, Koo et al 2004, Hanagan et al 2003a, Diaz and Reynolds 
2009).  As pertains to active vibration control of these structures, there have been rigorous studies aimed at trying to derive 
suitable control laws for different scenarios, ranging from controlling wind/earthquake induced vibrations in civil engineering 
structures to controlling human-induced vibrations. Some of the control laws that have been investigated and implemented in 
the past for mitigating human induced vibrations in floors include direct velocity feedback (DVF), direct acceleration 
feedback (DAF), Compensated Acceleration Feedback (CAF), and Response Dependent Velocity Feedback schemes 
(Hanagan et al 2003b, Hanagan et al 2000, Diaz and Reynolds 2010, Nyawako and Reynolds 2009). 

Notwithstanding the above mentioned active vibration control laws, the potential benefits of other categories of active control 
approaches widely used in the mechanical and aerospace sectors are being investigated for mitigation of human induced 
vibrations in civil engineering structures. Among these categories is the Independent Modal Space Control technique 
(IMSC), a modal control approach. This technique has been extensively used in the marine industry for developing isolation 
systems that improve the crew and passenger comfort (Daley et al 2004). Its attractiveness stems from the fact that it can be 
invaluable for isolating and controlling target modes of vibration in civil engineering structures.  

The basic idea of the IMSC approach is that by looking at frequency response functions of structural systems, for example of 
floors, designers can detect troublesome modes or groups of modes. Desired structural behaviours in terms of modal damping 
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ratios and frequencies can be defined and a modal control strategy can then be designed to adjust the closed-loop behaviour 
in some suitable way (Inman 2001, Daley et al 2004, Fang et al 2003). Performances that can be realised are dependent on the 
number of sensor and actuators available as well as their dynamics.  It has widely been observed that an IMSC 
implementation typically requires the number of actuators to be equal to that of modelled modes (Nguyen 1991).  

The work presented here explores the possibility of realising an IMSC controller for mitigating human induced vibrations in 
floors. A structural model and input forces used in analytical simulations is introduced. A brief overview of the IMSC 
strategy used in this analytical work is shown and some results of analytical simulations for two different IMSC controllers 
setting are presented. IMSC controller 1 aims to target only the first mode of vibration of the reduced order model (ROM) of 
the laboratory structure while IMSC controller 2 aims to target both the first and second modes of vibration of the ROM. 
Some results and conclusions are finally presented. 

2 STRUCTURAL MODEL AND INPUT FORCES 

2.1 Structural Model 
The laboratory structure is a simply-supported in-situ cast post-tensioned slab strip of span 10.8m. Its total length is 11.2m, 
which includes 200mm overhangs over the knife-edge supports. It has a width of 2.0m, depth of 275mm, and weighs 
approximately 15 tonnes. The first and second modes of vibration have natural frequencies of 4.55 Hz and 17.02 Hz with 
modal damping ratios of 0.4 % and 0.2 %, respectively. The first mode is particularly prone to excitation by the second and 
third harmonics of walking excitation (Reynolds 2000). 

The IMSC controller design presented in these studies is formulated from a ROM of the laboratory structure. This ROM is 
developed based on uncontrollability and unobservability at node points of vibration modes of the laboratory structure (Seto 
and Mitsuta 1992). The mode order is chosen as two here and the node points of the third bending mode have been chosen as 
the locations of the masses for the lumped parameter system as shown in Fig. 1. 

 
Fig. 1 Laboratory structure grid, mode shapes and 2-DOF lumped mass model 
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By making use of a mass normalised scaling for the mode shapes at the chosen locations of the third bending mode, i.e. 
[ ] [ ][ ] [ ]Ι=ΦΦ MT , the mass and stiffness matrices of the physical co-ordinates can be derived from Eqs. (1) and (2). Equation 
3 is often used to obtain convergence i.e. diagonalisation of the mass and stiffness matrices of the physical co-ordinates. 

   ( ) ( ) 111 −−−
ΦΦ=ΦΦ= TTM   ( )TM ΦΦ=−1     (1) 

   ( ) 121 −−
ΦΩΦ= TK        (2) 

   [ ] ( )r

T
rr

T
rT ε

φ
ε

φ
ε

φ
ε

δφδφδφδφ −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=

−1

22122111   (3) 

By applying Eqs. (1), (2) and (3) to the mass-normalised mode shapes of the laboratory structure derived from a Finite 
Element model, the following physical parameters of the 2-DOF lumped mass model in Eqs. (4) and (5) are obtained. 

;3.559621 KgMM ==  mNeKmNeKK /79876.2;/74565.0 231 +=+== .  The assumed Rayleigh damping matrix is as 
shown in Eq. (6).  
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Damping matrix (Ns/m)  ⎥
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=

5.18967.616
7.6165.1896

C      (6) 

2.2 Input Forces for Analytical Studies 
Human movement is often characterised by rhythmical body motions such as walking and running. Such motions induce 
dynamic loads into the structures they occupy and may result in significant resonant, transient, steady-state or impulsive 
responses (Bachmann et al 1995). 

The disturbance forces considered here are walking force time histories obtained from treadmill walking tests and a random 
excitation signal with a frequency span of 0 – 40 Hz. These are shown in Figs. 2a and 2b for 10s durations. 

 

a) Walking force time history (2.25 Hz) 

 

(b) Random excitation force (0 – 40 Hz) 

Fig. 2 Walking force time history and random excitation force time history for analytical simulations 
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3 INDEPENDENT MODAL SPACE CONTROL (IMSC) STRATEGY 

For a discrete set of measurements, x , the equation of motion for the 2-DOF lumped mass model of the laboratory structure 
shown in Fig. 1 can be determined as shown in Eq. 7. The parameters KCM ,,  are as shown in Eqs. 4 and 5. f denotes the 
vector of applied forces.  For the IMSC approach, a decoupled independent modal description of a structure is often 
necessary. The decoupled independent modal space description outlined in Eq. 8, which is derived from Eq. 7 can be 
obtained from the transformation shown in Eq. 9 (Daley 2004, Inman 2001). φ  is an orthonormal matrix of the eigenvectors 

of )2/1()2/1( −− KMM .  
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 Λ  - damping ratios, Ω  - spectral matrix 

Thus, the problem is transformed from a MIMO (multiple-input multiple-output) control design problem in Eq. (7) into a 
series of multiple independent SISO (single-input single-output) control problem in Eq. (8). A general independent modal 
controller can now be defined as shown in Eq. (10). The closed loop description of each mode takes the form of Eq. (11), 
which enables the damping and frequency of each mode to be manipulated independently. The configuration of the vector of 
modal forces, mf  can be set depending on the number of modes to be controlled whilst taking into account the number of 
sensors and actuators available as well. In the work presented here, two IMSC controllers are designed as explained in 
section 1.4.  
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Since the controller in Eq. (10) is defined in the modal space, it cannot be implemented directly and a transformation is 
necessary from the measured input signals. The matrix transformation required for extracting the first two bending modes of 
the laboratory structure at the locations pre-determined can be determined by making use of the rows of the matrix 2/1MTφ . 
This enables Eq. (10) to be re-arranged in the physical domain as shown in Eq. (12) and this can now be implemented 
directly. A vector )(sy  contains the sensor measurements and vector )(sf is the local demand force. 

)()()()( 2/12/12/1 syMsGMsrMsf T
mm φφφ −=    (12) 

The local demand forces can now be determined from the linear displacements, velocities and accelerations at each actuator 
location as noted in Eq. (12). For the work presented in this paper, once the local demand forces are evaluated, an inverse 
actuator model (i.e. an inverse model for the APS Dynamics Model 400 Electrodynamic Shakers) is used to calculate the 
desired control voltage signal which is then transmitted to the actuators. A typical global processing stage is demonstrated in 
Fig. 3. 
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Fig. 3. Typical global control processor (after Daley et al. 2004) 

4 ANALYTICAL SIMULATIONS 

The analytical simulations presented in this work cover two IMSC controller designs 

a) IMSC Controller  1 – This controller aims to increase the damping in the first mode of vibration of the ROM of the 
laboratory structure by up to 20 times while not engaging the second mode of vibration. 

b) IMSC Controller 2 – This controller aims to increase the damping in both the first and second modes of vibration of 
ROM of the laboratory structure by up to 20 times. 

4.1 IMSC Controller 1 
The settings of this controller are set so as to target an increase in damping of the 1st mode only by up to 20 times whilst not 
engaging the second mode of vibration. Figs. 4a and 4b show the uncontrolled and controlled acceleration responses of the 
laboratory structure model to a walking excitation force noted in section 1.2.  Fig. 4c illustrates the control force whilst Fig. 
4d shows the point mobility frequency response function for the uncontrolled and controlled structural model. The peak 1s 
running RMS acceleration responses for the uncontrolled and controlled ROM are 0.44 m/s2 and 0.088m/s2 , respectively. 
This follows the recommendation of ISO 2631:1997, for which the peak 1s running RMS is defined as the Maximum 
Transient Vibration Value (MTVV).  

 

(a) Uncontrolled response 

 

(b) Controlled response – IMSC design 1 
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(c) Control force – IMSC design 1 

 

(d) Point accelerance FRF – IMSC design 1 

Fig. 4 Uncontrolled and controller responses to walking excitation as well as actuator force and point accelerance frequency 

response functions (FRFs) for IMSC design 1 

4.2 IMSC Controller 2 
In this second controller design, the settings are tuned to achieve an increase in damping of both the 1st and 2nd modes of the 
ROM structural model by up to 20 times. Figs. 5a and 5d show the uncontrolled and controlled acceleration responses of the 
laboratory structure model to a walking excitation force noted in section 1.2.  Fig. 5c illustrates the control force and Fig. 5d 
shows the point mobility frequency response function for the uncontrolled and controlled structural model. The peak 1s 
running RMS acceleration responses for the uncontrolled and controlled ROM are 0.44 m/s2 and 0.054m/s2, respectively. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5 Uncontrolled and controlled responses to walking excitation as well as actuator force and point accelerance frequency 

response functions (FRFs) for IMSC design 2 

5 RESULTS AND CONCLUSIONS 

Tables 1 and 2 demonstrate the vibration mitigation performances of the two IMSC controller structures outlined in section 
1.4. The benefits of the IMSC controller design technique in meeting the desired vibration mitigation performances can 
clearly be seen from these results.  

 

Table 1. Peak 1s running RMS acceleration for uncontrolled and controlled laboratory  

structure model under walking excitation for IMSC Controllers 1 and 2  

Case Uncontrolled 

(ms-2) 

Controlled  
(ms-2) 

% red. 

IMSC Controller 1 0.44 0.088 80.0 % 

IMSC Controller 2 0.44 0.054 87.7 % 

 

Table 2. Attenuations in vibration at target modes of vibration  

(4.55 Hz and 17.02 Hz) for IMSC Controllers 1 and 2  

Case Attenuation 
Mode 1 (dB) 

Attenuation 
Mode 2 (dB) 

IMSC Controller 1 10.0 0.0 

IMSC Controller 2 10.0 13.0 
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Based on this work, the modal control technique is seen as a potential and attractive method for controlling human induced 
vibrations in civil engineering floor structures. As previously noted by some researchers, its benefit is that civil engineering 
designers can now evaluate frequency response functions of floors, detect a troublesome mode or groups of modes and 
design a modal control strategy to adjust the closed loop behaviour in some suitable way. The effects of the controller 
designer on other modes can also be evaluated to determine its robustness. 
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ABSTRACT

The objective of this paper is to demonstrate that the numerical computation of the nonlinear normal modes
(NNMs) of complex real-world structures is now within reach. The application considered in this study is the air-
frame of the Morane-Saulnier Paris aircraft, whose ground vibration tests have exhibited some nonlinear structural
behaviors. The finite element model of this aircraft, elaborated from drawings, has more than 80000 degrees of
freedom, and softening nonlinearities exist in the connection between the external fuel tanks and the wing tips.
From this model, a reduced-order model, which is accurate in the [0-100Hz] range, is constructed using the Craig-
Bampton technique. The NNMs of the reduced model are then computed using a numerical algorithm combining
shooting and pseudo-arclength continuation. The results show that the NNMs of this full-scale structure can be
computed accurately even in strongly nonlinear regimes and with a reasonable computational burden. Nonlinear
modal interactions are also highlighted by the algorithm and are discussed.

1 INTRODUCTION

Nonlinear normal modes (NNMs) offer a solid theoretical and mathematical tool for interpreting a wide class of nonlinear dynam-
ical phenomena, yet they have a clear and simple conceptual relation to the LNMs [1−3]. However, most structural engineers still
view NNMs as a concept that is foreign to them, and they do not yet consider NNMs as a useful concept for structural dynamics.
One reason supporting this statement is that most existing constructive techniques for computing NNMs are based on asymptotic
approaches and rely on fairly involved mathematical developments.

There have been very few attempts to compute NNMs using numerical methods [4−7]. Algorithms for the continuation of periodic
solutions are really quite sophisticated and advanced (see, e.g., [8−10]), and they have been extensively used for computing the
forced response and limit cycles of nonlinear dynamical systems (see, e.g., [11]). Interestingly, they have not been fully exploited
for the computation of nonlinear modes.

In this paper, we support that these numerical algorithms pave the way for an effective and practical computation of NNMs. The
proposed algorithm, implemented in MATLAB, relies on two main techniques, namely a shooting procedure and a method for the

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 223 
DOI 10.1007/978-1-4419-9299-4_19, © The Society for Experimental Mechanics, Inc. 2011
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continuation of NNM motions. The objective is to demonstrate that the numerical computation of the NNMs of complex real-world
structures is then within reach. The application considered in this study is the airframe of the Morane-Saulnier Paris aircraft,
whose ground vibration tests have exhibited some nonlinear structural behaviors.

2 NONLINEAR NORMAL MODES (NNMS)

A detailed description of NNMs and their fundamental properties (e.g., frequency-energy dependence, bifurcations and stability)
is given in [1−3]. For completeness, the two main definitions of an NNM are briefly reviewed in this section.

The free response of discrete conservative mechanical systems with n degrees of freedom (DOFs) is considered, assuming
that continuous systems (e.g., beams, shells or plates) have been spatially discretized using the finite element method. The
equations of motion are

Mẍ(t) + Kx(t) + fnl {x(t), ẋ(t)} = 0 (1)

where M is the mass matrix; K is the stiffness matrix; x, ẋ and ẍ are the displacement, velocity and acceleration vectors,
respectively; fnl is the nonlinear restoring force vector.

There exist two main definitions of an NNM in the literature due to Rosenberg and Shaw and Pierre:

1. Targeting a straightforward nonlinear extension of the linear normal mode (LNM) concept, Rosenberg defined an NNM
motion as a vibration in unison of the system (i.e., a synchronous periodic oscillation).

2. To provide an extension of the NNM concept to damped systems, Shaw and Pierre defined an NNM as a two-dimensional
invariant manifold in phase space. Such a manifold is invariant under the flow (i.e., orbits that start out in the manifold
remain in it for all time), which generalizes the invariance property of LNMs to nonlinear systems.

At first glance, Rosenberg’s definition may appear restrictive in two cases. Firstly, it cannot be easily extended to nonconservative
systems. However, the damped dynamics can often be interpreted based on the topological structure of the NNMs of the
underlying conservative system [3]. Secondly, in the presence of internal resonances, the NNM motion is no longer synchronous,
but it is still periodic.

In the present study, an NNM motion is therefore defined as a (non-necessarily synchronous) periodic motion of the conservative
mechanical system (1). As we will show, this extended definition is particularly attractive when targeting a numerical computation
of the NNMs. It enables the nonlinear modes to be effectively computed using algorithms for the continuation of periodic solutions.

3 NUMERICAL COMPUTATION OF NNMS

The numerical method proposed here for the NNM computation relies on two main techniques, namely a shooting technique and
the pseudo-arclength continuation method. A detailed description of the algorithm is given in [12].

3.1 Shooting Method

The equations of motion of system (1) can be recast into state space form

ż = g(z) (2)

where z = [x∗ ẋ∗]∗ is the 2n-dimensional state vector, and star denotes the transpose operation, and

g(z) =

(

ẋ

−M−1 [Kx + fnl(x, ẋ)]

)

(3)

is the vector field. The solution of this dynamical system for initial conditions z(0) = z0 = [x∗

0 ẋ∗

0]
∗ is written as z(t) = z (t, z0)

in order to exhibit the dependence on the initial conditions, z (0, z0) = z0. A solution zp(t, zp0) is a periodic solution of the
autonomous system (2) if zp(t, zp0) = zp(t + T, zp0), where T is the minimal period.
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The NNM computation is carried out by finding the periodic solutions of the governing nonlinear equations of motion (2). In this
context, the shooting method is probably the most popular numerical technique. It solves numerically the two-point boundary-
value problem defined by the periodicity condition

H(zp0, T ) ≡ zp(T, zp0) − zp0 = 0 (4)

H(z0, T ) = z(T, z0) − z0 is called the shooting function and represents the difference between the initial conditions and the
system response at time T . Unlike forced motion, the period T of the free response is not known a priori.

The shooting method consists in finding, in an iterative way, the initial conditions zp0 and the period T that realize a periodic
motion. To this end, the method relies on direct numerical time integration and on the Newton-Raphson algorithm.

Starting from some assumed initial conditions z
(0)
p0 , the motion z

(0)
p (t, z

(0)
p0 ) at the assumed period T (0) can be obtained by

numerical time integration methods (e.g., Runge-Kutta or Newmark schemes). In general, the initial guess (z
(0)
p0 , T (0)) does not

satisfy the periodicity condition (4). A Newton-Raphson iteration scheme is therefore to be used to correct an initial guess and
to converge to the actual solution. The corrections ∆z

(k)
p0 and ∆T (k) at iteration k are found by expanding the nonlinear function

H
(

z
(k)
p0 + ∆z

(k)
p0 , T (k) + ∆T (k)

)

= 0 (5)

in Taylor series and neglecting higher-order terms (H.O.T.).

The phase of the periodic solutions is not fixed. If z(t) is a solution of the autonomous system (2), then z(t+∆t) is geometrically
the same solution in state space for any ∆t. Hence, an additional condition, termed the phase condition, has to be specified in
order to remove the arbitrariness of the initial conditions. This is discussed in detail in [12].

In summary, an isolated NNM is computed by solving the augmented two-point boundary-value problem defined by

F(zp0, T ) ≡

{

H(zp0, T ) = 0
h(zp0) = 0

(6)

where h(zp0) = 0 is the phase condition.

3.2 Continuation of Periodic Solutions

Due to the frequency-energy dependence, the modal parameters of an NNM vary with the total energy. An NNM family, governed
by equations (6), therefore traces a curve, termed an NNM branch, in the (2n + 1)-dimensional space of initial conditions and
period (zp0, T ). Starting from the corresponding LNM at low energy, the computation is carried out by finding successive points
(zp0, T ) of the NNM branch using methods for the numerical continuation of periodic motions (also called path-following methods)
[8, 9]. The space (zp0, T ) is termed the continuation space.

Different methods for numerical continuation have been proposed in the literature. The so-called pseudo-arclength continuation
method is used herein.

Starting from a known solution (zp0,(j), T(j)), the next periodic solution (zp0,(j+1), T(j+1)) on the branch is computed using a
predictor step and a corrector step.

Predictor step

At step j, a prediction (z̃p0,(j+1), T̃(j+1)) of the next solution (zp0,(j+1), T(j+1)) is generated along the tangent vector to the branch
at the current point zp0,(j)

[

z̃p0,(j+1)

T̃(j+1)

]

=

[

zp0,(j)

T(j)

]

+ s(j)

[

pz,(j)

pT,(j)

]

(7)
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where s(j) is the predictor stepsize. The tangent vector p(j) = [p∗

z,(j) pT,(j)]
∗ to the branch defined by (6) is solution of the

system






∂H

∂zp0

∣

∣

∣

(zp0,(j),T(j))

∂H

∂T

∣

∣

(zp0,(j),T(j))

∂h
∂zp0

∗

∣

∣

∣

(zp0,(j))
0







[

pz,(j)

pT,(j)

]

=

[

0

0

]

(8)

with the condition
∥

∥p(j)

∥

∥ = 1. The star denotes the transpose operator. This normalization can be taken into account by fixing
one component of the tangent vector and solving the resulting overdetermined system using the Moore-Penrose matrix inverse;
the tangent vector is then normalized to 1.

Corrector step

The prediction is corrected by a shooting procedure in order to solve (6) in which the variations of the initial conditions and the
period are forced to be orthogonal to the predictor step. At iteration k, the corrections

z
(k+1)
p0,(j+1) = z

(k)
p0,(j+1) + ∆z

(k)
p0,(j+1)

T
(k+1)
(j+1) = T

(k)
(j+1) + ∆T

(k)
(j+1) (9)

are computed by solving the overdetermined linear system using the Moore-Penrose matrix inverse
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(k)
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∆T
(k)
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−H(z
(k)
p0,(j+1), T

(k)
(j+1))

−h(z
(k)
p0,(j+1))

0






(10)

where the prediction is used as initial guess, i.e, z(0)
p0,(j+1) = z̃p0,(j+1) and T

(0)
(j+1) = T̃(j+1). The last equation in (10) corresponds

to the orthogonality condition for the corrector step.

This iterative process is carried out until convergence is achieved. The convergence test is based on the relative error of the
periodicity condition:

‖H(zp0, T )‖

‖zp0‖
=

‖zp(T, zp0) − zp0‖

‖zp0‖
< ǫ (11)

where ǫ is the prescribed relative precision.

3.3 Sensitivity Analysis

(

z
(k)
p0 , T (k)

)

=

z
(k)
p (T (k), z

(k)
p0 ) − z

(k)
p0 . As evidenced by equation (10), the method also requires the evaluation of the 2n × 2n Jacobian matrix

∂H

∂z0
(z0, T ) =

∂z(t, z0)

∂z0

∣

∣

∣

∣

t=T

− I (12)

where I is the 2n × 2n identity matrix.

The classical finite-difference approach requires to perturb successively each of the 2n initial conditions and integrate the non-
linear governing equations of motion. This approximate method therefore relies on extensive numerical simulations and may be
computationally intensive for large-scale finite element models.

0 0

instead of a numerical finite-difference procedure. The sensitivity analysis consists in differentiating the equations of motion (2)
with respect to the initial conditions z0 which leads to

d

dt

[

∂z (t, z0)

∂z0

]

=
∂g(z)

∂z

∣

∣

∣

∣

z(t,z0)

[

∂z(t, z0)

∂z0

]

(13)

Each shooting iteration involves the time integration of the equationsof motion to evaluate the current shooting residue H

Targeting a reduction of the computational cost, a significant improvement is to use sensitivity analysis for determining ∂z(t, z )/∂z
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Figure 1: Algorithm for NNM computation.
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with
∂z(0, z0)

∂z0
= I (14)

since z(0, z0) = z0. Hence, the matrix ∂z(t, z0)/∂z0 at t = T can be obtained by numerically integrating over T the initial-value
problem defined by the linear ordinary differential equations (ODEs) (13) with the initial conditions (14).

In addition to the integration of the current solution z(t,x0) of (2), these two methods for computing ∂z(t, z0)/∂z0 require 2n
numerical integrations of 2n-dimensional dynamical systems, which may be computationally intensive for large systems. How-
ever, equations (13) are linear ODEs and their numerical integration is thus less expensive. The numerical cost can be further
reduced if the solution of equations (13) is computed together with the solution of the nonlinear equations of motion in a single
numerical simulation [13].

The sensitivity analysis requires only one additional iteration at each time step of the numerical time integration of the current
motion to provide the Jacobian matrix. The reduction of the computational cost is therefore significant for large-scale finite
element models. In addition, the Jacobian computation by means of the sensitivity analysis is exact. The convergence troubles
regarding the chosen perturbations of the finite-difference method are then avoided. Hence, the use of sensitivity analysis to
perform the shooting procedure represents a meaningful improvement from a computational point of view.

As the monodromy matrix ∂zp(T, zp0)/∂zp0 is computed, its eigenvalues, the Floquet multipliers, are obtained as a by-product,
and the stability analysis of the NNM motions can be performed in a straightforward manner.

3.4 Algorithm for NNM Computation

The algorithm proposed for the computation of NNM motions is a combination of shooting and pseudo-arclength continuation
methods, as shown in Figure 1. It has been implemented in the MATLAB environment. Other features of the algorithm such as
the step control, the reduction of the computational burden and the method used for numerical integration of the equations of
motion are discussed in [12].

So far, the NNMs have been considered as branches in the continuation space (zp0, T ). An appropriate graphical depiction of
the NNMs is to represent them in a frequency-energy plot (FEP). This FEP can be computed in a straightforward manner: (i)
the conserved total energy is computed from the initial conditions realizing the NNM motion; and (ii) the frequency of the NNM
motion is calculated directly from the period.

4 NUMERICAL EXPERIMENT - FULL-SCALE AIRCRAFT

The numerical computation of the NNMs of a complex real-world structure is addressed. This structure is the airframe of the
Morane-Saulnier Paris aircraft, which is represented in Figure 2. This French jet aircraft was built during the 1950s and was
used as a trainer and liaison aircraft. The structural configuration under consideration corresponds to the aircraft without its jet
engines and standing on the ground through its three landing gears with deflated tires. For information, general characteristics
are listed in Table 1. A specimen of this plane is present in ONERA’s laboratory, and ground vibration tests have exhibited
nonlinear behavior in the connection between the wings and external fuel tanks located at the wing tip. As illustrated in Figure 3,
this connection consists of bolted attachments.

4.1 Structural Model of the Paris Aircraft

4.1.1 FINITE ELEMENT MODEL OF THE UNDERLYING LINEAR STRUCTURE

The linear finite element model of the full-scale aircraft, illustrated in Figure 4, was elaborated from drawings by ONERA [14].
The wings, vertical stabilizer, horizontal tail and fuselage are modeled by means of 2-dimensional elements such as beams and
shells. The complete finite element model has more than 80000 DOFs. Three-dimensional spring elements, which take into
account the structural flexibility of the tires and landing gears, are used as boundary conditions of the aircraft. At each wing
tip, the external fuel tank is connected with front and rear attachments (see Figure 3). In this linear model, these connections
between the wings and the fuel tanks are modeled using beam elements. The linear model, originally created in the Nastran
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Figure 2: Morane-Saulnier Paris aircraft.

TABLE 1: Properties of the Morane-Saulnier Paris aircraft

Length Wingspan Height Wing area Weight
(m) (m) (m) (m2) (kg)

10.4 10.1 2.6 18 1945

(a)

(b)W
in

g
si

de

Ta
nk

si
de

Figure 3: Connection between external fuel tank and wing tip (top view). Close-up of (a) front and (b) rear bolted

attachments.
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software, was converted and exploited in the Samcef finite element environment for this study.

The natural frequencies of the underlying linear system in the [0-50Hz] frequency range are given in Table 2. The first nine
modes correspond to aircraft rigid-body modes: six modes are modes of suspensions of the landing gear while the three others
are associated to rigid-body motions of the control surfaces (i.e., the ailerons, elevator and rudder). The frequency range of the
rigid-body modes is comprised between 0.09 and 3.57 Hz, i.e., noticeably lower than the first flexible mode located at 8.19 Hz.
The modal shapes of different elastic normal modes of vibrations are depicted in Figure 5. Figure 5(a) represents the first wing
bending mode. The first and second wing torsional modes are depicted in Figures 5(b) and 5(c). These two torsional modes
correspond to symmetric and anti-symmetric wing motions, respectively. As shown thereafter, these modes are of particular
interest in nonlinear regime since there is a significant deformation of the connections between the wings and fuel tanks. Indeed,
the other modes mainly concern the aircraft tail and are consequently almost unaffected by these nonlinear connections.

4.1.2 REDUCED-ORDER MODEL

The proposed algorithm for the numerical computation of NNMs is computationally intensive for the large-scale original model
possessing more than 80000 DOFs. Since the nonlinearities are spatially localized, condensation of the linear components of
the model is an appealing approach for a computationally tractable and efficient calculation.

A reduced-order model of the linear finite element system is constructed using the Craig-Bampton (also called component mode)
reduction technique [15]. This method consists in describing the system in terms of some retained DOFs and internal vibration
modes. By partitioning the complete system in terms of nR remaining xR and nC = n−nR condensed xC DOFs, the n governing
equations of motion of the global finite element model are written as

[

MRR MRC

MCR MCC

] [

ẍR

ẍC

]

+

[

KRR KRC

KCR KCC

] [

xR

xC

]

=

[

gR

0

]

(15)

The Craig-Bampton method expresses the complete set of initial DOFs in terms of: (i) the remaining DOFs through the static
modes (resulting from unit displacements on the remaining DOFs) and (ii) a certain number m < nC of internal vibration modes
(relating to the primary structure fixed on the remaining nodes). Mathematically, the reduction is described by relation

[

xR

xC

]

=

[

I 0

−K−1
CCKCR Φm

] [

xR

y

]

= R

[

xR

y

]

(16)

which defines the n× (nR +m) reduction matrix R. y are the modal coordinates of the m internal linear normal modes collected
in the nC × m matrix Φm = [φ(1) . . . φ(m)]. These modes are solutions of the linear eigenvalue problem corresponding to the
system fixed on the remaining nodes

(

KCC − ω2
(j)MCC

)

φ(j) = 0 (17)

The reduced model is thus defined by the (nR + m) × (nR + m) reduced stiffness and mass matrices given by

M = R
∗

MR

K = R
∗

KR
(18)

where star denotes the transpose operation. After reduction, the system configuration is expressed in terms of the reduced
coordinates (i.e., the remaining DOFs and the modal coordinates). The initial DOFs of the complete model are then determined
by means of the reduction matrix using relation 16.

In order to introduce the nonlinear behavior of the connections between the wings and the tanks, the reduced-order linear model
of the aircraft is constructed by keeping one node on both sides of the attachments. For each wing, four nodes are retained:
two nodes for the front attachment and two nodes for the rear attachment. In total, only eight nodes of the finite element model
are kept to build the reduced model. It is completed by holding the first 500 internal modes of vibrations. Finally, the model is
thus reduced to 548 DOFs: 6 DOFs per node (3 translations and 3 rotations) and 1 DOF per internal mode. The reduction is
performed using the Samcef software. The generated reduced-order model is next exported in the MATLAB environment.

Before proceeding to nonlinear analysis, the accuracy of the reduced-order linear model is assessed. To this end, the linear
normal modes of the initial complete finite element model are compared to those predicted by the reduced model. The deviation
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Figure 4: Finite element model of the Morane-Saulnier Paris aircraft.

Mode Freq. Mode Freq.
(Hz) (Hz)

1 0.0936 13 21.2193
2 0.7260 14 22.7619
3 0.9606 15 23.6525
4 1.2118 16 25.8667
5 1.2153 17 28.2679
6 1.7951 18 29.3309
7 2.1072 19 31.0847
8 2.5157 20 34.9151
9 3.5736 21 39.5169

10 8.1913 22 40.8516
11 9.8644 23 47.3547
12 16.1790 24 52.1404

TABLE 2: Natural frequencies of the linear finite element model of the Paris aircraft.
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(a)

(b)

(c)

Figure 5: Normal modes of the linear finite element model of the Morane-Saulnier Paris aircraft. (a) First wing bending

mode (8.19 Hz), (b) first (symmetric) wing torsional mode (31.08 Hz) and (b) second (anti-symmetric) wing torsional

mode (34.92 Hz).
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between the mode shapes of the original model x(o) and of the reduced model x(r) is determined using the Modal Assurance
Criterion (MAC)

MAC =

∣

∣x∗

(o)x(r)

∣

∣

2

∣

∣

∣
x∗

(o)x(o)

∣

∣

∣

∣

∣

∣
x∗

(r)x(r)

∣

∣

∣

(19)

MAC values range from 0 in case of no correlation to 1 for a complete coincidence. In the [0-100Hz] range, MAC values between
modes shapes are all greater than 0.999 and the maximum relative error on the natural frequencies is 0.2%. It therefore validates
the excellent accuracy of the reduced linear model in this frequency range. It is worth noticing that less internal modes are
sufficient to ensure such as a correlation in the [0-100Hz] frequency range, which is typically the range of interest for aircrafts.
However, a larger number of modes was deliberately chosen for two main reasons. On the one side, it serves to illustrate the
ability of the numerical algorithm to deal with the NNM computation of higher-dimensional systems. On the other hand, due to
nonlinearity, modes of higher frequencies may interact with lower modes of interest. In nonlinear regimes, higher internal modes
should then be necessary to guarantee the accuracy of the model.

4.1.3 NONLINEAR MODEL

The existence of a softening nonlinear behavior was evidenced during different vibration tests conducted by ONERA. In particular,
FRF measurements reveal the decrease of resonant frequencies with the level of excitation. The connections between the wings
and fuel tanks are assumed to cause this observed nonlinear effect.

To confirm this hypothesis, both (front and rear) connections of each wing were instrumented and experimental measurements
were carried out. Specifically, accelerometers were positioned on both (wing and tank) sides of the connections and two shakers
were located at the tanks. This is illustrated in Figure 6 for rear connection.

The dynamic behavior of these connections in the vertical direction is investigated using the restoring force surface (RFS) method
[16]. By writing Newton’s second law at the wing side of each connection, it follows

mcẍc(t) + fr,c = 0 (20)

where fr,c is the restoring force applied to this point. The index c is related to the connection under consideration (i.e., either the
rear or front attachment of the left or right wing). From Equation (20), the restoring force is obtained by

fr,c = −mcẍc(t) (21)

Except the multiplicative mass factor mc, the restoring force is then given by the acceleration ẍc(t). Nevertheless, this total
restoring force does not consist only of the internal force related to the connection of interest, but also includes contributions
from the linking forces associated to the wing elastic deformation. Provided that these latter do not play a prominent role, the
measurement of the acceleration signal may still provide a qualitative insight into the nonlinear part of the restoring force in the
connection between the tank and the wing.

The aircraft is excited close to the second torsional mode (see Figure 5(c)) using a band-limited swept sine excitation in the
vicinity of its corresponding resonant frequency. In Figure 7, the measured acceleration at the wing side is represented in terms
of the relative displacement xrel and velocity ẋrel of the connection obtained by integrating the accelerations on both sides of the
attachment. It is given for the rear connections of the right and left wings. A nonlinear softening elastic effect is observed from the
evolution of these estimated restoring force surfaces. In particular, the detected behavior has a piecewise characteristic. This is
more clearly evidenced by the corresponding stiffness curves also depicted in Figure 7. Softening nonlinearity is typical of bolted
connections [17, 18]. Similar nonlinear effect occurs for the front connections, but they participate much less in the considered
response. Finally, the deviation between the right and left connections seems to show asymmetry of the connections.

Although purely qualitative, the RFS results therefore indicate that the tank connections present a softening stiffness in the
vertical direction. As previously mentioned, a model with piecewise characteristic might be consistent with the experimental
observations. However, the NNM algorithm, in its present form, cannot handle nonsmooth nonlinearities. Alternatively, linear and
negative cubic stiffness terms are one possible manner of describing the observed nonlinear behavior. Indeed, the reconstructed
stiffness curve obtained by fitting to the data the mathematical model

fr,c = kxrel + k−

nlx
3
rel (k−

nl < 0) (22)

is in relatively good agreement.
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Figure 6: Instrumentation of the rear attachment of the right wing.
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Figure 7: Estimated restoring force in the connections between tanks and wings. Left plots: measured acceleration in

terms of the relative displacement (m) and velocity (m/s). Right plots: stiffness curve given by the measured acceleration

for zero velocity. Top plots: rear tank connection of the left wing. Bottom plots: rear tank connection of the right wing.
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In view of the qualitative value of this approach, we note that the objective followed here is to derive a simplified realistic model
in order to illustrate the numerical computation procedure of NNMs. Accordingly, in the present study, the nonlinear behavior is
modeled by adding negative cubic stiffness nonlinearities into the linear part of the connections. An indicative value of −1013N/m3

is adopted for each connection. Finally, the nonlinear system is then constructed from the reduced-order model by means of
cubic springs positioned vertically between both corresponding nodes retained on either side of connections.

4.2 Nonlinear Normal Modes

From the nonlinear reduced-order model, the numerical computation of NNMs is realized in the MATLAB environment using the
previously developed algorithm. The goal followed here is to show that the proposed method can deal with complex structures
such as this real-aircraft model. In this context, this section focuses on some specific modes.

4.2.1 FUNDAMENTAL NNMS

The modes of the aircraft can be classified into two categories, depending on whether they correspond to wing motions or not.
The modes localized mainly on other structural parts (such as the vertical stabilizer, the horizontal tail or the fuselage) are almost
unaffected by the nonlinear connections located at the wing tips. Only the modes involving wing deformations are perceptibly
affected by nonlinearity. According to the relative motion of the fuel tanks, these modes are more or less altered for increasing
energy levels.

An unaffected mode is first examined in Figure 8. It corresponds to the nonlinear extension of the first tail bending LNM (mode
13 in Table 2). In this figure, the computed backbone and related NNM motions are depicted in the FEP. The modal shapes are
given in terms of the initial displacements (with zero initial velocities assumed) that realize the NNM motion. It clearly confirms
that the modal shape and the oscillation frequency remain practically unchanged with the energy in the system.

Modes involving wing deformations are now investigated. The first wing bending mode (i.e., the nonlinear extension of mode 10
in Table 2) is illustrated in Figure 9. The FEP reveals that this mode is weakly affected by the nonlinearities. The frequency of the
NNM motions on the backbone slightly decreases with increasing energy levels, which results from the softening characteristic
of the nonlinearity. Regarding the modal shapes, they are almost similar over the energy range and resemble the corresponding
LNM. MAC value between the NNM shapes at low and high energy levels (see (a) and (b) in Figure 9) is 0.99.

Figure 10 represents the FEP of the first (symmetric) wing torsional mode (i.e., mode 19 in Table 2). For this mode, the relative
motion of the fuel tanks is more important, which enhances the nonlinear effect of the connections. As a result, the oscillation
frequency have a more marked energy dependence along the backbone branch. On the other hand, the modal shapes are still
weakly altered. MAC value between the NNM shapes on the backbone at low and high energy levels (see (a) and (b) in Figure
10) is equal to 0.98. In addition, the FEP highlights the presence of three tongues, revealing the existence of internal resonances
between this symmetric torsional mode and other modes. These observed modal interactions are discussed in the next section.

Finally, the second (anti-symmetric) wing torsional mode (i.e., mode 20 in Table 2) is plotted in the FEP of Figure 11. While the
oscillation frequency is noticeably altered by nonlinearity, modal shapes are again slightly changed. Over the energy range of
interest, the decrease in frequency is around 5% along the backbone branch. MAC value between the modal shapes at low and
high energy levels (see (a) and (b) in Figure 11) is 0.97. It shows that the nonlinearities spatially localized between the wing tips
and the tanks weakly influence the NNM spatial shapes. Besides the NNM backbone, one tongue is present at higher energy.
For information, the computation of the backbone branch up to the tongue needs 20 min with 100 time steps over the half period
(using Intel i7 920 2.67GHz processor). Due to the presence of turning points, the computation of the tongue is more expensive
and demands about one hour.

Similar dynamics were observed for the higher modes and are not further described herein.

4.2.2 INTERNALLY RESONANT NNMS

Besides the backbone branches, the previous FEPs show the presence of tongues of internally resonant NNMs. Following a
resonance scenario similar to that described in [3], theses additional branches emanate from the backbone of a specific NNM
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and coalesce into the backbone branch of another NNM, thereby realizing an internal resonance between the two modes.

This is briefly illustrated in Figure 12 regarding the 3:1 tongue emanating from the backbone of the first wing torsional mode
(see Figure 10). Modal shapes are given at three different locations on the tongue (see (a), (b) and (c) in Figure 12). When
the energy gradually increases along the tongue, a smooth transition from the first wing torsional mode to a higher tail torsional
mode clearly occurs. Interestingly, Figure 12(b) shows an inherently nonlinear mode with no counterpart in the underlying
linear system. It corresponds to a 3:1 internal resonance as evidenced by the evolution of the time series and the frequency
content, also represented in Figure 12, of the periodic motions along the tongue. A third harmonic progressively appears, and
the structure vibrates according to a subharmonic motion characterized by two dominant frequency components. The relative
importance of the third harmonic grows along the tongue, until the mode transition is realized.

Similarly, two other tongues corresponding to a 5:1 and a 9:1 internal resonance between this first wing torsional mode and higher
modes are observed in the FEP of Figure 10. Moreover, the FEP of Figure 11 reveals the presence of a 9:1 internal resonance
between the second wing torsional mode and another higher mode of the aircraft. We note that the practical realization of these
internal resonances is questionable in view of the low frequency changes.

5 CONCLUSION

In this paper, a numerical method for the computation of NNMs of mechanical structures was introduced. The approach targets
the computation of the undamped modes of structures discretized by finite elements and relies on the continuation of periodic
solutions.

This computational approach turns out to be capable of dealing with complex real-world structures, such as the full-scale aircraft
studied herein. Through a reduced-order model accurate in the [0-100Hz] range, the NNMs were indeed computed accurately
even in strongly nonlinear regimes and with a reasonable computational burden. Internal resonances were also computed by
the algorithm and were briefly discussed.
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ABSTRACT 
 

Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic 
measurements.  However, limitations of these transducers prevent the accurate measurement of some phenomena.  For 
example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure.  
Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are 
sensitive to large displacements and can have lengthy acquisition times due to sequential measurements.  Image-based 
stereophotogrammetry techniques provide additional measurement capabilities that compliment the current array of 
measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically 
difficult to measure with accelerometers and laser vibrometers.  Within this paper, displacements determined using 3D point-
tracking are used to calculate frequency response functions, from which mode shapes are extracted.  The image-based 
frequency response functions (FRFs) are compared to those obtained at collocated accelerometers.  Mode shapes are then 
compared to a previously validated finite element model (FEM) and are shown to have excellent agreement between the FEM 
and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-
Orthogonality Check (POC).   
 
 
INTRODUCTION 
 

With the advent of digital cameras, image-based point-tracking is becoming a more common method to track the motion of 
optical targets that are attached to a rigid or flexible body.  To date, 3D point-tracking (3DPT) has not been validated within 
the field of structural dynamics as a non-contacting vibration measurement tool.  When evaluating the performance of any 
new system or technique, one must compare the new approach to existing measurement methods or to analytical solutions.  
To accomplish this end, a well documented and understood test article was chosen to compare the image-based approach to 
established measurement techniques.  A structure known as the “Base-Upright” (BU) has been used in a number of studies 
and was chosen for its well-known dynamic characteristics [1-4].  Several test setups were needed to study the BU, 
depending on the measurement system and transducers used.  A summary of past work using accelerometers, laser Doppler 
vibrometers, and slow-speed cameras is presented, followed by a thorough discussion of the setup and results of tests run 
with high-speed cameras.  Finally, conclusions are drawn to highlight the strengths and weaknesses of 3D point-tracking 
using high-speed cameras relative to the other measurement techniques. 
 
Description of the Test Article and Finite Element Model 
The BU was designed to be a structure with well-spaced, directional modes that could be identified easily.  Figure 1a shows 
the BU with the primary dimensions labeled.  The base plate is 24 x 24 inches in dimension and rigidly bolted to the concrete 
laboratory floor at four locations, while the upright is 24 x 30 inches in dimension.  Both plates are made from 3/4” thick 
aluminum and are bolted together by two steel angle brackets.  A finite element model (FEM) is available and has been 
shown to be very well correlated to other measured test data from previous studies [1-4].  The FEM was assembled with solid 
elements and has approximately 58,000 degrees of freedom (DOF).  For reference, the analytical frequencies and mode 
shapes for the first 8 modes are shown in Figure 1b.   
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Figure 1:  (a) Photo of the Base-Upright (BU) with dimensions.   
(b) First 8 analytical frequencies and mode shapes of the BU. 

 
Results of Previous Studies 
Prior work using slow-speed cameras with phase-stepped sampling and forced normal-mode testing (FNMT) yielded highly-
accurate measurements of the BU mode shapes at many points [5].  The results of the study showed that DIC and 3DPT can 
be used to measure mode shapes that correlate very well to those obtained using accelerometers and a scanning laser Doppler 
vibrometer.  When the accelerometer and laser data was acquired, shaker excitation was provided at an angle 45 degrees 
relative to all three principal axes so that all modes would be excited.  Figure 2a depicts shaker mounted to the BU with the 
laser and accelerometer measurement points indicated by red dots and their corresponding numbers.  At these measurement 
locations optical targets were placed on the structure that are measured and tracked by the dynamic photogrammetry system 
PontosTM [6].  An overlay of FRFs in the z-direction measured by an accelerometer and the laser Doppler vibrometer at point 
3 is shown in Figure 2b.  A frequency domain, polynomial curvefitter was then used to extract the modal parameters and 
mode shapes. 
   
 

   
Figure 2:  (a) Shaker orientation and measurement points.  Red dots correspond to accelerometer measurement points.  Green 

squares represent SLDV points from a previous study.  (b) Sample FRF from previous study [4]. 
 
All four measurement approaches were used to acquire the first and third modes of the structure studied and then were 
correlated to each other as well as a highly accurate finite element model.  Excellent correlation between the measurements 
and the FEM was obtained; each MAC value was above 97.8.  When the experimental results were compared, all MAC 
values were above 95.6.  Figure 3 presents a comparison between the FEM analytical mode shape and the accelerometer, 
laser Doppler vibrometer (LDV), DIC, and 3D point-tracking based mode shapes for modes 1 and 3 of the BU.   
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The greatest advantage of the FNMT phase-stepping approach is that the mode shapes are measured directly, so no post-
processing is necessary (beyond the stereophotogrammetry calculations required to determine displacements of course).  
Unfortunately, time- and frequency-domain results cannot be obtained.  To address this deficiency, tests were conducted 
using high-speed cameras which satisfy Shannon’s sampling criteria.  
 
  

 
Figure 3:  Previously Obtained Experimental Mode Shapes Compared to the BU FEM [5]. 
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HIGH-SPEED CAMERA TESTING:  EQUIPMENT AND EXPERIMENTAL SETUP 
 

Two impact tests were performed on the BU that were designed to target different modes of the structure.  In both cases, the 
cameras were positioned approximately 2 meters from the BU so the entire upright could be seen in the field of view.  A 3 lb 
modal hammer was used to impact the structure.  Time data for the hammer was captured using separate, synchronized data 
acquisition systems.  Digital signal processing was carried out in MATLAB and curvefitting was performed using LMS 
PolyMAX [7,8]. 
 
In the first test, a pair of 1.3 Mega-pixel cameras measured the response of the BU due to a perpendicular 1500 lbf impact 
near Point 1 (see Figure 2a), at one of the top corners of the upright.  In this case, only the out-of-plane modes of the upright 
were excited.  The frame rate was set to 500 fps, corresponding to a Nyquist frequency of 250Hz.  Three-dimensional point-
tracking data was calculated at 30 points evenly distributed on the upright of the BU, including the 8 measurement points 
common to the other tests.   Two averages were taken.   
 
For the second impact modal test, the BU was impacted with approximately 4000 lbf at the same point where the shaker input 
was located for the accelerometer and LDV tests, to excite both the in-plane and out-of-plane modes.  Images were taken at a 
rate of 250 fps with a pair of 3.6 Mega-pixel cameras.  The goal was to acquire the first two in-plane modes of the BU which 
were not measurable from the previous impact test.  For this test the Nyquist frequency was 125 Hz and therefore sufficient 
to capture the modes of interest.  A total of 4 averages were taken and the response was tracked with 40 evenly-distributed 
photogrammetric targets distributed on the structure. 
 
 
EXPERIMENTAL CONSIDERATIONS 
 

The experimental considerations in the two impact tests were very similar to those of any other impact modal survey, but 
with a few additional things requiring attention.  As with any impact test, the consistency of the input was a concern because 
of the variations in the force input due to the human excitation.  While the level of amplitude varied somewhat, the input 
spectra were monitored to ensure a fairly uniform amount of energy was distributed across the frequency ranges of interest.  
Also, force/exponential windows were applied as needed to reduce the effects of leakage. 
 
Beyond these standard concerns, the main issue was the synchronous triggering of the cameras with the other data acquisition 
systems.  Typically, a DAQ system is triggered from the force signal generated by the impact hammer with a pre-trigger 
delay that captures the beginning part of the transient that would have otherwise been lost.  Modern high-end, high-speed 
cameras have pre-trigger capabilities, but these were not available during the first round of testing.  Both systems were 
triggered via an external source prior to impact, so the timing of the impact was not consistent.  Due to the timing variation, 
different windows had to be applied for each average.  
 
In the second impact test, the use of a different timing scheme and trigger synchronization mechanism was investigated.  Due 
to a time delay between the two systems, the phase of the input and output spectra were misaligned.  As a result, the poles of 
the frequency response functions were not stable and the FRFs could not be curvefit.  Therefore, the linear spectra calculated 
from the displacements measured by the imaging systems were used to approximate mode shapes.  This procedure provided 
useful data that were used in correlation studies and for comparisons with the results from the finite element model and with 
tri-axial accelerometers. 
 
 
EXPERIMENTAL RESULTS AND CORRELATION TO THE FEM 
 

The initial results obtained from the first impact test (out-of-plane impact, 500 fps) showed a very high level of correlation to 
the reference finite element model when compared using the Modal Assurance Criterion (MAC) [9,10] and Pseudo-
Orthogonality Check (POC) [11,12].  Tables 1 through 3 summarize the correlation results for the first impact test.  For 
modes 1 (26 Hz), 3 (78 Hz), and 5 (158 Hz), the diagonal MAC values are 99.9+, 99.8, and 98.1 percent, respectively.  The 
average frequency difference is -0.14%.  The diagonal POC terms are all within 3.2% of correlation to the FEA and the off-
diagonal terms are all less than 2%.   
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Table 1:  Mode Shape Pairs for the FEM and the First (500 fps) Impact Test 

Pair 
FEA 

Mode # 
FEA 

Freq. (Hz) 
3DPT 

Mode # 
3DPT 

Freq. (Hz) Diff. (%) MAC 

1 1 26.03 1 25.79 0.94 99.9+ 
2 3 77.68 2 78.03 -0.44 99.8 
3 5 158.01 3 158.16 -0.09 98.1 

  
Table 2:  MAC Matrix comparing the FEM and the First (500 fps) Impact Test 

Modal Assurance Criteria 
  3D Point-Tracking 
 25.79 Hz 78.03 Hz 158.16 Hz 

FE
M

 26.03 Hz 99.99+ 0.10 11.30 
77.68 Hz 0.10 99.80 0.20 

158.01 Hz 10.30 0.00 98.10 
 

Table 3:  POC matrix comparing the FEM and the First (500 fps) Impact Test 
Pseudo-Orthogonality Check  

  3D Point-Tracking 
 25.79 Hz 78.03 Hz 158.16 Hz 

FE
M

 26.03 Hz 1.0143 -.0105 .0045 
77.68 Hz -.0104 1.0200 -.0198 

158.01 Hz -.0089 .0128 .9681 
 

Despite the phase-lag between the input and outputs, the results of the oblique impact modal test are excellent.  Tables 4 
through 6 summarize the mode shape pairs and MAC and POC matrices, respectively.  Though the 5th mode was not 
measured, the 2 additional in-plane modes were measured very clearly.  When comparing the 3D point-tracking mode shapes 
with the FEM, the diagonal MAC values through the first 4 consecutive modes are at least 98.9% with a maximum off-
diagonal value of 0.4%.  The POC matrix also indicates a very high level of correlation to the FEM.  At most, the diagonal 
terms deviate from 1 by 0.16% and the maximum off-diagonal term is 6.69%.   

 
Table 4:  Mode Shape Pairs for the FEM and the 250 fps Oblique Impact Test 

Pair 
FEA 

Mode # 
FEA 

Freq. (Hz) 
3DPT 

Mode # 
3DPT 

Freq. (Hz) Diff. (%) MAC 
1 1 26.03 1 25.94 0.35 99.8 
2 2 70.69 2 63.94 9.55 99.6 
3 3 77.68 3 78.19 -0.65 98.9 
4 4 108.8 4 98.69 9.29 99.6 

 
Table 5:  MAC Matrix for the FEM and the 250 fps Oblique Impact Test 

Modal Assurance Criteria 

  
3D Point-Tracking 

25.94 63.94 78.19 98.69 

FE
M

 26.03 99.8 0 0.2 0 
70.69 0.1 99.6 0 0 
77.68 0.2 0 98.9 0 
108.8 0.1 0.4 0 99.6 
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Table 6:  POC Matrix for the FEM and the 250 fps Oblique Impact Test 
Pseudo-Orthogonality Check 

  
3D Point-Tracking 

25.94 63.94 78.19 98.69 

FE
M

 26.03 .9999 .0000 .0392 .0000 
70.69 .0240 .9984 .0000 .0010 
77.68 .0221 .0000 1.0008 .0000 
108.8 .0339 .0669 .0000 1.0000 

  
In all correlation studies, including accelerometer and laser Doppler vibrometer test results, there is at least a 5% difference 
between the finite element model and the experimental results for the in-plane modes.  The stereophotogrammetry oblique 
impact data show even more deviation – the differences for modes 2 and 4 are 9.55% and 9.29%, respectively.   
 
To confirm that these natural frequencies are consistent with another reference, the 3D point-tracking frequency response 
functions and poles were compared to the results obtained from collocated tri-axial accelerometers that measured data 
simultaneously during the oblique testing.  The out-of-plane motion measured at points 1 and 3 are compared in Figures 4 
and 5, respectively.  At the peaks, the two measurement types agree very well.  The curves for the stereophotogrammetry 
FRFs are not as smooth as those from the accelerometers, indicating a lower signal to noise ratio.  This is even more apparent 
for the in-plane measurements shown in Figures 6 and 7.   
 
In addition to visually inspecting the FRFs, the poles for the 3DPT and accelerometers were compared.  Table 7 compares the 
poles from the average 3D point-tracking linear input spectra and those from the FRFs from the tri-axial accelerometers at 
points 1 and 3 (top corners).  The maximum difference between any two corresponding poles is 1.45%, so the 3DPT and 
accelerometer results are consistent.  Furthermore, the accelerometer and LDV results were obtained as part of a previous 
study over the course of 2008 and 2009, while the 3DPT experiments were run in March, 2010.  Though there are 
differences, the results are acceptable when considering the amount of time between the tests; small variations such as these 
are reasonable considering the length of time between tests and the nature of the bolted configuration used for these tests. 
 

Table 7:  Comparison of 3DPT and Accelerometer Poles for the Oblique Impact Test 
3D Point-Tracking 

Poles (Hz) 
Tri-axial Accelerometer 

Poles (Hz) Diff. (%) 

25.94 25.65 1.11 
63.94 64.44 -0.78 
78.19 77.78 0.52 
98.69 97.26 1.45 
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Figure 4:  FRF comparison of 3DPT to a collocated accelerometer – Pt 1 out-of-plane. 
 

 

 
 

Figure 5:  FRF comparison of 3DPT to a collocated accelerometer – Pt 3 out-of-plane. 
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Figure 6:  FRF comparison of 3DPT to a collocated accelerometer – Pt 1 horizontal. 
 
 

 
 

Figure 7:  FRF comparison of 3DPT to a collocated accelerometer – Pt 1 vertical. 
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OBSERVATIONS AND CONCLUSIONS 
 

Stereophotogrammetry techniques provide additional measurement capabilities that compliment the current array of 
traditional measurements by providing an alternative that favors high-displacement and low-frequency vibrations typically 
difficult to measure with accelerometers and laser vibrometers.  The techniques presented here generated results that showed 
a very high level of correlation to the reference finite element model of the Base-Upright.  Therefore, the application of the 
image-based systems for vibrations and modal analysis is a viable technique for the development of structural dynamic 
models.  
 
Previous studies showed that when low-speed cameras are used in conjunction with forced-normal-mode-testing, both digital 
image correlation and 3D point-tracking can accurately capture mode shapes as long as measurable displacements are 
present.  The biggest difference between the traditional and the FNMT-based techniques is the approach taken to measure 
multiple modes.  Accelerometers and scanning laser Doppler vibrometers measure multiple modes over a broad frequency 
range point by point.  Conversely, the two image-based approaches measure all points simultaneously.  If FNMT is used, all 
approaches measure the response of one mode at a time.  DIC can provide an incredibly fine spatial resolution that would be 
unobtainable with accelerometers or would take a significant amount of time with a scanning LDV.  Had the entire surface of 
the upright been patterned and the same facet settings used, roughly 40,000 effective data points could have been measured.   
 
Combining DIC and 3DPT with high-speed cameras enables simultaneous measurement of multiple modes over a wide 
frequency range.  The high-speed 3DPT results were the best obtained in these studies through the first 5 modes of the Base-
Upright.  Nearly all MAC values were higher than 99%.  Though not presented here, time traces from DIC could 
theoretically be exported and used to calculate mode shapes just as was done with the 3D point-tracking.  A higher point-
density may be obtained with DIC, but larger amounts of data recording needs to be considered.  For a given measurement, 
unless local strain data is desired, the use of 3DPT is recommended.  
 
Another possible use for DIC or 3D point-tracking is the measurement of rigid body motion of a test article suspended in a 
free-free condition.  Measuring structures that exhibit large displacements or rigid body motion is difficult for LDVs, because 
the specific position on the structure at which the laser is pointing will change.  Accelerometers provide an inertial reference 
frame, but their useful ranges usually begin at frequencies above those where rigid body motion occurs.  The use of the 
optically-based displacement measurements presented in this work (DIC and 3DPT) provides an alternative measurement 
technique that increases the envelope over which engineers can now make vibration measurements. 
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Experimental Modal Analysis (EMA) Using
Ibrahim Time Domain (ITD) Method and Winer
Filter

Jongsuh Lee, Sunghwan Kim, Daesung Kim, and Semyung Wang

Abstract it is important to know the dynamic characteristics of a system such as
natural frequency, mode shape and damping ratio. In order to obtain the dynamic
characteristics of the system, experimental modal analysis (EMA)is carried out for
analyzing such a system. Frequency domain approaches are generally used in EMA,
those are based on estimation of frequency response function (FRF) . In this paper,
the EMA is performed in time domain with Ibrahim Time Domain (ITD) method, it
is advantageous in analyzing a highly damped system compared with frequency do-
main approaches. In order to estimate such a system accurately, we adopted Wiener
filter in ITD method.

1 Introduction

An wanted vibration is produced by rotation, unbalance force of reciprocation, dy-
namic effect of friction, and contact between accessories. When the applied fre-
quency is closed to the natural frequency of the system, resonance would be hap-
pened and cause a serious problems. Therefore it is important to find out the modal
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parameters (the natural frequencies, damping ratios, and mode shapes) to cope with
problems in vibration. Determination of modal parameters of a structure using re-
sponse and excitation measurements is a primary interest in structural dynamics.
The methods for identifying modal parameters can be categorized into two groups:
frequency domain methods and time domain methods. The frequency domain anal-
ysis [1] has been widely used and has been proved to be efficient in many cases.
However, there are limits with these methods in dealing with heavy damping, closed
natural frequencies because of spectral leakages occurred in transforming the time
domain to frequency domain. If a structure has very closed natural frequencies,
very heavy damping, the frequency domain methods would not identify accurate
modal parameters. The reason for the limitation is essentially modal interference
and hence some individual modes and natural frequencies cannot be observed sepa-
rately. To avoid limitation of frequency domain analysis, time domain methods have
been developed. In this paper, a time domain approach which is called as Ibrahim
time domain (ITD) method [2] [3] [4] is used. It has been shown that the identifi-
cation of structural modal parameters from experimental data can be placed in the
form of a complex eigenvalue problem. Furthermore, the method can identify multi
modal (highly coupled) systems and modes that have very small contribution in the
responses. Also, the rapid measurement not influencing dynamic characteristics of
the structure is required for ITD. More accurate modal estimation can be achieved
because of canceling out the output noise by using Wiener Filter [5]. Because of this
reason, Wiener ITD method that is called Modified Ibrahim time domain method is
proposed.

2 Theory of the Ibrahim Time Domain Method

The governing equations of motion for an n-degree-of-freedom free vibration sys-
tem can be written as

[M]{ẍ}+[C]{ẋ}+[K]{x}= 0 (1)

where M, C, and K are mass, damping, and stiffness matrices, x represent n-
dimensional displacement vectors. The solution of this equation can be expressed in
the form of

xi(t j) =
2N

∑
r=1

(ψir)esrt j (2)

where i represents the coordinate and j the specific time increment at which the
response is measured, sr is the rth root or complex eigenvlaue of the system’s char-
acteristic equation and ψir is the ith component of the complex eigenvector ψr. The
eigenvectors are unscaled. Also, total number of degrees of freedom are assumed to
be N. For m response locations and q time instants, it leads to an expression of the
type
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[x(t)] = [Ψ ] · [Λ(t)]
(m×q) (m×2N) (2N×q) (3)

where [x(t)] is an m by q matrix of free response measurements from the struc-
ture. [ψ] is an m by 2N matrix of unknown eigenvector, and [Λ(t)] is an 2N by q
matrix depending on the complex eigenvalues (as yet unknown) and the response
measurement times. Let us consider now a second set of responses delayed by an
interval ∆ t with respect to the first set now a second set of responses delayed by an
interval with respect to the first set

xi(t j +∆ t) =
2N

∑
r=1

(ψir)esr(t j+∆ t) or x̂i(t j) =
2N

∑
r=1

(ψ̂ir)esr(t j) ; (ψ̂ir) = (ψir)esr∆ t (4)

Following a third set delayed by an interval 2∆ t with respect to the first set is

xi(t j +2∆ t) =
2N

∑
r=1

(ψir)esr(t j+2∆ t) or ˆ̂xi(t j) =
2N

∑
r=1

( ˆ̂ψ ir)e
sr(t j) (5)

where ( ˆ̂ψir) = (ψir)esr2∆ t

combining eqs. (3) and (4) lead following equation
[

x(t)
x̂(t)

]
=

[
Ψ
Ψ̂

]
[Λ(t)] or [Y (t)] = [P] [Λ(t)] (6)

Also, combining eqs. (4) and (5) lead to following equation

[
x̂(t)

ˆx̂(t)

]
=

[
Ψ̂
ˆ̂Ψ

]
[Λ(t)] or [Ŷ (t)] = [P̂] [Λ(t)] (7)

where [Y (t)], [Ŷ (t)], [P] and [P̂] are non-singular matrices. the number of as-
sumed modes N is a variable, we can arrange as m = N, so that the matrices [P] and
[P̂] are squared. If the number of time samples q is identical to 2N , from Eqs. (6)
and (7), the following equation is obtained

[Ŷ (t)][Y (t)]−1[P] = [P̂] (8)

In eq. 8 shows the system matrix

[A] = [Ŷ (t)][Y (t)]−1 (9)

However, it is customary to use more data than the minimum required by setting
q to a value greater than 2N. In this case, use of Eq. 8 to determine [A] will be via
the pseudo-inverse process which yields a least squares solution for the matrix. In
this case, an expression for [A] is
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[A] = [Ŷ (t)][Y (t)]T
(
[Y (t)][Y (t)]T

)−1
(10)

when Eq. (8) is opened out into 2N identical sets of equations, each on relates
column {P}r of [P] to column {P̂}r of [P̂]

[A]{P}r = {P̂}r, r = 1,2, ...,2N (11)

Eqs. (6) and (7) allow a relation between {P}i and [P̂] to be written in the form

{P̂}r = esr∆ t{P}r (12)

Eq. (10) can be written in the form

[A]{P}r = esr∆ t{P}r (13)

Eq. (13) represents a set of 2N linear non-homogeneous equations in 2N un-
known eigenvalues. This set is therefore solvable and one is able to determine the
2N eigenvalues and their corresponding 2N eigenvectors. It must be noted that these
eigenvalues are not the same as those of the original equations of motion but they
are closely related and we shall see that it is a straightforward process to extract the
system’s natural frequencies, damping factors and mode shapes from eq. (13)

esr∆ t = ar + ibr = e−ωrςr∆ t eiω ′r∆ t (14)

From the above equation the undamped natural frequency(wr) and viscous damp-
ing factor(ζr) can be derived.

ωrζr =
− ln(ar

2+br
2)

2∆ t

ω ′
r = ωr

√
1−ζr

2 =
tan−1(br/ar)

∆ t

(15)

2.1 Experiment

An experimental modal analysis algorithm, ITD method is done by Laser Scan-
ning Vibrometer (LSV). Fig. 1 shows the experimental configuration and LSV. A
Random signal is used to apply force to the system. In order to obtain modal pa-
rameters, generally frequency response function (FRF) is used. From the measured
response and applied force, the Frequency Response Function (FRF) is calculated.
The modal parameters are estimated by Peak in Magnitude, Half-Power Bandwidth
and Quadrature Peak Method from each node FRFs. In this paper, the applied force
signal and measured each node responses are involved being applied to both meth-
ods (FRF and ITD). Fig. 2 is FRF obtained by experiment, the circles on the figure
indicates each modes composing of the structural dynamic characteristics, modal
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parameter estimation can be achieved by the result values of FRF at those circle
locations.

3 Modified Ibrahim Time Domain of Experimental Modal
Analysis

In previous, it looked into the Ibrahim Time Domain (ITD) algorithms. This part
will introduce the different approach which is process to get the Impulse Response
Function (IRF) using Wiener Filter that makes to be able to calculate accurate IRF.
In addition more accurate modal estimation can be possible because of output noise
canceling. System identification on the basis of measurement can be express block
diagram the fig. 3 when the input noise can be ignored. Wiener filter is used to min-
imize the mean square error estimation, x̃(t) of x(t). With d(t) is input of the system
as well as FIR filter, h(t). x̃(t) is output of the FIR filter which can be expressed by
convolution sum of d(t) and h(t).

p−1

∑
l=0

h(l)d(t− l) = x̃(t) (16)

Fig. 1 Configuration of ex-
periment.

Fig. 2 Frequency Response
Function (FRF) of the struc-
ture.
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Design of the Wiener filter requires finding filter coefficients, h(t), that minimize
the mean-square error. In order for a set of filter coefficients to minimize ξ , it is
necessary and sufficient that derivatives of ξ with respect to h∗(k) are equal to zero
for k = 0,1, ..., p−1.

∂ξ
∂h∗(k)

=
∂E {e(t)e∗(t)}

∂h∗(k)
=−E {e(t)d∗(t− k)}= 0 (17)

e(t) = x(t)− x̃(t) = x(t)−
p−1

∑
l=0

h(l)d(t− l) (18)

from eqs. (17) and (18), eliminating e(t), the following equation is obtained.

E {x(t)d∗(t− k)}−
p−1

∑
l=0

h(l)E {d(t− l)d∗(t− k)}= E

{[
x(t)−

p−1

∑
l=0

h(l)d(t− l)

]
d∗(t−k

}

The impulse response of the optimal filter h(t), minimizing coefficient ξ , can be

p−1

∑
l=0

h(l)Rd(k− l) = rdx (20)

Eq. (20) may be written concisely as below.

Rdh = rdx (21)

d dx

h = Rd
−1rdx

(22)

Fig. 3 Block diagram for Winer Filter.

obtained from the Wiener-Hopf equation. The Wiener-Hopf equation is given by

Where R is k×k Hermitian Toeplitz matrix of input autocorrelations, r

(k) ;k = 0,1, · · · , p−1

$

impulseresponseo f theoptimalimpulseresponseo f theoptimal f ilter.Finally,
f iltercanbeobtained f romeq.(21)to

=(109)

isthevectoro f cross–correlationsbetweentheinputandout putandhisthevectoro f
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Impulse response of the optimal filter is used instead of Inverse Fourier Trans-
form of FRF that is applied to the ITD algorithm. All experimental results, LSV
(obtained by FRF), The ITD method and the Wiener-ITD method, are compared in
next chapter.

4 Comparison the experimental results with each algorithm

Table 1 is shown the natural frequencies and damping ratio of LSV results, ITD
algorithm results and Wiener ITD algorithm results, all algorithms are used with
same experimental measured time data. From the Table 1, there are no difference
between both natural frequencies except of 9th and 10th. However there are large
differences between both damping ratios, which are the Wiener ITD results is the
smallest among the others results. The Modal Assurance Criterion (MAC) is used
to confirm closeness of mode shape between got from LSV and from Wiener ITD
method.

Table 4 is shown the Modal Assurance Criterion (MAC) of the measured struc-
ture with the LSV results and Wiener ITD results. From these the diagonal elements
are closed unity and other off diagonal elements are close to zero. Therefore, the
mode shape vectors are relation of independence is validated. And the fact that the
estimated mode shape vectors of Wiener-ITD results are really close to LSV results
are confirmed.

Table 1 Natural frequency and damping ratio results obtained by each algorithm (LSV, ITD and
Wiener-ITD).
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LSV Wiener ITD.
Table 2 Modal Assurance Criterion (MAC) between LSV Wiener ITD.

5 Conclusion

Ibrahim time domain (ITD) method has been shown that the identification of struc-
tural modal parameters from experimental data can be expressed as the form of a
complex eigenvalue problem when the viscous damping system has free vibration
condition. This method is useful in estimation of the modal parameters when the
system has heavy damping. However, ITD method is only dealing with response
of system, it does not guarantee to give good approximation of modal parameters
compared with general other methods which use applied force to the system as well
as response of system. In order to overcome disadvantage of ITD method, this paper
suggest additional procedure that gives more accurate IRF by adopting Wiener-filter
in which both force and response are included. A simple beam is used to verify the
results of Wiener-ITD method and those are compared with LSV results and original
ITD method.
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ABSTRACT Frequency domain polyreference (FDPR) and frequency domain direct parameter identification (FDDPI) 
methods developed in the middle of 1980 s has superior performance in selected frequency band, and become major MIMO 
modal identification techniques in frequency domain. However, the methods, as well as rational fraction polynomial (RFP) 
algorithm developed in late 1980 s, are not suitable for broadband application compared to their time domain counterparts, i.e. 
extended Ibrahim time domain (EITD) or eigensystem realization algorithm (ERA), and polyreference complex exponential 
(PRCE) methods, due to numerical issues. But all time domain modal identification algorithms have a serious drawback in 
discrimination structural (physical) modes from spurious (noise) ones. In this paper, a new frequency domain modal 
identification technique is presented based on left or right matrix fraction description (LMFD or RMFD) of MIMO FRF or 
half PSD matrix. Theoretical background of the two broadband modal identification procedures is discussed with relevant 
numerical issues. It is revealed that the RMFD-based procedure is actually z-domain implementation of the RFP algorithm. 
FDPR and FDDPI are actually special cases, i.e. first and second order of LMFD-based broadband modal identification 
procedure implementing in discrete z-domain, instead of continuous s-domain. It is also shown that both RMFD-based and 
LMFD-based broadband modal identification procedures are parallel to their time domain counterparts, i.e. PRCE and EITD 
algorithm. However, much easier and reliable structural mode discrimination can be obtained with much clearer stability 
diagram. Engineering applications of the two procedures, which make use of FRF measurements for EMA of an aircraft 
model and h-PSD measurements for OMA of a middle-raised office building, are presented with comparison with its 
counterparts in time and continuous frequency domain. 

1 Introduction 

Experimental modal analysis becomes a new research direction for dynamic testing and analysis of mechanical structures 
since 1970 s. Parametric modal identification procedures, e.g. least squares complex exponential (LSCE) and Ibrahim time 
domain (ITD) were developed and applied in mechanical and aerospace engineering. A breakthrough of the experimental 
modal analysis (EMA) took place in 1980 s, featured in the development of multiple-input multiple-out (MIMO) modal 
identification algorithms. MIMO modal identification algorithms in time domain were developed, e.g. polyreference complex 
exponential (PRCE), extended ITD (EITD) and eigensystem realization algorithm (ERA), in early 1980 s. Frequency domain 
MIMO modal identification procedures were also proposed afterwards, such as frequency domain polyreference (FDPR), 
direct frequency domain parameter identification (FDDPI), as well as MIMO version of rational fraction polynomial (RFP) 
implemented with orthogonal polynomial. PRFD/ DPI and RFP work pretty well in selected frequency band. A complex 
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DOI 10.1007/978-1-4419-9299-4_22, © The Society for Experimental Mechanics, Inc. 2011



modal indication function (CMIF) procedure was proposed as a mode indicator, and applied for modal identification in 
1990 s afterwards. CMIF extracts one mode at a time with the ability to deal with closely-spaced and repeated modes as a 
MIMO approach in narrow band. EMA in both TD and FD have the ability in dealing with large account of I/O measurement 
and obtained widely applications in aerospace and automotive engineering. [1]. 

Since early 1990 s, operational modal analysis (OMA) has been proposed and drawn great attention in civil engineering 
community with applications for off-shore platforms, buildings, towers, bridges, etc. Operational modal analysis (OMA), 
named also as ambient or output-only modal analysis, utilizes only response measurements of the structures in operational 
condition subjected to ambient or natural excitation to identify modal characteristics. Advance from traditional experimental 
modal analysis (EMA) to the operational modal analysis (OMA) was the other major breakthrough in modal analysis. The 
key idea of implementing OMA was proposed in early 1990 s as Natural Excitation Technique (NExT), in which correlation 
function of the random response of a structure is utilized for modal identification [2]. NExT has shown that the correlation 
function can be expressed as a summation of decaying sinusoids. Each decaying sinusoid has a damped natural frequency, 
damping ratio and mode shape coefficient that is identical to the one of the corresponding structural mode. Correlation 
function can therefore be employed as impulse response function (IRF) in EMA to estimate modal parameters for OMA. 
Hence, major MIMO TD modal identification procedures developed in traditional EMA can directly be adopted for OMA. 

Modal identification has been thought of a branch of general system identification. However, instead of directly making use 
of input/output data or output-only based on time series or state space model, in the modal community frequency response 
function (FRF), or impulse response function (IRF) are preferred, which takes advantage of the development of dynamic 
signal analyzer based on fast Fourier transformation (FFT). Driven by the OMA applications where IRF and FRF can not be 
obtained, modal community seeks new tools developed in general system identification. One is stochastic subspace 
identification (SSI) based on innovative state-space equation with Kalman filter, and the other is time series identification 
based on autoregressive moving averaging (ARMA) model with prediction-error method (PEM). Both of them are adopted 
from system identification community, and can make direct use of output-only data for modal identification. Compared to 
NExT as two-stage approach, conducting correlation estimation as first stage followed by modal parameter extraction as the 
second stage, the data-driven SSI and PEM-ARMA are one-stage approaches [3].  

Modal identification has been dominated by the TD procedures for the industry applications with advantage in that all the 
modes in the frequency band can be identified simultaneously. However, the TD modal identification procedures, no mater 
advanced and sophisticated math models are based, have a serious drawback as described below. All modal identification 
procedure consists of two sequent steps, i.e.to determine structural modes at first, and then to estimate modal parameters for 
structural mode. Unfortunately, spurious or noise modes are always generated when extracting structural or physical modes. 
These spurious (noise) modes are even necessary to account for unwanted effects, such as measurement noise, leakage in 
signal processing, residuals and non-linearity s in the parametric model, etc. The spurious (noise) modes fulfill an important 
role in that they permit more accurate modal parameter estimation by supplying statistical DOFs to absorb these effects. For 
effective differentiation of physical (structural) from spurious (noise) modes, a variety of modal indicators have been 
developed but without preferred success [4]. In stead, a graphical approach making use of stability diagram is a much more 
effective measure. However, difficulties are often encountered to discrimination of structural modes with TD modal 
identification when dealing with real-world complex structure. 

The major development and breakthrough of modal identification in 2000 s is to find solution in better determination of 
structural modes and extraction of modal parameters for all the structural modes in frequency domain. The new procedure in 
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FD is based on matrix fraction description of the FRF matrix linking with MIMO measurements and system parameters. 
There are two potential models, i.e. right matrix fraction description (RFMD) and left matrix fraction description (LMFD). 
The new FD modal identification procedures have the superiority in determination of structural modes over the TD 
counterparts and, at meantime, keep the advantage in extracting modal parameters of all modes in broadband, instead of 
selected or narrow band for other MIMO FD procedures [5].  

2 Broadband Modal Identification based on Right Matrix Fraction Description (RMFD)  

2.1 Theoretical Background of RMFD-based broadband modal identification 

In the RFMD, a row of the FRF matrix can be described as 
)()()( 1   ABH oo
 (1) 

Where iN
o CH  1)(  is oth row of the FRF matrix, corresponding to oth response and 

oNo 1 . iN
o CB  1)(  and 

ii NNCA )(  denote the numerator and denominator matrix polynomials, respectively, which can be expressed as: 
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Where n  is the order of the matrix polynomials， )(r  is the base function. Coefficient matrices ii NN
j CA   and 
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jo CB ,

 contain parameters to be estimated. 

A linearized error matrix for single output can be defined as 
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Where )(~
koH   denotes the measured FRF, 

fN  is the spectral lines in the FRF. 

A linear least squares solution can be derived when the following objective function is assumed 
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To minimize the objective function, a least squares solution can then be obtained by solving the following linear equations.： 
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Where symbol   represents the Kronecker product。 

After solving the denominator coefficient matrices, calculation of the poles is turned to be an eigenvalue problem of the 
companion matrix. 
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All the poles can be found as the diagonal terms in the diagonal eigenvalue matrix. And the modal frequencies and damping 
ratios can then easily be obtained with following formula. 

srr T/)ln(  

)ln(/))Re(ln( rrr   (10) 

The modal participating function (MPF) matrices can be located from the last 
iN  lines of the eigenvector matrix. Modal 

vectors, i.e. mode shapes can then be estimated by solving the following linear matrix equations under knowing the poles 
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The RMFD-based broadband modal identification algorithm is a typical two-stage method. It can be observed that its 
implementation procedure is parallel to its two-stage TD counterpart PRCE [6]. 

2.2 Implementations and numerical issues of RMFD-based broadband modal identification 

There are a few different implementations for modal identification when matrix fraction description of FRF is adopted 
depending on the form of the base function )(r  in the Eq. (2). The simplest way is to implement the base function in 
continuous domain letting r

r i )()(   . However, serious numerical problem will be encountered, i.e. the normal equation 

for solving coefficients of the denominator and numerator matrices will be ill-conditioned. The better way of implementation 
is making use of orthogonal base function, e.g. Forsythe orthogonal polynomial, which leads to MIMO version of orthogonal 
rational fraction polynomial (RFP) procedure. The best way, from numerical point of view, is to implement the base function 
in discrete domain, i.e. z-domain, by simply assuming rTi

r
se  )( , which leads to polyreference version of the least 

squares complex frequency domain (p-LSCF) algorithm [7]. RMFD-based p-LSCF procedure can determine structural modes 
in the broadband much more easily and reliably via very clean stability diagram, compared to its both counterparts in 
frequency domain (RFP), as well as in time domain (PRCE). 

The other numerical issue encountered in FD broadband modal identification is the computational efficiency. Considering 
tremendous computational load, especially when large number of modes should be extracted in the broadband, computational 
efficiency become another numerical issue. The FFT is utilized to calculate the submatrices in the normal equation, which is 
used for coefficient matrices. Fig. (1) shows a comparison of computing time with FFT to replace direct computation via 
multiplication 
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Fig. 1 Comparison of computing time with & without FFT Fig. 2 Reduction of computing time over p-LSCF algorithm 
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The computation can further be speed up during calculation of coefficient matrix of the normal equation. The comparison 
between new fast algorithm in BroBand and p-LSCE is depicted in Fig. (2)[8]. 

3 Broadband Modal Identification based on Left Matrix Fraction Description (LMFD)  

3.1. Theoretical Background of LMFD-based Broadband modal identification  

MIMO broadband modal identification procedure can also be developed based on left matrix fraction description (LMFD). 

The FRF matrix of a linear system with oN  output and iN  input can be descript as 

)()()( 1  BAH   (12) 
Where the denominator and the numerator matrix polynomials oo NNCA )(  and io NNCB )( are defined as follows, 
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The coefficient matrices oo NN
j CA   and io NN

j CB   contain parameters to be estimated, )(r  is the base function and 

n  is the order of the matrix polynomial. It is notices that the dimension of the coefficient matrices is different compare to 
the ones in the model with RMFD. 
The linearized error matrix can be written as 

)()()()(  HABE   (14) 
Substituting the expressions of )(),(  BA  in Eq. (13) into Eq. (14) yields error function in matrix form  
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For a least squares solution, the objective function can be expressed as follows 
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Minimization of the objective function leads to linear equations 

265



0][ 












 XYJ  (17) 

Where 























































)(~)]()([

)(~)]()([
)(~)]()([

)]()([

)]()([
)]()([

0

2220

1110

0

220

110

fffiff

i

i

N
T

NnN

T
n

T
n

NNnN

Nn

Nn

H

H

H

I

I

I

Y











 (18) 













































T
n

T

T

T
n

T

T

A

A

A

B

B

B

1

0

1

0


 (19) 

Similar to RMFD case, instead of solving directly the normal equation, the coefficient matrices of the denominator matrix 
polynomial can be obtained from eigenvalue problem of the following companion matrix: 
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All the poles can be found as the diagonal terms in the diagonal eigenvalue matrix. And the modal frequencies and damping 
ratios can then easily be obtained as in the previous procedure. Instead of modal participating factors, mode shapes can be 
located in the eigenvector matrix of the solution. With known poles and mode shapes, the modal participation factors (MPF) 
can then be obtained via linear least squares solution of the following equation  
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The LMFD-based broadband modal identification algorithm is also a typical two-stage method. It can be seen that its 
implementation procedure is parallel to its two-stage TD counterpart EITD [7]. 

3.2 LMFD-based broadband modal identification as extention and improvement of RPFD 

FDPR is the first MIMO modal identification procedure in frequency domain [9], together with its sister algorithm FDDPI [10], 

is widely applied in modal community. With FDPR, the system matrix A can be solved from the following equation： 
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Where A  is the system matrix, K  is the residue represents the inferences of complex conjugate part of FRF and 
out-of-band modes, )0(h  is the initial condition term, and L  is the number of spectrum lines in the frequency band of 

interest. 
In the algorithm based on LMFD, when the base function is simply chosen in continuous domain, the same as in PRFD, 

r
kkr i )()(   , and 1n ,

oNIA 1
, the linear equation Eq. (5) for the parameters in the matrix polynomials can be 

simplified as, 
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Table 1 Identified modal frequencies & damping ratios 
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Re-writing the above equation yields 
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Compare between Eqs. (24) and (22), it is seen, when noticing 0AA  , 1BK  , 0)0( BAKh  , that the PRFD is actually a 
special case of new broadband modal identification procedure based on LMFD! Since FDPR is implemented in continuous 
domain (s-domain), and the numerical condition of the normal equation is unfavorable, and can be applied in selected band. 
However, with dramatic improvement of numerical condition in discrete domain (z-domain), new procedure based on LMFD 
performs excellently for broadband modal identification with reliable determination of structural mode based on clear 
stability diagram and accurate modal parameter extraction of all modes in broadband.  

4 Applications of new broadband modal identification procedures 

All the FD modal identification procedures are making use of FRF measurement data. However, in operational or output-only 
modal analysis, only output data are available. Power spectrum density (PSD), instead of FRF, can then be estimated. It is 
interested to aware that so-called positive or half PSD (h-PSD), which contains values corresponding to only positive 
frequencies, has similar modal decomposition expression, 
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Therefore, FD modal identification algorithm can be adopted for OMA with h-PSD data instead of FRF data for EMA. It 
should be noticed that the only difference of broadband modal identification in OMA making use of h-PSD is that modal 
participation factors are missing due to absence of input force measurement. Therefore, only modal frequencies, damping 
rations and un-scaled mode shaped can be obtained. 
The new broadband modal identification algorithms based on RMFD and LMFD have been implemented in a new-generation 
modal software named as N-Modal and applied for traditional experimental modal analysis (EMA) and operational modal 
analysis (OMA) in aerospace, mechanical and civil engineering. 

4.1 OMA Application of RMFD-based BroBand Algorithm to a middle-raised building 

The RMFD-based BroBand algorithm was applied to a 15-story office building with concrete -filled-tube (CFT) columns 

Fig. 3 CFT building with geometric model 
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located in Tokyo. In order to have sufficient spatial domain resolution and to correlate with finite element analysis, an 
experimental model with 200 DOFs in two lateral directions was established (see Fig. 3). Field ambient response 
measurements were conducted in four (4) setups with 53 acceleration measurements in horizontal direction with two sensors 
as references, and 14 channels for one setup. With a reasonable assumption that the floor subjects to lateral rigid body motion, 
147 "virtual measurements# are added from constrain equations. Half power spectrum density (h-PSD) matrix is then 
calculated from ambient response measurements via FFT of correlation function with only positive time lags. Unbiased 
correlation estimation is adopted based on periodogram approach. Data length is N=2048, and exponential window is applied 
to reduce variance error. RMFD-based BroBand procedure is applied for modal identification. Within interested frequency 
range of 0 to 4.5 Hz, altogether 9 modes were accurately located in the stability diagram (Fig. 4), and modal parameters are 
then identified. The identified modal frequencies and damping ratios are shown in Table 1. Mode shapes are depicted in Fig. 
6. Perfect curve fittings of almost all measured h-PSD have been obtained showing the performance of the BroBand 
algorithm (Fig. 7). The identified modal frequencies and mode shapes were utilized for FE model correlation and calibration. 
As a comparison, advanced OMA algorithm stochastic subspace identification (SSI) is also applied to the same measured 
data. Fig.5 is the stability diagram obtained for SSI. It is seen that BroBand offer much clearer stability diagram, and .shows 
promise in autonomous modal identification.  

268

 

 Fig. 6 identified nine (9) mode shapes Fig. 7 Curve fittings of h-PSD 
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Fig. 4 Stability diagram of CFT Building
 with BroBand Algorithm 
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Fig. 5 Stability diagram of CFT Building with SSI Algorithm 



.4.2 Applications of LMFD-based BroBand algorithm to an Aircraft Model 

A delta-wing aircraft model is utilized as an EMA application example for LMFD-based BroBand modal identification and 
comparison study between LMFD-based and FDPR procedures. The delta-wing model is made of aluminum with dimension 
of 1240mm in length and 1100mm in wing span. Two accelerometers are utilized as references, and an instrumented 
hammer .is applied for force input in all 41 coordinates in vertical direction sequentially (See Fig. 8). MIMO FRF matrix 
with 800 spectrum line for each FRF is estimated in the signal processing modular of the N-Modal software. 

 

Stability diagrams, derived from both FDPR and LMFD algorithms are depicted in the Fig. 9 and Fig. 10, respectively. 

 
It is observed that LMFD-based BroBand algorithm shows much clearer stability diagram compared to the one from FDPR 
as expected. Modal parameters of the modes are then estimated as shown in Table 2. Mode shapes are presented in Fig. 11. 

 

Table 2 Identified modal frequencies and damping ratios of the aircraft model 

No.  Modal Freq./Hz Damping ration/% Mode Shapes 
1 14.93 0.31 1st symmetric bending of wing 
2 25.57 0.31 1st anti-symmetric bending of wing  
3 36.41 0.17 1st torsion of wing  
4 49.75 0.13 1st symmetric torsion of wing 
5 57.08 0.16 2nd anti-symmetric torsion of wing 
6 70.24 0.21 2nd symmetric bending of wing 
7 76.17 0.14 2nd anti-symmetric bending of wing 
8 78.48 0.24 Anti-symmetric bending & torsion of wing  
 

Fig. 8 Delta Wing Aircraft Model with I/O Coordinates 

Fig. 9 Stability diagram of the aircraft model  
with FDPR algorithm 

Fig. 10 Stability diagram of the aircraft model 
with LMFD-base BroBand algorithm 
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Fig. (12a) and (12b) show the synthesized driving-point FRF and cross-point FRF, respectively. It can be seen that perfect 
curve fittings are reached. 

 

4. Concluding remarks 

² The development of model identification in time and frequency domain and for experimental and operational modal 
analysis with major issues is briefly overviewed. 

² Theoretical background of the two broadband modal identification procedures is presented with relevant issues with 
numerical implementations. 

² It is revealed that the procedure based on right matrix fraction description (RMFD) is actually the z-domain 
implementation of rational fraction polynomial algorithm (RFP) in s-domain but with significant improvement in 
numerical condition.  

1st mode shape 

5th mode shape 
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3rd mode shape 

6th mode shape 8th mode shape 

Fig. 11 Mode shapes of the aircraft model identified with LMFD-based BroBand algorithm 

Fig. 12 Synthesized FRFs of the aircraft model with LMFD-based BroBand algorithm 

(a) Curve fitting of a driving-point FRF (b) Curve fitting of across-point FRF 
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² The procedure based on left matrix fraction description (LMFD) is an extention of s-domain frequency domain 
polyreference (FDPR) and frequency domain direct parameter identification (FDDPI) algorithms, with much better 
performance in broadband modal identification. 

² It is also shown that both RMFD-based and LMFD-based broadband modal identification procedures are parallel to 
their time domain counterparts, i.e. PRCE and EITD algorithm, in numerical implementation. However, much easier 
and reliable structural mode discrimination can be obtained with much clearer stability diagram. 

² Engineering application of the broadband modal identification technique making use of FRF measurements for EMA 
of an aircraft model is presented. It shows advantage compared to the advanced time domain modal identification 
algorithm, e.g. stochastic subspace identification (SSI), in determination of structural modes with much clearer 
stability diagram, and promise in autonomous modal identification.  

² Engineering application making use of h-PSD measurements for OMA of a middle-raised office building is given 
with comparison with frequency domain polyreference (FDPR). Superiority is shown over its FD counterpart as 
special case and implemented in continuous s-domain.   
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ABSTRACT A close investigation is made on dynamic absorber design using 

simplified vibration models. Dynamic absorbers have been widely used to reduce 

excessive vibration of engineering equipment at resonance frequencies. From the 

practical point of view, however, the conventional theory on the dynamic absorber 

design should carefully be applied because it is formulated under ideal assump-

tions. In this work, we point out errors that researchers may make when dynamic 

absorbers are designed in industry and suggest alternatives to conventional dy-

namic absorber design scheme. 

Introduction 

Dynamic absorber design is a very old topic and has been widely used to reduce 

excessive vibration level of mechanical equipments due to resonance. The basic 

theory for the dynamic absorber design is easily found in vibration textbooks and 

has been advanced depending on its applications. Sun et al. [1] applied dynamic 

vibration absorbers to floating raft system. Al-Bedoor and Moustafa [2] designed a 

dual dynamic absorber to reduce the torsional vibrations exhibited during start-up 

of systems driven by synchronous motors. Williams et al. [3] used shape memory 

alloy adaptive tuned vibration absorbers for adaptive passive vibration control. 

Huang and Fuller [4] attached multiple dynamic absorbers to the shell to reduce 

the vibration and the consequent interior acoustic sound pressure. Al-Hulwah et 

al. [5] used three-degree-of-freedom tuned mass dampers to control floor vibra-

tion.    

A linear compressor, which was recently commercialized for refrigerators, re-

quires a properly designed dynamic absorber to reduce high level vibration re-
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sponse because the compressor operates most efficiently at its resonant frequency 

[6-10]. A linear compressor consists of moving parts compressing refrigerant and 

a shell with a grommet. The moving part is mounted on plastic springs of the 

shell, which is placed on the floor through the grommet made of rubber. To 

maximize the efficiency of the compressor, the natural frequency of the moving 

part driven by a motor should be tuned to the motor current frequency. Therefore, 

the operation condition results in extremely high vibration displacement at the 

shell of the linear compressor.  

This work discusses errors that researchers may easily make for linear compressor 

vibration reduction and points out the key ideas in dynamic absorber design. To 

the end, the basic theory of dynamic absorber will be presented for one and two 

degree-of-freedom mass-spring-damper systems. Practical dynamic absorber de-

sign scheme will be discussed.  

Basic Theory of Dynamic Absorbers 

In this section, basic equations are developed to make a close investigation on de-
sign technique of dynamics absorbers. Although dynamic absorber design scheme 
is well explained in vibration textbooks, the key ideas based on equations are re-
quired for the close investigation. Frequency response functions are derived for 
four simple models in Fig. 1, which consist of mass, spring and damping elements 
using a linear vibration theory. The 1st model is one-degree-of freedom mass-
spring-damper system, the 2nd and 3rd models are two-degree-of freedom mass-
spring-damper system and the 4th model is a three-degree-of freedom mass-spring-
damper system.  The difference between the 2nd model and the 3rd model is the lo-
cation of an excitation force.  

 

Fig. 1 Theoretical models for close investigation on dynamic absorber design technique: (a) 1
st
 

model; (b) 2
nd
 model; (c) 3

rd
 model; and (d) 4

th
 model. 
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Conceptual Design Strategy of Dynamic Absorber  

The dynamic elements denoted by subscripts ‘2’ in Fig. 1b consist of an addi-

tional harmonic mechanical system connected to the 1
st
 model in Fig. 1a to reduce 

the extremely high response displacement when the excitation force frequency co-

incides with natural frequency of the 1
st
 model. For the two simple models in Fig. 

1a and 1b, frequency response functions are derived with basic equations of mo-

tion to explain the concept of dynamic absorber design  

The vibration displacement ( )txi  of the 1
st
 model excited by an external force 

( )tfi  in Fig. 1a is governed by  

( ) ( ) ( ) ( )tftxktxctxm iiiiiii =⋅+⋅+⋅ &&& , (1) 

where im , ic , and ik  are mass, damping coefficient and  spring constant. As-

suming the harmonic motion of the external force and the displacement 

( ( ) tj
ii eFtf ω⋅= , ( ) tj

ii eXtx ω⋅=  ), Eq. (1) is converted to the following equa-

tion: 

{ } iiiii FXcjmk =⋅+⋅− ωω 2
,  (2) 

where ω  is an angular frequency. The frequency response function of the 1
st
 

model is 

( ) iiiii

i

jkF

X

ζωωωω ⋅+−
=

/2/1

11
2 , (3) 

where iii mk /=ω  and iiii kc /2/1 ⋅⋅= ωζ  are the natural frequency and 

the damping ratio of the 1
st
 model, respectively. 

Assuming the harmonic motions of vibration displacements and the external force 

( ( ) tjeXtx ω⋅= 11 , ( ) tjeXtx ω⋅= 22 , ( ) tjeFtf ω⋅= 11 ) in Fig. 1b, the vibration 

equation for the 2
nd
 model is expressed in a matrix form: 

( )









=
















+−−−

−−++−+

0
1

2

1

2
2

2222

2221
2

121 F

X

X

cjmkcjk

cjkccjmkk

ωωω

ωωω
. (4) 

In this system, one can obtain the following two frequency response functions: 
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( )
( ) ( ) ( )2,2

2
2212,21,1

2,2

11

1 1

ζζζ

ζ

Ω⋅Ω⋅−Ω⋅Ω

Ω
⋅=

GKHH

H

kF

X
, (5a) 

( )
( ) ( ) ( )2,2

2
2212,21,1

2,2

11

2 1

ζζζ

ζ

Ω⋅Ω⋅−Ω⋅Ω

Ω
⋅=

GKHH

G

kF

X
, (5b) 

where ( )1221 / kkK =  is the stiffness ratio and ( )2,1,/ ==Ω iii ωω  is a nor-

malized angular frequency. The symbols ( )iiH ζ,Ω  and ( )iiG ζ,Ω  are func-

tions of  the normalized angular frequency and the damping ratio: 

( ) iiii jG Ω+=Ω ζζ 21,   (6a) 

( ) iiiii jH Ω+Ω−=Ω ζζ 21, 2
  (6b) 

where 2,1=i . 
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Fig. 2 Comparison of the 1
st
 model and the 2

nd
 model: (a) Frequency response functions at 1m ; 

and (b) time responses at 1m . cf  is an excitation force frequency. 

If the damping ratios iζ  are much less than one, the response in Fig. 2a is ex-

tremely high when the excitation force frequency ( cω ) coincides with the natural 
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frequency ( 1ω ) of the 1st model: ( )cc ωω /1 =Ω=Ω . This phenomenon is 

called ‘resonance’. To avoid the resonance, an additional one-degree-of freedom 
mass-spring-damper system is attached to the original system as shown in Fig. 1b, 

and the natural frequency 2Ω of the additional system is adjusted to that of the 

original system: 21 Ω=Ω=Ω c  . The reason why the physical treatment can re-

duce the vibration magnitude is that the additional system modifies the frequency 

response function of 11 / FX  as shown in Eq. (5a): an anti-resonance frequency is 

created at the excitation force frequency due to natural frequency adjustment for 

the additional system as shown in Fig. 2.  

In many engineering environments, however, a forced vibration response is disre-

garded as resonance phenomenon or incorrectly simplified models are used for 

theoretical vibration analysis and reduction. That is, the natural frequency adjust-

ment always does not yield an anti-resonance frequency at an excitation frequency 

resulting in response reduction at the excitation frequency. To point out these er-

rors, in the following subsection, some equations are developed for two-degree-of-

freedom mass-spring-damper system. 

Dynamic Absorber Design for Two-degree-of-freedom Systems 

The 3
rd
 model is a simplified vibration model representing low-frequency vi-

bration characteristics of linear compressors, and the 4
th
 model is considered to re-

duce high level vibration response due to resonance phenomenon. As a similar 

way in the previous subsection, two frequency response functions for the 3
rd
 and 

4
th
 models are derived respectively as follows: 

( )
( ) ( ) ( )2,2

2
2212,21,1

2,221

22

1 1

ζζζ

ζ

Ω⋅Ω⋅−Ω⋅Ω

Ω⋅
⋅=

GKHH

GK

kF

X
 (7a) 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )2,23,3
2
3313,32,2

2
221

3,32,21,1

3,32,221

22

1 1

ζζζζ

ζζζ

ζζ

Ω⋅Ω⋅Ω⋅−Ω⋅Ω⋅Ω⋅−

Ω⋅Ω⋅Ω

Ω⋅Ω⋅
⋅=

HGKHGK

HHH

HGK

kF

X

(7b) 

If an extremely high response happens due to 
*
2ωω =c , only frequency adjust-

ment ( 3
*
2 Ω=Ω=Ωc ) can yield vibration reduction as shown in Fig. 3a. How-
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ever, the frequency adjustment may increase the vibration level of an original sys-

tem if the high level vibration response is just a forced vibration phenomenon, not 

resonance as shown in Fig. 3b. In the next section, reasons causing these errors are 

discussed and a right dynamic absorber design scheme is suggested. 
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Fig. 3 Level change in time responses of the 3
rd
 and 4

th
 models depending on 

excitation force frequency: (a) 3
*
2 Ω=Ω=Ωc  (b) 3

*
2 Ω=Ω≠Ωc . 

Practical Scheme for Dynamic Absorber Design 

As summarized above, the natural frequency of an additional system must prop-

erly be tuned so that an anti-resonance frequency should coincide with an excita-

tion force frequency. To the end, one must check two things: the first one is to 

check if the high level response is due to resonance or just a forced vibration re-

sponse; and the second one is to check if a used theoretical well represents vibra-

tion characteristics of a real mechanical device.  

Fig. 4 compares response change in a main system when an additional system is 

attached for two cases: resonance and just a forced vibration response. As shown 

in the Fig. 4b, the system has a high level response due to a single excitation fre-

quency force, which does not coincide with its natural frequency. This case corre-

sponds to just a forced vibration phenomenon, not resonance. Nevertheless, if an 

additional mass-spring-damper system is designed on the basis of dynamic ab-

sorber design theory and is attached to an original system, the response at the exci-

tation frequency may increase as shown in Fig. 3b. 

An improper theoretical model may result in vibration increase in a main system. 

A general way to operate a linear compressor most efficiently is to tune the natural 

frequency of a pump in a linear compressor to the motor current frequency mω  

using the following equation [10]: 
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t

t
m M

K
=ω   (8) 

where tM  is the total moving mass and tK  is the total equivalent spring stiff-

ness. This approach is based on one degree-of-freedom system in Fig. 1a. Strictly 

speaking, however, this theoretical model is improper because the moving mass 

part is not directly connected to ground, but it is mounted on the shell through 

snubbers and the shell is placed on the hard floor through the grommet. That is, a 

linear compressor operating at a motor current frequency can be characterized by 

the 3
rd
 model in Fig. 1c. Therefore, to reduce high level vibration response, one 

must use the 4
th
 model in Fig. 1d, not the 2

nd
 model in Fig. 1b. 
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Fig. 4 Level change in frequency response functions of the 3
rd
 and 4

th
 models 

depending on excitation force frequency: (a) 3
*
2 Ω=Ω=Ωc  (b) 

3
*
2 Ω=Ω≠Ωc . 

Conclusions 

In this work, dynamic absorber design scheme was investigated in terms of in-

dustrial application. The key idea in dynamic absorber design theory is to adjust 

the natural frequency of an additional system to excitation force frequency. How-

ever, the reason that the vibration response of the original system is reduced is that 

an anti-resonance frequency in a frequency response function is tuned to the exci-

tation force frequency. Sometimes, the natural frequency adjustment of the addi-

tional system may not result in exact shift in the anti-resonance frequency. From 

the practical point of view, therefore, the anti-resonance frequency tuning is much 

more important than the natural frequency adjustment.  
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Abstract 

Vibration in ships can cause crew and passenger discomfort and induce structural cracking. The mitigation of ex-

cessive vibration requires knowledge of both excitation and response. Observation techniques and advanced 

Computational Fluid Dynamics have been applied successfully to investigate and characterise propeller excita-

tion. Operational modal analysis (OMA) has proven to be a useful practical technique for investigating and solving 

vibration issues on ships. The use of these techniques is discussed in the context of two case studies: 

1. The investigation of cracking in freshwater tanks due to vibration, and the use of OMA in tracing the transfer of 

energy from the propeller to the tank panels, are described. Observations of propeller cavitation and measure-

ments of the pressure caused by its development are presented. Solutions to reduce the excitation energy and to 

shift the natural frequencies of the tank panels are discussed. 

2. An example of vibration of a navigation bridge and accommodation block causing crew discomfort is presented. 

The use of OMA identified several modes that were excited by the main engine and the propeller during normal 

service conditions. This improved the understanding of vibration of the accommodation whilst reducing the risks 

associated with the uncertainty of implementing solutions. 

Introduction 

Vibration of ship structures is unavoidable because of design constraints such as the relative close proximity of 

the excitation sources and working and living quarters, the operating environment, construction and strength re-

quirements and the desire to reduce the weight of the vessels and increase the payload. Vibration can cause crew 

and passenger discomfort and the assessment of vibration for these purposes is described for instance in the 

ISO6954-2000 standard [1] and in the Lloyd's Register’s Passenger and Crew Accommodation Comfort notation 

[2]. Higher, and sometimes localized levels of vibration can lead to failure of structural components through fa-

tigue. Vibration levels above which fatigue is likely to occur are given for instance in the Lloyd's Register Ship Vi-

bration and Noise Guidance Notes [3].  

Primary sources of vibration excitation on board ships are the propeller, the main engine and auxiliary machinery. 

In many cases the main and auxiliary engines are reciprocating machines and acceptable levels of vibration for 

such machinery are set out for example in ISO10816-6 [4]. Levels of acceptable propeller excitation for different 

ship types are given in [4] 

Notwithstanding the identification of acceptable levels of excitation and vibration and the computational tools 

available to predict these in the design stages, ships with unacceptable vibration levels are still being built. This is 

in part a result of the very nature of shipbuilding, where only a very limited number of ships of one particular de-

sign are built, for instance due to different requirements from different owners. This makes it expensive to assess 

the vibration characteristics of each ship in detail. 

The prediction of vibration excitation, and in particular the propeller, is sometimes inaccurate. Engine builders in 

general make relatively large numbers of engines without significant modifications and have detailed guides on 

expected external engine forces and moments. The same can not be said for propellers that are usually designed 

specifically for each ship owing to the different hull shapes, shaft speeds, ship speeds, ship powers and operation 

profiles. Although propeller designers do take into account all these different factors, not all physical phenomena 

are accurately predicted by state of the art computational tools. This can make it difficult to design propellers with 

an acceptable pressure signature. 
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The use of specialist experimental techniques, such as OMA, can aid problem resolution after a ship has entered 

service and validate computational techniques. An illustration of this is given with two case studies that the au-

thors dealt with recently. 

Case Study 1 – Cracking of tank bulkheads as a result of propeller excitation 

Cracking of water tank bulkheads of an LNG carrier occurred 1 year after delivery of the vessel. Despite continu-

ous repairs and modifications to these bulkheads, cracking persisted for several years in service. The tanks were 

located directly above the propeller, as shown in Figure 1, and contained distilled water, for use in a steam tur-

bine, and fresh water, for human consumption. Hence contamination could have serious consequences for staff 

and machinery. 

Panel vibration was measured at the centre of the affected panels and midway between stiffeners. Typical overall 

velocity amplitudes of two tank bulkheads are shown in Figure 2. Vibration levels had typical maximum ampli-

tudes of around 200 mm/s and thus exceeded 30 mm/s, the upper limit for safe panel vibration in Reference 3, 

from relatively low speeds and powers. It was therefore likely that cracking had occurred as a result of vibration 

and in order to assess how much excitation and response contributed to the issue both were investigated. 
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Fig. 1 Tanker aft body showing the location of 

water tanks and the propeller  

Fig. 2 Hull pressure amplitudes and vibration amplitudes of 

two tank bulkheads 

As discussed previously, machinery is usually the principle source of vibration excitation on board a vessel. The 

main engine of this ship was a steam turbine which, in general, does not cause a lot of vibration excitation and, 

therefore, the propeller was the most likely source of excitation. Propeller radiated hull pressures were measured 

and considered high, with overall pressure amplitudes exceeding 15 kPa (Figure 2).  

A typical time series of hull pressure excitation during one blade passage is shown in Figure 3. There is an under-

lying blade rate pressure fluctuation resulting from the non-cavitating pressure field around the blade. Superim-

posed on this is the contribution of the pressure caused by cavitation. This pressure consists of a cavitation 

growth phase as the blade enters the wake peak, possibly causing a gradual reduction in pressure, which is fol-

lowed by a high pressure peak resulting from the sudden collapse of the main body of sheet cavitation. The three 

secondary pressure pulses have been observed on other vessels and could be related to tip vortex activity. 
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Hull pressure energy is generally contained in harmonics of the blade passing frequency (Figure 4) and, in this 

case, the amplitudes of the pressure pulse at the second and third harmonic of the blade passing frequency were 

of a similar value as the blade rate component. This is relevant because natural frequencies of local structures 

can be typically found at these frequencies. This distribution of pressure energy suggests a violent cavitation col-

lapse and is not uncommon for vessels where propeller excitation is high. 

Observations of propeller cavitation were performed through a borescope that was passed through an M20 hole in 

the ship’s shell plating just forward of the propeller. These holes were drilled while the ship was underway and did 

not disrupt the ship’s schedule. Two images of a propeller blade passing through the twelve o’clock position, Fig-

ure 5, showed cavitation phenomena which normally lead to significant pressure pulses and which are indicative 

of a severely retarded propeller inflow. It is likely that the severely retarded propeller inflow was a result of the 

large amount of stagnant flow that was injected into the ship’s boundary layer just upstream of the propeller by the 

steam turbine cooling water outlet. 
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The transmission of vibration energy from the location of excitation, i.e. the shell plating above the propeller, to the 

tank bulkheads was investigated by performing an operational modal analysis of the aft peak tank structure using 

Stochastic Subspace Identification [5, 6, 7].  

A stability diagram of the aft peak tank structure, produced with OMA, is shown in Figure 6. There are a number 

of natural frequencies located between 28 Hz and 85 Hz and these represent modes of the aft peak tank and local 

modes of the stiffener to which the sensors were attached. These modes will resonate when energy is input at 

and close to the frequencies at which they are present. This phenomenon is seen in Figure 7 which shows the 

waterfall plot related to a sensor in the aft peak tank. There are two distinct areas of high energy: below 10 Hz and 

between 28 Hz and 60 Hz. Vibration energy is present at twice and three times propeller blade passing frequen-

cies, between approximately 11 Hz and 26 Hz, but this is less than the energy measured between 28 Hz and 60 

Hz. This is despite the fact that Figure 4 shows that the second and third blade rates have higher amplitudes of 

input pressure than the higher blade rates. The greater vibration energy in the 28 Hz to 60 Hz band is due to the 

modal properties of this stiffener. The largest peaks in the 28 Hz to 60 Hz spectrum are located at the stiffener’s 

natural frequencies. Vibration energy from propeller excitation must pass through the aft peak tank structure on its 

way to the water tank bulkheads. It may therefore be concluded that pressure energy input between 28 Hz and 85 

Hz will be passed through the aft peak tank to the connecting tank bulkhead above it with little loss in energy. 
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FigFigFigFig....    6666 Stability diagram of the aft peak tank structure. Red 
circles indicate stable poles while green and blue crosses 

indicate unstable pole    

FigFigFigFig....    7777    Frequency distribution of vibration energy of the aft 
peak tank structure during normal operating.    

 

The modal analysis of a bulkhead of an empty and a filled water tank is shown in Figure 8. For the empty tank a 

large number of modes were present between 40Hz and 80Hz. During the test there was machinery running with 

shaft speeds of 1170rpm and 1800rpm and hence, the modes identified at 20Hz and 30Hz are attributed to har-

monic excitation.  

For the bulkhead of the filled tank a large number of modes were present between 25Hz and 80Hz. The reduction 

of frequencies when compared to the empty tank was due to the added effective mass of the water. The added 

mass lowers the natural frequencies of the tank bulkhead. The effect tends to be greater for lower modes as 

higher modes engage less of the structural mass. 

284



Tank full: a large 

number of modes 

betw een 25 and 80Hz

Tank empty: a 

large number of 

modes betw een 

40 and 80Hz

Harmonic 

excitation at 

20 and 30Hz

 

 

 

 

 

 

 

 

 

 

Strong response at 

natural frequencies at 

30 Hz and above 40 Hz

Shaft 

speed 

(rpm)

V
ib

ra
ti
o
n
 e

n
e
rg

y
 (

m
m

/s
/H

z
)

 

FigFigFigFig....    8888 Stability diagram of a tank bulkhead. The analysis 
results shown are for an empty and a full tank    

FigFigFigFig....    9999    Frequency distribution of vibration energy of a tank 
bulkhead during normal operating.    

 

A waterfall plot showing the frequency distribution of vibration energy of a bulkhead of a filled tank is shown in 

Figure 9 with the shaft rate and propeller blade rates shown as red lines. There is no substantial vibration of the 

bulkhead up to about 25 Hz and two areas of high energy are seen around 30 Hz and 40 Hz. These areas corre-

spond to frequencies that the aft peak is passing energy through as shown in Figure 6. 

The highest peak in the waterfall plot of the tank bulkhead (Figure 9) is present at 73 RPM at 29 Hz. At this fre-

quency the hull is excited by the fourth blade order and the aft peak tank has a mode as shown by both the modal 

analysis (Figure 6) and the waterfall plot (Figure 7). Therefore, a large amount of energy is passed from the hull 

to the water tanks at this frequency. This explains why the largest vibration level of tank bulkhead 1 in Figure 2 

occurs at 73 RPM rather than at the maximum shaft speed when propeller excitation is most energetic 

Analysis of further measurements confirmed that the largest excitation at a particular frequency in the tank bulk-

heads occurs when the third, fourth or fifth order of the blade rate coincides with a local natural frequency of the 

aft peak tank and a local natural frequency of the tank bulkhead. Lower, but non-negligible, excitation will occur 

when these nearly coincide. Negligible excitation energy from the hull pressure will pass through to the tank when 

they do not coincide 
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Three principle measures of reducing the vibration levels of the tank bulkheads were identified.  

1. High propeller excitation, a result of poor flow around the aft ship, could be reduced by fitting vortex gen-

erators upstream of the propeller. These vortex generators will mix the high energy flow, away from the 

ship, with the low energy boundary layer flow. As such, it will increase propeller inflow velocities and re-

duce the cavitation and consequently the radiated hull pressures. An added significant benefit of this 

strategy would be the reduction of vibration levels in other parts of the ship. The optimum location, shape 

and size of vortex generator can be determined with Computational Fluid Dynamics. An example of such 

an optimization is shown in Figure 10 where the stagnant flow from a cooling water outlet is forced to out-

side the propeller inflow by an appropriately placed vortex generator.  

Cooling w ater outlet 

and original location 

of vortex generator

Velocity deficit as a fraction of the free stream velocity

Optimized location 

of vortex generator

Slow  f low  moves 

into propeller disc 

and is def lected by 

the optimised 

vortex generator

 
FigFigFigFig....    10101010 The cooling water outlet causes slow (poor) inflow into the propeller plane and results in high pressure pulses. 

Optimization of the vortex generator location improves inflow conditions and reduces propeller excitation    

 

2. The transmission of energy from the propeller through the aft peak tank could be reduced by increasing 

the local natural frequencies of the aft peak tank structure beyond the fourth and possibly the fifth blade 

rate; an increase in frequency of the order of 50%. It is expected that this would require a significant 

amount of steelwork. 

3. The response of the bulkheads could be reduced by increasing the local natural frequencies of the water 

tank beyond the fourth and possibly fifth blade rates and or reduce the mobility. This also would require a 

significant amount of steelwork. Alternatively the amplitude of excitation could be reduced by fitting 

dampers to the tanks. These could possibly be mounted internally, spanning between the walls.  

 

Case Study 2 – Navigation bridge vibration 

A tanker, such as shown in Figure 11, suffered from high vibrations of the navigation bridge and in particular the 

bridge wings. At several shaft speeds vibration levels exceeded the ISO6954 - 2000 standard [1] and it was un-

derstood that the ship’s officers found it difficult to make chart corrections at these speeds. In addition, concerns 

existed that electronic components on the bridge deck might fail as a result of excessive vibration. 

The distribution of vibration energy of the navigation bridge wing during a shaft speed run up is shown in Figure 

12. Vibration energy is confined to harmonics of shaft rate, in particular 6x and 8x shaft rate. The 6x shaft rate vi-

bration coincided with the principal excitation frequency of the 6 cylinder diesel main engine whereas the 8x shaft 

rate coincided with the twice blade frequency of the four bladed propeller. Levels of engine vibration were within 

acceptable limits of [3] and accordingly, excitation from the main engine was not considered excessive. The maxi-

mum measured hull pressure excitation from the propeller was also within acceptable limits. 
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Fig. 11Fig. 11Fig. 11Fig. 11 A typical tanker deck house of a 
vessel unrelated to the work described in 

this paper    

Fig.Fig.Fig.Fig.    12121212 Frequency distribution of vibration energy of the navigation 
bridge during a shaft speed run up    

 

The peaks of energy at certain frequencies during the run up were the results of resonance of different modes of 

vibration with the diesel engine and propeller excitation. An operational modal analysis was performed and the re-

sulting mode shapes, designated mode 1, 2 and 3, are shown in Figure 13. Mode 1 involved the accommodation 

moving as a cantilever with the bridge wings in phase with the navigation bridge. Mode 2 was a torsional mode of 

the accommodation with the bridge wings out of phase with the navigation bridge whereas mode 3 involved the 

accommodation moving as a cantilever with the bridge wings out of phase with the navigation bridge. 

Mode 1 Mode 2 Mode 3

 
FigFigFigFig....    11113333 Mode shapes of the accommodation     

 

Mode 1 and Mode 2 were identified to be within 0.3Hz of each other, however, their character was very different 

which was seen through examination of their mode shapes. Mode 1 and mode 3 could be described as global 

modes in that modal ordinates of the accommodation block were of the similar magnitude to those of the bridge 

wings. In contrast, mode 2 was significantly more localized to the bridge wings. This explained why, during the run 

up (Figure 12), the maximum response was seen at the frequency corresponding to mode 2 compared to the 

lower responses seen at the frequencies corresponding to modes 1 and 3. In this case the excitation was not ex-

cessive and so possible solutions focused on making structural modifications and to this end an FE model was 

constructed. It is notable that the closeness of mode 1 and mode 2 would have meant that an operational deflec-

tion shape would have been misleading in estimating a mode shape and using it to validate the FE model. The 
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identification of the mode shapes and their characterizations which was provided by OMA was extremely valuable 

in developing palliative measures. The identified mode shapes were useful in deciding the extent of the ship struc-

ture to include in the FE model.  

Conclusions 

Despite advances in computational techniques vibration problems still occur on board ships. For some problems it 

is possible to reduce the excitation energy as was shown for an LNG carrier (case study 1) where the location of a 

vortex generator could be optimized using Computational Fluid Dynamics.  

In cases where it is more difficult to alter the excitation (case study 2), operational modal analysis has proven to 

be useful for the detailed characterization of modes (natural frequencies and mode shapes), giving a better un-

derstanding of the problem and helping to reduce the risks associated with the implementation of structural modi-

fications. 

Vibration problems onboard ships are most easily solved by modifying the excitation characteristics. However, if 

this is not possible, structural solutions are favored.  

 

References  

 

1.     Mechanical vibration - Guidelines for the measurement, reporting and evaluation of vibration with regard 

to habitability on passenger and merchant ships, ISO 6954:2000(E) 

2.     Passenger Crew and Accommodation Comfort Notation, 2007, Lloyd’s Register 

3.     Lloyd’s Register Ship Vibration and Noise Guidance Notes, 2006, Lloyd's Register 

4.     Mechanical vibration – Evaluations of machine vibration by measurement on non-rotating parts – part 6: 

Reciprocating machines with power ratings above 100kW, ISO 10816-6:1995 

5.     Van Overschee P, De Moor B, Subspace Identification for Linear Systems, 1996 Kluwer Academic Pub-

lishers, USA, pp254 

6. Peeters B, De Roeck G, Reference-Based Stochastic Subspace Identification For Output-Only Modal 

Analysis, Mechanical Systems and Signal Processing (1999) 13(6), 855-878 

7. Van der Auweraer H, Peeters B, Discriminating Physical Poles in High Order Systems: Use and Automa-

tion of the Stabilization Diagram, Instrumentation and Measurement Technology Conference, Como, Italy, 18-20 

May 2004 

 

 

 

288



The Use of Layered Composites for Passive Vibration Damping 
 
 
 

C.E. Lord, J.A. Rongong, A. Hodzic 
Department of Mechanical Engineering, University of Sheffield, Mappin Street 

Sheffield S1 3JD, United Kingdom 
 
 

NOMENCLATURE 
 
A contact area, amplitude     n number of layers 
c viscous damping      Pr average contact pressure  
ceq equivalent Coulombic damping    r relative motion 
Eeff effective elastic modulus     x displacement, node location 
EN energy       x velocity 
F tip force       x acceleration  
F average force      y distance from neutral axis 
F’ breakaway force      β distributed force coefficient 
F” tip force during sliding     γ sub-coefficient 
FC compressive force     δx x position, deflection 
Ffr average frictional force     δy y position, deflection 
FN normal force      δ*y adjusted y deflection   
FT total vertical force     η number of descretized nodes 
Fv vertical nodal force     µd dynamic friction coefficient 
Gd dynamic artificial interfacial shear stress   µs static friction coefficient 
Gs static artificial interfacial shear stress   τ shear stress 
Ieff effective second area moment of inertia   φ angle 
k stiffness       Φ phase angle 
k* complex stiffness      ψ system artificial interfacial shear stress 
L length       ω natural angular frequency 
m mass       ωe forcing angular frequency 
 
 
 
ABSTRACT 
 
With the advent of increasingly severe vibration environments, comes the need for better vibration damping control and 
alternate vibration damping methods.  As a response to this, these methods need to be able to be accurately predicted 
through the use of analytical and numerical models.  In this paper, an analytical model is proposed to analyze and predict 
the passive damping macro-slip behavior of multiple debonded layered composites.  The aim of the paper is to develop a 
multi-layered model that is accurate yet easy to be analyzed so that it can be used efficiently in the design of layered 
composite dry friction dampers.  The proposed analytical model allows for calculating an equivalent viscous damping 
coefficient from the kinematic tracking of the layer interfaces where Coulombic damping occurs.  The equivalent viscous 
damping coefficient can be used in conjunction with a bilinear material model to represent the multiple layered 
composite as an Equivalent Single Layer (ESL) for linearizing the non-linear interfacial contact.  The validation of the 
method is demonstrated by comparing the analytical results obtained in this study with those from numerical results. 
 
 
1. INTRODUCTION 
 
One of the most common sources of nonlinearity originates in frictional contact.  When relative interfacial motion occurs 
this is in the form of micro-slip, macro-slip, or both.  This is highly dependent on the friction coefficients at the interface 
as well as the normal forces that are present.  With these frictional interfaces significant amounts of energy dissipation 
can be accomplished [1].  The use of friction for vibration damping is a relatively inexpensive method to provide 
damping to a system and can be used effectively for a broad range of amplitudes and frequencies.  Layered composites 
have many benefits.  One ideal benefit is that they are highly tunable and can be tailored for very specific environments 
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and structures as a result of the multiple parameters that are available to change their damping characteristics.  Another 
benefit to this type of damping is that it does not exhibit the level of temperature dependence as compared to viscoelastic 
materials, which are commonly used for vibration damping applications due to their high loss factors.  With metallic 
debonded layered systems, as the materials begin to increase in temperature from the frictional and thermoelastic heating, 
the material properties remain nearly unchanged.  This is an extreme benefit as these materials will behave in a consistent 
way over a wide range of temperatures.  In addition, these dampers can be used as primary structural elements without 
the undesired added mass of typical dampers and could be used along the primary load paths to provide system damping. 
 
 
2. ANALYTICAL MODEL DEVELOPMENT 
  
For this work, the analytical models are developed on the basis of using simplified geometries.  A slender cantilever 
beam of rectangular cross-section and uniform thickness with linear elastic material properties will be used to model each 
layer of the naturally debonded composite.  It is assumed that the cantilever beams are inextensible and axial 
displacements are negligible since these will be relatively small with respect to the bending displacements.  A further 
assumption will be that the stiction of all nodes at a single interface are overcome simultaneously since the beams are 
assumed to be inextensible.  It is also assumed that the cross-sections of the beams remain constant along their length, 
ignoring the effect of Poisson’s ratio and any geometric nonlinearities.  The beams are based on Bernoulli-Euler beam 
theories and assume that the curvature of the beams is proportional to the bending moment.  During dynamic motion, 
since friction is present in the system, there are oscillating intervals of time in which stiction occurs and intervals of time 
in which relative sliding at the interfaces occurs.  This can be represented by the following two equations of motion in 
Equations 1 (stiction) and 2 (sliding) and in Figure 1. 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Single degree of freedom (SDOF) system with (a) hysteretic damping and (b) Coulombic damping 
 
 
When stiction occurs, the damping is solely hysteretic from the material and is denoted as a complex stiffness in the 
system.  On the other hand, when sliding occurs, the damping is a combination of Coulombic damping and hysteretic 
damping.  Damping that occurs in debonded layered systems is primarily Coulombic for metallics and for other materials 
that have small magnitude loss factors.  In this paper, focus will only be on the Coulombic portion of the total damping 
and the model will neglect any material damping that is present.  It must be noted that the frictional force in Equation 2, 
opposes the motion always.  Therefore, as the body is displaced in the opposing direction, the sign convention changes 
polarity.  In the case of the Coulombic damping system in Figure 1, the normal force and dynamic friction occurs at the 
layer interfaces and the hysteretic damping is ignored. 
 
 
2.1 STIFFNESS MODEL 
 
Since this model is based on only macro-slip friction, there is no decay between the static and dynamic friction 
coefficients.  This would indicate that velocity has no influence on the overall coefficients during interfacial sliding.  
Much like the Classic Coulomb, Regularized Coulomb, and Karnopp friction models, the presliding is not characterized 

(1) 

(2) 

m 

k 

FN 

µd 

 

k* 

m 

(a) Hysteretic Damping 
 

(b) Coulombic Damping 

0* =+ xkxm &&  

frFkxxm =+&&  

290



and is ignored [2].  This presliding results in a hysteretic damping from elastic deformations, but is different from that 
due to bending deformations.  The presliding hysteretic damping is purely due to shear strains and accounts for even a 
smaller percentage of the total damping as compared to that from the bending hysteresis.  With the presence of macro-
slip friction, in debonded layered composites, the system behavies bilinearly [3,4].  This can be characterized by a single 
point discontinuous softening load-deflection curve comprised of an initial modulus and a secant modulus as shown in 
Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Layer behaviour for (a) stiction and sliding bilinear representation and (b) frictional and shear stresses 
 
 
To define the moduli of the bilinear behaviour, the system needs to be separated into two categories: stiction and sliding.  
When stiction occurs at the interfaces, the layers are locked together and act as one.  The layered system can then be 
treated as a single layer following Equivalent Single Layer (ESL) theories.  When sliding occurs, the layers act as 
separate individual layers and motion for each layer must be resolved with respect to the adjacent layer. 
 
To calculate the force-deflections for the bilinear curve, the stiction portion will first be calculated.  To initiate this, the 
interfacial forces along the beam will need to be known.  If no compression is present on the beams, then small load steps 
will need to be made to determine if the nodal forces are great enough to overcome the stiction or not.  When a cantilever 
beam has a concentrated tip force, the moment along the length of the beam is linear.  The maximum moment is at the 
fixed-end and the moment approaches zero where the force is applied at the free-end.  When a cantilever beam has a 
uniformly distributed load, or a triangularly distributed load, the moment along the length of the beam is nonlinear from 
the fixed-end to the free-end.  This nonlinear moment would indicate that the tip force could be replaced with a parabolic 
distributed load to represent the same behaviour as the concentrated tip force [4].  To find this parabolic function, the 
parabolic load can be discretized into a multilinear curve comprised of multiple triangular loads.  If the first triangular 
load is considered, the force along the length of the beam can be deduced by evaluating the constant distributed force 
coefficient for a given length of the beam through the use of proportionality since there is a constant slope.  The nodal 
forces can then be expressed as 
 
 
 
 
 
To calculate the distributed force coefficient β, each sub-coefficient must firstly be considered for each node.  These sub-
coefficients are then summed and the product of their inverse, and the tip deflection from Equation 3, are used to arrive at 

 
 
 
 
 
 
 
 
 
Once the vertical nodal forces are calculated, they must be resolved into vector components.  Each node within the beam 
will have a different temporal x and y coordinate that will behave nonlinearly.  Ascertaining the force vectors is 
accomplished through kinematically tracking each of the nodes to estimate their final position.  Assuming that the 
interface between each layer remains frictionless, for the time being, the elastic curve, for the system can be tracked 
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using a variant of Bernoulli’s elastic curve equation by substituting the effective flexural rigidity of the system.  The 
temporal y displacements are expressed as 

 

 

 
 
Tracking the nodal x position relies on a back looking approach.  The temporal x displacements of the previous node are 
used for information to track the following node. 
 
 
 
 
Once the x and y nodal positions are known, the rotation referenced from the un-deformed shape, for the beam, for each 
of the nodes, can be calculated using 
 
 
 
 
Once the nodes are tracked, with their respective angles, the nodal normal forces can be calculated through recalling 
Equation 8.  The normal nodal forces become 
 
 
 
 
These nodal forces are used to initiate the looped convergence process of determine the actual nodal normal forces that 
stiffen the system when accounting for the presence of the frictional interactions.  These normal forces will require an 
adjustment when an out-of-plane compressive force is present in the system.  This is taken into account by linearly 
decomposing the compressive forces.  Once these are decomposed these are added directly to the nodal normal forces in 
Equation 9 and the nodal normal forces are then expressed as 
 
 
 
 
It is assumed that the compression remains constant when the composite experiences bending.  For calculating the 
decreased displacements from the nodal normal forces, the nodal normal forces can be averaged since all the nodes are 
assumed to move simultaneously along their respective interface.  This is done by 
 
 
 
 
 
 
Using the average nodal normal force, the averaged frictional stress is found by 
 
 
 
 
 
Once Gs has been calculated, the displacements of the composite can be calculated with the inclusion of the frictional 
stiffness.  Gs can be used to represent an artificial shear strength at the layer interfaces.  The shear stress for a solid beam 
with the same geometry as the composite must first be calculated.  Timoshenko and Goodier [5] express this as 
 
 
 
 
 
τxy must be calculated for each of the interface locations, with respect to the solid beam neutral axis and then summed.  If 
the artificial shear stress is less than the shear stress for the solid beam, then the load step chosen was too large and a 
smaller load step is necessary.  Convergence is achieved once the ratio of the artificial shear stress and the shear stress of 
the beam approach 1.  Using the sum of τxy and interfacial stiffness of the entire composite can be calculated using 

( )( )

effeff

nvn
yn IE

xLxF

6

32 −
=δ

( ) 1
2

1
22

−+−= ixnyxxn dd δδδδ

( )xy dd δδϕ −= −1tan

( )( )vnnNn FF ϕcos=

1−
+=

n

F
FF c

NnTn

( )( )( )
( )( ) ( )( )1113

11

22

1
−−−

−−
−+−+







 −−−
= iTinnTinn

inniTnTn FxxFxx
xxFF

F ηη

η

A

F
G s

s

µ
=









−=

2
2

42 nlnlxy y
t

I

F
τ

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

L

292



  
 
 
From Equation 13 the breakaway force and displacement can be calculated.  The breakaway force is the ratio of the tip 
force that was used to get convergence of the artificial shear stress and the sum of the shear stress of the interfaces of the 
layers.  The corresponding deflection comes from the tip displacement using the effective modulus of elasticity and the 
effective second area moment of inertia using a Volume Fraction (VF) approach to arrive at an ESL. 
 
To calculate the secant modulus, the coordinate system for the elastic modulus must be replaced with the secant modulus 
(F=0, δ=0).  Once τxy is equal to ψ, the layers will slip relative to one another.  The secant modulus is simply the 
remaining balance of the load while accounting for the opposing friction once slipping begins.  To calculate the secant 
modulus deflection, the remaining tip force must be calculated.  This is done by   
 
 
 
 
 
 
Once the remaining force has been calculated, the displacement for the secant modulus of the bilinear curve can be 
resolved.  Since the layers are now at the point of sliding, and µd has been removed from the remaining force as an 
opposing force, the layers will behave as though they are frictionless.  Therefore the solution for solving this is relatively 
straightforward and is described as 
 
 
 
 
 
It should be noted that although the secant modulus should be a factor of 2n, as indicated in Equation 16, it is not, as the 
shift in the opposing frictional force and has been removed.  If this is added back into F” then the secant modulus does 
follow this behaviour.  As the ratio between static and dynamic friction coefficients changes, so does the secant modulus.  
The comparison between the analytical model and the numerical model can be seen in Figure 3. 

 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3.  Numerical and analytical bilinear behavioural comparison 
 

 
2.2 DAMPING MODEL 
  
In most nonlinear systems, only the frequency response functions (FRFs) can be linearized, at best, for frequencies close 
to a single resonance of a system [6].  The parameters that are linearized are usually for short frequency ranges.  This 
often leads to difficulties when assessing the energy dissipation and the damping in nonlinear systems.  Because 
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nonlinear stiffness and damping effects are usually inseparable, it is generally considered to be an advantage to also 
consider the energy dissipation in nonlinear systems rather than the damping alone [7]. 
 
In the proposed damping model, the interfacial forces from the stiffness model are used in conjunction with the known 
dynamic friction coefficients to arrive at an equivalent viscous damping.  Each node, in each layer, is tracked to 
determine the relative motion while the FN is modeled as a linear motion sliding tangential joint much like that in Figure 
1.  One method that can be used to evaluate the effectiveness of the Ffr, with respect to the steady state excitation, is 
through energy dissipation.  Consider the debonded layered composite being excited at the tip by a force of Fsinωt.  As 
the beams pass from zero amplitude to maxima and minima amplitudes, and assuming that they are into the macro-slip 
region, that is Fsinωt≥Ffr, then Coulombic damping will occur.  Since the exciting force is sinusoidal, it is reasonable to 
assume that 
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The energy dissipated per cycle is then represented as 
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It is quite easy to see that the ratio of F/Ffr is important for maximizing the energy (damping) dissipated. 
 
For debonded layered composites, the damping within each layer is non-uniform for two reasons.  Firstly, the interfacial 
forces from bending are nonlinear along the length of each layer.  The highest interfacial forces, due to bending, are 
located at the free end of the layer and represented by a low order polynomial.  This becomes less significant if there is a 
presence of an externally applied compression.  Secondly, the highest rotations are also located at the free end of each 
layer.  This results in the highest relative motion between layers being at the tip.  To determine the damping in each of 
the layers, the average nodal FN and the average relative motion can be determined by Equations 20 and 21, respectively. 
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It is important to understand that the relative motion between layers will be greater than for just a single layer at the 
interface.  As a result, both layers of the interface need to be summed together.  As one face of the layer is moving in a 
positive direction, the adjacent face, of the adjacent layer, is moving in the opposing direction due to tensile and 
compressive stresses.  The amount of relative motion is dependent on the thickness of the layer and where the neutral 
axis of that layer is located.  For layers of the same thickness, the motion for the interface is simply twice that of the 
individual beam surface at the interface.  The proposed model is slightly flawed by not accounting for when the layers 
overlap each other at the tips and some of the tip of the interface is no longer in contact.  However, this will result in a 
very small overall percentage of the damping in the system and will decrease as the length of the layers increase. 
 
Once FN and r are solved for each individual layer, the summation of FN and r for all layers can be used, with a single 
interface, in a Coulombic free vibration decay for a SDOF model.  This takes the form of 
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where the sign convention alternates between positive and negative directions.  For the first half-cycle (0≤ωt≤π), the 
displacement is less than the previous displacement amplitude by 
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This trend continues until the displacement reaches the “dead zone”, which is equal to 
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To find the damping of the system we can view it as being equivalent viscous damping.  The energy dissipated per cycle 
by the viscous damping force in a single degree of freedom vibrating system is approximated by 
 

 
If it is assumed that x=Xsinωt occurs for each complete cycle.  The energy dissipated is therefore 
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Since it is known that the energy dissipated per cycle by Coulomb damping is 4FNµX, approximately, an equivalent 
viscous damping coefficient for Coulomb damping can be solved for and can be expressed as 
 

X

F
c N

eq
ωπ

µ4
=  

 
 
3. FINITE ELEMENT MODEL 
 
Multiple Finite Element Models (FEM’s) have been used to investigate and validate the analytical models.  Each of the 
models are full 3-D models using hexahedron 20 node higher-order elements.  For this work, three primary different 
FEM’s, with multiple simulations, were used for the validation process.   
 
The first FEM was a nonlinear static model, with frictional contact elements and without nonlinear materials or 
geometry, was used to represent the layered beams for the stiffness model.  The contact elements employed a Coulomb 
friction model without the friction decay. 
 
The second FEM was the same as the static model but was used for flexible dynamic analyses in the form of free 
vibrations.  Solving these types of problems numerically is computationally costly, especially when there are contact 
nonlinearities.  These contact nonlinearities are riddled with complexities that can often lead to unconverged results for 
implicit analyses.  Various simulations were performed with and without the application of external compression loads.  
For transient models, the time steps are extremely important in order to capture the true dynamics of the system.  The 
time steps in this case were based on the first natural frequency (bending mode) when stiction is present between the 
layers.  This produces a higher natural frequency and in turn will create a smaller time step for the following criteria.  For 
the maximum time step 1/30th of the period of the natural frequency was used, while for the minimum time step 1/300th 
of the period was used.  The results seemed to indicate reasonable capture of the physics of the layers when they were 
used as having frictional interfaces. 
 
For representation of the ESL model, for the stiffness and damping models, a third FEM was used.  This consisted of a 
single geometric layer using an elastic-plastic isotropic hardening material model initially.  When using this material 
model for free vibrations, hysteretic damping from the Bauschinger Effect [8] was present since the material was used to 
go into the plastic region of the material model.  This is an artificial hysteresis and does not really occur as the material 
model is for an elastic-plastic material and in this work it is being exploited for the use of accounting for macro-slip.  An 

(22) 

(24) 

(23) 

(25) 

(26) 

(27) 

∫
x

dxxc
0

4 &  
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alternative to this is to use a bilinear spring in which the damping is ignored.  Each layer of the composite was modeled 
using nearly 2 000 elements (Figure 4) using ANSYS commercial implicit code. 
 

 
 

Fig. 4.  Structural FEM ANSYS mesh 
 
 
4. RESULTS AND DISCUSSION 
 
As mentioned above, the premise of this paper is to provide an ESL model that can be used to represent the stiffness and 
damping properties of multilayer debonded composites.  Once these two properties are solved for analytically, the 
adjusted properties can be input directly into finite element code and solved at a fraction of the computational cost with 
still maintaining reasonable accuracy.  By exploiting the two proposed models this representation can be accomplished 
with reasonable accuracy and at a significant decrease in solve time. 
 
Figure 5 shows that, for a rigid mass, once the displacement is equal to Equation 24 then stiction occurs and the motion is 
halted resulting in a relaxation position in which for this case is approximately 2mm.  This is however not necessarily 
true for flexible bodies, such as the multilayered debonded composites.  This is dependent on the stiffness of the system 
when stiction occurs.  This behaviour of a secondary motion, in the form of oscillations, is analogous to presliding 
motion [9] as it is for a flexible body and can be seen in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Analytical Coulombic free vibration decay of a rigid body 
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Fig. 6.  Numerical Coulombic free vibration decay of a flexible body 
 
 
Figure 6 is the numerical nonlinear transient response waveform for two beams that are damped by friction.  The decay is 
linear as would be expected.  However this waveform consists of two separated harmonics.  The first harmonic is that of 
the beams during sliding, acting near frictionless, and with the friction component acting as predominantly damping and 
not as a stiffness shift.  The second harmonic is that of when the layers are in stiction from when the system has damped 
out and now the layers act as a single beam.  For the first harmonic the natural frequency is around 135.69Hz while the 
second harmonic is approximately 256.40Hz.  This is expected and predicted as there were only two beams which results 
in the stiffness between stiction and frictionless is to be nearly 4X (2n) and since ωn = (k/m)0.5.  It should also be noted 
that there is little decay in the second harmonic as this is purely hysteretic and the defined material damping was 
extremely low. 
 
It has been shown that the bilinear nature has little effect on the shape of the overall waveform.  Figure 7 is a comparison 
between an ESL representation of three layers with a bilinear material property derived from the analytical stiffness 
model and a steady-state sine wave in the form of x(t)=Xsinωt.  In the zoomed view (on the right-hand side), there are 
some noticeable nonlinearities seen but do not have much of an effect on the actual waveform profile.  It should be noted 
that from π/2 to π, of the first cycle, the waveform corrects itself and is not a permanent alteration that is cumulative.  
Attention should also be directed at the waveform comparison when t=0.03s.  The waveforms begin to diverge in their 
profiles.  This is a result of the second harmonic, similar to that in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Waveform comparison for ANSYS bilinear Coulombic free vibration decay and steady-state sinusoidal excitation 
 
 
 
 
 

first harmonic 

second harmonic 
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Fig. 8.  Linear-linear and logarithmic-linear comparisons for Coulombic free vibration decay between ANSYS and for 
the analytical model 

 
 
5. CONCLUSION 
 
Naturally debonded composites can accurately be analysed, and the behaviour predicted, using finite element methods, 
however these methods are computationally expensive, especially for transient analyses, and require large DOF models 
to include every layer and their nonlinear interfaces.  In this work, an analytical validity model has been developed in the 
context of a debonded multilayer composite in the form of a cantilever beam bending behavioural model.  The validity is 
emphasised for a model reduction technique that can be used for numerical analyses and/or as a straightforward 
analytical approach.  Comparisons between the analytical models and numerical models have been made and indicate 
acceptable accuracy.  The numerical model is in good agreement with both the stiffness model and the damping model.  
Current experiments are being conducted to validate the analytical and numerical models in addition to the inclusion of 
presliding behaviour is being investigated to extend the accuracy of the models and to help determine localized damping 
effects.  
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ABSTRACT 

Many attempts have been made on finding a frequency response estimator which minimizes the bias error in cases where 
both the input and output signals of a linear system are contaminated by extraneous noise, for example, Hv and Hs. It is well-
known that these estimators only minimize the bias error if the input and output extraneous noise spectra are known, which 
they are normally not. This paper describes how time domain averaging (cyclic averaging) of periodic excitation signals can 
be used to eliminate the bias due to both input and output extraneous noise. It is demonstrated by simulation results that 
asymptotically unbiased estimates of frequency response functions can be obtained by using time domain averaging and peri-
odic random noise. Examples are given of both single-input/single-output (SISO) and of multiple-input/multiple-output 
(MIMO) systems. The fact that periodic excitation signals in this way can be used to eliminate the bias error in FRF estimates 
does not seem to have been recognized previously. 

 

INTRODUCTION 

Estimating frequency response functions (FRFs) in mechanical measurements is an important tool. The main established 
theory for estimators commonly used was established in early editions of [1], most notably the H1 estimator which minimizes 
contaminating noise on the output. It is well-known that the H1 estimator is biased if contaminating noise exists in the meas-
ured input signal. This situation is not uncommon when using shaker excitation on weak structures. The H2 estimator, which 
minimizes noise on the input, on the other hand, is biased if contaminating noise exists in the measured output signal. The H2 
estimator, furthermore, is only available for multiple-input/multiple-output system identification in the special case where the 
number of inputs equals the number of outputs, which is rarely the case. 

Early attempts to minimize noise on both input and output simultaneously led to the Hs estimator and the special case of this 
estimator called Hv, [2, 3], but these estimators have the limitation that knowledge of at least the ratio of the input and output 
contaminating noise is required  to produce optimum estimates, which is rarely available in practice. Recently, [4], the Hv es-
timator has been shown to be a special case of a maximum likelihood estimator, but the requirement of knowing the relation 
between input and output contaminating noise remains. 

In [5], an unbiased estimator, the H estimator, based on special, cyclostationary excitation signals was presented. This is a 
promising estimator, particularly since the commonly used burst random excitation signal was shown to be useable as a cyc-
lostationary excitation signal. 
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Recently time domain averaging, referred to as “cyclic averaging”, was investigated in [6], where it was shown that time do-
main averaging in the frequency domain can be viewed as equivalent to a comb filter being applied to data (FRFs). However, 
the paper did not analyze the effect of time domain averaging on the noise suppression of input and output noise, as the focus 
of the paper was on the bias error due to the limited frequency resolution.  

In [7] it was demonstrated that using time domain averaging, the bias due to contaminating noise on both input and output 
signals can be suppressed when using periodic excitation signals in both single-input/single-output (SISO) and multiple-
input/multiple-output (MIMO) cases. The present paper aims at developing some more fundamental understanding of this 
method. It will be shown that asymptotically unbiased estimates can be obtained by using the well-known pseudo random or 
periodic chirp excitation signal for SISO measurements, and periodic random excitation for MIMO measurements. 

 

SISO ESTIMATOR 

Using time domain averaging in the case of a single input is relatively straight-forward. The excitation signal can be any 
broadband periodic signal, typically pseudorandom or periodic chirp [7]. The procedure is to turn the excitation signal on, 
and then wait a number of periods until the linear system is achieving its steady-state response. For moderately damped sys-
tems 5 to 7 periods is often considered sufficient, whereas for very low damping, it can be necessary to wait much longer. Af-
ter this waiting time, a number of periods are acquired for further processing. 

In Fig. 1 a model is shown with contaminating noise on both input and output. It is well known that in the case of input noise 
m(t) existing when using an H1 estimator, a biased estimate will result. The H1 estimator is  

    
 

1
ˆ

ˆ
ˆ

yx
yx

xx

G f
H f

G f
   (1) 

where Gyx and Gxx are the cross- and autospectral densities, respectively, between the measured input signal, x(t), and the 
measured output signal, y(t). 

 

 

Fig 1 Illustration of linear system H( f ) with the input and output signals contaminated by extraneous noise. 

 

The normalized bias error in the magnitude of 1Hyx, when input noise is present [1], is 

 ˆ mm
b yx

vv mm

GH
G G

      

  (2) 

where v(t) is the “true” input signal going through the linear system, see Fig. 1. 
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The principle of time domain averaging is that we make the excitation signal periodic in the time window of the DFT. We 
thus let the input signal x(t) be N-periodic, i.e. ( ) ( )N Nx t N x t  , which means the measured input signal can be written 
as 

 ( ) ( ) ( )Nx t x t m t    (3) 

where xN(t) is the “pure” excitation signal with variance 

   2Var ( )N xNx t    (4) 

and m(t) is a zero-mean random signal with variance 

   2Var ( ) mm t  .  (5) 

 Assuming K time averages are used to produce the time-averaged input signal, xa(t), the ensemble average of x(t) is 

  ( ) E ( ) ( ) ( )a Nx t x t x t m t  
  (6) 

where the variance of the average signal ( )m t  approaches zero at the rate 1/ K . The spectral density of xa, Gaa, is then 

 
1( )

N Naa x x mmG f G G
K

 
.  (7)

 

The bias error of the FRF estimate in Eq. (2) is thus reduced by the time domain averaging using K averages to 
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KH GG K

     


  (8)

 

which means that the bias error due to the input noise m(t) is asymptotically eliminated by the averaging process. A similar 
treatment can be applied to the output signal in the case of output noise, n(t), see Fig. 1. 

To achieve maximum suppression of both input and output noise, all time data should be used for time domain averaging. In 
that case the FRF can be estimated as the simple ratio of the two spectra of the time averaged signals. We can denote this es-
timator ˆ ( )t H f , or the Ht estimator, and it is computed by 

 
ˆˆ ( ) ˆ

t a

a

YH f
X

   (9) 

where  ˆ ( ) DFT ( )a aY f y t  and  ˆ ( ) DFT ( )a aX f x t . 

When time domain averaging as proposed here is applied, the interpretation of the coherence function becomes somewhat 
more complicated than in the frequency domain averaging case. First of all, the coherence function has to be computed by us-
ing frequency domain averaging, on the raw data. In principle, the coherence function is a measure of the amount of contami-
nating noise, if we assume that the system is linear and no time delays exist. For measurements on linear mechanical systems, 
we can assume that around resonances and antiresonances, the dominating contaminating noise will be in the “small” signal 
(force signal at resonance, and response signal at antiresonance). At each of these frequencies, the coherence function then 
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Fig. 2 Simulation results using frequency domain and time domain averaging, respectively. In a) and b) the signal-to-noise 
ratios of the input and output signals and the contamination noise are shown in dB scale. In c) the true FRF is overlaid by the 
estimates using frequency domain and time domain averaging, respectively. In d) the plot in c) is zoomed in around the first 
resonance, where the frequency domain estimate is plotted with rings, and time domain with plus signs overlaid on the true 
FRF in solid. In e) the ordinary coherence is shown and in f) a the FRF is zoomed in around the antiresonance. The latter plot 
shows that time domain averaging is as efficient as the H1 estimator to remove the effect of the output noise. 

 

is a measure of how much contaminating noise is present. The effect of the time domain averaging can then be estimated by 
using the following relation to compute an “efficient coherence function” estimate for the time domain averaged process  

 2

2

ˆ ( ) 11 ˆ ( )
a

yx

Kf
K f





 

.  (10) 
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For example, applying Eq. (10) on the coherence estimate in Fig. 2 e) which has a dip of approximately 0.87, would give an 
efficient coherence value of 2ˆ (10) 0.999a   indicating that the bias is almost entirely eliminated. This coherence function 
is giving the amount of contaminating noise remaining to bias the FRF estimate. It can also be used to calculate how many 
averages are needed for sufficient suppression of the input noise. 

 

MIMO ESTIMATOR 

In the case of MIMO estimation, the principle of periodic excitation is more complicated because the input cross-spectral ma-
trix needs to be invertible [7]. The so-called “periodic random” excitation signal is the most common solution to this prob-
lem. In effect, this method is based on producing independent random signals with N samples for each shaker, and repeating 
these signals until the system is achieving a periodic steady-state response. After this waiting time, single records of all input 
and output signals are acquired and auto and cross-spectra accumulated. New independent excitation signals are then pro-
duced, which are repeated until steady-state conditions occur, after which a record is acquired and spectra accumulated, etc. 
Theoretically, at least as many realizations of the input signals as there are shakers need to be used, but in practice many more 
averages have to be used to produce suppression of output noise. 

For the time domain averaging procedure suggested in the present paper, a slight modification to the frequency domain ap-
proach has to be made. The difference is that for each realization of the random input signals, a number of blocks are ac-
quired from the steady-state response. These blocks are time averaged before spectra are computed and accumulated in the 
standard frequency domain averaging process to produce the input cross-spectral matrix  xxG  and the input-output cross-

spectral matrix yxG   . Since in this case frequency domain averages exist, the coherence (in this case, of course, multiple 

coherence)  can be computed using standard procedures [7], although due to the few averages used, the estimate will be poor-
ly defined. 

SIMULATIONS 

To illustrate the effect of time domain averaging, a 2DOF system with natural frequencies of 10 and 15 Hz and relative 
damping of 2 % was used. The output displacement of DOF 1 was computed by the time domain forced response technique 
described in [8], which can also be found in [7], and contaminating noise added to the input and output signals. To obtain a 
realistic case with low SNR around the resonances, the input pseudorandom noise was created with PSD approximately equal 
to the inverse of the frequency response and the contaminating noise with flat PSD. The SNR of the input and output signals 
are shown in Fig. 2 a) and b). 

In the first simulation, pseudo random noise was generated and 100 averages used, after waiting 10 periods for steady state 
conditions. The driving point FRF in DOF 1 was computed using both “traditional” frequency domain averaging, and using 
the procedure described in the present paper. The results are shown in Fig. 2. As can be seen in the figure, the time domain 
averaging decreases the bias error around the resonance, whereas both methods work well to remove the bias at the antireson-
ance. Thus time domain averaging is a powerful tool to decrease bias in the FRF estimate in cases where there is poor SNR 
around the resonance frequencies, which sometimes happens on weak structures which are difficult to excite near the reson-
ances. 

In the second simulation, both DOFs were excited by periodic random noise. First, frequency domain periodic random was 
simulated with 10 idle periods followed by an acquired record, and in all 40 such records were averaged, thus comprising a 
total of 40 times 11 blocks of data. After this, new simulation data were generated for time domain averaging. The difference 
with this method is that after the idle blocks, 100 averages were acquired for each generated random block, and five such se-
quences were accumulated to compute the input and output cross-spectral matrices. In total, thus 110 times 5 blocks were 
used in the simulation. The results of this simulation are shown in Fig. 3, where the FRFs zoomed in around the first reson-
ance and around the antiresonance are shown. As can be seen in the figure, the time domain method decreases the bias error 
due to the input noise at the resonance, whereas both methods perform well to suppress the effect of output noise at the anti-
resonance.  
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It should be mentioned that the large number of averages used for each realization in the MIMO case was made to obtain a 
low random error in the FRF estimate, to clearly see the difference in the time domain averaging based estimate compared to 
the frequency domain based estimate. In practice fewer averages may be able to be used if a larger random error can be tole-
rated. The necessary number of averages in the time domain averaging is dependent on the SNR around the resonances and 
antiresonances, which can be evaluated by observing the multiple coherence. 

CONCLUSIONS 

In this paper we have investigated the effects of suppressing contaminating noise on both the input and output signal in FRF 
estimation, by using periodic excitation signals and time domain averaging. It was shown that estimators for SISO as well as 
MIMO cases are asymptotically unbiased. A formula was also given in the SISO case for an “efficient coherence function” 
which is well-defined at frequencies where only one of the contaminating noise sources is present, such as around resonances 
and antiresonances.  

 

 

Fig. 3 FRF estimates from a simulation of a 2-input-1-output model excited by periodic random with frequency domain aver-
aging (rings), and with time domain averaging (plus signs). In solid, the true FRF is shown. The FRF is zoomed in around the 
resonance in a) and around the antiresonance in b), similar to Fig. 2 d) and f). See text for details. 
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In this study a simple algorithm to control the vibration of a beam structure using electromagnetic force has been intro-
duced. The proposed method uses the real-time vibration displacement data and does not require the mathematical model of 
the structure, therefore, it shows robust performance against a fairly large variation of the target structure. The proposed 
method was applied for the free vibration suppression or the amplification of the vibration of a variable cantilever beam, but 
the method can be extended for the suppression of the vibration due to the intermittent impact forces and/or continuous driv-
ing forces.  
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ABSTRACT 
Comfort, road holding and safety of passenger cars are mainly influenced by an appropriate design of suspension systems. 
Improvements of the dynamic behaviour can be achieved by implementing semi-active or active suspension systems. In these 
cases, the correct design of a well-performing suspension control strategy is fundamental for obtaining satisfying results.  
In-Operation Modal Analysis allows the experimental structural identification in real operating conditions: moving from 
output-only data, leading to modal models linearised around the more interesting working points and, in the case of controlled 
systems, providing the needed information for the optimal design and verification of the controller performance. All these 
characters are needed for the experimental assessment of vehicle suspension systems.  
In the paper, two suspension architectures are considered equipping the same car type. The former is a semi-active 
commercial system, the latter a novel prototypic active system. For the assessment of suspension performance, two different 
kind of tests have been considered, proving ground tests on different road profiles and laboratory four poster rig tests.  
By OMA-processing the signals acquired in the different testing conditions and by comparing the results, it is shown how this 
tool can be effectively utilised to verify the operation and the performance of those systems, by only carrying out a simple, 
cost-effective road test. 
 
1 INTRODUCTION 
Passenger car comfort, road holding, handling and safety are strongly related to an appropriate design of suspensions. In 
particular, once the sprung body is given, the correct choice of damping values is related to the spring stiffness ones. 
Improvements of the dynamic behaviour of the whole system can be achieved by implementing semi-active or active 
suspension systems instead of the simply passive ones, commonly utilised. In these cases, the correct design of a well 
performing suspension control strategy is of fundamental importance for obtaining satisfying results, and, in the case of 
active systems, also from energy consumption point of view. The not so high overall efficiency of active systems still 
remains, indeed, one of their main drawbacks. 
Operational or Output-only Modal Analysis [1-4] allows the experimental identification of structural dynamics models in the 
real operating conditions. The strength is that, frequently, (i) only the response data are measureable and not the actual 
loadings. Hence, the system identification has to be based on output-only data. More over, since all the real systems are to a 
certain extent non-linear and often also subjected to non-linear constraining conditions, (ii) the modal models obtained under 
real loadings give a picture of the system, once linearised around the more interesting and representative working points. In 
the case of control systems, at last, (iii) the identification of the real in-operation behaviour is essential in the areas of the 
optimal design and verification of the controller performance.  
All these characters are needed for the experimental assessment of an active suspension system equipping a passenger car. In 
this paper two Ford S-MAX, two instances of the same type of vehicle, equipped with two different suspension architectures 
are considered. The former is a commercial vehicle equipped with a sky-hook semi-active suspension system having three 
different parameter arrangements that the driver is able to select, actually modifying the amount of damping in the system: A 
normal one which is useful in the most common situations and two other ones corresponding the first to a more comfortable 
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behaviour and the second to a stiffer one. These settings are generally referred to as normal, comfort and sport. The latter is a 
prototypic vehicle, equipped with a novel sky-hook active suspension system, designed in the framework of a specific 
research project [15] and implemented on the vehicle by removing some components and replacing others, in a word 
modifying the mass, but also the stiffness distribution of the car, besides the damping one. The suspension behaviour is 
effectively governed by a controller which logic depends on several parameters as the car body heave, pitch and roll 
velocities and the wheel-body relative velocities. The car speed and the steering wheel angular position and velocity are other 
parameters that the control strategy can be influenced by, during operation. 
On these two cars, two different in-operation type of tests have been performed, (i) proving ground tests on two different road 
profiles, running at different car speeds and (ii) laboratory tests performed by using a four poster test rig. A four poster test 
rig basically consists of four actuators, one for each wheel, able to reproduce a running condition on a certain road profile on 
a car that actually stands still on them at null speed. On the test rig, the excitation signals sent to the four shakers have been 
firstly the ones needed to simulate the same roughness profiles considered in the road test campaigns. Secondly four 
uncorrelated random signals have been utilised, to have a useful reference condition in which the basic OMA assumption was 
verified. 
By OMA-processing the acquired signals in the different testing conditions and by comparing the obtained results, it is shown 
in what follows how this tool can be effectively utilised to verify the operation and the performance of the two suspension 
systems. OMA, indeed, becomes a useful designing tool in this field, since it can be utilised to check the actual behaviour of a 
prototype at an intermediate or final stage of its optimisation. 
 
 

 
 

 
 

SENSOR LOCATIONS 
 

 24 sensors on the car body 
(blue), including 4 sensors 
on the suspensions, body 
side 

 4 sensors on the 
suspensions, wheel side 
(black), 

 2 sensors on the front seat 
rails (red), 

 1 sensor on the steering 
wheel (green) 

Fig.1 The geometry of the analysed system with the sensor locations represented 
 
2 TEST CAMPAIGN DESCRIPTION 
For both the cars considered, the semi-active suspension equipped car and the active suspension equipped one, four poster 
and proving ground tests have been performed, as anticipated. The test campaign on each car lasted about three days. Two 
different road profiles have been considered for both the test typologies, namely (i) the Blue-kay track and (ii) the Florida 
one. The car velocity on the former profile was 60 km/h, on the latter 80 km/h. In the case of four poster tests, also random 
excitation has been considered, as said. In this case four uncorrelated white sequences have been sent to the four hydraulic 
actuators. Different maximum amplitudes, in terms of shaker displacement have been considered, in particular 1, 3, 5 mm in 
the frequency range from 0 to 30 Hz and 10 mm in that from 0 to 15 Hz. 
The complete accelerometer layout consisted of 31 sensor locations. In each location the three components of the point 
acceleration have been measured, by using tri-axial piezoelectric ICP accelerometers. The output signals have been acquired 
and recorded by using LMS SCADAS front-ends, connected in master-slave configuration to achieve the needed number of 
channels and to a laptop PC, running the LMS Test.Lab analysis suite. 
In Fig.1, the geometry of the sensor layout is reported. The different colours identify the sensors placed on (i) the car body 
(containing also that on the suspension dampers, body side), (ii) the suspension dampers, wheel side, (iii) the front (driver and 
passenger) seat rails and (iv) the steering wheel. In Fig.2, several images of the tests campaign performed on one of the two 
cars are reported, showing the acquisition set-up. In particular some of the sensor locations listed above are depicted and the 
two front-ends utilised. 
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(b) 
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(e) 

 

 
(f) 

 
Fig.2 The acquisition set-up, (i) some sensor locations: On the car body (a), on the front-right suspension, body side 
(b), on the front-left suspension, wheel side (c), on the rear-right suspension, wheel side (d) and on the driver seat rail 
(e), and (ii) the two LMS SCADAS 316 front-ends employed in master-slave configuration (f) 
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3 VEHICLE OMA: THEORETICAL BACKGROUND 
 
3.1 The road profile roughness excitation 
It is well known that the power spectral density (PSD) of the roughness of a road profile as a function of the spatial 
frequency, the wavenumber k , has the general decreasing behaviour reported in Fig.3a. In particular, in the figure one can 
actually see the trend of several possible analytical approximations of the PSD function, basically obtained by fitting the 
experimental data, that have been proposed and can be found in the technical literature. Those analytical expressions are 
reported in Fig.3b [5,6]. 
Since the wavenumber k  is the inverse of the wavelength λ , the time frequency f u k= , where u  is the car velocity. 

In Figures 4a and 4b the PSDs of the two road roughness profiles, Blue-kay and Florida, considered in the road tests are 
shown as functions of the time frequency f . 

Simple calculations lead to the conclusion that the wavelength range from 100 to 1 m, corresponds to a time frequency range 
from 0.2 to 20 Hz, which is that normally considered in vehicle dynamics for comfort, safety and road holding analyses and 
that is usually referred to as ride [7]. 
As it is possible to see, it is actually the range in which the PSD function of a road profile decreases. For time frequencies 
smaller than 0.2 Hz and, hence, for wavelengths higher than 100 m the PSD function is quite flat. 
From these considerations one can conclude that the road input excitation, on each wheel, is not actually a white noise 
sequence, as requested to be the basic OMA assumption strictly respected, but something more similar to a Brownian or red 
noise, whose PSD is inversely proportional to 2f . This is still a suitable type of excitation for OMA, since it does not contain 

peaks in the spectrum that could lead to extra-peaks in the output responses, not related to structural modes. 
What needs to be more over said is that the input excitation on the front wheels is in a certain way correlated with that on the 
rear wheels, as a correlation could also exist between inputs belonging to the two different sides of the vehicle. This means 
that the input power spectral density matrix will have some of the off-diagonal terms not null. 
Even this second violation of the basic OMA assumption is considered weak in this paper. Aim of the analysis reported in the 
following sections is, indeed, to show that although the overall input excitation does not strictly respect the basic OMA 
hypotheses, it is still possible to obtain reliable modal models by processing the raw time output data recorded during a 
simple, cost-effective road test, with a classical operational modal parameter estimation algorithm. 
 

 
(a) 

 

 
(b) 

 
Fig.3 General behaviour of the road profile roughness PSD approximations (a) and their analytical expressions (b) 
(adapted from [5]) 
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Fig.4 The road profile roughness PSD of (a) the Blue-kay track (60 km/h) and of (b) the Florida track (80 km/h) 
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where N  is the total number of samples and i  the correlation sample index (also called time lag). A typical cross-correlation 
sequence is shown in Fig.5b. The fact that the correlations of a structure excited by white noise are similar to impulse 
responses is the basis for correlation-driven Stochastic Subspace Identification [8]. 
Frequency-domain methods require cross-spectra as primary data. As non-parametric spectrum estimate, the so-called 
weighted correlogram can be used. It is computed as the DFT of the weighted estimated correlation matrix (1): 

 ( ) jj e
L

m t
yy m m

m L

S w R ωω − ∆

=−

= ∑  (2) 

where L  is the maximum number of time lags at which the correlations are estimated and mw  denotes the time window. This 

number is typically much smaller than the number of data samples to avoid the greater statistical variance associated with the 
higher lags of the correlation estimates. As the correlation samples at negative time lags ( 0m < ) contain redundant 
information, it suffices to consider only the positive time lags when computing the spectra. This lead to so-called half spectra 
of which even the auto spectra have a phase different from zero: 
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A more traditional non-parametric spectrum estimate is the so-called weighted averaged periodogram (also known as 
modified Welch’s periodogram). The advantage of the described correlogram approach (3) is that the use of a Hanning 
window can be avoided. A Hanning window introduces a bias on the damping estimates. Instead, just like in impact testing, 
an exponential window can be applied to the correlation functions before computing the DFT. 

 

3.2 Pre-processing of the operational data 
In Fig.5a the vertical acceleration response signal at the driver seat rail location is shown in the time domain. Since most of 

the modal parameter estimation methods do not directly use the raw acceleration measurements, but rely on reduced data 

such as cross-correlations and cross-spectra between signals measured simultaneously at different locations, the correlation or 

covariance matrix l l

i
R ×∈ℝ  between the measured output signals l

m
y ∈ℝ , with l  the number of outputs and m  the sample 

index, has to be firstly estimated as 
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Fig.5 A time record (a), (b) a typical cross-correlation function (in green the unwindowed one), calculated with respect 
to a certain reference output signal with its cross-power spectrum, amplitude (c) and phase (d) 
 
An exponential window reduces the effect of leakage and the influence of the higher time lags, which have a larger variance. 
Moreover, the application of an exponential window to correlations is compatible with the modal model and the pole 
estimates can be corrected. 
A thorough discussion and a comparison between the correlogram and periodogram estimates can be found in [9-10]. 
The weighted correlogram approach to estimate half spectra is illustrated in Fig.5. An exponential window of 10% has been 
used and its effect on the correlation (Fig.5b) and spectrum (Figures 5c and 5d) data is clearly visible. 
 
3.3 Operational modal parameter estimation 
It can be shown that the l l×  half spectrum matrix can be modally decomposed as [9,10] 
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which replace the modal participation factors in the case of output-only data and iλ  are the poles, occurring in complex-

conjugated pairs and related to the eigenfrequencies iω  and damping ratios iξ  by the relation  

 * 2, j 1i i i i i iλ λ ξ ω ω ξ= − ± − . (5) 

By using an operational modal identification technique, as the recalled output-only data version of the Stochastic Subspace 
Identification in the time or frequency domain [11] or of the Polyreference Least Square Complex Exponential in the time 
domain or PolyMAX (Polyreference Least Square Complex Frequency Domain) in the frequency domain [12,13], it is 
possible to build up a stabilization diagram (Fig.6a), assuming subsequently an increasing number of poles.  
The stabilization diagram gives a strong indication of the number of present physical modes and allows the selection of the 
best estimates for physical poles and, hence, for eigenfrequencies and damping ratios and for the said operational reference 
factors. 

where n  is the number of modes, { } l

i
v ∈ℂ  are the mode shapes, l

i
g〈 〉∈ℂ  are the so-called operational reference factors, 

318



 

0.00 20.0
Linear

Hz

0.00

87.0e-6

g
2

o o
oo f o

o o o f
o f o o
d o f s

o d d f o
o f d d d
o o d d d d o
v f f d d d o o
v f f d d o d

o s o f o fd d d f d o
f s f f f df d d d f

o o o s f d o ff d df o s o f
v o f s o f f o d d ff f d f
o o d s f d f f d d f f f s o f
o od s f d f o d o f f o f s f o
o o f d d o f d f f d d d f f d f f
s o dd d f f f f d f d v f s f f
s f dd s o o f f d df f f f d f f
s d dd s f f d f fd s d f d s d d
s o dd s f f d f f fd o f f fs d f
o o dd o s f v d f d d f f f s d f
o d dd f s f o o f f f d d f f f s f f

oo d dd f s o f f f d d o d df f f d f s o d f
fo d dd f s f f f s f df d d f f s f d f
v d ds f vo o f f d f o df f o f f f fs f f d

os d dd f sv f f f f d ff o f f d d f s f s d
oo f dd v so o o f o o f d o d f f f d f d f f f f f d
oo s dd f s v o f f o f f f f o f s ff d f f f f d f f d
os d dd f vv o f o f f d f f d sf f o d f f d f s f d d
f o f dd f sv o f d d f f f d ff d f f f f s f o f f
oo d fd d v o o f f f d d f d d f d f f f f f s d f d d
f o d dd o d v f o v v d d d d f d f f d d d f ff d f f v d
f v d ss f s s s f d f d d f d d d d d f s f f f s d f f s

3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
90
93
96
99
100

 
(a) 

 

 
(b) 

 
Fig.6 An example of stabilization diagram (a), obtained by using the LMS operational PolyMAX algorithm, and of the 
Modal Assurance Criterion applied to the corresponding set of modes (b) 
 
The interpretation of the stabilization diagram yields a set of poles and corresponding operational reference factors. The mode 
shapes can then be found from 
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in which all the present terms are now l m×  matrices, with m  the number of outputs selected as references and, in particular, 
LR, UR , respectively the lower and upper residuals, have been introduced to model the influence of the out-of-band modes 
in the considered frequency range [14]. 
A validation phase has then to follow, of course, to evaluate the quality of the estimated modal model, by using tools as the 
Modal Assurance Criterion (Fig.6b). 
 
4 ANALYSIS OF THE RESULTS 
In the ride time frequency range from 0.2 to 20 Hz, recalled above, it is possible to identify a first sub-range, up to 3 Hz, 
where the heave, pitch and roll modes have to be found. It is well known that those modes and their eigenfrequencies are 
mainly related to the stiffness of suspension elastic elements and to the car body geometry and mass distribution. The 
damping ratios depend of course on damper coefficients. 
In the following sections, hence, the suspension operation will be analysed by OMA-estimating the modal parameters in the 
said 0 to 3 Hz frequency range. OMA leads, of course, also to the identification of higher-frequency deformation modes, that, 
for simplicity, are not considered and discussed in this paper. 
It is useful to stress from the beginning that during the random tests performed on the four poster test rig, not enough energy 
was delivered in the frequency range of interest (0 to 3 Hz) with the result that the said searched modes were not excited 
enough. In Fig. 7, for both the considered vehicles, a comparison is proposed of the auto-power spectrum of the vertical 
output signal at the driver seat rail location, during the different four poster tests. As one can clearly see the curves related to 
random excitation achieve lower values at the lower frequencies. In the case of road input, instead, the lower is the frequency, 
the higher is the energy delivered in the band of interest and, consequently, the better excited are the lower modes. More 
over, the higher is the car velocity, the higher is the excitation level, of course. 
 
4.1 The semi-active suspension equipped car 
In this section the results obtained in the case of the vehicle equipped with the commercial semi-active suspension system are 
reported. In Tab.1 are, in particular, collected the modal parameters estimated by OMA-processing the data acquired and 
recorded during the four poster tests performed on this car. As it is possible to see, besides what anticipated regarding random 
excitation, the results got in the case of the two tracks, reproduced on the test rig, are in good agreement, as also confirmed by 
the modal validation reported in Fig.8. The modes identified in the case of the Florida track are represented in Fig. 9. 
In tab.2 are, then, collected the modal parameters estimated by OMA-processing the data coming from the proving ground 
tests, performed on the same car.  
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(b) 

Fig.7 Comparison of the driver seat rail output auto-power spectrum in the four poster test cases reported in the 
legend and for (a) the semi-active suspension equipped car and (b) the active suspension equipped one 
 
Again a good agreement has been reached, not only between proving ground tests performed on the two different roads, as 
shown in Fig.10a, but also between proving ground and four poster tests, as shown in Figures 10b and 10c. In all the cases 
there are small discrepancies between the eigenfrequencies, with quite well correlated modes. Higher discrepancies are 
achieved on damping ratios, even because dissipation is more difficult to be estimated. 
 

 Eigenfrequency [Hz] Damping ratio [%] 

4P mode 
5 mm 

random Blue-kay Florida 
5 mm 

random Blue-kay Florida 

1st (heave) - 1.10 1.27 - 13.42 13.73 
2nd (roll) 1.86 1.58 1.80 14.83 7.86 7.45 

3rd (pitch) - 2.30 2.14 - 10.68 17.40 
 
Tab.1 Semi-active suspension equipped car: Comparison of the modal parameters estimated in different four poster 
tests (random excitation proved to be not reliable in the frequency range from 0 to 3 Hz) 
 

 Eigenfrequency [Hz] Damping ratio [%] 
PG mode Blue-kay Florida Blue-kay Florida 
1st (heave) 1.08 1.19 7.05 15.52 
2nd (roll) 1.46 1.55 14.92 19.67 

3rd (pitch) 1.77 2.19 9.07 12.82 
 
Tab.2 Semi-active suspension equipped car: Comparison of the modal parameters estimated in different proving 
ground tests 
 
4.2 The active suspension equipped car 
In the case of the vehicle equipped with the novel, prototypic suspension system, higher damping values are expected, due to 
the active operation and performance of the system itself. 
As it is possible to see from the recalled comparison proposed in Fig.7, indeed, in the case of this second vehicle, the active 
system operation reduces the output energy levels in the frequency range of interest (0 to 3 Hz) for all the tests performed. As 
a consequence it becomes more difficult to extract the information from corresponding sets of data, with respect to the semi-
active system equipped car. 
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(c) 

Fig.8 Semi-active suspension equipped car, four poster tests: AutoMAC matrix in the cases (a) Florida and (b) Blue-
kay, MAC matrix between them (c) 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig.9 Semi-active suspension equipped car, four poster tests, Florida track: representation of the modes identified in 
the range from 0 to 3 Hz (a) heave (b) roll, pitch (c) 
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(a) 

 
(b) 

 
(c) 

Fig.10 Semi-active suspension equipped car: MAC matrix in the cases (a) Blue-kay and Florida, proving ground, (b) 
Blue-kay, proving ground and Florida, four poster and (c) Florida, proving ground and Florida, four poster 
 

 Eigenfrequency [Hz] Damping ratio [%] 
PG mode Blue-kay Florida Blue-kay Florida 
1st (heave) - 1.22 - 31.20 
2nd (roll) - 1.46 - 15.30 

3rd (pitch) 2.33 2.27 10.02 9.00 
 
Tab.3 Active suspension equipped car: Comparison of the modal parameters estimated in different proving ground 
tests 
 
Nevertheless, a still satisfying agreement is obtained between four poster and proving ground tests, at least for the identified 
modes. For the sake of simplicity, in this section only the results of the latter test typology are reported (Tab.3, Fig.11a).  
Two aspects have to be stressed: (i) the estimated damping ratio of the heave mode is for this vehicle twice higher than in the 
previous case and (ii) the second mode shape (roll) seems to behave in a different way with respect to the other car. The 
correlation among them is indeed low. This can be explained recalling that on the active suspension equipped car the anti-roll 
bar has been removed since the active system has itself the goal of counteracting the vehicle roll. 
An overall comparison can be finally proposed: In Fig.11b the MAC evaluated between the set of modes identified on the 
active suspension equipped vehicle during the Florida proving ground test and that identified on the semi-active suspension 
equipped one during the Blue-kay proving ground test is reported. More over in Fig.11c one can see the MAC evaluated 
between again the set of modes identified on the active suspension equipped vehicle during the Florida proving ground test 
and that identified on the semi-active suspension equipped one during the Florida four poster test. As it is shown the heave 
and the pitch mode are clearly identified and fine correlated, although the data set analysed come from different vehicles 
during different types of test. 
 

 
(a) 

 
(b) 

 
(c) 

Fig.11 MAC matrix in the cases (a) Active suspension, Florida, proving ground (AutoMAC), (b) Active, Florida, 
proving ground vs. semi-active, Blue-kay, proving ground and (c) Active, Florida, proving ground vs. semi-active, 
Florida, four poster. 
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5 CONCLUDING REMARKS 
In this paper, Operational Modal Analysis is proposed as a tool for the performance assessment of different type of 
suspension systems for passenger cars. Of course the idea can be extended to other classes of vehicles. 
Two different suspension architectures have been, in particular, considered equipping the same model of car, a Ford S-MAX. 
The former is a semi-active commercial suspension system, the latter is a novel prototypic active one. 
Two different in-operation types of test have been then performed on both the vehicles: Proving ground tests on different 
road profiles and laboratory tests carried out on a four poster test rig. In the latter case, not only the same road profiles 
considered in the former one have been reproduced on the test rig, but also four uncorrelated white noise sequences have 
been utilised as input excitations, sent to the four actuators. 
By OMA-processing the output responses acquired in the different testing conditions and by comparing the results, it is 
shown how this tool can be effectively utilised to verify the operation and the performance of those systems, by only carrying 
out a simple, cost-effective road test. In particular, the suspension operation has been analysed by OMA-estimating the modal 
parameters in the frequency range from 0 to 3 Hz, which the heave, roll and pitch modes are expected to belong to. These 
modes have been actually identified for both the vehicles considered. Regarding the heave mode, in particular, the damping 
ratio estimated in the case of the active system equipped vehicle, has been found to be quite higher than that obtained in the 
other vehicle case, due to the operation of the active suspension system. 
From excitation point of view, it is useful to stress that in the case of road input, the lower are the considered frequencies, the 
higher is the energy level in the band and, consequently, the better excited are the included modes, with respect to random 
input, that can be, instead, effectively utilised to identify only higher-frequency structural deformation modes. Road tests are 
in conclusion suggested for the performance assessment of suspension operation. 
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ABSTRACT 
 
Theory of curve crossing and curve veering phenomena is well known in structural dynamics, but only few papers 
have used test bench to demonstrate and validate this eigenvalues behaviour. The aim of this paper is to present 
a theoretical and experimental analysis on a nonsymmetric experimental structure with eigenvalues curve veering 
and crossing phenomena. Starting from literature examples, detailed numerical models on lumped parameters 
systems and continuous systems with coincident and/or close eigenvalues are examined in order to developed a 
numerical FE model suitable to describe a tunable and simple test rig with coincident eigenvalues and curve 
veering phenomena without symmetric properties or completely uncoupled dynamic systems. The test bench is 
made of simple beams and masses properly linked together. The angle of an intermediate beam is used as 
tunable physical parameter to vary the eigenvalues of the system and to couple two bending modes or bending 
and torsional modes. Numerical and experimental results are compared, and sensitivity of mode shapes to 
variation of system parameters is discussed. 
 
 
INTRODUCTION 
 
There have been extensive research works on veering and crossing phenomena in dynamic systems. The 
behaviour is generally well understood. In the former, as the eigenvalues change under a parameter variation, 
converging roots loci get closer and then suddenly veer away. During this process all the properties of the 
involved modes are swapped, leading to a curious behaviour in the so called “transition zone”. In the latter 
eigenvalues loci do not veer away but intersect without any swap of modal properties. Therefore, when two 
eigenvalues loci approach each other, they can cross or abruptly diverge. 
Theoretical studies of this behaviour have been reported for half a century but despite this heritage, explicit 
references to experimental results are scarce. Moreover, literature presents mainly symmetric or uncoupled 
lumped systems with coincident eigenvalues properties and eigenvalues curve veering and crossing are not 
deeply analysed with experimental viewpoint.  
One of the earlier observer of these phenomena, in structural dynamics, was Leissa [1], that cited further 
examples to draw attention to the possibility of fallacious artefacts in numerical models, and demonstrated that 
veering could be artificially induced through inadequate approximations and discretizations. Furthermore, to 
explain that in the veering away region mode shapes and nodal patterns must undergo sudden changes, Leissa 
used this sentence: “figuratively speaking, a dragonfly one instant, a butterfly the next, and something 
indescribable in between”. The rapid change in the eigenfunctions during the veering has raised doubt on the 
validity of many approximate solutions. 
Later, Kuttler and Sigillito [2] used an example of fixed membrane problem on rectangle to confirm the existence 
of curve veering in accurate mathematical models. 
Perkins and Mote [3] presented an exact mathematical solution of elementary eigenvalue problem to confirm the 
existence of curve veering physical phenomena. Thus, the purpose of their study was to validate the existence of 
curve veering in continuous models by presenting an exact eigensolution, which veers, and to derive simple 
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criteria for predicting veerings and crossings in both continuous and discretized models. They showed that the 
key point to differentiate crossing and veering phenomena is the coupling factor, and they suggested a simple 
example: coupled oscillator. To summarize, Perkins and Mote [3] used perturbation theory to derive “coupling 
factors” to quantify the eigenfunctions coupling. 
Pierre [4] explained how localization and veering are related to two kind of “coupling”: the physical coupling 
between component structures, and the modal coupling seen between mode shapes through parameter 
perturbations. He asserted localization and veering occur when modal coupling is of the same order or greater 
than physical coupling. His studies showed that, in structures with close eigenvalues, small structural irregularities 
result in both strong localization of mode shapes and abrupt veering away of the loci of the eigenvalues when 
these are plotted against a parameter representing the system disorder. 
Regarding coupling factors in curve veering and curve crossing, there are some fields in which these phenomena 
are studied. For example, modal analysis of bridges with aeroelastic effects [5] and vibration analysis of rotating 
cantilever beams [6] are strongly influenced by coupling problems. 
Balmès [7] analysed the eigenvector transformations of a three degree of freedom lumped-mass system. The 
simplest cyclic symmetric spring-mass system predicts a double mode and it shows the effect of a parameter 
variation on the variables of the parameterization. Balmès pointed out that only very particular conservative 
structures present eigenvalues veer and the exchange of mode shape properties happens as a rotation in a fixed 
subspace, similar to that of the example [7]. Only three types of conservative structure have been identified as 
allowing truly multiple modes (allowing the eigenvalues to be equal and therefore modal crossing with 
instantaneous rotation on mode shapes): 
 

1. symmetric or cyclic structures, where it is allowed through algebraic properties of the group of symmetric 
properties, 

2. multi-dimensional substructures for which motions in different dimensions uncouple, such as plates 
having a bending and a torsional mode at the same frequency, 

3. structures with fully uncoupled substructures. 
 
Mode localization and curve veering phenomena have been studied in the frequency domain by Mugan [8]. The 
singular-value decomposition (SVD) was employed to study the effects of localization phenomena on input-output 
relationships, and power and energy transmission ratios of structures. 
The problem of measuring the phenomena of eigenvalue curve veering and mode localization has been studied 
also by Liu [9]. He suggested to define a critical value for the derivative of the eigenvectors or for the second 
derivative of the eigenvalues, above which the modes would be deemed to be veering. 
Adhikari [10] cited examples where veering is influenced, and sometimes even suppressed, by the effect of 
damping. The use of expression for derivative of undamped modes can give rise to erroneous results even when 
the modal damping is quite low. 
Young [11] dealt with the problem using two simple examples, concerning with the theory of continuous bodies. 
The inadequacy of approximate methods has been shown to be one source of couplings, while recently it has 
been found that there exist two different kinds of coupling responsible for the occurrence: implicit and explicit 
couplings. The former is generated by the incompleteness of the admissible function used in the approximate 
approach, while the latter is induced by the interaction between the main component and sub-component of 
structure. Curve veering can be observed in systems with explicit coupling where exact solutions are available. 
More recently Du Bois, Adhikari and Lieven [12] presented a detailed experimental and numerical investigation on 
veering and crossing phenomena. Despite the widespread acceptance of veering theory, supported by poor 
experimental data, they developed an experimental structure made up of redundant truss. The transverse 
stiffness of the beams is influenced by the applied axial load. This structural stiffness modulation is used to 
provide the parametric variation for the experiment. Also a FE model have been developed to compare 
experimental and numerical data. In particular the counterintuitive variations of the mode shapes in these regions 
have been confirmed. The investigation has highlighted the impact of veering on model updating and modal 
correlation algorithms, as well as any discipline concerned with the analysis of closely spaced modes.  
The analysis of mode shape transformations in terms of eigenvector rotations is found to be a valuable tool in 
quantifying the dynamic behaviour, and this is expected to find application in a wide range of parametric modal 
analyses. 
In literature there are many articles that talk about repeated eigenvalues, but in term of algorithms for computing 
the derivatives of eigenvalues and eigenvectors. For example in [13] it is shown an algorithms for computing the 
derivatives of eigenvalues and eigenvectors for real symmetric matrices in the case of repeated eigenvalues. 
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Finally, in [14] D’Ambrogio and Fregolent proposed an extension of Modal Assurance Criterion (MAC) for 
coincident or close eigenvalues problems. They consider the correlation between a modal vector and subspace 
spanned by several modal vectors, instead of the usual correlation between two modal vectors. 
 
At the end of this introduction it is possible to say that literature are very full of articles that deal with close 
eigenvalues, double eigenvalues, curve veering and crossing phenomena and mode localization, and a lot of 
fields use this concept to study physical phenomena. But, on the other end, there are not very experimental 
studies, except [12], that focus on this issues. This is the reason that have switched on idea to identify tunable 
and simple test bench with two coincident and/or close eigenvalues without symmetric properties or completely 
uncoupled dynamic systems. After a review about theory of curve veering and crossing phenomena in lumped 
parameters systems and continuous systems, this paper presents a simple test rig for experimentally testing 
coincident or close eigenvalues with crossing or veering phenomena. 
The main aims of the test rig design are: 
 

 to obtain a simple and tunable test rig for experimental validation of its dynamic behaviour; 
 to understand curve crossing and curve veering taking into account uncertainty and variability of the 

structure, concerning natural frequencies and mode shapes with an experimental viewpoint; 
 to comprehend possible energy paths with close or coincident modes, also to analyse possible dissipation 

strategies locally far from sources (application as damping systems). 
 
 
OVERVIEW OF CURVE CROSSING AND CURVE VEERING PHENOMENA 
 
Eigenvalues are often plotted versus a system parameter creating a family of root loci. Two converging loci either 
do or do not intersect. It is necessary to distinguish between curve crossing (coincident eigenvalues) and curve 
veering (close eigenvalues) phenomena. The former occurs when one eigenvalue curve intersects another curve 
and the dynamics behaviour is characterized by coincident eigenfrequencies: modes order changes, whereas the 
eigenfunctions (or eigenvectors in lumped systems) remain associate to the corresponding eigenvalues. In the 
latter two loci approach each other and abruptly diverge without meeting. Moreover an important characteristic of 
curve veering is that the eigenfunctions associated with the eigenvalues on each locus are interchanged during 
veering in a rapid but continuous way. 
In order to identify curve crossing and curve veering the MAC index has been used [15], applying it before and 
after the occurrence of phenomena. With MAC is possible to evaluate the modes correlation in the transition area. 
To better understand curve crossing and curve veering phenomena and to explain the utility of MAC to distinguish 
one of other, two different cases of crossing and veering phenomena are taken into account: 
 

 a monodimensional lumped system (see Balmès’s system in [7]); 
 a two-dimensional system concerning an axial-symmetric system, such as a bell. 

 
Figure 1 shows the cyclic and symmetric system of Balmès [7]. Without loosing generality, unitary masses and 
springs are assumed. 
 

 
 

Figure 1 – Lumped cyclic and symmetric monodimensional system. 
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To obtain curve crossing and curve veering k23 e k31 have been used as parameters. This allows the system to 
lose symmetry property, and desired phenomena to set up. The different behaviour is described through the 
following two cases: 
 

 k23 = 1 N/m  curve crossing (coincident eigenvalues), 
 k23 = 1.02 N/m  curve veering (close eigenvalues). 

 
It is straightforward that crossing and veering phenomena are tightly linked with certain physical parameters of the 
system. This last concept is used to design the test rig. 
Solving the eigenvalue problem for each value of k31 and plotting eigenvalues curves of mode 2 and mode 3 
versus this parameter, leads to the results displayed in Figure 2. 
In the first case of perfect cyclic and symmetric system (k23 = 1 N/m), applying MAC between eigenvectors close 
to the crossing point (k31 = 0.99 N/m and k31 = 1.01 N/m) it possible to easily depict the mode reversal (Figure 3 
on the left). During curve crossing phenomena, involved modes maintain their peculiarities, but they do swap: 
mode 2 become mode 3 and viceversa. Orthogonality of eigenvectors is guaranteed, due to mass matrix 
proportional to identity. This change is only a marginal effect because order is only linked with frequency value 
and not with substantial mode characteristics. This is confirmed by observing eigenvectors before and after 
occurrence of crossing phenomena in Figure 4 on the left: every mode maintains its property and changes only 
the identification number. In the exact configuration of crossing, system shows two coincident eigenvalues and 
the associated eigenspace has size two, while in all other cases, where eigenvalues are very close but not 
coincident, each eigenspace has size one. 
In the second case of non perfect symmetric system (k23 = 1.02 N/m), solving the eigenvalue problem for each 
value of k31 and plotting eigenvalues curves of mode 2 and mode 3 versus this parameter, leads to the results 
displayed in Figure 2 on the right. Starting from k31 = 0.9 N/m and by increasing this stiffness value, eigenvalues 
curves get closer but they abruptly veer away. In this case there are not coincident eigenvalues, not even for 
k31 = 1. 
Applying MAC for two different values of k31 (k31 = 0.99 N/m) and after (k31 = 1.01 N/m), where the distance 
between the two eigenvalues is minimum, it is possible to obtain the result reported on the right of Figure 3. It is 
straightforward to understand that the modes undergo a modal properties change, maintaining the initial rank. The 
modal assurance criterion confirms the alteration of mode shape by varying one of the parameter of the system. 
This result agrees to the Leissa’s sentence [1], in fact the modes shapes across the curve veering mix their 
dynamic properties in a continuous manner. 
The strange and sudden variation of the 2nd and 3rd mode shapes can be seen in Figure 4 on the right. Presence 
of symmetry could be justify because results come from physical system with symmetry and cyclic properties, 
despite of the abrupt change is very clear. Leissa said that was very difficult to identify a continuity between 
modes shapes [1], as confirmed in Figure 4. In fact, despite the step of k31 has been refined, modes shapes 
suddenly change. 
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Figure 2 – Natural frequencies of the lumped system versus k31 parameter: 
curve crossing with k23 = 1 N/m (left), curve veering with k23 = 1.02 N/m (right). 
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Figure 3 – MAC index between mode-shapes of different k31 parameter:  
curve crossing with k23 = 1 N/m (left), curve veering with k23 = 1.02 N/m (right) involving the 2nd and 3rd modes. 
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Figure 4 – Mode-shapes of the lumped system: curve crossing with perfect symmetric system (left),  

curve veering with non-perfect symmetric system (right). 
 
In order to study a symmetric mono-axial system and to simulate its dynamics behaviour, a simple FE model of a 
bell has been developed. Figure 5 shows the CAD model and the corresponding FE model, made of bar 
elements. This system has been implemented in Matlab to easily obtain frequencies and modes shapes. 
In Figure 6 are displayed the first four mode shapes: couples of two coincident eigenvalues with rotated 
eigenvectors come out, due to axial-symmetric properties. 
To obtain crossing and veering phenomena it has been defined to alter stiffness parameters of one or more bar 
elements. In particular, Figure 5 shows the corresponding nodes of constant and variable stiffness parameters. 
Lumped mass matrix is taken into account. 
Like in the example of Balmès, it is necessary to set up a variable parameter and use another parameter as a 
discriminant between crossing and veering phenomena. kBar represents constant stiffness value that should have 
a perfect axial-symmetric model. 
Figure 7 shows the first 16 eigenfrequencies curves varying the circumferential stiffness k2-3 parameter. The 
different behaviour is described through the following two cases: 
 

 k2-3 = kBar  curve crossing (coincident eigenvalues), 
 k2-3 = 1.3 kBar  curve veering (close eigenvalues). 
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Crossing phenomena is present for k2-3 = 100% kBar (Figure 7 on the left), in fact this value allows the model to 
possess axial-symmetric property and then to have coincident eigenvalues. In case of different stiffness, i.e. k2-3 = 
100% kBar, curve veering appears in some couples of modes (Figure 7 on the right). 
When it is imposed a stiffness parameter variation, different by a circumferential variable parameter like k2-3, it will 
be obtained a curve veering phenomena. When symmetric characteristics are not present, most of crossing 
phenomena involving mode-shapes of Figure 6 became veering, but some curve crossing between bending and 
torsional modes are still evident. In Figure 7 letter “C” and ellipse specify curve crossing point, whilst letter “V” and 
rectangle specify curve veering point. Similarly, to order eigenfrequencies a swap matrix obtained from MAC 
across every point of veering and/or crossing phenomena is adopted. 
 

                          
 

Figure 5 – Bell and corresponding FE model. 
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Figure 6 – First mode-shapes of the bell system (red lines) superimposed on the underformed shapes(blue lines). 
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Figure 7 – Natural frequencies of the structure versus angle configuration . 

 
At the end of this paragraph it is possible to assert that curve crossing and curve veering are phenomena tightly 
linked with physical parameters and their occurrence depends on symmetric or nonsymmetric properties. In 
particular, a slight loss of symmetry allows to obtain curve veering in a system with only curve crossing 
phenomena. Also in these last systems, crossing phenomena may be again present, if different eigenspaces with 
independent eigenvalues are interacting. The properties of symmetry is not, therefore, a fundamental requirement 
to have a system with coincident or very closed modes. Finally, MAC is an efficient tool to discriminate crossing 
and veering phenomena. 
 
 
TEST RIG DESCRIPTION 
 
Main ideas of the test bench are to obtain a structure without symmetric and cyclic properties but with dynamics 
behaviour characterised by coincident eigenvalues (curve crossing) and/or close eigenvalues (curve veering). 
Observing the dynamic instability of flutter phenomena, the structure shown in Figure 8 has a very simplified wing 
shape, where a sensitive geometrical parameter is chosen to change its dynamic properties. 
 

 
Figure 8 – Sketch of the test rig. 
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The sketch of the system is composed by three beam elements and three lumped masses. The test bench uses 
the angle of the intermediate beam as a tunable physical parameter to modify the system eigenvalues, in order to 
couple two bending modes or a bending with a torsional mode. In particular, a coupling between torsional and 
bending modes is expected at a particular configuration. 
According to the boundary configurations with the intermediate beam horizontal or vertical, the eigenproblem for 
different  values predicts sensitive changes in the bending modes. Drawing eigenvalues curves versus this 
physical parameter demonstrates the dynamic properties of the test bench. 
Neglecting structural damping in the FE model, the system equations for a n-dofs structure result: 
 

        0xKxM   (1)
 
where the mass matrix  M  and the stiffness matrix  K  are real, symmetric and positive definite. Therefore, the 
eigenproblem results: 
 

       02  φMK   (2)
 
where the n eigenvalues 2  and eigenvectors  φ  are evaluated through determining no trivial solutions, 
therefore: 
 

      0det 2  MK   (3)
 
In order to evaluate curve crossing or veering phenomena, the evaluation of  M  and  K  matrices are obtained 
through a FE model developed in Matlab. Beam finite elements with six degree of freedom for each node are 
adopted as shown in Figure 9. This choice is suitable to evaluate the dynamic properties of three-dimensional 
structures that may be approximated with truss schemes. 
These beam elements are used to discretize the physical structure as shown in Figure 9. Beam finite elements in 
2D and 3D representation are sketched with cyan boxes, while lumped masses are identified by red balls. 
A very flexible FE model toolbox has been developed to represent different configurations and to simulate the 
sensitivity of different structural parameters, such as lumped masses, beam sections and lengths. 
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Figure 9 – FE model of the structure. 
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The design aim is to define suitable configurations where it is possible to see a high number of curve veering and 
curve crossing phenomena with respect to the angle parameter. The eigenvalues graph shown in Figure 10 
represents the expected dynamic behaviour in the frequency range up to 220 Hz. The mode-shapes related to the 
configuration 0  are used for labelling the curves and for following the eigenfrequencies modifications; 
different colours are adopted for distinguishing crossing (“C” symbols) and veering phenomena (“V” symbols). 
MAC index is adopted to follow the mode-shapes and to distinguish crossing from veering. 
Another result that can be obtained by the FE model is the analysis of modes shapes, especially across the curve 
veering or curve crossing points. 
In Figure 11 MAC index between eigenvectors with  = 44° and 45° are plotted on the left. They involve the 6th 
mode (2nd torsional) and the 7th mode (bending); a typical crossing phenomena is evinced. Therefore this case 
produces a order change of modes, the modes shapes remain the same and the corresponding curves intersect 
each other. 
The same approach is used between eigenvectors with  = 68° and 69° on the right of Figure 11, where two 
bending modes are involved in a curve veering phenomena. The 5th and 6th bending modes are very similar first 
and after occurrence of veering phenomena, in fact the MAC index is not suitable to distinguish two different 
modes. Increasing the angular resolution between the eigenvector comparison produces always diagonal MAC 
index, corresponding to not crossing phenomena. 
Non zeros values of off-diagonal MAC terms are due to non perfect orthogonal properties of eigenvectors. The 
mass matrix is not proportional to identity because, although beam elements are equal, translational and 
rotational inertial terms are different and lumped masses are taken into account. 
Finally, even for the test bench curve crossing and curve veering present the same peculiarity described in the 
last paragraph. Therefore the design of the test bench allows to validate the theoretical results about crossing and 
veering and to study, in the future, energy transfer paths. 
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Figure 10 – Natural frequencies of the structure versus angle configuration . 
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Figure 11 – MAC index between mode-shapes of different angle configuration:  
curve crossing involving the 6th and 7th modes (left), curve veering involving the 5th and 6th modes (right). 

 
 
TEST RIG DESIGN AND EXPERIMENTAL RESULTS 
 
Some practical approximations and physical dimensions are neglected or not simulated in the FE model, 
therefore to design and build the test rig some engineering choices are adopted to reproduce the numerical 
behaviour in physical reality. The most important characteristic is to have a tunable parameter in the structure to 
vary and tune the angle  of the middle beam. 
A manual rotary table is chosen in the first lumped mass. It guarantees the rotation of the middle beam and 
controls the orthogonality of the third beam by means of a clamp with a device integrated in the second lumped 
mass. One main peculiarity of the test bench is the flexibility, in fact the structure allows different lumped masses 
and beam element dimensions in a simple way. 
Figure 12 shows 3D drawings and photographs of the lumped masses in which is possible to see the rotary table 
and other parts of the group. An exploded view of the group shows rotational pins, jaws and twice parts necessary 
to obtain the tunable angular parameter. Beam elements used to join the lumped masses and to obtain correct 
stiffness properties are chosen in order to reproduce the dynamic properties predicted in Figure 10. These 
elements are interchanging with others that have rectangular section but with different dimensions and length. 
This is a further flexibility characteristic of the test bench. 
To obtain the reciprocal position (parallel or orthogonal) between the first and the third beam of the test bench 
during variation of the angular parameter , an alignment profile is developed (transparent light blue profile of 
Figure 12). This profile must be used only during the tuning of test bench, to guarantee alignment, but it must be 
removed during the experimental test. 
To constrain the test bench, a bracket that joins the main structure with a seismic mass is designed. This bracket 
has its first bending mode over 250 Hz, in order to not interact in the frequency range of experimental testes. 
 
After the assembly of the test bench, a preliminary experimental campaign has been conduct to validate 
theoretical results. Three three-axial accelerometers are set on every lumped mass (Figure 13), and subsequently 
rowing hammer technique is implemented for data acquisition. A mean of 10 impact tests are used for the 
measurement of FRF for each testing configuration. In particular 19 different configurations are taken into 
account, from  = 0° to  = 90° with a step of 5°. An updating procedure is now necessary to validate the 
numerical result of Figure 10. 
By means of experimental data two main results are obtained for the FE model: the calibration of equivalent 
length of beam elements, considering lumped masses and the updated stiffness parameter for the analytical FE 
data with respect to the experimental modes. To calibrate beam elements in the model, torsional modes are used 
because they are not influenced by length of actual masses, but only by section and length of beams. 
To be more confident with respect to the numerical model, the following step is to use a commercial FE model 
integrated in a CAD software, like SolidWorks-Cosmos, to predict more accurately the dynamic behaviour with 
respect to the angle parameter . 
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Figure 12 – 3D drawings and photographs of the test rig. 
 

 
 

Figure 13 – Experimental setup of the test rig. 
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CONCLUSIONS 
 
The paper presents a theoretical analysis and an experimental test rig on a nonsymmetric structure with 
eigenvalues curve veering and crossing phenomena. Detailed numerical models on lumped parameters systems 
and continuous systems with coincident and/or close eigenvalues are examined to developed a numerical FE 
model suitable to describe the tunable and simple test rig with coincident eigenvalues and curve veering 
phenomena without symmetric properties or completely uncoupled dynamic systems. 
A consistent numerical FE model has been developed to design the structure. The initial comparison between the 
experimental data obtained through the test rig and the numerical results seems to be suitable for validate the 
methodology. 
The test bench is useful to investigate curve veering phenomena with an experimental overview. It allows to 
completely control the dynamic behaviour through a physical system parameters, and it could also be a consistent 
tool, due to its form similar to a wing, to understand flutter dynamic instability through coupling bending wing 
mode with torsional one. 
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Abstract 

This paper presents a very compact electro-mechanical wideband energy harvester optimized for tire applications. The energy 
conversion process of the device takes into account the simulation of different phenomena like: non linear dynamic and 
adaptive resonant behavior of the seismic mass, electromagnetic and magneto-static coupling between floating magnetic mass 
and coils, transfer of the generated power to an external load by means of a nonlinear circuit interface. 

The paper is focused on the pneumatic effects of the floating magnet sliding into a calibrated guide. A convenient choice of 
clearance between moving and fixed parts can be used to create an effective air brake preventing or softening shocks with end 
stops and to modify system dynamic. 

A block-oriented Simulink®, experimentally validated, model has been realized to predict scavenger device performance and 
to optimize design parameters. Equivalent linearized stiffness and damping factors due to pneumatic effects have been 
modeled in the lumped parameters system to get a simplified model and to formalize relations with the geometrical 
characteristics. Analysis of the effect of several nonlinearities at different vehicle speed have been performed. 

Keywords: energy scavenger, electro-mechanical device, adaptive resonance 

Introduction 

To power remote sensor nodes, if the batteries substitution is unadvisable, unsafe, onerous or even impossible, a possible 
solution is the use of energy scavenger (or energy harvester) devices. These devices are designed to recover energy from a 
specific source available in the destination environment. Is possible to scavenge energy from a wide set of sources as: 
ambient-radiation, temperature deltas, motion and vibrations. To scavenge energy from vibrations are typically used resonant 
spring mass systems linked to piezoelectric, magneto-mechanic or electrostatic generators [1-2]. 

A sensor node installed inside a tire, where is obviously impossible to bring power through wires, is a suitable application for 
an energy scavenger device, if a battery enough capacious to power the sensor for its whole lifetime is too big or too heavy. 
In fact during the wheel rotation, variation in acceleration components can induce vibrations in properly designed parts and is 
possible to exploit these vibrations to scavenge and accumulate energy. Due to the very high stresses that a component 
installed in a tire has to resist, in this work has been chosen to design a magneto-mechanic (instead of electrostatic or 
piezoelectric) energy scavenger device. 

Since the tire can be subjected to an extended range of revolving speed, a challenge to overcome is to properly design an 
energy scavenger device able to exploit a wide range of frequencies so to obtain an acceptable power output in many different 
working conditions. 

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 339 
DOI 10.1007/978-1-4419-9299-4_30, © The Society for Experimental Mechanics, Inc. 2011



Working principle 

Fig. 1 shows all the components of the device [3]. The scavenger is composed by a floating magnet running into a guide 
around which are wound in opposite direction two series connected coils so that their electromotive force is summed when 
the floating permanent magnet is moving. A preload magnet, inserted in the lower lid, push the floating magnet toward the 
upper lid. Two rubber bumpers prevent excessively rough shocks between floating magnet and lid. When the floating magnet 
moves along the guide the variation of the magnetic flux linked to the coils produce an electromotive force that can be used 
as power supply for an electrical load. 

 

Fig. 1 Energy scavenger device components 

When revolving around its axis, the external surface of the tire is subjected to high deformation gradients when contacting 
ground. This deformations lead to large variation on the radial acceleration acting on the device. Fig. 2 (a) shows a typical 
acceleration profile for a point on the tire inner-liner during a wheel round: acceleration is about constant (v2/R) during the 
larger part of the round and has a peak entering and exiting the contact zone. In the contact zone the radial acceleration is 
close to zero because the point is actually translating and not rotating. 

 
Fig. 2 Typical radial acceleration profile (a) and energy scavenger behavior during wheel rotation (b) 
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Fig. 2 (b) shows the main phases of the process: 

1. the tire is not touching the ground, so the scavenger is subjected to radial (centripetal) acceleration, therefore a 
centrifugal force acts on the device, 

2. the tire is arriving on the ground and is deforming, so the scavenger is subjected to an acceleration peak, 

3. the tire is on the ground (contact patch, footprint) and it is moving with a straight motion, the radial acceleration 
quickly drops to zero, 

4. the tire leaves the ground contact and the scavenger is again subjected to another acceleration peak. 

Mechanical model 

An accurate model of the energy scavenger requires the study of different phenomena, in particular: 

• magnetic circuit and interaction with magnet movement, taking into account nonlinearities of materials, 

• interaction with external electric load and definition of a scavenger equivalent circuit, 

• dynamic simulation of the floating magnet as a response from external acceleration, 

• evaluation of the wasted energy due to dry friction and pneumatic forces arising from mass motion. 

The design phase of the energy scavenger requires the definition of a simulation tool that is able to couple the different 
physical phenomena involved. The complete block diagram is shown in Fig. 3. The block-oriented sub-structuring technique 
has the following properties [4]: 

• starting from analytical or experimental component behavior, to predict system performance in time domain, for 
several operating conditions; 

• to underline correspondences between model blocks and physical system, input/output relations between 
components and their interactions on system behavior; 

• to allow a high level of flexibility in pre-development and development phases, through the use of a multi-sharing 
component library and the adoption of a user-friendly graphical interface; 

• to develop and compare performance and limitations of different electric/electronic or mechanical layouts, in 
particular focusing on power absorption and efficiency of the whole system. 

 

Fig. 3 Block diagram of the energy scavenger simulator 

Each substructure is connected to the others through a direct link (e.g., in Fig. 4 the coil and the preload magnet interact on 
the floating magnet with forces) and a feedback link (the evaluated forces are dependent on the state of the floating magnet) 
that produces the corresponding reaction to the acting state. 
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Fig. 4 Mechanical Sub-block 

The mechanical model takes into account the movement of the floating magnet along three coordinate axes. After a 
preliminary investigation, the rotation around the axes has been considered negligible. The resultant 3-dof model is 
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where C
iF  is the input force along the ith direction, fricF is the force due to dry friction, bumpF is the Kelvin–Voigt elasto-

dissipative force due to the bumpers, emF is the magnetic force, airF is the force due to pneumatic effect. The mechanical 
dynamic sub-block is shown in Fig. 4. 

Parametric analysis of non-linear elements 

Magneto-elastic effect 

From the mechanical point of view, the electromagnetic simulation provides two force contributions: elastic and dissipative. 
The elastic component is due to the position of the floating magnet during its movement along the guide with respect to the 
preload magnet and it is dependent only on the z  coordinate. The force values are estimated by a finite element model or 
from experimental measurements and can fit a negative exponential function in the empirical form: 
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where coefficient A, B and n can be estimated in a least-mean-square algorithm. A comparison between FEM force values 
and the negative exponential characteristic is shown in Fig. 5 (a). 

342



It has been demonstrated for other empirical formula that this kind of system with a pure magnetic suspension has a nonlinear 
softening behavior [5]. Similar results can be evaluated with force in form of Eq. (2) with 10 ≤< n . 

The dissipative effect is due to the power supplied to the electric circuit: 
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where 1e  and 2e  are the electromotive-forces induced in the coils. Their coupled contributions can be described as a function 
of z and z& : 
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Coulomb friction 

The friction between moving magnet and guide is calculated by an exponential model of the coefficient of friction depending 
on the relative velocity between the two components: 

 ( ) ( ) ( )( )inpinp zz
k
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sinpf eezz &&&&

&& −−−− −+=− βα µµµ 1  (5) 

where constant sµ  and kµ  are respectively the adhesion and friction coefficient, while α  and β  are two parameters 
controlling the transition between static and kinematic behavior. An example of the trend of the friction model is shown in 
Fig. 5 (b). 

 
Fig. 5 Magneto-elastic force due to the interaction between moving magnet and preload magnet (a)  

and coefficient of friction vs. relative velocity (b) 

End stroke bumpers 

End stroke elastic bumpers are represented through a Kelvin-Voigt model [6] with a bi-linear spring. The resulting elasto-
dissipative force bumpF  is shown in equation (6): 
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where 1limz±  are the values of the relative coordinate inpzz −  in which the moving magnet hits the bumpers and starts acting 
the first linear spring and 2limz±  are the values beyond which acts the second linear spring. The force is equal to zero within 

1limz±  and when the magnet is moving away from the bumpers.  

Pneumatic effect 

When sliding into the guide the moving magnet acts as a piston into a pneumatic cylinder dividing it in two chambers. A 
displacement of the magnet creates a pressure delta that reacts to the movement. The two chambers are connected by the 
clearance between the magnet and the guide and the airflow in the clearance reduces the pressure delta. Moreover another 
reaction to the movement is due by the viscous friction: 

 air
vis

air
p

air FFF += ∆  (7) 

The main pneumatic contribute is the force due to pressure delta: 
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4
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where 1p  and 2p  are the pressure in the chambers and d  is the diameter of the moving magnet. 

 
Fig. 6 Pneumatic sub-model 
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To calculate the force due to the pressure delta it is necessary to know the pressure in both chambers. To obtain these values a 
whole model of the pneumatic piston has been made (Fig. 6). In the chamber blocks are calculated the values of pressure and 
temperature depending on volume of the chamber and mass flow by first law of thermodynamics and ideal gas law. The value 
of mass flow is provided by the clearance block based on the equation [7]: 

 ( )21

3

21 12
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h
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πρ
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where ρ  is the air density, rc  is the radial clearance, µ  is the dynamic viscosity and h  the height of the moving magnet. 

All the temperature dependant parameters (constant pressure specific heat, constant volume specific heat, density and 
dynamic viscosity) are recalculated at any integration step. The model in Fig. 6 also calculates the force due to viscous 
friction proportional to the relative velocity between guide and magnet: 
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Since the considered fluid is air the viscous force calculated above is smaller of several orders of magnitude if compared to 
the force due to pressure delta and can be neglected. 

In order to simplify the model is possible to calculate the effect of the force due to pressure delta through a Maxwell model 
[8] where the spring represents the air elasticity and the dashpot the effect of the airflow in the clearance (Fig. 7). 

 
Fig. 7 The simplified Maxwell model of the pressure delta effect 

The dashpot is connected to the guide and the spring to the moving magnet. To the point between spring and dashpot is 
assigned the coordinate airz . The force equilibrium gives: 
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The linearized model proposed above is effective only for small displacement. To extend the validity of the model is possible 
to introduce a nonlinear spring in place of the linear one. As an example in equation (13) the model is proposed with a cubic 
polynomial expansion. 
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To estimate the parameters iairk ,  is necessary to hypothesize that there is no clearance between magnet and guide. Thus 
∞=airβ  and inpair zz = and so the force due to the pressure delta can be calculated by the hypothesis of a generic polytropic 

transformation in the chambers: 
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where Cl1  and Cl2  are the initial length of the chambers modified to take into account the dead volume of each chamber, 10p  
and 20p  are the initial pressures and γ  is an appropriate polytropic index. From equation (14) is possible to get the power 
series: 

 ( ) ( ) ( )























−

⋅
−+

−+= ∑ ∏
∞

=

+

=
∆

0 21

102
1

201

1

2 11
!

1
4 i

i
airi

C
i
C

i
C

ii
C

i

j

air
p zz

ll
plplj

i
dF γπ  (15) 

and obtain the generic iairk ,  coefficient: 
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In Fig. 8 (a) is shown the comparison of the ideal gas law and its linear and cubic forms in the hypothesis of no clearance 
between the two chambers. The characteristic depends on the initial position of the moving magnet. If the magnet is not 
centered, as in Fig. 8 (a), the characteristic is asymmetric and the cubic gas law has a second order term.  

 
Fig. 8 Pressure delta vs. displacement in the hypothesis of no airflow in the clearance between magnet and guide (a)  

and pneumatic damping vs. radial clearance (b) 
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For small pressure delta values both linear and cubic forms can fit the polytropic law. 

The parameter airβ  can be estimated by extracting the pressure delta from the equation (9) through few simple steps 
obtaining: 
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Fig. 8 (b) shows the values of airβ  for radial clearance from 0.01 to 0.1 mm at different temperatures for a moving magnet of 
5 mm diameter and 5 mm height.  

Comparison of different non-linear effects 

In Fig. 9 are shown the effects of the different non-linear components on the moving magnet behavior at different vehicle 
speed. Two black dashed lines indicate the position of end-stroke bumpers. Starting from a system with only electromagnetic 
forces and bumpers have been added the effects of friction and air initially separated and then coupled. 

Fig. 9 (a) shows the behaviors of the moving magnet at 30 km/h. At low speed it takes several oscillations to dissipate its 
energy and the equilibrium point of magnetic and radial forces is at about half of the stroke. Fig. 9 (b) shows that at 60 km/h 
there is only one relevant oscillation of the moving magnet. The small oscillations outside the footprint are not useful in 
energy recovering. The equilibrium point is noticeably lower in respect to the previous case. In Fig. 9 (c) at 100 km/h there is 
only one oscillation of the magnet and the moving magnet have to deform the bumper to reach an equilibrium point. 

Shown results can vary a lot modifying choices about friction and clearance between magnet and guide. With a clearance of 
several tenth of millimeter on the diameter the pneumatic effect is almost negligible. 

In order to improve the energy scavenger performance in a wide range of vehicle velocities, two complementary dynamic 
behaviors are taken into account: 

• for low velocities, the non-linear elastic magnetic force is used for tuning the adaptive mechanical resonance of the 
energy scavenger and for increasing the oscillations of the floating magnet around the stationary state; 

• for intermediate and high velocities, the resonant contribution is progressively less important and the typical one-
stroke behavior is adequate for the power recovery, as a consequence to the increasing number of revolutions in time 
of the wheel. 

Experimental validation of the model 

In Fig. 10 the block-oriented model and the experimental outcomes are compared. The test is conducted on a shaker and 
reproducing the wheel profile without the mean centrifugal acceleration at 40 km/h. Due to the absence of a mean value of 
force, the prototype has been modified with symmetric preload obtained adding a second fixed magnet with repulsive force 
with respect to the floating magnet. A good agreement is found in the comparison between theoretical model and 
experiments. 

Conclusions 

This paper analyses through an integrated block oriented methodology the dynamic behavior of the moving magnet of an 
electro-magnetic energy scavenger. The effects of the different non-linearities on the system have been compared. 

The paper underlines the separated and integrated effects of magnetic, friction, dead-zone end-stops and pneumatic effects of 
the floating magnet sliding into a calibrated guide. A convenient choice of clearance between moving and fixed parts can be 
used to create an effective air brake preventing or softening shocks with end stops and to modify system dynamic. 

The equivalent parameters for a simplified Maxwell model with a polynomial spring and a linear dashpot of the pneumatic 
effect have been calculated as function of the device geometry. 

The optimization design of these parameters demonstrates effective performance of the energy scavenger. Simulations and 
some numerical comparisons try to empathize these results. 
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Fig. 9 Moving magnet displacement at 30 (a), 60 (b) and 100 (c) km/h in a wheel round  

and mean power output at different vehicle speed (d) 

 
Fig. 10 Comparison between experimental and simulated results for voltage (a) and power (b) output 
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Abstract: 

Trouble shooting acoustic, vibration and controls problems has been a historical application where modal analysis has been 
employed to characterize the troubled system or systems.  For many of the troubled systems no existing analytical models or 
previous test results are available.  Many problems involve systems which have very high overhead or loss production cost, 
therefore the time required to obtain a solution is important.  This paper will examine test methods and characterization 
techniques which are well suited to trouble shooting applications including the use of semi-autonomous and autonomous modal 
parameter estimation and modal modeling methods which can be used to simplify and speed up the process.   

Acronyms 

3D Three Dimensional 
ADC Analog Digital Converter 
ARMA Auto Regressive Moving Average 
CMIF Complex Mode Indicator Function 
EFRF Enhanced Frequency Response Function 
EMIF Enhanced Mode Indicator Function 
ESSV Extended State Space Vector 
DFRF Directional Frequency Response Function 
DOF Degree-of-Freedom 
DOT Department of Transportation 
DSIT Digital System Interface Transmitter 
DSP Digital Signal Processing 
DSS Digital Sensor System 
ERA Eigenvalue Realization Algorithm 
GVT Ground Vibration Test 
GUI Graphical User Interface 
FEM  Finite Element Model 
FRF Frequency Response Function 
FFT Fast Fourier Transform 

HP  Hewlett Packard 
IRF Impulse Response Function 
LSCE Least Squares Complex Exponential  
MAC  Modal Assurance Criteria 
MDOF Multiple Degree-of-Freedom 
MIMO Multiple-Input Multiple-Output 
MRIT Multiple Reference Impact Testing 
NASA National Aeronautics and Space Administration 
PTD Poly Reference Time Domain 
SDA System Dynamic Analysis 
SDOF Single Degree-of-Freedom 
SDRL Structural Dynamics Research Laboratory 
SDRC Structural Dynamics Research Corporation 
SDOF  Single Degree of Freedom 
SST  Spatial Sine Testing 
SVD Singular Value Decomposition 
UC University of Cincinnati 
UMPA Unified Matrix Polynomial Algorithm  
UIF Unit Impulse Function

 

Introduction 

Speeding up and simplifying the measurement process for Frequency Response Functions was the stimulus for the 
development of digital Fourier analysis in the late sixties.  The main application at the time was troubleshooting machine tool 
chatter problems but in the mid sixties in the University of Cincinnati Structural Dynamic Laboratory (UCSDRL) a large 
number of industrial and government projects were being run through the lab. Some were used as Masters and PhD thesis topic 
but many were simple industrial troubleshooting problems. The volume of simple trouble shooting work was interfering with 
the educational process at the university so in the late sixties several spin-off commercial companies were formed by the 
university staff and students.  The most successful was the Structural Dynamic Research Corporation (SDRC) which had a 
large structural testing operation but whose product development was directed towards computer aided design. A number of 
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smaller companies spun-off the university or SDRC into specialized testing areas or in developing products for testing. 

As mentioned, above Fourier Analysis was one of the developments in the late sixties and early seventies which had immediate 
impact on the structural dynamics and controls measurement area.  The problem of interest was solving machine tool chatter 
which is a self excitation vibration problem. It is modeled as a close loop feedback problem that becomes unstable under certain 
cutting conditions. It is necessary to measure the open loop characteristics of the machine tool structure which is done by 
measuring the Directional Frequency Response Function (DFRF) between the cutting force and the relative motion between the 
tool and the work piece of the machine tool. In the seventies Cincinnati was the machine tool manufacturing center of the world 
with over thirty companies in the Cincinnati area.  The University of Cincinnati is a mandatory Cooperative Engineering 
School a number of the students at the undergraduate and graduate worked in or was supported by the machine tool industry. As 
a result, it was common practice to get both undergraduate and master level students involved in some of the trouble shooting 
projects. Master thesis projects were often defined to investigate improved methodology for trouble shooting. One of these 
projects was to investigate impact testing as alternate testing method for measuring Frequency Response Functions (FRF).   

Fortunately, in the 1965 the Fast Fourier Transform was developed and this was implemented on a large hybrid computer in the 
Electrical Engineering Department at the University of Cincinnati and impact testing was demonstrated to be practical by 
testing a small milling machine base and comparing the results from impacting testing and sine testing.   

In 1971 using an HP 5451A impact testing and measuring the Directional Frequency Response Function and mode shapes of a 
small milling machine with impact testing became practical. The results, of this work were reported and demonstrated at an 
International conference in 1972 [1,2,3,4].  As a result of this exposure, applications of Fourier Analysis spread into many 
other industries.  Initially, ninety percent of these applications were trouble shooting applications.  It should be noted that 
currently, probably less than ten percent of the applications are trouble shooting and the majority are for verifying or updating 
Finite Element or Boundary Element analytical models.  

In this paper, the practical methodologies used in trouble shooting application will be reviewed. It should be noted that there are 
two general classes of trouble shooters available.  The first are the companies and/or individual consultants that specialize in 
trouble shooting special types of vibrations, controls of acoustic problems.  The second group consists of individual 
consultants who freelance. These groups often work together with the freelancer working as a consultant or as an extra hand on 
specific trouble shooting or model verification projects.  

Trouble Shooting 

Most modal testing is planned with a pretest analysis and a clear set of test objectives whereas trouble shooting is very often a 
spontaneous action based upon a serious vibration or acoustic event that has suddenly become a problem. In the worst case 
scenario, there is very often no vibration historical data or pretest information available plus no one at the agency requesting the 
test that is familiar with vibration testing procedures or with a method of characterizing the excitation forcing function acting on 
the system.  In the best case scenario, the problem is just the current episode in a recurring problem. As result, the 
troubleshooter’s toolbox has to be large in order to cover the general areas of vibration, acoustic and controls.  There are tools 
that are used in the field and tools for post processing the data back at the office. In this paper the on-site testing will be 
reviewed since the post processing tools are similar to the tools used in processing laboratory test data. The on-site tools data 
reduction tools are simple and designed to get a quick look at the data and then to gather and record sufficient data which can be 
processed in much more detail in the post processing phase. The biggest difference between on-site testing and laboratory 
testing is that a great deal of operating response data is required to identify and characterize the nature and/or source of the 
problem. Modal data is also collected on site to characterize the structural dynamics of the system under test. A quick analysis 
of the modal data is performed to determine good locations to add structural tuning devices (Mass Dampers, stiffeners, etc) and 
to determine if large forced responses are possibly due to structural resonances. Based upon the results of this initial effort, the 
modal database is expanded so that a more complete modal analysis can be performed as part of the post processing phase.  

If the pretest analysis indicates that structural tuning device is a possible solution then a set of driving point and cross 
impedance measurements are taken at points where the vibration levels need to be controlled and at the locations where the 
tuning device and/or devices are installed.   
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On-site Testing 

On-site testing is the most critical phase of most trouble shooting projects. The 1st stage requires understanding the forcing 
functions which are the primary contributors to vibration and acoustic problems.  These forcing functions can be due to the 
operation of the device with the problem or can be environmental forcing functions due to other devices. This testing phase can 
require a wide range of sensors to monitor the vibration, noise levels, rotational speeds of various rotating, etc. (for example 
typical sensors are accelerometers non-contacting displacement sensors, load cells, strain gages, tachometers, shaft encoders, 
etc). The time histories of these sensor array need to be recorded for post processing and portion of it needs to be processed in 
real time to monitor the test and to make decisions about the direction of the test.  Special signal processing software packages 
are useful for the real time processing. {Spectrums (maps, narrow band, octave, order tracking etc)}. 

The 2nd stage very often involves performing a modal test to determine how the system responses to external forcing functions. 
Most modal tests are performed by exciting the system with measured forces and measuring the responses with accelerometers 
or some other displacement measuring sensor.  This data is used to compute a set of Frequency Response Functions (FRF) 
which can be used to estimate the systems modal parameters (eigenvalues, eigenvectors and modal scale factors).  One of the 
most common testing method used during trouble shooting is conducting a Multiple Reference Impact Testing (MRIT) since it 
requires minimum fixturing, instrumentation and test set up. This method is well documented in the literature with hundreds of 
references since it’s development in the late sixties. A complete review of MRIT was presented in the IMAC 2010 
conference[15] which includes a number of historical references.  

Electro-mechanical and hydraulic exciter have been used historically for a number of cases where the forcing function cannot 
be applied conveniently with transient testing method. Historically, very small but powerful hydraulic have been used on 
machine tools and on rolling mills to measured directly the Directional Frequency Response Function which was used to 
predict regenerative self excited vibration problems (machine tool chatter or wash boarding of rolls in rolling mills, etc). Large 
hydraulic actuators have been used on large infrastructure or pieces of equipment. Arrays of smaller electro-mechanical 
exciters have be used on machine tools, equipment racks, etc.  

In the seventies there was a significant effort to development multiple input excitation techniques which would minimize 
“leakage” and the influence of non-linearity’s on the measurement of FRFs.  These methods have proven to be very good for 
conducting laboratory tests where signal processing requirements are well defined. For trouble shooting case it is not clear in 
many cases exactly what you are looking for in the data. Many of the important discoveries are made in the post processing of 
the data.  Therefore, all of the time data taken during the on-site test should be recorded in a manner so that it can be 
reprocessed using different signal process in the post processing phase. As a result, if exciters are used, the best excitation 
signal is uncorrelated pure random data excitation signals.  With uncorrelated random, in the post processing it is possible to 
zoom the data to increase the frequency resolution within the Nyquist frequency. The inputs are randomized so signal 
processing can reduces non-linear distortion errors and cyclic averaging can be used to control leakage. In fact, in the early 
seventies, one of the fantasies was to be able to ADC throughput time data so that the data could be reprocessed with different 
signal processing but if was not until the nineties when inexpensive data storage became available that the fantasy became a 
reality.     

The 3nd stage of the onsite processing is to extract the modal parameters from the measured FRF’s. The modal parameter 
estimation techniques that are used onsite for trouble shooting have been simple one DOF quadrature peak picking methods in 
the seventies and eighties.  In the early 90’s, the method of choice became the CMIF parameter estimation using the imaginary 
part of the Multiple Input Multiple Output(MIMO) FRF matrix measured with either the MRIT or MIMO testing methods. This 
method uses the Singular Value Decomposition (SVD) to obtain an excellent approximation of the best least square estimate of 
the quadrature mode shapes from multiple reference Frequency Response Function data. It was used with good success on 
infrastructure testing in the early to mid nineties.  

It requires moderate experience to interpreting a CMIF plot and subsequently selecting the peaks in the SVD plot which 
correspond to the eigenvalues of the system being tested. The singular value vector at the selected peak is an estimate of the 
systems eigenvector. This vector is used to generate a Enhanced Frequency Response Function (EFRF) which can be used to 
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estimate the systems eigenvalues and modal scale factors. The eigenvalues, eigenvectors and modal scale factor define a modal 
model of the system being tested. A more detailed description of this method can be found in the following 
references[8,9,10,11]. 

In the post processing phase a narrow band frequency domain model has been used to improves the estimate of the modal 
parameters in frequency bands where the modal density in makes it difficult to separate the modes using the CMIF method.  
The process is referred to as the Enhanced Mode Indicator Function (EMIF) method and is description in the following 
reference [12].  

In the past 10 years a simple method which was originally developed as part of the SDA II course has become a method which 
is almost a purely autonomous procedure.  In the SDA II the students have to program a UMPA model which can simulate 
nearly all of the commercial modal parameter algorithms in a period of just a few weeks. In order to write the programs in a few 
weeks the students are instructed to not waste their time on developing a Graphical User Interface (GUI) or any other graphical 
aids such as stability diagrams to aid in filtering out computational modes but to just concentrate solving for the coefficients of 
the basic UMPA algorithm.  The UMPA was formulated to emulate an ERA algorithm which could be used to emulate all the 
standard time domain methods.  CAE and PTD were emulated by using a state space expansion to reduce their high order to a 
1st order ERA formulation. Instead of referring to input and output Degree-of-Freedom, the dimension of UMPA model is 
referred to in terms of a long or short dimension where the long dimension could be a reference to either the inputs or the 
outputs depending upon the testing method used to gather the data (roving inputs or fixed inputs).  

Test Log 

A very important part of any test is to keep a very good and detail test log.  
This is particularly true for trouble shooting applications.. Over the years 
one of the required test items is a good camera which can be used to 
document every exciter and sensor location. Pictures of test article should 
be taken from every angle and labels and bar codes should be used to 
identify each component, etc. 

In the sixties and seventies Polaroid cameras were used for instant photos 
and 35 mm slide cameras for high quality photos.  Today digital cameras 
have become inexpensive and very powerful and for less than 300 dollars 
a relatively small digital camera with a 12 mega pixel sensor, 26x zoom 
lens, HD movie with audio.  An audio tag can be attached to each picture 
and thousands of pictures can be stored on a small Secure Device (SD) 
memory chip. Programs like Photomodeler can take the photos and automatically digitize points on the test object using photo 
reflective circular bar code targets. In Figure 1 a photo taken recently of a sensor located on test object from a distance of fifteen 
feet is shown. It is possible to read the serial number of the sensor and 
the point on structure.  

Case History 

Two stations used to machine transmission housing were experiencing 
chatter problem where on one station the problem was intermitted and 
on the second station the chatter problem was totally unacceptable.  
Only one machining station was required for production and the 
second was a backup in case the first needed servicing.  This transfer 
line was in the processing of replacing an older line which was 
currently running production.  

The problem was to determine a fix for the inoperable station and to 
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improve the performance of the underperforming station. The test was to be 
conducted during a two to three hours test window per night on the third shift 
since the first two shifts were in the process of bringing the new transfer line 
on-line. It was to take several months to bring the transfer line on-line and the 
trouble shooting would be worked into that schedule. The problem on both 
stations was a machine tool chatter problem. It was anticipated that the on-site 
testing could take 10 to 20 hours. The fix might involve modifying the test 
stands by adding a mass damper or by making structural changes.  

The test crew consisted of two UCSDRL graduate students which were hired as 
consultants by The Modalshop in Cincinnati who was under contract with the 
auto company to solve the chatter problem. The initial test was to measure 
vibration data at accessible points as close to the cutting zone as possible.   

The test equipment was supplied by the The Modalshop and consisted of a 48 
channel HP VXI data acquisiton system data acquisition system. The sensors 
consisted of two pound impact hammer, 10 - 1 volt per g tri-axial 
accelerometers, 2 tear drop, 10 mv per g, and 5 single axis 100mv per g. Several 
pictures of the test site are shown for general reference. In figure (2 ) a picture of  

the cutting spindle is shown and alternate view of the spindle is shown in Figure(3). It is designed to fit is the inside the housing 
of automatic transmission case and machine 13 internal surfaces.   

The machine cycle for machining consisted of 10 sec cutting cycle with 13 cuts being made simultaneously on the interior 
surface of the automatic transmission case. The chatter was occurring on only on one surface which was sealing surface for the  

 

 

drive shaft. This was a important surface where the surface finish and accuracy were critical. Unfortunately, this surface could 
not be clean up by a subsequent machine process and the complete transmission housing had to be discarded if chatter occurred. 
The 1st test was to measure the vibration due to the chatter and check this frequency against the chatter marks on the 

355



transmission housing. A small accelerometer was mounted on the exterior surface of the transmission during the cutting process 
and the waterfall spectrum was measured during the cutting process. The chatter frequency shows up clearly in the waterfall 
spectrum (See Figure 6) and this frequency corresponds with the observed chatter marks on the transmission housing.   

The next step was to measure the Directional Frequency Response Function (DFRF) which is the relative motion between the 
cutting tool and work piece due the cutting force. This measurement was made using impact testing.  It was not possible to 
impact of the cutting spindle without removing the housing since the spindle was completely inside of the transmission 
housing. The only possibility of impacting on the spindle was to drill a hole through the transmission housing and use the modal 
punch to impact through the hole.  The modal punch is PCB product which can be used to impact hard to reach points during an 
impact test. An examination of mechanical design of the machine tool suggested that the work piece support and the cutting 
spindle support were basically uncoupled. This was verified in the subsequent modal test. As a result, the DFRF could be 
measured by impacting on the transmission housing; then removing the housing and then impacting on the spindle and then 
estimating the relative motion to the relative forcing function.  

This testing process was repeated upon both machining stations and the results are shown in Figure 7. There is a significant 
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resonance at 244 Hz on the machine which is responsible for the significant chatter that is observed in the waterfall spectrum 
data.  The chatter is not at the frequency of the mode but normally at a slightly higher frequency.  This phenomenon is 
consistent with the close loop response of the single point machine tool chatter feedback loop.  

The next step was the make measurements that could be used to predict the influence a mass damper mounted on the machine 
tool. The mass damper could not easily be build into the spindle but it could be mounted on the head stock.  Driving point FRF 
measurement at the spindle end and the point on the head stock and the cross measurement between the two locations were 
made.  This data is shown in Figure 8.  Using this data a simple impedance model was built and used to predict the effect of 
several mass damper designs mounted on the head stock. The results are shown in Figure 9.  This damper would improve the 
bad machine to be comparable with good machine. However, the good machine was marginal. 

The next phase was to perform a complete modal test on the two machines to develop a better understanding of their dynamics. 
There were two questions that needed to be answer why did one machine have a strong resonance at 144 HZ and the identical 
second machine had a much smaller response in the same frequency band and secondly what could be done to improve the 
performance of the good machine. 

Two complete MRIT tests were performed on the two machines.  Five points were selected as impact points and reference 
accelerometers were mounted at the impact points and 10 tri-axial accelerometers were roved over the structure. This is one of 
standard testing protocols for MRIT testing.  

The modal data was processed with The CMIF and EMIF parameter estimation procedures using the X-Modal program 
developed in the UCSDRL. These methods have been the methods of choice for many of the MRIT trouble shooting cases and 
performed well on the data taken during this trouble shooting project.   

The initial prognosis was that the most likely reason for the difference was due to some problem within the spindle but the 
modal test indicated that there was abnormal deformation of the headstock on the bad machine. See Figure 10. The head stock 
was subsequently removed and examine and it was discovered that one of the internal stiffeners in the head stock weldment was 
missing. 

The modal analysis also indicated that modes which contributed to intermitted chatter problems problem around 100 and 150 
Hz had modes with significant motion between the machine tool foundation and machine tool.  In other words, the machine 
was not properly mounted to the foundation. This was a fixed by a machine repairman by simply bolting the machine properly 
to the foundation. The headstock was replaced on the bad machine and it was fasten to foundation. Correcting these two 
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problems corrected the chatter problems on the two machining stations which machined the internal surfaces of the automatic 
transmission case.  

This trouble shooting case is typical of many of the machine test that had been performed historically.   

Case 2 

The second case is not a case history of solving a trouble shooting problem but a review of the development of a fairly 
autonomous testing method that will have impact on future trouble shooting application because it will simplify the process of 
extracting modal parameters.  The technique is a methodology that evolved from the System Dynamic Course at the 
University of Cincinnati.  In this course the students have to development their own MATLAB programs to process raw time 
data into Frequency Response Functions (FRF).  Then take their FRF data and extract the modal parameters with their own 
MATLAB programs and then develop both a modal modeling and an impedance modeling program to predict modifications to 
a system in the laboratory based upon a model they built from their own modal database.  This sound impossible considering 
that at any one step in this parameter estimation process was a Masters of PhD thesis project.  However, for the past 15 years 
students have been quite successful at fulfilling the course requirements.   

With the development of the UMPA modeling concepts, the programming of the various parameter estimation has been 
simplified to the point where in a matter a three to four weeks the students develop MATLAB code which can emulated most of 
the current commercial parameter estimation algorithms.  They could program the algorithms but they had to come up with a 
simple method of sorting out the computational modes.  Sorting out computational modes has been a historical problem and in 
the last 5 to 10 years and it has become one of the main selling points for commercial software.  

The student discovered a fairly simple method. One of the techniques they tried was to use the spatial information as a filtering 
agent.  This was done in the early days by NASA which used main frame computers and the ERA algorithm to estimate their 
modal parameters.  They ran two solutions based upon different starting times through the ERA algorithm and checked the 
correlation between the estimate eigenvectors and found that this correlation was a fairly effective filter for eliminating 
computational modes. The students modified this method by using the 1st order UMPA model and instead of different starting 
values for the two solutions they used two different objective functions to minimize the noise.  They normalized the model 
with respect to the A0 term and the A1 term.  They correlated the state space eigenvectors between the two solutions using the 
Modal Assurance Criteria and found that in general this was a very effective filtering method. The computational modes were 
not well correlated relative to each other while the system modes showed a fairly high degree of correlation. The eigenvalues 
were not used in the filtering process but could be used as an indication of the variance on the eigenvalue estimates.  If there 
was little variance then there was some confidence that the eigenvalues were fairly well estimated.  With no other data but the 
two estimates,  the average value, the eigenvalues for a given mode was used as the best estimate of the eigenvalues .  

Once the eigenvalues and eigenvectors are estimated then it is necessary to get estimate for the modal scale factors for each 
mode.  There are a number of methods for doing this but the student’s could take advantage of the fact that they had to estimate 
the modal scale factor in the course when they were programming the CMIF method.  The EFRF for a given mode could be 
computed using the estimated eigenvector.  Since they already had a estimate of the eigenvalues they only had to fit for the 
residue of the EFRF for the modal scale factor. Once they had this estimate of the modal scale factor, they had a truncated 
modal model of the system.  

One way of checking whether the modal model was good was to compared the CMIF plot from the measured data with a CMIF 
plot of the synthesize data.  If they got a good comparison then they could have some confidence in the modal model. To get a 
better comparison, they would need to fit the measured data for residuals and included these terms when they synthesized the 
data.  

In order to demonstrate this method, three input shaker data for the C-plate was processed using a simple student MATLAB 
UMPA program. The UMPA model was a long dimension model with 13 states. The number of states is the only parameter that 
needs to be set in this method for the computation and the MAC value can be set to filtering level for the eigenvectors.  In this 
example only eigenvectors with a MAC values above 0.98 were saved.  
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The number of states times the length of the long vector is equal to the number of estimated eigenvalues.  For example, in this 
case the number of responses is equal to 30 so the number of estimated eigenvalues is 13 time 30 or 390 eigenvalues. It takes 
approximately 1 minute to solve for the eigenvalues and eigenvectors of the system and filter the results using a fairly ordinary 
current generation notebook computer running windows.  The resulting poles are display plotted in the complex plane; See 
Figure (11) and the filtered eigenvalues and eigenvectors are saved in a MAT files which acts as input to a MATLAB program 
which calculates the EFRFs . These EFRFs are curve fits to determine their residue which is equal to modal scale factor. The 
eigenvalues, eigenvectors and modal factors are then stored in a file along with the geometry of the plate. This is a complete 
modal model for the system.  This process is almost completely autonomous the only parameters were the number of states and 
MAC filter set at the beginning of the parameter estimation process. 
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The next step is to synthesize the measurement and compare the synthesized measurements to measured data.  A CMIF plot of 
the synthesized data is plotted on a CMIF plot of the measured data; See Figure( 12).  This is a quick way to get a overview of 
all the data.  

For this example, there does not appear to be any missing modes in the 0-1000 Hz frequency band. The frequencies seem to 
match well but there are small differences in the amplitudes of some of the modes.  In the reconstruction of the data in figure 
(12), no residual terms were included and there are variation in the estimates of the damping on some of the poles as indicated 
in figure (11) which shows the pole locations in the complex plane.   

This method has been described in detail in a paper that was just presented at the latest ISMA conference [16] along with a 
much more powerful method that is also almost completely autonomous.  This newer method is being incorporated into 
X-Modal III which is the latest version of the MATLAB modal program developed in UCSDRL. This newer method will be 
described in a paper being presented in the upcoming IMAC conference.  It should be noted that the method described in this 
paper can easily be run directly in X-modal and the students used it as another means of checking their results. 

360



Summary 

Trouble shooting vibration, acoustic and control problems has a long application history.  It was probably ninety percent of the 
vibration testing applications in the seventies and probably only ten percent today.  There is significantly more people doing 
testing today relative to the seventies and they are doing more model verification testing. 

In terms of the testing practices: 

•  On-site 

o Need lots of tools 

o Large variety of sensors 

o Run Log important 

o Simple but quick real time data analysis tools  

o Need to record all time histories for post processing 

 Make sure recorded time history data is not compromised relative to post-processing in order to 
get optimum on-site processing 

o Whenever possible used tri-axial sensors to improve on site visualization of mode shapes.  Very often a 
visual distortion when looking at on-site mode shapes may confuse the diagnostic of a vibration problem.   

• Post Processing 

o More sophisticated modal data processing similar to techniques used for laboratory testing applications. 
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ABSTRACT

Traditionally, the estimation of modal parameters from a set of measured data has required significant experience. However,
as the technology has matured, increasingly, analysis is being performed by less experienced engineers or technicians. To
address this development, frequently software solutions are focusing upon either wizard-based or autonomous/semi-
autonomous approaches. A number of autonomic approaches to estimating modal parameters from experimental data have
been proposed in the past. In this paper, this history is revewed and a technique suitable for either approach is presented. By
combining traditional modal parameter estimation algorithms with a-priori decision information, the process of identifying
the modal parameters (frequency, damping, mode shape, and modal scaling) can be relatively simple and automated.
Examples of the efficacy of this technique are shown for both laboratory and real-world applications in a related paper.

Nomenclature

Ni = Number of inputs.
No = Number of outputs.
NS = Short dimension size.
NL = Long dimension size
N = Number of modal frequencies.
λ r = S domain polynomial root.
λ r = Complex modal frequency (rad/sec).
λ r = σ r + j ω r

σ r = Modal damping.
ω r = Damped natural frequency.
zr = Z domain polynomial root.
{ψ r} = Base vector (modal vector).
{φ r} = Pole weighted base vector (state vector).
[Ar] = Residue matrix, mode r.
[I] = Identity matrix.

ti = Discrete time (sec).
ω i = Discrete frequency (rad/sec).
si = Generalized frequency variable.
x(ti) = Response function vector (No × 1)).
X(ω i) = Response function vector (No × 1)).
f(ti) = Input function vector (Ni × 1))
F(ω i) = Input function vector (Ni × 1)).
[h(ti)] = IRF matrix (No × Ni)).
[H(ω i)] = FRF matrix (No × Ni)).
[α ] = Denominator polynomial matrix coefficient.
[β ] = Numerator polynomial matrix coefficient.
m = Model order for denominator polynomial.
n = Model order for numerator polynomial.
v = Model order for base vector.
r = Mode number.

1. Introduction

The desire to estimate modal parameters automatically, once a set or multiple sets of test data are acquired, has been a subject
of great interest for more than 40 years. In the 1960s, when modal testing was limited to analog test methods, several
researchers were exploring the idea of an automated test procedure for determining modal parameters [1-3]. Today, with the
increased memory and compute power of current computers used to process test data, an automated or autonomous, modal
parameter estimation procedure is entirely possible and is being attempted by numerous researchers.

Before proceeding with a discussion of autonomous modal parameter estimation, some philosophy and definitions regarding

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 363 
DOI 10.1007/978-1-4419-9299-4_32, © The Society for Experimental Mechanics, Inc. 2011

mailto:Phillips@UC.EDU


what is considered autonomous is required. In general, autonomous modal parameter estimation refers to an automated
procedure that is applied to a modal parameter estimation algorithm so that no user interaction is required once the process is
initiated. This typically involves setting a number of parameters or thresholds that are used to guide the process in order to
exclude solutions that are not acceptable to the user. When the procedure finishes, a set of modal parameters is identified that
can then be reduced or expanded if necessary. The goal is that no further reduction, expansion or interaction with the process
will be required.

The larger question concerning autonomous modal parameter estimation is the intended user. Is the autonomous modal
parameter estimation procedure expected to give results sufficiently robust for the novice user? This implies that the user
could have no experience with modal analysis and, therefore, have no experiential judgement to use in assessing the quality
of the results. The use of the term wizard implies that this is the desired situation. In contrast, the user could be very
knowledgeable in the theory and experienced. For this case, the autonomous modal parameter estimation procedure is simply
an efficient mechanism for sorting a very large number of solutions into a final set of solutions that satisfies a set of criteria
and thresholds that are acceptable to the user. This user is the assumed reader for the purposes of this discussion.

In order to discuss autonomous modal parameter estimation, some background is needed to clarify terminology and
methodology. First, a brief history and overview of documented autonomous modal parameter estimation methods is
presented. Second, an overview of some of the tools or semi-autonomous methods that are useful as part of the autonomous
modal parameter estimation procedure are reviewed. Finally, the general procedure for an autonomous modal parameter
estimation methods that is based upon consistent state vectors, referred to as Common Statstical Subspace Autonomous
Mode Identification (CSSAMI), is presented followed by a number of examples. Note that much of the background of the
following discussion will be based upon the Unified Matrix Polynomial Algorithm (UMPA) developed by the authors and
described in a number of other papers [4-8] .

2. Background: Autonomous Modal Parameter Estimation

The interest in automatic modal parameter estimation methods has been documented in the literature since at least the mid
1960s when the primary modal method was the analog, force appropriation method [1-3]. Following that early work, there
has been a continuing interest in autonomous methods [9-28] that, in most cases, have been procedures that are formulated
based upon a specific modal parameter estimation algorithm like the Eigensystem Realization Algorithm (ERA), the
Polyreference Time Domain (PTD) algorithm or more recently the Polyreference Least Squares Complex Frequency
(PLSCF) algorithm or the commercial version of the PLSCF, the PolyMAX ® method.

Each of these past procedures have shown some promise but have not yet been widely adopted. In many cases, the procedure
focussed on a single modal parameter estimation algorithm and did not develop a general procedure. Most of the past
procedural methods focussed on pole density but depended on limited modal vector data to identify correlated solutions.
Currently, due to increased computational speed and larger availability of memory, procedural methods can be developed that
were beyond the computational scope of available hardware only a few years ago. These methods do not require any initial
thresholding of the solution sets and rely upon correlation of the vector space of thousands of potential solutions as the
primary identification tool. With the addition to any modal parameter estimation algorithm of the concept of pole weighted
vector, the length, and therefore the sensitivity, of the these extended vectors provides an additional tool that appears to be
very useful in autonomous modal parameter estimation.

3. Numerical Tools - Autonomous Modal Parameter Estimation

The development of many of the past procedures and any new proposed procedure depends heavily on a number of numerical
tools that have been developed over the last twenty years or so [29-55]. These tools are currently used by many algorithms as
a user interaction tool or semi-autonomous tool to assist the user in picking an appropriate set of modal parameters. These
tools are described in great detail in the literature and are summarized briefly in the next several sections.

3.1 Consistency Diagrams

For the last thirty years, modal parameter estimation based upon experimental data, primarily frequency response functions
(FRFs), has utilized some form of error chart and/or stabilization diagram to visualize and assist in the determination of the
correct modal frequencies [46-49,53-54]. The conceptual basis of the stabilization diagram is that distinct and unique modal
frequencies can be identified by comparing the roots of a characteristic polynomial when the model order of the characteristic
polynomial is increased or the subspace is altered in a systematic manner. The stabilization or consistency diagram is based
upon successive solutions of Equation (1) or Equation (2) for different values of the maximum model order m. If the roots
are consistent as the model order is increased, these roots are identified as modal frequencies. If the roots are inconsistent,
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these roots are associated with noise on the data and are discarded. Since there is generally much more FRF data available
than is needed to solve for the number of modal parameters of interest, the characteristic polynomial is normally estimated in
a least squares sense and can be reformulated from the measured data for each model order [4-5].

Frequency Domain Algorithms:

⎪
⎪

[α m] sm + [α m−1] sm−1 + [α m−2] sm−2 + . . . . . . . . . + [α 0] ⎪
⎪

= 0 (1)

where:

sr = λ r λ r = σ r + j ω r

Time Domain Algorithms:

⎪
⎪

[α m] zm + [α m−1] zm−1 + [α m−2] zm−2 + . . . . . . . . . + [α 0] ⎪
⎪

= 0 (2)

where:

zr = eλ r Δt λ r = σ r + j ω r

σ r = Re
⎡
⎢
⎣

ln zr

Δt

⎤
⎥
⎦

ω r = Im
⎡
⎢
⎣

ln zr

Δt

⎤
⎥
⎦

In most implementations, the stabilization diagram or consistency diagram is presented as a two dimensional plot with
frequency on the abscissa and characteristic polynomial model order on the ordinate. A plot of the summed magnitude of all
of the FRFs, or a plot of one of the mode indicator functions (complex mode indicator function (CMIF) or multivariate mode
indicator function (MvMIF)), is placed in the background for reference. For each model order, symbols are plotted along the
frequency axis wherever a root of the characteristic polynomial has been estimated. Historically, the characteristic
polynomial had scalar coefficients (single reference data) so the roots are complex valued and have both frequency and
damping information. The original symbols were used to indicate, in increasing importance, Level 1: a pole was found, Level
2: a pole was found with an associated complex conjugate, Level 3: Lev el 2 plus the damping was realistic (negative real part
of pole), Level 4: Lev el 3 plus a damped natural frequency (imaginary part of pole) consistency within a specified percentage
(normally 1 percent) and Level 5: Lev el 4 plus a damping consistency with a specified percentage (normally 5 percent).

As multiple reference parameter estimation was developed, this led to matrix coefficient, characteristic polynomial equations
which created further evaluation criteria, Level 6: Lev el 5 plus a vector consistency within a specified modal assurance
criterion (MAC) value (normally 0.95). Since the vector that is associated with the matrix coefficient, characteristic
polynomial may be different sizes (function of NS or NL), a variation of Level 6 inv olves an additional solution for the vector
at the largest dimension NL so that a more statistically significant comparison of vectors can be utilized. Finally, numerical
conditioning can be evaluated for each solution and if the numerical conditioning is approaching a limit based upon the
accuracy of the data or the numerical limitations of the computer algorithm or word size, Level 7 can be added to indicate a
possible numerical problem. In general, all of the specified values that indicate consistency at each level can be user defined
and are referred to as the stability or consistency tolerances.

This information generates a consistency diagram, for a simple circular plate structure, that looks like Figure 1. With all of
the symbols presented, the consistency diagram for even this simple structure can be very complicated. Figures 1 and 2
demonstrate two different presentations of consistency diagrams based upon different presentations of the characteristic
matrix coefficient polynomial information. In both figures, an average autopower of the measured data is plotted on the
consistency diagram in the background for reference.
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Figure 1. Typical Consistency Diagram

Figure 2 presents the consistency diagram using an entirely different method that involves using the modal assurance criterion
(MAC) to compare vectors from successive solutions of the characteristic polynomial equation. Rather than comparing the
unscaled modal vectors (base vectors) directly, a pole weighted vector of v-th order is constructed for each solution and
compared to similarly constructed pole weighted vectors for the previous solution. Further explanation of the pole weighted
vector is provided in Section 3.3 and can also be found in the literature [46-47].
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Figure 2. Alternate Consistency Diagram - Pole Weighted MAC

3.1.1 Clear Consistency Diagrams

A number of different methods can be used to generate the consistency diagram that will impact the clarity of the consistency
diagram. A number of recent papers [46-47,53-54] have identified the effects of changing the consistency tolerances on the
resultant consistency diagrams, yielding a clearer presentation of symbols that indicate the presence of a structural mode of
vibration. These methods can be combined with the coefficient normalization and consistency tolerances to generate a very
clear diagram in most cases where the measured data has a reasonable match to linear, reciprocal system assumptions,
observability issues and reasonable data noise levels. These methods have been used on a wide range of data cases in the
automotive and aerospace application areas with good success. The methods include:

• Symbol Sizing Based Upon Normal Mode Criteria

• Complete or Incomplete Vector Comparisons

• Using Both Coefficient Normalization Methods

• Numerator and Denominator Model Order Variation

• Fixed Denominator and Numerator Order Variation

• Frequency Normalization Variation

3.2 Long Dimension Vector Solution

While many high order, matrix coefficient modal parameter estimation methods estimate unscaled modal vectors as part of
the estimation of the poles, there is no reason to limit the length of the unscaled modal vector to the short dimension. Each
short dimension vector can be used to estimate the unscaled vector for the long dimension as a part of the solution. This
requires an extra solution step but, for each model order, requires very little additional computational effort. In this case,
regardless of the method employed to estimate the modal frequencies, all unscaled modal vectors will be of length equal to
the long dimension. No attempt to restrict the set of modal frequencies is used at this point in the procedure; all possible
poles are included in this calculation. This set of unscaled vectors will include structural modal vectors and computational
vectors. Sorting these vectors is left to a correlation procedure such as the modal assurance criterion (MAC) with a threshold
(minimum MAC value). Note that this extra step can include the estimation of modal scaling so that scaled modal vectors
and modal scaling values can be used as part of the evaluation process.
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3.3 Pole Weighted Modal Vectors

When comparing base vectors, at either the short or the long dimension, a pole weighted base vector can be constructed
independent of the original UMPA(m,n,v) procedure used to estimate the poles and base vectors. For a given order v of the
pole weighted vector, the base vector and the associated pole can be used to formulate the pole weighted vector as follows:

{φ }r =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

λv
r {ψ }r

.

.

.
λ2

r {ψ }r

λ1
r {ψ }r

λ0
r {ψ }r

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭r

(3)

The above formulation will be dominated by the high order terms if actual frequency units are utilized. Generalized
frequency concepts (frequency normalization or z domain transform) are normally used to minimize this problem as follows:

{φ }r =
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⎪
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⎪
⎪
⎪
⎭r

(4)

zr = ej*π *(ω r/ωmax) = ej*ω r*Δt (5)

zm
r = ej*π *m*(ω r/ωmax) (6)

In the above equations, Δt and ωmax can be chosen as needed to cause the positive and negative roots to wrap around the unit
circle in the z domain without overlapping (aliasing). Normally, ωmax is taken to be five percent larger than the largest
frequency identified in the roots of the matrix coefficient polynomial.

3.4 Pole Surface Consistency and Density

A number of other pole presentation diagrams, related to the consistency diagram, such as pole surface consistency and pole
surface density diagrams have proven useful for identifying modal parameters [43-44,56-57] and may be more powerful than
the consistency diagram alone. Generally, pole surface density diagrams are more powerful than consistency or stability
diagrams at locating similar pole vector estimates from all of the possible solutions represented in the consistency diagram.
All of the poles from all solutions involved in the consistency diagram are ploted in the second quadrant of the s plane. Pole
estimates that are located within a two dimensional theshold from each other are defined as participating in a pole cluster or a
dense region of estimated poles in the s plane. The poles that are compared on these pole surface diagrams are generally
limited to the poles identified on the consistency diagram (if some symbols are omitted from the consistency diagram, these
poles will not be included on the pole surface diagram. The distribution of the poles that participate in a pole cluster can be
used to find a single pole-vector estimate and the distribution can be used to estimate statistics related to the variance in the
pole estimate. An example of a pole surface consistency diagram is given in Figure 3 and the companion pole surface density
diagram in Figure 4.
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Figure 3. Pole Surface Consistency Diagram with Final Autonomous Estimates
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Figure 4. Pole Surface Density Diagram

Figures 3 and 4 presents the same information previously shown in Figures 1 and 2. Note that in all cases, suppressing the
obvious spurious computational poles results in a substantially cleaner consistency diagram with clear indications of the pole
locations. This translates to the Pole Surface Diagram as well. Note that suppressing spurious modes entails a risk that some
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valid modes may be eliminated which may not be attractive behavior once autonomous modal parameter estimation
procedures are utilized.

4. Autonomous Modal Parameter Estimation Method

The autonomous modal parameter estimation method developed and presented in the following is a general method that can
be used with any algorithm that fits within the UMPA structure. A complete description of the Unified Matrix Polynomial
Algorithm (UMPA) thought process can be found in a number of references developed by the authors [4-8, 57] . This means
that this method can be applied to both low and high order methods with low or high order base vectors. This also means that
most commercial algorithms could take advantage of this procedure. Note that high order matrix coefficient polynomials
normally have coefficient matrices of dimension that is based upon the short dimension of the data matrix (NS × NS). In these
cases, it may be useful to solve for the long dimension modal vectors or to use pole weighted modal vectors. This will extend
the temporal-spatial information in the NS length base vector so that the vector will be more sensitive to change. This
characteristic is what gives this autonomous method (CSSAMI) the ability to distinguish between computational and
structural modal parameters.

The implementation of the autonomous modal parameter estimation for this method is detailed in the following sections.

4.1 Step 1: Develop a Consistency Diagram

Develop a consistency diagram using any UMPA solution method. Since this autonomous method utilizes a pole surface
density plot, having a large number of iterations in the consistency diagram (due to model order, subspace iteration, starting
times, equation normalization, etc.) will be potentially advantageous. The possibility of combining solutions from different
consistency diagrams originating from different UMPA models is also a natural extension of this autonomous approach.
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Figure 5. Consistency Diagram Showing All Poles

The larger the number of solutions (represented by symbols) in the consistency diagram, the more computation time and
memory will be required. However, restricting the number of solutions using clear stabilization (consistency) methods may
be counterproductive [59].
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4.2 Step 2: Find Scaled Modal Vectors

If the UMPA method is high order (coefficient matrices of size NS × NS), solve for the complete vector (function of NL for all
roots, structural and computational).
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Figure 6. Typical Complex Plot of Unscaled and Scaled Modal Vectors

Figure 6 shows plots of a complex valued modal vector originating from PTD (left) and ERA (right) methods. The green
circle symbols represent the normalized modal vector associated with the consistency diagram for one of the poles of one of
the high order solutions. The blue x symbols represent the scaled (in terms of residue) full length vectors that can be
computed, mode by mode, before continuing. The purpose in calculating the complete, scaled vector is two-fold. The first is
the additional discrimination of the algorithm that results from the longer vector length (PTD example on the left). The
second is the availability of the modal scaling information, used to calculate Modal A. This scaling information can be useful
at the end of the solution process in order to asses the quality of the results (magnitude and phase of Modal A, for example).
Even long basis vectors should be scaled so that this assessment information is available for all cases (ERA example on the
right).

4.3 Step 3: Determine Pole Surface Density Clusters

Based upon the pole surface density threshold, identify all possible pole densities above some minimum value. This will be a
function of the number of possible solutions represented by the consistency diagram. The pole density is defined for each
pole as the number other poles within a specified complex tolerance radius. This range can be defined in terms of either
absolute or relative frequency. Just as in Step 1, restricting the number of poles reduces both the time and the memory
required for solution, but it also reduces the amount of information available to the algorithm. As a result, an overly restrictive
threshold may be counterproductive. Figures 7 and 8 show the pole consistency plots (showing pole locations in the second
quadrant of the s-plane) that are evaluated in this step.
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362 362.5 363 363.5 364 364.5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
Pole Surface Consistency

Imaginary (Hz)

Ze
ta

 (%
)

cluster

pole & vector

pole

frequency

conjugate

non realistic

1/condition

Figure 8. Zoomed Pole Clusters
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4.4 Step 4: Construct Normalized Pole Weighted Vectors

Normalize each vector to unity length with dominant real part and then construct a predefined, higher order (typically 10th
order), pole weighted vector for each solution [47].
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4.5 Step 5: Calculate Auto-MAC of Normaliz ed, Pole Weighted Vectors

Sort the normalized pole weighted vectors created in Step 4 into frequency order based upon damped natural frequency (ω r).
Then calculate the Auto-MAC matrix for all pole weighted vectors.

Figure 9. Auto-MAC Color Plot of Tenth Order Pole Weighted Vectors, No Threshold

The size of the red squares in Figure 9 (and in the following Figure 10) represents the number of vectors in each cluster of
poles found anywhere in the consistency diagram.

4.6 Step 6: Remove Pole Weighted Vectors Below Threshold

Retain all Auto-MAC values that have a pole weighted MAC value above a threshold, 0.8 works well for most cases. All
values below the threshold are set to 0.0.

373



Figure 10. Auto-MAC Color Plot of Tenth Order Pole Weighted Vectors, Above Threshold

4.7 Step 7: Identify and Retain Consistent Pole Weighted Vector Clusters

Identify vector clusters from this pole weighted MAC diagram that represent the same pole weighted vector. This is done by
taking the singular value decomposition (SVD) of the pole weighted MAC matrix. The number of significant singular values
for this MAC matrix represents the number of significant pole clusters in the pole weighted vector matrix and the value of
each significant singular value represents the size of the cluster since the vectors are unitary. Note that the singular value is
nominally the square of the number of vectors in the cluster and will likely be different, mode by mode. Recognize also that
Figure 10, as a thesholded Auto-MAC plot, will be largely zero and have significant magnitude (above the threshold) only for
the pole weighted vectors that represent a cluster.
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Figure 11. Principal Values of Clusters of Pole Weighted Vectors

Figure 11 then is a plot of the scaled singular values for Figure 10. Each significant singular value as determined by a
minimum cluster size threshold (typically 4) represents a cluster of pole weighted vectors with an equivalent spatio-temporal
characteristic. The location of the corresponding pole weighted vectors in the pole weighted vector matrix (index) is found
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from the associated left singular vector. The singular vector associated with these significant singular values is nominally a
logical index vector (when scaled by the square root of the singular value) and is used to determine the location in the original
pole weighted vector matrix for those pole weighted vectors that are identified as being in a consistent cluster. This is
accomplished by multiplying the left singular vector by the square root of the singular value and retaining all positions
(indexes) above a threshold (typically 0.9). The positions of the non-zero elements in this vector are the indexes into the pole
weighted vector matrix for all vectors belonging to a single cluster.

4.8 Step 8: Evaluate Pole Cluster

Effectively, Step 7 yields, cluster by cluster, the pole weighted vectors that will be used to identify a single consistent spatio-
temporal set of data representing a single complex modal frequency, modal vector, and modal scaling. For each identified
pole weighted vector cluster, a singular value decomposition (SVD) is performed on the identified set of pole weighted
vectors. Note that the number of pole weighted vectors included in each cluster will in general not be the same. The
significant left singular vector is the dominant (average) pole weighted vector. Use the zeroth order portion of this dominant
vector to identify the modal vector and the relationship between the zeroth order and the first order portions of the dominant
vector to identify the complex modal frequency. Complete the solution for modal scaling by using any MIMO process of your
choice. A complete discussion of the choices can be found in the literature [48].

4.9 Step 9: Complete Statistical Evaluation for Each Pole Cluster

Since each cluster in Step 8 involves a number of estimates of complex modal frequency, modal vector, and modal scaling,
computing statistics on the variation in the cluster is a natural part of this autonomous modal parameter estimation process.
Tables 1 to 3 are examples of statistics that can be easily computed based upon these data clusters. Complete details about
these statistics, their rationale and how each is computed can be found another paper [59].

Naturally, the statistics in these tables give the possibility, with experience, of developing an automatic threshold on any
number of physical or statistical values to exclude solutions which are deemed physically unrealistic or statistically
unacceptable. At this time, this is left to user interaction at the completion of the CSSAMI processing.

Index Sample Size (N) Frequency (Hz) Damping (Hz) Frequency (Hz) Damping (Hz) Std. Dev. (Hz)

(Mean) (Mean)

8 16 362.564 -3.1666 362.564 -3.1670 0.1677

19 16 363.860 -3.5650 363.860 -3.5650 0.1251

10 16 557.055 -2.8966 557.055 -2.8966 0.0795

12 16 761.224 -5.2229 761.224 -5.2229 0.1008

2 17 764.190 -2.5371 764.190 -2.5371 0.1529

16 16 1222.980 -4.0883 1222.980 -4.0883 0.0271

13 16 1224.055 -3.9540 1224.055 -3.9540 0.0419

4 17 1328.036 -6.6495 1328.036 -6.6507 0.0907

17 16 1328.803 -5.4761 1328.803 -5.4768 0.1871

6 17 2019.269 -8.2512 2019.271 -8.2511 0.2543

23 15 2023.802 -7.5597 2023.801 -7.5598 0.0642

26 10 2321.862 -3.9074 2321.860 -3.9070 0.1690

28 8 2322.335 -3.8356 2322.335 -3.8367 0.2244

22 15 2337.895 -3.7967 2337.895 -3.7971 0.2287

TABLE 1. Modal Frequency Statistics
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Index N Frequency (Hz) NMVR1 NMVR2 NSVR1 NSVR2

8 16 362.564 0.0046 0.0730 0.0046 0.0730

19 16 363.860 0.0034 0.0543 0.0034 0.0543

10 16 557.055 0.0001 0.0014 0.0001 0.0014

12 16 761.224 0.0007 0.0092 0.0007 0.0093

2 17 764.190 0.0020 0.0312 0.0020 0.0312

16 16 1222.980 0.0017 0.0213 0.0017 0.0213

13 16 1224.055 0.0013 0.0185 0.0013 0.0184

4 17 1328.036 0.0042 0.0718 0.0042 0.0717

17 16 1328.803 0.0022 0.0342 0.0022 0.0342

6 17 2019.269 0.0054 0.0763 0.0054 0.0763

23 15 2023.802 0.0047 0.0537 0.0047 0.0537

26 10 2321.862 0.0162 0.1617 0.0162 0.1617

28 8 2322.335 0.0161 0.1279 0.0161 0.1278

22 15 2337.895 0.0020 0.0238 0.0020 0.0238

TABLE 2. Modal Vector Statistics

Index N Frequency (Hz) ModalA (State Vector) ModalA (Mean from cluster)

real imaginary magnitude phase real imaginary magnitude phase Std. Dev.

8 16 362.564 3.9663e+002 -5.7201e+003 5.7338e+003 -86.03 3.9574e+002 -5.7195e+003 5.7332e+003 -86.04 1.3866e+002

19 16 363.860 -4.8353e+001 -4.8716e+003 4.8719e+003 -90.57 4.5311e+001 -4.9271e+003 4.9273e+003 -89.47 3.1271e+002

10 16 557.055 7.3166e+001 -9.7205e+003 9.7207e+003 -89.57 8.4818e+001 -9.7107e+003 9.7111e+003 -89.50 1.2295e+002

12 16 761.224 9.6911e+001 -1.8433e+004 1.8434e+004 -89.70 9.5750e+001 -1.8433e+004 1.8433e+004 -89.70 2.1414e+002

2 17 764.190 -3.1250e+002 -7.0511e+003 7.0580e+003 -92.54 -3.0277e+002 -7.0524e+003 7.0589e+003 -92.46 3.1198e+002

16 16 1222.980 1.1082e+003 -1.7259e+004 1.7295e+004 -86.33 1.1154e+003 -1.7253e+004 1.7289e+004 -86.30 5.3096e+002

13 16 1224.055 -4.6394e+003 -3.0840e+004 3.1187e+004 -98.55 -4.6441e+003 -3.0074e+004 3.0431e+004 -98.78 1.6271e+003

4 17 1328.036 -4.8959e+002 -1.5810e+004 1.5818e+004 -91.77 -4.7949e+002 -1.5803e+004 1.5810e+004 -91.74 8.5516e+002

17 16 1328.803 1.5461e+003 -1.4661e+004 1.4742e+004 -83.98 1.5462e+003 -1.4659e+004 1.4741e+004 -83.98 2.9335e+002

6 17 2019.269 8.1564e+002 -1.3301e+004 1.3326e+004 -86.49 7.3874e+002 -1.3345e+004 1.3365e+004 -86.83 6.6888e+002

23 15 2023.802 4.2669e+003 -6.3248e+004 6.3392e+004 -86.14 4.1880e+003 -6.3244e+004 6.3382e+004 -86.21 4.7741e+003

26 10 2321.862 1.6011e+003 -2.9188e+004 2.9232e+004 -86.86 8.1739e+002 -3.0454e+004 3.0465e+004 -88.46 5.2745e+003

28 8 2322.335 2.8552e+003 -3.6135e+004 3.6247e+004 -85.48 1.7616e+003 -3.7289e+004 3.7331e+004 -87.30 6.3617e+003

22 15 2337.895 -1.3348e+003 -5.0815e+004 5.0833e+004 -91.50 -1.3637e+003 -5.0848e+004 5.0867e+004 -91.54 2.6546e+003

TABLE 3. Modal Scaling Statistics

The philosophy inv olved to this point is to allow all possible poles and vectors that demonstrate some degree of physical and
statistical significance, in terms of the pole weighted vector consistency, to be retained by the procedure. The rationale is that
it will be easier for a user to interact with this set of final estimates and intelligently remove poor estimates based upon the
statistical or other information rather than to have to add estimates to the final identified set of modal parameters. Since each
mode cluster provides a set of answers, the statistics that can be computed is one easy way to identify poorly estimated modal
parameters. These poor estimates will occur based upon excessive noise in/on the measured data, violation of the assumption
of the modal parameter estimation algorithms, or inadequate spatial data in terms of input-output sensor locations.
Ultimately, the limitations of information theory will dictate whether a satisfactory set of modal parameters will be obtained.

4.10 Step 10: Assess Quality of Results (User Interaction)

Once the final set of modal parameters, along with their associated statistics, is obtained, quality can be assessed by many
methods that are currently available. The most common example is to perform comparisons between the original
measurements and measurements synthesized from the modal parameters. Another common example is to look at physical
characteristics of the identified parameters such as reasonableness of frequency and damping values, normal mode
characteristics in the modal vectors, and appropriate magnitude and phasing in the modal scaling. Other evaluations that may
be helpful can be mean phase correlation (MPC) on the vectors, an Auto-MAC looking for agreement between the modal
vectors from conjugate poles or any other method available.
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Figure 12. Consistency Diagram with Final Autonomous Estimates

Figure 12 shows the location of the final estimates on a consistency plot and Figure 13 shows their location a pole surface
consistency plot. The black squares represent a final solution from the autonomous procedure.
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Figure 14 shows the Auto-MAC comparison of the resulting vectors with their conjugates. The results highlight the quality of
the fit.
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5. User Control of Autonomous Process

In the course of this paper, a number of references to the algorithmic control parameters has been made. In this section, a
brief discussion of these parameters and their application to the various steps of the procedure is presented. To enhance both
visual impression and comprehesion, and because the procedure interacts with other display/consistency parameters, some
relevant example dialog GUI(s) are shown in Figures 15 and 16.

Figure 15. Pole Consistency Preferences GUI

• Consistency: Criteria - This group of parameters determine which set of consistency condition symbols will be
displayed on the consistency and pole surface consistency diagrams. This affect procedure Step 1.

• Consistency: Tolerance - This set of parameters determine the criteria for which a pole (and vector) are considered
consistent from one model iteration to another. This affects procedure Step 1.

• Consistency(2): Constraint - This pair of parameters is used to define the value of damping (real part of the pole) which
is considered realistic. This affects procedure Step 1.

• Consistency(2): Tolerance: Pole Weight - This parameter determines the power of λ or Z used in the evaluation of the
pole weighted vector. This affects procedure Step 4.
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Figure 16. Pole Wizard and Density Preferences GUI

• Pole Wizard: Pole Density - This parameter selects for inclusion in the processing all displayed poles whose density is
greater than or equal this value. As shown in the GUI, the value of one uses all displayed poles without limiting the
number of poles evaluated. This affects procedure Step 3.

• Pole Wizard: Cluster Size - This parameter determines the minimum number of poles considered to represent an
acceptable consistent spatio-temporal cluster. This affects procedure Step 7.

• Pole Wizard: MAC Threshold - This parameter determines the minimum MAC value which is considered significant in
the determination of valid vector clusters. This affects procedure Step 6.

• Pole Wizard: Index Threshold - This parameter determines the minimum value of the scaled singular vector at which it
is still considered a valid logical index. This affects procedure Step 7.

• Pole Density: Limits: Tolerance - This parameter determines the complex frequency radius around a pole in which any
other pole is within this radius is considered to be part its cluster. The pole density is the number of poles located
within the circle. This affects procedure Step 3.

6. Summary and Future Work

In this paper, a general autonomous modal parameter identification procedure has been presented along with a review of the
history and theory applicable to the development of the autonomous procedures. This autonomous parameter estimation
method utilizes the concept of evaluating statistically significant pole weighted vectors among thousands of possible solutions
as the primary approach to identifying modal parameters. This involves the correlation of pole weighted vectors from
multiple (more than two) sets of solutions involving either long or short basis vectors. This technique has been shown to be
general and applicable to most standard commercially available algorithms.

With the advent of more computationally powerful computers and sufficient memory, it has become practical to evaluate sets
of solutions involving thousands of modal parameter estimates and to extract the common information from those sets. The
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autonomous procedure gives very acceptable results, in some cases superior results, in a fraction of the time required for an
experienced user to get the same result.

It is important, however, to reiterate that the use of autonomous procedures or wizard tools by users with limited experience is
probably not yet appropriate. Such tools are most appropriately used by analysts with the experience to accurately judge the
quality of the parameter solutions identified.

Future work on this method planned by the authors include: combining the solutions from different UMPA methods (PTD
plus RFP-Z plus ERA, for example), further evaluating the sensitivity of control parameters and thresholds, enhancing the
statistical descriptors for each estimated set of modal parameters, and investigating more application cases such as purely
academic, theoretical examples as well as difficult sets of measured, real-world data cases, including automotive, flight flutter
and operating data applications.
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ABSTRACT

Autonomous modal parameter estimations may involve sorting a large number of possible solutions to develop one consistent
estimate of the modal parameters (frequency, damping, mode shape, and modal scaling). Once the final, consistent estimate
of modal parameters is established, this estimate can be compared to related solutions from the larger set of solutions to
develop statistical attributes for the final, consistent set of modal parameters. These attributes will include sample size,
standard deviation and other familiar variance estimates. New variance estimates are introduced to categorize the modal
vector solution. These modal vector statistics are based upon the residual contributions in a set of correlated modal vectors
that are used to estimate a single modal vector. Examples of this statistical information is included for a number of realistic
data cases.

Nomenclature

N = Number of vectors in cluster.
σ r = Singular value r from cluster.
λ r = S domain polynomial root.
λ r = Complex modal frequency (rad/sec).
zr = Z domain polynomial root.
{ψ r} = Base vector (modal vector).
{φ r} = Pole weighted base vector (state vector).

Std. Dev. = Standard deviation.
NMVR1 = Normalized modal vector residual 1.
NMVR2 = Normalized modal vector residual 2.
NSVR1 = Normalized state vector residual 1.
NSVR2 = Normalized state vector residual 2.

1. Introduction

The desire to estimate modal parameters automatically, once a set or multiple sets of test data are acquired, has been a subject
of great interest for more than 40 years [1-24] . In the 1960s, even when modal testing was limited to analog test methods,
several researchers were exploring the idea of an automated test procedure for determining modal parameters [1-3] . Today,
with the increased memory and compute power of current computers used to process test data, an automated or autonomous,
modal parameter estimation procedure is entirely possible and is being attempted by numerous researchers.

During the development of a new autonomous modal parameter estimation procedure, it became obvious that, since a large
number of possible solutions were being evaluated, that this development was a natural way to introduce statistical
evaluations into the modal analysis estimation process. This paper reviews some of the statistical estimates that can aid any
user in evaluating possible modal parameter estimation solutions.

The larger question concerning autonomous modal parameter estimation is the intended user. Is the autonomous modal
parameter estimation procedure expected to give results sufficiently robust for the novice user? This implies that the user
could have no experience with modal analysis and, therefore, have no experiential judgement to use in assessing the quality
of the results. The use of the term wizard implies that this is the desired situation. In contrast, the user could be very
knowledgeable in the theory and experienced. For this case, the autonomous modal parameter estimation procedure is simply
an efficient mechanism for sorting a very large number of solutions into a final set of solutions that satisfies a set of criteria
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and thresholds that are acceptable to the user. This user is the assumed reader for the purposes of this discussion. The
statistical parameters introduced in this paper, howev er, are designed to give all users additional information that will allow
both experienced and novice users to successfully identify the modal parameters, within the limits of the information
provided by the measured data.

In order to discuss autonomous modal parameter estimation, some background is needed to clarify terminology and
methodology. The reader is directed to a series of companion papers in order to get an overview of the methodology and to
view application results for several cases [25-26] . The statistics explained in this paper are part of this new general procedure
for autonomous modal parameter that is based upon consistent state vectors. This method is referred to as Common
Statistical Subspace Autonomous Mode Identification (CSSAMI). Note that much of the background of the CSSAMI
method is based upon the Unified Matrix Polynomial Algorithm (UMPA) developed by the authors and described in a
number of other papers [27-29] .

2. Background: Autonomous Modal Parameter Estimation

The interest in automatic modal parameter estimation methods has been documented in the literature since at least the mid
1960s when the primary modal method was the analog, force appropriation method [1-3]. Following that early work, there
has been a continuing interest in autonomous methods [4-24] that, in most cases, have been procedures that are formulated
based upon a specific modal parameter estimation algorithm like the Eigensystem Realization Algorithm (ERA), the
Polyreference Time Domain (PTD) algorithm or more recently the Polyreference Least Squares Complex Frequency
(PLSCF) algorithm or the commercial version of the PLSCF, the PolyMAX ® method.

Each of these past procedures have shown some promise but have not yet been widely adopted. In many cases, the procedure
focussed on a single modal parameter estimation algorithm and did not develop a general procedure. Most of the past
procedural methods focussed on pole density but depended on limited modal vector data to identify correlated solutions.
Currently, due to increased computational speed and larger availability of memory, procedural methods can be developed that
were beyond the computational scope of available hardware only a few years ago. These methods do not require any initial
thresholding of the solution sets and rely upon correlation of the vector space of thousands of potential solutions as the
primary identification tool. With the addition to any modal parameter estimation algorithm of the concept of pole weighted
base vector, the length, and therefore sensitivity, of the extended vectors provides an additional tool that appears to be very
useful.

3. Autonomous Modal Parameter Estimation Method

The autonomous modal parameter estimation method developed and presented in the following is a general method that can
be used with any algorithm that fits within the UMPA structure. A complete description of the Unified Matrix Polynomial
Algorithm (UMPA) thought process can be found in a number of references developed by the authors [27-29] . This means
that this method can be applied to both low and high order methods with low or high order base vectors. This also means that
most commercial algorithms could take advantage of this procedure. Note that high order matrix coefficient polynomials
normally have coefficient matrices of dimension that is based upon the short dimension of the data matrix (NS × NS). In these
cases, it may be useful to solve for the complete modal vector in addition to using the extended base vector as this will extend
the temporal-spatial information in the base vector so that the vector will be more sensitive to change. This characteristic is
what gives this autonomous method the ability to distinguish between computational and structural modal parameters.

The implementation of the autonomous modal parameter estimation for this method is briefly outlined in the following steps.
For complete details, please see the associated papers [25-26].

• Develop a consistency diagram using any UMPA solution method. Since this autonomous method utilizes a pole
surface density plot, having a large number of iterations in the consistency diagram (due to model order, subspace
iteration, starting times, equation normalization, etc.) will be potentially advantageous. However, the larger the number
of solutions (represented by symbols) in the consistency diagram, the more computation time and memory will be
required. However, restricting the number of solutions using clear stabilization (consistency) methods may be
counterproductive.

• If the UMPA method is high order (coefficient matrices of size NS × NS), solve for the complete length, scaled vector
(function of NL for all roots, structural and computational).

386



• Based upon the pole surface density threshold, identify all possible pole densities above some minimum value. This
will be a function of the number of possible solutions represented by the consistency diagram.

• Sort the remaining solutions into frequency order based upon damped natural frequency (ω r).

• Construct the 10th order, pole weighted vector (state vector) for each solution.

• Normalize all pole weighted vectors to unity length with dominant real part.

• Calculate the Auto-MAC matrix for all pole weighted vectors.

• Retain all Auto-MAC values that have a pole weighted MAC value above a threshold, 0.8 works well for most cases.
All values below the threshold are set to 0.0.

• Identify vector clusters from this pole weighted MAC diagram that represent the same pole weighted vector. This is
done by a singular value decomposition (SVD) of the pole weighted MAC matrix. The number of significant singular
values for this MAC matrix represents the number of significant pole clusters in the pole weighted vector matrix and
the value of each significant singular value represents the size of the cluster since the vectors are unitary. Note that the
singular value is nominally the square of the number of vectors in the cluster and will likely be different, mode by
mode.

• For each significant singular value, the location of the corresponding pole weighted vectors in the pole weighted vector
matrix (index) is found from the associated left singular vector. This is accomplished by multiplying the left singular
vector by the square root of the singular value and retaining all positions (indexes) above a threshold (typically 0.9).
The positions of the non-zero elements in this vector are the indexes into the pole weighted vector matrix for all vectors
belonging to a single cluster.

• For each identified pole cluster, perform a singular value decomposition (SVD) on the set of pole weighted vectors.
The significant left singular vector is the dominant (average) pole weighted vector. Use the zeroth order portion of this
dominant vector to identify the modal vector and the relationship between the zeroth order and the first order portions
of the dominant vector to identify the modal frequency and modal damping values.

• Estimate appropriate statistics for each mode identified based upon the modes that are grouped in each cluster.

• For the modal parameters identified, complete the solution for modal scaling using any MIMO process of your choice.

• User interaction with the final set of values can exclude poorly identified modes based upon physical or statisical
evaluations.

Once the final set of modal parameters, along with their associated statistics, is obtained, quality can be assessed by many
methods that are currently available. The most common example is to perform comparisons between the original
measurements and measurements synthesized from the modal parameters. Another common example is to look at physical
characteristics of the identified parameters such as reasonableness of frequency and damping values, normal mode
characteristics in the modal vectors, and appropriate magnitude and phasing in the modal scaling. Other evaluations that may
be helpful are mean phase correlation (MPC) on the vectors, an Auto-MAC looking for agreement between the modal vectors
from conjugate poles or any other method available.

4. Statistical Evaluation Parameters

Statistical evaluation parameters can be estimated for each common cluster of pole weighted modal vectors on the basis of the
complex modal frequency, the modal vector, and the modal scaling. The number of pole weighted vectors will in general be
different in each cluster so the statistics will be based upon the number of estimates available (sample size N). Examples of
the statistics currently computed for each modal parameter are described in the following sections.

4.1 Modal Frequency Statistics

The weighted modal frequency for the cluster is found by constructing the pole weighted vector (typically 10th order) for
each pole retained in a cluster, then taking the SVD of the group of pole weighted vectors and selecting the singular vector
associated with the largest singular value. This chosen singular vector contains both the shape and the modal frequency
information. The modal frequency is identified by dividing the first order portion by the zeroth order portion of the vector in a
least squares sense. (Note that it is also possible to solve the frequency polynomial which would result from using the
complete vector.) Also, for numerical reasons, the pole weighted vector is actually computed in the Z-domain.
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For comparison purposes, the actual mean value and standard deviation of the poles (as well as, the separate frequency and
damping means and standard deviations) which were used in the computation of the weighted solution are computed. Since
these results are unweighted by the vector characteristics, they will be somewhat different from the vector weighted solution
and provide comparitive feedback about the pole.

4.2 Modal Vector Statistics

In order to evaluate the quality of the resulting modal vectors, several different parameters (representing noise to signal ratios)
are calculated. These ratios are evaluated for both the original normalized vectors and the pole weighted (state extended)
vectors and are computed using the singular value decomposition of each of the set of vectors.

4.2.1 Normalized Modal Vector Residual (NMVR)

The first modal vector parameter is evaluated by taking the total residual magnitude (the Forbenius norm of the residuals)
divided by the magnitude of the principal vector magnitude. In other words, the square root of the sum of the squares of the
residual singular values divide by the first (largest) singular value. This provides an indication of the consistency of the
original contributing vectors. Small values tend to indicate greater consistency. Large values indicate greater variance or the
possibility that more than one mode has been included in a cluster.

⎡σ ⎦ = SVD⎛
⎝
⎡
⎣
ψ1ψ2

. . .ψN
⎤
⎦
⎞
⎠

(1)

NMVR1 = √⎯ ⎯
N

k=2
Σ σ 2

k

N
σ1

(2)

The second modal vector parameter is evaluated by taking the largest residual magnitude divided by the magnitude of the
principal vector magnitude. In other words, the second singular value divided by the first singular value. This provides an
indication of the consistency of the original contributing vectors. A small value tends to indicate random variance. A large
value can indicate a consistent modal contamination of the original vectors, possibly caused by a second mode included in the
cluster.

NMVR2 =
σ2

σ1
(3)

4.2.2 Normalized State Vector Residual (NSVR)

The associated state vector parameters are calculated analogous to the above except that the complete pole weighted (state
extended) vector is used.

⎡σ ⎦ = SVD⎛
⎝
⎡
⎣
φ1φ2

. . . φN
⎤
⎦
⎞
⎠

(4)
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(5)

NSVR2 =
σ2

σ1
(6)

4.3 Modal Scaling Statistics

If modal scaling (residue) information is available in the original vectors, it can be applied to the principal pole weighted
vector such that the consistency of modal scaling (Modal A) can also be evaluated. By scaling the largest driving point
response to unity, a uniform, comparable value for Modal A is chosen. Since the modal scaling parameter (Modal A) contains
the physical units and hence the relative contribution of each pole/vector combination to the original data set, a means of
evaluating the significance and confidence in each estimate is possible. Because the original vectors represent multiple scaled
solutions and since Modal A is a single scalar complex value for each pole/vector combination, the statistical distribution of
Modal A (mean and standard deviation) of the original cluster can be compared with the scaling estimated from the pole
weighted (state extended) vector. The magnitude of Modal A can be used to evaluate the contribution of this vector to the
total set of identified vectors. When the user believes that the identified vectors should be normal modes, the phase of the
Modal A can be used to evaluate the closeness to a normal mode.

5. Typical Statistics: C-Plate Example

For this example, impact data from a circular plate test article has been used. The FRF data (7x36) was processed using a
Rational Fraction Polynomial algorithm with complex z frequency mapping (RFP-Z) with all data between 220 and 2450 Hz
included. The model order range used was 2 to 20 with a generalized residual model including all terms from (jω )−4 to (jω )2.
Further, low order alpha coefficient normalization has been used and full length phase one residues have been calculated.
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Figure 1. C-Plate Example: Consistency Diagram - All Poles Plotted
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For the purposes of demonstration, all calculated poles (both consistent and computational) are included in the plots. As can
be observed, though clearly present throughout the frequency range (Figure 1), the non-realistic, computational poles, are not
observed in the vicinity of the S-domain computed pole clusters (Figures 2, 3 and 4.)
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Figure 2. C-Plate Example: Pole Surface Consistency - All Poles Plotted
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The following plots, Figures 5 and 6, are a presentation of the statistical distribution of the pole information for the two
clusters (pseudo-repeated root) shown in Figure 4. In Figures 5 and 6, the black stars are the original pole estimates and the
red star represents the mean pole calculated from this cluster of pole estimates. The large red circle is the one standard
deviation radius. The green square is the indvidual standard deviations for the frequency and the damping. The blue circle is
the pole as estimated from the pole weighted (state extended) vector.

Note that the scaling for the two different mode clusters in Figure 5 is consistent so that larger diameter circles will represent
more variability.
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Figure 5. C-Plate Example: 362.6 Hz and 363.9 Hz Pole Clusters - Statistics
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The following (Tables 1, 2, and 3) provide a summary of the statistical information evaluated on the C-Plate test structure.

Note that in Table 1 that there is little difference in the complex modal frequency estimated from the most significant pole
weighted vector (columns 3 and 4) when compared to the mean values of the complex portions of the modal frequency
(columns 5 and 6).

Index Sample Size (N) Frequency (Hz) Damping (Hz) Frequency (Hz) Damping (Hz) Std. Dev. (Hz)

(Mean) (Mean)

8 16 362.564 -3.1666 362.564 -3.1670 0.1677

19 16 363.860 -3.5650 363.860 -3.5650 0.1251

10 16 557.055 -2.8966 557.055 -2.8966 0.0795

12 16 761.224 -5.2229 761.224 -5.2229 0.1008

2 17 764.190 -2.5371 764.190 -2.5371 0.1529

16 16 1222.980 -4.0883 1222.980 -4.0883 0.0271

13 16 1224.055 -3.9540 1224.055 -3.9540 0.0419

4 17 1328.036 -6.6495 1328.036 -6.6507 0.0907

17 16 1328.803 -5.4761 1328.803 -5.4768 0.1871

6 17 2019.269 -8.2512 2019.271 -8.2511 0.2543

23 15 2023.802 -7.5597 2023.801 -7.5598 0.0642

26 10 2321.862 -3.9074 2321.860 -3.9070 0.1690

28 8 2322.335 -3.8356 2322.335 -3.8367 0.2244

22 15 2337.895 -3.7967 2337.895 -3.7971 0.2287

TABLE 1. C-Plate Example: Modal Frequency Statistics

In Table 2, note that the fraction of normalized residual (columns 4-7) are all quite small indicated that only one mode has
been found in each cluster and that the modal vectors in the cluster were essentially the same modal vector with minimal
differences (noise).

Index N Frequency (Hz) NMVR1 NMVR2 NSVR1 NSVR2

8 16 362.564 0.0046 0.0730 0.0046 0.0730

19 16 363.860 0.0034 0.0543 0.0034 0.0543

10 16 557.055 0.0001 0.0014 0.0001 0.0014

12 16 761.224 0.0007 0.0092 0.0007 0.0093

2 17 764.190 0.0020 0.0312 0.0020 0.0312

16 16 1222.980 0.0017 0.0213 0.0017 0.0213

13 16 1224.055 0.0013 0.0185 0.0013 0.0184

4 17 1328.036 0.0042 0.0718 0.0042 0.0717

17 16 1328.803 0.0022 0.0342 0.0022 0.0342

6 17 2019.269 0.0054 0.0763 0.0054 0.0763

23 15 2023.802 0.0047 0.0537 0.0047 0.0537

26 10 2321.862 0.0162 0.1617 0.0162 0.1617

28 8 2322.335 0.0161 0.1279 0.0161 0.1278

22 15 2337.895 0.0020 0.0238 0.0020 0.0238

TABLE 2. C-Plate Example: Modal Vector Statistics
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In Table 3, note that the method used to compute the modal scaling, Modal A, had little effect on the estimates of Modal A.
Also of note in this case, is the phase angle of all Modal A terms is around minus ninety degrees. The sign on the phase
angle and the closeness to ninety degrees (rather than zero degrees) is a function of the scaling method chosen for the modal
vector.

Index N Frequency (Hz) ModalA (State Vector) ModalA (Mean from cluster)

real imaginary magnitude phase real imaginary magnitude phase Std. Dev.

8 16 362.564 3.9663e+002 -5.7201e+003 5.7338e+003 -86.03 3.9574e+002 -5.7195e+003 5.7332e+003 -86.04 1.3866e+002

19 16 363.860 -4.8353e+001 -4.8716e+003 4.8719e+003 -90.57 4.5311e+001 -4.9271e+003 4.9273e+003 -89.47 3.1271e+002

10 16 557.055 7.3166e+001 -9.7205e+003 9.7207e+003 -89.57 8.4818e+001 -9.7107e+003 9.7111e+003 -89.50 1.2295e+002

12 16 761.224 9.6911e+001 -1.8433e+004 1.8434e+004 -89.70 9.5750e+001 -1.8433e+004 1.8433e+004 -89.70 2.1414e+002

2 17 764.190 -3.1250e+002 -7.0511e+003 7.0580e+003 -92.54 -3.0277e+002 -7.0524e+003 7.0589e+003 -92.46 3.1198e+002

16 16 1222.980 1.1082e+003 -1.7259e+004 1.7295e+004 -86.33 1.1154e+003 -1.7253e+004 1.7289e+004 -86.30 5.3096e+002

13 16 1224.055 -4.6394e+003 -3.0840e+004 3.1187e+004 -98.55 -4.6441e+003 -3.0074e+004 3.0431e+004 -98.78 1.6271e+003

4 17 1328.036 -4.8959e+002 -1.5810e+004 1.5818e+004 -91.77 -4.7949e+002 -1.5803e+004 1.5810e+004 -91.74 8.5516e+002

17 16 1328.803 1.5461e+003 -1.4661e+004 1.4742e+004 -83.98 1.5462e+003 -1.4659e+004 1.4741e+004 -83.98 2.9335e+002

6 17 2019.269 8.1564e+002 -1.3301e+004 1.3326e+004 -86.49 7.3874e+002 -1.3345e+004 1.3365e+004 -86.83 6.6888e+002

23 15 2023.802 4.2669e+003 -6.3248e+004 6.3392e+004 -86.14 4.1880e+003 -6.3244e+004 6.3382e+004 -86.21 4.7741e+003

26 10 2321.862 1.6011e+003 -2.9188e+004 2.9232e+004 -86.86 8.1739e+002 -3.0454e+004 3.0465e+004 -88.46 5.2745e+003

28 8 2322.335 2.8552e+003 -3.6135e+004 3.6247e+004 -85.48 1.7616e+003 -3.7289e+004 3.7331e+004 -87.30 6.3617e+003

22 15 2337.895 -1.3348e+003 -5.0815e+004 5.0833e+004 -91.50 -1.3637e+003 -5.0848e+004 5.0867e+004 -91.54 2.6546e+003

TABLE 3. C-Plate Example: Modal Scaling Statistics

6. Typical Statistics: Bridg e Example

For this example, impact data from a civil bridge structure test (15x55) has been used. The FRF data was processed using a
Z-Domain Rational Fraction Polynomial Algorithm (RFP-Z) with all data between 5 and 30 Hz included. The model order
range used was 2 to 20 with a generalized residual model including all terms from (jω )−4 to (jω )2. Further, low order alpha
coefficient normalization has been used and full length residues have been calculated to be used in the CSSAMI procedure.

For the purposes of demonstration, all calculated poles (both consistent and computational) are included in the plots. As can
be observed, though clearly present throughout the frequency range (Figures 6, 7 and 8) the non-realistic, computational
poles, are not observed in the vicinity of the S-domain computed pole clusters (Figure 9)

The effect of prefiltering (by pole density alone) the information fed into the autonomous parameter estimation algorithm is
shown in Figures 7 and 8. A comparison of no filtering (Figure 7) with prefiltering (Figure 8) reveals that more potential
solutions are identified when the algorithm is allowed to match parameters on the basis of both pole and vector. A  review of
the results also indicates that the typical procedures for achieving clear consistency diagrams may actually be detrimental to
the autonomous procedure because important information which didn’t meet some arbitrary criteria was removed from
consideration.
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Figure 6. Bridge Example: Consistency Diagram - All Poles
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Figure 7. Bridge Example: Consistency Diagram - Pole Density = 1
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Figure 8. Bridge Example: Consistency Diagram - Pole Density = 4
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Figure 9. Bridge Example: Pole Surface Consistency - All Poles

The following plots, Figures 10 and 11, are a presentation of the statistical distribution of the pole information for four of the
clusters shown in Figure 9. In Figures 10 and 11, the black stars are the original pole estimates and the red star represents the
mean pole calculated from the cluster of pole estimates. The large red circle is the one standard deviation radius. The green

395



square is the indvidual standard deviations for the frequency and the damping. The blue circle is the pole as estimated from
the pole weighted (state extended) vector.
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Figure 10. Bridge Example: 8.3 Hz and 9.5 Hz Pole Clusters - Statistics

As in the circular plate example, again note that the scaling in Figures 10 and 11 is consistent so that larger diameter circles
will represent more variability.

10.6 10.8 11 11.2 11.4 11.6 11.8
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Frequency [Hz]

D
am

pi
ng

 [H
z]

Pole Cluster (N = 19)

17.6 17.8 18 18.2 18.4 18.6 18.8
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Frequency [Hz]

D
am

pi
ng

 [H
z]

Pole Cluster (N = 4)

Figure 11. Bridge Example: 11.3 Hz and 18.2 Hz Pole Clusters - Statistics
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The following (Tables 4, 5, and 6) provide a summary of the statistical information evaluated on the civil bridge structure.

Note that in Table 4 that there is little difference in the complex modal frequency estimated from the most significant pole
weighted vector (columns 3 and 4) when compared to the mean values of the complex portions of the modal frequency
(columns 5 and 6).

Index Sample Size (N) Frequency (Hz) Damping (Hz) Frequency (Hz) Damping (Hz) Std. Dev. (Hz)

(Mean) (Mean)

3 19 7.406 -0.2404 7.406 -0.2405 0.0169

2 19 8.263 -0.2022 8.263 -0.2023 0.0165

21 14 9.465 -0.9480 9.465 -0.9698 0.2536

8 19 11.253 -0.6015 11.252 -0.6154 0.1868

35 6 12.224 -0.6669 12.224 -0.6670 0.0182

32 8 12.756 -0.3504 12.756 -0.3508 0.0295

11 17 13.162 -0.6187 13.162 -0.6191 0.0555

41 6 15.729 -0.5557 15.729 -0.5559 0.0294

30 10 15.765 -0.5059 15.765 -0.5065 0.0373

6 19 16.747 -0.5606 16.748 -0.5607 0.0282

43 4 18.221 -0.5984 18.221 -0.6022 0.1169

16 13 20.100 -0.4803 20.099 -0.4817 0.0501

37 4 20.323 -0.3610 20.323 -0.3616 0.0476

14 16 20.507 -1.1457 20.507 -1.1594 0.1925

39 5 21.236 -1.0438 21.236 -1.0540 0.1930

31 5 21.624 -1.5834 21.623 -1.5995 0.2917

25 10 22.778 -0.7731 22.778 -0.7754 0.0856

28 10 24.247 -0.6431 24.247 -0.6433 0.0238

9 17 25.235 -0.8774 25.235 -0.8777 0.0452

18 14 27.824 -1.0196 27.824 -1.0211 0.0749

23 8 28.150 -0.7324 28.151 -0.7365 0.1076

22 9 29.492 -0.4523 29.492 -0.4654 0.1662

TABLE 4. Bridge Example: Modal Frequency Statistics
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In Table 5, again note that the fraction of normalized residual (columns 4-7) are all quite small indicated that only one mode
has been found in each cluster and that the modal vectors in the cluster were essentially the same modal vector with minimal
differences (noise).

Index N Frequency (Hz) NMVR1 NMVR2 NSVR3 NSVR4

3 19 7.406 0.0008 0.0144 0.0009 0.0144

2 19 8.263 0.0022 0.0383 0.0022 0.0379

21 14 9.465 0.0056 0.0579 0.0079 0.0863

8 19 11.253 0.0053 0.0783 0.0064 0.0914

35 6 12.224 0.0357 0.1690 0.0357 0.1690

32 8 12.756 0.0193 0.1446 0.0194 0.1447

11 17 13.162 0.0087 0.0956 0.0089 0.0966

41 6 15.729 0.0238 0.1146 0.0238 0.1148

30 10 15.765 0.0075 0.0703 0.0076 0.0698

6 19 16.747 0.0039 0.0637 0.0039 0.0649

43 4 18.221 0.0536 0.1532 0.0540 0.1540

16 13 20.100 0.0143 0.1667 0.0143 0.1661

37 4 20.323 0.0408 0.1401 0.0410 0.1402

14 16 20.507 0.0104 0.1236 0.0104 0.1237

39 5 21.236 0.0394 0.1621 0.0406 0.1674

31 5 21.624 0.0385 0.1470 0.0411 0.1553

25 10 22.778 0.0116 0.0884 0.0120 0.0898

28 10 24.247 0.0067 0.0462 0.0068 0.0469

9 17 25.235 0.0072 0.0901 0.0073 0.0916

18 14 27.824 0.0124 0.1356 0.0125 0.1351

23 8 28.150 0.0180 0.1294 0.0183 0.1322

22 9 29.492 0.0238 0.1501 0.0242 0.1549

TABLE 5. Bridge Example: Modal Vector Statistics
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In Table 6, again note that the method used to compute the modal scaling, Modal A, had little effect on the estimates of
Modal A. Also of note in this case, is the phase angle of all Modal A terms is around ninety degrees. The sign on the phase
angle and the closeness to ninety degrees (rather than zero degrees) is a function of the scaling method chosen for the modal
vector.

Index N Frequency (Hz) ModalA (State Vector) ModalA (Mean from cluster)

real imaginary magnitude phase real imaginary magnitude phase Std. Dev.

3 19 7.406 -4.0159e+005 4.0857e+006 4.1054e+006 95.61 -4.0048e+005 4.0871e+006 4.1067e+006 95.60 1.3311e+005

2 19 8.263 -4.1063e+005 6.0755e+006 6.0893e+006 93.87 -3.7199e+005 6.0650e+006 6.0764e+006 93.51 7.2975e+005

21 14 9.465 5.1606e+006 1.3773e+007 1.4708e+007 69.46 6.6001e+006 1.4598e+007 1.6021e+007 65.67 4.9262e+006

8 19 11.253 -1.0672e+006 8.9505e+006 9.0139e+006 96.80 -2.6399e+006 1.2408e+007 1.2686e+007 102.01 1.5630e+007

35 6 12.224 -2.3579e+006 1.3038e+007 1.3250e+007 100.25 1.5347e+006 1.1077e+007 1.1183e+007 82.11 4.6407e+006

32 8 12.756 -3.7527e+005 8.6561e+006 8.6642e+006 92.48 -4.7815e+005 8.9063e+006 8.9191e+006 93.07 1.2880e+006

11 17 13.162 2.9493e+006 1.5389e+007 1.5669e+007 79.15 1.6985e+006 1.2154e+007 1.2272e+007 82.04 3.9192e+006

41 6 15.729 -1.1722e+006 9.6343e+006 9.7054e+006 96.94 -1.1850e+006 9.6038e+006 9.6766e+006 97.03 1.2406e+006

30 10 15.765 -1.2004e+006 1.0006e+007 1.0078e+007 96.84 -1.1961e+006 1.0022e+007 1.0093e+007 96.81 6.1042e+005

6 19 16.747 -1.5250e+006 1.4429e+007 1.4510e+007 96.03 -1.5462e+006 1.4422e+007 1.4504e+007 96.12 8.2761e+005

43 4 18.221 6.9955e+007 2.0003e+008 2.1191e+008 70.72 7.0403e+007 1.9977e+008 2.1181e+008 70.59 1.3292e+007

16 13 20.100 -3.4965e+005 1.9290e+007 1.9293e+007 91.04 -2.5684e+005 1.9387e+007 1.9388e+007 90.76 2.0555e+006

37 4 20.323 -1.6061e+007 7.0883e+007 7.2680e+007 102.77 -1.7005e+007 6.9200e+007 7.1258e+007 103.81 1.5557e+007

14 16 20.507 -3.8264e+005 2.2225e+007 2.2228e+007 90.99 4.2840e+006 2.3277e+007 2.3668e+007 79.57 9.5171e+006

39 5 21.236 -3.3460e+007 2.8599e+007 4.4017e+007 139.48 -3.6040e+007 2.5029e+007 4.3878e+007 145.22 1.2696e+007

31 5 21.624 3.4080e+006 1.6113e+007 1.6469e+007 78.06 2.4648e+006 1.2889e+007 1.3122e+007 79.17 3.3533e+006

25 10 22.778 -1.0823e+006 1.0448e+007 1.0504e+007 95.91 -1.0941e+006 1.0530e+007 1.0587e+007 95.93 1.1060e+006

28 10 24.247 -1.8809e+006 1.9384e+007 1.9476e+007 95.54 -1.8907e+006 1.9378e+007 1.9470e+007 95.57 5.5546e+005

9 17 25.235 -7.2001e+005 2.7462e+007 2.7471e+007 91.50 -8.3424e+005 2.6949e+007 2.6962e+007 91.77 2.2048e+006

18 14 27.824 -2.1672e+006 1.3965e+007 1.4132e+007 98.82 -2.0185e+006 1.4180e+007 1.4323e+007 98.10 3.0505e+006

23 8 28.150 -1.3309e+007 2.1013e+007 2.4873e+007 122.35 -1.1342e+007 2.1981e+007 2.4735e+007 117.29 7.1619e+006

22 9 29.492 -1.0596e+007 1.9653e+007 2.2327e+007 118.33 -1.2479e+007 2.3212e+007 2.6353e+007 118.26 1.5348e+007

TABLE 6. Bridge Example: Modal Scaling Statistics

7. Summary and Future Work

This paper has presented the statistics of the estimated modal parameters that are a direct result of a new dev elopment in
autonomous modal parameter estimation. The proposed method represents an important philosophical and paradigm shift in
the process of identifying potentially valid modal parameters. Instead of trying to get only (statistically and numerically) well
estimated modes and then adding in the marginally estimated modes from the original estimates from the consistency
diagram, the autonomous MPE methodology attempts to estimate all possible modes and use the statistics of the solutions to
eliminate the marginal estimates. It has also been observed that, contrary to conventional wisdom, the techniques for
producing clear consistency (stabilization) diagrams are at odds with the autonomous procedure. This is in part due to the
nature of the consistency diagram where frequency and damping consistency tolerances used in the consistency diagram
causes somewhat inconsistent estimates to be eliminated from consideration before the vector consistency can be evaluated.
The temporal-spatial nature of the CSSAMI procedure allows these helpful results to be retained by the solution procedure.

One obvious extension of this work is to initiate the autonomous modal parameter estimation process using consistency
diagram information from several different methods rather than just one. The inclusion of more estimates from differing
algorithms may mean better consistency of estimates for some modes that are poorly estimated from a given algorithm.
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ABSTRACT

Autonomous modal parameter estimation is an attractive approach when estimating modal parameters (frequency, damping,
mode shape, and modal scaling) as long as the results are physically reasonable. Frequently, significant post processing is
required to tune the autonomous estimates. A general autonomous method is demonstrated with no post processing of the
modal parameters. Example case histories are given for simple measurement cases taken from the laboratory (circular plate)
as well as realistic field measurement cases involving significant noise and difficulty (bridge). These application case
histories explore the successes and failures of the autonomous modal parameter estimation method and demonstrate the
limitations of practical application of automated methods.

Nomenclature

Ni = Number of inputs.
No = Number of outputs.
NS = Short dimension size.
NL = Long dimension size.
ω i = Discrete frequency (rad/sec).
si = Generalized frequency variable.
[H(ω i)] = FRF matrix (No × Ni))

[α ] = Denominator polynomial matrix coefficient.
[β ] = Numerator polynomial matrix coefficient.
m = Model order for denominator polynomial.
n = Model order for numerator polynomial.
v = Model order for base vector.
r = Mode number.
UMPA = Unified Matrix Polynomial Algorithm
MAC = Modal Assurance Criterion

1. Introduction

The desire to estimate modal parameters automatically, once a set or multiple sets of test data are acquired, has been a subject
of great interest for more than 40 years [1-24]. In the 1960s, when modal testing was limited to analog test methods, several
researchers were exploring the idea of an automated test procedure for determining modal parameters [1-3]. Today, with the
increased memory and compute power of current computers used to process test data, an automated or autonomous, modal
parameter estimation procedure is entirely possible and is being attempted by numerous researchers.

Before proceeding with a discussion of autonomous modal parameter estimation, some philosophy and definitions regarding
what is considered autonomous is required. In general, autonomous modal parameter estimation refers to an automated
procedure that is applied to a modal parameter estimation algorithm so that no user interaction is required once the process is
initiated. This typically involves setting a number of parameters or thresholds that are used to guide the process in order to
exclude solutions that are not acceptable to the user. When the procedure finishes, a set of modal parameters is identified that
can then be reduced or expanded if necessary. The goal is that no further reduction, expansion or interaction with the process
will be required.

In order to discuss autonomous modal parameter estimation, some background is needed to clarify terminology and
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methodology. The reader is directed to a series of companion papers in order to get an overview of the methodology and to
view application results for several cases [25-26] . The applications and case histories presented in this paper are part of this
new general procedure for autonomous modal parameter that is based upon consistent state vectors. This method is referred
to as Common Statistical Subspace Autonomous Mode Identification (CSSAMI). Note that much of the background of
the CSSAMI method is based upon the Unified Matrix Polynomial Algorithm (UMPA) developed by the authors and
described in a number of other papers [27-29] .

2. Background: Autonomous Modal Parameter Estimation

The interest in automatic modal parameter estimation methods has been documented in the literature since at least the mid
1960s when the primary modal method was the analog, force appropriation method [1-3]. Following that early work, there
has been a continuing interest in autonomous methods [4-24] that, in most cases, have been procedures that are formulated
based upon a specific modal parameter estimation algorithm like the Eigensystem Realization Algorithm (ERA), the
Polyreference Time Domain (PTD) algorithm or more recently the Polyreference Least Squares Complex Frequency
(PLSCF) algorithm or the commercial version of the PLSCF, the PolyMAX ® method.

Each of these past procedures have shown some promise but have not yet been widely adopted. In many cases, the procedure
focussed on a single modal parameter estimation algorithm and did not develop a general procedure. Most of the past
procedural methods focussed on pole density but depended on limited modal vector data to identify correlated solutions.
Currently, due to increased computational speed and larger availability of memory, procedural methods can be developed that
were beyond the computational scope of available hardware only a few years ago. These methods do not require any initial
thresholding of the solution sets and rely upon correlation of the vector space of thousands of potential solutions as the
primary identification tool. With the addition to any modal parameter estimation algorithm of the concept of pole weighted
base vector, the length, and therefore sensitivity, of the extended vectors provides an additional tool that appears to be very
useful.

3. Autonomous Modal Parameter Estimation Method

The autonomous modal parameter estimation method utilized in the applications and case histories in the following is a
general method that can be used with any algorithm that fits within the UMPA structure. A complete description of the
Unified Matrix Polynomial Algorithm (UMPA) thought process can be found in a number of references developed by the
authors [27-29] . This means that this method can be applied to both low and high order methods with low or high order base
vectors. This also means that most commercial algorithms could take advantage of this procedure. Note that high order
matrix coefficient polynomials normally have coefficient matrices of dimension that is based upon the short dimension of the
data matrix (NS × NS). In these cases, it may be useful to solve for the complete modal vector in addition to using the
extended base vector as this will extend the temporal-spatial information in the base vector so that the vector will be more
sensitive to change. This characteristic is what gives this autonomous method the ability to distinguish between
computational and structural modal parameters.

The implementation of the autonomous modal parameter estimation for this method is briefly outlined in the following steps.
For complete details, please see the associated papers [25-26].

• Develop a consistency diagram using any UMPA solution method. Since this autonomous method utilizes a pole
surface density plot, having a large number of iterations in the consistency diagram (due to model order, subspace
iteration, starting times, equation normalization, etc.) will be potentially advantageous. However, the larger the number
of solutions (represented by symbols) in the consistency diagram, the more computation time and memory will be
required. However, restricting the number of solutions using clear stabilization (consistency) methods may be
counterproductive.

• If the UMPA method is high order (coefficient matrices of size NS × NS), solve for the complete length, scaled vector
(function of NL for all roots, structural and computational).

• Based upon the pole surface density threshold, identify all possible pole densities above some minimum value. This
will be a function of the number of possible solutions represented by the consistency diagram.

• Sort the remaining solutions into frequency order based upon damped natural frequency (ω r).

• Construct the 10th order, pole weighted vector (state vector) for each solution.

404



• Normalize all pole weighted vectors to unity length with dominant real part.

• Calculate the Auto-MAC matrix for all pole weighted vectors.

• Retain all Auto-MAC values that have a pole weighted MAC value above a threshold, 0.8 works well for most cases.
All values below the threshold are set to 0.0.

• Identify vector clusters from this pole weighted MAC diagram that represent the same pole weighted vector. This is
done by a singular value decomposition (SVD) of the pole weighted MAC matrix. The number of significant singular
values for this MAC matrix represents the number of significant pole clusters in the pole weighted vector matrix and
the value of each significant singular value represents the size of the cluster since the vectors are unitary. Note that the
singular value is nominally the square of the number of vectors in the cluster and will likely be different, mode by
mode.

• For each significant singular value, the location of the corresponding pole weighted vectors in the pole weighted vector
matrix (index) is found from the associated left singular vector. This is accomplished by multiplying the left singular
vector by the square root of the singular value and retaining all positions (indexes) above a threshold (typically 0.9).
The positions of the non-zero elements in this vector are the indexes into the pole weighted vector matrix for all vectors
belonging to a single cluster.

• For each identified pole cluster, perform a singular value decomposition (SVD) on the set of pole weighted vectors.
The significant left singular vector is the dominant (average) pole weighted vector. Use the zeroth order portion of this
dominant vector to identify the modal vector and the relationship between the zeroth order and the first order portions
of the dominant vector to identify the modal frequency and modal damping values.

• Estimate appropriate statistics for each mode identified based upon the modes that are grouped in each cluster.

• For the modal parameters identified, complete the solution for modal scaling using any MIMO process of your
choosing.

• User interaction with the final set of values can exclude poorly identified modes based upon physical or statisical
evaluations.

Once the final set of modal parameters, along with their associated statistics, is obtained, quality can be assessed by many
methods that are currently available. The most common example is to perform comparisons between the original
measurements and measurements synthesized from the modal parameters. Another common example is to look at physical
characteristics of the identified parameters such as reasonableness of frequency and damping values, normal mode
characteristics in the modal vectors, and appropriate magnitude and phasing in the modal scaling. Other evaluations that may
be helpful are mean phase correlation (MPC) on the vectors, an Auto-MAC looking for agreement between the modal vectors
from conjugate poles, or any other method available.

4. Application Examples

Several case histories involving data from two applications are discussed in the following sections. These two applications
were chosen as extremes of data cases, representing a real but very easy modal parameter identification situation (circular
plate) and a real but very difficult modal parameter identification situation (civil infrastructure bridge test). The circular plate
is lightly damped with many repeated roots but can be readily handled by almost any algorithm within the UMPA framework.
The bridge is more moderately damped with significant noise on the data (traffic was maintained on part of the bridge while
testing proceeded) and cannot be handled by any of the algorithms within the UMPA framework without significant effort and
user interaction. The case histories include cases where the base vector of the algorithm is a function of long and short
dimension to demonstrate the sensitivity of the solution to having an adequate spatial basis for determining the consistent
vector characteristics. For details concerning the meaning and values of the threshold parameters or a more complete
explanation of the CSSAMI procedure, please see the companion papers [25-26] .

4.1 Application Example: C-Plate Laborator y Test Data

The first example of the CSSAMI procedure is performed on a laboratory test object consisting of a circular plate. This test
object is very lightly damped and nearly every peak in the data is associated with a repeated root caused by the symmetry of
the test object. This test object has been tested many times and the autonomous UMPA method estimated modal parameters
consistent with past analysis. The FRF data in this case has 7 responses and 36 inputs (taken with an impact test method). In
this case, a Polyreference Time Domain (PTD) method is used but, for every possible pole estimated over a model order
range from 2 to 20, a complete long dimension modal vector was estimated so that sufficient spatial information (base vector
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of length 36) is available for sorting out the consistent solutions. For this case, the following thresholds and control
parameters were used:

• Lowest order coefficient matrix normalization.

• Pole density threshold (4 and above).

• Pole weighted vector of model order 10.

• Pole weighted MAC threshold (0.8 and above).

• Cluster size threshold (4 and above).

• Cluster identification threshold (0.8 and above).

Figures 1 to 7 represent information used to evaluate the success of the autonomous procedure. These figures are used after
the modal parameters have been estimated to assess reasonableness and are not used to guide the procedure. Obviously,
when the procedure is complete if modes have been missed or misidentified, adjustments in the control parameters (base
vector order and cross MAC thresholds, for example) can be made and the procedure repeated. An experienced user may
wish to add or delete modes in a manual interaction as is currently done.

Figure 1 is the complex mode indicator function plot which is used to distinguish close or repeated modes. Figures 2 and 3
show the solutions that are remaining after the initial pole surface density threshold and pole weighted vector correlation
threshold have been applied.
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Figure 1. Complex Mode Indicator Function (CMIF)
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Figure 2. MAC-Tenth Order Pole Weighted Vectors, No Threshold

Figure 3. MAC-Tenth Order Pole Weighted Vectors, Above Threshold

The size of the red squares in Figure 3 represents the number of vectors in each cluster of poles found anywhere in the
consistency diagram. Figure 4 is a plot of the scaled significant singular values for Figure 3. Only the singular values above
the cluster size threshold are retained for the final solution. Figure 5 shows the location of the final estimates on a pole
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surface consistency plot. The black squares represent a final solution from the autonomous procedure.
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Figure 4. Principal Values of Clusters of Pole Weighted Vectors
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Figure 5. Pole Surface Consistency Clusters with Final Estimates
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Figure 6. Consistency Diagram with Final Autonomous Estimates

Figure 7. Auto-MAC of Final Autonomous Estimates - Conjugate Poles

Figure 6 has been found to be a useful indicator when estimating modal parameters for a dominantly normal mode system.
The Auto-MAC plot of the estimated modal vectors shown in Figure 7 shows a nearly perfect correlation between the vectors
associated with the positive frequency and the vectors associated with the estimate of its negative frequency (conjugate pair).
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Index Sample Size (N) Frequency (Hz) Damping (Hz) Std. Dev. (Hz)

8 16 362.552 -3.1573 0.1595

19 16 363.851 -3.5473 0.1137

10 16 557.053 -2.8957 0.0823

12 16 761.222 -5.2219 0.1085

2 17 764.187 -2.5397 0.1426

16 16 1222.979 -4.0870 0.0314

13 16 1224.054 -3.9543 0.0438

4 17 1328.036 -6.6514 0.0960

17 16 1328.803 -5.4805 0.1976

6 17 2019.257 -8.2429 0.2081

23 15 2023.803 -7.5596 0.0614

26 11 2321.877 -3.9141 0.1761

28 8 2322.334 -3.8351 0.2237

22 15 2337.894 -3.7974 0.2280

TABLE 1. C-Plate Example: Modal Frequency Statistics

Table 1 gives a portion of the results and statistics associated with Figure 7. Since the methods involve a cluster of size N for
each mode as part of the solution, statistical information is readily available for all modal parameters. This is discussed and
detailed fully in another paper [26] and includes a discussion of the statistics for modal frequencies, modal vectors and modal
scaling.

4.2 Application Example: Bridge Field Test Data

The next example of the CSSAMI procedure is performed in the field on a small highway bridge. The FRF data in this case
has 55 inputs and 15 responses. This data set has been particularly troublesome when analyzed by any method available and
is shown as a significant implementation of the autonomous modal parameter estimation procedure. The autonomous results
for this case are as good or better compared to any other solution utilized in the past, as measured by reasonable estimates of
frequency and damping and dominantly normal modes.

In this case, a Rational Fraction Polynomial with complex z frequency mapping (RFP-Z) method is used (similar to PLSCF
and PolyMAX ® ) but, for every possible pole estimated over a model order range from 2 to 20, a complete long dimension
modal vector was estimated so that sufficient spatial information is available for sorting out the consistent solutions. For this
case, the following thresholds and control parameters were used:

• Lowest order coefficient matrix normalization.

• Pole density threshold (4 and above).

• Pole weighted vector of model order 10.

• Pole weighted MAC threshold (0.8 and above).

• Cluster size threshold (3 and above).

• Cluster identification threshold (0.8 and above).

This case demonstrates that, even with clear stabilization diagram techniques, the consistency diagram can get fairly difficult
to interpret. Nonetheless, in this application of the autonomous modal parameter estimation procedure, it is possible to
identify the modal parameters with little trouble.

410



0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Complex Mode Indicator Function

Frequency (Hz)

M
ag

ni
tu

de

Figure 8. Complex Mode Indicator Function (CMIF)

Figure 9. MAC-Tenth Order Pole Weighted Vectors, No Threshold
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Figure 10. MAC-Tenth Order Pole Weighted Vectors, Above Threshold
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Figure 11. Principal Values of Clusters of Pole Weighted Vectors
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Figure 12. Pole Surface Consistency Clusters with Final Autonomous Estimates
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Figure 13. Consistency Diagram with Final Autonomous Estimates
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Figure 14. Auto-MAC of Final Autonomous Estimates - Conjugate Poles

Table 2 is a summary of the modal frequency estimates and statistics for this case. Once again, this is discussed and detailed
fully in another paper [26] and includes a discussion of the statistics for modal frequencies, modal vectors and modal scaling.

Index Sample Size (N) Frequency (Hz) Damping (Hz) Std. Dev. (Hz)

3 19 7.406 -0.2405 0.0169

2 19 8.263 -0.2023 0.0165

21 14 9.465 -0.9698 0.2536

8 19 11.252 -0.6154 0.1868

35 6 12.224 -0.6670 0.0182

32 8 12.756 -0.3508 0.0295

11 17 13.162 -0.6191 0.0555

41 6 15.729 -0.5559 0.0294

30 10 15.765 -0.5065 0.0373

6 19 16.748 -0.5607 0.0282

43 4 18.221 -0.6022 0.1169

16 13 20.099 -0.4817 0.0501

37 4 20.323 -0.3616 0.0476

14 16 20.507 -1.1594 0.1925

39 5 21.236 -1.0540 0.1930

31 5 21.623 -1.5995 0.2917

25 10 22.778 -0.7754 0.0856

28 10 24.247 -0.6433 0.0238

9 17 25.235 -0.8777 0.0452

18 14 27.824 -1.0211 0.0749

23 8 28.151 -0.7365 0.1076

22 9 29.492 -0.4654 0.1662

TABLE 2. Bridge Example: Modal Frequency Statistics
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4.3 Application Example: C-Plate Laborator y Test Data with Short Dimension Base Vector

The next example of the CSSAMI procedure is performed on the same, circular plate laboratory test object. The FRF data is
the same as the previous example and the Polyreference Time Domain (PTD) method is used but only the short dimension
vectors are used for every possible pole estimated over a model order range from 2 to 20. This means that the spatial
information (base vector of length 7) available for sorting out the consistent solutions will be compromised. For this case, the
following thresholds and control parameters were used:

• Lowest order coefficient matrix normalization.

• Pole density threshold (4 and above).

• Pole weighted vector of model order 10.

• Pole weighted MAC threshold (0.8 and above).

• Cluster size threshold (4 and above).

• Cluster identification threshold (0.8 and above).
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Figure 15. Complex Mode Indicator Function (CMIF)
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Figure 16. MAC-Tenth Order Pole Weighted Vectors, No Threshold

Figure 17. MAC-Tenth Order Pole Weighted Vectors, Above Threshold
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Figure 18. Principal Values of Clusters of Pole Weighted Vectors
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Figure 19. Pole Surface Consistency Clusters with Final Autonomous Estimates
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Figure 20. Consistency Diagram with Final Autonomous Estimates

Figure 21. Auto-MAC of Final Autonomous Estimates - Conjugate Poles

While the results are certainly acceptable for this case, the Auto-MAC plot in Figure 21 shows some additional clutter and the
conjugate properties of the higher frequency modes do not match as well as in the previous, long dimension base vector
example.
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4.4 Application Example: C-Plate Laborator y Test Data with Sieved, Short Dimension Base Vector

The next example of the CSSAMI procedure is performed on the same, circular plate laboratory test object. The FRF data is
the same as the previous C-Plate examples and the Polyreference Time Domain (PTD) method is used but only the short
dimension vectors are used for every possible pole estimated over a model order range from 2 to 20. This short dimension is
further sieved to only two references. This means that the spatial information (base vector of length 2) available for sorting
out the consistent solutions will be further compromised. For this case, the following thresholds and control parameters were
used:

• Lowest order coefficient matrix normalization.

• Pole density threshold (4 and above).

• Pole weighted vector of model order 10.

• Pole weighted MAC threshold (0.8 and above).

• Cluster size threshold (4 and above).

• Cluster identification threshold (0.8 and above).
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Figure 22. Complex Mode Indicator Function (CMIF)
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Figure 23. MAC-Tenth Order Pole Weighted Vectors, No Threshold

Figure 24. MAC-Tenth Order Pole Weighted Vectors, Above Threshold
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Figure 25. Principal Values of Clusters of Pole Weighted Vectors
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Figure 26. Pole Surface Consistency Clusters with Final Autonomous Estimates
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Figure 27. Consistency Diagram with Final Autonomous Estimates

Figure 28. Auto-MAC of Final Autonomous Estimates - Conjugate Poles

The results for this case are further degraded as noted by the Auto-MAC plot in Figure 28 shows some additional clutter and
the conjugate properties of the higher frequency modes do not match as well as in the previous, long dimension base vector
example.

Mode Frequency, Hz

M
od

e 
F

re
qu

en
cy

, H
z

Auto−MAC of Reference File

362.32 363.64 557.01 761.13 764.18 1224.04 1275.29 1328.69 2020.15 2023.82 2322.47 2324.46

−2324.46

−2322.47

−2023.82

−2020.15

−1328.69

−1275.29

−1224.04

−764.18

−761.13

−557.01

−363.64

−362.32

362.32

363.64

557.01

761.13

764.18

1224.04

1275.29

1328.69

2020.15

2023.82

2322.47

2324.46

M
A

C
 V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

422



4.5 Application Example: C-Plate Laborator y Test Data with Sieved, Short Dimension Base Vector

The final example of the CSSAMI procedure is performed on the same, circular plate laboratory test object. The FRF data is
the same as the previous C-Plate examples and the Polyreference Time Domain (PTD) method is used but only the short
dimension vectors are used for every possible pole estimated over a model order range from 2 to 20. This short dimension is
further sieved to only two references. This means that the spatial information (base vector of length 2) available for sorting
out the consistent solutions will be compromised. In order to try to compensate for this extremely short base vector, the order
of the pole weighted vector is increased to 50. For this case, the following thresholds and control parameters were used:

• Lowest order coefficient matrix normalization.

• Pole density threshold (4 and above).

• Pole weighted vector of model order 50.

• Pole weighted MAC threshold (0.8 and above).

• Cluster size threshold (4 and above).

• Cluster identification threshold (0.8 and above).
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Figure 29. Complex Mode Indicator Function (CMIF)
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Figure 30. MAC-Fiftieth Order Pole Weighted Vectors, No Threshold

Figure 31. MAC-Fiftieth Order Pole Weighted Vectors, Above Threshold
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Figure 32. Principal Values of Clusters of Pole Weighted Vectors
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Figure 33. Pole Surface Consistency Clusters with Final Autonomous Estimates
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Figure 34. Consistency Diagram with Final Autonomous Estimates

Figure 35. Auto-MAC of Final Autonomous Estimates - Conjugate Poles

The results for this case are very similar to the previous example as noted by the Auto-MAC plot in Figure 35. This Auto-
MAC plot shows some additional clutter and the conjugate properties of the higher frequency modes do not match as well as
in the previous, long dimension base vector example. The conclusion at this point would be to always utilize the long base
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vector in order to get the most reliable result.

5. Summary and Conclusions

In this paper, the application examples for a general autonomous modal parameter identification procedure have been
presented along with a brief review of the CSSAMI procedure used to estimate the modal parameters for these cases. This
autonomous method utilizes the concept of using correlates results form a cluster of pole weighted modal vectors in order to
autonomously identify a set of reasonable modal parameters for the data sets involved. The applications reviewed show that
theCSSAMI procedure works best when complete length modal vectors and associated pole weighted modal vectors are
available to the procedure. This technique has been shown to be general and applicable to most standard commercially
available algorithms. The application of the technique to several case histories has been successfully shown along with the
sensitivity to land and short dimension modal vectors.

With the advent of more computationally powerful computers and sufficient memory, it has become practical to evaluate sets
of solutions involving thousands of modal parameter estimates and to extract the common information from those sets. The
autonomous procedure gives very acceptable results, in some cases superior results, in a fraction of the time required for an
experienced user to get the same result.

However, it is important to reiterate that the use of autonomous procedures or wizard tools by users with limited experience is
probably not yet appropriate. Such tools are most appropriately used by analysts with the experience to accurately judge the
quality of the parameter solutions identified. The use of statisical information concerning the results may allow the procedure
to be used with success for all levels of users.
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ABSTRACT

The unified matrix polynomial (coefficient) method (UMPA) has been used by the authors to provide a
single, educational framework that encompasses most commercial and research methods used to
estimate modal parameters from measured input-output data (normally frequency response functions).
In past publications of this methodology, the issue of state order has not clearly been identified in the
formulation of the UMPA model. State order refers to the order of the base vector that is an elementary
part of the basic UMPA model and has been a part of the modal parameter estimation development since
the Ibrahim Time Domain methods in the mid 1970s. The UMPA model is restated to clearly identify
the role of base vector order and the relationship between base vector (state) order and polynomial
model order. This relationship provides a mechanism for explaining a number of modal parameter
estimation methods that have not previously been identified and helps to explain the sensitivity of
different modal parameter estimation methods to noise.

Nomenclature

Ni = Number of inputs.
No = Number of outputs.
NS = Short dimension size.
NL = Long dimension size
N = Number of modal frequencies.
λ r = S domain polynomial root.
λ r = Complex modal frequency (rad/sec).
λ r = σ r + j ω r

σ r = Modal damping.
ω r = Damped natural frequency.
zr = Z domain polynomial root.
{ψ r} = Modal vector.
{φ r} = Pole weighted base vector (state vector).
[Ar] = Residue matrix, mode r.
[I] = Identity matrix.

ti = Discrete time (sec).
ω i = Discrete frequency (rad/sec).
si = Generalized frequency variable.
x(ti) = Response function vector (No × 1)).
X(ω i) = Response function vector (No × 1)).
f(ti) = Input function vector (Ni × 1))
F(ω i) = Input function vector (Ni × 1)).
[h(ti)] = IRF matrix (No × Ni)).
[H(ω i)] = FRF matrix (No × Ni)).
[α ] =
[β ] = Numerator polynomial matrix coefficient.
m = Model order for denominator polynomial.
n = Model order for numerator polynomial.
v = Model order for base vector.
r = Mode number.

T. Proulx (ed.), Modal Analysis Topics, Volume 3, Conference Proceedings of the Society for Experimental Mechanics Series 6, 429 
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1. Introduction

During recent research concerning the development of autonomous modal parameter estimation
methods, the authors noted that most autonomous methods utilize the concept of correlated complex
modal frequency, modal vector and/or modal scaling as mechanisms for sorting out solutions that are
physically and statistically relevant. One useful way to combine all of these modal parameters in a
single correlation is to synthetically form an extended state vector (high order base vector) for each
solution so that these modal parameters are coupled in the correlation procedure. Using higher order,
pole weighted modal vectors yields a spatial-temporal vector which is a senstive correlation vector
involving both the complex frequency and the (possibly scaled) modal vector. The use of the extended
state vector allows similar modal parameters to be sorted out from a larger set of pole weighted vectors
that represent other physical modal vectors or vectors of essentially noise. This extended state vector is
the same pole weighted modal vector that has been used successfully in previous work to provide an
alternate form of the consistency diagram [1-2].

Some existing modal parameter estimation algorithms already involve the state vector in the model. The
primary examples of two algorithms that already use an extended base vector are the first order versions
of the Eigensystem Realization Algorithm (ERA-1) and the Polyreference Frequency Domain
Algorithm (PFD-1). Both of these methods also have alternate forms that utilize the conventional zeroth
order base vector (ERA-2 and PFD-2) which appear to give relatively equivalent solutions. For the
purpose of sorting correlated solutions in an autonomous modal parameter estimation method, state
order above order one is attractive in order to get a longer (spatially) extended state vector which also
may have heightened sensitivity to the complex modal frequency differences. Work has already been
reported on higher state order methods in the past but this issue has not been discussed [5]. When
investigating these models further, it is apparent that the Unified Matrix Polynomial Algorithm (UMPA)
framework that has been utilized to describe most modal parameter estimation algorithms is not rigorous
enough to describe the solutions covered by extended state order formulations without some additional
clarification.

2. Background: Modal Parameter Estimation

All modern, commercial algorithms for estimating modal parameters from experimental input-output
data can be developed or explained in terms of polynomial based models. For this reason, with minor
implementation differences, all of these algorithms can take advantage of the consistency diagram as an
aid in identifying the correct modal frequencies from the large number of poles that are found. This
section quickly overviews the development of the polynomial models for both the time or frequency
domains so that the model order variation options, that are involved in the consistency diagram, can be
discussed. This background is detailed more fully in several references [6-7]. The algorithms that
commonly use an implementation of the consistency diagram for identifying modal parameters are
summarized in Table 1.

2.1 Polynomial Modal Identification Models

Rather than using a physically based mathematical model, the common characteristics of different modal
parameter estimation algorithms can be more readily identified by using a matrix coefficient polynomial
model. One way of understanding the basis of this model can be developed from the polynomial model
used historically for the frequency response function. Note the nomenclature in the following equations
regarding measured frequency ω i versus generalized frequency si. Measured input and response data are
always functions of measured frequency but the generalized frequency variable used in the model may
be altered to improve the numerical conditioning as is done with most frequency domain methods
(normalized frequency) and specifically with the polyreference least squares complex frequency
(PLSCF) method (complex Z transform of frequency). The commercial implementation of the PLSCF
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method is known as PolyMAX ®.

Therefore, the multiple input, multiple output (MIMO) FRF model is:

m

k=0
Σ ⎡

⎣
[αk] (si)

k⎤
⎦

⎡
⎣
H(si)⎤⎦

=
n

k=0
Σ ⎡

⎣
[βk] (si)

k⎤
⎦

[I] (1)

Equation (1) is evaluated at many frequencies (ω i) until all data are utilized or a sufficient
overdetermination factor is achieved. Note that both positive and negative frequencies are required in
order to accurately estimate conjugate modal frequencies. This allows for the coefficients of a matrix
coefficient, characteristic polynomial to be identified for a given model order m. The roots of this
polynomial can be used to find the modal parameters.

For the general multiple input, multiple output case:

m

k=0
Σ [αk] {x(ti + k )} =

n

k=0
Σ [βk] {f(ti + k )} (2)

If the discussion is limited to the use of free decay or impulse response function data, the previous time
domain equations can be simplified by noting that the forcing function can be assumed to be zero for all
time greater than zero. If this is the case, the [βk] coefficients can be eliminated from the equations.

m

k=0
Σ [αk] ⎡

⎣
h(ti + k )⎤

⎦
= 0 (3)

Additional equations can be developed by repeating Equation (3) at different time shifts into the data (ti)
until all data are utilized or a sufficient overdetermination factor is achieved. Note that at least one time
shift is required in order to accurately estimate conjugate modal frequencies. This allows for the
coefficients of the matrix coefficient, characteristic polynomial to be identified for a given model order
m. The roots of this polynomial can be used to find the modal parameters.

The models represented by Equation (1) and Equation (3) are referred to as Unified Matrix Polynomial
Approach (UMPA) models. Both equations yield a matrix coefficient, characteristic polynomial (the
[α ] polynomial in these models). Equation (3) corresponds to a time domain AutoRegressive-Moving-
Av erage (ARMA(m,n)) model, or more properly an AutoRegressive with eXogenous inputs (ARX(m,n))
model, that is developed from a set of discrete time equations. Since both the frequency and time
domain models are based upon functionally similar matrix coefficient, characteristic polynomials, the
UMPA(m,n) terminology is used for models in both domains to reflect the order of the denominator
polynomial (m) and the order of the numerator polynomial (n). In Section 2.2, this notation will be
extended to UMPA(m,n,v) to reflect the order v of the base vector involved in the basic UMPA
formulation.

In light of the above discussion, it is now apparent that most of the modal parameter estimation
processes available could have been developed by starting from a general matrix polynomial formulation
that is justifiable based upon the underlying matrix differential equation. The general matrix polynomial
formulation yields essentially the same form of matrix coefficient, characteristic polynomial equation,
for both time and frequency domain data.
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For the frequency domain data case, this yields:

⎪
⎪

[α m] sm + [α m−1] sm−1 + [α m−2] sm−2 + . . . . . . . . . + [α 0] ⎪
⎪

= 0 (4)

where:

sr = λ r λ r = σ r + j ω r (5)

For the time domain data case, this yields:

⎪
⎪

[α m] zm + [α m−1] zm−1 + [α m−2] zm−2 + . . . . . . . . . + [α 0] ⎪
⎪

= 0 (6)

where:

zr = eλ r Δt λ r = σ r + j ω r (7)

σ r = Re
⎡
⎢
⎣

ln zr

Δt

⎤
⎥
⎦

ω r = Im
⎡
⎢
⎣

ln zr

Δt

⎤
⎥
⎦

(8)

Once the matrix coefficients ([α ]) hav e been found, the modal frequencies (λ r or zr) can be found as the
roots of the matrix coefficient polynomial (Equation (4) or (6)) using any one of a number of numerical
techniques, normally involving the companion matrix associated with the matrix coefficient polynomial.

Therefore, the roots of the matrix characteristic equation can be found as the eigenvalues of the
associated companion matrix. The companion matrix can be formulated in one of several ways. A
common formulation is as follows:

[C] mNs×mNs
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− [α ]m−1

[I]

[0]

[0]
. . .

. . .

. . .

[0]

[0]

[0]

− [α ]m−2

[0]

[I]

[0]
. . .

. . .

. . .

[0]

[0]

[0]

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

− [α ]1

[0]

[0]

[0]
. . .

. . .

. . .

[0]

[0]

[I]

− [α ]0

[0]

[0]

[0]
. . .

. . .

. . .

[0]

[0]

[0]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

Note that the form of the companion matrix shown in Equation (9) is one of four, equivalent forms
where the coefficient matrices appear in the first or last rows or columns. The form above will be used
as a reference for any further discussion.

The companion matrix is used in the following eigenvalue formulation to determine the modal
frequencies for the original matrix coefficient equation:
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[C]{X } = λ [I] {X } (10)

When the modal frequencies are estimated from the eigenvalue-eigenvector problem that is associated
with solving this matrix coefficient polynomial equation, a unique estimate of the unscaled modal vector
is identified at the same time. The length or dimension of this unscaled modal vector is equal to the
dimension of the square alpha coefficients which, in general, is equal to the row dimension of the FRF
data matrix in order for the matrix coefficient polynomial equation to be conformal. Normally, this row
dimension associated with the FRF or IRF data matrix is assumed to be connected with the number of
outputs (No) that were measured.

The eigenvector that is found, associated with each eigenvalue, is of length model order m times matrix
coefficient size, Ni or No. In fact, the unique (meaningful) portion of the eigenvector is of length equal to
the size of the coefficient matrices, Ni or No, and is repeated in the eigenvector m times.

For each repetition, the unique portion of the eigenvector is repeated, multiplied by a different complex
scalar which is a successively larger, integer power of the associated modal frequency. Therefore, the
eigenvectors of the companion matrix have the following form:

{φ }r =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

λm−1
r {ψ }r

.

.

.
λ2

r {ψ }r

λ1
r {ψ }r

λ0
r {ψ }r

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭r

(11)

Since the data matrix (FRF or IRF) is considered to be symmetric or reciprocal, the data matrix can be
transposed, switching the effective meaning of the row and column index with respect to the physical
inputs and outputs.

[ H(ω i) ]No×Ni
= [ H(ω i) ]T

Ni×No
(12)

Since many modal parameter estimation algorithms are developed on the basis of either the number of
inputs (Ni) or the number of outputs (No), assuming that one or the other is larger based upon test
method, some nomenclature conventions are required for ease of further discussion. In terms of the
modal parameter estimation algorithms and the ultimate matrix coefficient, characteristic polynomial
equation, it is more important to recognize whether the algorithm develops the square matrix coefficient
on the basis of the larger (NL) of Ni or No or the smaller (NS) of Ni or No. For this reason, the
terminology of long (larger of Ni or No) dimension or short (smaller of Ni or No) dimension is easier to
understand without confusion. Using this approach, PTD, RFP and PLSCF are all short dimension
methods where the vector found as part of the solution for poles is very small while ERA and PFD are
long dimension methods where the vector found as part of the solution for poles is of full length, based
upon measurement locations.

To eliminate possible confusion, in recent explanations of modal parameter estimation algorithms, the
nomenclature of the number of outputs (No) and number of inputs (Ni) has been replaced by the length
of the long dimension of the data matrix (NL) and the length of the short dimension (NS) reg ardless of
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which dimension refers to the physical output or input. This means that the above reciprocity
relationship can be restated as:

[ H(ω i) ]NL×NS
= [ H(ω i) ]T

NS×NL
(13)

Note that the reciprocity relationships in Equation (12) and (13) are a function of the common degrees of
freedom (DOFs) in the short and long dimensions. If there are no common DOFs, there are no
reciprocity relationships. Nevertheless, the importance of Equation (12) and (13) comes from the idea
that the dimensions of the FRF matrix can be transposed and this affects the size of the square alpha
coefficients in the matrix coefficient polynomal equation.

Finally, once the modal frequencies and unscaled modal vectors are estimated via the eigenvalue-
eigenvector problem, the residues (numerators) of the partial fraction model of the FRF data matrix are
used to estimate the final, scaled modal vectors and modal scaling. Note that the unscaled modal vector
found in the eigenvalue-eigenvector problem is available to be used as a weighting vector in the
estimation of the residues and, therefore, the final scaled modal vectors and modal scaling. Also note
that this weighting vector may be of length equal to the long or short dimension, depending on the
modal parameter estimation algorithm being used.

[ H(ω i) ]NL×NS
=

N

r=1
Σ

[ Ar ]NL×NS

jω i − λ r
+

[ A*
r ]NL×NS

jω i − λ*
r

=
2N

r=1
Σ

[ Ar ]NL×NS

jω i − λ r
(14)

This process means that most modern modal parameter estimation algorithms are implemented in a two
stage procedure that has three steps as follows:

Stage 1, Step 1

• Load Measured Data into Over-Determined Linear Equation Form.

• Utilize Matrix Coefficient Polynomial Based Model (Equation 1, 2 or 3).

• Find Scalar or Matrix Coefficients ([αk] and [βk]).

• Implement for Various Model Orders (Consistency/Stability Diagram).

Stage 1, Step 2

• Solve Matrix Coefficient Polynomial for Modal Frequencies (Equation 4 or 6).

• Formulate Eigenvalue-Eigenvector Problem.

• Eigenvalues Determine the Modal Frequencies (λ r).

• Eigenvectors Determine the Unscaled Modal Vectors ({ψ r}) of dimension NS or NL.

Stage 2, Step 3

• Load Measured Data Into Over-Determined Linear Equation Form (Equation 14).

• Determine Modal Vectors and Modal Scaling from Residues.

The most commonly used modal identification methods can be summarized as shown in Table 1. The
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high order model is typically used for those cases where the system is undersampled in the spatial
domain. For example, the limiting case is when only one measurement is made on the structure. For
this case, the left hand side of the general linear equation corresponds to a scalar polynomial equation
with the order equal to or greater than the number of desired modal frequencies. The low order model is
used for those cases where the spatial information is complete. In other words, the number of physical
coordinates is greater than the number of desired modal frequencies. For this case, the order of the
lefthand side of the general linear equation is equal to two. The zero order model corresponds to the case
where the temporal information is neglected and only the spatial information is used. These methods
directly estimate the eigenvectors as a first step. In general, these methods are programmed to process
data at a single temporal condition or variable. In this case, the method is essentially equivalent to the
single-degree-of-freedom (SDOF) methods which have been used with frequency response functions. In
others words, the zeroth order matrix polynomial model compared to the higher order matrix polynomial
models is similar to the comparison between the SDOF and MDOF methods used historically in modal
parameter estimation.

Domain Matrix Polynomial Order Coefficients

Algorithm Time Freq Zero Low High Scalar Matrix

Complex Exponential Algorithm (CEA) • • •

Least Squares Complex Exponential (LSCE) • • •

Polyreference Time Domain (PTD) • • NS × NS

Ibrahim Time Domain (ITD) • • NL × NL

Multi-Reference Ibrahim Time Domain (MRITD) • • NL × NL

Eigensystem Realization Algorithm (ERA-1, ERA-2) • • NL × NL

Polyreference Frequency Domain (PFD-1, PFD-2) • • NL × NL

Simultaneous Frequency Domain (SFD) • • NL × NL

Multi-Reference Frequency Domain (MRFD) • • NL × NL

Rational Fraction Polynomial (RFP) • • • NS × NS

Orthogonal Polynomial (OP) • • • NS × NS

Polyreference Least Squares Complex Frequency (PLSCF) • • • NS × NS

Rational Fraction Polynomial-Z Domain (RFP-Z) • • • NS × NS

Complex Mode Indication Function (CMIF) • • NL × NS

TABLE 1. Summary of Modal Parameter Estimation Algorithms

How the different modal parameter estimation algorithms fit into the UMPA (m,n) model when the
extended state order is used requires some clarification. This clarification explains the current state
vector methods that utilize a base vector of model order one (ERA-1 and PFD-1) as well as another
family of possible modal parameter estimation algorithms that are yet to be formally described. These
potential algorithms yield higher order state vectors naturally which would be useful when an
autonomous modal parameter estimation procedure is developed. This clarification is discussed in detail
in the following section.

3. Clarification: Extended State (Base) Vector Order

When formulating the basic UMPA(m,n) equation for various model orders, the resulting matrix
coefficient polynomial involves coefficient matricies which are sized based upon the short or long
dimension of the data matrix. Once this matrix coefficient polynomial is chosen, the set of unscaled
modal vectors, or base vectors is effectively chosen where the length of each vector matches this
dimension.
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For model orders (m) equal to one, however, this matrix model will not be able to estimate complex
conjugate solutions without at least one time shift (time domain implementation) or one derivative
(frequency domain implementation) when the model is formulated. When the solution is formed in this
fashion, the base vector is a state vector, or what has alternately been referred to as a pole weighted
modal vector, for this system. Instead of the base vector being of zeroth order as for all other UMPA
cases, the base vector will be of order one. If successive time shifts or derivatives are included, the base
vector can be of higher order. The form of the base vector is as follows where v is the order of the base
vector:

{ψ }r =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

λv
r {ψ }r

.

.

.
λ2

r {ψ }r

λ1
r {ψ }r

λ0
r {ψ }r

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭r

(15)

This means that the notation for the UMPA(m,n) model does not completely define the UMPA
formulation. A more correct formulation would be UMPA(m,n,v). For most commercial algorithms, v
is normally zero and the base vector is zeroth order. For the first order version of the Eigensystem
Realization Algorithm (ERA-1) and the first order version of the Polyreference Frequency Domain
(PFD-1) algorithm, v is one and the base vector is, therefore, first order. While no commercial algorithm
utilizes v greater than one, there is no reason to restrict the UMPA(m,n,v) formulation to zeroth and first
order base vectors. Allowing the base vector to take on higher orders lengthens the vector while adding
a sensitivity to complex modal frequency that will be evaluated for correlation or consistency among all
of the possible solutions. This is an extremely useful concept when developing autonomous modal
parameter estimation procedures.

3.1 Impact of Base Vector Choice

While the concept of using additional time shifts or derivatives in the formulation of the matrix
coefficient polynomial model, the form of the model and of the [α ] coefficients changes. As additional
time shifts or derivatives are added to the model formulation, much of the solution for the coefficients
remains the same but the size of the [α ] changes as a function of the UMPA(m,n,v) notation, specifically
the v notation. This gives some insight as to what is changing and how it affects the solution from a
practical viewpoint.

As an example, let’s look at increasingly higher order base vector models of what is essentially an
Eigensystem Realization Algorithm (ERA-1) in terms of the [α ] coefficients that are found from the
measured data. If the long dimension of the measured data space is NL, the ERA method must involve
one time shift at a minimum to achieve a solution. Therefore, the base vector in this case is of length
2 × NL and the companion matrix, assuming that the leading coefficient matrix is normalized to the
identity matrix is as follow:

Case 1:

[C] = ⎡
⎣

− [α ]0
⎤
⎦2*NL×2*NL

(16)
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The above model would be referred to as an UMPA(1,n,1) model using the new notation. The number
of unknowns found in the [α ] coefficient would be (2NL)2.

If an additional time shift, involving additional information, is used to form the coefficient matrix, the
new form is:

Case 2:

[C] = ⎡
⎣

− [α ]0
⎤
⎦3*NL×3*NL

(17)

The above model would be referred to as an UMPA(1,n,2) model using the new notation. The number
of unknowns found in the [α ] coefficient would be (3NL)2.

With each additional time shift, the square [α ] coefficient matrix increases by a factor of NL in each
dimension. The base vector for each case also grows by NL with additional weighting provided by
raising the complex modal frequency (or its Z transform equivalent) to the next successive power.

This approach will yield alternate solution models that have an increasingly larger companion matrix
and that also have higher ordered base vectors. The practical cost of these methods is that the memory
required to solve for the [α ] will be a function of (v + 1) × NL. The solution time for solving the
companion matrix will also grow. In light of modern computers, this may not be an issue and large (5th
- 10th) state order problems can still be formed and solved in available desktop computing situations.

The alternate, and more natural, approach to involving additional time shifts or derivatives within the
UMPA framework would be to leave the base vector at model order zero (v = 0) and increase the model
order of the [α ] matrix coefficient polynomial (m).

With respect to the previous example, the equivalent model to Case 1 would be the equivalent
UMPA(2,n,0) model which would have a base vector of length NL and a companion matrix of the form:

Case 3:

[C] =
⎡
⎢
⎣

− [α ]1

[I]

− [α ]0

[0]

⎤
⎥
⎦2*NL×2*NL

(18)

The [α ] coefficients in above model would result from exactly the same measured data as used in Case 1.
The number of unknowns found in the [α ] coefficients would be 2 × NL

2 a much smaller memory
footprint than Case 1.

If another time shift is involved in the solution, as in Case 2 in the above example, the UMPA(3,n,0)
model would be formed. This model would also have a base vector of length NL and a companion
matrix of the following form:

Case 4:

[C] =
⎡
⎢
⎢
⎣

− [α ]2

[I]

[0]

− [α ]1

[0]

[I]

− [α ]0

[0]

[0]

⎤
⎥
⎥
⎦3*NL×3*NL

(19)
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The [α ] coefficients in above model would result from exactly the same measured data as used in Case 2.
The number of unknowns found in the [α ] coefficients would be 3 × NL

2 a much smaller memory
footprint than Case 2.

Note that in these two alternate approaches (Case 1-2 versus Case 3-4), while the base vector model
order and the polynomial model order are alternatively changed to yield the exact same number of
eigenvalues and eigenvectors of the companion matrix (and the same length of eigenvectors), the cost in
terms of memory footprint and somewhat in solution times based upon the number of unknowns being
found will increase dramatically as base vector model order v is raised compared to the equivalent
models formed by raising the order of the [α ] polynomial m.

While the the use of higher base vector model orders is possible and theoretically sound, assuming
memory and compute time is not a significant issue, the question remains as to whether this approach to
model formulation is beneficial in some other way (e.g. numerically). The next section will prove that
the apparently different model formulations that involve the same measured data, but different numbers
of unknowns, are theoretically no different from one another.

3.2 Base Vector Order v versus [α ] Coefficient Order m

The simplest comparison that will demonstrate the relationship between the order of the base vector and
the order of the [α ] coefficients in the UMPA formulation is to compare the ERA-1 case to the ERA-2
case. The ERA-1 algorithm is an UMPA(1,n,1) model and the ERA-2 is an UMPA(2,n,0) model. Both
models generate the same size companion matrix and the same number of eigenvalue-eigenvector
solutions. The following equation manipulations will show that the data in each companion matrix must
be identical, and therefore yield identical eigenvalue-eigenvector results. This proof is formulated on the
basis of normalizing the leading coefficient of the matrix coefficient polynomial to the identity matrix
but the result is the same for any other normalization and for any other higher order polynomial
algorithm when comparing the same size companion matrices formed by the two alternate approaches.

Basic Equation for ERA-1:

⎡
⎣
[α0] ⎤

⎦
⎡
⎢
⎣

[h(t0)]

[h(t1)]

[h(t1)]

[h(t2)]

[h(t2)]

[h(t3)]

. . .

. . .
[h(ti)]

[h(ti+1)]

⎤
⎥
⎦

= −
⎡
⎢
⎣

[h(t1)]

[h(t2)]

[h(t2)]

[h(t3)]

[h(t3)]

[h(t4)]

. . .

. . .
[h(ti+1)]

[h(ti+2)]

⎤
⎥
⎦

. (20)

Basic Equation for ERA-2:

⎡
⎣
[α0] [α1]⎤

⎦
⎡
⎢
⎣

[h(t0)]

[h(t1)]

[h(t1)]

[h(t2)]

[h(t2)]

[h(t3)]

. . .

. . .
[h(ti)]

[h(ti+1)]

⎤
⎥
⎦

= − ⎡
⎣

[h(t1)] [h(t2)] [h(t3)] . . . . [h(ti+1)] ⎤
⎦

. (21)

In order to simplify the notation of the above two equations, let:

⎡
⎣
h(t0)⎤

⎦
= ⎡

⎣
[h(t0)] [h(t1)] [h(t2)] . . . . [h(ti)] ⎤

⎦
(22)

⎡
⎣
h(t1)⎤

⎦
= ⎡

⎣
[h(t1)] [h(t2)] [h(t3)] . . . . [h(ti+1)] ⎤

⎦
(23)

⎡
⎣
h(t2)⎤

⎦
= ⎡

⎣
[h(t2)] [h(t3)] [h(t4)] . . . . [h(ti+2)] ⎤

⎦
(24)
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Rewriting Equations (20) and (21),

Basic Equation for ERA-1:

⎡
⎣
[α0] ⎤

⎦
⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

= −
⎡
⎢
⎣

[h(t1)]

[h(t2)]

⎤
⎥
⎦

(25)

Basic Equation for ERA-2:

⎡
⎣
[α0] [α1]⎤

⎦
⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

= − ⎡
⎣

[h(t1)] ⎤
⎦

(26)

Now solve for the [α ] coefficient matrices for each case using a psuedo-inverse method.

[α ] Coefficient Solution for ERA-1:

⎡
⎣
[α0] ⎤

⎦
= −

⎡
⎢
⎣

[h(t1)]

[h(t2)]

⎤
⎥
⎦

⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

+

(27)

[α ] Coefficient Solution for ERA-2:

⎡
⎣
[α0] [α1]⎤

⎦
= − ⎡

⎣
[h(t1)] ⎤

⎦
⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

+

(28)

Now note, by definition, the following identity relationships:

⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

+

= [ I ] =
⎡
⎢
⎣

[I]

[0]

[0]

[I]

⎤
⎥
⎦

(29)

>From the off diagonal terms in Equation (29), the following relationships must be true:

[h(t0)] [h(t1)]+ = [0] [h(t1)] [h(t0)]+ = [0] (30)

Therefore, the following relationship holds:

⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

+

= ⎡
⎣

[h(t0)]+ [h(t1)]+ ⎤
⎦

(31)

Substituting Equation (31) into Equations (27) and (28), the equivalence between the two approaches
can be seen by inspection:
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[α ] Coefficient Solution for ERA-1:

⎡
⎣
[α0] ⎤

⎦
= −

⎡
⎢
⎣

[h(t1)]

[h(t2)]

⎤
⎥
⎦

⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

+

= −
⎡
⎢
⎣

[h(t1)]

[h(t2)]

⎤
⎥
⎦

⎡
⎣

[h(t0)]+ [h(t1)]+ ⎤
⎦

= −
⎡
⎢
⎣

[h(t1)][h(t0)]+

[h(t2)][h(t0)]+
[h(t1)][h(t1)]+

[h(t2)][h(t1)]+
⎤
⎥
⎦

. (32)

Simplifying, based upon Equations (30),

⎡
⎣
[α0] ⎤

⎦
= −

⎡
⎢
⎣

[0]

[h(t2)][h(t0)]+
[I]

[h(t2)][h(t1)]+
⎤
⎥
⎦

(33)

[α ] Coefficient Solution for ERA-2:

⎡
⎣
[α0] [α1]⎤

⎦
= − ⎡

⎣
[h(t1)] ⎤

⎦
⎡
⎢
⎣

[h(t0)]

[h(t1)]

⎤
⎥
⎦

+

= − ⎡
⎣

[h(t1)] ⎤
⎦

⎡
⎣

[h(t0)]+ [h(t1)]+ ⎤
⎦

= − ⎡
⎣

[h(t2)][h(t0)]+ [h(t2)][h(t1)]+ ⎤
⎦

. (34)

Finally,

⎡
⎣
[α0] [α1]⎤

⎦
= − ⎡

⎣
[h(t2)][h(t0)]+ [h(t2)][h(t1)]+ ⎤

⎦
(35)

By comparing Equation (35) with Equation (33), it is clear that the coefficient information in the two
companion matrix cases must be exactly the same to within any numerical round-off errors in the zero
and identity matrix areas of the companion matrix.

The conclusion, therefore must be that the base vector of order zero in the original UMPA formulation is
complete and that no advantage is available when higher order base vectors are used to form alternate
models. In fact, models that utilize a base vector model order of zero are better in terms of utilizing a
minimal memory footprint and cannot be affected by numerical round-off that occurs in forming the
associated companion matrix.

3.2.1 Companion Matrix Structure - Random Data

In order to demonstrate the inherent structure of the companion matrix that results from higher order
base vector formulations, a simple numerical example was formed using random data. This random data
was purely random data resulting from a random number generator and represents no underlying
structural model. The following result was formed by using a first order Rational Fraction Polynomial
model with a base vector model order of three. There are block coefficients of size 3 × 3 reflecting the
three references in the artificial data. The model for this case would be an UMPA(1,n,3) model and it
would be equivalent to an UMPA(4,n,0) model in terms of companion matrix size.

UMPA(1,n,3) Model:

[C] = ⎡
⎣

− [α ]0
⎤
⎦12×12

(36)
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UMPA(4,n,0) Model:

[C] =

⎡
⎢
⎢
⎢
⎣

[0]

[0]

[0]

− [α ]0

[I]

[0]

[0]

− [α ]1

[0]

[I]

[0]

− [α ]2

[0]

[0]

[I]

− [α ]3

⎤
⎥
⎥
⎥
⎦12×12

(37)

[C] =

⎡
⎢
⎢
⎢
⎣

− [α ]3

[I]

[0]

[0]

− [α ]2

[0]

[I]

[0]

− [α ]1

[0]

[0]

[I]

− [α ]0

[0]

[0]

[0]

⎤
⎥
⎥
⎥
⎦12×12

(38)

The following numerical examples parallel the formulations represented by Equations 36-38.

UMPA(1,n,3) Model (Numerical Random Data Case - Equation 36):

6.49e-16 -8.28e-16 1.39e-15 1.00e+00 -4.85e-15 9.19e-16 2.33e-16 -4.78e-16 2.91e-16 7.89e-16 -1.85e-15 5.73e-16

4.27e-16 -1.18e-15 -8.33e-16 -2.52e-15 1.00e+00 7.18e-17 2.06e-16 -4.60e-16 -2.50e-16 -9.50e-16 -9.93e-16 1.27e-16

-7.52e-16 -5.59e-16 -4.57e-16 -1.74e-15 2.61e-15 1.00e+00 -2.24e-16 3.64e-17 -2.66e-16 -6.39e-16 1.00e-15 -4.67e-16

1.83e-15 6.05e-16 -3.61e-16 1.99e-16 -7.13e-16 2.77e-16 1.00e+00 1.30e-16 0.00e+00 3.10e-17 -8.09e-16 -5.31e-18

-3.12e-15 -5.36e-16 4.80e-15 -1.05e-14 6.44e-15 -4.42e-15 -9.88e-16 1.00e+00 1.58e-15 -3.44e-15 2.37e-15 -2.12e-15

1.78e-15 -1.48e-15 1.78e-15 7.52e-15 3.00e-15 -3.11e-15 9.16e-16 -6.38e-16 1.00e+00 2.81e-15 1.55e-15 -1.19e-15

-2.72e-15 -6.39e-16 1.75e-15 -4.88e-15 -9.24e-16 -3.40e-15 -1.07e-15 1.59e-16 1.09e-15 1.00e+00 -6.09e-16 -1.73e-15

-5.79e-16 1.72e-15 9.99e-16 9.38e-15 2.75e-15 -2.24e-15 -3.43e-16 8.33e-16 2.78e-16 3.37e-15 1.00e+00 -1.22e-15

3.27e-15 1.79e-15 -2.10e-15 2.67e-15 -5.80e-15 -3.03e-15 1.03e-15 3.68e-16 -4.23e-16 5.43e-16 -2.26e-15 1.00e+00

-2.43e+00 -1.77e-02 -9.69e-02 -1.64e-04 6.87e-02 -1.54e-02 -3.97e+00 -2.55e-03 -6.29e-02 4.06e-04 2.30e-02 -1.57e-02

-4.98e-03 -2.35e+00 -2.32e-02 -7.61e-02 5.01e-03 1.17e-01 4.20e-03 -3.87e+00 -2.07e-02 -2.74e-02 2.95e-03 6.00e-02

-8.98e-02 -2.93e-02 -2.34e+00 8.26e-03 -1.31e-01 -3.24e-03 -6.10e-02 -2.56e-02 -3.89e+00 1.18e-02 -6.83e-02 -3.35e-03

TABLE 2. Companion Matrix Numerical Example - Random Data - UMPA(1,n,3)

UMPA(4,n,0) Model (Numerical Random Data Case - Equation 37):

0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00

-2.43e+00 -1.77e-02 -9.69e-02 -1.64e-04 6.87e-02 -1.54e-02 -3.97e+00 -2.55e-03 -6.29e-02 4.06e-04 2.30e-02 -1.57e-02

-4.98e-03 -2.35e+00 -2.32e-02 -7.61e-02 5.01e-03 1.17e-01 4.20e-03 -3.87e+00 -2.07e-02 -2.74e-02 2.95e-03 6.00e-02

-8.98e-02 -2.93e-02 -2.34e+00 8.26e-03 -1.31e-01 -3.24e-03 -6.10e-02 -2.56e-02 -3.89e+00 1.18e-02 -6.83e-02 -3.35e-03

TABLE 3. Companion Matrix Numerical Example - Random Data - UMPA(4,n,0)
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UMPA(4,n,0) Model (Numerical Random Data Case - Equation 38):

4.06e-04 2.30e-02 -1.57e-02 -3.97e+00 -2.55e-03 -6.29e-02 -1.64e-04 6.87e-02 -1.54e-02 -2.43e+00 -1.77e-02 -9.69e-02

-2.74e-02 2.95e-03 6.00e-02 4.20e-03 -3.87e+00 -2.07e-02 -7.61e-02 5.01e-03 1.17e-01 -4.98e-03 -2.35e+00 -2.32e-02

1.18e-02 -6.83e-02 -3.35e-03 -6.10e-02 -2.56e-02 -3.89e+00 8.26e-03 -1.31e-01 -3.24e-03 -8.98e-02 -2.93e-02 -2.34e+00

1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 0.00e+00 0.00e+00 0.00e+00

TABLE 4. Companion Matrix Numerical Example - Random Data - UMPA(4,n,0)

Table 2 shows the numerical round-off error that is slightly contaminating the form of the companion
matrix for the higher order base vector methods when compared to Tables 3 and 4. The information in
the three matrices is exactly the same otherwise. Note that Equation 38 and Table 4 is presented simply
to show the alternate forms of the companion matrix that result from manipulating the solution
procedure used to determine the [α ] coefficients. If the numerical round-off is sufficiently large enough
or similar in magnitude to the data portions of the companion matrix, this could degrade the solution.
Since the structure of the companion matrices is based upon forming the solution from time shifts and/or
derivatives, allowing this slightly degenerate form is essentially allowing velocity to not be the derivative
of displacement.

4. Summary and Future Work

In this paper, the UMPA framework has been extended to encompass the concept of a higher order base
vector. Historically, most modal parameter estimation algorithms, except the first order versions of the
ERA and PFD algorithms (ERA-1 and PFD-1), have utilized a base vector of zeroth order, that is a
structure that corresponds directly to the vector basis of the model (either NL or NS.) While developing
an automated technique for identifying valid modal parameters, it was observed that having higher order
base vectors was advantageous in discriminating between the physical and the computational poles.
Several papers were published which discussed this extended basis approach, but only as an extension of
the traditional first order methods. As a result, just like ERA-1 and PFD-1, these higher order base
vector methods produced a single [α0] coefficient which was itself the companion matrix.

However, while developing a general autonomous modal parameter estimation methodology, it was
recognized that other intermediate formulations were possible. These forms were initially believed to
produce a new family of modal parameter estimation algorithms. However, in the course of
investigation, the equivalence of the first-order state extended methods and the traditional higher-order
methods was demonstrated. Although the thought process used to arrive at these first order methods was
different from the higher-order formulation, the final matrix structural form is in fact identical within a
computer numerical round-off which has nothing to do with the actual informational content as shown
by the identical companion matrix structure resulting from using purely random, unrelated information.
This suggests that there is no real advantage in computing these larger, extended basis coefficients. That,
at best, doing so simply requires more computer memory and more computational time calculating a-
priori known zero and identity quantities. In fact, it appears that if the numerical round-off on these
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computed zero and identity terms becomes sufficiently large, the quality of the solution may actually be
degraded.
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ABSTRACT 

Structures that carry humans are the subject of the studies of this paper. Active humans may cause structural vibrations, 
which can be problematic, but passive humans (sitting or standing on the structure) are also potentially present on the 
structure. In predictions of structural vibration performance, the passive humans are often not modelled, but they will interact 
with the structure. The paper has focus on the effect that the presence of passive humans has on the structural behaviour and 
modal characteristics of the structure. Based on findings from measurements, the implications of presence of passive humans 
are discussed. 

 
NOMENCLATURE 
 
 
e Response ratio f1 Empty floor frequency f2 Crowd frequency 
p Load ζ1 Empty floor damping ζ2 Crowd damping 
G Weight of jumper  m1 Empty floor modal mass m2 Crowd modal mass 
k Spring stiffness c Damping coefficient αn Dynamic load factor 
R Rms-value fl Jumping frequency ϕn Phase 
 
 
 
1. INTRODUCTION  
 
Vibrations in structures may occur as a result of walking, jumping, bouncing or other activities. The humans that perform 
these activities may be referred to as active humans. Other humans on the structure may be passive, and these humans may be 
referred to as stationary people. In the paper a group of such people will be referred to as a stationary crowd (even though 
only very small crowds are considered).  
 
On a variety of different structures it has been verified that stationary humans [1-5] act as attachment systems to the structure 
which they occupy, and it has been found that a stationary crowd of people with much reasoning can be modelled as a single-
degree-of-freedom system (SDOF system) [1-2,5-6]. That a stationary person is dynamic system is known from 
biomechanics [7], but that a crowd can be modelled as a SDOF system is useful, as it simplifies computations.  
 
This paper assumes a SDOF model for the crowd, and investigates how the presence of this attachment system influences 
structural response. The response considered is the acceleration response of the structure to the action of a jumping person.  It 
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DOI 10.1007/978-1-4419-9299-4_36, © The Society for Experimental Mechanics, Inc. 2011



is a parametric study, in which different modal characteristics for the structural system are assumed, and the size of the 
stationary crowd of people is also varied so as to investigate its influence on magnitudes of structural response.  
 
The human-structure interaction model assumed for the study is introduced in section 2, and the section also presents the 
dynamic characteristics assumed for structures and the stationary crowd. The load model and procedures for computing 
structural response are outlined in section 3. Section 4 presents the results. 
 
 
2. THE HUMAN-STRUCTURE INTERACTION MODEL 
 
Fig. 1 illustrates the human-structure interaction model assumed for the studies of this paper. The grounded system represents 
the structural system, which is modelled as SDOF system. The structure carries a stationary crowd of people modelled as a 
SDOF attached to the structural mass.  
 
 

 

Fig. 1   Human-structure interaction model 

 
It is assumed that the governing mode of the structural system is the first mode of vertical bending. This mode is described by 
the parameters m1, k1, and c1, representing modal mass, stiffness and damping, respectively. The corresponding parameters 
for the stationary crowd of people atop the structure are denoted m2, k2, and c2. A load p(t) might be applied to the floor mass 
bringing the system into vibration. 
 
The following equations are assumed to apply: 
 

( )2222 2 fmk π=        2222 2 ζkmc =                                                                  (1) 
 

( )2111 2 fmk π=          1111 2 ζkmc =                                                                    (2) 
 

where the set (m1, f1, ζ1) represents the dynamic characteristics associated with the first bending mode of the empty structure 
and the set (m2, f2, ζ2) represents the dynamic characteristics of the crowd.  
 
On these assumptions the governing equation of motion is: 
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For the studies of this paper different structural systems are considered. They are all modelled as SDOF systems and the 
dynamic characteristics of the individual structures are listed in Table 1. 
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Table 1 Dynamic characteristics of structures 
Structure f1 m1 ζ1 

A1 6.0 Hz 6.82⋅103 kg 0.5 %cr 
A2 6.0 Hz 6.82⋅103 kg 1.0 %cr 
A3 6.0 Hz 6.82⋅103 kg 2.0 %cr 
B1 5.0 Hz 6.82⋅103 kg 1.0 %cr 
B2 6.0 Hz 6.82⋅103 kg 1.0 %cr 
B3 7.0 Hz 6.82⋅103 kg 1.0 %cr 

 
As it appears, the structures are split into two groups (A and B). In each group one of the modal characteristics are varied. For 
instance in group A, three different damping ratios are considered.  
 
In the studies, the structures will be modelled with and without a stationary crowd of people atop the structure. Table 2 gives 
the frequency and damping assumed for the crowd. 
 
 

Table 2 Dynamic characteristics of crowd 
f1 ζ1 

6.0 Hz 0.35  
 
 
The values are fairly close to those experimentally derived in [5] for a standing crowd of people. The modal mass of the 
crowd, m2, is varied in the studies, so it is not shown in Table 2. 
 
 
3. LOAD MODEL AND RESPONSE PREDICTION 
 
Below the load assumed acting on the structure is defined. A simplistic model for jumping loads is assumed. The jumping 
frequency is denoted fl,, and load is modelled as follows: 
 

                                                                   ( ) ( )nl
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                                                                     (4) 

 
As it appears five harmonics are considered in the Fourier series expansion, where αn is the dynamic load factor and where ϕn 
is the phase lag. The factor G represents the weight of the jumper which is assumed to be 750 N, as only a single jumper is 
assumed. The dynamic load factors are determined from: 
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This is a simplistic model for high jumping. For the jumping frequency and array of possibilities are considered namely 2.00 
Hz, 2.01 Hz, 2.03 Hz up to 3.00 Hz. These jumping frequencies are quite realistic. For each jumping frequency assumption, 
the load is computed and so is the rms-value of structural accelerations. The maximum value of the rms-value is identified 
and is denoted Re where the subscript ‘e’ signals that this is the result obtained for the empty structure. Empty here refers to 
the situation where there are no stationary people on the structure. The only person on the structure is the jumper himself.  
 
However, the exercise of computing rms-values for different jumping frequency assumptions and identifying the maximum 
value is also carried out for situations where the structure is assumed occupied by a stationary crowd of people of mass m2. 
The maximum rms-value computed for a specific value of m2 is denoted Ro(m2), where the subscript ‘o’ signals that is a result 
obtained for the structure occupied by a stationary crowd of people.  
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In presentations of results in terms of structural response, it is considered useful to employ the ratio: 
 

( ) ( )
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o

R
mR

me 2
2 =                                                                                   (6) 

 
which basically is a normalisation of rms-values obtained for the structure carrying a stationary crowd of people with the 
result obtained for the empty structure. For values of e smaller than 1, the presence of the stationary crowd has attenuated the 
structural vibrations.  
 
The load model introduced in this section is a simplification of jumping loads, but it is not all that unreasonable, in that it 
models the dynamic load factor with a maximum value of 2.0 (for the first dynamic load factor), and superharmonic dynamic 
load factors are modelled to be lower that this value.  
   
 
3. RESULTS 
 
The response ratio e was computed for different values of m2 smaller than 250 kg. Hence quite small stationary crowds of 
people are considered, as 250 kg might correspond to a group of 3 people.  
 
The response ratio was computed for 3 different assumptions for the damping ratio of the empty structural system (systems 
A1, A2, A3), and results are shown in Fig. 2. 
 

 

Fig. 2 Response ratio e as function of mass of the stationary crowd of people  

ζ1= 0.5 % (o), ζ1= 1.0 % (x), ζ1= 2.0 % ( )  

 
As can be seen, a stationary crowd is found to attenuate the structural response, as all values of e are below 1. There is the 
tendency that the response reduces as the size of the crowd increases (m2 increases).  
 
Another item to notice is that as the damping ratio of the empty structure (ζ1) decreases the attenuating effect of the stationary 
crowd increases (in that e decreases with decreases in ζ1 for fixed values of m2). In fact the results suggest that the attenuating 
effect of the stationary crowd is quite sensitive the damping ratio of the empty structure. 
 
It is quite obvious that the results shown in Fig. 1 deviate a lot from that would be expected had the stationary crowd been 
modelled as a mass rigidly attached to the structural mass. It should be noted that realistic values of m2 might be 75 kg, 150 
kg and 225 kg if the group of people (one person, two persons, and three persons, respectively) is located at the point of 
maximum structural displacement, but if the group of people is located at any other location on the structure these values 
would reduce. 
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In terms of the magnitude of the attenuating effect of the stationary crowd, it is noticeable that the calculations predict that a 
single stationary person (m2 = 75 kg) is capable of reducing structural vibration levels by more than a factor 2 (for ζ1= 0.5 %). 
When mentioning this is should be recalled that the modal mass of the empty structure is assumed to be almost 7000 kg, 
which is a little less than 100 times the weight of the person.  
 
The response ratio was also computed for different assumptions for the frequency of the empty structure (systems B1, B2, 
B3), and results are shown in Fig. 3.  
 

 

Fig. 3 Response ratio e as function of mass of the stationary crowd of people  

f1= 5 Hz (o), f1= 6 Hz (x), f1= 7 Hz ( )  

 
It appears that the attenuating effect of the stationary crowd of people is also sensitive to the frequency of the empty structure. 
 
 
6. CONCLUSION AND DISCUSSION 
 
The parametric studies of this paper examined the response of different structural systems to the action of jumping, with and 
without a stationary crowd present atop the structure. 
 
It was found that even a very small stationary crowd of people can change the response of the structural system quite 
significantly. Even a single stationary person is predicted to be capable of reducing structural vibration by more than a factor 
2 (for one of the structural systems considered for the studies).  
 
It was furthermore found that the vibration attenuating effect of the stationary crowd of people is sensitive to for instance the 
damping ratio of the empty structure. 
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Abstract 
 
Metro Vancouver, located in British Columbia, Canada, comprises the city of Vancouver and twenty more municipalities of 

its metropolitan area. The Metro Vancouver region has a population of about 2.25 million people and it is located in an area 

of high seismicity. A future earthquake close to Metro Vancouver would cause tens of billions of dollars damage and would 

seriously impact the economy of both British Columbia and Canada. Therefore, some of the municipalities in the region have 

initiated a program to evaluate the level of seismic hazard potential and identify the most vulnerable areas. In this regard, the 

identification of soil conditions plays a very important role in the evaluation of the seismic hazard potential. A cost effective 

technique to identify the dynamic characteristics of soil deposits is through microtremor testing. 

 

Between 2009 and 2010 a series of microtremor tests were performed over the region of Metro Vancouver. Data obtained 

from these tests was analysed using both the horizontal to vertical ratio (H/V) and the frequency domain decomposition 

techniques of the recorded motions to find the predominant periods of vibration of the ground in the horizontal direction. For 

each test, in addition to the predominant period, values of peak ground velocity, PGV, root mean square ground velocity 

(RMS), and amplitude were recorded. Combining the results from a series of tests, maps of site periods were created for the 

regions investigated. This paper discusses the details of the testing campaign and the site period maps developed for Metro 

Vancouver. 

 
 

1.0 Introduction 
 
One of the most important considerations in geotechnical engineering is describing the dynamic characteristics of a soil 

deposit. These characteristics depend on many factors, including the geometry and mechanical properties of the soil layers 

and the input motion characteristics [11]. The seismic response of a site is directly related to the dynamic characteristics of 

that site, and depends upon such variables as period and ground velocity.  

 

Present day in situ testing for determining soil properties consists of destructive sampling methods, including cone 

penetration tests, standard penetration tests, Becker penetration tests, vane shear tests, and shear wave velocity testing. These 

different methods of testing require drill rigs which make them expensive and time consuming to perform across a large area 

[13]. Microtremor testing, conversely, is non-intrusive and allows for a higher rate of testing and lower costs when compared 

to conventional methods. Additionally, microtremor tests require no external wave source as they rely solely on ambient 

vibrations caused by wind, traffic, pedestrians, rivers and underground services. Finally, a single tri-axial sensor is the only 
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required measurement equipment. These testing methods, combined with Nakamura‟s method and the Frequency Domain 

Decomposition (FDD) result in a complete testing and analysis procedure that is effective and reliable [1]. 

 

This paper presents the results of an NSERC funded study of site response in selected regions of the Metro Vancouver 

region, in South-western British Columbia. In total, 212 measurements covering almost 400 square kilometers were 

performed and analysed for fundamental period using Nakamura‟s method and FDD. In addition, for some of the tests 

average values of ground velocity were also calculated. As a result of this study, it is possible to know, approximately, the 

fundamental period anywhere within the study area, specifically the Cities of Richmond and North Vancouver and the 

Districts of North Vancouver and West Vancouver. 

 

 

2.0 Description of the Test 
 

2.1 Overview of Study Area 
 
The study area is located within one of the most seismically active regions in Canada. Situated just east of the Cascadia 

subduction zone, Metro Vancouver is located within only one hundred and fifty of the expected location of a „mega thrust‟ 

earthquake [4]. Other faults in the vicinity of the region have produced crustal and subcrustal earthquakes that, because of the 

proximity to urban areas, could also generate significant ground shaking that could cause severe damage to the built 

environment. The entire area of the study is moderately to densely populated and, as a result, the effects of an earthquake are 

of great interest to municipalities and the provincial government.  

 

The study area can be divided into two regions; the City of Richmond (excluding Sea Island) in the south and three 

municipalities (City of North Vancouver, District of North Vancouver and District of West Vancouver) which are located 

north of the City of Vancouver and herein referred to as the North Shore. The study area can be seen in Figure 1. 

 

 
Fig. 1 Overview of Study Area 
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The City of Richmond is located on the Fraser River Delta which overlies deltaic sediment deposits up to 300m thick. These 

sediments are composed primarily of sand and silt and make up the Holocene layer. Beneath the Holocene is a layer of 

Pleistocene and beneath that, the bedrock [1]. Bedrock varies from 200m to 1000m from the surface with an average of 500m 

[2]. These soil deposits are prone to amplification, and, as a result of a high ground water table, are also prone to liquefaction 

[1]. 

 

On the North Shore, the sediments are much thinner and overlay the rocks of the coast plutonic complex [2]. The 

composition of the soil layers varies from till to gravel, sand and small amounts of clay. In some areas, the bedrock is 

exposed. The bulk of this area is not at high risk of liquefaction [5]. 

 
 

2.2 Measuring Equipment 
 

The equipment used in this study is owned by The University of British Columbia‟s Earthquake Engineering Research 

Facility (EERF). The sensors, Pinocchio WL380s, are geophone-based velocity meters capable of taking long measurements 

(up to 12hrs) at sampling rates of 100sps and can be seen in Figure 2. Each unit has an internal power supply and GPS 

antenna, increasing the portability and enabling precise location and time synchronization. Two sets of tri-axial geophones 

make up each Pinocchio, one for each of high and low amplitude motion. The geophones have a natural frequency of 4.5Hz 

and 56% damping. 

 

 
Fig. 2 Pinocchio WL380 Sensors in the Field 

 

2.3 Testing Procedure 
 

For each test, the units were programmed using a laptop and Secure Digital card (SD). Tests on the North Shore were 20 

minutes in duration and tests in Richmond, 30 minutes. According to Ventura et al [3] and SESAME guidelines [12], longer 

tests are required to identify longer periods. Previous testing in the City of Richmond confirmed this when it failed to identify 

the longer periods with 5 minute tests [3]. All tests were performed at 100 samples per second. Once the test was complete, 

the SD card was removed from the sensor and data saved on the laptop.  

 

Where possible, sensors were placed on concrete or asphalt for the tests as this appeared to give the most precise results. 

Where concrete was not available, steel plates with four steel spikes were placed into softer ground and the sensor placed on 

top of the plate. The spikes secured the sensor in place horizontally. The sensors were oriented with the Y axis in the North 

direction and levelled. On average, moving to the next location, setting up the sensor, programming the test, and running the 

test took one hour. A total of 212 tests were performed, with a resolution of approximately 500-800m spacing. 

 

453



3.0 Analysis and Results 
 

Using the commercial software package Matlab [8], data was converted into the ASCII file format which enabled further 

processing. A baseline correction was also performed on the raw data using a Butterworth high pass filter at 0.1%. After this, 

data was ready to be processed with Nakamura‟s technique and The Frequency Domain Decomposition (FDD) method. 

 
 
3.1 Data Analysed by Nakamura’s H/V Technique 
 

Nakamura‟s method of analysing ambient vibration measurements was first proposed in 1989 by Yutaka Nakamura [6]. 

Despite several recognized shortcomings of Nakamura‟s method, such as questionable ability to identify which wave types 

cause microtremors, recently it has gained popularity as an accurate and cost-effective way of determining the fundamental 

site period [1].  

 

Nakamura proposes that the soil layer does not amplify the vertical component of ambient noise. Therefore, the period at 

which a plot of the ratio of horizontal motion to vertical motion (H/V) peaks should correspond directly to the fundamental 

period of that site [1]. 

 

Using the free software package Geopsy [7], time history plots were generated for each test as can be seen in Figure 3. From 

the time history plot, Geopsy‟s window selection tool was used to select “windows” of a desired amount of time to be used in 

further analysis. The goal of window selection was to remove the influence of flawed data in determining the peak in the H/V 

ratio plot. Any large spikes in time history plot were avoided, as well as segments of the test that were influenced by other 

noise sources, such as a lawnmowers or traffic in very close proximity. Windows were typically 40 seconds in length, as 

recommended by SESAME guidelines [12].  

 

 
Fig. 3 Time History Plot in Geopsy 
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Once windows were selected, Geopsy was used to generate an H/V plot for each test, considering only the selected windows. 

An example plot is displayed in Figure 4. The period at which the plot peaks was taken to be the fundamental period for that 

site. In some test, peaks were less obvious, or there were multiple possibilities. In these situations, the peak was chosen by 

comparing the results of the test in question to nearby tests, under the assumption that it is unlikely for the site period to 

change drastically over only 500 - 800 meters.  

 

 
Fig. 4 H/V Ratio Plot in Geopsy 

 

3.2 Data Analysed by the FDD Technique 
 
One shortcoming in the use of Nakamura‟s method is an inability to determine if peaks in an H/V ratio are associated with 

horizontal or vertical motion. Assuming microtremor data is treated as output only modal data, it should be possible to apply 

the Frequency Domain Decomposition (FDD) technique to identify fundamental periods and their associated ground motion 

principal component [3]. The use of the FDD technique to identify site periods was first proposed by Ventura et. al. in 2004 

[3]. 

 

Utilizing the commercial software package ARTeMIS Extractor [9], peaks of the FDD plot were chosen, as in Figure 5, and 

the corresponding dominant motion of each identified. For the purpose of determining site periods, peaks exhibiting 

horizontal motion were assumed to be representative of the site, while those with vertical motion were discarded.  

 

FDD was used heavily in tests performed on the North Shore as a way of confirming the results achieved through 

Nakamura‟s method. In most cases, these two methods agreed upon the dominant period for a site. Testing in Richmond 

relied almost exclusively upon Nakamura‟s method to identify the site period as FDD analysis of these tests provided 

inconsistent results.  
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Fig. 5 Example FDD Peak Picking Plot for a Site in Richmond [3] 

 

3.3 Processed Data and Map Generation 
 
Processed data, in the form of a spread sheet containing test name, coordinates and site period, was used to generate iso-

period maps of each test region, one for the North Shore and one for Richmond. This mapping was performed with the free 

software package Google Earth Toolbox [10] and Matlab. Site periods on the North Shore ranged from 0.04 to 1.25 seconds 

(0.8 to 25 Hz) as can be seen in Figures 6 and 7, and those in Richmond from 0.6 to 5.7 seconds (0.18 to 1.67 Hz) as can be 

seen in Figures 8 and 9. These results were expected, given the thick sediments of Richmond and the thinner sediments and 

exposed bedrock of the North Shore. 

 

Although accurate shear wave velocity was not available for this study, the “quarter wavelengths rule,” as seen in Equation 1,  

 

                                                                                                                                                                       (1) 

 

(where P is the fundamental site period, Sv is average S wave velocity and d is the depth of the soil layer) can be used as a 

means of checking results [2]. It can be seen that shorter periods exist on the North Shore directly south of mountain ridges. 

This is consistent with expectations as the soil layer should be thinner when bedrock is closer to the surface and hence the 

period is shorter. Likewise, in Richmond longer periods are present where the coastline extends past that of the City of 

Vancouver‟s bedrock. Assuming this peninsula has been built up over time by sediment deposit, it is consistent with 

expectations that the period of this region would be longer.  

 

 
Fig. 6 Site Periods (in seconds) on the North Shore 
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Fig. 7 North Shore Test Locations 

 
Fig. 8 Site Periods (in seconds) in Richmond 
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Fig. 9 Richmond Test Locations 

 
 
 
4.0 Summary and Conclusions 
 

This paper presented the result of a microtremor testing campaign covering the City of Richmond and the three municipalities 

north of the City of Vancouver. In total, 212 tests were performed and their data analysed with Nakamura‟s method to 

determine the site period for each. In some cases, the Frequency Domain Decomposition technique was used alongside 

Nakamura‟s method, with mixed results.  

 

Several iso-period maps were generated from the results of this microtremor testing. These maps could be used as a starting 

point for determining underlying soil layers and input motion characteristics, estimating the seismic performance of a given 

area or predicting which magnitude of structures would be at risk as a result of a specific period of ground movement.  

 

The thick sediment layers of the City of Richmond exhibited a site period ranging from 0.6 to 5.7 seconds (0.18 to 1.67 Hz). 

The North Shore had much shorter periods on average, between 0.04 and 1.25 seconds in length (0.8 to 25 Hz).  

 

It is recommended that this study be expanded to other regions of Metro Vancouver to provide a more comprehensive 

summary of the region. In addition, further testing should be done to determine the effectiveness of the FDD technique in 

analysing ambient vibrations.  
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This paper focuses on experimental nonlinear vibration analysis of the pro-

posed hybrid energy harvester. A nonlinear energy harvesting structure is pro-

posed to convert ambient vibrations to the electrical energy using the piezoelectric 

and electromagnetic mechanisms. A repelling magnetic force is introduced to the 

system to both reduce the resonant frequency of the system and increase the fre-

quency bandwidth by making the vibrations nonlinear. The paper is the continua-

tion of a previous work by the authors in which the vibrations of the harvester was 

analytically characterized. Both mono-stable and bi-stable situations are studied. 

Depending on the level of excitations the bi-stable system can exhibit oscillations 

about each of its equilibriums, chaotic vibrations or the limit cycle oscillations 

(LCO) over both of the equilibriums. The proper design of the harvester allows the 

system to perform Limit Cycle Oscillations in response to moderate base excita-

tions. The paper discusses the experimental results on electro-mechanical vibra-

tions and the energy generation of the nonlinear hybrid harvester at different mag-

netic force levels, excitation frequencies and excitation levels. 

 

Introduction 

Energy harvesting is the act of scavenging small amounts of power from the 

ambient energy in the environment. This paper focuses on energy harvesting from 

vibrations. Such ambient energy can come from bridge vibrations, tire motion or 

the human heart beating. The minute energy can power up sensor nodes and there-

fore reduce the wiring complications or eliminate the need of changing batteries 

frequently. For more information on general energy harvesting the reader may re-

fer to [1-6]. 

During the past two years nonlinear energy harvesting has received substantial 

attention. The nonlinearity can be natural (for example the nonlinear material 

properties of the piezoelectric substance [7] ) or can be synthetic. If in addition to 
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the lateral direction the beam is excited longitudinally, the governing equation of 

the system includes some nonlinear expression in the form of parametric excita-

tion [8]. The most common mechanism of making the beam nonlinear is by 

placement of permanent magnets [9-17]. After modeling their systems and deriv-

ing the nonlinear governing equations most of these researchers have used numer-

ical or experimental methods to solve the governing equations. Among the men-

tioned literature on magnetically nonlinear harvesters only Ref. [15] uses 

analytical perturbation methods, but they only solve the mechanical system and 

ignores the electromechanical coupling.  

An electromechanical model was introduced by the first and third author [18] 

to result the governing equations and predict vibration and power harvesting be-

havior of the proposed nonlinear hybrid energy harvesting device. Based on the 

model we designed and fabricate a prototype to show nonlinear vibrations charac-

teristics for low frequency and low amplitude base oscillations. The current paper 

summarizes the results of experiments performed using the prototype. The paper 

follows by introducing the hybrid nonlinear harvesting device and driving the go-

verning differential equations. Next we discuss the fabrication of the prototype 

and the test procedure. The experimental results are presented in three sections. 

The first two results sections are dedicated to mono-stable harvesting and the third 

section presents small vibrations, chaotic motion and limit cycle oscillations of the 

bi-stable harvester. 

 

 

The nonlinear hybrid energy harvesting device 

The hybrid nature of the nonlinear harvesting device proposed here is illu-

strated in Fig. 1. We use magnetic forces in our system to reduce nonlinear beha-

vior. The magnetic force between the tip and base magnets is repulsive and there-

fore counteracts the elastic behavior. The existence of nonlinear forces acting on 

the beam introduces nonlinear hardening terms, which are explained in section 0. 

The piezoelectric element bounded to the beam harvests energy from beam deflec-

tion. As a novel approach we have placed electromagnetic coils in the system. 

When the beam vibrates the magnetic tip mass passes by the coils and generates 

electricity. The system is a hybrid energy harvester in the sense that, it uses two 

different methods (piezoelectric and electromagnetic transduction) for power har-

vesting. 
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Fig. 1: Schematic View of the harvester 

Governing equations and possible scenarios 

We use the energy methods to model the dynamics of the system. The harvester 

is made up of three coupled systems; the cantilever beam which is characterized 

by the deflection of beam, the circuit connected to the piezoelectric element and 

the circuit connected to the coils. The electrical circuit for harvesting is simplified 

to be only a resistor in order to focus on the transduction. The value of the resis-

tive load in the piezoelectric circuit is    and the value of the resistive load in the 

electromagnetic circuit is   . The energy in various components of the entire elec-

tromechanical system is: the elastic and magnetic potential energies stored in the 

beam and the magnetic field ( ), the electrostatic energy stored in the piezoelec-

tric patch (  ), the kinetic energy stored in the beam and the tip mass ( ), the 

magnetic potential energy between the tip and base magnets ( ), the electromag-

netic energy stored in the coils (  ) and the energies dissipated by the resistors 

and damping of the beam. The displacement of the beam, the flux linkage across 

the piezoelectric element and the charge through the coils are the coordinates used 

for identifying the system. Following the guidelines in [19], the Lagrangian of the 

system is: 

              (1) 

The dynamic deflection of the beam is simplified by a single mode Galerkin’s 

method. The deflection at each point and at a certain time relative to the base is 

463



               . The approach is a common practice in study of nonlinear vi-

brations of bi-stable structures [9] and is justified by center manifold 

reduction[20]. The static deflection shape of the beam under a unit load applied to 

the tip is used as the shape function. 

The following integrals are defined to facilitate abbreviation of formulas: 
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 (2-b) 

Each of the terms in Lagrangian are related to the states as follows: 

         
 

 
                

 

 
           

            (3) 

where     are the stiffness coefficients,     are the piezoelectric constants [21], 

   are the electric field components and            is the magnetic force poten-

tial. The Magnetic force is experimentally measured and is characterized as 

                
 . The magnetic force potential is therefore:         

 
 

 
    

  
 

 
    

 . We let    denote the Young’s modulus of the steel substrate, 

   the Young’s modulus of the piezoelectric patch,    the area moment of inertia 

of the steel beam about its geometric center and    stand for the area moment of 

inertial of the cross section of each piezoelectric patch about the center line of the 

steel substructure. Eq. (3) is simplified to: 

       
      

 
        

      

 
 

 

 
       

         
         

         
     

  
  
         

       

  
        

  (4) 

In Eq. (4),       is the flux linkage across the piezoelectric patch,    is the 

cross-sectional area and     is the z-coordinate of the centroid of the patch. The z 

and x-coordinates have been defined in Fig. 1. The base motion, characterized by 

    , should be taken into account when calculating the kinetic energy .The kinet-

ic energy is evaluated as 

   
 

 
       

         
   

 

 
                          

          
   

                     
 

 
                  

  (5)  

The densities of the steel substrate and the piezoelectric patch are    and    re-

spectively. The total mass of the substrate and each of the piezoelectric patches are 

   and   . The cross sectional area of the substrate is    and      stands for the 
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mass of the tip magnet. When the tip magnet passes by the coils some electromag-

netic energy conversion occurs. The electromagnetic coupling can be characte-

rized by the coupling coefficient,   .  

When the tip magnet passes by the coils with the velocity      , a force of 

magnitude      impedes the motion of tip magnet. The current in the coils is   . 

At the same time a potential difference is generated across the coil which equals 

       . The charge passing through the coils is noted by    and the overall in-

ductance of the coils is  . The following two terms in the Lagrangian represent the 

electromechanical energy in the coils: 

   
    

 

 
    

             (6) 

The Euler-Lagrange equations for our three degrees of freedom system is: 

 

 
 
 

 
 

 

  
 
   

   
  

   

  
      

 

  
 
   

   
   

   

   
  

  
 

  

 

  
 
   

    
  

   

   
       

  (7)  

The damping coefficient of the mechanical spring is denoted by   . Performing 

the derivations in Eq. (7),dividing by the modal mass and grouping the terms re-

sults: 

 

 
 
 

 
                                     

    
  

    
 

   

  
  

   

  
 

  

 
        

  (8) 

The coefficients in Eq. (8) are: 
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,          , 

   
        

  
 ,           (9) 

The second and third terms on the right hand side of Eq. (8-a) represent the 

“drag” terms introduced by the piezoelectric patch and the electromagnetic coils. 

The energy transferred to the electric circuits reduces the mechanical energy of the 

beam and therefore slightly suppresses its oscillations. 

The sign of the linear restoring coefficient, k, can be positive or negative. The 

familiar positive coefficient corresponds to low magnetic forces. In this situation 
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the zero deflection equilibrium is stable and the system is a “nonlinear mono-

stable oscillator” coupled to the piezoelectric and electromagnetic circuits. 

If the tip magnet is close to the base the repelling force between the magnets, 

which forces the tip away from the zero deflection, becomes significant. The 

    equilibrium will be unstable but there will be two stable equilibriums on the 

left and right side of zero deflection (     ). In this situation the system is 

“nonlinear bi-stable oscillator” coupled to the piezoelectric and electromagnetic 

circuits. The nonlinear vibrations of the nonlinear bi-stable oscillator is discussed 

in section 0. 

 

Fig. 2: The transduction element 

Fabrication and testing procedure 

The beam element in the hybrid harvester is a bimorph where the substrate is a 

152.4 X 25.4 X 0.635 mm spring steel beam. There are two QP10n Mide’ Quick-

Packs placed on the sides of the beam. For proper clamping of the beam part of 

the piezoelectric patches and the substrate are clamped. The effective length of the 

substrate outside the clamp is 127 mm. The first 38.1 mm of the beam is covered 

on both sides by the Quickpacks. The blue electromagnetic coils illustrated in Fig. 

2 are modified small transformers. The ferroelectric coil of the transformer has 

been removed to prevent sudden interference with the motion of the tip magnet. 

Only one of the coils of the transformer (the top coils) are wired to the electro-

magnetic load. The coils are placed in carefully machined aluminum supports. The 

aluminum support can be elevated and oriented using the two brass vertical 

screws. This allows optimal placement of the electromagnetic coils along the 

course of motion of the tip magnet.  

The tip magnet is composed of three rare earth magnets the two 12.7 X 12.7 X 

12.7 mm cubic magnets are stabilized on the sides of the ferroelectric spring steel 
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by being placed on top of a  25.4 X 25.4 X 3.17 mm magnet. All the magnets are 

positioned to have their south poles pointed downwards. The base magnet is a 

25.4 X 25.4 X 3.17 mm rare earth magnet with its south pole oriented upwards to 

repel the tip magnets. The strong magnetic force attaches the base magnet to a 

steel block, used to position the base magnet. A rail mechanism allows positioning 

of the base magnet and the two electromagnetic coils on its sides. The height of 

the vertical support connected to the column of the energy harvester can be ad-

justed. By adjusting the elevation of the beam we can vary the distance between 

the tip and base magnets and achieve different vibration scenarios. 

 

Fig. 3: Connection of the hybrid harvester to the shaker 

The velocity of the tip magnet is measured using a Polytec OFV 303 laser vi-

brometer. The base acceleration (the acceleration of the frame of the harvester) is 

measured by a tear drop accelerometer. The voltage across the resistive load con-

nected to the piezoelectric patches, and the voltage across the electromagnetic load 

are also measured. Siglab data acquisition interface from Spectral Dynamics is 

used for data collection. 

 

Mono-stable piezoelectric harvester 

The mono-stable nonlinear vibrations occur when the distance between the 

base and the tip magnets is larger than a certain threshold. In that working condi-

tion the passive magnetic forces reduce the natural frequency of the harvester and 

also make it nonlinear. The zero deflection equilibrium however remains stable. 

The following tests examine the vibration characteristics and the power harvesting 
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trend of the hybrid energy harvester as a function of the distance between the 

magnets, the base excitation level, the excitation frequency and the load. The Vir-

tual Sine Sweep (VSS) feature of Siglab has been used to collect the data pre-

sented in this section. The VSS software only records the ratio between input to its 

2
nd

-4
th

 channel and the voltage reading at its first channel. We therefore have 

measured the transfer function corresponding to tip velocity, piezoelectric voltage 

and the electromagnetic voltage divided by the base accelerations. As the first step 

we only implement the piezoelectric harvesting and do not install the electromag-

netic coils. 

Magnet spacing 

The distance between the magnets changes the magnetic force and thus changes 

both the natural frequency and the nonlinearities. The smaller the distance be-

tween the magnets, the smaller the natural frequency and the more significant the 

nonlinear effect. It can be seen from Fig. 4 that smaller magnet gap also corres-

ponds to larger damping . Clearly the peaks of tip velocity FRF at small magnet 

gaps are shorter and wider compared to the corresponding peaks when the mag-

nets are far from each other. One reason for this phenomenon is the eddy currents 

generated in the steel block, which hold the base magnet in place. When the tip 

and base magnets are close to each other the magnetic field fluctuations due to the 

motion of the tip magnet are significant. This field fluctuation induces eddy cur-

rents in the structure and dissipates some energy. 

The nonlinearity is hardening nonlinearity and becomes more visible when the 

amplitude of the tip deflection is large. For large tip deflections the peaks of FRF 

curve bends to the right, but at the same time shortens. This increases the band-

width of the harvester but reduces the power generation.
 

 

(a) 
 

(b) 

 

Fig. 4: Relation between the magnet spacing and a) Tip velocity/base acceleration fre-
quency response function and b) harvested power/ base acceleration2 frequency re-

sponse function. The colors represent different base acceleration: blue: 0.15, green 0.3, 
red 0.74, cyan 1.5, magenta 3 m.s-2.  
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Resistive load 

There is an optimal value for the resistive load in terms of the power produc-

tion. At this optimal value however the velocity will be minimal. Since the nonli-

nearity is more significant when the amplitude of motion is large, at optimal resis-

tance where is the amplitude of motion is minimal, the nonlinear effects become 

less dominant. This phenomenon is illustrated in Fig. 5. 

 

(a) 
 

(b) 

Fig. 5: Relation between the resistive load across the piezoelectric patch and a) Tip ve-
locity/base acceleration frequency response function and b) harvested power/ base ac-
celeration2 frequency response function. The colors represent different base accelera-

tion: blue: 0.15, green 0.3, red 0.74, cyan 1.5, magenta 3 m.s-2. 

Mono-stable Hybrid Harvester 

This section explores the behavior of hybrid mono-stable nonlinear harvester. 

The main difference between this section and previous section is the inclusion of 

the electromagnetic harvesting in experimental study.  

magnet distance 

Fig. 6 illustrates that the natural frequency of the harvester increases with mag-

net distance. The hardening nonlinearity however decreases with the magnet gap. 

The damping in the structure decreases with the magnet distance due to presence 

of eddy currents. Decreasing the distance therefore increases the bandwidth at the 

cost of reduction in motion amplitude. The decrease in the velocity magnifies in 

piezoelectric and electromagnetic power curves. The electromagnetic power is 

more sensitive to amplitude of oscillation than the piezoelectric power. As illu-

strated in Fig. 2 the coils are on the sides of the tip magnet. If the range of motion 

of the tip mass is below a certain limit, the magnet would not pass over the coils 

and therefore there would be a significant loss in electromagnetic power genera-

tion. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 6: Relation between the magnet distance and a) tip velocity transfer function, b) 

piezoelectric power transfer function, c) electromagnetic power transfer function.  

Base acceleration 

As illustrated in Fig. 7 the nonlinear behavior intensifies with the base accelera-

tion. Since the type of nonlinearity is hardening this results in some decrease in 

the amplitude of motion and correspondingly the harvested power. The power 

drop in electromagnetic harvesting is more visible for the reasons discussed in 

previous sections. 
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(c) 

Fig. 7: Relation between the base acceleration and a) tip velocity transfer function, b) 
piezoelectric power transfer function, c) electromagnetic power transfer function. 

The piezoelectric load 

The variations in the piezoelectric shunt resistance results in effects similar to 

changes in resonant frequency and damping. Fig. 8 illustrates that the optimal re-

sistance for Piezoelectric harvesting is 100 kΩ. The optimal piezoelectric load 

however results in the minimum tip velocity and correspondingly minimum elec-

tromagnetic power generation. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8: Relation between the piezoelectric load and a) tip velocity transfer function, b) 
piezoelectric power transfer function, c) electromagnetic power transfer function. 
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The electromagnetic load 

In principle, the electromagnetic load affects the power harvesting similar to 

the piezoelectric load. However the optimal electromagnetic load is in order of 

Ohms and for the examined device is less than the resistance of the wires. As illu-

strated in Fig. 9, the optimal electromagnetic load is less than the smallest shunt 

resistance and the power decreases with the electromagnetic resistance. The tip ve-

locity and the piezoelectric power are almost insensitive to the electromagnetic 

shunt resistance. The situation has been predicated by modeling performed in [18]. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9: Relation between the electromagnetic load and a) tip velocity transfer function, 
b) piezoelectric power transfer function, c) electromagnetic power transfer function. 

Bi-stable Harvester 

When the distance between the base and the tip magnets is less that 27mm the 

zero deflection equilibrium of the beam is not stable. There are two equilibriums 

on the sides which are stable. The motion of the harvester can be one of three 

forms: small oscillations about any of the stable equilibriums, chaotic motion, or 

large limit cycle oscillations circling both stable equilibriums. In the following we 

experimentally examine the conditions that give rise to any of the possible motion 

patters. 
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Base acceleration 

The experimental results for the case where the magnet distances is 27 mm has 

been illustrated in Fig. 10. When the base excitations are smaller than 3 m.s
-2

 the 

beam oscillates about either of the stable equilibriums. The motion is referred to as 

small amplitude oscillations. For larger base excitations the motion can be chaotic 

or limit cycle oscillations. The amount of harvested power from limit cycle oscil-

lations is an order of magnitude larger than power from chaotic motion which in 

turn is an order of magnitude larger than small oscillations’ power. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10: Relation between the base acceleration and a) power from piezoelectric 
patched, b) power from electromagnetic coils, c) phase portrait and Poincare map. 
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In the following we examine the variations of mechanical motion and harvested 

power with the base excitation frequency. The effects are different depending on 

the level of base accelerations. We therefore conduct three series of tests and illu-

strate the results in Fig. 11, Fig. 12 and Fig. 13. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11: Relation between the frequency of the 1.18 m.s-2 base excitation and and a) 
power from piezoelectric patched, b) power from electromagnetic coils, c) phase por-

trait. 
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Fig. 12: Relation between the frequency of the 3.68 m.s-2 base excitation and and a) 

power from piezoelectric patched, b) power from electromagnetic coils, c) phase por-
trait. 
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Fig. 13: Relation between the frequency of the 4.42 m.s-2 base excitation and and a) 

power from piezoelectric patched, b) power from electromagnetic coils, c) phase por-
trait. 

 

Conclusions 

A comprehensive experimental investigation was conducted on the vibrations 

characteristics and power generation of the novel hybrid nonlinear energy harve-

ster. The harvester utilizes passive magnetic forces to both reduce the natural fre-

quency and introduce useful nonlinearities to the harvesting system. The device 

has been modeled using energy methods. The first set of experiments is for the 

softly nonlinear system where only piezoelectric transduction is implemented. The 

second case study considers the softly nonlinear system where both piezoelectric 

and electromagnetic transductions harvest energy. The final set of tests is dedicat-

ed to bi-stable situation and the small amplitude oscillation, chaotic motion and 

limit cycle oscillations are all investigated. 
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Abstract 
In order to improve the predictive capability of the mathematical or numerical models of 
engineering structures, there is a need to capture their physical behaviour based on 
experimental measurements. In dynamics, this is accomplished with specific vibration tests, 
such as the Ground Vibration Test (GVT) used in aerospace applications. Currently, it seems 
that the engineering community lacks appropriate tools for the detection and quantification of 
dynamic nonlinearities during vibration tests. Of the nonlinear identification methods 
developed during the past 30 years, only a few are suitable for application on practical 
engineering structures. One of these has the particular advantage of requiring standard 
measurement techniques and sensors and is based on the analysis of Frequency Response 
Function (FRF) data. However, in many practical applications, structures are required to be 
tested by excitation of the base, so that transmissibilities are measured in place of FRFs. In 
this paper an existing identification method based on FRF data is shown to be applicable also 
when transmissibility is measured. Numerical simulations are used to demonstrate the 
applicability of the method. 

INTRODUCTION 

In many engineering applications, numerical analysis based on mathematical models is 
becoming a major feature of the design stage. The main purpose of the model, most 
commonly a Finite Element (FE) model, is to enable the designers to predict a system’s 
dynamic under different structural and loading conditions. It can be argued that in order to 
increase the accuracy and the prediction capability of the numerical models, nonlinear effects 
cannot be neglected. The validation process aims at ameliorating the quality of the model by 
comparing the numerical analysis results with experimental data and applying the necessary 
changes to the model in order to minimise the difference between simulations and 
experiments. For a more reliable and accurate model, there is thus a need for being able to 
extract nonlinear parameters from measured data. The modal parameters (natural frequencies, 
modal damping and mode shapes) extracted using standard - and nowadays very advanced - 
techniques, are in many cases accurate enough for structural dynamic design purposes. 
However, there are instances in which the nonlinear effects cannot be ignored. A nonlinear 
behaviour can results in drastic changes of natural frequency or damping. Furthermore, these 
modal quantities can be dependent on several variables, i.e. the nature of the nonlinearities is 
due, for example, to amplitude of vibration, frequency of excitation, temperature, etc. There is 
a need for a structured procedure, or Non Linear Modal Testing (NLMT), which allow 
engineers and dynamicists to identify and quantify the structural nonlinearities in standard 
testing environment.   
 
The reference textbook, and arguably the only book on the subject, on identification and 
quantification of nonlinearities in structural dynamics was published in 2001 by Worden and 
Tomlinson [1]. Some years later, Kershen et al [2] have contributed to the subject by 
publishing a review paper in which 446 references were cited. As these authors stated, their 
review has inevitably missed some works on the subject. Probably for reasons of commercial 
interest, there is a scarcity of works published on NLMT that refers to industrial research 
and/or practice. Some methods that the authors of this paper deem of practical applicability 
are the Restoring Force Surface (RFS), [3], the Inverse Method [4] and the Linearity Plots, 
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[5]. Link at al [6] have also presented a practical method for nonlinear identification: the 
paper is of particular interest for two main reasons: (1) because it presents a practical method 
for nonlinear identification; and (2) the modal parameters are extracted from the 
transmissibility function, as opposed to the standard Frequency Response Function (FRF).  
 
A method for the identification and quantification of nonlinearities, based on the analysis of 
measured FRF data, coded as CONCERTO, was recently published by the authors [7]. 
However, in many practical cases test-pieces are subject to base excitation and therefore only 
transmissibility data are available. In this paper it is shown that the application of 
CONCERTO to simulated FRF and transmissibility functions yield the same results. 
Nonetheless, the method presents some shortfalls which need to be addressed in the future. 

NONLINEAR IDENTIFICATION METHOD USING FRF DATA 
As a comprehensive study of the method is presented in [7], only a brief summary is given 
here. Consider a nonlinear single-degree-of-freedom (SDOF) system of a mass m, with 
amplitude-dependent damping and/or stiffness - which are the most common classes of 
nonlinearity in engineering structures - excited by a harmonic force, as depicted in Fig. 1(a). 
The equation of motion is  
 
 (1) 
 
where X is the amplitude of the response (assumed to be harmonic), c(X) and k(X) are the 
damping and stiffness functions respectively, F0 is the amplitude of the excitation force and 
ω is the excitation frequency. Note that a linear system is a special case of Eqn.(1) in which 
the functions c(X) and k(X) are constants. The identification method discussed in this paper is 
based on a stepped-sine excitation. Assuming that the system responds at the same frequency 
as the excitation, the receptance FRF is measured as the ratio between the displacement and 
the force at steady-state. It is sometimes preferred (but is not strictly necessary) to maintain a 
constant force level throughout the test, primarily in order to minimise the effect of the force-
drop-out near resonance. However, at any given response amplitude, X, the functions c(X) and 
k(X) in Eqn.(1) are in effect constants. In other words, it is possible to linearise the system at 
that specific response amplitude so that the system’s receptance is given by  

 

 2 2 2
0 0

( ) 1( , )
( ) ( ) ( ) ( )

XH X
F X X X
ω

ω
ω ω ω ω η

= =
− + 

 (2) 

 
where 0 ( )Xω  and ( )Xη  are the natural frequency and the modal loss factor at that given 
amplitude. It is important to note that the linearisation must refer to a given value of the 
amplitude of displacement response and not receptance amplitude. 
The functions 0 ( )Xω and ( )Xη  can be extracted from the measured real and imaginary part 
of the receptance as 
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where R1 and R2 (I1 and I2) are the real (imaginary) part of the receptance at the amplitude X 
which have been measured at the frequencies 1ω  and 2ω  (before and after the resonance 
peak).  The theory presented above is implemented in the COde for Nonlinear identifiCation from 
mEasured Response To vibratiOn (CONCERTO) which is used for the analysis of both 
numerical and experimental data [7].  
 

NONLINEAR IDENTIFICATION METHOD USING TRANSMISSIBILITY DATA 
 
Consider the Single-Degree-Of-Freedom (SDOF) system depicted in Fig.1. A mass m, 
suspended on a spring with amplitude dependent complex stiffness ( )( ) 1 ( )k Z j Zη+ , where η  
is the system’s loss factor. It is important to notice that in case of base excitation the 
characteristics of the support, or mount, are dependent on its effective displacement (or 
deformation) which is the relative displacement between the mass the base, z = x- y.  
 

 
  

 
 
 
 
 
 
 
 
 
 

         (a)                (b) 

 
Fig.1: Schematic representations of a SDOF system of a mass suspended on a nonlinear 

mount with complex stiffness: (a) force excitation, (b) base excitation 
 
The steady-state response under harmonic excitation of the system depicted in Fig.1(b) is  
 
 ( ) ( )2 1 1m k j X k j Yω η η − + + = +     (5) 
 
or 
 ( )2 21m k j Z m Yω η ω − + + =   (6) 
 
where z = x-y is the relative displacement (and Z its amplitude) between the mass and the 
base, that is the deformation of the mount and ω the excitation frequency. Note that the 
dependency of the stiffness and damping from the amplitude Z has been omitted for clarity. 
 
The transmissibility is defined as the nondimensional quantity that at each frequency quantify 
how much disturbance has passed from the source to the receiver through the transmission 
path. Two types of transmissibility can be defined. The absolute transmissibility is  

( )( ) 1 ( )k X j Xη+  

 

sin( )x X tω ϕ= −  

sin( )y Y tω=  

sin( )f F tω=  

sin( )x X tω ϕ= −  

( )( ) 1 ( )k Z j Zη+  
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which can be expressed in terms of modal quantities as 
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On the other hand, the relative transmissibility is 
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The relative transmissibility is important because (i) it is related to the actual deformation of 
the mount and (ii) the direct numerical integration of the equation of motion using the Runge-
Kutta 4th order expansion it is implemented to yield the relative displacement z from which 
the mass displacement x can be calculated and finally the absolute transmissibility computed.   
However, of greatest value is the absolute transmissibility because this is directly measurable 
(as the ratio between output and input). Also, the nonlinear identification algorithm needs to 
be applied to the (measured) absolute transmissibility. In Eqn.(8) or Eqn.(10) the two 
unknowns are the natural frequency, 0ω , and the loss factor,η , which can be both amplitude-
dependent, while the frequency of excitation, ω , the real (R) and the imaginary (I) parts of the 
response are all measurable quantities.  
 
It is noticeable that the expressions of the FRF and of the absolute transmissibility, Eqns. (2) 
and (8) are very similar as their denominator is equal and their numerator is independent of 
the excitation frequency. This is not the case for the relative transmissibility, Eqn.(10), whose 
numerator contains the excitation frequency ω .  
 
It is possible to use Eqn.(8) in the same way as the FRF has been used to extract the modal 
parameters as function of the amplitude of the displacement response and computing the 
modal quantities Eqns.(3,4). Repeating the calculations for different response levels enable 
one to obtain the required natural frequency and damping as functions of the displacement 
amplitude of the mass (or absolute response). It is crucial that the CONCERTO identification 
method is applied to the absolute transmissibility data, and attention is paid in relating the 
amplitude dependency to the actual deformation of the mount which is the relative 
displacement.  

NUMERICAL SIMULATIONS OF FRF AND TRANSMISSIBITLIY DATA FOR NL 
SYSTEMS 
A comprehensive analysis of the method implemented in CONCERTO based on Frequency 
Response Functions data is given in reference [7]. In the present paper, in order to verify the 
extension of the method to transmissibility data, a comparison is performed between the 
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nonlinear identification method on simulated FRF and Transmissibility data. Numerical 
values are taken from reference [7] for consistency. The equation of motion of the force-
excited system (FRF) is  
 
 (11) 
 
where the parameters are described in Tab.1. Eqn.(8) has been solved by direct integration 
using the built-in Matlab solver ODE45 for each case at different frequencies of excitation 
(separated by a step of 0.005Hz). The FRF has then been computed by simulating the 
operation of a Frequency Response Analyser (FRA) that is by computing the ratio between 
the Fourier coefficients of the response and the force at the excitation frequency. In addition, 
several levels of excitation force have been used. 
 
Similarly, the transmissibility (base-excitation) simulations derive from the integration of the 
equation of motion 
 
 (12) 
 
where z x y= − is the relative displacement between the mass and the base and Y is the 
amplitude of the base displacement. After the integration the absolute displacement has been 
computed before calculating the absolute transmissibility which is needed to perform the 
nonlinear identification with CONCERTO.   

Table 1: Type and values of nonlinearities used for the numerical simulations. For the 
base-excitation simulations the stiffness and damping are functions of the relative 

displacement z  

 
As an example of the numerical simulation, Fig.2 (a,b) shows the FRF and transmissibility 
functions for the SDOF system with a combined hardening cubic stiffness and Coulomb 
damping.  
 
It should be pointed out that in Table 1 only the mass displacement x has been used. This is 
correct in the case of force excitation (FRF) but for the case of base-excitation the mount’s 
properties are function of the effective amplitude of deformation which is the relative 
displacement z.  
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(a) 

 
(b) 

Fig.2: Simulated FRF and Transmissibility of a SDOF nonlinear system with different levels 
of force and base-displacement excitation: (a) hardening cubic stiffness, (b) Coulomb 

damping. 
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In Fig.3 there is a snapshot of CONCERTO’s output to the analysis of simulated 
transmissibility of a system with combined nonlinearities (quadratic damping + cubic 
stiffness) excited by a harmonic base oscillation with amplitude 0.5mmY = . In the top-left 
corner, there are the measured points, displayed as response (displacement) spectrum. The 
transmissibility is also displayed as a Nyquist plot (top-right). The information on the 
nonlinearities of the system are contained in the two plots in the lower-left corner: one depicts 
the extracted natural frequency, Eqn.(3), and the other the loss factor, Eqn.(4), (displayed as 
damping ratio using and the approximation 2η ζ≈ ) as function of the amplitude of vibration 
displacement response of the mass.  
 

 
 

Fig.3: Example of CONCERTO output for the analysis of a nonlinear system with combined 
cubic stiffness and quadratic damping  

 
From the frequency and damping plots (against the displacement), it is possible to identify 
rather clearly the stiffening effects and the linear increase of damping with displacement (an 
indication of a quadratic function of the velocity).  
 
In order to assess the quality of the results obtained with CONCERTO when applied to 
transmissibility data, these are compared with those obtained using the identification method 
on FRF data and which have been published in reference [7]. 
The results obtained with the identification algorithm CONCERTO are shown in Fig.4-6.  
 
Fig. 4 (a) shows the results obtained by analysing a system with cubic hardening spring: it can 
be seen that by increasing the level of excitation, and thus the amplitude of response, there is a 
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consistent increase in natural frequency (due to the hardening stiffness). On the other hand, 
the damping is rather linear.  

  
(a) 

  
(b) 

Fig.4: CONCERTO’s analysis of both FRF and transmissibility of a system with linear 
damping and hardening cubic spring: (a) natural frequency and (b) damping as functions of 
the mount displacement amplitude 
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The plots in Fig. 5(a,b) are the results of the analysis of the FRF and transmissibility 
properties of a system with Coulomb damping. The constant natural frequency, Fig. 5 (a), is 
indicative of a linear stiffness element, whilst the decrease in damping with amplitude with 
hyperbolic trend is typical of Coulomb damping.  

 
(a) 

 
(b) 

Fig. 5: CONCERTO’s analysis of both FRF and transmissibility of a system with Coulomb 
damping : (a) natural frequency and (b) damping as functions of the response displacement 

amplitude 
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Finally, the natural frequency and damping ratio as function of the mount displacement 
amplitude of a system with combined nonlinearities (cubic stiffness + quadratic damping) are 
shown in Fig.6 

 
(a) 

 
(b) 

Fig.6: CONCERTO’s analysis of both FRF and transmissibility of a system with a 
combination of nonlinearities (hardening cubic spring + quadratic damping): (a) natural 

frequency and (b) damping as functions of the response displacement amplitude 
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Figures 4-6 show that there is no difference between the natural frequency and damping ratio 
identified with CONCERTO when this is applied to FRF or transmissibility data.  
 
CONCLUSION 
 
Identification of structural nonlinearities in dynamics is becoming a pressing issue. The 
reliability of models and their accuracy can only improve if nonlinearities are accounted for. 
Different methods which aim at extracting the nonlinear stiffness and damping have been 
proposed which rely on the Frequency Response Function of the system. However, there are 
practical cases in which the FRF cannot be measured and instead a base-excitation test needs 
to be conducted (e.g. airworthiness certification of some aerospace items). It remains the 
question if an established FRF method, implemented in CONCERTO, can be extended and 
used for transmissibility measurements.  
The numerical study conducted in this paper shows that the algorithm produces the same 
results whether it is fed with absolute transmissibility or FRF data. It is important to highlight 
that for a better physical interpretation of the results, these needs to be plotted as function of 
the effective displacement of the spring/damper (i.e. the elements supporting the mass or the 
mount): this displacement is the absolute displacement of the mass in case of force excitation 
and the relative displacement between the mass and the base when the system is excited at the 
base.  
Albeit of important practical value, more work is needed to improve the identification 
method. Firstly, there is need to assess the validity of the SDOF assumption upon which is 
based. A different shortfall to tackle is the assumption of amplitude-dependent nonlinearities. 
Most notably, transmissibility tests are required for vibration isolation devices such as rubber 
mounts: these present not only amplitude-dependent stiffness but also a marked frequency-
dependency which need to be extracted.   
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ABSTRACT 

The introduction of the power steering will be thought also the motorcycle in the future.  It is because of an 

increase of a large-scale motorcycle in recent years and the possibility for rider's supplementary role by an electric 

motor. In this research, the authors do the experiment that uses the motorcycle, and examine the steering wheel torque 

characteristic when the corner running for the electric power steering system. Finally, experimental results indicated that 

steering torques from the rider are similar at the low speed. It means there are possibility to construct the power steering 

system for the motorcycles at low speed.

 

Introduction 

Recently, the motorcycle has enlarged because of the exhaust emissions regulations and the performance. The 

number of riders in his/her teens decreases, and the number of riders in his/her fifties has increased. The average age of 

the rider is as a whole 42.7 years old in Japan. The change is seen in maker's lineup as the rider ages, and the motorcycle 

also has the possibility that the steering wheel assistance function is introduced in the future. 

As for the steering wheel system of the four-wheeled vehicle, a steer-by-wire system is adopted now[1]. This system 

controls the angle of the tire with the motor and the steering wheel and the tire are not mechanically connected. However, 

in case of the motorcycle, from the problem of weight, the possibility that an electric power steering by an electric motor 

is introduced is high. Therefore, we construct the power steering system equipped with the DC motor in an ordinary 

steering wheel in the present study. 

    In thisstudy, the authors examined the steering torque at the only low speed, because of the occasion of the 

experimental location and safety.  

1. Composition of power steering  

Figure 1 shows the composition of the power steering. At first, when the rider turns the steering wheel to changes 

the traveling direction, the torque sensor and the rotary encoder detect the torque that the rider gave and the direction of 

the rotation and the rotational speed of the steering wheel. And the speed sensor installed in the body detects the vehicle 

speed. These values are sent to the controller, and the control signal is sent from the controller to the motor driver. 

Afterwards, the DC motor is rotated by a specified rotational speed, and the tire is steered through the gear. In this study, 

we use the warp gauge installed in the steering wheel as a torque sensor. 
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Fig. 1 Composition of power steering 

 

 

2.Steering wheel characteristic for vehicle speed  

There is a necessity that the assistance torque that assists in the steering wheel torque is adjusted according to the 

vehicle speed because of safety and the steer feeling improvement. The adjustment of this assistance torque is especially 

important for the motorcycle. A big assistance torque is necessary when vehicle speed is high, and small assistance is 

necessary when it is low as shown in Figure 2. Therefore, there is necessity to investigate the relation between a speed of 

the vehicle and a necessary assistance torque by the experiment. 

     

Fig. 2 Assistance torque and Steering wheel torque 

 

3. Experimental equipment 

We experiments with the experiment machine. Figure 3 shows Kawasaki ZRX400. This experimental vehicle is the 

most general size in the two-wheeled motor vehicle in Japan now. Table 1 shows details of the experimental vehicle. The 

steering wheel torque is measured by using Kyowa Electronic Instruments KFG-3-120-D16-11L3M2S that shows in 

Figure 4. The measurement place of the swerve is a part in a parallel direction and the vertical direction against the 

steering wheel axis near the handlebar. It is shown in Figure 4. Because the gauge picks up an extra transformation when 
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loads other than the direction of steer to the handlebar, the measurement with high accuracy cannot be done. Then, the 

gauge is pasted to four places of the direction where the steering wheel is rotated the steer, and four active gauge method 

is used as a connection method to the bridged circuit. The steering torque is recorded by TEAC es8 at 100Hz sampling 

frequency. The bend can be output by the twice while deleting compression, hitching and twist by using this connection 

method. When the relation between these measured swerve and steering wheel torque is proofread, it comes to be able to 

specify the steering wheel torque only by measuring the swerve. The steering wheel torque can be requested as follows. 

LFFT SRSLS ×+= )(  

ST : Steering wheel torque : Load to handlebar of steering wheel axis with left hand : Load to handlebar of 

steering wheel axis with right hand  
SLF SRF

L :Length from steer axis to action point of handlebar load 

 
 
 
 
 
 
 
 
 
 
 
 
 

            Fig. 3 Kawasaki ZRX400                   Fig. 4 KYOWA KFG-3-120-D16-11L3M2S 

 

Table 1 Specification of experimental motorcycle     

Detail ZRX400 (Kawasaki)
Overall length 2100 [mm]
Overall width 755 [mm]
Overall height 1095 [mm]

Wheelbase 1440 [mm]
Minimum ground clearance 120 [mm]

Total weight 198 [kg]

 
 
 
 
 
4. Experimental method 

To examine the relation between the corner radius and the steering torque, we measured the steering torque when 

running the corner of 5m in the radius and 10m. The motorcycle speed was assumed to be 15km/h when 5m in radius, 

20km/h when 10m in radius. These are the speeds that can start most smoothly in each corner. Figure 6 illustrates the 

experimental method. The motorcycle accelerated enough in the straight-line before it entered the corner and the speed 

did not fall when the corner running. 
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Fig. 5  Corner radius and running route 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6  The direction of steering torque  

 

 

5.Experimental result 

Figure 8 shows the steering torque when running 15 km/h in the corner of 5m in radius. And Figure 9 shows the 

steering  torque when running 20 km/h in the corner of 10m in radius These two experimental result show that the 

change is not seen so much in the input of the steering torque though change the corner radius when it is low-speed. It 

was clarified to the steering wheel torque input to tend to have looked like well though it ran in the corner where the 

radius was different. 
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Fig. 7 Steering torque <R5 15km/h> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8 Steering torque <R10 20km/h> 

 

495



CONCLUSIONS 

   As for the steering torque, the change is not so seen even if the corner radius changes when it is low-speed. Moreover, 

a lot of similar points are seen in the steering wheel torque even if the corner radius is changed. And it was clarified to 

the steering wheel torque input to tend to have looked like well even if running in the corner where the radius was 

different, and showed the possibility of the power steering in the motorcycle. 
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NOMENCLATURE 
ktt, :   Continuous, discrete time 

)(),( tytx :  Signals, stochastic processes 

)(th :   Impulse response function 

 :   Angular frequency 

)(),(  YX :  Signal Fourier transforms 

)(ˆ),(ˆ  YXXX GG : Spectral densities 

)(),( 21  HH :  Frequency response functions 

)( :   Coherence 

)(),(  XYXX DD : Random decrement functions 

)(ˆ),(ˆ  XYXX DD : Random decrement function estimates 

 

 
ABSTRACT 
It is well known that in order to minimize the influence of leakage bias in frequency response function (FRF) estimates, 

smooth windows should be applied in the FFT processing. It is also normal practice to use self windowing excitation signals 

whenever possible. However, in many cases FRFs have to be estimated on systems where the excitation signal cannot be 

altered. Since random data can be compressed in a random decrement function, and since this procedure introduces a natural 

window, using this technique significantly reduces the influence of leakage bias, and thus, can be used as an alternative to 

Welch based estimates in cases where the signals involved are random. This means that almost bias-free FRF estimates can 

be obtained from stationary random excitation. In the paper it is shown how the random decrement technique can be applied 

to process the time series, and the level of bias on the FRF is estimated and compared to normal Welch based FRF 

estimates. 

 

 

INTRODUCTION 
The way most vibration data acquisition systems are designed is based on the premises in the 1970’s when the first FFT 

analyzers became available. One restriction in those days was the price of memory, and thus the way the data processing 

was implemented was to reduce data as soon as possible after acquisition. The result became the frequency block averaging 

that is commonly used today, usually referred to as Welch averaging after [1]. This procedure is well investigated and a 

current discussion of its use can be found in [2]. 
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It is well known that Welch´s method includes bias and random errors and that these errors are contradictory. A trade-off 

between bias and random errors thus has to be made, given that a certain amount of data is available. Recently [5] 

investigated this thoroughly, and the main outcome of their paper, of interest in the present paper, is that the minimum 

errors (bias and random) using Welch´s method are obtained by using a half-sine window and 67% overlap processing 

instead of the more traditionally advocated Hanning window with 50% overlap.  

 

Alternative techniques for computing FRFs such as Danielle´s method, or “smoothed periodogram method”, and the 

original Blackman-Tukey method, where correlation functions are computed followed by applying FFT, are also well 

known and described in for example [3]. However, since using Welch´s method is an established “de facto standard” in 

commercial analysis systems, we will focus on this method for estimating FRFs in the comparisons below. 

 

In [4] it was shown that the random decrements (RD) technique can be used to compute frequency responses from impact 

testing. The RD technique offers an alternative to the above mentioned techniques for FRF estimation where the basic idea 

is in line with the Blackman-Tukey method, but where the estimation procedure is buffer oriented like Welch. In the 

following, a method using RD on systems excited by random forces is introduced and compared with the traditional 

technique using Welch´s method. 

 

 

WELCH´S METHOD 
We will assume that the signals exciting a linear system are random. Welch´s method is based on dividing the total data into 

a number of overlapping segments, applying a time window to each segment, and then computing the DFT of each 

windowed segment. When these steps have been taken, the spectral densities are estimated by 
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where )(kX  is the DFT result of the k-th time windowed segment )(txk . Frequency Response Function (FRF) estimates 

)(ˆ
1 H  and )(ˆ

2 H  are estimated from 
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A good alternative to the above mentioned solutions to the bias problem is to use random signals and then reducing the bias 
by estimating RD functions and afterwards estimating the Frequency Response Functions (FRFs) from the RD functions. In 

 
As mentioned in the introduction, estimates in Eq. (2) are affected by bias as well as random errors. For analysis around a 
resonance of a mechanical system, the bias error is in principle dependent on the ratio of the resonance bandwidth and the 
frequency increment [3, 2], fBr / , where rrr fB 2 , and it is highest at the frequency line closest to the resonance 
frequency. The normalized random error is more complicated. In the case used in the present paper with no contaminating 
noise, however, as shown in [5], the random error is minimized by using the half-sine window with 67% overlap processing. 



the following a short introduction to RD functions is given. It is shown how FRFs can be estimated from the RD functions, 

and finally the bias reduction is illustrated on a simulated case with two degrees-of-freedom. 

 

 

THE RANDOM DECREMENT ALGORITHM 
Some initial considerations about using the RD technique for modal data processing have been given in [6] and [7]. An 

introduction to the general RD technique is given in [8]. The Random decrement function is defined as the conditional 

expectation of a stochastic Process )(tx  

 

  ))(()(E)( kkXX txTtxD    (3) 

 

and from a time series the corresponding estimate is found as the conditional mean 
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where the triggering condition ))(( ktxT  is given by for instance 
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This defines an auto RD function where the averaging and the triggering are performed on the same time series. 

Corresponding cross RD functions can be defined and estimated as 
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ESTIMATING FRF’s FROM RANDOM DECREMENT FUNCTIONS  
If we assume the classical linear input-output relation between ( )x t and ( )y t  
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then it is easy to show that the following relations exist between the RD functions 
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Now taking the Fourier transform of the RD functions defines the Fourier transform pairs 
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and the Fourier transform of Eq. (9) defines the corresponding FRF estimates 
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COMPARING RD WITH TRADITIONAL FRF ESTIMATES 
In the following a 2 degree-of-freedom system is loaded by Gaussian white noise, the response is simulated using the 

theoretical FRF matrix and FFT, and finally the FRF’s are estimated by the traditional technique (in the following denoted 

“Welch”) and by RD functions. All simulations were made using 1,048,576 data points, and the damping,  , and the data 

segment length, N , were varied. 

 

The data segment length is also used as the total size of the buffer window used for estimation of RD functions. An example 

of RD functions is shown in Figure 1. As it appears, the window buffer is not defined to be symmetrical around the 

triggering point (where the spike is located in )(XXD ). The reason is that the buffering window should be defined in order 

to include maximum information, and since the function )(YXD  only has system information for negative times, the buffer 

is defined in order to include the RD functions for negative time lags. 

 

The corresponding FRF’s, estimated as  )(ˆ
1 H  according to Eqs. (2) and (10) for both techniques, are shown in Figure 2. It 

can be seen that at the resonance peak, the bias error in the RD estimate is significantly smaller than the bias error in the 

Welch estimate. The full band errors 0 are quantified by calculating the RMS value of the difference )(ˆ)( 1  HH  , i.e. 

this error measure is the sum of the bias and random error. The narrow band error 1  is calculated as the maximum 

difference value, at the peak. Typical errors are shown in Tables 1 and 2. 

 

It appears that the random error of the estimates based on the RD technique is larger than for Welch estimates, which can be 

seen in larger full band errors in Table 1. The bias errors at the resonance peak are however considerably smaller in the RD 

estimates than in the Welch estimates. This is to be expected, as the trade-off between bias and random error is applicable 

also to RD functions. The noise properties of RD functions are, however, different from the noise properties of the more 

well-known correlation functions, and this will be further analyzed in future work. 

 

 

Table 1. Full band error, 0  

 

%2.0  %1  

N  256 512 1024 2048 4096 256 512 1024 2048 4096 

Welch 0,60 0,57 0,50 0,23 0,09 0,18 0,08 0,02 0,01 0,02 

RD 0,85 1,06 1,76 1,77 1,82 0,77 0,81 0,82 0,81 0,82 
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Table 2. Maximum error, 1   

 

%2.0  %1  

N  256 512 1024 2048 4096 256 512 1024 2048 4096 

Welch 3,35 4,15 8,59 3,47 3,32 1,28 0,74 0,38 0,18 0,14 

RD 1,95 2,78 0,40 0,24 0,35 0,09 0,01 0,07 0,13 0,30 

 

 
Figure 1. Example of RD functions )(XXD  and )(YXD , in this case the damping %2.0 and 1024N . 

 

 
Figure 2. Example of estimation of FRF’s, in this case the damping %2.0 and FFT block size 1024N . 
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CONCLUSIONS 
The RD technique has been introduced and used on simulated modal data in order to compare the bias on the FRF estimates 

estimated from RD functions with the bias from the traditional Welch based FRF estimates. The RD based technique is 

buffer oriented like Welch, but is based on the same idea as Blackman-Tukey, i.e. the FRF is estimated by taking a Fourier 

transform of the bias-free time domain function. Therefore, as expected, the RD based FRF estimation shows a significantly 

lower bias for the same buffer size (data segment size) than the Welch based FRF estimation. On the other hand, the RD 

based FRF estimates has larger random errors. These random errors can be reduced by introducing a window on the time 

domain function; this is to be investigated further in future investigations. Further, RD-based FRF estimates might have a 

special value in cases where effects of small non-linearities are to be studied. 
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ABSTRACT 

Aircraft engine components, such as bladed discs, are subjected to high levels of vibration due to their service 

conditions and vibratory stresses can reduce the expected operational life. High Cycle Fatigue (HCF) is the most 

common cause of component failure in gas turbine engines. Laboratory testing is important for understanding the 

fatigue properties of materials and for producing a database eventually used during the design of new 

components. HCF test can be performed in the laboratory using a test rig on which is installed a test structure, 

connected to an electromagnetic shaker supplying the excitation. A simple test rig can be made comprising a 

holding block connected by push rod to the armature of a shaker so as to produce a base excitation. Such a test 

rig can be specifically designed to increase the test piece vibration levels by tuning it to one resonance of the 

structure. However, in doing so, a test rig of this type can present an impedance which is mismatched with the 

shaker, thereby causing dissipation of the excitation force. Any power loss can be a problem, exacerbated by 

components presenting high levels of structural damping, because of the higher force levels required to achieve 

high levels of vibration. Hence, any HCF test can be ineffective because of the diversion of shaker power from the 

test component to other parts of the test setup. The aim of this paper is to study the impedance mismatch 

between test rig and shaker by modelling a simple test rig, using a lumped-parameter model, for designing and 

measuring vibrations of the test rig to identify its weakness for HCF. 

NOMENCLATURE 

MTS Mass test structure KRod Stiffness rod 

KTS Stiffness test structure MSA Mass shaker armature 

CTS Damping test structure KSA Stiffness shaker armature 
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MHB Mass holding block CSA Damping shaker armature 

CRod Daming rod   

1 Introduction 

High Cycle Fatigue (HCF) [1] is one of the commonest causes of component failure in gas turbine engines and 

there are many sources of HCF damage such as: (i) aerodynamic excitation, (ii) mechanical vibrations and (iii) 

airfoil flutter. Although new engine designs have reduced problems caused by vibratory stress, HCF is still one of 

the main concerns of turbo machineries. The standard practice for HCF risk assessment, for example of a blade, 

can be summarized briefly as follows. There are two important steps during the Finite Element (FE) model 

analysis: (i) stress analysis and (ii) structural dynamics analysis. One is to determine the mean stresses and the 

other is to determine resonant frequencies, mode shapes and dynamic stresses. Predicted resonant frequencies 

are compared with integral order engine excitation data on a Campbell diagram in which the crossing of natural 

frequencies of the blades and the engine excitation can be determined. This process is crucial to predict the 

strength of the excitation driver which is associated to dynamic stress. When this process is completed positively, 

a component can be manufactured and, subsequently, tested both in the laboratory and in engine verification 

testing. Technology for HCF testing of metallic components became more established during the past decades by 

using either, for example, electromagnetic (EM) shakers or an air jet or a pulsed air jet. These could produce 

levels of force sufficient for exciting up to large vibration test structures. Hence, a consistent database of fatigue 

test data could be produced and used for: (i) the design of metallic components and (ii) the stress analysis 

prediction. The introduction of new materials, such as carbon fibre based composites, in the design process 

required the production of a new database of fatigue or “endurance” data set, because of the mechanical failure of 

composite materials being very different from the metallic ones. The same technology used for running HCF on 

metallic component was so used for the composite components. This paper presents some experimental results, 

obtained during the course of several months, of HCF testing performed on composite components using an 

electromagnetic shaker. A mechanical test rig was designed and built to be tuned with one resonance of the 

component to be test for HCF. This was capable of exciting a specimen to high levels of vibration but driving the 

shaker to work out of specification. Impedance mismatched between the shaker and the test rig is the cause of 

the underperforming shaker and measurements are provided to support this study.  

2 Problem background 

Carbon fibre materials, as already introduced, are increasingly used for manufacturing engine components such 

as fan blades, vanes or casings. Stress limits of composite are studied both statically and dynamically by 

performing several tests in the laboratory. The amount of data generated is then used to characterize the material 

properties which are used to produce more reliable FE models. Modal parameter estimation can be performed by 

modal analysis using different test approaches such as impact testing or phase resonance testing. The vibratory 

stress level of a component can be determined using either air jet or electromagnetic shaker excitation. Air jet 

excitation methods, such as constant or pulsed flow, present some limitations when compared with the EM 
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shaker. In fact, the excitation can be produced: (i) by flutter, as happens in the constant flow air jet, or (ii) by 

periodically impacting the structure with pulsed air jets. The first method can usually be performed on first-order 

modes- for example, 1F, 2F and 1T, all of which can be “easily” excited by flutter whereas it is more difficult to 

excite high order modes with this method. A pulsed air jet offers a better control of the excitation because it is 

produced by a perforated rotating disc whose rotational speed governs the excitation frequency of the tested 

component. This machine can produce excitation in a frequency bandwidth which depends on the max rotational 

speed and the number of holes of the sampling disc. The excitation force is applied to the component through a 

nozzle and its level depends on the pressure of the air impacting the component. The larger the impacting area, 

the larger is the force applied for a given constant pressure. However, a larger impacting area could produce a 

smaller response when higher order modes are excited because of nodal lines close to the excitation position. An 

EM shaker is a versatile exciter which can control the excitation frequency more precisely and for a wider 

frequency bandwidth as compared with previous exciters. Force transducers can be installed for measuring the 

force input into the structure allowing the measurements of a Frequency Response Functions (FRF). This cannot 

be done using the other two exciters because in there the force level can be only estimated.  

Generally, when an HCF test is performed using an EM shaker, the test component is installed in a test rig. The 

simplest rig set up would be to connect a holding block to a shaker using a push rod to perform a base excitation. 

A component can be so constrained to the holding block which transfers the excitation force. Such a test rig 

configuration can be very sensitive to energy dissipation because of the many components connected. However a 

solution for enhancing its capability is to design a test rig to be tuneable to one resonance of a test piece. 

3 Model of test rig configuration 

A simple lumped parameter spring-mass model, representing a test rig and specimen, was used to simulate 

forced response so as to calculate some design parameters of the rig. Figure 1 presents a simple model of the 

test rig in which the dashed boxes represent the test structure and the shaker armature, (a) and (b) respectively. 

This system provides three variables which can be used for designing and tuning the test rig, and these are: (i) 

the mass of the holding block (MHB), (ii) the stiffness of the rod (KRod) and (iii) the mass of the armature (MSA).  A 

first run of simulations was produced for designing the rod dimensions, diameter and length, and other simulations 

were performed for sensitivity analysis. The latter was needed to identify the parameters which could be easily 

modifiable for fine tuning of the rig. Results of the simulations showed that the mass of the holding block was quite 

insensitive for tuning whereas the rod dimensions and the mass of the shaker armature demonstrated to be very 

sensitive. A modal test of the test structure, constrained in the holding block, was produced so to identify a mode 

shape and its natural frequency. Using the measured natural frequency the analytical model calculated a set of 

dimensions for the push rod.  Table 1 reports the modes, natural frequencies and loss factors, and it is interesting 

to note that the composite material used here shows higher values of damping than a metallic equivalent one. We 

can say that, for a given excitation force, the levels of vibration achievable with metal components can be higher 

that the one achievable with composite ones. Hence, a shaker needs to work harder to  excite a composite 

specimen to equivalent vibration level. The component was constrained with good accuracy by gluing two 
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polished metal plates on both sides and, then, clamped the assembly in the holding block. This approach was 

chosen so as to minimise power loss because of the friction in the clamped areas specifically at high level of 

vibrations. The mode chosen for the HCF study was mode-5 at 339.15Hz. Hence, Table 2 reports the parameters 

used for designing the rod.  

 

Figure 1 Simplified model of test rig for HCF testing 

 

 Mode-1 Mode-2 Mode-3 Mode-4 Mode-5 Mode-6 Mode-7 

Frequency [Hz] 83.29 217.03 339.15 249.05 634.16 712.68 945.4 

Loss factor [%] 0.7 0.5 0.4 0.4 0.4 0.4 0.5 

Table 1 Modal properties of test structure 

 

Armature mass Young’s modulus Holding block mass Sample modal mass Sample resonance frequency 

11.25kg 210E9 86kg 0.2kg 339.15Hz 

Table 2 Values used for running the parametric model 

Figure 2 presents the driving rod designed for tuning the rig at the frequency of interest. The rod was 

manufactured to have a right hand thread at the holding block and a left hand one at the shaker armature so to 

tighten them together by rotating the rod. The holding block was supported on a three rollers to allow free 

movements along the direction of the push rod and this set up was decided to minimize possible buckling of the 

rod, already calculated during the design process. It is important to avoid buckling during the HCF test because of 

unwanted vibrations occurring on the sample. Figure 3 shows the assembled test rig. 

 

Figure 2 Dimensions of the designed push rod 
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Figure 3 Test rig with the sample mounted in the holding block 

4 Tuning of test rig 

The method for tuning the rig, introduced earlier, is to design a push rod of correct dimensions which connects the 

shaker armature and the holding block. The armature of the shaker combined with the push rod should resonate 

at the same frequency as the target mode of the tested structure. Although the simplified parametric model helped 

to calculate the correct dimensions, the test rig required an additional fine-tuning to match the rig and specimen 

resonances precisely. A technique for tuning the rig can be to increase the mass of the shaker armature. This fine 

tuning can also be done by fine adjustement of the rod dimensions but this approach can be very time-consuming 

because of repeated dismantling of rig. Resonances were measured using impact testing, as shown in Figure 4a 

and 4b. The frequency distance between the specimen and the rig were measured at every modification applied. 

The tuning technique considered for this work consisted in adding small weights on the armature and measuring 

the resonant frequencies until the correct weight was found as shown by plots depicted in Figure 4c. Figure 5 

shows the shaker armature with the additional tuning weights and the position of the impact, indicated by a black 

mark. 
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Figure 4a Tuning of rig Figure 4b Tuning of rig Figure 4c Rig tuned 

 

Figure 5 Tuning weights installed on the shaker armature and the impact position 

It was found on the tuned test rig that the amplitude of the resonance of the specimen, as shown in Figure 6 was 
(black curve), 77% higher than the one measured when the rig is not tuned, as shown in Figure 6 (red curve). 

The excitation was produced using an impact hammer and the shaker armature was not active as the shaker 

amplifier was turned off during the measurement. 

 

Figure 6 Increase of the response level of mode-5 before (red) and after (black) the tuning of the test rig 

The experiment of tuning the rig was also performed by stepped sine test around the resonance of the rig and 

adding weights until the frequency match was found. Figure 7a shows the responses measured at the armature 

and at the sample during the tuning process. Figure 7b shows the response measured at the specimen only. It is 

interesting to notice that when the shaker is armed the response measured at the armature seems more heavily 

damped than when the shaker is not armed. This can be explained by the change of the dynamics of the armature 

because of the electromagnetic field produced. Measuring the responses before and after the tuning the level of 

amplitude at the sample increased by only 33%. 

X 
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Figure 7a Tuning of the rig using, armature and specimen response 
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Figure 7b Tuning of the rig using, specimen response 

5 Performance of the tuned test rig 

The previous section presented two methods for tuning the designed test rig so that it could be capable of 

amplifying the response of the tested structure. This section will present an additional experiment to assess if the 

test rig is capable of performing efficiently the excitation when the level of the output force is increased. In fact, it 

was suspected that the test rig would present an impedance mismatch to the shaker. A sine-step around the 

resonance of mode 5 was performed for 7 levels of gain generated by an electronic output card, the gain of the 

amplifier was kept constant during all the experiments. Figure 8a presents the acceleration measured at the 

armature for the highest level of force at the resonance of mode5 while Figure 8b shows the logarithm of the 

frequency spectrum of the response. Before commenting these plots, it is important to say that the shaker used 
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for this experiment is capable of outputting a maximum acceleration of 95g. We can see from Figure 8a that a 

sinusoidal excitation waveform is amplified incorrectly by the amplifier, in fact, the signals measured from the 

accelerometer exhibit an increasing level of non linearity with many high harmonics observed in the signal. 

  

Figure 7a Response measured at the armature for 7 

levels of gain 

Figure 7b Frequency spectrum of the response 

measured for the highest gain 

The maximum capability of the shaker, provided by its specification data, is claimed to be at a level of 95g, 30A 

and 70V and so the max output power is 2.1kW. A quick experiment for measuring the output power was run to 

measure the actual power produced for the highest level of gain possible on the amplifier. It was noted that the 

output levels of the amplifier were 2A and 70V producing an output power of 140W, at the frequency the test rig 

was tuned for. Such a low output power suggests that the shaker armature was vibrating excessively without 

producing very much force to the test structure 

6 Discussions and improvements 

We concluded in the previous section that the shaker amplifier was underperforming by outputting a level of 

power much lower than the maximum achievable. It was understood that poor performance can be caused 

because of the test rig design, in which the armature resonates at high vibration amplitudes. This mechanical 

system is capable of producing high responses on the test structure but not using most of the power available. 

The concept of  tuning a test rig proved to be correct but the implementation of it, by using the armature mass as 

a tuner, proved to be not optimal. Specifically, for testing composite structures which require more power from the 

shaker because of higher levels of damping as already introduced. 

The presented mechanical test rig can be used for amplifying the response of the tested component but, in order 

to do that, the armature of the shaker should vibrate up to the allowable acceleration and in out of phase with the 

connected rig so as to generate the maximum force. Figure 8 indicates the test rig must be connected to the 

shaker by a mechanism presenting very high impedance. Another important parameter to take into account during 

the design of a tuneable rig, is the consequential shift of the resonance of the test structure in the rig. In fact, high-

level vibration produced on the specimen can enhance phenomena of non linearity. When this happens, the 

resonance of the sample can move to a frequency which is different to the one used for tuning the test rig. Hence, 
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it would be important to perform some linearity checks on the sample to predict where the resonant frequency 

might move to during the HCF test. Figure 9 presents an FRF of a similar sample to the one shown earlier, whose 

frequency of interest was around 560Hz. This example aims to explain more clearly the reason for tuning a test rig 

to a frequency matching the one run during the HCF. In fact, the rig was tuned to a frequency of 560Hz which, 

with the increase of the excitation force, did not match the sample resonance anymore thereby reducing the 

amplification effect of the mechanical test rig.  

 

 

Figure 10 Non linear responses of a specimen 

   

7 Conclusions 

This work has presented a simple but practical study of the effect of impedance mismatch between an 

electromagnetic shaker and a test rig used for performing HCF measurements. The endurance measurement is 

becoming increasingly important for building data sets of fatigue properties of new composite materials. The 

 

Figure 9 Test rig (a), connecting mechanism and shaker armature (b) 
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current technology developed using a test rig such as the one introduced, proved to be correct when used for 

testing lightly damped materials, which require relatively small excitation forces. When the damping is higher, as 

for composite materials, the excitation force must be increased. A tuneable test rig is an excellent mechanical 

amplificator of vibrations but, when wrongly implemented, it can result shaker underperforming or performing 

outside its specifications. A mechanical amplificator should be connected to a shaker using a mechanism with 

high impedance so that the armature 

 

 

REFERENCES 

[1] B A Cowles, High cycle fatigue in aircraft gas turbines- an industry perspective. International Journal of 

Fracture 80:147-163, 1996 

 

512



 
A Global-local Approach to Nonlinear System Identification 

 
 
 

Young S. Lee(1), Alexander Vakakis(2), D. Michael McFarland(3), Lawrence Bergman(3) 
 

(1) Department of Mechanical and Aerospace Engineering, New Mexico State University, 1040 S. Horseshoe St., Las 
Cruces, NM 88003, U.S.A.; younglee@nmsu.edu 

(2) Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., 
Urbana, IL 61801, U.S.A.; avakakis@illinois.edu 

(3) Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 104 S. Wright St., Urbana, IL 
61801, U.S.A.; dmmcf, lbergman@illinois.edu 

 
 

ABSTRACT 

We present the basic components of a time-domain nonlinear system identification (NSI) method with promise of 
applicability to a broad class of smooth and non-smooth dynamical systems. The proposed NSI method is based on the 
close correspondence between analytical and empirical slow-flow dynamics, and relies on direct analysis of measured 
time series without any a priori assumptions on the system dynamics. The central assumption is that the measured time 
series can be decomposed in terms of a finite number of oscillating components that are in the form of fast 
monochromatic oscillations modulated by slow amplitudes. The empirical slow-flow model of the dynamics is obtained 
from empirical mode decomposition, and its correspondence to the analytical slow-flow model establishes a local 
nonlinear interaction model (NIM). A NIM consists of a set of intrinsic modal oscillators (IMOs) that can reproduce the 
measured time series over different time scales and can account for (even strongly) nonlinear modal interactions. Hence, 
it represents a local model of the dynamics, identifying specific nonlinear transitions. By collecting energy-dependent 
frequency behaviors from all identified IMOs, a frequency-energy plot (in the modal space) can be constructed, which 
depicts global features of the dynamical system.  

 

1. INTRODUCTION 

The need for system identification and reduced-order modeling in dynamical systems arises from the fact that, presented 
with sensor data, the analyst is often unaware of details of the underlying system from which they originated. The 
straightforward approach to this dilemma is to assume that the dynamical system is linear and that the measured 
responses are stationary in time. This facilitates the use, for example, of the numerical Fourier transform (FT) followed 
by experimental modal analysis (EMA [1]) to extract natural frequencies, mode shapes and modal damping ratios, from 
which the parameters of the assumed linear model can be determined if the mass distribution is known. This approach, 
which is fully nonparametric, has served the dynamics and controls community well, even in the presence of weakly 
nonlinear system behavior. Clearly, though, as systems become more complex, incorporating not only electrical and 
mechanical components but also biological and biomimetic elements, the likelihood exists that the observed data will 
reflect strong nonlinearity and nonstationarity. Such behaviors can result from, for example, local buckling, clearance 
and backlash, friction, hysteresis, local damage, large displacements and/or strains, and so forth (see, for example, [2]). 
And as we think more in terms of multi-physics problems, one must also include nonlinearities due to interfacial effects 
such as shear lag between actuator and structure, fluid-structure interactions, sensor-tissue interactions, and others. Thus, 
a physically-based parametric model of the system will not, in general, be known a priori. 

However, given a sufficiently dense set of sensors, measured time series recorded throughout the system will contain all 
of the information reflecting both nonlinearity and nonstationarity. Methods based upon the FT are not able to properly 
isolate and extract this information and, in fact, may lead the less experienced analyst to mistake phenomena such as 
internal and combination resonances for natural frequencies [3], to mistake time dependence for damping, and to fail to 
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account for sensitivities of the response to force and voltage magnitudes and to initial conditions, all of which can lead to 
large changes in response over short time. One cannot overestimate the importance of the need for an effective, 
straightforward, system identification and reduced-order modeling method for characterizing strongly nonlinear and 
nonstationary, complex, multi-component systems. However, the difficulty in developing a method of broad applicability 
is the well-recognized, highly individualistic nature of nonlinear systems which restricts the unifying dynamical features 
that are amenable to system identification. 

Reviews of nonlinear system identification (NSI) and reduced-order methods are presented in Kerschen et al. [4,5]. 
Moon [6] notes suitable methods for diagnosing chaotic motion which are also useful for determining when observed 
responses result from strongly nonlinear systems. These include analysis of time series of the response, interpretation of 
phase space trajectories and Poincaré maps, examination of power spectra of the response, and observation of system 
response when individual parameters are varied. Nichols and Virgin [7] presented a method for estimating damping in a 
system by chaotic interrogation, and Feeny et al. [8] performed NSI of a magneto-elastic two-well chaotic system. 
Typical nonparametric NSI methods include proper orthogonal decomposition, Volterra theory, and pattern recognition 
based on artificial neural networks. For example, Silva [9] performed NSI using Volterra theory on aeroelastic systems, 
developed computationally-efficient reduced-order models (ROMs) employing an Euler/Navier-Stokes fluid solver, and 
finally derived analytically Volterra kernels for nonlinear aeroelastic systems from data of flight flutter tests of an active 
aeroelastic wing aircraft. 

There are alternative well-established methods for nonlinear parameter estimation, such as the restoring force surface 
method [10], NARMAX (Nonlinear Auto-Regressive Moving Average models with eXogenous inputs) methods [11,12], 
methods based on Hilbert transforms [13,14], and others. Thothadri et al. [15] performed NSI of multi-degree-of-
freedom (MDOF) fluid-structure interaction systems using the principle of harmonic balance (HB). The main advantage 
of the HB technique is its usefulness to predict bifurcation behavior of a nonlinear system, for which nonparametric 
methods are not usually well suited. This is performed by exploiting the periodicity in the response of an experimental 
system, when parametric time-domain methods such as the NARMAX fail. A multi-staged approach for fitting the 
excitation of a nonlinear system in nonparametric form was developed in Masri et al. [16,17]. Also, a general data-based 
approach for developing ROMs for nonlinear MDOF systems was proposed assuming no information about the system 
mass [18]. reduced-order modeling based on nonlinear normal modes [19] has been discussed in Touzé et al. [20-22]. 
However, these techniques are only applicable to specific classes of dynamical systems; in addition, some type of 
functional form is assumed for modeling the system nonlinearity, and the main task becomes the determination of the 
corresponding coefficients. The key to a successful NSI method is the recognition that a single parametric model derived 
from data at a specific operating point in the frequency-energy space will not be globally descriptive. Rather, the method 
should non-parametrically provide a global picture of system behavior leading naturally to local parametric models 
capable of reproducing the strongly nonlinear phenomena at the operating points. 

With this idea in mind, we recently proposed a time-domain (nonparametric) NSI method based on equivalence or 
correspondence between analytical and empirical slow flows of a dynamical system [23,24], and studied its application 
to targeted energy transfers in 2-degree-of-freedom dynamical system, aeroelastic instability suppression [25], and a rod 
with an essentially nonlinear end attachment [26]. The proposed NSI method is feasible for broad classes of applications 
involving time-variant/time-invariant, linear/nonlinear, and smooth/non-smooth dynamical systems. Furthermore, it 
requires no a priori system information but only measured (or simulated) time series; i.e., it is purely an output-based 
approach. Empirical mode decomposition (EMD [27]) is employed to yield intrinsic mode functions (IMFs) of the 
measured time series as empirical slow flows, and its correspondence to the analytical slow-flow dynamics enables us to 
establish a nonlinear interaction model (NIM). The NIM consists of a set of intrinsic modal oscillators (IMO), an 
equivalent linear oscillator that can produce a given time series over different time scales and keeps any existing 
nonlinear modal interactions in its time-varying forcing term. An IMO, the solution of which reproduces the 
corresponding IMF, represents dynamical characteristics of the system under certain initial or parameter conditions (i.e., 
local aspects). By extracting energy-dependent frequency behavior from identified IMOs, a frequency-energy plot (in the 
modal space) can be constructed as global features of the dynamical system. 

2. REDUCED SLOW-FLOW DYNAMICS AND EMD 

Slow-flow reduction of the dynamics is a useful tool for understanding the major features of a dynamical system. The 
reduced slow-flow model of a dynamical process is derived by introducing a slow/fast partition of the dynamics whereby 
the (non-essential) fast dynamics is averaged out to reveal the (essential) slow-flow modulations of appropriately defined 
amplitudes and phases. Perturbation tools have been developed to perform this task; e.g., the Linstedt-Poincaré method 
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of direct series expansions, singular perturbation methods [28], the method of multiple scales and the harmonic balance 
method [3], the method of averaging [29], etc. The complexification-averaging (CX-A) technique [30] has received 
much recent attention due to its capacity to provide slow-flow models even for strongly nonlinear transient dynamical 
interactions; e.g., resonance capture phenomena in coupled oscillators with essential nonlinearities [31]. Focusing on the 
CX-A method, we demonstrate the extraction of the slow-flow dynamics of a general n -degree-of-freedom (DOF), 
nonlinear dynamical system of the form 

2( , ), {  } , T T T nt tX    f X X x x    (1) 
where x  is an n -response vector and f  is an n -vector function. Assume that the dynamics possesses N  distinct 
components at frequencies 1 2, ,..., N   , so the response of each DOF of the system can be expressed as a summation of 
N  independent components,  

(1) ( ) ( )( ) ( ) ( ) ( ),  1, ,m N

k k k kx t x t x t x t k n      (2) 
where ( ) ( )m

kx t  indicates the response of the k -th coordinate of (1), associated with the basic frequency m  with the 
ordering 1 2 ... N     . We assume at this point that all the basic frequencies in the response are well separated. It 
turns out that even strongly nonlinear dynamical processes can be analyzed by CX-A, first introduced by Manevitch [30] 
(for an extensive discussion of this technique and numerous applications refer to Vakakis et al. [31]). In particular, for 
each component in (2) we assign a new complex variable defined by 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) mj tm m m m
mk k k kt x t j x t t e       (3) 

where a slow/fast partition of the dynamics in terms of the ‘slow’ (complex) amplitude ( ) ( )m
k t  and the ‘fast’ oscillation 

mj te   is assumed. Substituting (2) and (3) into (1) and performing multi-phase averaging [32] for each of the fast 
frequencies we obtain the slow flow of (1):  

1 2( , , , ) N
k k nF        (4) 

where (1) (2) ( ){ , , , } , 1, ,N T
k k k k k n       . The number of fast frequencies ( N ) determines the dimensionality of the 

slow flow (4). 

As an example we consider a weakly damped linear oscillator (LO) coupled to a light attachment by means of essential 
stiffness nonlinearity of the third degree. In previous work the nonlinear oscillator was termed a ‘nonlinear energy sink’ 
(NES) due to its capacity to passively absorb and dissipate energy from the LO over broad frequency ranges [31]:  

2 3 3
0 1 2 2( ) ( ) 0,    ( ) ( ) 0y y y y v C y v v v y C v y                         (5) 

where y  and v  are the displacements of the LO and NES, respectively; 0  is the linearized natural frequency of the LO; 
  the mass ratio of the NES to the LO; C  the essentially nonlinear stiffness coefficient; and 1,2  the damping 
coefficients. We assign 0 1, 1, 0.05C    , and 1,2 0.03   and the initial conditions (0) (0) 0y v   and 

(0) 0.059443193, (0) 0.014995493y v    . Then, a 1:3 transient resonance capture (TRC [33]) takes place during which 
the NES engages in transient resonance with the LO, and strong energy exchanges between the two oscillators occur [34]. 
Figure 1 depicts the responses of the two oscillators in time and frequency (wavelet transform spectra). There exist two 
dominant fast frequencies in the dynamics, at 2 0   (high-frequency - HF) and at 1 0 / 3   (low-frequency - LF), 
respectively. 

Given that there are only two fast frequencies in the transient responses we express the responses as 
(1) ( 2) (1) ( 2)

1 2( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )x t y t y t y t x t v t v t v t     , and the slow/fast partitions as,  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 2 2( ) ( ) ( ) ( ) ,   ( ) ( ) ( ) ( )m mj t j tm m m mm m m m

m mt y t j y t t e t v t j v t t e              (6) 
where 1, 2m  . When substituted in (5) and averaged with respect to 1  and 2 ,  the complexification (6) leads to the 
slow-flow equations 

1 1 1 2 2 2 1 2( , ),   ( , )F F         (7) 
where (1) ( 2)

1 1 1{ , }T    and (1) ( 2)

2 2 2{ , }T   . The details of the functions 1F  and 2F  can be found in Kerschen et al. 
[34]. In the left of Fig. 2 we present the slow flow approximation of the LO and NES responses, demonstrating that the 
slow flow accurately approximates the strongly nonlinear transient response. 
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A very useful feature of the Hamiltonian FEP is its relation to the transient dynamics of the corresponding weakly 
damped system. As discussed in Vakakis et al. [31] the dynamics of the weakly damped system can be closely related to 
the underlying Hamiltonian dynamics: indeed, for weak damping the transient dynamics tracks specific branches of 
periodic orbits in the FEP. As energy decreases due to damping dissipation sudden transitions may occur as the damped 
response jumps from the neighborhood of one branch of periodic solutions to another. The sequence of branches of 
periodic orbits tracked by the damped dynamics in the FEP is ultimately dictated by the initial conditions and the level of 
damping in the system. Using as an example system (5), the close correspondence between the weakly damped and 
Hamiltonian dynamics can best be demonstrated by superimposing on the Hamiltonian FEP the wavelet spectra of the 
time series corresponding to the difference ( ) ( )y t v t . This is done in the left column of Fig. 4 for the 1:3 transient 
resonance capture depicted of Fig. 1. In the same figure we depict the transient responses ( )v t  and ( )y t  together with 
their wavelet spectra. We see that during 1:3 transient resonance capture the dynamics tracks closely the 1:3 
subharmonic ‘tongue’ 13S   [31], so a relatively simple topological picture of the transition emerges. Using, however, a 
different set of initial conditions we get drastically different dynamics as evidenced by the high-frequency transition 
depicted in the right column of Fig. 4. In this case the dynamics is initiated on the higher energy superharmonic tongue 

21U  so the damped dynamics tracks a completely different set of branches in the FEP. This results in a complicated 
multi-frequency nonlinear transition which, however, can be analyzed through theoretical and numerical slow-fast 
partitioning of the dynamics. It is evident though that performing NSI based only on either one of the measured time 
series we would miss a component of the dynamics. Moreover, even if both transitions are analyzed, NSI would still be 
incomplete as there would still exist dynamics not captured by the transitions of Fig. 4. 

The previous example highlights the important challenges that the analyst is faced with when performing NSI. The first 
challenge is to address the (generic) feature of nonlinear systems to exhibit qualitatively different responses with varying 
energy and/or initial conditions. To address this challenge one needs to adopt a global approach for identifying the basic 
(essential) dynamical features of a system over broad frequency and energy ranges. The second challenge is to be able to 
identify complex multi-frequency transitions (such as the ones depicted in Fig. 4) for fixed sets of initial conditions (or 
energy). This dictates a local approach to NSI whereby a specific nonlinear transition is considered and the task is to 
identify the nonlinear modal interactions that govern this transition. The NSI methodology presented in this paper 
addresses both of the above challenges by proposing a combined global/local approach to NSI: global features of the 
dynamics are identified in the frequency-energy domain by constructing FEPs, whereas local transitions (such as the 
ones depicted in Fig. 4) are identified by constructing appropriate slow-flow models. In this way we ensure that both the 
global and local requirements of NSI are addressed. The added benefit of this approach is that it is based on direct 
analysis of measured time series which contain complete information of the nonlinear dynamics to be identified. 

3.2 Methodology 

Based on the previous discussion we summarize the methodology for NSI of dynamical systems. The methodology has 
global and local components and relies on direct processing of measured time series. The central assumption of the 
method is that the measured dynamics can be decomposed in terms of slowly modulated fast oscillations, which is a 
reasonable assumption for non-chaotic measured data. The basic elements of the method are outlined below: 

(i) Measure time series from a number of sensors throughout the system under transient excitation, and perform 
empirical mode decomposition (EMD) of the measured time series. Extract the intrinsic mode functions (IMFs) 
at each sensing location. Hilbert-transform the computed IMFs to extract their instantaneous frequencies and 
compare them to wavelet transform (WT) spectra of the corresponding time series; thus, determine the 
dominant IMFs and the corresponding fast frequencies in the dynamics at each sensing location. This will 
identify the basic time scales and the dimensionality of the dynamics. 

(ii) Based on the correspondence between the measured dominant IMFs and the underlying slow-flow dynamics of 
the system (cf. Section 2), relate the slow components of the dominant IMFs to the slow flow dynamics. Using 
the dominant IMFs reconstruct the time series and depict it in a frequency-energy plot; under the assumption of 
weak dissipation this will reconstruct a portion of the FEP of the dynamics of the system under investigation; no 
a priori model is assumed for this reconstruction (nonparametric global component of NSI). 

(iii) For a given nonlinear transition in the FEP define a parametric reduced-order slow-flow model of the system 
with the dimensionality of the dynamics, and identify its parameters; thus construct a local slow-flow model of 
the dynamics (parametric local aspect of NSI). 

(iv) By varying the excitation and/or the initial conditions, consider different nonlinear transitions of the system 
over different frequency and energy ranges, and construct the corresponding portions of the FEP of the system 
together with the associated local slow-flow models. 
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(v) The final outcomes of the NSI are: (a) a frequency-energy plot of the global dynamics depicting the possible 
coexisting families of solutions and their bifurcations over the frequency and energy ranges of interest (global 
result); and (b) the corresponding local slow flow models of the dynamics describing nonlinear transitions on 
the FEP (local results). 

The approach summarized above addresses in a systematic way a fundamental limitation of current nonlinear system 
identification methods: their inability to allow that the responses of nonlinear systems may depend crucially on initial 
conditions and/or the applied excitations. Instead, the NSI methodology takes into account that nonlinear systems may 
change their dynamics with energy and possibly possess numerous co-existing solutions (attractors). The added 
flexibility of ‘probing’ the dynamics over different frequency and energy ranges in order to extract different local models 
is important when identifying systems capable of strongly nonlinear dynamical behavior. The global aspect of our 
method, namely FEP construction, can be applied to both discrete and continuous nonlinear dynamical systems 
irrespective of dimensionality. By constructing FEPs we can identify global features of the dynamics, e.g., ranges of 
frequencies and energies where the system possesses linearized responses (corresponding to nearly horizontal branches 
of solutions in the FEP), coexisting branches of strongly nonlinear solutions, bifurcation points signifying the limits of 
response branches, etc. In addition, it is well established that forced resonances of nonlinear systems occur in 
neighborhoods of free periodic solutions (or nonlinear normal modes); hence, by identifying the FEPs we gain 
understanding of the structure of nonlinear (fundamental or subharmonic) resonances in the forced dynamics. 

Finally, we point out the added benefit of considering transient instead of steady-state responses in our NSI method. 
Indeed, analyzing transient responses is an efficient way of probing the dynamics (as the damped transitions in the FEP 
plots of Fig. 4 demonstrate; i.e., steady-state motions would appear merely as isolated dots in these plots as they would 
correspond to fixed frequencies and energies). Performing transient tests allows us to effectively probe the dynamics of a 
system and to depict these results in compact form in an FEP. 

4. APPLICATIONS 

4.1 Global Aspect of NSI: FEP Construction 

The instantaneous frequency of an identified dominant IMF, ( ) ( )k

mc t , can be computed directly from expression (10) as, 
( ) ( )ˆˆ ( ) ( )k k

m mt t   . The corresponding instantaneous energy of the IMF can be expressed as a sum of kinetic and potential 
energies as ( ) ( ) 2 2 ( ) 2( ) ( ) ( ) / 2k k k

m m m mE t c t c t    . If the mass distribution for the system is known then the instantaneous 
mechanical energy of the system can be estimated as a summation of the energies of the IMFs multiplied by appropriate 
mass factors,  

( )

1 1

( ) ( )
n N

k

tot k m
k m

E t m E t
 

   (12) 

where , 1, , km k n   corresponds to the mass distribution of the system among components (and can be deduced from 
the physical configuration of the system), and   is a factor used to match the exact initial conditions of the damped 
transition with the approximate initial conditions satisfied by the IMFs (this can be directly deduced from the measured 
time series). If the system is linear then 1  , so 1   accounts for the energy of the nonlinear terms. Using these 
expressions a partial construction of the frequency-energy plot (FEP) can be made (corresponding to the studied 
transition) and a global picture of the dynamics deduced. By considering different nonlinear transitions we may construct 
different regions of the FEP and perform global identification of the dynamics over broad frequency and energy ranges. 

As a demonstration of global nonlinear identification, in Fig. 5 we provide a partial reconstruction of the FEP for the 
strongly nonlinear system of coupled oscillators (5), and compare it to the exact result. The reconstructions were 
performed for the two damped transitions depicted in Fig. 4. In this case, the mass distribution of the system is 1 1m   
(LO) and 2 0.05m    (NES), and the correction factor is computed as 1.5  . In the left of Fig. 5 the FEP 
reconstructions are performed using the instantaneous frequency and energy estimates derived above, whereas the right 
is based on direct wavelet transform spectra of the identified dominant IMFs. In both cases we demonstrate the efficacy 
of performing global nonlinear system identification based on the identified dominant IMFs of the responses. 
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( ) ( ) ( ) ( )ˆ ˆ( ) 2 ( ) ( )m m m m

k k k m kt t t       
  (14) 

where the forcing terms on the right-hand-sides are the slow components of the nonlinear modal interactions in (13). The 
slow complex amplitudes ( )ˆ ( )m

k t  in (14) can be extracted directly from the identified dominant IMFs ( ) ( )k

mc t , so that the 
slow components of the nonlinear modal interactions, ( ) ( )m

k t , can be computed once the damping coefficients are 
estimated. This estimation is performed using an optimization process by imposing the requirement that each of the 
equations in (13) reproduces the corresponding slow component of the IMF. Further details are provided in Lee et al. 
[24]. It follows that we can directly compute the nonlinear modal interactions (i.e., the forcing terms) in (14) and 
computationally reconstruct the slow-flow dynamics for this transition. Additional applications of the outlined NSI 
methodology were performed in identifying and reduced-order modeling of the strongly nonlinear interactions that 
trigger aeroelastic instability (flutter) of an in-flow wing [25]; in identifying the nonlinear interactions governing passive 
flutter suppression of a wing with an attached nonlinear energy sink [24]; and in the study of nonlinear interactions of a 
flexible component with an attached essentially nonlinear substructure [26]. Current work focuses in extending the 
methodology to dynamical systems with closely spaced modes and in systems with non-smooth nonlinearities. This 
second aspect is discussed below. 

5. CONCLUDING REMARKS 

We presented the basic elements of a time-domain nonlinear system identification (NSI) method based on the close 
correspondence between analytical and empirical slow-flow dynamics, and modeling the local and global nonlinear 
dynamics of both smooth and non-smooth dynamical systems. Since the NSI method requires no a priori system 
information but instead relies only on direct analysis of measured time series (i.e., it is a purely output-based approach), 
it holds promise of broad applicability to a general class of nonlinear systems. The derived nonlinear interaction models 
(NIMs) are sets of intrinsic modal oscillators (IMOs) that result from direct empirical slow-flow analysis of the time 
series. Finally, the instantaneous frequencies and total energies in the modal space are calculated with the help of the 
established NIMs. The resulting frequency-energy plots (FEPs) provide a global model of the nonlinear dynamics. We 
provided two examples that demonstrate that the branches obtained from the NSI method can approximate those 
calculated from the corresponding mathematical model with reasonable accuracy.  
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ABSTRACT 
In rotating machinery variations of modal parameters with rotation speed may be extremely important in particular if very 

light and undamped structures are taken into account, like helicopters rotors or wind turbines. 

The relation between natural frequencies and rotation speed is expressed in the form of Campbell diagrams. However it could 

be required to know also the deviation of operational or mode shapes. 

In several cases it is not possible to fully control the rotating speed of the machine and only coast-down tests can be per-

formed. Such kind of tests is often fast due to the reduced inertia of rotors: for this reason, an experimental technique able to 

determine Operational Deflection Shapes (ODSs) in short time and with sufficient accuracy, appears very promising. Moreo-

ver coast-down processes are very difficult to be controlled, they causing unsteady vibrations.  

The need to obtain ODSs from coast-down experiments requires the measurement over a large number of points and there-

fore a very efficient approach for the rotation control and synchronous acquisition must be developed. 

 

In this paper a continuous scanning system operating on rotating structures has been developed, that allows to measure ODS 

and natural frequencies excited in rotating conditions at different rotation speed during a coast down. This techniques has 

been tested on a laboratory test bench and compared with traditional Experimental Modal Analysis (EMA) results obtained in 

non-rotating conditions and with data from Tracking Laser Doppler Vibrometry (TLDV) operating in coast down and at con-

secutive constant rotation speeds (i.e. each measurement was performed in steady conditions). EMA and TLDV have been 

performed over a grid of points in order to have ODSs with adequate spatial resolution, it requiring long measurement time. 

However these data has been used as reference to validate the continuous scanning approach. 

 

1. Introduction 
The dynamic characterization of rotating structures  is an important task for understanding their structural behavior in operat-

ing conditions and in relation to the operation speed. The theory behind the variation of the modal parameters with the rota-

tion speed has been deeply studied, see [1], [2] and [3]. This theory has been applied in the past to rotating machinery, in par-

ticular, turbine engines, turbofan and helicopter rotors. Nowadays the topic becomes very interesting for the understating of 

wind turbines dynamics and the work carried out in this paper can be applied in this context. Typical excitations of wind tur-

bines, inducing vibrations, are: (i) aerodynamic, (ii) mass (tuned at the engine orders), (iii) gyroscopic and friction (acting at 

the rolling surfaces) forces, (iv) oscillating torque of the motor. 

It is well known that the natural frequencies of rotating structures increases depending to the speed because rotation introduc-

es a gyroscopic force acting as tensile axial load inducing stiffness raising. The relation between natural frequencies of a uni-

form rectangular plate (as it can be seen a single blade of the rotating structure studied in this paper, see Fig. 2), subject to 

normal in-plane load (fLi,j) and the natural frequencies of the unloaded plate (fi,j) is given by the following equation [4]: 

            
   

   
       

   

   
                                                                                      (1) 

where Fg is the normal load, X, Y and m the plate dimensions and mass, see scheme in Fig. 1, and h a tabulated coefficient 

depending on mode shapes and boundary conditions (clamped-free in this case). The normal load is the centrifugal force, 

mω
2Y, ω being the rotational speed. 
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The trend of the first fourth theoretical natural frequencies, calculated from the static ones (measured as shown in Section 3), 

are reported in Fig. 1 (right). It can be noticed that the parabolic trend, as expected from eq.1, is more marked for the first and 

third mode. This is explained by the fact that these modes have horizontal Nodal Lines (NL) and therefore they are more in-

fluenced by the gyroscopic force, acting to the NL perpendicular direction, unlike it happens for the modes with vertical NL. 

  
Fig. 1 Blade layout (left) and theoretical dependence of the natural frequencies on the rotation speed (right) 

It has been demonstrated in [5] that the in-plane (tensile or compression) load acting on a beam has no significant effect on 

the mode shapes and this stands also for isotropic and orthotropic plates.  

On the other hands, if the structure is made of composite material, this assessment does not go anymore [6]. In this case the 

possibility of measuring and monitoring the ODSs of the blade during different rotation speeds is an important issue. 

 

In this paper the blade under test has been characterized, first, in static condition using modal analysis of impact test data and, 

secondly, in rotation by measuring on a grid of points over its surface with LDV synchronous with the rotation, i.e. TLDV, 

[7], [8] and [9]. This technique is based on the use of the Scanning Laser Doppler Vibrometer (SLDV) for Lagrangian mea-

surements. The goal is to lock the laser beam to a single point as that point moves and vibrates with the structure. This 

enables structural vibrations to be measured in operating conditions. The TLDV [10] is basically a SLDV system modified 

into a controlled tracking system for rotational motions by driving the two moving mirrors via clock signals generated by an 

angular position transducer (encoder) linked to the shaft of the rotating device. This strategy has been applied in several kinds 

of rotating machinery, as helicopter rotors [11] and fans [12].  

Therefore, an optimized methodology to recover the ODSs of rotating structures has been applied to the blade during con-

stant regime and also coast-down. The method is based on Continuous Scanning Laser Doppler Vibrometry (CSLDV) syn-

chronous with the structure rotation, i.e. operating in tracking fashion and hence called Tracking CSLDV (TCSLDV). Laser 

Doppler Vibrometry (LDV) is a non contact techniques allowing to perform remote measurements of structural vibration ve-

locities that is a prerequisite in rotating machinery tests [13], [14]. Based on LDV, the CSLDV is able to reconstruct ODSs 

with a single shot measurement, because the LDV output is modulated by the ODS itself, the laser beam being scanning over 

the whole surface of the structure, [15]. This technique has been usually applied in controlled excitation conditions and most-

ly in resonance lock-in, this allowing a higher Signal to Noise Ratio (SNR) and a better reconstruction of the ODS by demo-

dulation. For structures with well separated mode shapes it has been also used in impact testing [16]. For rotating structures, 

as bladed discs, the CSLDV has been applied in the asynchronous fashion in [17] and synchronously with rotation in [18], 

but it has never been applied in coast-down. In the case of rotating structure characterization, the CSLDV has been always 

employed with controlled excitation. In rotating conditions the coupling of the excitation source and the moving structure is a 

challenging task since the contact techniques must be obviously avoided. Typical exciters used in the state of the art are elec-

tromagnetic or pulsed laser. This latter has been deeply studied in [19], where the force induced by the laser pulse has been 

simulated via FEM and quantified in [20].  

In this work, instead, the excitation is due uniquely by the forces acting in operating conditions (engine order, friction, aero-

dynamic loads, motor torque oscillation). For this reason together with the well-known CSLDV drawback, i.e. the speckle 

noise, an optimization between laser beam scanning frequencies in dependence to the actual excitation must be performed as 

suggested in [21].  

 

2. Method and instrumentation 
 

2.1 Test bench 
The experimental item is a two blade rotating structure built-up with the aim to fine-tune the TCSLDV methodology to be 

applied in operating excitation conditions. Each blade is made of aluminum and has dimensions of 0.270×0.180×0.025 m. 

The motor drive of the fan in clamped to a rigid and massive concrete block, see Fig. 2. The fan is put into rotation by an in-
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verter. In order to improve the quality of the LDV data the blades have been covered with retro-reflective tape allowing to in-

crease the scattering of the laser light backwards to the photodetector. This tape allowed also a significant increase of struc-

tural damping of the blades. 

 
Fig. 2 Two blade fan 

2.2 Measurement techniques 
The complete set of testing strategies (SLDV, TLDV, CSLDV and TCSLDV) employed, as basic component, a single point 

Polytec vibrometer, specifically the OFV-505 with VD-01 velocity decoder. The laser beam was moved point by point, for 

SLDV purpose, and continuously, for TLDV and CSLDV purpose, via a couple of galvanometric mirrors driven by a ther-

mally controlled PID board. The mirror driving signals have been generated by a NI-PXI-6733 board (16 bit resolution). Dur-

ing the measurement in rotating conditions the laser beam had to move synchronously with the blade. Therefore the genera-

tion of the mirrors feeding signals was triggered with a clock provided by the output of an incremental encoder installed on 

the propeller shaft. 

A NI-PXI-4472 board has been used to acquire simultaneously sampled analog inputs with 24-bit resolution. The acquired 

data were: 

- Actual position of the horizontal mirror, 

- Actual position of the vertical mirror, 

- LDV optical signal level 

- LDV velocity signal. 

 

3. Non-rotating characterization 
The blade characterization has been performed in static conditions by forcing it into vibration via an impact hammer and 

measuring its dynamic behavior with a scanning LDV. Modal analysis has been carried out in the measurement data in order 

to extract modal parameters (frequency, damping and modal vectors). The impulse imposed by the hammer allowed to excite 

almost all the natural modes of the structure up to 2kHz. 

 
Fig. 3 Scaled FRF sum from the SLDV test (red) and CSLDV output spectrum (blue) 

This configuration has been chosen in order to have a range of excitation wider enough to evidence the structural response of 

the blade to the operating excitation, which can be split in two categories of different nature: 

- Engine order excitation depending on unbalancing and mistuning whose energy is inversely proportional to the fre-

quency but increases with RPM, 
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- Broadband excitation due to the aerodynamic forces and  the friction ones acting at the surfaces of the rolling ele-

ments and randomly distributed in time. This kind of excitation has increasing amplitude with higher RPM, as well. 

The static characterization of the blade has been firstly performed by carrying out a modal analysis of it from the SLDV out-

put data measured over a grid of 7x10 points on each blade excited via impact hammer. The sum of the measured FRFs, ap-

propriately scaled, is reported in Fig. 3. 

Then a CSLDV test has been performed on the steady blade excited via impact hammer. In order to cover the whole surface 

of the blade the mirrors have been fed by sinewaves at the frequencies of 1.1 and 12 Hz (non integer multiple frequencies to 

achieve a Lissajous picture and sweep different positions over subsequent cycles). The operational deflection shapes of the 

structure have been recovered from a single shot measurement. Modal analysis could be performed on the unique FRF given 

by the ratio of the output vibration velocity and the input force (measured by the CSLDV and the hammer). In fact this FRF 

contains both the time and spatial information needed for the ODS reconstruction. However the modal analysis is not pre-

sented in this paper.  

The LDV output spectrum measured in CSLDV mode is reported in Fig. 3, superimposed to the EMA FRFs sum. The typical 

sideband structure is evident from the spectrum. The modal parameters extracted from the SLDV test are reported in Table 1 
together with the ODS recovered with CSLDV. A zoom of the spectrum over the natural frequency position is reported in 

Table 1 for each ODS. 

Table 1 Blade modal parameters and CSLDV ODSs 

The sideband spectrum characteristic of each ODS is visible, except for the modes that are not sufficiently excited, i.e. 431 

Hz, or for close modes, i.e. the ones in the region for 340 Hz.  

 

4. Rotating characterization 
The dynamic characterization of the blade in rotating conditions has been performed by means of the TLDV method, in 

which it is possible to change the position of the measurement point in the rotating coordinate system by varying the ampli-

tude and phase of the signals that drives the mirrors. This allows to track a single point or to measure sequentially on a grid of 

points in order to have the spatial information related to the structure ODSs. 

The blade has then been tested in TCSLDV fashion when rotating at different RPM steps. By synchronizing the continuous 

scan with the blade rotation, the Lissajous figure covered by the laser beam is illustrated in Fig. 4.  
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Fig. 4 Laser path synchronized with the blade rotating at ωr 

The blade dynamics has been characterized in rotating conditions at different speeds, from about 2 up to 25 rotation per 

second [RPS]. The measurement has been performed with TLDV with the laser beam pointed to the tip right corner. By ob-

serving the built-up spectrogram, Fig. 5, it can be noticed the second order (parabolic) dependence of the resonance frequen-

cies on the speed, caused by the gyroscopic force. This gyroscopic effect is more marked for resonance frequencies corres-

ponding to natural modes with 10 NL, (red lines) rather than modes with 01 NL (black lines), as it has been previously 

pointed out. 

 
Fig. 5 Stepped run-up spectrogram zoomed around the first and second natural frequencies (left) and around the third and 

fourth ones (right) 

The same has been done by using TCSLDV. The built-up spectrogram is shown in Fig. 6 together with a zoom around the 

third and fourth resonances. In the last plot the characteristic sidebands are evident: notice that the scanning frequency in y-

direction is varying, between 3 and 14 Hz, with the rotation speed in order to optimize the CSLDV output. Therefore the y-

sideband spacing (see mode at 155 Hz, black line in Fig. 6) changes. Another parameter that has been varied at the different 

speed was the LDV sensitivity that was of 25 mm/s/V below 11 RPS, 125 mm/s/V between 12 and 21 RPS and 1000 mm/s/V 

at 14 and 22 RPS. The reason of the need to set the sensitivity at the lowest value at 14 RPS was related to the presence of a 

resonance of the rotor support that accidently correspond to the II mode of the blade, see Fig. 6, left. 

To complete the characterization of the blade behavior in rotating conditions the ODSs have been extracted from the CSLDV 

data. Moreover it has been performed a TLDV test at each rotation speed over a grid of 7x10 points on the blade. The fourth 

ODS recovered from TLDV and CSLDV data measured at the speeds of 5, 10 and 20 RPS is reported in Table 2. ODSs re-

covered from TLDV data are given only in terms of amplitude because during the scanning it has not been used a phase ref-

erence. 
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Fig. 6 Stepped CSLDV run-up spectrogram (left) and its zoom around the III and IV blade resonances 

Table 2 Blade 4
th

 ODS (158 Hz at 0 RPS) obtained via CSLDV and TLDV at different RPS 

5. Coast-down characterization 
The TLDV and TCSLDV have been finally applied during the rotor coast-down starting from a rotation of 25 RPS. The ex-

perimental implementation required an accurate synchronization between the RPM reading, the generation of the waveforms 

feeding the mirrors and the TCSLDV output acquisition. 
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The spectrograms relative to TLDV and TCSLDV are shown in Fig. 7 and Fig. 8. In the first one the second order depen-

dence of the blade natural frequencies on the rotational speed is evident. The black lines superimposed to the spectrogram 

confirm this fact. The spectrogram relative to the TCSLDV agrees with the TLDV one although it is more complex to read 

because the sidebands nature of the spectrum around each resonance. Hence Fig. 8 reports only two zooms of the spectro-

gram in the region of the I, II and III modes (left spectrogram) and of the VI, VII and VIII modes (right spectrogram). The 

parabolic lines superimposed to the spectrograms are given also for the sidebands of the natural frequencies. The VII mode 

ones are colored in black to be distinguished from the ones relative to the VI mode, they being overlapping, at least for high 

rotation speed. The smaller dependence on the gyroscopic effect of the 0i NL modes (parabolic lines with less marked curva-

ture) is confirmed.  

Table 3 shows the ODSs recovered at two different sections of the coast-down spectrogram, i.e. at average speed of 20.64 

and 9.10 RPS respectively. The shapes are almost identical to the ones measured at the corresponding speed given in the pre-

vious section. The differences (e.g. deformation of the nodal lines) can be attributed to the lower quality of the LDV signal 

(lower SNR) due to two facts: 

- laser beam scanning frequencies not optimized for the different speeds, but kept constant (e.g. 1.1 Hz and 12 Hz in the x- 

and y-directions respectively), 

- LDV sensitivity maintained fixed to the lowest value (1000 mm/s/V).   

 

   
Fig. 7 Coast down spectrogram with 

natural frequencies parabolic trend 
Fig. 8 Coast down spectrogram with superimposed natural frequencies 

and sidebands parabolic trend  

6. Conclusions 
This paper explores the problem of the analysis of vibrational behavior of rotors at different rotational speeds, observing not 

only the variations of resonant frequencies, but also of the mode shapes. Considering that potential applications of major in-

terest (like wind turbines and helicopter rotors) cannot easily be controlled in the rotating speed, experimental technique must 

operate in coast-down (or run-up) conditions. 

This paper describes the development and testing of a continuous scanning system operating on rotating structures in such a 

way to measure ODS and natural frequencies excited in rotating conditions at different rotation speed during the coast down. 

The results obtained on a laboratory bench were compared with theoretical predictions, traditional EMA in non-rotating con-

ditions and with TLDV (both single point and over a grid of points) operating both in coast down and in step-RPM mode 

(measurement in steady conditions at different rotating speed). 
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Table  3 Blade ODSs obtained via CSLDV in coast-down (section at average speed of 9.10 RPS and 20.64 RPS)  
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ABSTRACT 
The Air Force Research Laboratory has developed a new testing method that utilizes pyroshock loading to excite 
a structure simultaneously over multiple axes.  One of the areas of investigation in developing this test capability 
is the effects of multiple pyroshock loading on the output response of the test structure.  A series of Single Input- 
Single Output (SISO) and Multiple Input-Single Output (MISO) tests have been performed using a combination of 
single and multiple impact hammers in different geometric configurations.  The impacts were applied both 
simultaneously and individually.  The response of the structure was analyzed evaluating the acceleration time 
history, Frequency Response Functions, and Shock Response Spectra.  This analysis was used to determine 
optimum placement of the multiple input locations and desired output response for the future field tests.   
 
 
INTRODUCTION 
The Air Force Research Lab (AFRL) conducts research in a wide variety of energy regimes.  This research is 
designed to evaluate aspects of a test article over a variety of scales from components to systems and sub-scale 
to full-scale.  One aspect of these endeavors is the multi-axial excitation of a system over the entire frequency 
spectrum from low (10 Hz) to high (10 kHz) as well as different amplitudes (i.e. – accelerations).  A new test 
article was proposed and an the initial computational study was performed.  The analytical results were then 
compared to a similar near-field pyroshock test. [1]  This analysis led to the development of the Multi-Axial 
Pyroshock Plate (MAPP) test set-up.  Initial pyroshock tests were performed on the MAPP test set-up where 
acceleration time histories were captured and Shock Response Spectra (SRS) were calculated.  The success of 
the tests was determined by comparing the SRS from the tests with a desired SRS band.  These initial tests show 
that the technology could simulate aspects of the SRS, however, the application of the pyroshock needs further 
refinement.  In order to determine the optimum placement of pyroshock inputs a study utilizing the Multiple Input-
Single Output (MISO) methodology was performed.  A series of laboratory tests were completed on a small 
aluminum plate.  The initial tests focused on a Single Input-Multiple Output (SIMO) analysis at thirty-two different 
input locations and four output locations.  Acceleration time-histories were captured at each location.  From that 
data the Frequency Response Functions (FRF) and Shock Response Spectra (SRS) are calculated.  The second 
series of laboratory tests involved performing a series of Multiple Input-Single Output (MISO) tests.  The same 
analysis was performed on these tests and a comparison was made between the FRF’s and SRS’s of the single 
and multiple inputs.  Based on the data analyzed from the laboratory tests initial locations of small pyroshock 
inputs were determined and a test plan was developed for future field tests to determine the feasibility of this 
approach for larger input forces.   
 
This paper will provide a brief overview of the initial MAPP field tests and discuss the results from that analysis.  It 
will then provide a detailed discussion of the sub-scale laboratory tests and the SIMO and MISO studies that were 
preformed.  It will show the benefits of utilizing the MISO methodology over the SIMO tests in achieving a higher 
magnitude of response depicted in a FRF and SRS.  The paper will conclude with a brief discussion of the field 
tests that will be performed to verify this methodology before it is expanded to include the MAPP test set-up. 
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MULTI-AXIAL PYROSHOCK PLATE (MAPP) SET-UP 
The initial study of the Multi-Axis Pyroshock Plate (MAPP) test set-up occurred in April 2010.  The test article 
consists of a 4’ x 8’ x 1” thick T6061 aluminum plate that is hung from an aluminum tube by turn buckles.  They 
suspend the plate in simulated Free-Free boundary conditions.  The aluminum tube that supports the MAPP test 
system spans 22’ and is connected to concrete blast walls through the use of 3/8” expansion anchors.  A 
“bookshelf” has been welded to the front of the plate, it is 6” long and is constructed out of T6061 Aluminum tube 
stock.  The nominal dimensions on the tube stock are 6” x 6” x ½”.  Figure 1(a) depicts the entire plate with the 
bookshelf.  Figure 1(b) shows a closer view of the bookshelf and a steel plate that is attached to it.  In order to 
allow for the connection of the steel plate, or any other test article, to the bookshelf a series of 8 - 0.32” diameter 
thru holes were drilled into the bookshelf.   
 
A standard x-, y-, z, coordinate system is assumed for this test article.  The x-axis runs along the long side of the 
plate [along the bottom edge of the plate shown in Figure 1(a)] while the y-axis is located parallel to the short side 
of the plate [along the left hand side of the plate in Figure 1(a)].  The origin of the coordinate system is located at 
the lower left hand corner of the plate in the photo below.  The z-axis comes out of the plate and runs along the 6” 
length of the bookshelf.  This coordinate system will be used in the discussion of the results for both the field and 
laboratory tests. 
 

a) Overall MAPP Test Set-up b) view of “bookshelf” and steel plate 

Figure 1  MAPP test article 
 
A series of four tests were performed using small amount of explosive near the center of the plate.  Two of the 
tests utilized a custom AFRL tri-axial mount that housed three shock accelerometers placed in the center of the 
steel plate attached to the bookshelf. The other two tests utilized a component centered on the bookshelf with the 
same AFRL tri-axial mount and accelerometers placed within it.  The component was attached to the bookshelf 
through a series of bolts.   
 
 
INITIAL TEST RESULTS 
In the complex environment that AFRL is interested in there is an accepted methodology of developing test 
requirements using a Shock Response Spectrum (SRS), which was used as our initial figure of merit.  The SRS 
has been proposed as a tool for evaluating the damage potential in a given acceleration time history.  The SRS is 
defined using an array of 1-D spring-mass systems, each with a spring constant tuned to a different resonant 
frequency (ω  = √k/m).  The maximum acceleration by an oscillator when coupled to a rigid base moving with the 
specified acceleration time history defines the “positive” or “negative” SRS depending on the direction of the 
shock.  Further details on the SRS can be found in comprehensive reviews, e.g., Irvine [2]; other spectral 
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analyses can be found in Scavuzzo and Pusey [3].  The SRS shown in Figure 2 were calculated using the 
improved filter bank method developed by Smallwood [4, 5].  The positive and negative maximum SRS gives the 
maximum acceleration of the 1-D spring mass in the respective directions due to the acceleration time history.  
The SRS provides a measure of the effect of the pyroshock on a simple mechanical model with a single degree of 
freedom.  Generally, a measured acceleration time-history is applied to the model and the maximum acceleration 
response is calculated.  An ensemble of maximum absolute-value accelerations responses is calculated for 
various natural frequencies of the model.   
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Figure 2 Initial Shock Response Spectra Data 
 
The maximum positive SRS for each test and each axis of the tri-axial accelerometer were calculated and are 
shown in Figure 2(a) and (c).  Figure 2(b) and (d) depict the maximum positive SRS of the tri-axial accelerometer 
in the component.  Figure 2(a) and (b) compares the response of the x- and y-axis for the accelerometer and tri-
axial accelerometer in the component, respectively.  While, similarly, Figure 2(c) and (d) depict the response of 
the z-axis for the accelerometer and tri-axial accelerometer in the component.  These figures show a variety of 
interesting phenomena, specifically the consistency in SRS behavior between tests.  While this is expected when 
applying a mechanical shock, it is not as expected when using live explosives to apply energy to the system.  It 
verifies that our test apparatus stays in the elastic regime and is not damaged, or altered, between tests.  
Additionally, the plots show that in the x- and y-directions the tests were generally successful in achieving the 
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minimum SRS band above 1,000 Hz.  However, it was not able to achieve the desired SRS response in the z-
direction for either test article.   
 
 
SUB-SCALE LABORATORY STUDY 
The next phase of this research effort focused on developing a methodology that would allow the engineer, or 
designer, to pre-determine a specific output response (i.e. – time history, frequency response function, or shock 
response spectra) and determine the appropriate input.  This input could be from an array of mechanical, or 
pyrotechnic, inputs with three distinct variables: magnitude of input, location of input, and time delay between 
inputs.  In order to develop this methodology an initial laboratory study was performed on an aluminum plate.  It 
focused on developing an array of Frequency Response Functions (FRF) and Shock Response Spectra (SRS) on 
thirty-two single axis input locations and four tri-axial output locations.  The individual input locations were located 
on a grid placed on a 4’ x 2’ Aluminum plate.  Figure 3 depicts the aluminum plate supported along the long edge 
of the plate from bungee cords and hung from an A-Frame in simulated the Free-Free boundary conditions 
(similar to the MAPP test set-up).  The 
FRF study was completed in two roves 
where the accelerometers are moved 
from one location to another.  On the 
back side of the plate four tri-axial 
accelerometers were placed to aid in the 
determination for the optimum output 
location.  The initial study of the plate 
involved a Single Input-Multiple Output 
(SIMO) methodology.  The single input 
from an impact hammer occurred at an 
accelerometer and the output was 
measured at every other input and output 
location.  This allowed for the calculation 
of all of the Autopower Spectra, Cross 
Power Spectra, and SRS at each of the 
locations through two roves of 
accelerometers.  The second study 
involved a Multiple Input-Single Output 
(MISO) methodology.  For these tests two 
impact hammers were used at to simulate the multiple inputs.  The impacts were as simultaneous as possible, but 
were not exact.  The same analysis was performed on the outputs from this test as the SIMO tests.   
 
 
ANALYSIS AND DISCUSSION 
The results from the laboratory tests show that multiple inputs can significantly affect the desired outputs.  An 
example that compares the results from individual inputs at Point 1 and Point 2 with the results from the 
simultaneous inputs at Point 1 and 2 are discussed below.  Other locations were examined, however, this 
example depicts the overall trends.  Figure 4 shows the acceleration time histories for the z-axis output 
(orthogonal with the plate) for Point 1 [Figure 4(a)], Point 2 [Figure 4(b)], and the simultaneous impacts at Points 1 
and 2, or Combined Points [Figure 4(c)].  It can be seen that the individual impacts have a maximum force of less 
than 40 g’s, however, if they are combined their overall force magnitude is higher at over 60 g’s.  This point is 
further illustrated in the Frequency Response Functions (FRF’s) shown in Figure 5(a).  In this plot, similar to 
Figure 4, the red line represents the FRF at the output location from an input at Point 1.  Similarly, the green line 
represents an input at Point 2, and the blue line is the combined input at Point 1 and 2.  Figure 5(a) shows that 
there are some different principal modes in the two individual inputs, but there are many frequencies where they 
do have similar responses.  When the inputs are combined the magnitude of the response at specific frequencies 
are generally increased, however, in some instances the overall behavior is reduced at that frequency.  The final 
comparison chart, and the one that shows the most significance, is in Figure 5(b).  It shows the comparison of 
SRS from the individual and combined inputs.  The SRS plots shown in Figure 5(b) were calculated using LMS 
Test.Lab. Unlike the previous SRS plots (Figure 2), that were calculated in Matlab, this plot has a linear 
distribution of the frequency and logarithmic distribution of the peak acceleration.  The SRS is still valid, and it 
does not affect the results, it is just another way at looking at the same data.  This comparison shows a significant 

Figure 3  Test Set-up for Laboratory MISO Study
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increase in the damage potential at the output point due to the simultaneous impacts.  Above 1000 Hz, there 
appears to be an order of magnitude increase in the SRS.  This initial study has shown the effect that 
simultaneous impacts can have on the FRF’s and the SRS’s for the aluminum plate.   
 

a) Individual input at point 1 b) Individual input at point 2 

 
c) Combined input at point 1 and 2 

Figure 4  Time History of Individual and Combined Inputs 
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FUTURE MISO FIELD TESTS 
The next step in this research endeavor is to apply this same concept to the aluminum plate tested in the 
laboratory using pyrotechnic input excitation, as opposed to mechanical input.  This test series will evaluate the 
effects of three detonators applied directly to the aluminum plate and measure the output response at another 
location.  Three input points will be chosen and marked on the plate at the locations shown in Figure 6.  For the 
first series of tests each of the input locations will be evaluated independently.  A RP83 detonator will be placed 
on the back side of the plate shown in Figure 6 at location 1, an ENDEVCO 7570 shock accelerometer will be 
placed on the front side of the plate at the same location.  A tri-axial accelerometer will be placed on the front side 
of the plate at location 4 that will measure the output.  This test will allow for the creation of a FRF between the 
input and output location based on the acceleration-time histories.  Upon completion of the tests and the analysis 
of the results the FRF’s from the pyroshock tests can be compared to similar FRF’s of the acceleration time-
history captured in the laboratory.  For statistical consideration the initial test of one detonator at location1 will be 
performed a total of six times.  The same tests will be performed at input location 2 and 3; however, these tests 
will only be performed once.  Once that initial study is completed the second portion of this test series will be 
evaluated.  It will consist of utilizing all three input locations and simultaneously initiate the detonators.  Similar to 
the previous tests, accelerometers will capture the initial input from each of the RP83 detonators and a tri-axial 
accelerometer will measure the output.  This test will also be performed a total of six times, and are scheduled to 
be completed at the end of October 2010. 
 

a) FRF of Point 1,2, and Combined b) FRF of Point 1,2, and Combined 
Figure 5  Frequency Response Function and Shock Response Spectra of Points 1 and 2 and Combined 

 
 
SUMMARY 
A new test apparatus to impart a specific shock level (amplitude, frequency, and direction) that has been exhibited 
under impact tests, called the Multi-Axial Pyroshock Plate test set-up, has been developed.  Initial tests showed 
that using a small amount of explosives near the center of the plate can excite an accelerometer and a 
component such that it crosses the minimum Shock Response Spectra line at frequencies over 1000 Hz.  Based 
on the initial test series a further study of Single Input-Multiple Output (SIMO) and Multiple Input-Single Output 
(MISO) laboratory tests were performed on an aluminum plate.  They showed that by providing multiple impacts 
on a plate, at specific locations, the additional input can generally increases the magnitude of the Frequency 
Response Functions.  Additionally, when looking at the Shock Response Spectra there is a significant increase in 
the damage potential at the output point due to the simultaneous impacts.  Initial results show an order of 
magnitude increase in the Shock Response Spectra at natural frequencies above 1000 Hz.  Based on this initial 
laboratory study a field experiment has been proposed that will evaluate the same types of inputs developed in 
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the laboratory.  Three distinct locations will be excited both individually and simultaneously by a small explosive.  
An analysis will be performed on the data recovered from these tests and compare the Frequency Response 
Functions and the Shock Response Spectra of the individual inputs and the multiple inputs to determine the 
effects of the differences in Single Input-Single Output and Multiple Input–Single Output responses. 
 

 
Figure 6  Input and Output Locations for Future MISO Tests 
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ABSTRACT 
For nearly forty years, the Universal File Format has served as a de facto standard for cross platform data 

interchange and archiving. However, as technology has progressed, the aging nature of this eighty character ASCII 

FORTRAN card image based format has become problematic. As a result, with the ever increasing legal 

requirements of long term record keeping, a flexible, open definition file format suitable for viable long term 

archiving of data and results, which is not dependent upon any particular hardware or operating system environment 

has become necessary. This paper focuses upon the various (sometimes conflicting) issues involved in the decision 

process and the resulting principal identified features necessary for realistic, long term reliable recovery of 

information and successful community adoption. 

 

1.  Introduction 
1.1  DSA Objective 
Within the vibration technical community, there is a need for a long term viable, open definition file format for the 

archiving of dynamic signal data and results. This flexible archive format, independent of any particular hardware or 

operating system environment and distinct from any particular database management structure, is needed in order to 

satisfy the increasing legal requirements of long term record keeping. For many years, the Universal File Format has 

been the de facto standard in this area. However, as technology has progressed, the aging nature of this eighty 

character line oriented, ASCII, FORTRAN card image based format has become problematic. Following a brief 

discussion of some of the strengths and weaknesses of existing data formats, this document focuses upon the 

identified feature set needed for realistic, long term reliable recovery of information and successful future 

community adoption. 

 

Additionally, as a direct outgrowth of the long term archive integrity objective and the ever increasing capacity of 

data storage media, the opportunity for an important paradigm shift from the traditional storage of reduced 

frequency data to the storage of complete raw time series becomes viable. The long term preservation of the 

underlying original data sources provides the capability to reanalyze the acquired test data at some unknown future 

date. Such unforeseen analyses and data mining exercises are anticipated in the event of unexplained system 

behavior and/or as more sophisticated data reduction algorithms are developed. 
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1.2  Guiding Principals 
It should be noted that, for the purposes of discussion, the existing Universal File Format (UFF) has been taken as 

the initial starting reference point. Various other formats were reviewed and considered for content and 

applicability; however, in order to facilitate technical community adoption, the final resulting format has been 

specified to be open, extensible, and non-proprietary. In addition, the principle of „keeping it simple‟ has been 

followed in order to facilitate both industry acceptance and long term comprehension. The recognition is that if it 

gets too complicated, no one will use, support, or adopt it. For this reason, the final resulting format will probably 

not be perfect for everyone but it should sufficient for everyone‟s needs, in other words, a 95% solution. This 

decision is consistent with the consensus of opinion expressed at a meeting of users and vendors held at IMAC in 

1998. The focus of that meeting was to determine the interest level and collect ideas for extending the UFF to 

address some of its basic deficiencies. In many respects, this project has benefited from and is somewhat of an 

outgrowth of that activity. 

 

Before discussing the new format, it is important to avoid initial misconceptions by discussing briefly what the new 

format is not. The new format is focused upon long term archival of dynamic data; as such, issues like the data 

storage media (hardware) and the vendor specific internal database structures are not being addressed. There is no 

intention or desire to force any particular hardware or internal database structure upon individual vendors or users. 

The only goal is to produce a long term, viable, cross platform, open architecture, dynamic data storage format. 

In practical terms, this format should allow users to export data into a data archival structure that is independent of 

computer operating system and/or the original application program that generated the data and ultimately retrieve 

the data into other operating systems and other application programs at some later date (up to 50-75 years later, if 

necessary). The realistic need to move the data archive from one form of data storage media to another over this 

extended period of time is not a concern of this effort. 

 

It is also important to recognize that the since the content focus is dynamic data, other data content types, such as 

CAD/CAE, video, pictures, etc., will not be specifically included in the format. It should be noted, however, that 

although such data will not be specifically identified and targeted for support, nothing in the definition will prevent 

referencing such information via the metadata records or including it within the data archive container. 

 

One overarching principal however is recoverability! As a long term archive format, any feature or suggestion which 

jeopardizes recoverability must be subservient. One example of this is the decision to abandon strict backward 

compatibility with the existing UFF definition; instead, to handle UFF as well as other data formats via an 

importer/convertor. 

 

1.3  Long Term Goals 
The UFF was developed in the late 1960‟s by the Structural Dynamics Research Corporation (SDRC). The original 

intent was as a cross platform (software) interchange format. It functioned well in that capacity and because of its 

success it became the default archive format. 

 

The advantage is that the UFF has been relatively stable and effective for around 40 years. While nobody 

particularly likes it, nonetheless, as a least common denominator, it has in the past basically gotten the job done. 

What is needed is to address the core UFF weaknesses that have developed over the years as technology has 

advanced. The DSA format is intended to fundamentally extend and/or replace the UFF; hence it might be thought 

of as roughly „UFF2ish‟, a sort of second generation UFF. 

 

Again, another important point of clarity should be noted: the purpose of the format is primarily archival, not an 

active database. As a result, the focus of the definition is upon an archive (streamed) format, NOT upon any 

particular programming language implementation or representation. Retrieval performance of the data is also NOT a 

primary concern. (Although as computers get faster, discs get bigger, and memory gets cheaper, the issue of 

adequate performance should be moot.) As an archival format, there is no particular emphasis upon any particular 

performance in random access (read) or upon necessarily even supporting random access (write) capability. 

 

The long term goal is to encourage adoption by the dynamics community (both vendor and user) as an export and 

import format by having a set of libraries in both source and executable format on the University of Cincinnati - 

Structural Dynamics Research Laboratory (UC-SDRL) web site for use by the community. The UC-SDRL web site 

will provide a clearing house for enhancements and bug fixes which can be submitted back to UC-SDRL for 
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incorporation into the reference implementations. Currently, the UC-SDRL web site provides documentation for the 

existing UFF data structures. 

 

Finally, it is the intention that long term there will be a set of software test suites to facilitate compliance and 

validation checking of implementations. There is no intention to require the community (and vendors in particular) 

to use the reference implementations in order to achieve compliance. Anyone may develop an optimized version 

from the specification and validate against the compliance test suite. 

 

1.4  Historical Weaknesses & Abuses of the UFF 
One of the primary UFF weaknesses is in the area of metadata where there is no well-understood mechanism for 

users to attach arbitrary, test relevant condition information or other pertinent comments to UFF data records in a 

portable manner. The desired format must include a naturally extensible metadata capability by providing 

mechanisms for easy, natural extension as new needs develop, while providing backward compatibility, as much as 

practical. Another known weakness is the aging, eighty ASCII character, FORTRAN card image format. Still 

another weakness is the serial stream dependency in the UFF definition. This is most serious in the area of units 

handling, where a loss or error can cause all succeeding records to be misinterpreted. 

 

Over the years, because of misunderstanding of the Universal File Format definition and because of the uncertainty 

about handling various data types, there has arisen several frequent and yet understandable abuses of the UFF which 

cause the files to be less portable than they might otherwise be and effectively non-transportable between different 

hardware and software systems or even unreadable and unrecoverable. Some of the most notable problems have 

been: 

 Storing critical, non-documentary information in textual ID lines 

 Exceeding the 80 character line length limit 

 Inconsistent, order dependent units issues (default SI units definition) 

 Misunderstanding the format definition 

 Invalid field data values and formats (frequently arising from programming language behavior differences 

[e.g. C vs. FORTRAN]) 

 White space errors (spaces vs. tabs) 

 No clear procedure for format error handling 

 Lack of user definable fields resulting in storing critical, non-documentary information in textual fields 

In each of these situations, the result was a format that became less portable (at times even non-transportable) and 

potentially unreadable or unrecoverable. 

 

2.  History of the Project 
2.1  First Year Activity 
Over the course of the project, a number of different data storage formats were considered and investigated. Most of 

the formats, besides not meeting all the goals of the project, could not be seriously considered due to legal usage 

restrictions. At the end of the first phase, three potentially viable foundational solution options (or directions) which 

required further investigation had been identified. 

 

The first was a DOE sponsored effort, the HDF (Hierarchal Data Format). While not specifically targeted at long-

term, dynamic data archiving, it appeared to support all (or most) of the necessary features needed for such 

applications. The second was to use a specific vendor proprietary format as a basis of development. The third was to 

develop a new format from scratch based upon the needs of B&W/Y12/DOE and the aggregated vendor/user 

feedback. 

 

Clearly, there was significant advantage to leveraging the work of an existing format and tailoring it to this specific 

application and so at that time the first option was preferred. Even so, the process of identifying and evaluating other 

existing data formats continued. 

 Neutral Files - the Neutral File format focuses upon CAD/CAE and does not support dynamic data. 

 ASAM/ODS - the thrust of ASAM/ODS is the definition of the interface into an ORACLE database. 

 XML - a structured, textual information format. While not a dynamic data format, its structured 

organization is interesting for the metadata. (NOTE: Can contain “arbitrary binary” information through 

textual encoding. Typically increases file size by about 1/3.) 
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 Institute of Environmental Sciences and Technology (IEST): WG-DTE042: Vibration/Shock Data Storage - 

the WG was to focus on “establishing a standard for the storage of large binary files used mainly in 

vibration and acoustic testing.” 

Although they couldn‟t be considered for the basis of the format specification, several commercial databases were 

reviewed for content to determine the key features which needed to be supported in order to achieve acceptance 

among vendors. 

 

Following the conclusion of the first phase effort and prior to the resumption in the second, a limited review of 

formats identified and evaluation of the feedback received continued. 

 

2.2  Second Year Activity 
Overall, the project is focused upon the long term archival of dynamic measurements and associated metadata. 

Performance and size of the archival are not the primary objectives; data integrity and recoverability are the prime 

objectives. The project is limited to the detection of inadvertent data corruption and extraction of remaining valid 

data. The problems associated with malicious damage are specifically outside the scope. The issue of refreshing the 

data, as media storage technology changes, will be required but is also not the concern of this project. 

One of the challenges to this project has been that there are very few data formats that are open and usable without 

restriction. As the project resumed, three primary candidates which had been identified in the interim for 

consideration as the format basis were HDF, ASAM-ODS ATF-XML, and a custom developed XML format. 

Unfortunately, each had a significant weakness. 

 The weakness of the HDF format is that it is essentially a binary file system embedded in a file. Long term 

damaged data recovery could be problematic. Also, since the two most recent versions of the format 

specification, HDF4 and HDF5, are incompatible, there is the additional concern that long term file 

compatibility could also be at risk. 

 The thrust of ASAM/ODS is the definition of the interface into an ORACLE database. One of its 

weaknesses is that the format prefers external binary files for large data components. Using direct file 

references for these parts makes long term data integrity problematic. The common actions of moving or 

renaming files, potentially places the entire dataset at risk of complete loss. 

 The weakness of a straight XML implementation is that the XML standard requires that any conforming 

parser must stop processing upon encountering any error. Further, extraction of any data information 

requires effectively reading the entire file. 

Because the only historically successful, long term archival format is the traditional book, there was a focus upon 

ASCII/textual data type formats. 

 

The process of reviewing the three primary archival format candidates noted above proceeded, in part, by reviewing 

existing available data format options with a specific focus upon applicable features for incorporation into the 

resultant archival format. Since most data formats are targeted at either data transport or active database 

manipulation, some of their design decisions are at odds with the long term archival goal of the project; nonetheless, 

many of their specific data features are still relevant. Some of the positive and negative aspects of these different 

formats were considered in light of these specific features and how long term implementation might be affected. 

Consideration was also given to the feature characteristics needed for long term read/recovery viability and industry 

acceptance. In particular, these two elements favor a format that is principally textual (ASCII) encoded data, which 

is nominally familiar, is simple to implement and can be mapped relatively straightforward to existing proprietary 

databases. 

 

Although proprietary data formats exist which are fundamentally ASCII/binary data interleaved, such formats could 

not be considered because of their proprietary nature. However, one format specification standard, developed in the 

area of textual document interchange, appeared to have significant application to this project. It is the „Office Open 

XML Format, ECMA-376, Second Edition, Dec. 2008.‟ 

 

The textual document attributes of headers, footers, cross references, body text, etc. share many conceptual features 

common to the archiving of dynamic data, that is, data headers, metadata, cross channel references, etc. Hence, the 

packaging of such data can conceptually be considered a type of dynamic document. The Office Open XML Format 

and in particular the portion referred to as „Open Packaging Conventions‟, includes many of the characteristics of 

the desired archive data definition. While the specification was primarily developed to support textual documents, 

the actual specification is general and not specific to such documents. Effectively the definition is a random access 
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container holding primarily textual data. By being based upon familiar industry standards (some being de facto 

definitions), the format has the potential for easier industry acceptance. 

 

Thus for the second phase, the operating plan for the primary data container was to use the ECMA-376 „Open 

Container‟ (or close equivalent.) It is essentially a restricted format, industry standard ZIP file. The contents, of 

which, were envisioned primarily as sets of XML data streams. The strength of this container is that it can hold 

structurally organized data and retain the structure. It can also contain and store non-format defined (vendor specific, 

informational data, pictures, movies, etc.) data. 

 

The data recovery features of the potential format are not focused upon deliberate malicious data manipulation, but 

upon inadvertent corruption. Depending upon the type and degree of corruption, through the use of appropriately 

tagged prefix metadata (linkage, checksum, et al.; effectively providing redundant container information), the valid 

uncorrupted data could still be extracted from a damaged archive. Thus, potentially all or most of an archive could 

be reconstructed in the event of container information corruption. 

 

2.3  Third Year Activity 
While there were several minor suggestions  made during the third phase, only two design significant requests were 

received – (1) support a native file system usage/layout capability to enable convenient use of the archive format as 

a program or application specific native database  and (2) support user specified units‟ features to allow arbitrary 

explicit units definition. The primary feedback from discussions and presentations was a reiteration of the need for 

an intrinsically, user extensible metadata capability to accommodate unforeseen future informational storage needs. 

 

Overall, the third phase of the project focused primarily upon reducing the many feature suggestions and the 

observed archive needs to a viable format requirement specification and identifying the minimum required feature 

set for successful deployment. Most of the rest of the feature requests will be adopted as optional archive extensions. 

 

3.  Current Requirements for Specification 
This section presents the overarching picture of the format requirement specification as it currently stands and 

represents the starting point for a potential two or three phase implementation and validation effort. 

 

3.1  Design Challenge: Simplicity vs. Complexity 
It is important at this point to recognize the fact that despite the apparent complexity of the proposed solution, the 

basic simplicity of the UFF structure has been preserved. The apparent complexity of some of the features like the 

matrix definition, specifically the sub-matrix partitioning scheme, are included to support the needs of certain 

vendor/user communities. It must be emphasized, however, that it is not necessary to utilize all the features in order 

to write a compliant archive. 

 

As examples of these differing user community needs, consider the widely variant requirements of the following 

user scenarios and note the challenge for how the specification addresses each of their unique data archival needs. 

There are those users with minimal, basic needs (e.g. 4 channel trouble shooting); those with large channel count 

FRF needs (e.g. 3 in x 250 out); those with high-speed, long record time capture involving multiple test conditions 

(e.g. jet engine testing); and those acquiring specialized information who require secure, multi-path delivery 

(military); et al. 

 

The following sections expand upon the various feature suggestions and start to clarify and distinguish between the 

minimum necessary information and the recommended, but optional, documentary information, thus illustrating the 

underlying simplicity of the fundamental solution. 

 

3.2  Archive Feature Specifications 
During the various formal and informal discussions with users and vendors that have occurred during this project, 

many suggestions for desirable features were offered which, while perhaps not immediately applicable to the project 

effort then underway, were worth noting for consideration during future work. Many of the suggestions do not affect 

the principal data per se, but rather focus on the retention of historical metadata information and the like. Examples 

of these suggestions and concerns are: 
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 It should be possible to write verbose output (i.e. redundant info) with equivalence constraint testing 

capability (e.g. writing multiple measurement vectors from measurement matrix and checking measurement 

characteristics or constraints. [fmin, deltaf, testid, block length, etc.]) 

 When preserving data it should be possible to write a verbose output with some form of back trace to the 

original database fields. (e.g. perhaps writing <meas vendorSource="hatchTest[1]">... data ...</meas> 

where “hatchTest[1]” may be the original vendor data ID.) 

 It might be advantageous to reserve all „vendorXXX‟ attribute fields for vendor use. 

 It might also be advantageous to reserve all „userXXX‟ attribute fields for end-user use. 

 In developing the XML data specification, attributes should not provide any data information, but only 

metadata information about the data. 

 It should be possible to tag or log any hardware or software that has touched/modified the data (i.e. retain 

the data history path.) 

 It should be possible to document vendor specific or proprietary information within the container using 

human readable ASCII/XML - *NOT* PDF/DOC/etc. 

 The „Open Container‟ should allow inclusion of other non-format defined information types. (e.g. images, 

sounds, etc.) 

 The format should have clearly defined behavior as well as content. (i.e. specified error handling in the 

presence of malformed data.) 

 Inline data should be written in decimal: floating point or bytes. Complex data should be specified as 

successive pairs of real values. 

Although additional feedback was (and is) expected as the project continues to progress, these types of comments 

favor the development of an „XMLized‟ UFF-like format definition. Additionally, many of these suggestions are 

inherently supported by the working concept through the synergy of the ECMA „Open Container‟ (or a close 

equivalent) coupled with a predominantly XML data definition. Further, an „XMLized‟ UFF has the strength of 

familiarity, thus facilitating community acceptance. 

 

The review of the ECMA „Open Container‟ contributed much to the conceptual design of the format, even though 

strictly the specification will not be used as the primary data container. Strict conformance to the „Open Packaging‟ 

specification has been abandoned due to the risk of single point concentration failure of the record association hash 

table, as well as, the documented ability to silently replace records. (While the ability may be advantageous for 

replacing logos and other local document customizations in the field of desktop publishing, the feature represents a 

significant inadvertent corruption risk.) Since the protection against this (and other) failure requires that complete 

association information to be stored integrally with each record, there remains no advantage to maintaining this 

redundancy. (Although performance was not a primary concern for this project, limited testing has indicated that 

write performance degradation grows with increasing number of archive elements potentially making the archive 

non-manipulative when size exceeds in memory capacity.) The advantages obtained by abandoning strict 

conformance also include the ability to support a native file system  container basis and the potential to support other 

(current and future) file container archive formats. 

 

3.3  Feature Elements Driven by Recoverability 
Since the overarching principal is long-term recoverability, many of the archive feature characteristics chosen have 

been governed by that objective. As mentioned before, the only historically successful, long term archival format 

has been printed matter. Books, papyri, engravings, etc. all yield valuable (and recoverable) information, even when 

significantly damaged. The following discussion presents the design impact of recoverability upon some of the 

archive features. 

 

All data shall be written in UTF-8 encoding to facilitate recovery. Because UTF-8 encoding is backward compatible 

with ASCII, it guarantees that no low order (0x00-0x7F) ASCII characters occur in any multi-byte encoding, thus 

the data stream is also self-synchronizing. This behavior, coupled with additional constraints, such as requiring all 

UFR format master control field names to be strict ASCII UPPERCASE (e.g. DRT, VER, LREF, XREF, etc.) and 

requiring all record specific informational field names to be ASCII MixedCase. (e.g. DataType, TemperatureOffset, 

Length, etc.), enables more robust data recovery in the event of inadvertent archive corruption. 

 

To facilitate recovery, large data records should be broken into smaller, more manageable pieces (e.g. segments of 

50-100 kb.) The various pieces shall be associated using connection references and segment variable features (such 
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as Fmin or Tmin) shall be adjusted to be correct for each segment. For example, the format (structural arrangement) 

of time series (function) data must have ability to be partitioned throughout the data stream as needed for best 

resilience against data corruption. The series shall be broken into a set of manageable pieces, each with individual 

checksum coding. The checksum encoding must be distinct from the validation code stored in the ZIP container 

element header. The series pieces can be organized by any of the following from single complete channel record to 

multiple channels interleaved (with a granularity [blocksize] from complete record down to single point). In order to 

support this capability properly, it requires that the functional information must intrinsically support 

multidimensional data. 

 

The archive must contain redundant structural (data organizational) information (preserved with each data record 

element) in an extractable ASCII readable form. The archive must support redundant (duplicate) data records for key 

informational content. Also as part of the semantic (informational) structure, each data matrix should receive a 

unique identification (UID/name) thus also helping to support multiple sets of similar information within the archive 

and allowing more convenient mapping of vendor database structures. 

 

All field definition (content) strings should be trimmed of leading and trailing white-space. This helps address the 

issue of the user adding white-space for visual and/or readability  purposes, but which is not relevant (or influential) 

to the information being stored. Thus the ability of the software to read and interpret the informational field correctly 

is not compromised by a user preference or idiosyncrasy. 

 

Other feature concepts which support recoverability include: 

 Each container (ZIP) file entry contains a single archive data record. 

 Binary data must NOT be mixed (interspersed) with ASCII (textual) data. 

 All basic record field names shall be defined using mixed-case English. 

 All archive entry names must be archive root relative. 

 All external names must be either archive root relative or file system absolute. 

 Each EXT (extension) reference, regardless of being internal or external, must consist of the Path, Name, 

UID, and Type. 

 

Many of these features have been so chosen in order to facilitate the development and utility of recovery codes 

capable of scanning a damaged archive and then extracting and reconstructing as much as practical of the original 

information. 

 

3.4  Format Design Principles 
3.4.1  Error Detection / Correction 
Because of the block oriented nature of most data storage devices (disks, CDs, DVDs, flash memory, etc.) bit stream 

encoding errors are unlikely. Generally, the failure will be entire blocks of lost information. Also, since the 

fundamental block size of the different devices vary (historically discs were 512 bytes, more recent formats are 

4096; CD/DVDs are 2048, etc.) and these devices typically use some form of block based bit stream encoding for 

error recovery purposes anyway, block oriented schemes which preserve the data information more naturally 

coupled with simpler limited sized (~100k) record based checksums should be preferable. 

 

Therefore, since the process of error detection is focused upon the identification of inadvertent data corruption, not 

deliberate manipulation, and the proposed record granularity is recommended to be 50-100k, simpler error detection 

schemes should be adequate. Since an additional goal is to be able to extract readable information from potentially 

corrupted archives, simpler hashing/message digest type schemes (CRC32, MD5, et al.) should be preferable to 

encoding schemes (RS, et al.) because the data remains ASCII. For error detection purposes, each field may have an 

individual hash coding (CRC, et al.) attribute representing the field informational content and shall be processed 

based upon the native UTF-8 encoding prior to the encoding of any forbidden XML character sequences. (e.g. 

<GenericInfoField CRC32="A23CDE87">Potentially meaningful informational content</GenericInfoField>) 

 

Just as error correction is outside the scope of this project and should be handled external to the format definition by 

the media storage system, the security measure of data encryption is also beyond the scope of this project. 

Technology is expected to continue to grow over the life of the archive and more sophisticated means develop. 
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Furthermore, by its design, encryption is intended to make extraction of information inherently difficult and is 

therefore at odds with the goal of long term viability and recoverability. 

 

3.4.2  Data Homogeneity 
All data records shall represent conceptually homogeneous information. For example, heterogeneous array 

information shall be partitioned into homogeneous informational sections and these sections written out 

individually. As another example, the heterogeneous DSP parameters describing a multi-rate acquisition shall be 

written as separated DSP records for each rate condition. 

 

3.4.3  Matrix Data Storage Organization 
The format of time series and other functional data shall have ability to be partitioned throughout the data stream as 

needed for best resilience against data corruption. The series shall be broken into a set of manageable pieces, each 

with individual checksum coding. The encoding shall be distinct from the validation code stored in the ZIP container 

element header. The series pieces will be arranged by any of the following: single complete channel record, multiple 

channels interleaved (granularity [blocksize] from complete record down to single point). The pieces should be 

associated using connection references and variable features (e.g. Fmin) shall be adjusted to be correct for each 

segment. 

 

Every non-scalar informational element shall be defined as a matrix. This generalized vector/matrix/array data 

layout shall intrinsically support multidimensional data, as well as, sparse data. The resulting matrix type shall 

handle the sequencing, sparseness, interleave, storage characteristics, as well as, the data type (integer/float, 

ASCII/binary) characteristics. The partitioning aspect of the data stream means that sparse data (at least on the 

macro scale) becomes intrinsically supported. 

 

Thus, write out all matrices (arrays) as inherently sparse. Prefix (attribute) each partition/segment with the starting 

position, dimensional strides, and dimensional run lengths. Each segment shall contain only a single data type (e.g. 

real, float, integer, complex, string, etc.) For matrices with heterogeneous elements, write out each distinct type as a 

separate partition/segment. (e.g. given [ 1 2 X ; 3 4 Y ; 5 6 Z] – write out as [1 2 ; 3 4 ; 5 6] & [ X ; Y ; Z ]) For 

encoding purposes, all format based subscripts are (1-based) natural numbers (1, 2, 3, etc.) Also, identify indexing 

permutations (e.g. [ 1 2 3 ], [ 2 3 1 ], etc.), as well as, stride/blocking/run length structure (e.g. [ 1:10 2:15 3:1024 ], 

dim:len) for partitioned storage. With the chunk size limited to about 100k, a coarser explicitly defined blocking 

scheme is probably unwarranted as the pieces can be scattered purposefully about the archive to achieve the same 

result. 

 

When writing out any generalized matrix, the values of the dimensional axes (e.g. frequency, temperature, DOF, 

etc.) shall be recorded for each partition. By doing so, each partition segment is individually structurally complete. 

When writing out any generalized (multi-dimensional) matrix, extra-dimensional information may be written either 

explicitly as additional dimensions or implicitly as coordinated metadata. For example, a single channel waterfall 

plot of response amplitude vs. both frequency and speed could be written explicitly as a 2D matrix with dimensional 

axes of frequency (Hz) and speed (RPM). Alternatively, it could be written as a series of 1D matrices with a 

dimensional axis of frequency (Hz) and a coordinated metadata entry of speed (RPM). This facility for writing 

matrix information using explicit or implicit axis information shall be fully scalable to any number of dimensions; 

the limiting (and perhaps absurd) case being the writing of a single scalar value and all dimensional axis information 

in metadata form. 

 

For measurement data (time/frequency/etc. or FRF/COH/et al.), the matrix coordinate encoding and dimensionality 

can include: channels (input, output), temporal (time, frequency), auxiliary axis (temperature, speed, altitude) 

although generally this axis (if scalar) should be stored as metadata. In general, the dimensionality could then be 

encoded in a natural form, that is, an FRF could be written as 3D even when input-output dimensions are singleton 

DOFs (and by analogy, MCOH as 2D, etc.). 

 

3.4.4  Information Encoding 
Because of the overarching issue of recoverability, the importance of the numeric, vector/matrix data representation 

cannot be overstressed. Specifically, representing data as ASCII numeric should be the primary practice for long 

term archiving, since the primary objective is long term recoverability. However, for short term storage and 

transport, binary encoding (for size) may be more appropriate. Finally, for temporary or transient intermediate 
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usage, a strict native binary representation may be most appropriate. The key decision point is the cost of error 

recovery (e.g. re-write the file, re-take the test, degrade the analysis, irreplaceable or total loss, etc.) In many 

respects this is also affects the issues of redundancy. Hence the need for redundant (backup) records for key failure 

point records (e.g. units) 

 

All record entries shall use verbose textual field enumerations instead of numerical coding. Although verbose field 

identifiers and content admit the possibility of spelling errors that do not occur with numeric field enumerations (e.g. 

1=FRF, 2=COH, etc.) the advantages outweigh the potential inconveniences, since misspelled words are often easy 

to correlate with their properly spelled counterpart, recovery from such errors is more easily accomplished. 

Recovery in the case of actual miscoding is more challenging as there is no redundant information. Of course, true 

coding errors such as labeling an FRF as a COH is not addressed by either scheme and such detection involves more 

sophisticated data analysis and is always problematic. 

 

To prevent an artificial inflation of apparent informational precision, there should be a mechanism for indicating the 

numerical data precision, particularly of floating point data, both for the original information and for the information 

as encoded in the archive. 

 

3.4.5  Informational Disambiguation 
To support the long term viability goal, each data record shall contain a record versioning string (e.g. X.Y.Z, where 

X = Major Revision - Addition of new fields; Y = Minor Revision - Addition of new field values; Z = Patch - 

Correction of spelling or clarification of decoding) defining either the minimum specification under which the 

record can be decoded or the current record specification at the time of writing. 

 

To help support multiple sets of similar information within the archive each data matrix shall receive a unique 

identification (UID/name). 

 

When redundant records are used one record shall be designated as the master record and all other redundant records 

as slaves. However, in the event of corruption of the master record, the first valid redundant reference shall become 

master. 

 

Because of the potential for misinterpretation for a „successive pairs of real values‟ encoding of complex data, 

particularly in the event of data recovery, the information should be disambiguated by requiring an explicit complex 

format  (e.g. 1.2+3.4i, 5.6e+7-8.9e0j, -1.4-j6.2, etc.) 

 

To reduce the potential for misinterpretation, an explicit units suffix capability has been suggested (e.g. 

<Frequency>1.35 Hz<Frequency/>, where „Hz‟ is defined in a units system suffix table.) 

 

Within the dynamics test community, there are numerous nomenclature terminologies which can often refer to the 

same or similar informational content. For example: 

 Ensembles, Scans, Traces, Functions, Maps, Blocks, ... 

 BlockSize, Span, Number of Spectral Lines, ... 

 Projects, Groups, Sessions, ... 

 Elements, Records, DataSets, ... 

Such common cross terminology usages shall be footnoted for each record or informational field type. 

 

All field definition (content) strings shall be trimmed of leading and trailing white-space. This helps address the 

issue of the user adding white-space for visual and/or readability  purposes, but which is not relevant (or influential) 

to the information being stored. Thus the ability of the software to read and interpret the informational field correctly 

is not compromised by a user preference or idiosyncrasy. 

 

3.4.6  Record/Field Detail Notes 
The field names and types are designed to map naturally to various programming language integral types like 

structures, cell arrays, and/or name value pairs. 

 

All UFR format master control fields shall be strict ASCII UPPERCASE. (e.g. DRT, VER, LREF, XREF, etc.)  

All record specific informational fields shall be ASCII MixedCase. (e.g. DataType, TemperatureOffset, Length, etc.) 
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An empty field (e.g. <EmptyFieldName/>) shall be considered a null value for numeric fields and an empty string 

for character values. 

 

Each time an archive is touched (modified), a comment record should be added to the MASTER header (EXT). 

Each EXT reference, regardless of being internal or external, shall consist of the target name, UID, Version, and 

Type. 

 

Where data fields contain coordinated data, it is the responsibility of the generating code to maintain consistency 

and it is the responsibility of the consuming code to detect inconsistency. 

 

All data shall be written in UTF-8 encoding to facilitate recovery and must include the XML prologue material - 

<?xml version="1.0" encoding="UTF-8" ?> 

 

4.  Summary / Conclusions 
This paper documents the first three years of effort and leaves the design in a form that can be resumed in any 

potential follow on phase of work. 

 

Over the course of the project, numerous formal and informal discussions were held. These discussions were 

intended to represent a cross-cutting industry comment solicitation activity of users, vendors, and government 

installations. Overwhelmingly, those contacted expressed support for the project and many times the responses 

could be summarized as „sounds good‟, „this is needed‟, or „let us know when it‟s ready‟. All significant design 

comments and suggestions have been evaluated and integrated as appropriate and even those comments which were 

not specifically immediate design relevant were preserved against potential relevance in future phases. 

 

The result has been that most of the requirements for that absolute minimum set of features which a vendor/user 

must use in a compliant archive have been identified. Additional features that a vendor has the option to use have 

also been identified. Some features, however, only make sense to completely define during an implementation stage 

as they can affect recoverability and/or performance. 
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Appendix A 
A.1  Pictorial Concept Example 
The following example is presented for conceptual discussion purposes, giving only an impression of the style of 

data storage. It is not intended to be complete or to represent any particular likely final implementation. 

 

Note that, in support of the different envisioned operational usage paradigms, additional data 

encoding/representations are planned, specifically an ASCII decimal and a referenced native binary. 

 

Appendix B 
The following example data records are not intended to represent a complete definition. Instead, they are presented 

in order to provide a sense of the initial expected representation for a few of the principal required data records. 

Numerous other key records, not listed here, are also in draft form. 

 

B.1  Master Data Record 
 

 

Record Notes: 

 Whitespace encoding needs to differentiate between format-free and user-defined whitespace information. 

„blanks‟, „tabs‟, „newlines‟, „carriage returns‟, „line feeds‟, etc. are consider format-free, that it, they can be 

changed, replaced, or expanded at will or need without regard to usage. Such whitespace is useful for field 

value separation and delimiting. 

 If user-defined whitespace is to be preserved without modification, it shall be explicitly encoded (%20, 

%09, %0A, etc.) within the record. 

 For error detection code (CRC32, et al.) purposes, all contiguous format-free whitespace shall be treated as 

a single ASCII blank character (0x20). 

 

 

 

Field Name Count Content Comments 
DRT 1 String Data record type or kind 
VER 1 String Record format revision 
UID 1 String Unique record identification string 
SELF 1 String Self-referential archive root relative path 
EXT 0-1 String Array List of extension record references 

Table 1: Prototypical Master Field Definition – Information common to all records 

container data record content 
<measurement type="FRF" storage="3D" blocklen="512"> 
<axis type="X" units="Hz" min="0" delta="0.5"></axis> 
<axis type="Y" units="g/lbf"></axis> 
<DOF type="output" name="NONE" node="1" dir="-Y"/> 
<DOF type="input" name="NONE" node="1" dir="Y"/> 
<data encoding="base64">badw8...[encoded binary data]...se64Aa5</data> 
</measurement> 

container header 
[binary information] 

container data record header 
[binary information] 
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B.2  Reference Record 
 

Field Name Count Content Comments 

Target 1 String Target record - pathname 

TargetUID 1 String Target record UID 

TargetVER 1 String Target record VER 

TargetDRT 1 String Target record DRT 

Table 2: Prototypical Master Reference Definition 

 

Record Notes: 

 The self/cross reference record structure capability and behavior. In particular how external archive 

references should be able to tunnel into other archives. The potential usages of this feature include: 

scrubbed data reassembly (i.e. from delivery via different paths), correlated test info, etc. While such a 

feature would be a poor choice to use for long term storage, it may be imperative for secure delivery or 

transport. (And hence impact certain industry acceptance.) 

 Particularly for the support of “external/scrubbed” data content, the concept possibility implementing inline 

references through attributes (e.g. <DataContent Target="/Measurement/Units/UnitSet1.DSR" 

TargetUID="Units-1a" TargetVER="1.0.0" TargetDRT="Units" />) should be evaluated. This could also 

become the mechanism basis for referencing native binary content (e.g. either by referencing the binary 

record or direct reference coding.) 

 

Concept of References - local (within archive), external (to file system or other archive) 

aref - absolute reference 

lref - local reference 

rref - relative reference 

xref - cross reference (or maybe back/return reference) 

 

Example: Generic data driven reference record 

<REF> 

<Target> /Measurement/Units/UnitSet1.DSR </Target> 

<TargetUID> Units-1a </TargetUID> 

<TargetVER> 1.0.0 </TargetVER> 

<TargetDRT> Units </TargetDRT> 

</REF> 

 

Example: Generic attribute driven reference record 

<REF Target="/Measurement/Units/UnitSet1.DSR" TargetUID="Units-1a" TargetVER="1.0.0" 

TargetDRT="Units" /> 

 

The final decision on whether or not REF(erences) should be “data” driven or “attribute” driven, along with the 

relative advantages and disadvantages of each approach, will be resolved during the initial reference implementation 

phase. 
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B.3  File Header Record 
 

Field Name Count Content Comments 

DRT 1 String Data record type or kind 

VER 1 String Record format revision 

UID 1 String Unique record identification string 

SELF 1 String Self-referential archive root relative path 

EXT 0-1 String Array List of extension record references 

FileStamp 1 String  

DateStamp 1 Date String  

TimeStamp 1 Time String  

CreationDate 1 Date String  

CreationTime 1 Time String  

DatabaseVersion 1 String  

Table 3: File Header Definition 

 

File Header Example 

<UFR> 

<DRT>FileHeader</DRT><VER>1.0.0</VER><UID>FileHeader-1a</UID> 

<SELF>/FileHeader1.DSR</SELF><EXT/> 

<FileStamp> C:\Projects\PlateTest\Test1.DSA </FileStamp> 

<DateStamp> 14-July-2010</DateStamp><TimeStamp> 14:23:05 </TimeStamp> 

</UFR> 

 

B.4  Comment Record 
 

Field Name Count Content Comments 

DRT 1 String Data record type or kind 

VER 1 String Record format revision 

UID 1 String Unique record identification string 

SELF 1 String Self-referential archive root relative path 

EXT 0-1 String Array List of extension record references 

Description 1 String User meaningful description 

CommentLog 0+ String Sets of user comments/logs 

Table 4: Comment Record Definition 

 

Comment Example 

<UFR> 

<DRT>Comment</DRT><VER>1.0.0</VER><UID>Comment-1a</UID> 

<SELF>/CommentRecord1.DSR</SELF><EXT/> 

<Description>First principal c-plate test.</Description> 

<CommentLog>3-August-2010 16:06 - Initial dispersion failed. Will reattempt using second generation 

mark 2!</CommentLog> 

<CommentLog>5-August-2010 08:43 – Test cancelled. Second delivery aborted.</CommentLog> 

</UFR> 
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B.5  Units Record 
The Units Record shall be used to define the system of units employed, not the specific units of any particular data 

element. 

 

Field Name Count Content Comments 

DRT 1 String Data record type or kind 

VER 1 String Record format revision 

UID 1 String Unique record identification string 

SELF 1 String Self-referential archive root relative path 

EXT 0-1 String Array List of extension record references 

System 1 String Canonical units system name 

Length 1 Scalar Float Conversion factor to SI unit (meter) 

Force 1 Scalar Float Conversion factor to SI unit (Newton) 

Temperature 1 Scalar Float Conversion factor to SI unit (K) 

TemperatureOffset 1 Scalar Float Temperature base reference 

TemperatureMode 1 String Temperature measurement mode (abs/rel) 

Time 1 Scalar Float Conversion factor to SI unit (sec) 

    

Current 1 Scalar Float  

LumenalIntensity 1 Scalar Float  

Ohms 1 Scalar Float  

Mole 1 Scalar Float  

PlaneAngle 1 Scalar Float  

Table 5: Units Record Definition 

 

Record Notes: 

 The Units Record descriptor will need to expand to accommodate the suggested „UnitSuffixTable‟ 

descriptor. 

 When using the „UnitsSuffixTable‟, all unit encodings should utilize as near as possible to the standard 

units names or abbreviations. For example, „Hz‟ shall refer to a frequency unit of „1/sec‟. 

 The use of the „UnitsSuffixTable‟ for informational obfuscation should be limited to specialized security 

needs. 

 

Units Example 

<UFR> 

<DRT>Units</DRT><VER>1.0.0</VER><UID>Units-1a</UID> 

<SELF>/Measurement/Units/UnitSet1.DSR</SELF><EXT/><System>SI</System> 

<Length>1.0</Length><Force>1.0</Force><Temperature>1.0</Temperature> 

<TemperatureOffset>273.15</TemperatureOffset><TemperatureMode>absolute</TemperatureMode> 

</UFR> 

 

Appendix C 
C.1  Other Content Information 
The definition and development of results records refers primarily to retained computational results. In one sense, 

this is an almost unending task; however, initially this should be limited to the most common dynamics 

measurement processed results (e.g. modal parameters [UF55] & general matrices [mass/stiffness/damping/etc.]). 

Note that this would not be computed measured results like FRF, COH, and the like, which are already included in 

the dynamic data measurement record. 

 

While not truly dynamic information, but for completeness and successful community adoption, a set of geometric 

information records  corresponding roughly to the UFF records nodal coordinates (UF15), components, coordinate 

systems (UF18), trace lines (UF82), etc. needs to be developed. 
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C.2  User Extensibility 
Follow on implementation efforts need to include the development of sets of convenient, extensible metadata record 

definitions for non-critical common data documentary information which include the metadata record name, user 

defined name-value pair information, and value data type definition (char, string, numeric, integer, floating point, 

complex, vector, matrix, etc.) 

 

Finally, the implementation of user records needs to clearly define the process of creating user/custom data records 

which should include the potential for embedded syntactic/semantic user documentation. The primary point of this is 

to allow user developed records to be self-documenting. 
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Abstract 
Soldiers sometimes experience traumatic brain injury (TBI) during combat. Helmet design research is being conducted to 
reduce injuries; however, most research is centered on crash worthiness or ballistic impact.  The objective of this work is to 
characterize the dynamic response of helmets to broadband loading for helmets of various materials and designs while the 
helmet is coupled to a head-neck system.  The experimental setup consists of a Denton Hybrid III 50th percentile crash test 
head and neck attached to an optical isolation table to simulate the human torso. Initial experiments included standard modal 
impact tests with sensors on the helmet, neck, table, and head to measure the dynamic helmet-head coupling. Impact test 
results were used to extract the Complex Mode Indicator Function for two helmets. The CMIF results indicated that the first 
helmet absorbed more energy from a blunt impact than the second helmet resulting in less transfer of energy to the head and 
neck.  Transmissibility function analysis was conducted to confirm this finding that the first helmet attenuated the transmitted 
force relative to the second helmet. The boundary conditions of the helmet on the head including the chin strap and padding 
are believed to be the source of these significant differences in dynamic performance of the two helmets. 

 

Motivation 
It was estimated that 380,000 service member experienced traumatic brain injury (TBI) in 2008. The effects of TBI are wide-
ranging and vary person to person. TBI can cause reduction in cognitive ability, behavioral problems, and physical problems 
such as loss of sight.  The Army Research Laboratory is conducting research that aims to improve helmet designs in an effort 
to reduce TBI in service members [1]. 

The presence of TBI is not always physically apparent in that the head and helmet may show little visible signs of damage. 
Therefore, a method to compare the performance of various helmets that does not damage the helmets is needed. To develop 
a method for comparing two helmets, this research has investigated the structural dynamic response of each helmet. The 
dynamic response in the form of vibrations determines how forces are transmitted from the helmet to the head.  In addition, 
the vibrational characteristics of the helmet are dependent on material properties of the helmet as well as the boundary 
conditions. In addition, the vibrational response is sensitive to changes in the interface between the helmet and the head, such 
as helmet size, chin and rear strap tautness, and padding material and layout. 

 

Model 
To enable comparisons of the dynamic performance of one helmet relative to another helmet, a test fixture was developed 
using a Denton Hybrid III 50th male (crash test) head-neck assembly and an isolation table (Fig 1a). This test fixture enabled 
repeatable experiments to be conducted using the same boundary conditions and input and output degrees of freedom.  The 
crash test head has a representative shape and dynamic properties including the moment of inertia and mass. The neck allows 
the head to undergo the same range of motion as an actual human head. The stiffness of the neck is a function of radial 
position; therefore, the neck is stiffer when bending forward than when bending backwards or to either side. Data from the 
Hybrid III test fixture for each helmet is analyzed in terms of the vibrational dynamics (nondestructive), rather than damage 
to the helmet (destructive) or physiological symptoms. An isolation table was used to reduce the effects of noise and provide 
a realistic boundary condition that mimics the inertial reaction provided by the human torso. In academic terms, the head-
neck-table system simulates a free-free boundary condition. Because the human body is rarely fixed to a single point, any 
impacts to the head will cause the body to absorb momentum. Sensors were placed on the table, neck, and inside the head 
(Fig 1c) and three sensors were placed on each helmet (Fig 1c). 
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Analysis 
Impact tests were initially conducted on the test fixture with no helmet on the head.  A medium size modally tuned hammer 
(PCB 086D05) with a rubber tip was used. The head was impacted nine times at 42 different locations. A modified 
exponential window was applied to the time data to compensate for weakly damped low frequency responses due to the 
isolation table. The time history data was used to estimate the frequency response function in two ways providing H1 and H2. 
Both frequency response estimates are a function of the auto-power Gxx (Equation 1) and cross-power Gxy (Equation 2), 
which are calculated using Navg averages of the digitally sampled input (impulse hammer), Xi, and output (accelerometer 
response), Yi, frequency spectra measurements.  The frequency response estimate H1 (Equation 3) is more accurate when 
there is little noise on the input, whereas H2 (Equation 4) is more accurate when there is little noise on the output.  
 

Gxx ω( )= X i ω( )X i
* ω( )

i=1

Navg

�     (1) 

Gxy ω( )= X i ω( )Yi
* ω( )

i=1

Navg

�     (2) 

H1 ω( )=
Gxy ω( )
Gxx ω( )      (3) 

H2 ω( )=
Gyy ω( )
Gxy ω( )      (4) 

 
For the purposes of analysis and further data processing, the H1 estimator was the only estimator considered in this paper. 
The modal hammers used for the impact tests were tuned and were assumed to introduce less noise into the measurements 
than the noise observed in the output signal supplied by the accelerometers.   
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The frequency response, H1, was used to conduct modal analysis to determine the estimated mode shapes of the system. It is 
believed that mode shapes would be an effective means of understanding the differences in performance of one helmet 
relative to another helmet. Frequency responses are dependent on impact location and direction, e.g., the frequency response 
in the x direction is not the same as in the y or z direction due to the stiffnesses of the neck in these directions. As a result, 
each impact location may result in different modal frequencies and mode shapes dominating the dynamic response. For 
example, if the head is struck at location C7, which is largely in the x direction (Fig 2), the dominant modal frequency is  

 

34.9 Hz. The modal shape corresponding with the placement of the three sensors (Fig 2) indicates that all three sensors move 
in the same direction. The head and neck deflect more than the table. In addition, the deflection of the head and neck are 
mostly in phase with the table, and only slightly out of phase with each other.  In comparison, if the head is struck at R5, 
which is largely in the y direction (Fig 3), the dominant modal frequency is 10.4 Hz. The mode shape (Fig 3) is different than 
the one corresponding to the dominant modal frequency for an impact at C7. In addition, the head and neck are 180 degrees 

 
Fig 3  Modal response of the head-neck-table system, normalized by the table’s response, when the 

head is impacted in the y direction at R5 

 

Fig 2  Modal response of the head-neck-table system, normalized by the table’s response, when head is 
impacted in the x direction at C7 
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out of phase with the table. This indicates that the table (or the body) would deflect in one direction while the head and neck 
deflect in the opposite direction.  

The response for every dominant frequency for each impact location was not analyzed because this would not be an effective 
way to compare the dynamic performance of two helmets. Instead, an overall (aggregate) response of the head-neck system 
was analyzed that consisted of the Complex Mode Indicator Function (CMIF). The CMIF estimates the eigenvalues and 
eigenvectors of the frequency response function matrix using the Singular Value Decomposition (SVD) in Equation (5). In 
this set of measurements, the frequency response matrix consists of the frequency response, H1, of each sensor (x, y, z) for all 
impacts. The [S] matrix consists of the singular values of [H]. The [U] and [V] matrices are the left and right singular value 
vectors, respectively. These matrices contain phase information and are orthogonal matrices with unity length.  The CMIF 
can be used to estimate the global resonant frequencies as well as the global deflection vectors: 

( )[ ]( ) [ ]( )[ ]( )[ ] ( )iiiii
NNNNNNNNi VSUH ×

−
××× = 000

1ω   (5) 

 
The dominant modes for the head, neck, and table obtained from using the CMIF (Fig 4) indicate several strong modes of 
vibration for each component. In addition, the CMIF indicates common (heavily coupled) modes (20~30 Hz)  as well as 
frequency ranges where the responses of the components are relatively decoupled (~ 10 Hz). 
 

 
 
The modal impact tests that were conducted on the system with the helmet strapped to the head were similar to the modal 
tests on the head-neck system. The main difference in these two tests is that two rounds of tests were conducted with the 
helmet using two different modal impact hammers: small and large hammers. The small impact hammer (PCB 086D05) 
excites a large frequency range (0-2,500 Hz) with a sharp impulse; the large impact hammer (PCB 086C01) excites a smaller 
frequency range (0-250 Hz) with a wider broadband loading. All future  
 

 

Fig 4  Dominant CMIF Modes for the head, neck, and table based on impact tests without a helmet 
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Fig 6  Dominant CMIF Modes for the Helmet ARL3, head, neck, and table  

 

Fig 5  Dominant CMIF Modes for the Helmet ARL1, head, neck, and table  
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analysis and responses considered here were obtained using the small modal impact hammer. The size and shape of the 
helmets allowed for more impact points to be applied. Both helmets were impacted at approximately 100 impact locations 
with five impacts per impact point (Navg=5). 

The modal analysis conducted on the head was also conducted on the helmets. The dominate modes of the CMIF for each 
helmet can be compared. The dominant CMIF modes of the first helmet tested (ARL1) are similar for all sensor degrees of 
freedom (Fig 5). The three helmet sensors and the head, neck, and table sensor degrees of freedom all exhibit similar 
responses. The dominant CMIF modes of ARL1 suggest the helmet, head, neck, and table are strongly coupled. In addition, 
all sensors appear to have approximately the same amount of spectral energy (area under the CMIF spectrum). In 
comparison, the dominant CMIF modes of the second helmet tested (ARL3) are different for the sensor degrees of freedom 
(Fig 6).  The responses of the helmet sensors are slightly similar; however, they are significantly different than the head, 
neck, and table sensors. As in the case of the ARL1 helmet, ARL3 exhibits coupling between the head, neck, and table. 
However, ARL3 is only coupled at particular frequency ranges where the dominant modes are closely spaced.  Conversely, 
the frequency ranges where the modes are clearly separated correspond with uncoupled modes of vibration. In addition, the 
response magnitudes of the head, neck, and table are less, if not an order of magnitude less, than the helmet sensors. The 
lower response magnitude indicates less force and energy are experienced by the head, neck, and table. The CMIF suggests 
that ARL3 is a more effective helmet from a standpoint of low energy dynamic absorption compared with ARL1, because the 
ARL3 absorbs more energy than ARL1. 

Another method to determine the effectiveness of a helmet is to calculate the transmissibility of the helmet (as observed by 
the sensors placed on the helmet) to the head. The transmissibility (force, displacement, velocity, acceleration) is a function 
of the frequency response for the output and input degrees of freedom (Equation 6). For example, the transmissibility of the 
helmet to the head is a function of the output (the frequency response of the head) and the input (the frequency response of 
the helmet). Since the transmissibility is a ratio, if the transmissibility is greater than one, the output experiences more 
dynamic force than the input: the force is amplified. Conversely, if it is less than one the output experiences less dynamic 
force than the input: the force is attenuated. 

in

out

H

H
Tr

2

1=        (6) 

 

 

For every pair of frequency response functions, there is a corresponding transmissibility function. Therefore, two aggregate 
methods were developed to compare helmet transmissibilities: aggregate mean (AM) transmissibility and impact location 
average (ILA) transmissibility.  The AM transmissibility is determined by calculating the mean cross-power and auto-power 
and using the results to calculate the mean frequency responses. The AM transmissibility provides a transmissibility function 
dependent on frequency.  Therefore, plots can be created for each direction of each helmet sensor over the frequency range of 
interest.  It is useful to focus on specific frequency ranges where the helmet amplifies or absorbs the force to the head. The 
AM transmissibility of ARL1 (Fig 7) confirms the analysis of the dominant CMIF modes of ARL1: the helmet does not 
significantly amplify or absorb force applied to the helmet. The AM transmissibility remains relatively close to one, neither 
significantly absorbing nor amplifying the force applied to the helmet. In comparison, the AM transmissibility of ARL3 (Fig 
8) drops significantly less than one; this indicates the helmet absorbs force. However, the AM transmissibility in the y 
direction has several frequency ranges where the transmissibility is significantly greater than one. This indicates force applied 
to the helmet is amplified to the head for those specific frequency ranges. The amplification caused by ARL3 is significantly 
greater than any amplification caused by ARL1.  

The ILA transmissibility aggregate tool provides similar insight but from a different approach. The ILA transmissibility is 
calculated by normalizing the integral of the transmissibility function by the frequency range. Essentially the ILA 
transmissibility is the average transmissibility. Therefore, the ILA transmissibility is calculated for each impact location and 
sensor direction. The ILA transmissibility aggregate tool is an array of single values; if a value is greater than one, then on 
average force is amplified – if it is less than one, force is absorbed.  The ILA transmissibility of ARL1 (Fig 9) indicates, on 
average, force is amplified from the helmet to the head, particularly in the x and y directions. In comparison, the ILA 
transmissibility of ARL3 (Fig 10) indicates, on average, force is absorbed by the helmet. It is interesting to note the ILA for 
both helmets indicates force in the z direction is always absorbed. This is most likely caused by the boundary conditions.  In 
particular, the neck, as well as the isolation table, is stiffer in the z direction than the x or y direction.   

 

562



 

 

 

Fig8  Helmet ARL3: Aggregate mean transmissibility for each axial direction based on sensor 
located at F3  

 
Fig 7  Helmet ARL1: Aggregate mean transmissibility for each axial direction based on sensor 

located at F2  
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Conclusion 
The study is not complete with one additional helmet to test and is a single blind study. Therefore, the material properties of 
ARL1 and ARL3 are not yet known to the experimentalist. However, both helmets appear similar in design. One difference 
that is apparent is that ARL1 appears to be larger than ARL3. ARL3 appears to fit the crash test head better than ARL1. The 
pads in ARL1 are not preloaded to the same level as ARL3 even though the chin straps are tightened to the same degree. This 
could explain differences in dynamic effectiveness.  ARL3 is the more effective helmet from a standpoint of dynamic 
absorption over the frequency range considered. The response of ARL1 is strongly coupled to the head, neck and table. In 
essence, the head appears to be directly excited by impacts on ARL1 whereas ARL3 absorbs more force and transfers less 
force to the head.  

 
Fig 10  Helmet ARL3: Impulse location average transmissibility for all  three axes, based on sensor 

located at F3 

 
Fig 9  Helmet ARL1: Impulse location average transmissibility for all three axes, based on sensor 

located at F2 
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ABSTRACT 
 
Often in the study of bodies that undergo shock loading, it is desirable to measure the response of such bodies with an 

instrumentation package. This instrumentation can be separated from the external housing by several preloaded interfaces. To 

better understand the effects of preload on the nonlinear dynamics introduced into the measurement, a simple preloaded 

interface has been fabricated that consists of an upper smaller mass body bolted at three locations to a lower, larger mass 

body. A finite element model of the fixture was used to study the modal characteristics of the individual components and the 

coupled bodies. A series of modal impact tests were used to analyze the effects of a varying preload between the bodies on 

the linear and nonlinear features observed in the dynamic response of the coupled bodies. High amplitude shock loading was 

also used to understand if the laboratory results would be indicative of a more realistic loading scenario. The results of these 

measurements lead to the determination that a simple two degree of freedom model could be used to explain some aspects of 

the system. 

 

 

INTRODUCTION AND BACKGROUND 
 
A common problem in vibrations testing is to identify and manage uncertainties associated with the mounting condition of 

the sensor. In a particular representative problem currently being studied, a tri-axial sensor mount is bolted to a larger body. 

The goal of the sensor is to measure the response of the body to which it is attached, but the bolted interface between two 

such bodies introduces both linear and nonlinear features in the sensor data, and leads to errors in the measured response of 

the body of interest. To study this particular interaction, a test fixture was designed and built to simulate the interface. The 

fixture design is illustrated in Fig. 1.  

 

 

 

 
Cross Section of Bolted Interface 

 

 

Fig. 1 Bolted Interface Test Fixture Used for Experiment 
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The first component of the fixture is a large circular plate with a diameter of 460mm, and a thickness of 20mm. The second 

component of the fixture is a smaller square plate with a 180mm height and width and a 20mm thickness. The square plate 

also contains three spherical standoffs of 20mm height that localize the contact area between the two plates. Both plates were 

machined from 4140 Alloy Steel. The fixture is assembled by bolting the two components together with M-16 bolts and load 

washers to measure the static and dynamic preload in the bolts. 

 

The fixture was used to study the behavior of the bolted joint due to impulsive loading. In the problem being simulated by the 

fixture, the load path passes through the circular plate and into the square plate. The primary goal of the experiments that 

were conducted was to determine how preload in the bolts affects the force transmission across the interface. First, modal 

analysis was conducted on the test fixture for various preload levels and impact amplitudes, and then high amplitude impacts 

were applied to the test fixture with a Hopkinson bar in order to approach a more realistic loading scenario. The results of the 

modal impact tests were used to demonstrate the effect of bolt preload on the linear response, while the results of the high 

amplitude impact testing were used to demonstrate that the force amplification characteristics across the boundary can be 

explained with a lumped parameter two degree of freedom dynamic model. 

 

According to work by Peairs, Park, and Inman (2001), bolt preload level is important in a bolted interface because “varying 

the preload tension in a bolt changes the integrity of the particular joint and also changes the structure's global dynamic 

properties.” It was expected that these changes would be reflected in the mode shapes, and that the experiments performed 

could quantify the particular properties of the test fixture that are most affected by changes in preload. Change in modal 

frequencies due to varying bolt preload is also examined in literature as described in the work by Chang, Erickson, Lee, and 

Todd (2004), where an experiment was presented as part of a damage detection study that studied the percentage change of 

natural frequencies for five modes of vibration as a function of bolt preload level. The experimental setup consisted of two 

thin (¼ inch thick) metal beams affixed with a single bolt. The result of this study showed that, although the change in 

frequency was different for each mode, there was certainly an upward shift in natural frequency that occurred as a result of 

increasing the preload of the bolt. It was determined that “higher frequencies are [sic] generally a better indicator of damage 

because the change in frequency at low frequency ranges is very small, even though the percentage change may be slightly 

larger.”  The nonlinear effects of bolted joints were also studied by Ibrahim and Pettit (2005), where the filtering properties of 

threaded interfaces are characterized by the use of transmissibility functions. Finally, in a paper from IMAC XXVIII, Adams 

et. al. (2010), also used transmissibility functions to investigate the effect of threaded joint preload on structural response for 

a particular cylindrical structure that can undergo shock loading. The substructure being studied in this paper is a component 

from the structure studied in Adams et. al. (2010).   

 
 
EXPERIMENTAL APPROACH 
 
The modal impact testing of the bolted interface between the square and circular plate was carried out based on the results of 

a finite element analysis of the system that produced the estimated real normal mode shapes and undamped natural 

frequencies. The analysis showed that a total of 46 impact testing points would be sufficient to observe modes of vibration up 

to 6 kHz. The 46 points were distributed with 9 points on the square plate, 31 points on the circular plate, and 6 points near 

the accelerometers for driving point measurements. The modal grid that was used is shown in Fig. 2. The equipment that was 

used for the test consisted of six PCB 356A32 100 mV/g tri-axial accelerometers rigidly attached with superglue, three RS 

Technologies Bolt Load Force Transducers (Model 054216) connected to PCB Strain Gauge Signal Conditioners with digital 

display units (PCB Series 8159), two PCB modal impact hammers (Model 086C03 and Model 086C01), and a VXI 

Mainframe rack unit (Agilent E8408A) with three 4-16 channel 51.2 KSa/s A/D+DSP circuit cards (Agilent E8491B, 

E1432A, and HP E1432A). The accelerometers were placed at each end of the three bolts in the joint. The test setup is shown 

in Fig. 3. 

 

           

Fig. 2 Modal Grid 
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(a) (b) 

 

Fig. 3 (a) Instrumented Test Fixture and (b) Impact Hammer with Load Washer Signal Conditioners 

 

Four complete modal impact tests were conducted on the fixture using this test setup. Two variables were adjusted between 

the tests. The modal impact tests were conducted with the static preload in the bolts tuned at levels between 1kN and 20kN, 

and the amplitude range of the impacts were held between 10lbf and 20lbf in one set of tests or between 200lbf and 300lbf 

for a second set of tests. The goal of the test was to characterize the nonlinear response characteristics due to impact 

amplitude as the preload in the bolts was adjusted. Three impacts were applied at each point on the modal grid where it was 

determined that the coherence was acceptable.  

 
A second experiment was conducted using a Hopkinson Bar to impact the test fixture. The Hopkinson bar applies an impact 

through a transfer bar. This method was chosen because a one inch diameter aluminum transfer bar could be used in order to 

prevent deformation at the impact location on the much harder steel test fixture. These tests were conducted by suspending 

the test fixture vertically from an engine hoist and preloading a transfer bar against the test fixture. The bolts were tightened 

to a pre-defined torque with a torque wrench, and each load cell’s static value was recorded. The transfer bar was then 

impacted by a projectile that was fired by a gas gun. The impact force was stepped up by monitoring the air pressure that was 

used to launch the projectile. For this experiment, six PCB 350C02 shock accelerometers were used to measure acceleration 

at both ends of each of the three bolts. For each test, the six acceleration measurements were acquired as was the velocity at 

the center of the square plate using a laser velocimeter. The load cell dynamic data was also recorded. During this round of 

testing, preload levels of hand tight, 50ft-lb, and fully tight, 100ft-lb, were tested with impacts at 5psi, 10psi, 15psi, and 

20psi. The aim of this experiment was to achieve an excitation that better reflected the realistic loading scenario that was 

expected. The setup for these tests is shown in Fig. 4. 

 

 

     

Fig. 4 Hopkinson Bar Test Setup 
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KEY RESULTS AND DISCUSSION 

As mentioned in the previous section, the planning of the first experiment began with the creation of a finite element model. 

Before performing any experiments, this model was created because it provided a means to predict the experimental results 

given a certain set of measurement degrees of freedom. By knowing what outcome to expect, the experiment was designed to 

meet the expectations of algorithms that were planned in areas like impact force identification. For this particular experiment, 

a finite element model was used to predict the undamped natural frequencies and real normal mode shapes. By knowing the 

modal frequencies and mode shapes, an appropriate measurement frequency range and spatial modal test grid was chosen.  

 

The finite element model was created using Abaqus. Properties were determined for the material that comprised the fixture: 

4140 alloy steel. In order to account for the likelihood of relative motion across the bolted interface, a thin layer of lower 

stiffness material was inserted between the two components of the fixture in the model. The intermediate layer had properties 

similar to those of aluminum. It was understood that this approach was an approximation for modeling the bolted interface. 

The results could then be compared between the model and the experiment to determine the validity of the method. Table 1 

contains pictures and descriptions of the six mode shapes that were estimated experimentally and were the focus of this 

analysis. Note that all of the shapes except Mode B had repeated roots present in the experimental data. Table 2 contains a 

comparison of the average frequency at which each of the six modes occurred in the tests alongside the predicted frequency 

from the finite element model. Differences in modal frequency from test to test are discussed later in this section. The largest 

percent difference in natural frequency of 5.88% was for Mode D. Considering the difficulty of modeling the bolted interface, 

the model was considered to be reasonable for predicting the modal properties of the test fixture. The mode shapes predicted 

by the model were also very close to what was observed experimentally. Once the model was determined to be adequate, the 

effects of nonlinearity due to preload level in the bolts was analyzed in the test data. 

 

 

 

Table 1 Mode Shapes Found in Experiment with Descriptions 

 

 
 

 

 
 

Mode A: Saddle Shape in Circular plate with little motion in square 
plate. This corresponds to the first mode of the circular plate.* 

Mode B: Bowl shape of the circular plate, while square plate moves 
rigidly with circular plate. This corresponds to the second mode of the 
circular plate. 

 

 
 

Mode C: Rigid tilting of the square plate with undulations at 
attachment points, resembling second bending across the diameter of 
plate.* 

Mode D: Six point sine wave around edge of circular plate, with little 
motion in square plate. This corresponds to the third mode of the 
circular plate.* 

 
 

 
 

Mode E: Eight point sine wave around edge of circular plate, with little 
motion in square plate. This corresponds to the fourth mode of the 
circular plate.* 

Mode F: First bending along the diagonal of the square plate with 
undulations at attachment points, resembling second bending across 
the diameter of plate.* 

      *Repeated Root Exists for this Shape 
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Table 2 Comparison of Predicted and Measured Modal Frequencies 

  Modal Frequency (Hz)   
Mode Shape FEA Model Experimental Average Percent Difference 

A 483 504.5 4.35 
B 652 666.25 2.16 
C 1138 1109.5 2.54 
D 1082 1147.5 5.88 
E 1875 1973.5 5.12 
F 2303 2230 3.22 

 
 

In order to determine the modal frequencies and shapes that are summarized in Table 1 and Table 2, the Complex Mode 
Indicator Function (CMIF) method was used to analyze the data. This method utilized all six of the vertical sensor reference 
channels to analyze the data, and also made it possible to identify repeated roots in the data. Other common methods for 
modal parameter estimation, such as peak-pick, do not allow for the detection of repeated roots. The CMIF method uses the 
Singular Value Decomposition (SVD) of the frequency response function matrix to identify peak frequencies (natural 
frequencies) in the singular value matrix and their corresponding modal vectors. This method was utilized for all four modal 
tests to determine and animate the mode shapes.   
 
It was predicted that an increase in bolt preload level should result in some increase in each of the system’s modal 
frequencies. This hypothesis was investigated by comparing the frequencies at which each of the fixture's first six modes 
(named A through F) occurred for each bolt preload level and impact amplitude. In a linear system, modal properties should 
not depend on impact amplitude, but at low preloads it was expected that the assumption of linearity would be poorer than at 
high preloads. The modal frequencies of the first six modes for the system for each of the four tests are listed in Table 3.  
 
 
 

Table 3 Modal Frequencies as a Function of Bolt Preload and Impact Amplitude 

 Modal Frequencies (Hz)  
1000N Bolt Preload 20000N Bolt Preload 

Mode Shape Low Amplitude High Amplitude Low Amplitude High Amplitude Predicted 
A 498 498 511 511 483 
B 655 654 678 678 652 
C 1036 1013 1195 1194 1138 
D 1147 1146 1149 1148 1082 
E 1973 1973 1975 1973 1875 
F 2193 2152 2289 2286 2303 

 
 
 
As expected, there is an increase in modal frequency for each mode when the bolt preload is increased, although this increase 
is nearly negligible for modes C and D. This result is most likely due to the fact that little motion along the axis of the bolts is 
present in these modes. The large jump in frequency for mode C when the preload is increased is particularly interesting. This 
mode is the third mode of vibration for the low preload value tests, but this mode becomes the fourth mode of vibration for 
the tests with the high preload value. This switch is due to geometric stiffening in the bolts as the preload is increased. Mode 
C exhibits the most motion along the bolt axis, and is, therefore, the most affected mode due to the effects of bolt stiffening.   
 
It was initially believed that the nonlinearity due to impact amplitude could be observed by examining modal frequencies. It 
was expected that the nonlinearities would be larger for the low preload value than the high preload value because the higher 
preload level increases coupling thereby allowing less relative motion. A comparison of modal frequencies from impacts of 
different amplitudes is shown in Table 4. Although the changes in modal frequency for the low preload level were greater, 
the difference between the two preload levels is nearly negligible. This does not indicate that the two cases have the same 
amount of nonlinearity. As discussed earlier, the literature suggests that the largest changes in modal frequency due to 
nonlinearity normally occur at higher frequency modes. Another method for characterizing nonlinearity was needed based on 
these results. 
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Table 4 Percent Differences of Modal Frequencies for Varying Impact Amplitudes 
 

Modal Frequency: 1,000N Bolt Preload Level 
Mode Shape Low Amplitude High Amplitude % Difference 

A 498 498 0.00 

B 655 654 0.15 

C 1036 1013 2.24 

D 1147 1146 0.09 

E 1973 1973 0.00 

F 2193 2152 1.89 

 
Modal Frequency: 20,000N Bolt Preload Level 

Mode Shape Low Amplitude High Amplitude % Difference 

A 511 511 0.00 

B 678 678 0.00 

C 1195 1194 0.08 

D 1149 1148 0.09 

E 1975 1973 0.10 

F 2289 2286 0.13 

 
 
 
 
Since the modal frequencies were a poor indicator of nonlinearity in this frequency range, another analysis method was 

needed to quantify a change in nonlinearity. In this case, a simple comparison of frequency response functions was the 

clearest indicator of nonlinearity. In the problem being modeled, the load path enters through the rim of the circular plate and 

moves though the bolts into the square plate. To simulate this transmission of force, frequency response functions were 

measured between an impact point near the outer edge of the circular plate and the acceleration response on the square plate 

for both preload levels and both impact amplitude levels. These frequency response functions for both impact levels and the 

1000N preload level are shown in Fig. 5. The same data for the 20000N preload level is shown in Fig. 6. The two responses 

vary substantially for impacts of different amplitude when the preload is low. This difference indicates significant system 

nonlinearity due to impact amplitude. The two responses are nearly identical, however, for the case where the preload is high. 

This result indicates that the nonlinearity due to impact amplitude decreases for higher preloads. This result was expected 

since the system behaves more as a single body, with little relative motion between the two plates. This decrease in 

nonlinearity will lead to an improved ability to estimate forces from a response measured across the boundary.  

 

 

 

 
Fig. 5 Frequency Response Functions for 1000N Preload Level 
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Fig. 6 Frequency Response Functions for 20000N Preload Level 

 
 
 
 
A second experiment was conducted with a Hopkinson bar as discussed previously. The primary purpose of this experiment 

was to impact the fixture with much higher-level impacts and investigate the system behavior. Since the forces used to impact 

the fixture were only characterized by the pressure used to launch the striking projectile, the actual impact force is unknown. 

Analysis is underway to predict these forces using a model that was created with a modal impact hammer after testing was 

completed. The hammer was used to strike the end of the transfer bar where the load would normally initiate. This procedure 

allowed for the measurement of frequency response functions. These functions will eventually be used to generate force 

estimates for the Hopkinson bar tests, but issues with the boundary conditions and system nonlinearities have complicated the 

process. Early estimates predict that the largest impacts generated in this test were on the order of 8000lbf, which is more 

than twenty times larger than previously generated forces. Because these forces are not completely known at this time, the 

analysis of the data has focused for now on the acceleration response measured on the plates. 

 

The most notable result for these large level impacts is the effect of preload on the amplification or attenuation of forces 

across the interface. While the impact was always applied to the center of the circular plate in order to avoid effects due to 

asymmetrical loading, the acceleration response was sometimes larger on the smaller, square plate. The acceleration response 

near the end of the measurement window for a 20 psi impact and a hand tight bolt preload condition is shown in Fig. 7. The 

responses for the 50ft-lb and 100ft-lb preload level are shown in Fig. 8 and Fig. 9, respectively. Each plot shows the 

acceleration response for accelerometers located directly across from one another, with one on each plate. These 

accelerometers were located at either end of the bolted joint. For the hand tight preload level, the bolts were tightened to a 

snug level with no tools. This procedure resulted in low coupling between the two plates and a large amount of relative 

motion. In this case, the acceleration response on the circular plate was larger. When the bolts were tightened to 50ft-lb, the 

response changed drastically. The responses were noticeably more synchronous as the coupling in the system was increased. 

For this case, the smaller square plate actually responded at a higher level than the larger plate, where the impact occurred. 

The results for the 100ft-lb preload followed the same trend, with even a greater amplification of force across the interface. 

This result was significant since the square plate is an analog for a sensor mount. This acceleration amplification effect could 

result in damage to the sensors that are used in the application of interest.    
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Fig. 7 Acceleration Response for 20psi Impact and Hand Tight Preload Level 

 

 
Fig. 8 Acceleration Response for 20psi Impact and 50ft-lb Preload Level 

 

 
Fig. 9 Acceleration Response for 20psi Impact and 100ft-lb Preload Level 
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To explain why an amplification effect is seen for the higher preload levels, the system was approximated by the simple 

lumped parameter two degree of freedom system shown in Fig. 10. The larger mass, M1, represents the circular plate while 

the smaller mass, M2, represents the square plate. The bolts are represented by a piecewise linear spring and damper. The 

impact force is applied to the center of M1, as in the real system. The position of the large mass is denoted as x, while the 

position of the smaller mass is denoted as y. For this simple model, the values for M1 and M2 were chosen to be 4kg and 

1kg, respectively. The value of C was chosen based on a proportional damping estimate and is always one thousandth of the 

value of K. The values of K were varied in order to simulate stiffening in the bolts. The system has a free-free boundary 

condition. The frequency response functions between the input force and the two plates’ responses were calculated and 

plotted.  The frequency response of the system for K=0.5N/m is shown in Fig. 11. The result when the value of K is raised to 

10N/m is shown in Fig. 12. The result for K=30N/m is shown in Fig. 13. For all three responses, two modes of vibration can 

be observed. At DC, the rigid body mode occurs. The response of both bodies overlaps for a region, and then as the larger 

body M1 begins to enter an anti-resonance, the motion is larger on the smaller body M2. In the anti-resonance region, the 

motion of the larger body goes to nearly zero and only the smaller body responds. In this vibration phenomenon, one body is 

excited, yet the largest motion occurs in the other body. After this region, the second mode of vibration, which consists of 

asynchronous motion between the bodies, can be observed. Shortly after this peak, the motion of the larger body begins to 

dominate. In the region around the anti-resonance, the smaller body acts as a tuned mass vibration absorber. The three plots 

show that the frequency bounds for each of these regions are highly dependent on the value of K, and, subsequently, the 

preload in the bolts. For the lowest stiffness, which simulates very low preload, the region in which motion is amplified on 

the smaller plate is almost completely below 1 rad/s. When the stiffness is raised to 10N/m, the region stretches from less 

than 1 rad/s to nearly 4.5 rad/s. For the highest preload value of 30N/m, the region lasts from less than 1 rad/s to nearly 8 

rad/s. It should also be noted that the width of the anti-resonance in the response of the large plate, where the amplification of 

motion is the greatest, grows with the stiffness value. In general, as preload increases, the range where the motion of the 

smaller plate is greater than that of the larger plate increases as well. This result qualitatively agrees with the amplification of 

motion across the interface for higher preload values that was observed in the experimental data. 

     

 

 

 

                                                                 
 
 

Fig. 10 Lumped Parameter Two Degree of Freedom System Model 
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Fig. 11 Frequency Response Functions for System Model with K=0.5N/m 

 
Fig. 12 Frequency Response Functions for System Model with K=10N/m 
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Fig. 13 Frequency Response Functions for System Model with K=30N/m 

 
 
During this experiment, the static preload levels in the bolts before and after impact events were recorded using the load 

washers. While there was no definitive trend for different initial preload levels and impact amplitudes, it was noted that the 

static preload in the bolts was always lower after an impact than before. This preload relaxation actually causes the system 

dynamics to change during an impact event. Several examples of the drastic effects of changing preload have been presented 

in this paper, and the fact that preload is changing as a result of the force that is being measured could lead to many issues in 

the effort to accurately measure the impact forces because the system frequency response function is time-varying due to 

these time-varying preload levels.  

 
CONCLUSIONS 
 

A test fixture was constructed to simulate a preloaded sensor mount interface from a physical system being studied. This test 

fixture was analyzed using modal impact testing and acceleration response measurements in order to characterize the 

behavior of the system as the preload level in the bolted interface is changed. It was shown through modal impact testing that 

the modes of vibration that most excited deformation along the axis of the bolts were the most affected by changes in preload. 

It was also shown that the lower frequency modes were not subject to shifts in modal frequency due to impact amplitude, 

despite the nonlinearity observed in the system. Frequency response functions measured across the interface of the fixture 

were used to demonstrate the drastic decrease in nonlinearity in the system due to increases in preload. While it was shown 

that high preload values result in a much more linear system response, it was also shown that the system has the tendency to 

amplify motion across the interface when preload levels are raised. This could lead to the damage of instrumentation in the 

system being modeled. This amplification of motion was explained using a simple two degree of freedom model to 

demonstrate how the width and location of the circular plate’s anti-resonance changes as a function of bolt stiffness. Finally, 

it was explained that the static preload in the bolts routinely decreased as the result of an impact event, which could lead to 

many complications in the effort to accurately measure forces across the interface. 
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