
Chapter 7
Query Decomposition and Data Localization

In Chapter 6 we discussed a generic layering scheme for distributed query processing
in which the first two layers are responsible for query decomposition and data
localization. These two functions are applied successively to transform a calculus
query specified on distributed relations (i.e., global relations) into an algebraic query
defined on relation fragments. In this chapter we present the techniques for query
decomposition and data localization.

Query decomposition maps a distributed calculus query into an algebraic query on
global relations. The techniques used at this layer are those of the centralized DBMS
since relation distribution is not yet considered at this point. The resultant algebraic
query is “good” in the sense that even if the subsequent layers apply a straightforward
algorithm, the worst executions will be avoided. However, the subsequent layers
usually perform important optimizations, as they add to the query increasing detail
about the processing environment.

Data localization takes as input the decomposed query on global relations and ap-
plies data distribution information to the query in order to localize its data. In Chapter
3 we have seen that to increase the locality of reference and/or parallel execution,
relations are fragmented and then stored in disjoint subsets, called fragments, each
being placed at a different site. Data localization determines which fragments are
involved in the query and thereby transforms the distributed query into a fragment
query. Similar to the decomposition layer, the final fragment query is generally far
from optimal because quantitative information regarding fragments is not exploited
at this point. Quantitative information is used by the query optimization layer that
will be presented in Chapter 8.

This chapter is organized as follows. In Section 7.1 we present the four successive
phases of query decomposition: normalization, semantic analysis, simplification,
and restructuring of the query. In Section 7.2 we describe data localization, with
emphasis on reduction and simplification techniques for the four following types of
fragmentation: horizontal, vertical, derived, and hybrid.

DOI 10.1007/978-1-4419-8834-8_7, © Springer Science+Business Media, LLC 2011
221M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

222 7 Query Decomposition and Data Localization

7.1 Query Decomposition

Query decomposition (see Figure 6.3) is the first phase of query processing that
transforms a relational calculus query into a relational algebra query. Both input and
output queries refer to global relations, without knowledge of the distribution of data.
Therefore, query decomposition is the same for centralized and distributed systems.
In this section the input query is assumed to be syntactically correct. When this phase
is completed successfully the output query is semantically correct and good in the
sense that redundant work is avoided. The successive steps of query decomposition
are (1) normalization, (2) analysis, (3) elimination of redundancy, and (4) rewriting.
Steps 1, 3, and 4 rely on the fact that various transformations are equivalent for a
given query, and some can have better performance than others. We present the first
three steps in the context of tuple relational calculus (e.g., SQL). Only the last step
rewrites the query into relational algebra.

7.1.1 Normalization

The input query may be arbitrarily complex, depending on the facilities provided by
the language. It is the goal of normalization to transform the query to a normalized
form to facilitate further processing. With relational languages such as SQL, the
most important transformation is that of the query qualification (the WHERE clause),
which may be an arbitrarily complex, quantifier-free predicate, preceded by all
necessary quantifiers (∀ or ∃). There are two possible normal forms for the predicate,
one giving precedence to the AND (∧) and the other to the OR (∨). The conjunctive
normal form is a conjunction (∧ predicate) of disjunctions (∨ predicates) as follows:

(p11∨ p12∨·· ·∨ p1n)∧·· ·∧ (pm1∨ pm2∨·· ·∨ pmn)

where pi j is a simple predicate. A qualification in disjunctive normal form, on the
other hand, is as follows:

(p11∧ p12∧·· ·∧ p1n)∨·· ·∨ (pm1∧ pm2∧·· ·∧ pmn)

The transformation of the quantifier-free predicate is straightforward using the
well-known equivalence rules for logical operations (∧, ∨, and ¬):

1. p1∧ p2⇔ p2∧ p1

2. p1∨ p2⇔ p2∨ p1

3. p1∧ (p2∧ p3)⇔ (p1∧ p2)∧ p3

4. p1∨ (p2∨ p3)⇔ (p1∨ p2)∨ p3

5. p1∧ (p2∨ p3)⇔ (p1∧ p2)∨ (p1∧ p3)

6. p1∨ (p2∧ p3)⇔ (p1∨ p2)∧ (p1∨ p3)

7.1 Query Decomposition 223

7. ¬(p1∧ p2)⇔¬p1∨¬p2

8. ¬(p1∨ p2)⇔¬p1∧¬p2

9. ¬(¬p)⇔ p

In the disjunctive normal form, the query can be processed as independent con-
junctive subqueries linked by unions (corresponding to the disjunctions). However,
this form may lead to replicated join and select predicates, as shown in the following
example. The reason is that predicates are very often linked with the other predicates
by AND. The use of rule 5 mentioned above, with p1 as a join or select predicate,
would result in replicating p1. The conjunctive normal form is more practical since
query qualifications typically include more AND than OR predicates. However,
it leads to predicate replication for queries involving many disjunctions and few
conjunctions, a rare case.

Example 7.1. Let us consider the following query on the engineering database that
we have been referring to:

“Find the names of employees who have been working on project P1 for 12 or
24 months”

The query expressed in SQL is

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = "P1"
AND DUR = 12 OR DUR = 24

The qualification in conjunctive normal form is

EMP.ENO = ASG.ENO ∧ ASG.PNO = “P1” ∧ (DUR = 12 ∨ DUR = 24)

while the qualification in disjunctive normal form is

(EMP.ENO = ASG.ENO ∧ ASG.PNO = “P1” ∧ DUR = 12) ∨
(EMP.ENO = ASG.ENO ∧ ASG.PNO = “P1” ∧ DUR = 24)

In the latter form, treating the two conjunctions independently may lead to redun-
dant work if common subexpressions are not eliminated. �

7.1.2 Analysis

Query analysis enables rejection of normalized queries for which further processing
is either impossible or unnecessary. The main reasons for rejection are that the query

224 7 Query Decomposition and Data Localization

is type incorrect or semantically incorrect. When one of these cases is detected, the
query is simply returned to the user with an explanation. Otherwise, query processing
is continued. Below we present techniques to detect these incorrect queries.

A query is type incorrect if any of its attribute or relation names are not defined
in the global schema, or if operations are being applied to attributes of the wrong
type. The technique used to detect type incorrect queries is similar to type checking
for programming languages. However, the type declarations are part of the global
schema rather than of the query, since a relational query does not produce new types.

Example 7.2. The following SQL query on the engineering database is type incorrect
for two reasons. First, attribute E# is not declared in the schema. Second, the operation
“>200” is incompatible with the type string of ENAME.

SELECT E#
FROM EMP
WHERE ENAME > 200

�

A query is semantically incorrect if its components do not contribute in any way
to the generation of the result. In the context of relational calculus, it is not possible
to determine the semantic correctness of general queries. However, it is possible to
do so for a large class of relational queries, those which do not contain disjunction
and negation [Rosenkrantz and Hunt, 1980]. This is based on the representation of
the query as a graph, called a query graph or connection graph [Ullman, 1982]. We
define this graph for the most useful kinds of queries involving select, project, and
join operators. In a query graph, one node indicates the result relation, and any other
node indicates an operand relation. An edge between two nodes one of which does
not correspond to the result represents a join, whereas an edge whose destination
node is the result represents a project. Furthermore, a non-result node may be labeled
by a select or a self-join (join of the relation with itself) predicate. An important
subgraph of the query graph is the join graph, in which only the joins are considered.
The join graph is particularly useful in the query optimization phase.

Example 7.3. Let us consider the following query:

“Find the names and responsibilities of programmers who have been working on
the CAD/CAM project for more than 3 years.”

The query expressed in SQL is
SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

The query graph for the query above is shown in Figure 7.1a. Figure 7.1b shows
the join graph for the graph in Figure 7.1a. �

7.1 Query Decomposition 225

Fig. 7.1 Relation Graphs

The query graph is useful to determine the semantic correctness of a conjunctive
multivariable query without negation. Such a query is semantically incorrect if its
query graph is not connected. In this case one or more subgraphs (corresponding to
subqueries) are disconnected from the graph that contains the result relation. The
query could be considered correct (which some systems do) by considering the
missing connection as a Cartesian product. But, in general, the problem is that join
predicates are missing and the query should be rejected.

Example 7.4. Let us consider the following SQL query:

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

Its query graph, shown in Figure 7.2, is disconnected, which tells us that the query
is semantically incorrect. There are basically three solutions to the problem: (1) reject
the query, (2) assume that there is an implicit Cartesian product between relations
ASG and PROJ, or (3) infer (using the schema) the missing join predicate ASG.PNO
= PROJ.PNO which transforms the query into that of Example 7.3. �

(a) Query graph

DUR≥36

PNAME = "CAD/CAM"

ENAME

PROJ

ASG.PNO = PROJ.PNO

RESULT

TITLE =
"Programmer"

RESP

(b) Corresponding join graph

ASG.PNO = PROJ.PNOEMP.ENO = ASG.ENO ASG

EMP PROJ

ASG

EMP

EMP.ENO = ASG.ENO

226 7 Query Decomposition and Data Localization

PNAME = "CAD/CAM"

ENAME

EMP.ENO = ASG.ENO

TITLE =

"Programmer"
RESP

RESULT

DUR≥36

PROJ

ASG

EMP

Fig. 7.2 Disconnected Query Graph

7.1.3 Elimination of Redundancy

As we saw in Chapter 5, relational languages can be used uniformly for semantic data
control. In particular, a user query typically expressed on a view may be enriched
with several predicates to achieve view-relation correspondence, and ensure semantic
integrity and security. The enriched query qualification may then contain redundant
predicates. A naive evaluation of a qualification with redundancy can well lead to
duplicated work. Such redundancy and thus redundant work may be eliminated by
simplifying the qualification with the following well-known idempotency rules:

1. p∧ p⇔ p

2. p∨ p⇔ p

3. p∧ true⇔ p

4. p∨ f alse⇔ p

5. p∧ f alse⇔ f alse

6. p∨ true⇔ true

7. p∧¬p⇔ f alse

8. p∨¬p⇔ true

9. p1∧ (p1∨ p2)⇔ p1

10. p1∨ (p1∧ p2)⇔ p1

Example 7.5. The SQL query

7.1 Query Decomposition 227

SELECT TITLE
FROM EMP
WHERE (NOT (TITLE = "Programmer")
AND (TITLE = "Programmer"
OR TITLE = "Elect. Eng.")
AND NOT (TITLE = "Elect. Eng."))
OR ENAME = "J. Doe"

can be simplified using the previous rules to become

SELECT TITLE
FROM EMP
WHERE ENAME = "J. Doe"

The simplification proceeds as follows. Let p1 be TITLE = “Programmer”, p2 be
TITLE = “Elect. Eng.”, and p3 be ENAME = “J. Doe”. The query qualification is

(¬p1∧ (p1∨ p2)∧¬p2)∨ p3

The disjunctive normal form for this qualification is obtained by applying rule 5
defined in Section 7.1.1, which yields

(¬p1∧ ((p1∧¬p2)∨ (p2∧¬p2)))∨ p3

and then rule 3 defined in Section 7.1.1, which yields

(¬p1∧ p1∧¬p2)∨ (¬p1∧ p2∧¬p2)∨ p3

By applying rule 7 defined above, we obtain

(f alse∧¬p2)∨ (¬p1∧ f alse)∨ p3

By applying the same rule, we get

f alse∨ f alse∨ p3

which is equivalent to p3 by rule 4. �

7.1.4 Rewriting

The last step of query decomposition rewrites the query in relational algebra. For the
sake of clarity it is customary to represent the relational algebra query graphically by
an operator tree. An operator tree is a tree in which a leaf node is a relation stored in
the database, and a non-leaf node is an intermediate relation produced by a relational
algebra operator. The sequence of operations is directed from the leaves to the root,
which represents the answer to the query.

228 7 Query Decomposition and Data Localization

The transformation of a tuple relational calculus query into an operator tree can
easily be achieved as follows. First, a different leaf is created for each different
tuple variable (corresponding to a relation). In SQL, the leaves are immediately
available in the FROM clause. Second, the root node is created as a project operation
involving the result attributes. These are found in the SELECT clause in SQL. Third,
the qualification (SQL WHERE clause) is translated into the appropriate sequence
of relational operations (select, join, union, etc.) going from the leaves to the root.
The sequence can be given directly by the order of appearance of the predicates and
operators.

Example 7.6. The query

“Find the names of employees other than J. Doe who worked on the CAD/CAM
project for either one or two years” whose SQL expression is

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO = EMP.ENO
AND ASG.PNO = PROJ.PNO
AND ENAME != "J. Doe"
AND PROJ.PNAME = "CAD/CAM"
AND (DUR = 12 OR DUR = 24)

can be mapped in a straightforward way in the tree in Figure 7.3. The predicates have
been transformed in order of appearance as join and then select operations. �

By applying transformation rules, many different trees may be found equivalent
to the one produced by the method described above [Smith and Chang, 1975]. We
now present the six most useful equivalence rules, which concern the basic relational
algebra operators. The correctness of these rules has been proven [Ullman, 1982].

In the remainder of this section, R, S, and T are relations where R is defined over
attributes A = {A1,A2, . . . ,An} and S is defined over B = {B1,B2, . . . ,Bn}.

1. Commutativity of binary operators. The Cartesian product of two relations
R and S is commutative:

R×S⇔ S×R

Similarly, the join of two relations is commutative:

R 1 S⇔ S 1 R

This rule also applies to union but not to set difference or semijoin.

2. Associativity of binary operators. The Cartesian product and the join are
associative operators:

(R×S)×T ⇔ R× (S×T)

(R 1 S) 1 T ⇔ R 1 (S 1 T)

7.1 Query Decomposition 229

PROJ ASG EMP

project

select

join

PNO

Π
ENAME

σ
DUR=12 ∨ DUR=24

σ
PNAME=”CAD/CAM”

σ
ENAME≠”J. Doe”

ENO

Fig. 7.3 Example of Operator Tree

3. Idempotence of unary operators. Several subsequent projections on the
same relation may be grouped. Conversely, a single projection on several
attributes may be separated into several subsequent projections. If R is defined
over the attribute set A, and A′ ⊆ A,A′′ ⊆ A, and A′ ⊆ A′′, then

ΠA′(ΠA′′(R))⇔ΠA′(R)

Several subsequent selections σpi(Ai) on the same relation, where pi is a
predicate applied to attribute Ai, may be grouped as follows:

σp1(A1)(σp2(A2)(R)) = σp1(A1)∧p2(A2)(R)

Conversely, a single selection with a conjunction of predicates may be sepa-
rated into several subsequent selections.

4. Commuting selection with projection. Selection and projection on the same
relation can be commuted as follows:

ΠA1,...,An(σp(Ap)(R))⇔ΠA1,...,An(σp(Ap)(ΠA1,...,An,Ap(R)))

Note that if Ap is already a member of {A1, . . . ,An}, the last projection on
[A1, . . . ,An] on the right-hand side of the equality is useless.

5. Commuting selection with binary operators. Selection and Cartesian prod-
uct can be commuted using the following rule (remember that attribute Ai

230 7 Query Decomposition and Data Localization

belongs to relation R):

σp(Ai)(R×S)⇔ (σp(Ai)(R))×S

Selection and join can be commuted:

σp(Ai)(R 1p(A j ,Bk) S)⇔ σp(Ai)(R) 1p(A j ,Bk) S

Selection and union can be commuted if R and T are union compatible (have
the same schema):

σp(Ai)(R∪T)⇔ σp(Ai)(R)∪σp(Ai)(T)

Selection and difference can be commuted in a similar fashion.

6. Commuting projection with binary operators. Projection and Cartesian
product can be commuted. If C = A′∪B′, where A′ ⊆ A, B′ ⊆ B, and A and B
are the sets of attributes over which relations R and S, respectively, are defined,
we have

ΠC(R×S)⇔ΠA′(R)×ΠB′(S)

Projection and join can also be commuted.

ΠC(R 1p(Ai,B j) S)⇔ΠA′(R) 1p(Ai,B j) ΠB′(S)

For the join on the right-hand side of the implication to hold we need to
have Ai ∈ A′ and B j ∈ B′. Since C = A′∪B′, Ai and B j are in C and therefore
we don’t need a projection over C once the projections over A′ and B′ are
performed. Projection and union can be commuted as follows:

ΠC(R∪S)⇔ΠC(R)∪ΠC(S)

Projection and difference can be commuted similarly.

The application of these six rules enables the generation of many equivalent trees.
For instance, the tree in Figure 7.4 is equivalent to the one in Figure 7.3. However,
the one in Figure 7.4 requires a Cartesian product of relations EMP and PROJ, and
may lead to a higher execution cost than the original tree. In the optimization phase,
one can imagine comparing all possible trees based on their predicted cost. However,
the excessively large number of possible trees makes this approach unrealistic. The
rules presented above can be used to restructure the tree in a systematic way so that
the “bad” operator trees are eliminated. These rules can be used in four different
ways. First, they allow the separation of the unary operations, simplifying the query
expression. Second, unary operations on the same relation may be grouped so that
access to a relation for performing unary operations can be done only once. Third,
unary operations can be commuted with binary operations so that some operations
(e.g., selection) may be done first. Fourth, the binary operations can be ordered. This

7.2 Localization of Distributed Data 231

last rule is used extensively in query optimization. A simple restructuring algorithm
uses a single heuristic that consists of applying unary operations (select/project) as
soon as possible to reduce the size of intermediate relations [Ullman, 1982].

ASG

PROJEMP

x

PNO, ENO

Π
ENAME

σ
PNAME="CAD/CAM" ∧ (DUR=12 ∨ DUR=24) ∧ ENAME ≠ "J. Doe"

Fig. 7.4 Equivalent Operator Tree

Example 7.7. The restructuring of the tree in Figure 7.3 leads to the tree in Figure
7.5. The resulting tree is good in the sense that repeated access to the same relation
(as in Figure 7.3) is avoided and that the most selective operations are done first.
However, this tree is far from optimal. For example, the select operation on EMP
is not very useful before the join because it does not greatly reduce the size of the
operand relation. �

7.2 Localization of Distributed Data

In Section 7.1 we presented general techniques for decomposing and restructuring
queries expressed in relational calculus. These global techniques apply to both
centralized and distributed DBMSs and do not take into account the distribution
of data. This is the role of the localization layer. As shown in the generic layering
scheme of query processing described in Chapter 6, the localization layer translates
an algebraic query on global relations into an algebraic query expressed on physical
fragments. Localization uses information stored in the fragment schema.

Fragmentation is defined through fragmentation rules, which can be expressed
as relational queries. As we discussed in Chapter 3, a global relation can be recon-
structed by applying the reconstruction (or reverse fragmentation) rules and deriving
a relational algebra program whose operands are the fragments. We call this a lo-
calization program. To simplify this section, we do not consider the fact that data

232 7 Query Decomposition and Data Localization

EMPASGPROJ

PNO

ENO

Π
ENAME

Π
PNO,ENAME

Π
ENO,ENAME

Π
PNO,ENO

Π
PNO

σ
PNAME="CAD/CAM"

σ
ENAME≠"J. Doe"

σ
DUR=12 ∨ DUR=24

Fig. 7.5 Rewritten Operator Tree

fragments may be replicated, although this can improve performance. Replication is
considered in Chapter 8.

A naive way to localize a distributed query is to generate a query where each global
relation is substituted by its localization program. This can be viewed as replacing
the leaves of the operator tree of the distributed query with subtrees corresponding
to the localization programs. We call the query obtained this way the localized
query. In general, this approach is inefficient because important restructurings and
simplifications of the localized query can still be made [Ceri and Pelagatti, 1983;
Ceri et al., 1986]. In the remainder of this section, for each type of fragmentation we
present reduction techniques that generate simpler and optimized queries. We use the
transformation rules and the heuristics, such as pushing unary operations down the
tree, that were introduced in Section 7.1.4.

7.2.1 Reduction for Primary Horizontal Fragmentation

The horizontal fragmentation function distributes a relation based on selection predi-
cates. The following example is used in subsequent discussions.

Example 7.8. Relation EMP(ENO, ENAME, TITLE) of Figure 2.3 can be split into
three horizontal fragments EMP1, EMP2, and EMP3, defined as follows:

7.2 Localization of Distributed Data 233

EMP1 = σENO≤”E3”(EMP)
EMP2 = σ”E3”<ENO≤”E6”(EMP)
EMP3 = σENO>”E6”(EMP)

Note that this fragmentation of the EMP relation is different from the one discussed
in Example 3.12.

The localization program for an horizontally fragmented relation is the union of
the fragments. In our example we have

EMP = EMP1∪ EMP2∪ EMP3

Thus the localized form of any query specified on EMP is obtained by replacing it
by (EMP1∪ EMP2∪ EMP3. �

The reduction of queries on horizontally fragmented relations consists primarily of
determining, after restructuring the subtrees, those that will produce empty relations,
and removing them. Horizontal fragmentation can be exploited to simplify both
selection and join operations.

7.2.1.1 Reduction with Selection

Selections on fragments that have a qualification contradicting the qualification of
the fragmentation rule generate empty relations. Given a relation R that has been
horizontally fragmented as R1, R2, . . ., Rw, where R j = σp j (R), the rule can be stated
formally as follows:

Rule 1: σpi(R j) = φ if ∀x in R : ¬(pi(x)∧ p j(x))

where pi and p j are selection predicates, x denotes a tuple, and p(x) denotes “predi-
cate p holds for x.”

For example, the selection predicate ENO=“E1” conflicts with the predicates of
fragments EMP2 and EMP3 of Example 7.8 (i.e., no tuple in EMP2 and EMP3 can
satisfy this predicate). Determining the contradicting predicates requires theorem-
proving techniques if the predicates are quite general [Hunt and Rosenkrantz, 1979].
However, DBMSs generally simplify predicate comparison by supporting only simple
predicates for defining fragmentation rules (by the database administrator).

Example 7.9. We now illustrate reduction by horizontal fragmentation using the
following example query:

SELECT *
FROM EMP
WHERE ENO = "E5"

Applying the naive approach to localize EMP from EMP1, EMP2, and EMP3
gives the localized query of Figure 7.6a. By commuting the selection with the union
operation, it is easy to detect that the selection predicate contradicts the predicates of

234 7 Query Decomposition and Data Localization

(a) Localized query (b) Reduced query

EMP1 EMP2 EMP3 EMP2

∪

σ
ENO="E5"

σ
ENO="E5"

Fig. 7.6 Reduction for Horizontal Fragmentation (with Selection)

EMP1and EMP3, thereby producing empty relations. The reduced query is simply
applied to EMP2as shown in Figure 7.6b. �

7.2.1.2 Reduction with Join

Joins on horizontally fragmented relations can be simplified when the joined rela-
tions are fragmented according to the join attribute. The simplification consists of
distributing joins over unions and eliminating useless joins. The distribution of join
over union can be stated as:

(R1∪R2) 1 S = (R1 1 S)∪ (R2 1 S)

where Ri are fragments of R and S is a relation.
With this transformation, unions can be moved up in the operator tree so that

all possible joins of fragments are exhibited. Useless joins of fragments can be
determined when the qualifications of the joined fragments are contradicting, thus
yielding an empty result. Assuming that fragments Ri and R j are defined, respectively,
according to predicates pi and p j on the same attribute, the simplification rule can be
stated as follows:

Rule 2: Ri 1 R j = φ if ∀x in Ri,∀y in R j : ¬(pi(x)∧ p j(y))

The determination of useless joins and their elimination using rule 2 can thus
be performed by looking only at the fragment predicates. The application of this
rule permits the join of two relations to be implemented as parallel partial joins of
fragments [Ceri et al., 1986]. It is not always the case that the reduced query is better
(i.e., simpler) than the localized query. The localized query is better when there are
a large number of partial joins in the reduced query. This case arises when there
are few contradicting fragmentation predicates. The worst case occurs when each
fragment of one relation must be joined with each fragment of the other relation.
This is tantamount to the Cartesian product of the two sets of fragments, with each
set corresponding to one relation. The reduced query is better when the number of

7.2 Localization of Distributed Data 235

partial joins is small. For example, if both relations are fragmented using the same
predicates, the number of partial joins is equal to the number of fragments of each
relation. One advantage of the reduced query is that the partial joins can be done in
parallel, and thus increase response time.

Example 7.10. Assume that relation EMP is fragmented between EMP1, EMP2, and
EMP3, as above, and that relation ASG is fragmented as

ASG1 = σENO≤”E3”(ASG)
ASG2 = σENO>”E3”(ASG)

EMP1and ASG1are defined by the same predicate. Furthermore, the predicate
defining ASG2 is the union of the predicates defining EMP2 and EMP3. Now consider
the join query

SELECT *
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

The equivalent localized query is given in Figure 7.7a. The query reduced by
distributing joins over unions and applying rule 2 can be implemented as a union of
three partial joins that can be done in parallel (Figure 7.7b). �

7.2.2 Reduction for Vertical Fragmentation

The vertical fragmentation function distributes a relation based on projection attrib-
utes. Since the reconstruction operator for vertical fragmentation is the join, the
localization program for a vertically fragmented relation consists of the join of the
fragments on the common attribute. For vertical fragmentation, we use the following
example.

Example 7.11. Relation EMP can be divided into two vertical fragments where the
key attribute ENO is duplicated:

EMP1 = ΠENO,ENAME(EMP)
EMP2 = ΠENO,TITLE(EMP)

The localization program is

EMP = EMP1 1ENO EMP2
�

Similar to horizontal fragmentation, queries on vertical fragments can be reduced
by determining the useless intermediate relations and removing the subtrees that
produce them. Projections on a vertical fragment that has no attributes in common

236 7 Query Decomposition and Data Localization

ENO

EMP1 EMP2 EMP3 ASG1 ASG2

EMP1 ASG1 EMP2 ASG2 EMP3 ASG2

∪ ∪

(a) Localized query

∪

(b) Reduced query

ENO ENO ENO

Fig. 7.7 Reduction by Horizontal Fragmentation (with Join)

with the projection attributes (except the key of the relation) produce useless, though
not empty relations. Given a relation R, defined over attributes A = {A1, . . . ,An},
which is vertically fragmented as Ri =ΠA′(R), where A′ ⊆ A, the rule can be formally
stated as follows:

Rule 3: ΠD,K(Ri) is useless if the set of projection attributes D is not in A′.

Example 7.12. Let us illustrate the application of this rule using the following exam-
ple query in SQL:

SELECT ENAME
FROM EMP

The equivalent localized query on EMP1 and EMP2 (as obtained in Example 7.10)
is given in Figure 7.8a. By commuting the projection with the join (i.e., projecting on
ENO, ENAME), we can see that the projection on EMP2 is useless because ENAME
is not in EMP2. Therefore, the projection needs to apply only to EMP1, as shown in
Figure 7.8b. �

7.2 Localization of Distributed Data 237

(a) Localized query

EMP1EMP1

ENO

EMP2

Π
ENAME

Π
ENAME

(b) Reduced query

Fig. 7.8 Reduction for Vertical Fragmentation

7.2.3 Reduction for Derived Fragmentation

As we saw in previous sections, the join operation, which is probably the most impor-
tant operation because it is both frequent and expensive, can be optimized by using
primary horizontal fragmentation when the joined relations are fragmented according
to the join attributes. In this case the join of two relations is implemented as a union
of partial joins. However, this method precludes one of the relations from being frag-
mented on a different attribute used for selection. Derived horizontal fragmentation is
another way of distributing two relations so that the joint processing of select and join
is improved. Typically, if relation R is subject to derived horizontal fragmentation
due to relation S, the fragments of R and S that have the same join attribute values
are located at the same site. In addition, S can be fragmented according to a selection
predicate.

Since tuples of R are placed according to the tuples of S, derived fragmentation
should be used only for one-to-many (hierarchical) relationships of the form S→ R,
where a tuple of S can match with n tuples of R, but a tuple of R matches with exactly
one tuple of S. Note that derived fragmentation could be used for many-to-many
relationships provided that tuples of S (that match with n tuples of R) are replicated.
Such replication is difficult to maintain consistently. For simplicity, we assume and
advise that derived fragmentation be used only for hierarchical relationships.

Example 7.13. Given a one-to-many relationship from EMP to ASG, relation
ASG(ENO, PNO, RESP, DUR) can be indirectly fragmented according to the follow-
ing rules:

ASG1 = ASG nENO EMP1

ASG2 = ASG nENO EMP2

Recall from Chapter 3 that the predicate on

EMP1 = σTITLE=”Programmer”(EMP)
EMP2 = σTITLE6=”Programmer”(EMP)

238 7 Query Decomposition and Data Localization

The localization program for a horizontally fragmented relation is the union of the
fragments. In our example, we have

ASG = ASG1∪ ASG2
�

Queries on derived fragments can also be reduced. Since this type of fragmentation
is useful for optimizing join queries, a useful transformation is to distribute joins
over unions (used in the localization programs) and to apply rule 2 introduced earlier.
Because the fragmentation rules indicate what the matching tuples are, certain joins
will produce empty relations if the fragmentation predicates conflict. For example,
the predicates of ASG1 and EMP2 conflict; thus we have

ASG1 1 EMP2 = φ

Contrary to the reduction with join discussed previously, the reduced query is always
preferable to the localized query because the number of partial joins usually equals
the number of fragments of R.

Example 7.14. The reduction by derived fragmentation is illustrated by applying it
to the following SQL query, which retrieves all attributes of tuples from EMP and
ASG that have the same value of ENO and the title “Mech. Eng.”:

SELECT *
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO
AND TITLE = "Mech. Eng."

The localized query on fragments EMP1, EMP2, ASG1, and ASG2, defined
previously is given in Figure 7.9a. By pushing selection down to fragments EMP1
and EMP2, the query reduces to that of Figure 7.9b. This is because the selection
predicate conflicts with that of EMP1, and thus EMP1 can be removed. In order to
discover conflicting join predicates, we distribute joins over unions. This produces
the tree of Figure 7.9c. The left subtree joins two fragments, ASG1 and EMP2, whose
qualifications conflict because of predicates TITLE = “Programmer” in ASG1, and
TITLE 6= “Programmer” in EMP2. Therefore the left subtree which produces an
empty relation can be removed, and the reduced query of Figure 7.9d is obtained.
This example illustrates the value of fragmentation in improving the execution
performance of distributed queries. �

7.2.4 Reduction for Hybrid Fragmentation

Hybrid fragmentation is obtained by combining the fragmentation functions discussed
above. The goal of hybrid fragmentation is to support, efficiently, queries involving
projection, selection, and join. Note that the optimization of an operation or of a

7.2 Localization of Distributed Data 239

(a) Localized query

(b) Query after pushing selection down

(c) Query after moving unions up

(d) Reduced query after eliminating the left subtree

∪

ASG1 EMP1

ENO

ASG2 EMP2

σ
TITLE=”Mech. Eng.”

∪
∪

ASG1 EMP2 EMP2
ASG2

σ
TITLE=”Mech. Eng.”σ

TITLE=”Mech. Eng.”

ENO ENO

ASG2
EMP2

σ
TITLE=”Mech. Eng.”

ENO

ASG1 ASG2 EMP2

∪ σ
TITLE=”Mech. Eng.”

ENO

Fig. 7.9 Reduction for Indirect Fragmentation

combination of operations is always done at the expense of other operations. For
example, hybrid fragmentation based on selection-projection will make selection
only, or projection only, less efficient than with horizontal fragmentation (or vertical
fragmentation). The localization program for a hybrid fragmented relation uses
unions and joins of fragments.

Example 7.15. Here is an example of hybrid fragmentation of relation EMP:

EMP1 = σENO≤”E4”(ΠENO,ENAME(EMP))
EMP2 = σENO>”E4”(ΠENO,ENAME(EMP))
EMP3 = ΠENO,TITLE(EMP)

240 7 Query Decomposition and Data Localization

In our example, the localization program is

EMP = (EMP1 ∪ EMP2) 1ENO EMP3
�

Queries on hybrid fragments can be reduced by combining the rules used, respec-
tively, in primary horizontal, vertical, and derived horizontal fragmentation. These
rules can be summarized as follows:

1. Remove empty relations generated by contradicting selections on horizontal
fragments.

2. Remove useless relations generated by projections on vertical fragments.

3. Distribute joins over unions in order to isolate and remove useless joins.

Example 7.16. The following example query in SQL illustrates the application of
rules (1) and (2) to the horizontal-vertical fragmentation of relation EMP into EMP1,
EMP2 and EMP3 given above:

SELECT ENAME
FROM EMP
WHERE ENO="E5"

The localized query of Figure 7.10a can be reduced by first pushing selection
down, eliminating fragment EMP1, and then pushing projection down, eliminating
fragment EMP3. The reduced query is given in Figure 7.10b. �

(b) Reduced query(a) Localized query

EMP1

ENO

EMP2 EMP3

EMP2

Π
ENAME

Π
ΕΝΑΜΕ

σ
ENO=”E5”

σ
ENO=”E5”

∪

Fig. 7.10 Reduction for Hybrid Fragmentation

7.4 Bibliographic NOTES 241

7.3 Conclusion

In this chapter we focused on the techniques for query decomposition and data
localization layers of the localized query processing scheme that was introduced in
Chapter 6. Query decomposition and data localization are the two successive func-
tions that map a calculus query, expressed on distributed relations, into an algebraic
query (query decomposition), expressed on relation fragments (data localization).

These two layers can produce a localized query corresponding to the input query
in a naive way. Query decomposition can generate an algebraic query simply by
translating into relational operations the predicates and the target statement as they
appear. Data localization can, in turn, express this algebraic query on relation frag-
ments, by substituting for each distributed relation an algebraic query corresponding
to its fragmentation rules.

Many algebraic queries may be equivalent to the same input query. The queries
produced with the naive approach are inefficient in general, since important simplifi-
cations and optimizations have been missed. Therefore, a localized query expression
is restructured using a few transformation rules and heuristics. The rules enable
separation of unary operations, grouping of unary operations on the same relation,
commuting of unary operations with binary operations, and permutation of the binary
operations. Examples of heuristics are to push selections down the tree and do projec-
tion as early as possible. In addition to the transformation rules, data localization uses
reduction rules to simplify the query further, and therefore optimize it. Two main
types of rules may be used. The first one avoids the production of empty relations
which are generated by contradicting predicates on the same relation(s). The second
type of rule determines which fragments yield useless attributes.

The query produced by the query decomposition and data localization layers is
good in the sense that the worse executions are avoided. However, the subsequent
layers usually perform important optimizations, as they add to the query increasing
detail about the processing environment. In particular, quantitative information re-
garding fragments has not yet been exploited. This information will be used by the
query optimization layer for selecting an “optimal” strategy to execute the query.
Query optimization is the subject of Chapter 8.

7.4 Bibliographic NOTES

Traditional techniques for query decomposition are surveyed in [Jarke and Koch,
1984]. Techniques for semantic analysis and simplification of queries have their
origins in [Rosenkrantz and Hunt, 1980]. The notion of query graph or connection
graph is introduced in [Ullman, 1982]. The notion of query tree, which we called
operator tree in this chapter, and the transformation rules to manipulate algebraic
expressions have been introduced by Smith and Chang [1975] and developed in
[Ullman, 1982]. Proofs of completeness and correctness of the rules are given in the
latter reference.

242 7 Query Decomposition and Data Localization

Data localization is treated in detail in [Ceri and Pelagatti, 1983] for horizontally
partitioned relations which are referred to as multirelations. In particular, an algebra
of qualified relations is defined as an extension of relation algebra, where a qualified
relation is a relation name and the qualification of the fragment. Proofs of correctness
and completeness of equivalence transformations between expressions of algebra of
qualified relations are also given. The formal properties of horizontal and vertical
fragmentation are used in [Ceri et al., 1986] to characterize distributed joins over
fragmented relations.

Exercises

Problem 7.1. Simplify the following query, expressed in SQL, on our example
database using idempotency rules:

SELECT ENO
FROM ASG
WHERE RESP = "Analyst"
AND NOT(PNO="P2" OR DUR=12)
AND PNO != "P2"
AND DUR=12

Problem 7.2. Give the query graph of the following query, in SQL, on our example
database:

SELECT ENAME, PNAME
FROM EMP, ASG, PROJ
WHERE DUR > 12
AND EMP.ENO = ASG.ENO
AND PROJ.PNO = ASG.PNO

and map it into an operator tree.

Problem 7.3 (*). Simplify the following query:

SELECT ENAME, PNAME
FROM EMP, ASG, PROJ
WHERE (DUR > 12 OR RESP = "Analyst")
AND EMP.ENO = ASG.ENO
AND (TITLE = "Elect. Eng."
OR ASG.PNO < "P3")
AND (DUR > 12 OR RESP NOT= "Analyst")
AND ASG.PNO = PROJ.PNO

and transform it into an optimized operator tree using the restructuring algorithm
(Section 7.1.4) where select and project operations are applied as soon as possible to
reduce the size of intermediate relations.

Problem 7.4 (*). Transform the operator tree of Figure 7.5 back to the tree of Figure
7.3 using the restructuring algorithm. Describe each intermediate tree and show
which rule the transformation is based on.

7.4 Bibliographic NOTES 243

Problem 7.5 (**). Consider the following query on our Engineering database:

SELECT ENAME,SAL
FROM EMP,PROJ,ASG,PAY
WHERE EMP.ENO = ASG.ENO
AND EMP.TITLE = PAY.TITLE
AND (BUDGET>200000 OR DUR>24)
AND ASG.PNO = PROJ.PNO
AND (DUR>24 OR PNAME = "CAD/CAM")

Compose the selection predicate corresponding to the WHERE clause and transform
it, using the idempotency rules, into the simplest equivalent form. Furthermore,
compose an operator tree corresponding to the query and transform it, using relational
algebra transformation rules, to three equivalent forms.

Problem 7.6. Assume that relation PROJ of the sample database is horizontally
fragmented as follows:

PROJ1 = σPNO≤”P2” (PROJ)
PROJ2 = σPNO>”P2” (PROJ)

Transform the following query into a reduced query on fragments:

SELECT ENO, PNAME
FROM PROJ,ASG
WHERE PROJ.PNO = ASG.PNO
AND PNO = "P4"

Problem 7.7 (*). Assume that relation PROJ is horizontally fragmented as in Prob-
lem 7.6, and that relation ASG is horizontally fragmented as

ASG1 = σPNO≤”P2” (ASG)
ASG2 = σ”P2”<PNO≤”P3” (ASG)
ASG3 = σPNO>”P3” (ASG)

Transform the following query into a reduced query on fragments, and determine
whether it is better than the localized query:

SELECT RESP, BUDGET
FROM ASG, PROJ
WHERE ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"

Problem 7.8 (**). Assume that relation PROJ is fragmented as in Problem 7.6.
Furthermore, relation ASG is indirectly fragmented as

ASG1 = ASG nPNO PROJ1

ASG2 = ASG nPNO PROJ2

and relation EMP is vertically fragmented as

244 7 Query Decomposition and Data Localization

EMP1 = ΠENO,ENAME (EMP)
EMP2 = ΠENO,TITLE (EMP)

Transform the following query into a reduced query on fragments:

SELECT ENAME
FROM EMP,ASG,PROJ
WHERE PROJ.PNO = ASG.PNO
AND PNAME = "Instrumentation"
AND EMP.ENO = ASG.ENO

	Chapter 7:
Query Decomposition and Data Localization

	7.1 Query Decomposition

	7.1.1 Normalization

	7.1.2 Analysis

	7.1.3 Elimination of Redundancy

	7.1.4 Rewriting

	7.2 Localization of Distributed Data

	7.2.1 Reduction for Primary Horizontal Fragmentation

	7.2.2 Reduction for Vertical Fragmentation

	7.2.3 Reduction for Derived Fragmentation

	7.2.4 Reduction for Hybrid Fragmentation

	7.3 Conclusion

	7.4 Bibliographic NOTES

