Chapter 9
Multidatabase Query Processing

In the previous three chapters, we have considered query processing in tighly-coupled
homogeneous distributed database systems. As we discussed in Chapter 1, these sys-
tems are logically integrated and provide a single image of the database, even though
they are physically distributed. In this chapter, we concentrate on query processing in
multidatabase systems that provide interoperability among a set of DBMSs. This is
only one part of the more general interoperability problem. Distributed applications
pose major requirements regarding the databases they access, in particular, the ability
to access legacy data as well as newly developed databases. Thus, providing inte-
grated access to multiple, distributed databases and other heterogeneous data sources
has become a topic of increasing interest and focus.

Many of the distributed query processing and optimization techniques carry over
to multidatabase systems, but there are important differences. Recall from Chapter
6 that we characterized distributed query processing in four steps: query decom-
position, data localization, global optimization, and local optimization. The nature
of multidatabase systems requires slightly different steps and different techniques.
The component DBMSs may be autonomous and have different database languages
and query processing capabilities. Thus, a multi-DBMS layer (see Figure 1.17) is
necessary to communicate with component DBMSs in an effective way, and this
requires additional query processing steps (Figure 9.1). Furthermore, there may be
many component DBMSs, each of which may exhibit different behavior, thereby
posing new requirements for more adaptive query processing techniques.

This chapter is organized as follows. In Section 9.1 we introduce in more detail
the main issues in multidatabase query processing. Assuming the mediator/wrapper
architecture, we describe the multidatabase query processing architecture in Section
9.2. Section 9.3 describes the techniques for rewriting queries using multidatabase
views. Section 9.4 describes multidatabase query optimization and execution, in
particular, heterogeneous cost modeling, heterogeneous query optimization, and
adaptive query processing. Section 9.5 describes query translation and execution at
the wrappers, in particular, the techniques for translating queries for execution by the
component DBMSs and for generating and managing wrappers.
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9.1 Issues in Multidatabase Query Processing

Query processing in a multidatabase system is more complex than in a distributed
DBMS for the following reasons [Sheth and Larson, 1990]:

1. The computing capabilities of the component DBMSs may be different, which
prevents uniform treatment of queries across multiple DBMSs. For example,
some DBMSs may be able to support complex SQL queries with join and
aggregation while some others cannot. Thus the multidatabase query processor
should consider the various DBMS capabilities.

2. Similarly, the cost of processing queries may be different on different DBMSs,
and the local optimization capability of each DBMS may be quite different.
This increases the complexity of the cost functions that need to be evaluated.

3. The data models and languages of the component DBMSs may be quite
different, for instance, relational, object-oriented, XML, etc. This creates
difficulties in translating multidatabase queries to component DBMS and in
integrating heterogeneous results.

4. Since a multidatabase system enables access to very different DBMSs that
may have different performance and behavior, distributed query processing
techniques need to adapt to these variations.

The autonomy of the component DBMSs poses problems. DBMS autonomy can
be defined along three main dimensions: communication, design and execution [Lu
et al., 1993]. Communication autonomy means that a component DBMS communi-
cates with others at its own discretion,and, in particular, it may terminate its services
at any time. This requires query processing techniques that are tolerant to system
unavailability. The question is how the system answers queries when a component
system is either unavailable from the beginning or shuts down in the middle of query
execution. Design autonomy may restrict the availability and accuracy of cost infor-
mation that is needed for query optimization. The difficulty of determining local cost
functions is an important issue. The execution autonomy of multidatabase systems
makes it difficult to apply some of the query optimization strategies we discussed in
previous chapters. For example, semijoin-based optimization of distributed joins may
be difficult if the source and target relations reside in different component DBMSs,
since, in this case, the semijoin execution of a join translates into three queries:
one to retrieve the join attribute values of the target relation and to ship it to the
source relation’s DBMS, the second to perform the join at the source relation, and the
third to perform the join at the target relation’s DBMS. The problem arises because
communication with component DBMSs occurs at a high level of the DBMS APIL

In addition to these difficulties, the architecture of a distributed multidatabase
system poses certain challenges. The architecture depicted in Figure 1.17 points to an
additional complexity. In distributed DBMSs, query processors have to deal only with
data distribution across multiple sites. In a distributed multidatabase environment,
on the other hand, data are distributed not only across sites but also across multiple
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databases, each managed by an autonomous DBMS. Thus, while there are two parties
that cooperate in the processing of queries in a distributed DBMS (the control site
and local sites), the number of parties increases to three in the case of a distributed
multi-DBMS: the multi-DBMS layer at the control site (i.e., the mediator) receives
the global query, the multi-DBMS layers at the sites (i.e., the wrappers) participate
in processing the query, and the component DBMSs ultimately optimize and execute
the query.

9.2 Multidatabase Query Processing Architecture

Most of the work on multidatabase query processing has been done in the context
of the mediator/wrapper architecture (see Figure 1.18). In this architecture, each
component database has an associated wrapper that exports information about the
source schema, data and query processing capabilities. A mediator centralizes the
information provided by the the wrappers in a unified view of all available data
(stored in a global data dictionary) and performs query processing using the wrappers
to access the component DBMSs. The data model used by the mediator can be rela-
tional, object-oriented or even semi-structured (based on XML). In this chapter, for
consistency with the previous chapters on distributed query processing, we continue
to use the relational model, which is quite sufficient to explain the multidatabase
query processing techniques.

The mediator/wrapper architecture has several advantages. First, the specialized
components of the architecture allow the various concerns of different kinds of users
to be handled separately. Second, mediators typically specialize in a related set of
component databases with “similar” data, and thus export schemas and semantics
related to a particular domain. The specialization of the components leads to a
flexible and extensible distributed system. In particular, it allows seamless integration
of different data stored in very different components, ranging from full-fledged
relational DBMSs to simple files.

Assuming the mediator/wrapper architecture, we can now discuss the various
layers involved in query processing in distributed multidatabase systems as shown in
Figure 9.1. As before, we assume the input is a query on global relations expressed
in relational calculus. This query is posed on global (distributed) relations, meaning
that data distribution and heterogeneity are hidden. Three main layers are involved in
multidatabase query processing. This layering is similar to that of query processing
in homogeneous distributed DBMSs (see Figure 6.3). However, since there is no
fragmentation, there is no need for the data localization layer.

The first two layers map the input query into an optimized distributed query execu-
tion plan (QEP). They perform the functions of query rewriting, query optimization
and some query execution. The first two layers are performed by the mediator and
use meta-information stored in the global directory (global schema, allocation and
capability schema). Query rewriting transforms the input query into a query on local
relations, using the global schema. Recall from Chapter 4 that there are two main
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Fig. 9.1 Generic Layering Scheme for Multidatabase Query Processing

approaches for database integration: global-as-view (GAV) and local-as-view (LAV).
Thus, the global schema provides the view definitions (i.e., mappings between the
global relations and the local relations stored in the component databases) and the
query is rewritten using the views.

Rewriting can be done at the relational calculus or algebra levels. In this chapter,
we will use a generalized form of relational calculus called Datalog [Ullman, 1988]
which is well suited for such rewriting. Thus, there is an additional step of calculus
to algebra translation that is similar to the decomposition step in homogeneous
distributed DBMSs.

The second layer performs query optimization and (some) execution by consider-
ing the allocation of the local relations and the different query processing capabilities
of the component DBMSs exported by the wrappers. The allocation and capability
schema used by this layer may also contain heterogeneous cost information. The
distributed QEP produced by this layer groups within subqueries the operations
that can be performed by the component DBMSs and wrappers. Similar to dis-
tributed DBMSs, query optimization can be static or dynamic. However, the lack of
homogeneity in multidatabase systems (e.g., some component DBMSs may have
unexpectedly long delays in answering) make dynamic query optimization more
critical. In the case of dynamic optimization, there may be subsequent calls to this
layer after execution by the next layer. This is illustrated by the arrow showing results
coming from the next layer. Finally, this layer integrates the results coming from the
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different wrappers to provide a unified answer to the user’s query. This requires the
capability of executing some operations on data coming from the wrappers. Since the
wrappers may provide very limited execution capabilities, e.g., in the case of very
simple component DBMSs, the mediator must provide the full execution capabilities
to support the mediator interface.

The third layer performs query translation and execution using the wrappers. Then
it returns the results to the mediator that can perform result integration from different
wrappers and subsequent execution. Each wrapper maintains a wrapper schema
that includes the local export schema (see Chapter 4) and mapping information to
facilitate the translation of the input subquery (a subset of the QEP) expressed in a
common language into the language of the component DBMS. After the subquery is
translated, it is executed by the component DBMS and the local result is translated
back to the common format.

The wrapper schema contains information describing how mappings from/to par-
ticipating local schemas and global schema can be performed. It enables conversions
between components of the database in different ways. For example, if the global
schema represents temperatures in Fahrenheit degrees, but a participating database
uses Celsius degrees, the wrapper schema must contain a conversion formula to
provide the proper presentation to the global user and the local databases. If the con-
version is across types and simple formulas cannot perform the translation, complete
mapping tables could be used in the wrapper schema.

9.3 Query Rewriting Using Views

Query rewriting reformulates the input query expressed on global relations into a
query on local relations. It uses the global schema, which describes in terms of
views the correspondences between the global relations and the local relations. Thus,
the query must be rewritten using views. The techniques for query rewriting differ
in major ways depending on the database integration approach that is used, i.e.,
global-as-view (GAV) or local-as-view (LAV). In particular, the techniques for LAV
(and its extension GLAV) are much more involved [Halevy, 2001]. Most of the work
on query rewriting using views has been done using Datalog [Ullman, 1988], which
is a logic-based database language. Datalog is more concise than relational calculus
and thus more convenient for describing complex query rewriting algorithms. In
this section, we first introduce Datalog terminology. Then, we describe the main
techniques and algorithms for query rewriting in the GAV and LAV approaches.

9.3.1 Datalog Terminology

Datalog can be viewed as an in-line version of domain relational calculus. Let us first
define conjunctive queries, i.e., select-project-join queries, which are the basis for
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more complex queries. A conjuntive query in Datalog is expressed as a rule of the
form:

Q(T):‘le(T07~~7Rn(ZJ

The atom Q(T) is the head of the query and denotes the result relation. The atoms
Ri(T1),...,R,(T,) are the subgoals in the body of the query and denote database
relations. Q and Ry, ...,R, are predicate names and correspond to relation names.
T,Ti,...,T, refer to the relation tuples and contain variables or constants. The vari-
ables are similar to domain variables in domain relational calculus. Thus, the use of
the same variable name in multiple predicates expresses equijoin predicates. Con-
stants correspond to equality predicates. More complex comparison predicates (e.g.,
using comparators such as #, < and <) must be expressed as other subgoals. We
consider queries which are safe, i.e., those where each variable in the head also
appears in the body. Disjunctive queries can also be expressed in Datalog using
unions, by having several conjuntive queries with the same head predicate.

Example 9.1. Let us consider relations EMP(ENO, ENAME, TITLE, CITY) and
ASG(ENO, PNO, DUR) assuming that ENO is the primary key of EMP and (ENO,
PNO) is the primary key of ASG. Consider the following SQL query:

SELECT ENO, TITLE, PNO

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO

AND TITLE = "Programmer" OR DUR = 24

The corresponding query in Datalog can be expressed as:

Q(ENO, TITLE,PNO) : — EMP(ENO, ENAME, "Programmer”, CITY),
ASG(ENO,PNO,DUR)

Q(ENO, TITLE, PNO) : — EMP(ENO, ENAME, TITLE, CITY),
ASG(ENO,PNO,24)

9.3.2 Rewriting in GAV

In the GAV approach, the global schema is expressed in terms of the data sources and
each global relation is defined as a view over the local relations. This is similar to the
global schema definition in tightly-integrated distributed DBMS. In particular, the
local relations (i.e., relations in a component DBMS) can correspond to fragments.
However, since the local databases pre-exist and are autonomous, it may happen that
tuples in a global relation do not exist in local relations or that a tuple in a global
relation appears in different local relations. Thus, the properties of completeness and
disjointness of fragmentation cannot be guaranteed. The lack of completeness may
yield incomplete answers to queries. The lack of disjointness may yield duplicate
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results that may still be useful information and may not need to be eliminated. Similar
to queries, view definitions can use Datalog notation.

Example 9.2. Let us consider the local relations EMP1(ENO, ENAME, TITLE,
CITY), EMP2(ENO, ENAME, TITLE, CITY) and ASG1(ENO, PNO, DUR). The
global relations EMP(ENO, ENAME, CITY) and ASG(ENO, PNO, TITLE, DUR)
can be simply defined with the following Datalog rules:

EMP(ENO,ENAME, CITY) : —EMP1(ENO, ENAME, TITLE, CITY) (r)
EMP(ENO,ENAME, CITY) : —EMP2(ENO, ENAME, TITLE, CITY) (r»)
ASG(ENO,PNO, TITLE,DUR) : —EMP1(ENO, ENAME, TITLE, CITY),
ASG1(ENO,PNO,DUR) (r3)
ASG(ENO,PNO, TITLE, DUR) : —EMP2(ENO, ENAME, TITLE, CITY),
ASG1(ENO,PNO,DUR) (r4)

¢

Rewriting a query expressed on the global schema into an equivalent query on the
local relations is relatively simple and similar to data localization in tightly-integrated
distributed DBMS (see Section 7.2). The rewriting technique using views is called
unfolding [Ullman, 1997], and it replaces each global relation invoked in the query
with its corresponding view. This is done by applying the view definition rules to the
query and producing a union of conjunctive queries, one for each rule application.
Since a global relation may be defined by several rules (see Example 9.2), unfolding
can generate redundant queries that need to be eliminated.

Example 9.3. Let us consider the global schema in Example 9.2 and the following
query Q that asks for assignment information about the employees living in “Paris”:

O(e,p) : —EMP(e,ENAME, “Paris”), ASG(e, p, TITLE,DUR).
Unfolding Q produces Q' as follows:

Q' (e, p) : —EMP1 (e, ENAME, TITLE, “Paris”), ASG1(e, p, DUR). (q1)
Q' (e, p) : —EMP2(e, ENAME, TITLE, “Paris”), ASG1(e, p, DUR). ()

Q' is the union of two conjunctive queries labeled as g1 and g;. g; is obtained by
applying rule r3 or both rules r| and r3. In the latter case, the query obtained is
redundant with respect to that obtained with 3 only. Similarly, g is obtained by
applying rule r4 or both rules r, and ry4. ¢

Although the basic technique is simple, rewriting in GAV becomes difficult when
local databases have limited access patterns [Cali and Calvanese, 2002]. This is the
case for databases accessed over the web where relations can be only accessed using
certain binding patterns for their attributes. In this case, simply substituing the global
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relations with their views is not sufficient, and query rewriting requires the use of
recursive Datalog queries.

9.3.3 Rewriting in LAV

In the LAV approach, the global schema is expressed independent of the local
databases and each local relation is defined as a view over the global relations. This
enables considerable flexibility for defining local relations.

Example 9.4. To facilitate comparison with GAV, we develop an example that is sym-
metric to Example 9.2 with EMP(ENO, ENAME, CITY) and ASG(ENO, PNO, TI-
TLE, DUR) as global relations. In the LAV approach, the local relations EMP1(ENO,
ENAME, TITLE, CITY), EMP2(ENO, ENAME, TITLE, CITY) and ASG1(ENO,
PNO, DUR) can be defined with the following Datalog rules:

EMP1(ENO,ENAME, TITLE, CITY) : —EMP(ENO,ENAME, CITY),  (r1)
ASG(ENO,PNO, TITLE, DUR)

EMP2(ENO,ENAME, TITLE, CITY) : —~EMP(ENO,ENAME, CITY),  (r)
ASG(ENO,PNO, TITLE, DUR)

ASGI(ENO,PNO,DUR) : —ASG(ENO,PNO, TITLE,DUR) (r3)

¢

Rewriting a query expressed on the global schema into an equivalent query on
the views describing the local relations is difficult for three reasons. First, unlike
in the GAV approach, there is no direct correspondence between the terms used in
the global schema, (e.g., EMP, ENAME) and those used in the views (e.g., EMP1,
EMP2, ENAME). Finding the correspondences requires comparison with each view.
Second, there may be many more views than global relations, thus making view
comparison time consuming. Third, view definitions may contain complex predicates
to reflect the specific contents of the local relations, e.g., view EMP3 containing
only programmers. Thus, it is not always possible to find an equivalent rewriting of
the query. In this case, the best that can be done is to find a maximally-contained
query, i.e., a query that produces the maximum subset of the answer [Halevy, 2001].
For instance, EMP3 could only return a subset of all employees, those who are
programmers.

Rewriting queries using views has received much attention because of its relevance
to both logical and physical data integration problems. In the context of physical
integration (i.e., data warehousing), using materialized views may be much more
efficient than accessing base relations. However, the problem of finding a rewriting
using views is NP-complete in the number of views and the number of subgoals in
the query [Levy et al., 1995]. Thus, algorithms for rewriting a query using views
essentially try to reduce the numbers of rewritings that need to be considered. Three
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main algorithms have been proposed for this purpose: the bucket algorithm [Levy
et al., 1996b], the inverse rule algorithm [Duschka and Genesereth, 1997], and the
MinCon algorithm [Pottinger and Levy, 2000]. The bucket algorithm and the inverse
rule algorithm have similar limitations that are addressed by the MinCon algorithm.

The bucket algorithm considers each predicate of the query independently to select
only the views that are relevant to that predicate. Given a query Q, the algorithm
proceeds in two steps. In the first step, it builds a bucket b for each subgoal g of O
that is not a comparison predicate and inserts in b the heads of the views that are
relevant to answer q. To determine whether a view V should be in b, there must be a
mapping that unifies g with one subgoal vin V.

For instance, consider query Q in Example 9.3 and the views in Example 9.4.
The following mapping unifies the subgoal EMP(e, ENAME, “Paris”) of Q with the
subgoal EMP(ENO, ENAME, CITY) in view EMP1:

e — ENO, “Paris” — CITY

In the second step, for each view V of the Cartesian product of the non-empty
buckets (i.e., some subset of the buckets), the algorithm produces a conjuntive query
and checks whether it is contained in Q. If it is, the conjuntive query is kept as it
represents one way to anwer part of Q from V. Thus, the rewritten query is a union
of conjunctive queries.

Example 9.5. Let us consider query Q in Example 9.3 and the views in Example 9.4.
In the first step, the bucket algorithm creates two buckets, one for each subgoal of
Q. Let us denote by by the bucket for the subgoal EMP(e, ENAME, “Paris”) and by
b, the bucket for the subgoal ASG(e, p, TITLE, DUR). Since the algorithm inserts
only the view heads in a bucket, there may be variables in a view head that are not in
the unifying mapping. Such variables are simply primed. We obtain the following
buckets:

by = {EMP1(ENO,ENAME, TITLE',CITY),
EMP2(ENO,ENAME, TITLE',CITY)}
b, = {ASG1(ENO,PNO,DUR’)}

In the second step, the algorithm combines the elements from the buckets, which
produces a union of two conjuntive queries:

Q' (e, p) : —EMPI (e, ENAME, TITLE, “Paris”), ASG1(e, p, DUR) (q1)
Q' (e, p) : —EMP2(e, ENAME, TITLE, “Paris”), ASG1(e, p, DUR) ()
¢

The main advantage of the bucket algorithm is that, by considering the predicates
in the query, it can significantly reduce the number of rewritings that need to be
considered. However, considering the predicates in the query in isolation may yield
the addition of a view in a bucket that is irrelevant when considering the join with
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other views. Furthermore, the second step of the algorithm may still generate a large
number of rewritings as a result of the Cartesian product of the buckets.

Example 9.6. Let us consider query Q in Example 9.3 and the views in Example 9.4
with the addition of the following view that gives the projects for which there are
employees who live in Paris.

PROJ1(PNO) : —~EMP1(ENO, ENAME, “Paris”),
ASG(ENO,PNO, TITLE, DUR) (rs)

Now, the following mapping unifies the subgoal ASG(e, p, TITLE, DUR) of O
with the subgoal ASG(ENO, PNO, TITLE, DUR) in view PROJ1:

p — PNAME

Thus, in the first step of the bucket algorithm, PROJ1 is added to bucket b,.
However, PROJ1 cannot be useful in a rewriting of Q since the variable ENAME is
not in the head of PROJ1 and thus makes it impossible to join PROJ1 on the variable
e of Q. This can be discovered only in the second step when building the conjunctive
queries. ¢

The MinCon algorithm addresses the limitations of the bucket algorithm (and
the inverse rule algorithm) by considering the query globally and considering how
each predicate in the query interacts with the views. It proceeds in two steps like
the bucket algorithm. The first step starts similar to that of the bucket algorithm,
selecting the views that contain subgoals corresponding to subgoals of query Q.
However, upon finding a mapping that unifies a subgoal g of Q with a subgoal v in
view V, it considers the join predicates in Q and finds the minimum set of additional
subgoals of Q that must be mapped to subgoals in V. This set of subgoals of Q
is captured by a MinCon description (MCD) associated with V. The second step
of the algorithm produces a rewritten query by combining the different MCDs. In
this second step, unlike in the bucket algorithm, it is not necessary to check that the
proposed rewritings are contained in the query because the way the MCDs are created
guarantees that the resulting rewritings will be contained in the original query.

Applied to Example 9.6, the algorithm would create 3 MCDs: two for the views
EMP1 and EMP2 containing the subgoal EMP of Q and one for ASG1 containing the
subgoal ASG. However, the algorithm cannot create an MCD for PROJ1 because it
cannot apply the join predicate in Q. Thus, the algorithm would produce the rewritten
query Q' of Example 9.5. Compared with the bucket algorithm, the second step of
the MinCon algorithm is much more efficient since it performs fewer combinations
of MCDs than buckets.
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9.4 Query Optimization and Execution

The three main problems of query optimization in multidatabase systems are het-
erogeneous cost modeling, heterogeneous query optimization (to deal with different
capabilities of component DBMSs), and adaptive query processing (to deal with
strong variations in the environment — failures, unpredictable delays, etc.). In this
section, we describe the techniques for these three problems. We note that the result
is a distributed execution plan to be executed by the wrappers and the mediator.

9.4.1 Heterogeneous Cost Modeling

Global cost function definition, and the associated problem of obtaining cost-related
information from component DBMSs, is perhaps the most-studied of the three
problems. A number of possible solutions have emerged, which we discuss below.

The first thing to note is that we are primarily interested in determining the cost
of the lower levels of a query execution tree that correspond to the parts of the query
executed at component DBMSs. If we assume that all local processing is “pushed
down” in the tree, then we can modify the query plan such that the leaves of the tree
correspond to subqueries that will be executed at individual component DBMSs. In
this case, we are talking about the determination of the costs of these subqueries that
are input to the first level (from the bottom) operators. Cost for higher levels of the
query execution tree may be calculated recursively, based on the leaf node costs.

Three alternative approaches exist for determining the cost of executing queries at
component DBMSs [Zhu and Larson, 1998]:

1. Black Box Approach. This approach treats each component DBMS as a
black box, running some test queries on it, and from these determines the
necessary cost information [Du et al., 1992; Zhu and Larson, 1994].

2. Customized Approach. This approach uses previous knowledge about the
component DBMSs, as well as their external characteristics, to subjectively
determine the cost information [Zhu and Larson, 1996a; Roth et al., 1999;
Naacke et al., 1999].

3. Dynamic Approach. This approach monitors the run-time behavior of com-
ponent DBMSs, and dynamically collects the cost information [Lu et al.,
1992; Zhu et al., 2000, 2003; Rahal et al., 2004].

We discuss each approach, focusing on the proposals that have attracted the most
attention.
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9.4.1.1 Black box approach

In the black box approach, which is used in the Pegasus project [Du et al., 1992], the
cost functions are expressed logically (e.g., aggregate CPU and I/O costs, selectivity
factors), rather than on the basis of physical characteristics (e.g., relation cardinalities,
number of pages, number of distinct values for each column). Thus, the cost functions
for component DBMSs are expressed as

Cost = initialization cost 4 cost to find qualifying tuples

+ cost to process selected tuples

The individual terms of this formula will differ for different operators. However,
these differences are not difficult to specify a priori. The fundamental difficulty is the
determination of the term coefficients in these formulae, which change with different
component DBMSs. The approach taken in the Pegasus project is to construct a
synthetic database (called a calibrating database), run queries against it in isolation,
and measure the elapsed time to deduce the coefficients.

A problem with this approach is that the calibration database is synthetic, and
the results obtained by using it may not apply well to real DBMSs [Zhu and Larson,
1994]. An alternative is proposed in the CORDS project [Zhu and Larson, 1996b],
that is based on running probing queries on component DBMSs to determine cost
information. Probing queries can, in fact, be used to gather a number of cost infor-
mation factors. For example, probing queries can be issued to retrieve data from
component DBMSs to construct and update the multidatabase catalog. Statistical
probing queries can be issued that, for example, count the number of tuples of a
relation. Finally, performance measuring probing queries can be issued to measure
the elapsed time for determining cost function coefficients.

A special case of probing queries is sample queries [Zhu and Larson, 1998]. In
this case, queries are classified according to a number of criteria, and sample queries
from each class are issued and measured to derive component cost information.
Query classification can be performed according to query characteristics (e.g., unary
operation queries, two-way join queries), characteristics of the operand relations
(e.g., cardinality, number of attributes, information on indexed attributes), and char-
acteristics of the underlying component DBMSs (e.g., the access methods that are
supported and the policies for choosing access methods).

Classification rules are defined to identify queries that execute similarly, and
thus could share the same cost formula. For example, one may consider that two
queries that have similar algebraic expressions (i.e., the same algebraic tree shape),
but different operand relations, attributes, or constants, are executed the same way
if their attributes have the same physical properties. Another example is to assume
that join order of a query has no effect on execution since the underlying query
optimizer applies reordering techniques to choose an efficient join ordering. Thus,
two queries that join the same set of relations belong to the same class, whatever
ordering is expressed by the user. Classification rules are combined to define query
classes. The classification is performed either top-down by dividing a class into more
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specific ones, or bottom-up by merging two classes into a larger one. In practice,
an efficient classification is obtained by mixing both approaches. The global cost
function is similar to the Pegasus cost function in that it consists of three components:
initialization cost, cost of retrieving a tuple, and cost of processing a tuple. The
difference is in the way the parameters of this function are determined. Instead of
using a calibrating database, sample queries are executed and costs are measured. The
global cost equation is treated as a regression equation, and the regression coefficients
are calculated using the measured costs of sample queries [Zhu and Larson, 1996a].
The regression coefficients are the cost function parameters. Eventually, the cost
model quality is controlled through statistical tests (e.g., F-test): if the tests fail,
the query classification is refined until quality is sufficient. This approach has been
validated over various DBMS and has been shown to yield good results [Zhu and
Larson, 2000].

The above approaches require a preliminary step to instantiate the cost model
(either by calibration or sampling). This may not be appropriate in MDBMSs because
it would slow down the system each time a new DBMS component is added. One
way to address this problem, as proposed in the Hermes project, is to progressively
learn the cost model from queries [Adali et al., 1996b]. The cost model designed in
the Hermes mediator assumes that the underlying component DBMSs are invoked by
a function call. The cost of a call is composed of three values: the response time to
access the first tuple, the whole result response time, and the result cardinality. This
allows the query optimizer to minimize either the time to receive the first tuple or
the time to process the whole query, depending on end-user requirements. Initially
the query processor does not know any statistics about components DBMSs. Then
it monitors on-going queries: it collects processing time of every call and stores it
for future estimation. To manage the large amount of collected statistics, the cost
manager summarizes them, either without loss of precision or with less precision at
the benefit of lower space use and faster cost estimation. Summarization consists
of aggregating statistics: the average response time is computed of all the calls
that match the same pattern, i.e., those with identical function name and zero or
more identical argument values. The cost estimator module is implemented in a
declarative language. This allows adding new cost formulae describing the behavior
of a particular component DBMS. However, the burden of extending the mediator
cost model remains with the mediator developer.

The major drawback of the black box approach is that the cost model, although
adjusted by calibration, is common for all component DBMSs and may not capture
their individual specifics. Thus it might fail to estimate accurately the cost of a query
executed at a component DBMS that exposes unforeseen behavior.

9.4.1.2 Customized Approach
The basis of this approach is that the query processors of the component DBMSs

are too different to be represented by a unique cost model as used in the black-
box approach. It also assumes that the ability to accurately estimate the cost of
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local subqueries will improve global query optimization. The approach provides a
framework to integrate the component DBMSs’ cost model into the mediator query
optimizer. The solution is to extend the wrapper interface such that the mediator gets
some specific cost information from each wrapper. The wrapper developer is free
to provide a cost model, partially or entirely. Then, the challenge is to integrate this
(potentially partial) cost description into the mediator query optimizer. There are two
main solutions.

A first solution is to provide the logic within the wrapper to compute three cost
estimates: the time to initiate the query process and receive the first result item
(called reset _cost), the time to get the next item (called advance_cost), and the result
cardinality. Thus, the total query cost is:

Total_access_cost = reset _cost + (cardinality — 1) x advance _cost

This solution can be extended to estimate the cost of database procedure calls. In
that case, the wrapper provides a cost formula that is a linear equation depending
on the procedure parameters. This solution has been successfully implemented to
model a wide range of heterogeneous components DBMSs, ranging from a relational
DBMS to an image server [Roth et al., 1999]. It shows that a little effort is sufficient
to implement a rather simple cost model and this significantly improves distributed
query processing over heterogeneous sources.

A second solution is to use a hierarchical generic cost model. As shown in Figure
9.2, each node represents a cost rule that associates a query pattern with a cost
function for various cost parameters.

The node hierarchy is divided into five levels depending on the genericity of
the cost rules (in Figure 9.2, the increasing width of the boxes shows the increased
focus of the rules). At the top level, cost rules apply by default to any DBMS. At
the underlying levels, the cost rules are increasingly focused on: specific DBMS,
relation, predicate or query. At the time of wrapper registration, the mediator receives
wrapper metadata including cost information, and completes its built-in cost model
by adding new nodes at the appropriate level of the hierarchy. This framework is
sufficiently general to capture and integrate both general cost knowledge declared as
rules given by wrapper developers and specific information derived from recorded
past queries that were previously executed. Thus, through an inheritance hierarchy ,
the mediator cost-based optimizer can support a wide variety of data sources. The
mediator benefits from specialized cost information about each component DBMS,
to accurately estimate the cost of queries and choose a more efficient QEP [Naacke
et al., 1999].

Example 9.7. Consider the following relations:

EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)

EMP is stored at component DBMS db; and contains 1,000 tuples. ASG is stored
at component DBMS db; and contains 10,000 tuples. We assume uniform distribution
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select (Collection, Predicate)

CountObject = ...
Default-scope rules TotalSize =
TotalTime = ...
etc...
Source 1: Source 2:
YX{:S perseope select (Collection, Predicate) select (Collection, Predicate)
TotalTime = ... TotalSize = ...
Collection select(PROJ, Predicate) select(EMP, Predicate)
fjlgze TotalSize = ... TotalTime = ...
Predicate-scope select(EMP, TITLE = value) select(EMP, ENAME = Value)
rules TotalTime = ... TotalTime = ...

Query %H%
specific rules

Fig. 9.2 Hierarchical Cost Formula Tree

of attribute values. Half of the ASG tuples have a duration greater than 6. We detail
below some parts of the mediator generic cost model (we use superscripts to indicate
the access method):

cost(R) = |R|
cost(Opyedicare(R)) = cost(R) (access to R by sequential scan (by default))

cost(R X §) = cost(R) + |R| x cost(0a—,(S)) (using an index-based (ind) join
with

the index on S.A)

cost(R X% S) = cost(R) + |R| * cost(S) (using a nested-loop (n!) join)
Consider the following global query Q:

SELECT *

FROM EMP, ASG

WHERE EMP.ENO=ASG.ENO

AND  ASG.DUR>6

The cost-based query optimizer generates the following plans to process Q:
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P = opur>6(EMP X% ASG)
Py = EMP M\ o 0pur=6(ASG)
P3 = opur=6(ASG) X% EMP
Py = 0pur>6(ASG) Xtk o EMP
Based on the generic cost model, we compute their cost as:
cost(Py) = cost(0purs¢(EMP M2 ASG)
= cost(EMP X4 ) ASG)
= cost(EMP) + [EMP]| x cost(Ogno—» (ASG))
= |EMP| + |EMP| x|ASG| = 10,001,000
cost(P,) = cost(EMP) + |EMP| x cost (0pyr>6(ASG))
= cost(EMP) + |EMP| x cost (ASG)
= |EMP|+ |EMP| % |ASG| = 10,001,000
|ASG]|

cost(Py) = cost(Py) = |ASG| + —* |[EMP|

= 5,010,000

Thus, the optimizer discards plans P; and P to keep either P; or P4 for processing
Q. Let us assume now that the mediator imports specific cost information about
component DBMSs. db; exports the cost of accessing EMP tuples as:

cost(Oa=y(R)) = |0a=v(R)]
db; exports the specific cost of selecting ASG tuples that have a given ENO as:

COSI(GENO:V(ASG)) = |GENO:V(ASG)‘

The mediator integrates these cost functions in its hierarchical cost model, and can
now estimate more accurately the cost of the QEPs:

cost(P;) = |EMP| + [EMP| * |Ggno=y(ASG)|
— 1,000 + 1,000 % 10
— 11,000

cost(Py) = |EMP| + |[EMP| x |opur>6(ASG)|
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ASG
= |EMP| 4 [EMP| |ASG]

= 5,001,000

ASG
cost(P;) = |ASG| + |T| * |OENO=y(EMP)|

= 10,000+ 5,000 % 1
= 15,000

ASG
cost(Py) = |ASG| + % * |[EMP|

= 10,000+ 5,000 * 1,000
= 5,010,000

The best QEP is now P; which was previously discarded because of lack of cost
information about component DBMSs. In many situations P is actually the best
alternative to process Q. ¢

The two solutions just presented are well suited to the mediator/wrapper archi-
tecture and offer a good tradeoff between the overhead of providing specific cost
information for diverse component DBMSs and the benefit of faster heterogeneous
query processing.

9.4.1.3 Dynamic Approach

The above approaches assume that the execution environment is stable over time.
However, in most cases, the execution environment factors are frequently changing.
Three classes of environmental factors can be identified based on their dynamicity
[Rahal et al., 2004]. The first class for frequently changing factors (every second
to every minute) includes CPU load, I/O throughput, and available memory. The
second class for slowly changing factors (every hour to every day) includes DBMS
configuration parameters, physical data organization on disks, and database schema.
The third class for almost stable factors (every month to every year) includes DBMS
type, database location, and CPU speed. We focus on solutions that deal with the first
two classes.

One way to deal with dynamic environments where network contention, data
storage or available memory change over time is to extend the sampling method
[Zhu, 1995] and consider user queries as new samples. Query response time is
measured to adjust the cost model parameters at run time for subsequent queries.
This avoids the overhead of processing sample queries periodically, but still requires
heavy computation to solve the cost model equations and does not guarantee that
cost model precision improves over time. A better solution, called qualitative [Zhu
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et al., 2000], defines the system contention level as the combined effect of frequently
changing factors on query cost. The system contention level is divided into several
discrete categories: high, medium, low, or no system contention. This allows for
defining a multi-category cost model that provides accurate cost estimates while
dynamic factors are varying. The cost model is initially calibrated using probing
queries. The current system contention level is computed over time, based on the
most significant system parameters. This approach assumes that query executions
are short, so the environment factors remain rather constant during query execution.
However, this solution does not apply to long running queries, since the environment
factors may change rapidly during query execution.

To manage the case where the environment factor variation is predictable (e.g.,
the daily DBMS load variation is the same every day), the query cost is computed for
successive date ranges [Zhu et al., 2003]. Then, the total cost is the sum of the costs
for each range. Furthermore, it may be possible to learn the pattern of the available
network bandwidth between the MDBMS query processor and the component DBMS
[Vidal et al., 1998]. This allows adjusting the query cost depending on the actual
date.

9.4.2 Heterogeneous Query Optimization

In addition to heterogeneous cost modeling, multidatabase query optimization must
deal with the issue of the heterogeneous computing capabilities of component
DBMSs. For instance, one component DBMS may support only simple select opera-
tions while another may support complex queries involving join and aggregate. Thus,
depending on how the wrappers export such capabilities, query processing at the
mediator level can be more or less complex. There are two main approaches to deal
with this issue depending on the kind of interface between mediator and wrapper:
query-based and operator-based.

1. Query-based. In this approach, the wrappers support the same query capabil-
ity, e.g., a subset of SQL, which is translated to the capability of the component
DBMS. This approach typically relies on a standard DBMS interface such
as Open Database Connectivity (ODBC) and its extensions for the wrappers
or SQL Management of External Data (SQL/MED) [Melton et al., 2001].
Thus, since the component DBMSs appear homogeneous to the mediator,
query processing techniques designed for homogeneous distributed DBMS
can be reused. However, if the component DBMSs have limited capabilities,
the additional capabilities must be implemented in the wrappers, e.g., join
queries may need to be handled at the wrapper, if the component DBMS does
not support join.

2. Operator-based. In this approach, the wrappers export the capabilities of the
component DBMSs through compositions of relational operators. Thus, there
is more flexibility in defining the level of functionality between the mediator
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and the wrapper. In particular, the different capabilities of the component
DBMSs can be made available to the mediator. This makes wrapper construc-
tion easier at the expense of more complex query processing in the mediator.
In particular, any functionality that may not be supported by component
DBMSs (e.g., join) will need to be implemented at the mediator.

In the rest of this section, we present, in more detail, the approaches to query
optimization.

9.4.2.1 Query-based Approach

Since the component DBMSs appear homogeneous to the mediator, one approach
is to use a distributed cost-based query optimization algorithm (see Chapter 8) with
a heterogeneous cost model (see Section 9.4.1). However, extensions are needed
to convert the distributed execution plan into subqueries to be executed by the
component DBMSs and into subqueries to be executed by the mediator. The hybrid
two-step optimization technique is useful in this case (see Section 8.4.4): in the
first step, a static plan is produced by a centralized cost-based query optimizer; in
the second step, at startup time, an execution plan is produced by carrying out site
selection and allocating the subqueries to the sites. However, centralized optimizers
restrict their search space by eliminating bushy join trees from consideration. Almost
all the systems use left linear join orders where the right subtree of a join node is
always a leaf node corresponding to a base relation (Figure 9.3a). Consideration of
only left linear join trees gives good results in centralized DBMSs for two reasons:
it reduces the need to estimate statistics for at least one operand, and indexes can
still be exploited for one of the operands. However, in multidatabase systems, these
types of join execution plans are not necessarily the preferred ones as they do not
allow any parallelism in join execution. As we discussed in earlier chapters, this is
also a problem in homogeneous distributed DBMSs, but the issue is more serious in
the case of multidatabase systems, because we wish to push as much processing as
possible to the component DBMSs.

A way to resolve this problem is to somehow generate bushy join trees and
consider them at the expense of left linear ones. One way to achieve this is to apply a
cost-based query optimizer to first generate a left linear join tree, and then convert it
to a bushy tree [Du et al., 1995]. In this case, the left linear join execution plan can be
optimal with respect to total time, and the transformation improves the query response
time without severely impacting the total time. A hybrid algorithm that concurrently
performs a bottom-up and top-down sweep of the left linear join execution tree,
transforming it, step-by-step, to a bushy one has been proposed [Du et al., 1995]. The
algorithm maintains two pointers, called upper anchor nodes (UAN) on the tree. At
the beginning, one of these, called the bottom UAN (UANp), is set to the grandparent
of the leftmost root node (join with R3 in Figure 9.3a), while the second one, called
the top UAN (UAN7), is set to the root (join with Rs). For each UAN the algorithm
selects a lower anchor node (LAN). This is the node closest to the UAN and whose
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right child subtree’s response time is within a designer-specified range, relative to
that of the UAN’s right child subtree. Intuitively, the LAN is chosen such that its
right child subtree’s response time is close to the corresponding UAN’s right child
subtree’s response time. As we will see shortly, this helps in keeping the transformed
bushy tree balanced, which reduces the response time.

B>

7N

> R5 >

N S~
[ R4 >
/! 7N
>4 R3 > R5

>
7N AN /N
R1 3 R4

R2 R

(a) Left Linear Join Tree (b) Bushy Join Tree

Fig. 9.3 Left Linear versus Bushy Join Tree

At each step, the algorithm picks one of the UAN/LAN pairs (strictly speaking, it
picks the UAN and selects the appropriate LAN, as discussed above), and performs
the following translation for the segment between that LAN and UAN pair:

The left child of UAN becomes the new UAN of the transformed segment.

2. The LAN remains unchanged, but its right child node is replaced with a new
join node of two subtrees, which were the right child subtrees of the input
UAN and LAN.

The UAN mode that will be considered in that particular iteration is chosen
according to the following heuristic: choose UANp if the response time of its left
child subtree is smaller than that of UAN7’s subtree; otherwise choose UAN7. If the
response times are the same, choose the one with the more unbalanced child subtree.

At the end of each transformation step, the UANp and UANy are adjusted. The
algorithm terminates when UANp = UANT, since this indicates that no further trans-
formations are possible. The resulting join execution tree will be almost balanced,
producing an execution plan whose response time is reduced due to parallel execution
of the joins.

The algorithm described above starts with a left linear join execution tree that is
generated by a commercial DBMS optimizer. While this is a good starting point, it
can be argued that the original linear execution plan may not fully account for the
peculiarities of the distributed multidatabase characteristics, such as data replication.
A special global query optimization algorithm [Evrendilek et al., 1997] can take
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these into consideration. Starting from an initial join graph, the algorithm checks
for different parenthesizations of this linear join execution order and produces a
parenthesized order, which is optimal with respect to response time. The result is
an (almost) balanced join execution tree. Performance evaluations indicate that this
approach produces better quality plans at the expense of longer optimization time.

9.4.2.2 Operator-based Approach

Expressing the capabilities of the component DBMSs through relational operators
allows tight integration of query processing between mediator and wrappers. In
particular, the mediator/wrapper communication can be in terms of subplans. We
illustrate the operator-based approach with planning functions proposed in the Garlic
project [Haas et al., 1997a]. In this approach, the capabilities of the component
DBMSs are expressed by the wrappers as planning functions that can be directly
called by a centralized query optimizer. It extends the rule-based optimizer proposed
by Lohman [1988] with operators to create temporary relations and retrieve locally-
stored data. It also creates the PushDown operator that pushes a portion of the
work to the component DBMSs where it will be executed. The execution plans are
represented, as usual, as operator trees, but the operator nodes are annotated with
additional information that specifies the source(s) of the operand(s), whether the
results are materialized, and so on. The Garlic operator trees are then translated into
operators that can be directly executed by the execution engine.

Planning functions are considered by the optimizer as enumeration rules. They are
called by the optimizer to construct subplans using two main functions: accessPlan
to access a relation, and joinPlan to join two relations using the access plans. These
functions precisely reflect the capabilities of the component DBMSs with a common
formalism.

Example 9.8. We consider three component databases, each at a different site. Com-
ponent database db; stores relation EMP(ENO, ENAME, CITY). Component
database db; stores relation ASG(ENO, PNAME, DUR). Component database
dbs stores only employee information with a single relation of schema EM-
PASG(ENAME, CITY, PNAME, DUR), whose primary key is (ENAME, PNAME).
Component databases db; and db, have the same wrapper w; whereas dbs has a
different wrapper wy.

Wrapper w; provides two planning functions typical of a relational DBMS. The
accessPlan rule

accessPlan(R: relation, A: attribute list, P: select predicate) =
scan(R,A,P,db(R))

produces a scan operator that accesses tuples of R from its component database
db(R) (here we can have db(R) = db; or db(R) = db,), applies select predicate P,
and projects on the attribute list A. The joinPlan rule
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joinPlan(R;, R;: relations, A: attribute list, P: join predicate) =
join (R, Ry, A, P)
condition: db(R}) # db(R;)

produces a join operator that accesses tuples of relations R and R, and applies join
predicate P and projects on attribute list A. The condition expresses that R; and
R, are stored in different component databases (i.e., db; and db;). Thus, the join
operator is implemented by the wrapper.

Wrapper w; also provides two planning functions. The accessPlan rule

accessPlan(R: relation, A: attribute list, P: select predicate) =
fetch(CITY="c”)
condition: (CITY="“¢c") C P

produces a fetch operator that directly accesses (entire) employee tuples in component
database db3; whose CITY value is “c”. The accessPlan rule

accessPlan(R: relation, A: attribute list, P: select predicate) =
scan(R,A, P)

produces a scan operator that accesses tuples of relation R in the wrapper and applies
select predicate P and attribute project list A. Thus, the scan operator is implemented
by the wrapper, not the component DBMS.

Consider the following SQL query submitted to mediator m:

SELECT ENAME, PNAME, DUR
FROM EMPASG
WHERE CITY = "Paris" AND DUR > 24

Assuming the GAV approach, the global view EMPASG(ENAME, CITY, PNAME,
DUR) can be defined as follows (for simplicity, we prefix each relation by its
component database name):

EMPASG = (db;.EMP X db,.ASG) U db3 EMPASG

After query rewriting in GAV and query optimization, the operator-based approach
could produce the QEP shown in Figure 9.4. This plan shows that the operators that
are not supported by the component DBMS are to be implemented by the wrappers
or the mediator. ¢

Using planning functions for heterogeneous query optimization has several advan-
tages in multi-DBMSs. First, planning functions provide a flexible way to express
precisely the capabilities of component data sources. In particular, they can be used
to model non-relational data sources such as web sites. Second, since these rules are
declarative, they make wrapper development easier. The only important development
for wrappers is the implementation of specific operators, e.g., the scan operator of
dbs in Example 9.8. Finally, this approach can be easily incorporated in an existing,
centralized query optimizer.
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Fig. 9.4 Heterogeneous Query Execution Plan

The operator-based approach has also been successfully used in DISCO, a multi-
DBMS designed to access multiple databases over the web [Tomasic et al., 1996,
1997, 1998]. DISCO uses the GAV approach and supports an object data model
to represent both mediator and component database schemas and data types. This
allows easy introduction of new component databases, easily handling potential
type mismatches. The component DBMS capabilities are defined as a subset of an
algebraic machine (with the usual operators such as scan, join and union) that can
be partially or entirely supported by the wrappers or the mediator. This gives much
flexibility for the wrapper implementors in deciding where to support component
DBMS capabilities (in the wrapper or in the mediator). Furthermore, compositions of
operators, including specific data sets, can be specified to reflect component DBMS
limitations. However, query processing is more complicated because of the use of
an algrebraic machine and compositions of operators. After query rewriting on the
component schemas, there are three main steps [Kapitskaia et al., 1997].

1. Search space generation. The query is decomposed into a number of QEPs,
which constitutes the search space for query optimization. The search space is
generated using a traditional search strategy such as dynamic programming.

2. QEP decomposition. Each QEP is decomposed into a forest of n wrapper
QEPs and a composition QEP. Each wrapper QEP is the largest part of the
initial QEP that can be entirely executed by the wrapper. Operators that
cannot be performed by a wrapper are moved up to the composition QEP.
The composition QEP combines the results of the wrapper QEPs in the final
answer, typically through unions and joins of the intermediate results produced
by the wrappers.

3. Cost evaluation. The cost of each QEP is evaluated using a hierarchical cost
model discussed in Section 9.4.1.



320 9 Multidatabase Query Processing

9.4.3 Adaptive Query Processing

Multidatabase query processing, as discussed so far, follows essentially the principles
of traditional query processing whereby an optimal QEP is produced for a query
based on a cost model, which is then executed. The underlying assumption is that
the multidatabase query optimizer has sufficient knowledge about query runtime
conditions in order to produce an efficient QEP and the runtime conditions remain
stable during execution. This is a fair assumption for multidatabase queries with
few data sources running in a controlled environment. However, this assumption is
inappropriate for changing environments with large numbers of data sources and
unpredictable runtime conditions.

Example 9.9. Consider the QEP in Figure 9.5 with relations EMP, ASG, PROJ and
PAY at sites s1,52,53,54, respectively. The crossed arrow indicates that, for some
reason (e.g., failure), site s, (where ASG is stored) is not available at the beginning
of execution. Let us assume, for simplicity, that the query is to be executed according
to the iterator execution model [Graefe and McKenna, 1993], such that tuples flow
from the left most relation,

>
VAN
> PAY
7
> PROJ
DN
ASG EMP

Fig. 9.5 Query Execution Plan with Blocked Data Source

Because of the unavailability of s;, the entire pipeline is blocked, waiting for ASG
tuples to be produced. However, with some reoganization of the plan, some other
operators could be evaluated while waiting for s, for instance, to evaluate the join of
EMP and PAY. ¢

This simple example illustrates that a typical static plan cannot cope with unpre-
dictable data source unavailability [Amsaleg et al., 1996a]. More complex examples
involve continuous queries [Madden et al., 2002b], expensive predicates [Porto et al.,
2003] and data skew [Shah et al., 2003]. The main solution is to have some adaptive
behavior during query processing, i.e., adaptive query processing. Adaptive query
processing is a form of dynamic query processing, with a feedback loop between
the execution environment and the query optimizer in order to react to unforeseen
variations of runtime conditions. A query processing system is defined as adaptive if
it receives information from the execution environment and determines its behavior
according to that information in an iterative manner [Hellerstein et al., 2000; Gounaris
et al., 2002b]. In the context of multidatabase systems, the execution environment
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includes the mediator, wrappers and component DBMSs. In particular, wrappers
should be able to collect information regarding execution within the component
DBMSs. Obviously, this is harder to do with legacy DBMSs.

In this section, we first provide a general presentation of the adaptive query
processing process. Then, we present, in more detail, the Eddy approach [Avnur and
Hellerstein, 2000] that provides a powerful framework for adaptive query processing
techniques. Finally, we discuss major extensions to Eddy.

9.4.3.1 Adaptive Query Processing Process

Adaptive query processing adds to the traditional query processing process the
following activities: monitoring, assessing and reacting. These activities are logically
implemented in the query processing system by sensors, assessment components,
and reaction components, respectively. These components may be embedded into
control operators of the QEP, e.g., the Exchange operator [Graefe and McKenna,
1993]. Monitoring involves measuring some environment parameters within a time
window, and reporting them to the assessment component. The latter analyzes the
reports and considers thresholds to arrive at an adaptive reaction plan. Finally, the
reaction plan is communicated to the reaction component that applies the reactions
to query execution.

Typically, an adaptive process specifies the frequency with which each component
will be executed. There is a tradeoff between reactiveness, in which higher values
lead to eager reactions, and the overhead caused by the adaptive process. A generic
representation of the adaptive process is given by the function fgay (E,T) — Ad,
where E is a set of monitored environment parameters, 7" is a set of threshold values
and Ad is a possibly empty set of adaptive reactions. The elements of E, T and Ad,
called adaptive elements, obviously may vary in a number of ways depending on
the application. The most important elements are the monitoring parameters and the
adaptive reactions. We now describe them, following the presentation in [Gounaris
et al., 2002b].

Monitoring parameters.

Monitoring query runtime parameters involves placing sensors at key places of the
QEP and defining observation windows, during which sensors collect information.
It also requires the specification of a communication mechanism to pass collected
information to the assessment component. Examples of candidates for monitoring
are:

e Memory size. Monitoring available memory size allows, for instance, operators
to react to memory shortage or memory increase [Shah et al., 2003].

e Data arrival rates. Monitoring the variations in data arrival rates may enable the
query processor to do useful work while waiting for a blocked data source.
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e Actual statistics. Database statistics in a multidatabase environment tend to be
inaccurate, if at all available. Monitoring the actual size of relations and inter-
mediate results may lead to important modifications in the QEP. Furthermore,
the usual data assumptions, in which the selectivity of predicates over attributes
in a relation are considered to be mutually independent, can be abandoned and
real selectivity values can be computed.

e Operator execution cost. Monitoring the actual cost of operator execution,
including production rates, is useful for better operator scheduling. Furthermore,
monitoring the size of the queues placed before operators may avoid overload
situations [Tian and DeWitt, 2003b].

e Network throughput. In multidatabase query evaluation with remote data
sources, monitoring network throughput may be helpful to define the data
retrieval block size. In a lower throughput network, the system may react with
larger block sizes to reduce network penalty.

Adaptive reactions.

Adaptive reactions modify query execution behavior according to the decisions taken
by the assessment component. Important adaptive reactions are the following:

e Change schedule: modifies the order in which operators in the QEP get sched-
uled. Query Scrambling [Amsaleg et al., 1996a; Urhan et al., 1998a] reacts by
a change schedule of the plan, e.g., to reorganize the QEP in Example 9.9, to
avoid stalling on a blocked data source during query evaluation. Eddy adopts
finer reaction where operator scheduling can be decided on a tuple basis.

e Operator replacement: replaces a physical operator by an equivalent one. For
example, depending on the available memory, the system may choose between a
nested loop join or a hash join. Operator replacement may also change the plan
by introducing a new operator to join the intermediate results produced by a
previous adaptive reaction. Query Scrambling, for instance, may introduce new
operators to evaluate joins between the results of change schedule reactions.

e Operator behavior: modifies the physical behavior of an operator. For example,
the symmetric hash join [Wilschut and Apers, 1991] or ripple join algorithms
[Haas and Hellerstein, 1999b] constantly alternate the inner/outer relation roles
between their input tuples.

e Data repartitioning: considers the dynamic repartitioning of a relation through
multiple nodes using intra-operator parallelism [Shah et al., 2003]. Static par-
titioning of a relation tends to produce load imbalance between nodes. For
example, information partitioned according to their associated geographical
region (i.e., continent) may exhibit different access rates during the day because
of the time differences in users’ locations.
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e Plan reformulation: computes a new QEP to replace an inefficient one. The
optimizer considers actual statistics and state information, collected on the fly,
to produce a new plan.

9.4.3.2 Eddy Approach

Eddy is a general framework for adaptive query processing. It was developed in the
context of the Telegraph project with the goal of running queries on large volumes of
online data with unpredictable input rates and fluctuations in the running environment.

For simplicity, we only consider select-project-join (SPJ) queries. Select operators
can include expensive predicates [Hellerstein and Stonebraker, 1993]. The process
of generating a QEP from an input SPJ query begins by producing a spanning tree
of the query graph G modeling the input query. The choice among join algorithms
and relation access methods favors adaptiveness. A QEP can be modeled as a tuple
0 = (D,P,C), where D is a set of data sources, P is a set of query predicates with
associated algorithms, and C is a set of ordering constraints that must be followed
during execution. Observe that multiple valid spanning trees can be derived from G
that obey the constraints in C, by exploring the search space composed of equivalent
plans with different predicate orders. There is no need to find an optimal QEP during
query compilation. Instead, operator ordering is done on the fly on a tuple-per-tuple
basis (i.e., tuple routing). The process of QEP compilation is completed by adding
the Eddy operator which is an n-ary physical operator placed between data sources
in D and query predicates in P.

Example 9.10. Consider a three-relation query Q = 0, (R) X § X T, where joins are
equi-joins. Assume that the only access method to relation 7 is through an index on
join attribute T"A, i.e., the second join can only be an index join over T'.A. Assume
also that o, is an expensive predicate (e.g., a predicate over the results of running
a program over values of R.B). Under these assumptions, the QEP is defined as
D={R,S,T}, P={0,(R),RX; §,SX, T} and C = {S < T}. The constraint <
imposes S tuples to probe T tuples, based on the index on T.A.

Figure 9.6 shows a QEP produced by the compilation of query Q with Eddy.
An ellipse corresponds to a physical operator (i.e., either the Eddy operator or
an algorithm implementing a predicate p € P). As usual, the bottom of the plan
presents the data sources. In the absence of a scan access method, relation 7" access is
wrapped by the index join implementing the second join, and, thus, does not appear as
a data source. The arrows specify pipeline dataflow following a producer-consumer
relationship. Finally, an arrow departing from the Eddy models the production of
output tuples. ¢

Eddy provides fine-grain adaptiveness by deciding on the fly how to route tuples
through predicates according to a scheduling policy. During query execution, tuples
in data sources are retrieved and staged into an input buffer managed by the Eddy
operator. Eddy responds to data source unavailability by simply reading from another
data source and staging tuples in the buffer pool.
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Fig. 9.6 A Query Execution Plan with Eddy.

The flexibility of choosing the currently available data source is obtained by
relaxing the fixed order of predicates in a QEP. In Eddy, there is no fixed QEP and
each tuple follows its own path through predicates according to the constraints in the
plan and its own history of predicate evaluation.

The tuple-based routing strategy produces a new QEP topology. The Eddy operator
together with its managed predicates form a circular dataflow in which tuples leave
the Eddy operator to be evaluated by the predicates, which in turn bounce back output
tuples to the Eddy operator. A tuple leaves the circular dataflow either when it is
eliminated by a predicate evaluation or the Eddy operator realizes that the tuple has
passed through all the predicates in its list. The lack of a fixed QEP requires each
tuple to register the set of predicates it is eligible for. For example, in Figure 9.6, S
tuples are eligible for the two join predicates but are not eligible for predicate o, (R).

Let us now present, in more detail, how Eddy adaptively performs join ordering
and scheduling.

Adaptive join ordering.

A fixed QEP (produced at compile time) dictates the join ordering and specifies which
relations can be pipelined through the join operators. This makes query execution
simple. When, as in Eddy, there is no fixed QEP, the challenge is to dynamically order
pipelined join operators at run time, while tuples from different relations are flowing
in. Ideally, when a tuple of a relation participating in a join arrives, it should be sent to
a join operator (chosen by the scheduling policy) to be processed on the fly. However,
most join algorithms cannot process some incoming tuples on the fly because they are
asymmetric with respect to the way inner and outer tuples are processed. Consider the
basic hash-based join algorithm, for instance: the inner relation is fully read during
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the build phase to construct a hash table, whereas tuples in the outer relation are
pipelined during the probe phase. Thus, an incoming inner tuple cannot be processed
on the fly as it must be stored in the hash table and the processing will be possible
when the entire hash table has been built. Similarly, the nested loop join algorithm
is asymmetric as only the inner relation must be read entirely for each tuple of the
outer relation. Join algorithms with some kind of asymmetry offer few opportunities
for alternating input relations between inner and outer roles. Thus, to relax the order
in which join inputs are consumed, symmetric join algorithms are needed where the
role played by the relations in a join may change without producing incorrect results.

The earliest example of a symmetric join algorithm is the symmetric hash join
[Wilschut and Apers, 1991], which uses two hash tables, one for each input relation.
The traditional build and probe phases of the basic hash join algorithm are simply
interleaved. When a tuple arrives, it is used to probe the hash table corresponding to
the other relation and find matching tuples. Then, it is inserted in its corresponding
hash table so that tuples of the other relation arriving later can be joined. Thus,
each arriving tuple can be processed on the fly. Another popular symmetric join
algorithm is the ripple join [Haas and Hellerstein, 1999b], which can be viewed as a
generalization of the nested loop join algorithm where the roles of inner and outer
relation continually alternate during query execution. The main idea is to keep the
probing state of each input relation, with a pointer that indicates the last tuple used
to probe the other relation. At each toggling point, a change of roles between inner
and outer relations occurs. At this point, the new outer relation starts to probe the
inner input from its pointer position onwards, to a specified number of tuples. The
inner relation, in turn, is scanned from its first tuple to its pointer position minus 1.
The number of tuples processed at each stage in the outer relation gives the toggling
rate and can be adaptively monitored.

Using symmetric join algorithms, Eddy can achieve flexible join ordering by
controlling the history and constraints regarding predicate evaluation on a tuple basis.
This control is implemented using two sets of progress bits carried by each tuple,
which indicate, respectively, the predicates to which the tuple is ready to be evaluated
by (i.e., the “ready bits”) and the set of predicates already evaluated (i.e., the “done
bits””). When a tuple ¢ is read into an Eddy operator, all done bits are zeroed and
the predicates without ordering constraints, and to which ¢ is eligible for, have their
corresponding ready bits set. After each predicate evaluation, the corresponding done
bit is set and the ready bits are updated, accordingly. When a join concatenates a
pair of tuples, their done bits are ORed and a new set of ready bits are turned on.
Combining progress bits and symmetric join algorithms allows Eddy to schedule
predicates in an adaptive way.

Adaptive scheduling.
Given a set of candidate predicates, Eddy must adaptively select the one to which

each tuple will be sent. Two main principles drive the choice of a predicate in Eddy:
cost and selectivity. Predicate costs are measured as a function of the consumption
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rate of each predicate. Remember that the Eddy operator holds tuples in its internal
buffer, which is shared by all predicates. Low cost (i.e., fast) predicates finish their
work quicker and request new tuples from the Eddy. As a result, low cost predicates
get allocated more tuples than high cost predicates. This strategy, however, is agnostic
with respect to predicate selectivity. Eddy’s tuple routing strategy is complemented
by a simple lottery scheduling mechanism that learns about predicate selectivity
[Arpaci-Dusseau et al., 1999]. The strategy credits a ticket to a predicate whenever
the latter gets scheduled a tuple. Once a tuple has been processed and is bounced
back to the Eddy, the corresponding predicate gets its ticket amount decremented.
Combining cost and selectivity criteria becomes easy. Eddy continuously runs a
lottery among predicates currently requesting tuples. The predicate with higher count
of tickets wins the lottery and gets scheduled.

Another interesting issue is the choice of the running tuple from the input buffer.
In order to end query processing, all tuples in the input buffer must be evaluated.
Thus, a difference in tuple scheduling may reflect user preferences with respect to
tuple output. For example, Eddy may favor tuples with higher number of done bits
set, so that the user receives first results earlier.

9.4.3.3 Extensions to Eddy

The Eddy approach has been extended in various directions. In the cherry pick-
ing approach [Porto et al., 2003], context is used instead of simple ticket-based
scheduling. The relationship among expensive predicate input attribute values are
discovered at runtime and used as the basis for adaptive tuple scheduling. Given a
query Q with D = {R[A,B,C]}, P = {0,(R.A),0;(R.B),0;(R.C)} and C = 0, the
main idea is to model the input attribute values of the expensive predicates in P as
a hypergraph G = (V,E), where V is a set of n node partitions, with n being the
number of expensive predicates. Each partition corresponds to a single attribute of
the input relation R that are input to a predicate in P and each node corresponds to a
distinct value of that attribute. An hyperedge e = {a;,b;,c} corresponds to a tuple
of relation R. The degree of a node v; corresponds to the number of hyperedges in
which v; takes part. With this modeling, efficiently evaluating query Q corresponds to
eliminating as quickly as possible the hyperedges in G. An hyperedge is eliminated
whenever a value associated with one of its nodes is evaluated by a predicate in P and
returns false. Furthermore, node degrees model hidden attribute dependencies, so that
when the result of a predicate evaluation over a value v; returns false, all hyperedges
(i.e., tuples) that v; takes part in are also eliminated. An adaptive content-sensitive
strategy to evaluate a query Q is proposed for this model. It schedules values to be
evaluated by a predicate according to the Fanout of its corresponding node, computed
as the product of the node degree in the hypergraph G with the ratio between the
corresponding predicate selectivity and predicate unitary evaluation cost.

Another interesting extension is distributed Eddies [Tian and DeWitt, 2003b]
to deal with distributed input data streams. Since a centralized Eddy operator may
quickly become a bottleneck, a distributed approach is proposed for tuple routing.
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Each operator decides on the next operator to route a tuple to based on its history
of operator’s evaluation (i.e., done bits) and statistics collected from the remain-
ing operators. In a distributed setting, each operator may run at a different node
in the network with a queue holding input tuples. The query optimization problem
is specified by considering two new metrics for measuring stream query perfor-
mance: average response time and maximum data rate. The former corresponds to
the average time tuples take to traverse the operators in a plan, whereas the latter
measures the maximum throughput the system can withstand without overloading.
Routing strategies use the following parameters: operator’s cost, selectivity, length
of operator’s input queue and probability of an operator being routed a tuple. The
combination of these parameters yields efficient query evaluation. Using operator’s
cost and selectivity guarantee that low-cost and highly selective operators are given
higher routing priority. Queue length provides information on the average time tuples
are staged in queues. Managing operator’s queue length allows the routing decision
to avoid overloaded operators. Thus, by supporting routing policies, each operator
is able to individually make routing decisions, thereby avoiding the bottlneck of a
centralized router.

9.5 Query Translation and Execution

Query translation and execution is performed by the wrappers using the component
DBMSs. A wrapper encapsulates the details of one or more component databases,
each supported by the same DBMS (or file system). It also exports to the mediator
the component DBMS capabilities and cost functions in a common interface. One
of the major practical uses of wrappers has been to allow an SQL-based DBMS to
access non-SQL databases [Roth and Schwartz, 1997].

The main function of a wrapper is conversion between the common interface and
the DBMS-dependent interface. Figure 9.7 shows these different levels of interfaces
between the mediator, the wrapper and the component DBMSs. Note that, depending
on the level of autonomy of the component DBMSs, these three components can
be located differently. For instance, in the case of strong autonomy, the wrapper
should be at the mediator site, possibly on the same server. Thus, communication
between a wrapper and its component DBMS incurs network cost. However, in the
case of a cooperative component database (e.g., within the same organization), the
wrapper could be installed at the component DBMS site, much like an ODBC driver.
Thus, communication between the wrapper and the component DBMS is much more
efficient.

The information necessary to perform conversion is stored in the wrapper schema
that includes the local schema exported to the mediator in the common interface (e.g.,
relational) and the schema mappings to transform data between the local schema and
the component database schema and vice-versa. We discussed schema mappings in
Chapter 4. Two kinds of conversion are needed. First, the wrapper must translate
the input QEP generated by the mediator and expressed in a common interface
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into calls to the component DBMS using its DBMS-dependent interface. These
calls yield query execution by the component DBMS that return results expressed
in the DBMS-dependent interface. Second, the wrapper must translate the results
to the common interface format so that they can be returned to the mediator for
integration. In addition, the wrapper can execute operations that are not supported by
the component DBMS (e.g., the scan operation by wrapper w» in Figure 9.4).

MEDIATOR

COMMON INTERFACE

WRAPPER

DBMS-DEPENDENT
INTERFACE

COMPONENT
DBMS

Fig. 9.7 Wrapper interfaces

As discussed in Section 9.4.2, the common interface to the wrappers can be query-
based or operator-based. The problem of translation is similar in both approaches.
To illustrate query translation in the following example, we use the query-based
approach with the SQL/MED standard that allows a relational DBMS to access
external data represented as foreign relations in the wrapper’s local schema. This
example, borrowed from [Melton et al., 2001], illustrates how a very simple data
source can be wrapped to be accessed through SQL.

Example 9.11. We consider relation EMP(ENO, ENAME, CITY) stored in a very
simple component database, in server Component DB, built with Unix text files. Each
EMP tuple can then be stored as a line in a file, e.g., with the attributes separated by
“”. In SQL/MED, the definition of the local schema for this relation together with
the mapping to a Unix file can be declared as a foreign relation with the following
statement:

CREATE FOREIGN TABLE EMP
ENO INTEGER,
ENAME VARCHAR (30),
CITY VARCHAR (20)
SERVER ComponentDB
OPTIONS (Filename ’/usr/EngDB/emp.txt’, Delimiter ’:’)

Then, the mediator can send the wrapper supporting access to this relation SQL
statements. For instance, the query:
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SELECT ENAME
FROM EMP

can be translated by the wrapper using the following Unix shell command to extract
the relevant attribute:

cut -d: -f2 /usr/EngDB/emp

Additional processing, e.g., for type conversion, can then be done using programming
code. ¢

Wrappers are mostly used for read-only queries, which makes query translation
and wrapper construction relatively easy. Wrapper construction typically relies on
CASE tools with reusable components to generate most of the wrapper code [Tomasic
et al., 1997]. Furthermore, DBMS vendors provide wrappers for transparently access-
ing their DBMS using standard interfaces. However, wrapper construction is much
more difficult if updates to component databases are to be supported through wrap-
pers (as opposed to directly updating the component databases through their DBMS).
The main problem is due to the heterogeneity of integrity constraints between the
common interface and the DBMS-dependent interface. As discussed in Chapter 5,
integrity constraints are used to reject updates that violate database consistency. In
modern DBMSs, integrity constraints are explicit and specified as rules as part of
the database schema. However, in older DBMSs or simpler data sources (e.g., files),
integrity constraints are implicit and implemented by specific code in the applications.
For instance, in Example 9.11, there could be applications with some embedded
code that rejects insertions of new lines with an existing ENO in the EMP text file.
This code corresponds to a unique key constraint on ENO in relation EMP but is
not readily available to the wrapper. Thus, the main problem of updating through
a wrapper is to guarantee component database consistency by rejecting all updates
that violate integrity constraints, whether they are explicit or implicit. A software
engineering solution to this problem uses a CASE tool with reverse engineering
techniques to identify within application code the implicit integrity constraints which
are then translated into validation code in the wrappers [Thiran et al., 2006].

Another major problem is wrapper maintenance. Query translation relies heavily
on the mappings between the component database schema and the local schema. If
the component database schema is changed to reflect the evolution of the component
database, then the mappings can become invalid. For instance, in Example 9.11, the
administrator may switch the order of the fields in the EMP file. Using invalid map-
pings may prevent the wrapper from producing correct results. Since the component
databases are autonomous, detecting and correcting invalid mappings is important.
The techniques to do so are those for mapping maintenance that we presented in
Chapter 4.
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9.6 Conclusion

Query processing in multidatabase systems is significantly more complex than in
tightly-integrated and homogeneous distributed DBMSs. In addition to being dis-
tributed, component databases may be autonomous, have different database languages
and query processing capabilities, and exhibit varying behavior. In particular, com-
ponent databases may range from full-fledged SQL databases to very simple data
sources (e.g., text files).

In this chapter, we addressed these issues by extending and modifying the dis-
tributed query processing architecture presented in Chapter 6. Assuming the popular
mediator/wrapper architecture, we isolated the three main layers by which a query
is successively rewritten (to bear on local relations) and optimized by the mediator,
and then translated and executed by the wrappers and component DBMSs. We also
discussed how to support OLAP queries in a multidatabase, an important requirement
of decision-support applications. This requires an additional layer of translation from
OLAP multidimensional queries to relational queries. This layered architecture for
multidatabase query processing is general enough to capture very different varia-
tions. This has been useful to describe various query processing techniques, typically
designed with different objectives and assumptions.

The main techniques for multidatabase query processing are query rewriting using
multidatabase views, multidatabase query optimization and execution, and query
translation and execution. The techniques for query rewriting using multidatabase
views differ in major ways depending on whether the GAV or LAV integration
approach is used. Query rewriting in GAV is similar to data localization in homoge-
neous distributed database systems. But the techniques for LAV (and its extension
GLAV) are much more involved and it is often not possible to find an equivalent
rewriting for a query, in which case a query that produces a maximum subset of the
answer is necessary. The techniques for multidatabase query optimization include
cost modeling and query optimization for component databases with different com-
puting capabilities. These techniques extend traditional distributed query processing
by focusing on heterogeneity. Besides heterogeneity, an important problem is to deal
with the dynamic behavior of the component DBMSs. Adaptive query processing
addresses this problem with a dynamic approach whereby the query optimizer com-
municates at run time with the execution environment in order to react to unforeseen
variations of runtime conditions. Finally, we discussed the techniques for translating
queries for execution by the components DBMSs and for generating and managing
wrappers.

The data model used by the mediator can be relational, object-oriented or even
semi-structured (based on XML). In this chapter, for simplicity, we assumed a
mediator with a relational model that is sufficient to explain the multidatabase query
processing techniques. However, when dealing with data sources on the Web, a richer
mediator model such as object-oriented or semi-structured (e.g., XML-based) may
be preferred. This requires significant extensions to query processing techniques.
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Exercises

Problem 9.1 (**). Can any type of global optimization be performed on global
queries in a multidatabase system? Discuss and formally specify the conditions under
which such optimization would be possible.

Problem 9.2 (*). Consider a marketing application with a ROLAP server at site s
which needs to integrate information from two customer databases, each at site s,
within the corporate network. Assume also that the application needs to combine
customer information with information extracted from Web data sources about cities
in 10 different countries. For security reasons, a web server at site s3 is dedicated to
Web access outside the corporate network. Propose a multidatabase system archi-
tecture with mediator and wrappers to support this application. Discuss and justify
design choices.

Problem 9.3 (*%*). Consider the global relations EMP(ENAME, TITLE, CITY) and
ASG(ENAME, PNAME, CITY, DUR). City in ASG is the location of the project
of name PNAME (i.e., PNAME functionnally determines CITY). Consider the
local relations EMP1(ENAME, TITLE, CITY), EMP2(ENAME, TITLE, CITY),
PROJ1(PNAME, CITY), PROJ2(PNAME, CITY) and ASG1(ENAME, PNAME,
DUR). Consider query Q which selects the names of the employees assigned to a
project in Rio de Janeiro for more than 6 months and the duration of their assignment.

(a) Assuming the GAV approach, perform query rewriting.

(b) Assuming the LAV approach, perform query rewriting using the bucket algo-
rithm.

(c) Same as (b) using the MinCon algorithm.

Problem 9.4 (*). Consider relations EMP and ASG of Example 9.7. We denote by
|R| the number of pages to store R on disk. Consider the following statistics about
the data:

IEMP| = 1 000
IEMP| = 100
|ASG| = 10 000
|ASG| = 2 000

selectivity(ASG.DUR > 36) = 1%
The mediator generic cost model is:

cost(ca—y(R)) = |R|

(
cost(0(X)) = cost(X) where X contains at least one operator.
(
(

cost(R X% S) = cost(R) + |R| * cost(S) using a nested loop join algorithm.

cost(R Mind S) = cost(R) + |R| * cost(0a=,(S)) using an indexed join algorithm.

Consider the MDBMS input query Q:
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SELECT »*

FROM EMP, ASG

WHERE EMP.ENO=ASG.ENO
AND ASG.DUR>36

Consider four plans to process Q:

P = EMP X ) 6pyrs36(ASG)
P, = EMP XY, 6pyr>36(ASG)
Py = Opyr>36(ASG) Xind - EMP
Py = 0Opyr>36(ASG) Wiy, EMP

(a) What is the cost of plans P; to P4?
(b) Which plan has the minimal cost?

Problem 9.5 (*). Consider relations EMP and ASG of the previous exercice. Suppose
now that the mediator cost model is completed with the following cost information
issued from the component DBMSs.

The cost of accessing EMP tuples at db is:

cost(0p—y(R)) = |0a=(R)|
The specific cost of selecting ASG tuples that have a given ENO at D is:
cost(0ENo=v(ASG)) = |OENo=»(ASG)|

(a) What is the cost of plans P; to P4?
(b)  Which plan has the minimal cost?

Problem 9.6 (**). What are the respective advantages and limitations of the query-
based and operator-based approaches to heterogeneous query optimization from the
points of view of query expressiveness, query performance, development cost of
wrappers, system (mediator and wrappers) maintenance and evolution?

Problem 9.7 (**). Consider Example 9.8 by adding, at a new site, component
database db4 which stores relations EMP(ENO, ENAME, CITY) and ASG(ENO,
PNAME, DUR). db4 exports through its wrapper w3 join and scan capabilities. Let
us assume that there can be employees in db; with corresponding assignments in
db, and employees in dbs with corresponding assignments in db,.

(a) Define the planning functions of wrapper ws.

(b) Give the new definition of global view EMPASG(ENAME, CITY, PNAME,
DUR).

(¢c) Give a QEP for the same query as in Example 9.8.

Problem 9.8 (**). Consider three relations R(A, B), S(B,C) and T(C,D) and query
0 (O'pl (R) X S, T), where X, and X, are natural joins. Assume that S has an index
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on attribute B and T has an index on attribute C. Furthermore, ¢

» 1S an expensive
predicate (i.e., a predicate over the results of running a program over values of
R.A). Using the Eddy approach for adaptive query processing, answer the following

questions:

(a) Propose the set C of constraints on Q to produce an Eddy-based QEP.

(b) Give a query graph G for Q.

(¢) Using C and G, propose an Eddy-based QEP.

(d) Propose a second QEP that uses State Modules. Discuss the advantages ob-
tained by using state modules in this QEP.

Problem 9.9 (**). Propose a data structure to store tuples in the Eddy buffer pool
to help choosing quickly the next tuple to be evaluated according to user specified
preference, for instance, produce first results earlier.

Problem 9.10 (**). Propose a predicate scheduling algorithm based on the Cherry
picking approach introduced in Section 9.4.3.3.
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