
Chapter 5
Data and Access Control

An important requirement of a centralized or a distributed DBMS is the ability to
support semantic data control, i.e., data and access control using high-level semantics.
Semantic data control typically includes view management, security control, and
semantic integrity control. Informally, these functions must ensure that authorized
users perform correct operations on the database, contributing to the maintenance of
database integrity. The functions necessary for maintaining the physical integrity of
the database in the presence of concurrent accesses and failures are studied separately
in Chapters 10 through 12 in the context of transaction management. In the relational
framework, semantic data control can be achieved in a uniform fashion. Views,
security constraints, and semantic integrity constraints can be defined as rules that the
system automatically enforces. The violation of some rules by a user program (a set
of database operations) generally implies the rejection of the effects of that program
(e.g., undoing its updates) or propagating some effects (e.g., updating related data) to
preserve the database integrity.

The definition of the rules for controlling data manipulation is part of the adminis-
tration of the database, a function generally performed by a database administrator
(DBA). This person is also in charge of applying the organizational policies. Well-
known solutions for semantic data control have been proposed for centralized DBMSs.
In this chapter we briefly review the centralized solution to semantic data control, and
present the special problems encountered in a distributed environment and solutions
to these problems. The cost of enforcing semantic data control, which is high in terms
of resource utilization in a centralized DBMS, can be prohibitive in a distributed
environment.

Since the rules for semantic data control must be stored in a catalog, the manage-
ment of a distributed directory (also called a catalog) is also relevant in this chapter.
We discussed directories in Section 3.5. Remember that the directory of a distributed
DBMS is itself a distributed database. There are several ways to store semantic
data control definitions, according to the way the directory is managed. Directory
information can be stored differently according to its type; in other words, some
information might be fully replicated whereas other information might be distributed.
For example, information that is useful at compile time, such as security control

171
DOI 10.1007/978-1-4419-8834-8_5, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

172 5 Data and Access Control

information, could be replicated. In this chapter we emphasize the impact of directory
management on the performance of semantic data control mechanisms.

This chapter is organized as follows. View management is the subject of Section
5.1. Security control is presented in Section 5.2. Finally, semantic integrity control is
treated in Section 5.3. For each section we first outline the solution in a centralized
DBMS and then give the distributed solution, which is often an extension of the
centralized one, although more difficult.

5.1 View Management

One of the main advantages of the relational model is that it provides full logical
data independence. As introduced in Chapter 1, external schemas enable user groups
to have their particular view of the database. In a relational system, a view is a virtual
relation, defined as the result of a query on base relations (or real relations), but not
materialized like a base relation, which is stored in the database. A view is a dynamic
window in the sense that it reflects all updates to the database. An external schema
can be defined as a set of views and/or base relations. Besides their use in external
schemas, views are useful for ensuring data security in a simple way. By selecting a
subset of the database, views hide some data. If users may only access the database
through views, they cannot see or manipulate the hidden data, which are therefore
secure.

In the remainder of this section we look at view management in centralized
and distributed systems as well as the problems of updating views. Note that in
a distributed DBMS, a view can be derived from distributed relations, and the
access to a view requires the execution of the distributed query corresponding to
the view definition. An important issue in a distributed DBMS is to make view
materialization efficient. We will see how the concept of materialized views helps in
solving this problem, among others, but requires efficient techniques for materialized
view maintenance.

5.1.1 Views in Centralized DBMSs

Most relational DBMSs use a view mechanism where a view is a relation derived
from base relations as the result of a relational query (this was first proposed within
the INGRES [Stonebraker, 1975] and System R [Chamberlin et al., 1975] projects).
It is defined by associating the name of the view with the retrieval query that specifies
it.

Example 5.1. The view of system analysts (SYSAN) derived from relation EMP
(ENO,ENAME,TITLE), can be defined by the following SQL query:

5.1 View Management 173

Fig. 5.1 Relation Corresponding to the View SYSAN

CREATE VIEW SYSAN(ENO, ENAME)
AS SELECT ENO, ENAME

FROM EMP
WHERE TITLE = "Syst. Anal."

�

The single effect of this statement is the storage of the view definition in the
catalog. No other information needs to be recorded. Therefore, the result of the query
defining the view (i.e., a relation having the attributes ENO and ENAME for the
system analysts as shown in Figure 5.1) is not produced. However, the view SYSAN
can be manipulated as a base relation.

Example 5.2. The query

“Find the names of all the system analysts with their project number and respon-
sibility(ies)”

involving the view SYSAN and relation ASG(ENO,PNO,RESP,DUR) can be ex-
pressed as

SELECT ENAME, PNO, RESP
FROM SYSAN, ASG
WHERE SYSAN.ENO = ASG.ENO

�

Mapping a query expressed on views into a query expressed on base relations can
be done by query modification [Stonebraker, 1975]. With this technique the variables
are changed to range on base relations and the query qualification is merged (ANDed)
with the view qualification.

Example 5.3. The preceding query can be modified to

SELECT ENAME, PNO, RESP
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND TITLE = "Syst. Anal."

The result of this query is illustrated in Figure 5.2. �

174 5 Data and Access Control

The modified query is expressed on base relations and can therefore be processed
by the query processor. It is important to note that view processing can be done at
compile time. The view mechanism can also be used for refining the access controls
to include subsets of objects. To specify any user from whom one wants to hide data,
the keyword USER generally refers to the logged-on user identifier.

ENAME PNO RESP

M.Smith P1 Analyst

M.Smith P2 Analyst

B.Casey P3 Manager

J.Jones P4 Manager

Fig. 5.2 Result of Query involving View SYSAN

Example 5.4. The view ESAME restricts the access by any user to those employees
having the same title:

CREATE VIEW ESAME
AS SELECT *

FROM EMP E1, EMP E2
WHERE E1.TITLE = E2.TITLE
AND E1.ENO = USER

In the view definition above, * stands for “all attributes” and the two tuple variables
(E1 and E2) ranging over relation EMP are required to express the join of one tuple
of EMP (the one corresponding to the logged-on user) with all tuples of EMP based
on the same title. For example, the following query issued by the user J. Doe,

SELECT *
FROM ESAME

returns the relation of Figure 5.3. Note that the user J. Doe also appears in the result.
If the user who creates ESAME is an electrical engineer, as in this case, the view
represents the set of all electrical engineers. �

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E2 L. Chu Elect. Eng

Fig. 5.3 Result of Query on View ESAME

5.1 View Management 175

Views can be defined using arbitrarily complex relational queries involving selec-
tion, projection, join, aggregate functions, and so on. All views can be interrogated
as base relations, but not all views can be manipulated as such. Updates through
views can be handled automatically only if they can be propagated correctly to the
base relations. We can classify views as being updatable and not updatable. A view
is updatable only if the updates to the view can be propagated to the base relations
without ambiguity. The view SYSAN above is updatable; the insertion, for example,
of a new system analyst 〈201, Smith〉 will be mapped into the insertion of a new
employee 〈201, Smith, Syst. Anal.〉. If attributes other than TITLE were hidden by
the view, they would be assigned null values.

Example 5.5. The following view, however, is not updatable:

CREATE VIEW EG(ENAME, RESP)
AS SELECT DISTINCT ENAME, RESP

FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

The deletion, for example, of the tuple 〈Smith, Analyst〉 cannot be propagated,
since it is ambiguous. Deletions of Smith in relation EMP or analyst in relation ASG
are both meaningful, but the system does not know which is correct. �

Current systems are very restrictive about supporting updates through views.
Views can be updated only if they are derived from a single relation by selection and
projection. This precludes views defined by joins, aggregates, and so on. However, it
is theoretically possible to automatically support updates of a larger class of views
[Bancilhon and Spyratos, 1981; Dayal and Bernstein, 1978; Keller, 1982]. It is
interesting to note that views derived by join are updatable if they include the keys of
the base relations.

5.1.2 Views in Distributed DBMSs

The definition of a view is similar in a distributed DBMS and in centralized systems.
However, a view in a distributed system may be derived from fragmented relations
stored at different sites. When a view is defined, its name and its retrieval query are
stored in the catalog.

Since views may be used as base relations by application programs, their definition
should be stored in the directory in the same way as the base relation descriptions.
Depending on the degree of site autonomy offered by the system [Williams et al.,
1982], view definitions can be centralized at one site, partially duplicated, or fully
duplicated. In any case, the information associating a view name to its definition site
should be duplicated. If the view definition is not present at the site where the query
is issued, remote access to the view definition site is necessary.

The mapping of a query expressed on views into a query expressed on base
relations (which can potentially be fragmented) can also be done in the same way as

176 5 Data and Access Control

in centralized systems, that is, through query modification. With this technique, the
qualification defining the view is found in the distributed database catalog and then
merged with the query to provide a query on base relations. Such a modified query is
a distributed query, which can be processed by the distributed query processor (see
Chapter 6). The query processor maps the distributed query into a query on physical
fragments.

In Chapter 3 we presented alternative ways of fragmenting base relations. The
definition of fragmentation is, in fact, very similar to the definition of particular views.
It is possible to manage views and fragments using a unified mechanism [Adiba,
1981]. This is based on the observation that views in a distributed DBMS can
be defined with rules similar to fragment definition rules. Furthermore, replicated
data can be handled in the same way. The value of such a unified mechanism is
to facilitate distributed database administration. The objects manipulated by the
database administrator can be seen as a hierarchy where the leaves are the fragments
from which relations and views can be derived. Therefore, the DBA may increase
locality of reference by making views in one-to-one correspondence with fragments.
For example, it is possible to implement the view SYSAN illustrated in Example 5.1
by a fragment at a given site, provided that most users accessing the view SYSAN
are at the same site.

Evaluating views derived from distributed relations may be costly. In a given orga-
nization it is likely that many users access the same view which must be recomputed
for each user. We saw in Section 5.1.1 that view derivation is done by merging the
view qualification with the query qualification. An alternative solution is to avoid
view derivation by maintaining actual versions of the views, called materialized
views. A materialized view stores the tuples of a view in a database relation, like the
other database tuples, possibly with indices. Thus, access to a materialized view is
much faster than deriving the view, in particular, in a distributed DBMS where base
relations can be remote. Introduced in the early 1980s [Adiba and Lindsay, 1980],
materialized views have since gained much interest in the context of data warehous-
ing to speed up On Line Analytical Processing (OLAP) applications [Gupta and
Mumick, 1999c]. Materialized views in data warehouses typically involve aggregate
(such as SUM and COUNT) and grouping (GROUP BY) operators because they
provide compact database summaries. Today, all major database products support
materialized views.

Example 5.6. The following view over relation PROJ(PNO,PNAME,BUDGET,LOC)
gives, for each location, the number of projects and the total budget.

CREATE VIEW PL(LOC, NBPROJ, TBUDGET)
AS SELECT LOC, COUNT(*),SUM(BUDGET)

FROM PROJ
GROUP BY LOC

�

5.1 View Management 177

5.1.3 Maintenance of Materialized Views

A materialized view is a copy of some base data and thus must be kept consistent with
that base data which may be updated. View maintenance is the process of updating
(or refreshing) a materialized view to reflect the changes made to the base data. The
issues related to view materialization are somewhat similar to those of database
replication which we will address in Chapter 13. However, a major difference is
that materialized view expressions, in particular, for data warehousing, are typically
more complex than replica definitions and may include join, group by and aggregate
operators. Another major difference is that database replication is concerned with
more general replication configurations, e.g., with multiple copies of the same base
data at multiple sites.

A view maintenance policy allows a DBA to specify when and how a view should
be refreshed. The first question (when to refresh) is related to consistency (between
the view and the base data) and efficiency. A view can be refreshed in two modes:
immediate or deferred. With the immediate mode, a view is refreshed immediately
as part as the transaction that updates base data used by the view. If the view and the
base data are managed by different DBMSs, possibly at different sites, this requires
the use of a distributed transaction, for instance, using the two-phase commit (2PC)
protocol (see Chapter 12). The main advantages of immediate refreshment are that
the view is always consistent with the base data and that read-only queries can be
fast. However, this is at the expense of increased transaction time to update both the
base data and the views within the same transactions. Furthermore, using distributed
transactions may be difficult.

In practice, the deferred mode is preferred because the view is refreshed in
separate (refresh) transactions, thus without performance penalty on the transactions
that update the base data. The refresh transactions can be triggered at different times:
lazily, just before a query is evaluated on the view; periodically, at predefined times,
e.g., every day; or forcedly, after a predefined number of updates to the base data.
Lazy refreshment enables queries to see the latest consistent state of the base data but
at the expense of increased query time to include the refreshment of the view. Periodic
and forced refreshment allow queries to see views whose state is not consistent with
the latest state of the base data. The views managed with these strategies are also
called snapshots [Adiba, 1981; Blakeley et al., 1986].

The second question (how to refresh a view) is an important efficiency issue. The
simplest way to refresh a view is to recompute it from scratch using the base data.
In some cases, this may be the most efficient strategy, e.g., if a large subset of the
base data has been changed. However, there are many cases where only a small
subset of view needs to be changed. In these cases, a better strategy is to compute
the view incrementally, by computing only the changes to the view. Incremental
view maintenance relies on the concept of differential relation. Let u be an update
of relation R. R+ and R− are differential relations of R by u, where R+ contains the
tuples inserted by u into R, and R− contains the tuples of R deleted by u. If u is an
insertion, R− is empty. If u is a deletion, R+ is empty. Finally, if u is a modification,
relation R can be obtained by computing (R−R−)∪R+. Similarly, a materialized

178 5 Data and Access Control

view V can be refreshed by computing (V −V−)∪V+. Computing the changes to the
view, i.e., V+ and V−, may require using the base relations in addition to differential
relations.

Example 5.7. Consider the view EG of Example 5.5 which uses relations EMP and
ASG as base data and assume its state is derived from that of Example 3.1, so that
EG has 9 tuples (see Figure 5.4). Let EMP+ consist of one tuple 〈E9, B. Martin,
Programmer〉 to be inserted in EMP, and ASG+ consist of two tuples 〈E4, P3,
Programmer, 12〉 and 〈E9, P3, Programmer, 12〉 to be inserted in ASG. The changes
to the view EG can be computed as:

EG+ = (SELECT ENAME, RESP
FROM EMP, ASG+
WHERE EMP.ENO = ASG+.ENO)

UNION
(SELECT ENAME, RESP
FROM EMP+, ASG
WHERE EMP+.ENO = ASG.ENO)

UNION
(SELECT ENAME, RESP
FROM EMP+, ASG+
WHERE EMP+.ENO = ASG+.ENO)

which yields tuples 〈B. Martin, Programmer〉 and 〈J. Miller, Programmer〉. Note that
integrity constraints would be useful here to avoid useless work (see Section 5.3.2).
Assuming that relations EMP and ASG are related by a referential constraint that
says that ENO in ASG must exist in EMP, the second SELECT statement is useless
as it produces an empty relation. �

ENAME RESP

EG

J. Doe Manager

M. Smith Analyst

A. Lee Consultant

A. Lee Engineer

J. Miller Programmer

B. Casey Manager

L. Chu Manager

R. Davis Engineer

J.Jones Manager

Fig. 5.4 State of View EG

Efficient techniques have been devised to perform incremental view maintenance
using both the materialized views and the base relations. The techniques essen-
tially differ in their views’ expressiveness, their use of integrity constraints, and
the way they handle insertion and deletion. Gupta and Mumick [1999a] classify

5.1 View Management 179

these techniques along the view expressiveness dimension as non-recursive views,
views involving outerjoins, and recursive views. For non-recursive views, i.e., select-
project-join (SPJ) views that may have duplicate elimination, union and aggregation,
an elegant solution is the counting algorithm [Gupta et al., 1993]. One problem stems
from the fact that individual tuples in the view may be derived from several tuples
in the base relations, thus making deletion in the view difficult. The basic idea of
the counting algorithm is to maintain a count of the number of derivations for each
tuple in the view, and to increment (resp. decrement) tuple counts based on insertions
(resp. deletions); a tuple in the view of which count is zero can then be deleted.

Example 5.8. Consider the view EG in Figure 5.4. Each tuple in EG has one deriva-
tion (i.e., a count of 1) except tuple 〈M. Smith, Analyst〉 which has two (i.e., a count
of 2). Assume now that tuples 〈E2, P1, Analyst, 24〉 and 〈E3, P3, Consultant, 10〉 are
deleted from ASG. Then only tuple 〈A. Lee, Consultant〉 needs to be deleted from
EG. �

We now present the basic counting algorithm for refreshing a view V defined
over two relations R and S as a query q(R,S). Assuming that each tuple in V has
an associated derivation count, the algorithm has three main steps (see Algorithm
5.1). First, it applies the view differentiation technique to formulate the differential
views V+ and V− as queries over the view, the base relations, and the differential
relations. Second, it computes V+ and V− and their tuple counts. Third, it applies the
changes V+ and V− in V by adding positive counts and subtracting negative counts,
and deleting tuples with a count of zero.

Algorithm 5.1: COUNTING Algorithm
Input: V : view defined as q(R,S); R, S: relations; R+, R−: changes to R
begin

V+ = q+(V, R+, R, S);
V− = q−(V, R−, R, S) ;
compute V+ with positive counts for inserted tuples;
compute V− with negative counts for deleted tuples;
compute (V −V−)∪V+ by adding positive counts and substracting
negative counts deleting each tuple in V with count = 0;

end

The counting algorithm is optimal since it computes exactly the view tuples
that are inserted or deleted. However, it requires access to the base relations. This
implies that the base relations be maintained (possibly as replicas) at the sites of the
materialized view. To avoid accessing the base relations so the view can be stored at a
different site, the view should be maintainable using only the view and the differential
relations. Such views are called self-maintainable [Gupta et al., 1996].

180 5 Data and Access Control

Example 5.9. Consider the view SYSAN in Example 5.1. Let us write the view
definition as SYSAN=q(EMP) meaning that the view is defined by a query q on
EMP. We can compute the differential views using only the differential relations,
i.e., SYSAN+ = q(EMP+) and SYSAN− = q(EMP−). Thus, the view SYSAN is
self-maintainable. �

Self-maintainability depends on the views’ expressiveness and can be defined
with respect to the kind of updates (insertion, deletion or modification) [Gupta et al.,
1996]. Most SPJ views are not self-maintainable with respect to insertion but are often
self-maintainable with respect to deletion and modification. For instance, an SPJ
view is self-maintainable with respect to deletion of relation R if the key attributes of
R are included in the view.

Example 5.10. Consider the view EG of Example 5.5. Let us add attribute ENO
(which is key of EMP) in the view definition. This view is not self-maintainable with
respect to insertion. For instance, after an insertion of an ASG tuple, we need to
perform the join with EMP to get the corresponding ENAME to insert in the view.
However, this view is self-maintainable with respect to deletion on EMP. For instance,
if one EMP tuple is deleted, the view tuples having same ENO can be deleted. �

5.2 Data Security

Data security is an important function of a database system that protects data against
unauthorized access. Data security includes two aspects: data protection and access
control.

Data protection is required to prevent unauthorized users from understanding the
physical content of data. This function is typically provided by file systems in the
context of centralized and distributed operating systems. The main data protection
approach is data encryption [Fernandez et al., 1981], which is useful both for in-
formation stored on disk and for information exchanged on a network. Encrypted
(encoded) data can be decrypted (decoded) only by authorized users who “know” the
code. The two main schemes are the Data Encryption Standard [NBS, 1977] and
the public-key encryption schemes ([Diffie and Hellman, 1976] and [Rivest et al.,
1978]). In this section we concentrate on the second aspect of data security, which
is more specific to database systems. A complete presentation of database security
techniques can be found in [Castano et al., 1995].

Access control must guarantee that only authorized users perform operations they
are allowed to perform on the database. Many different users may have access to
a large collection of data under the control of a single centralized or distributed
system. The centralized or distributed DBMS must thus be able to restrict the access
of a subset of the database to a subset of the users. Access control has long been
provided by operating systems, and more recently, by distributed operating systems
[Tanenbaum, 1995] as services of the file system. In this context, a centralized
control is offered. Indeed, the central controller creates objects, and this person may

5.2 Data Security 181

allow particular users to perform particular operations (read, write, execute) on these
objects. Also, objects are identified by their external names.

Access control in database systems differs in several aspects from that in tra-
ditional file systems. Authorizations must be refined so that different users have
different rights on the same database objects. This requirement implies the ability to
specify subsets of objects more precisely than by name and to distinguish between
groups of users. In addition, the decentralized control of authorizations is of partic-
ular importance in a distributed context. In relational systems, authorizations can
be uniformly controlled by database administrators using high-level constructs. For
example, controlled objects can be specified by predicates in the same way as is a
query qualification.

There are two main approaches to database access control [Lunt and Fernández,
1990]. The first approach is called discretionary and has long been provided by
DBMS. Discretionary access control (or authorization control) defines access rights
based on the users, the type of access (e.g., SELECT, UPDATE) and the objects to be
accessed. The second approach, called mandatory or multilevel [Lunt and Fernández,
1990; Jajodia and Sandhu, 1991] further increases security by restricting access to
classified data to cleared users. Support of multilevel access control by major DBMSs
is more recent and stems from increased security threats coming from the Internet.

From solutions to access control in centralized systems, we derive those for
distributed DBMSs. However, there is the additional complexity which stems from
the fact that objects and users can be distributed. In what follows we first present
discretionary and multilevel access control in centralized systems and then the
additional problems and their solutions in distributed systems.

5.2.1 Discretionary Access Control

Three main actors are involved in discretionary access control control: the subject
(e.g., users, groups of users) who trigger the execution of application programs; the
operations, which are embedded in application programs; and the database objects,
on which the operations are performed [Hoffman, 1977]. Authorization control
consists of checking whether a given triple (subject, operation, object) can be allowed
to proceed (i.e., the user can execute the operation on the object). An authorization
can be viewed as a triple (subject, operation type, object definition) which specifies
that the subjects has the right to perform an operation of operation type on an object.
To control authorizations properly, the DBMS requires the definition of subjects,
objects, and access rights.

The introduction of a subject in the system is typically done by a pair (user name,
password). The user name uniquely identifies the users of that name in the system,
while the password, known only to the users of that name, authenticates the users.
Both user name and password must be supplied in order to log in the system. This
prevents people who do not know the password from entering the system with only
the user name.

182 5 Data and Access Control

The objects to protect are subsets of the database. Relational systems provide
finer and more general protection granularity than do earlier systems. In a file system,
the protection granule is the file, while in an object-oriented DBMS, it is the object
type. In a relational system, objects can be defined by their type (view, relation, tuple,
attribute) as well as by their content using selection predicates. Furthermore, the view
mechanism as introduced in Section 5.1 permits the protection of objects simply by
hiding subsets of relations (attributes or tuples) from unauthorized users.

A right expresses a relationship between a subject and an object for a particular
set of operations. In an SQL-based relational DBMS, an operation is a high-level
statement such as SELECT, INSERT, UPDATE, or DELETE, and rights are defined
(granted or revoked) using the following statements:

GRANT 〈operation type(s)〉 ON 〈object〉 TO 〈subject(s)〉
REVOKE 〈operation type(s)〉 FROM 〈object〉 TO 〈subject(s)〉

The keyword public can be used to mean all users. Authorization control can be
characterized based on who (the grantors) can grant the rights. In its simplest form,
the control is centralized: a single user or user class, the database administrators, has
all privileges on the database objects and is the only one allowed to use the GRANT
and REVOKE statements.

A more flexible but complex form of control is decentralized [Griffiths and Wade,
1976]: the creator of an object becomes its owner and is granted all privileges on it.
In particular, there is the additional operation type GRANT, which transfers all the
rights of the grantor performing the statement to the specified subjects. Therefore,
the person receiving the right (the grantee) may subsequently grant privileges on that
object. The main difficulty with this approach is that the revoking process must be
recursive. For example, if A, who granted B who granted C the GRANT privilege on
object O, wants to revoke all the privileges of B on O, all the privileges of C on O
must also be revoked. To perform revocation, the system must maintain a hierarchy
of grants per object where the creator of the object is the root.

The privileges of the subjects over objects are recorded in the catalog (directory)
as authorization rules. There are several ways to store the authorizations. The most
convenient approach is to consider all the privileges as an authorization matrix, in
which a row defines a subject, a column an object, and a matrix entry (for a pair
〈subject, object〉), the authorized operations. The authorized operations are specified
by their operation type (e.g., SELECT, UPDATE). It is also customary to associate
with the operation type a predicate that further restricts the access to the object. The
latter option is provided when the objects must be base relations and cannot be views.
For example, one authorized operation for the pair 〈Jones, relation EMP〉 could be

SELECT WHERE TITLE = "Syst.Anal."

which authorizes Jones to access only the employee tuples for system analysts. Figure
5.5 gives an example of an authorization matrix where objects are either relations
(EMP and ASG) or attributes (ENAME).

5.2 Data Security 183

Casey

Jones

Smith

EMP ENAME ASG

UPDATE UPDATE UPDATE

SELECT SELECT SELECT
WHERE RESP ≠ "Manager"

NONE SELECT NONE

Fig. 5.5 Example of Authorization Matrix

The authorization matrix can be stored in three ways: by row, by column, or by
element. When the matrix is stored by row, each subject is associated with the list of
objects that may be accessed together with the related access rights. This approach
makes the enforcement of authorizations efficient, since all the rights of the logged-on
user are together (in the user profile). However, the manipulation of access rights per
object (e.g., making an object public) is not efficient since all subject profiles must be
accessed. When the matrix is stored by column, each object is associated with the list
of subjects who may access it with the corresponding access rights. The advantages
and disadvantages of this approach are the reverse of the previous approach.

The respective advantages of the two approaches can be combined in the third
approach, in which the matrix is stored by element, that is, by relation (subject, object,
right). This relation can have indices on both subject and object, thereby providing
fast-access right manipulation per subject and per object.

5.2.2 Multilevel Access Control

Discretionary access control has some limitations. One problem is that a malicious
user can access unauthorized data through an authorized user. For instance, consider
user A who has authorized access to relations R and S and user B who has authorized
access to relation S only. If B somehow manages to modify an application program
used by A so it writes R data into S, then B can read unauthorized data without
violating authorization rules.

Multilevel access control answers this problem and further improves security
by defining different security levels for both subjects and data objects. Multilevel
access control in databases is based on the well-known Bell and Lapaduda model
designed for operating system security [Bell and Lapuda, 1976]. In this model,
subjects are processes acting on a user’s behalf; a process has a security level also
called clearance derived from that of the user. In its simplest form, the security levels
are Top Secret (T S), Secret (S), Confidential (C) and Unclassified (U), and ordered as
T S > S >C >U , where “>” means “more secure”. Access in read and write modes
by subjects is restricted by two simple rules:

1. A subject S is allowed to read an object of security level l only if level(S)≥ l.

184 5 Data and Access Control

2. A subject S is allowed to write an object of security level l only if class(S)≤ l.

Rule 1 (called “no read up”) protects data from unauthorized disclosure, i.e., a
subject at a given security level can only read objects at the same or lower security
levels. For instance, a subject with secret clearance cannot read top-secret data. Rule
2 (called “no write down”) protects data from unauthorized change, i.e., a subject
at a given security level can only write objects at the same or higher security levels.
For instance, a subject with top-secret clearance can only write top-secret data but
cannot write secret data (which could then contain top-secret data).

In the relational model, data objects can be relations, tuples or attributes. Thus, a
relation can be classified at different levels: relation (i.e., all tuples in the relation
have the same security level), tuple (i.e., every tuple has a security level), or attribute
(i.e., every distinct attribute value has a security level). A classified relation is thus
called multilevel relation to reflect that it will appear differently (with different data)
to subjects with different clearances. For instance, a multilevel relation classified
at the tuple level can be represented by adding a security level attribute to each
tuple. Similarly, a multilevel relation classified at attribute level can be represented
by adding a corresponding security level to each attribute. Figure 5.6 illustrates a
multilevel relation PROJ* based on relation PROJ which is classified at the attribute
level. Note that the additional security level attributes may increase significantly the
size of the relation.

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4

PROJ*

P1 C Instrumentation C 150000 C Montreal C

P2 C Database Develop. C 135000 S New York S

P3 S CAD/CAM S 250000 S New York S

Fig. 5.6 Multilevel relation PROJ* classified at the attribute level

The entire relation also has a security level which is the lowest security level of
any data it contains. For instance, relation PROJ* has security level C. A relation can
then be accessed by any subject having a security level which is the same or higher.
However, a subject can only access data for which it has clearance. Thus, attributes
for which a subject has no clearance will appear to the subject as null values with
an associated security level which is the same as the subject. Figure 5.7 shows an
instance of relation PROJ* as accessed by a subject at a confidential security level.

Multilevel access control has strong impact on the data model because users
do not see the same data and have to deal with unexpected side-effects. One major
side-effect is called polyinstantiation [Lunt et al., 1990] which allows the same object
to have different attribute values depending on the users’ security level. Figure 5.8
illustrates a multirelation with polyinstantiated tuples. Tuple of primary key P3 has
two instantiations, each one with a different security level. This may result from a
subject S with security level C inserting a tuple with key=“P3” in relation PROJ* in

5.2 Data Security 185

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4

PROJ*C

P1 C Instrumentation C 150000 C Montreal C

P2 C Database Develop. C Null C Null C

Fig. 5.7 Confidential relation PROJ*C

Figure 5.6. Because S (with confidential clearance level) should ignore the existence
of tuple with key=“P3” (classified as secret), the only practical solution is to add a
second tuple with same key and different classification. However, a user with secret
clearance would see both tuples with key=“E3” and should interpret this unexpected
effect.

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4

PROJ**

P1 C Instrumentation C 150000 C Montreal C

P2 C Database Develop. C 135000 S New York S

P3 S CAD/CAM S 250000 S New York S

P3 C Web Develop. C 200000 C Paris C

Fig. 5.8 Multilevel relation with polyinstantiation

5.2.3 Distributed Access Control

The additional problems of access control in a distributed environment stem from the
fact that objects and subjects are distributed and that messages with sensitive data
can be read by unauthorized users. These problems are: remote user authentication,
management of discretionary access rules, handling of views and of user groups, and
enforcing multilevel access control.

Remote user authentication is necessary since any site of a distributed DBMS
may accept programs initiated, and authorized, at remote sites. To prevent remote
access by unauthorized users or applications (e.g., from a site that is not part of the
distributed DBMS), users must also be identified and authenticated at the accessed
site. Furthermore, instead of using passwords that could be obtained from sniffing
messages, encrypted certificates could be used.

Three solutions are possible for managing authentication:

1. Authentication information is maintained at a central site for global users
which can then be authenticated only once and then accessed from multiple
sites.

186 5 Data and Access Control

2. The information for authenticating users (user name and password) is repli-
cated at all sites in the catalog. Local programs, initiated at a remote site, must
also indicate the user name and password.

3. All sites of the distributed DBMS identify and authenticate themselves similar
to the way users do. Intersite communication is thus protected by the use of
the site password. Once the initiating site has been authenticated, there is no
need for authenticating their remote users.

The first solution simplifies password administration significantly and enables
single authentication (also called single sign on). However, the central authentication
site can be a single point of failure and a bottleneck. The second solution is more
costly in terms of directory management given that the introduction of a new user is
a distributed operation. However, users can access the distributed database from any
site. The third solution is necessary if user information is not replicated. Nevertheless,
it can also be used if there is replication of the user information. In this case it makes
remote authentication more efficient. If user names and passwords are not replicated,
they should be stored at the sites where the users access the system (i.e., the home
site). The latter solution is based on the realistic assumption that users are more static,
or at least they always access the distributed database from the same site.

Distributed authorization rules are expressed in the same way as centralized ones.
Like view definitions, they must be stored in the catalog. They can be either fully
replicated at each site or stored at the sites of the referenced objects. In the latter case
the rules are duplicated only at the sites where the referenced objects are distributed.
The main advantage of the fully replicated approach is that authorization can be
processed by query modification [Stonebraker, 1975] at compile time. However,
directory management is more costly because of data duplication. The second solution
is better if locality of reference is very high. However, distributed authorization cannot
be controlled at compile time.

Views may be considered to be objects by the authorization mechanism. Views
are composite objects, that is, composed of other underlying objects. Therefore,
granting access to a view translates into granting access to underlying objects. If
view definition and authorization rules for all objects are fully replicated (as in many
systems), this translation is rather simple and can be done locally. The translation is
harder when the view definition and its underlying objects are all stored separately
[Wilms and Lindsay, 1981], as is the case with site autonomy assumption. In this
situation, the translation is a totally distributed operation. The authorizations granted
on views depend on the access rights of the view creator on the underlying objects. A
solution is to record the association information at the site of each underlying object.

Handling user groups for the purpose of authorization simplifies distributed
database administration. In a centralized DBMS, “all users” can be referred to
as public. In a distributed DBMS, the same notion is useful, the public denoting all
the users of the system. However an intermediate level is often introduced to specify
the public at a particular site, denoted by public@site s [Wilms and Lindsay, 1981].
The public is a particular user group. More precise groups can be defined by the
command

5.3 Semantic Integrity Control 187

DEFINE GROUP 〈group id〉 AS 〈list of subject ids〉

The management of groups in a distributed environment poses some problems
since the subjects of a group can be located at various sites and access to an object may
be granted to several groups, which are themselves distributed. If group information
as well as access rules are fully replicated at all sites, the enforcement of access
rights is similar to that of a centralized system. However, maintaining this replication
may be expensive. The problem is more difficult if site autonomy (with decentralized
control) must be maintained. Several solutions to this problem have been identified
[Wilms and Lindsay, 1981]. One solution enforces access rights by performing a
remote query to the nodes holding the group definition. Another solution replicates a
group definition at each node containing an object that may be accessed by subjects
of that group. These solutions tend to decrease the degree of site autonomy.

Enforcing multilevel access control in a distributed environment is made difficult
by the possibility of indirect means, called covert channels, to access unauthorized
data [Rjaibi, 2004]. For instance, consider a simple distributed DBMS architecture
with two sites, each managing its database at a single security level, e.g., one site
is confidential while the other is secret. According to the “no write down” rule, an
update operation from a subject with secret clearance could only be sent to the secret
site. However, according to the “no read up” rule, a read query from the same secret
subject could be sent to both the secret and the confidential sites. Since the query sent
to the confidential site may contain secret information (e.g., in a select predicate),
it is potentially a covert channel. To avoid such covert channels, a solution is to
replicate part of the database [Thuraisingham, 2001] so that a site at security level l
contains all data that a subject at level l can access. For instance, the secret site would
replicate confidential data so that it can entirely process secret queries. One problem
with this architecture is the overhead of maintaining the consistency of replicas
(see Chapter 13 on replication). Furthermore, although there are no covert channels
for queries, there may still be covert channels for update operations because the
delays involved in synchronizing transactions may be exploited [Jajodia et al., 2001].
The complete support for multilevel access control in distributed database systems,
therefore, requires significant extensions to transaction management techniques [Ray
et al., 2000] and to distributed query processing techniques [Agrawal et al., 2003].

5.3 Semantic Integrity Control

Another important and difficult problem for a database system is how to guaran-
tee database consistency. A database state is said to be consistent if the database
satisfies a set of constraints, called semantic integrity constraints. Maintaining a
consistent database requires various mechanisms such as concurrency control, re-
liability, protection, and semantic integrity control, which are provided as part of
transaction management. Semantic integrity control ensures database consistency by
rejecting update transactions that lead to inconsistent database states, or by activat-

188 5 Data and Access Control

ing specific actions on the database state, which compensate for the effects of the
update transactions. Note that the updated database must satisfy the set of integrity
constraints.

In general, semantic integrity constraints are rules that represent the knowledge
about the properties of an application. They define static or dynamic application
properties that cannot be directly captured by the object and operation concepts of a
data model. Thus the concept of an integrity rule is strongly connected with that of a
data model in the sense that more semantic information about the application can be
captured by means of these rules.

Two main types of integrity constraints can be distinguished: structural constraints
and behavioral constraints. Structural constraints express basic semantic properties
inherent to a model. Examples of such constraints are unique key constraints in the
relational model, or one-to-many associations between objects in the object-oriented
model. Behavioral constraints, on the other hand, regulate the application behavior.
Thus they are essential in the database design process. They can express associations
between objects, such as inclusion dependency in the relational model, or describe
object properties and structures. The increasing variety of database applications and
the development of database design aid tools call for powerful integrity constraints
that can enrich the data model.

Integrity control appeared with data processing and evolved from procedural meth-
ods (in which the controls were embedded in application programs) to declarative
methods. Declarative methods have emerged with the relational model to alleviate the
problems of program/data dependency, code redundancy, and poor performance of
the procedural methods. The idea is to express integrity constraints using assertions
of predicate calculus [Florentin, 1974]. Thus a set of semantic integrity assertions
defines database consistency. This approach allows one to easily declare and modify
complex integrity constraints.

The main problem in supporting automatic semantic integrity control is that
the cost of checking for constraint violation can be prohibitive. Enforcing integrity
constraints is costly because it generally requires access to a large amount of data
that are not directly involved in the database updates. The problem is more difficult
when constraints are defined over a distributed database.

Various solutions have been investigated to design an integrity manager by com-
bining optimization strategies. Their purpose is to (1) limit the number of constraints
that need to be enforced, (2) decrease the number of data accesses to enforce a given
constraint in the presence of an update transaction, (3) define a preventive strategy
that detects inconsistencies in a way that avoids undoing updates, (4) perform as
much integrity control as possible at compile time. A few of these solutions have been
implemented, but they suffer from a lack of generality. Either they are restricted to a
small set of assertions (more general constraints would have a prohibitive checking
cost) or they only support restricted programs (e.g., single-tuple updates).

In this section we present the solutions for semantic integrity control first in
centralized systems and then in distributed systems. Since our context is the relational
model, we consider only declarative methods.

5.3 Semantic Integrity Control 189

5.3.1 Centralized Semantic Integrity Control

A semantic integrity manager has two main components: a language for expressing
and manipulating integrity assertions, and an enforcement mechanism that performs
specific actions to enforce database integrity upon update transactions.

5.3.1.1 Specification of Integrity Constraints

Integrity constraints should be manipulated by the database administrator using a
high-level language. In this section we illustrate a declarative language for specifying
integrity constraints [Simon and Valduriez, 1987]. This language is much in the spirit
of the standard SQL language, but with more generality. It allows one to specify,
read, or drop integrity constraints. These constraints can be defined either at relation
creation time, or at any time, even if the relation already contains tuples. In both cases,
however, the syntax is almost the same. For simplicity and without lack of generality,
we assume that the effect of integrity constraint violation is to abort the violating
transactions. However, the SQL standard provides means to express the propagation
of update actions to correct inconsistencies, with the CASCADING clause within
the constraint declaration. More generally, triggers (event-condition-action rules)
[Ramakrishnan and Gehrke, 2003] can be used to automatically propagate updates,
and thus to maintain semantic integrity. However, triggers are quite powerful and
thus more difficult to support efficiently than specific integrity constraints.

In relational database systems, integrity constraints are defined as assertions. An
assertion is a particular expression of tuple relational calculus (see Chapter 2), in
which each variable is either universally (∀) or existentially (∃) quantified. Thus an
assertion can be seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. We can
distinguish between three types of integrity constraints: predefined, precondition, or
general constraints.

Examples of integrity constraints will be given on the following database:

EMP(ENO, ENAME, TITLE)

PROJ(PNO, PNAME, BUDGET)

ASG(ENO, PNO, RESP, DUR)

Predefined constraints are based on simple keywords. Through them, it is possible
to express concisely the more common constraints of the relational model, such as
non-null attribute, unique key, foreign key, or functional dependency [Fagin and
Vardi, 1984]. Examples 5.11 through 5.14 demonstrate predefined constraints.

Example 5.11. Employee number in relation EMP cannot be null.

ENO NOT NULL IN EMP

�

190 5 Data and Access Control

Example 5.12. The pair (ENO, PNO) is the unique key in relation ASG.

(ENO, PNO) UNIQUE IN ASG

�

Example 5.13. The project number PNO in relation ASG is a foreign key matching
the primary key PNO of relation PROJ. In other words, a project referred to in
relation ASG must exist in relation PROJ.

PNO IN ASG REFERENCES PNO IN PROJ

�

Example 5.14. The employee number functionally determines the employee name.

ENO IN EMP DETERMINES ENAME

�

Precondition constraints express conditions that must be satisfied by all tuples in a
relation for a given update type. The update type, which might be INSERT, DELETE,
or MODIFY, permits restricting the integrity control. To identify in the constraint
definition the tuples that are subject to update, two variables, NEW and OLD, are
implicitly defined. They range over new tuples (to be inserted) and old tuples (to
be deleted), respectively [Astrahan et al., 1976]. Precondition constraints can be
expressed with the SQL CHECK statement enriched with the ability to specify the
update type. The syntax of the CHECK statement is

CHECK ON 〈 relation name 〉 WHEN〈 update type 〉
(〈 qualification over relation name〉)

Examples of precondition constraints are the following:

Example 5.15. The budget of a project is between 500K and 1000K.

CHECK ON PROJ (BUDGET+ >= 500000 AND BUDGET <= 1000000)

�

Example 5.16. Only the tuples whose budget is 0 may be deleted.

CHECK ON PROJ WHEN DELETE (BUDGET = 0)

�

Example 5.17. The budget of a project can only increase.

CHECK ON PROJ (NEW.BUDGET > OLD.BUDGET
AND NEW.PNO = OLD.PNO)

�

General constraints are formulas of tuple relational calculus where all variables
are quantified. The database system must ensure that those formulas are always
true. General constraints are more concise than precompiled constraints since the
former may involve more than one relation. For instance, at least three precompiled
constraints are necessary to express a general constraint on three relations. A general
constraint may be expressed with the following syntax:

5.3 Semantic Integrity Control 191

CHECK ON list of <variable name>:<relation name>,
(<qualification>)

Examples of general constraints are given below.

Example 5.18. The constraint of Example 5.8 may also be expressed as

CHECK ON e1:EMP, e2:EMP
(e1.ENAME = e2.ENAME IF e1.ENO = e2.ENO)

�

Example 5.19. The total duration for all employees in the CAD project is less than
100.

CHECK ON g:ASG, j:PROJ (SUM(g.DUR WHERE
g.PNO=j.PNO)<100 IF j.PNAME="CAD/CAM")

�

5.3.1.2 Integrity Enforcement

We now focus on enforcing semantic integrity that consists of rejecting update
transactions that violate some integrity constraints. A constraint is violated when it
becomes false in the new database state produced by the update transaction. A major
difficulty in designing an integrity manager is finding efficient enforcement algo-
rithms. Two basic methods permit the rejection of inconsistent update transactions.
The first one is based on the detection of inconsistencies. The update transaction u is
executed, causing a change of the database state D to Du. The enforcement algorithm
verifies, by applying tests derived from these constraints, that all relevant constraints
hold in state Du. If state Du is inconsistent, the DBMS can try either to reach another
consistent state, D′u, by modifying Du with compensation actions, or to restore state
D by undoing u. Since these tests are applied after having changed the database state,
they are generally called posttests. This approach may be inefficient if a large amount
of work (the update of D) must be undone in the case of an integrity failure.

The second method is based on the prevention of inconsistencies. An update
is executed only if it changes the database state to a consistent state. The tuples
subject to the update transaction are either directly available (in the case of insert) or
must be retrieved from the database (in the case of deletion or modification). The
enforcement algorithm verifies that all relevant constraints will hold after updating
those tuples. This is generally done by applying to those tuples tests that are derived
from the integrity constraints. Given that these tests are applied before the database
state is changed, they are generally called pretests. The preventive approach is more
efficient than the detection approach since updates never need to be undone because
of integrity violation.

The query modification algorithm [Stonebraker, 1975] is an example of a pre-
ventive method that is particularly efficient at enforcing domain constraints. It adds
the assertion qualification to the query qualification by an AND operator so that the
modified query can enforce integrity.

192 5 Data and Access Control

Example 5.20. The query for increasing the budget of the CAD/CAM project by
10%, which would be specified as

UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= "CAD/CAM"

will be transformed into the following query in order to enforce the domain constraint
discussed in Example 5.9.

UPDATE PROJ
SET BUDGET = BUDGET * 1.1
WHERE PNAME= "CAD/CAM"
AND NEW.BUDGET ≥ 500000
AND NEW.BUDGET ≤ 1000000

�

The query modification algorithm, which is well known for its elegance, produces
pretests at run time by ANDing the assertion predicates with the update predicates of
each instruction of the transaction. However, the algorithm only applies to tuple cal-
culus formulas and can be specified as follows. Consider the assertion (∀x ∈ R)F(x),
where F is a tuple calculus expression in which x is the only free variable. An update
of R can be written as (∀x ∈ R)(Q(x)⇒ update(x)), where Q is a tuple calculus
expression whose only free variable is x. Roughly speaking, the query modification
consists in generating the update (∀x ∈ R)((Q(x) and F(x))⇒update(x)). Thus x
needs to be universally quantified.

Example 5.21. The foreign key constraint of Example 5.13 that can be rewritten as

∀g ∈ ASG, ∃ j ∈ PROJ : g.PNO = j.PNO

could not be processed by query modification because the variable j is not universally
quantified. �

To handle more general constraints, pretests can be generated at constraint defi-
nition time, and enforced at run time when updates occur [Bernstein et al., 1980a;
Bernstein and Blaustein, 1982; Blaustein, 1981; Nicolas, 1982]. The method de-
scribed by Nicolas [1982] is restricted to updates that insert or delete a single tuple of
a single relation. The algorithm proposed by Bernstein et al. [1980a] and Blaustein
[1981] is an improvement, although updates are single single tuple. The algorithm
builds a pretest at constraint definition time for each constraint and each update
type (insert, delete). These pretests are enforced at run time. This method accepts
multirelation, monovariable assertions, possibly with aggregates. The principle is the
substitution of the tuple variables in the assertion by constants from an updated tuple.
Despite its important contribution to research, the method is hardly usable in a real
environment because of the restriction on updates.

In the rest of this section, we present the method proposed by Simon and Valduriez
[1986, 1987], which combines the generality of updates supported by Stonebraker
[1975] with at least the generality of assertions for which pretests can be produced by
Blaustein [1981]. This method is based on the production, at assertion definition time,

5.3 Semantic Integrity Control 193

of pretests that are used subsequently to prevent the introduction of inconsistencies
in the database. This is a general preventive method that handles the entire set of
constraints introduced in the preceding section. It significantly reduces the proportion
of the database that must be checked when enforcing assertions in the presence of
updates. This is a major advantage when applied to a distributed environment.

The definition of pretest uses differential relations, as defined in Section 5.1.3. A
pretest is a triple (R,U,C) in which R is a relation, U is an update type, and C is an
assertion ranging over the differential relation(s) involved in an update of type U .
When an integrity constraint I is defined, a set of pretests may be produced for the
relations used by I. Whenever a relation involved in I is updated by a transaction
u, the pretests that must be checked to enforce I are only those defined on I for the
update type of u. The performance advantage of this approach is twofold. First, the
number of assertions to enforce is minimized since only the pretests of type u need
be checked. Second, the cost of enforcing a pretest is less than that of enforcing I
since differential relations are, in general, much smaller than the base relations.

Pretests may be obtained by applying transformation rules to the original asser-
tion. These rules are based on a syntactic analysis of the assertion and quantifier
permutations. They permit the substitution of differential relations for base relations.
Since the pretests are simpler than the original ones, the process that generates them
is called simplification.

Example 5.22. Consider the modified expression of the foreign key constraint in
Example 5.15. The pretests associated with this constraint are

(ASG, INSERT, C1), (PROJ, DELETE, C2) and (PROJ, MODIFY, C3)

where C1 is

∀ NEW ∈ ASG+, ∃ j ∈ PROJ: NEW.PNO = j.PNO

C2 is

∀g ∈ ASG, ∀ OLD ∈ PROJ− : g.PNO 6= OLD.PNO

and C3 is

∀g ∈ ASG, ∀OLD ∈ PROJ−, ∃ NEW ∈ PROJ+ : g.PNO 6= OLD.PNO OR
OLD.PNO = NEW.PNO

�

The advantage provided by such pretests is obvious. For instance, a deletion on
relation ASG does not incur any assertion checking.

The enforcement algorithm [Simon and Valduriez, 1984] makes use of pretests and
is specialized according to the class of the assertions. Three classes of constraints are
distinguished: single-relation constraints, multirelation constrainss, and constraints
involving aggregate functions.

194 5 Data and Access Control

Let us now summarize the enforcement algorithm. Recall that an update transac-
tion updates all tuples of relation R that satisfy some qualification. The algorithm
acts in two steps. The first step generates the differential relations R+ and R− from R.
The second step simply consists of retrieving the tuples of R+ and R−, which do not
satisfy the pretests. If no tuples are retrieved, the constraint is valid. Otherwise, it is
violated.

Example 5.23. Suppose there is a deletion on PROJ. Enforcing (PROJ, DELETE,
C2) consists in generating the following statement:

result← retrieve all tuples of PROJ− where ¬(C2)

Then, if the result is empty, the assertion is verified by the update and consistency
is preserved. �

5.3.2 Distributed Semantic Integrity Control

In this section we present algorithms for ensuring the semantic integrity of distributed
databases. They are extensions of the simplification method discussed previously. In
what follows, we assume global transaction management capabilities, as provided
for homogeneous systems or multidatabase systems. Thus, the two main problems
of designing an integrity manager for such a distributed DBMS are the definition
and storage of assertions, and the enforcement of these constraints. We will also
discuss the issues involved in integrity constraint checking when there is no global
transaction support.

5.3.2.1 Definition of Distributed Integrity Constraints

An integrity constraint is supposed to be expressed in tuple relational calculus. Each
assertion is seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. Since
assertions can involve data stored at different sites, the storage of the constraints
must be decided so as to minimize the cost of integrity checking. There is a strategy
based on a taxonomy of integrity constraints that distinguishes three classes:

1. Individual constraints: single-relation single-variable constraints. They refer
only to tuples to be updated independently of the rest of the database. For
instance, the domain constraint of Example 5.15 is an individual assertion.

2. Set-oriented constraints: include single-relation multivariable constraints such
as functional dependency (Example 5.14) and multirelation multivariable
constraints such as foreign key constraints (Example 5.13).

5.3 Semantic Integrity Control 195

3. Constraints involving aggregates: require special processing because of the
cost of evaluating the aggregates. The assertion in Example 5.19 is representa-
tive of a constraint of this class.

The definition of a new integrity constraint can be started at one of the sites
that store the relations involved in the assertion. Remember that the relations can
be fragmented. A fragmentation predicate is a particular case of assertion of class
1. Different fragments of the same relation can be located at different sites. Thus,
defining an integrity assertion becomes a distributed operation, which is done in
two steps. The first step is to transform the high-level assertions into pretests, using
the techniques discussed in the preceding section. The next step is to store pretests
according to the class of constraints. Constraints of class 3 are treated like those of
class 1 or 2, depending on whether they are individual or set-oriented.

Individual constraints.

The constraint definition is sent to all other sites that contain fragments of the relation
involved in the constraint. The constraint must be compatible with the relation data
at each site. Compatibility can be checked at two levels: predicate and data. First,
predicate compatibility is verified by comparing the constraint predicate with the
fragment predicate. A constraint C is not compatible with a fragment predicate p
if “C is true” implies that “p is false,” and is compatible with p otherwise. If non-
compatibility is found at one of the sites, the constraint definition is globally rejected
because tuples of that fragment do not satisfy the integrity constraints. Second, if
predicate compatibility has been found, the constraint is tested against the instance
of the fragment. If it is not satisfied by that instance, the constraint is also globally
rejected. If compatibility is found, the constraint is stored at each site. Note that the
compatibility checks are performed only for pretests whose update type is “insert”
(the tuples in the fragments are considered “inserted”).

Example 5.24. Consider relation EMP, horizontally fragmented across three sites
using the predicates

p1 : 0≤ ENO < “E3”

p2 : ”E3” ≤ ENO ≤ “E6”

p3 : ENO > “E6”

and the domain constraint C: ENO < “E4”. Constraint C is compatible with p1
(if C is true, p1 is true) and p2 (if C is true, p2 is not necessarily false), but not with
p3 (if C is true, then p3 is false). Therefore, constraint C should be globally rejected
because the tuples at site 3 cannot satisfy C, and thus relation EMP does not satisfy
C. �

196 5 Data and Access Control

Set-oriented constraints.

Set-oriented constraint are multivariable; that is, they involve join predicates. Al-
though the assertion predicate may be multirelation, a pretest is associated with a
single relation. Therefore, the constraint definition can be sent to all the sites that
store a fragment referenced by these variables. Compatibility checking also involves
fragments of the relation used in the join predicate. Predicate compatibility is useless
here, because it is impossible to infer that a fragment predicate p is false if the
constraint C (based on a join predicate) is true. Therefore C must be checked for
compatibility against the data. This compatibility check basically requires joining
each fragment of the relation, say R, with all fragments of the other relation, say S,
involved in the constraint predicate. This operation may be expensive and, as any
join, should be optimized by the distributed query processor. Three cases, given in
increasing cost of checking, can occur:

1. The fragmentation of R is derived (see Chapter 3) from that of S based on a
semijoin on the attribute used in the assertion join predicate.

2. S is fragmented on join attribute.

3. S is not fragmented on join attribute.

In the first case, compatibility checking is cheap since the tuple of S matching a
tuple of R is at the same site. In the second case, each tuple of R must be compared
with at most one fragment of S, because the join attribute value of the tuple of R can
be used to find the site of the corresponding fragment of S. In the third case, each
tuple of R must be compared with all fragments of S. If compatibility is found for all
tuples of R, the constraint can be stored at each site.

Example 5.25. Consider the set-oriented pretest (ASG, INSERT, C1) defined in
Example 5.16, where C1 is

∀ NEW ∈ ASG+, ∃ j ∈ PROJ : NEW.PNO = j.PNO

Let us consider the following three cases:

1. ASG is fragmented using the predicate

ASGnPNO PROJi

where PROJi is a fragment of relation PROJ. In this case each tuple NEW of
ASG has been placed at the same site as tuple j such that NEW.PNO = j.PNO.
Since the fragmentation predicate is identical to that of C1, compatibility
checking does not incur communication.

2. PROJ is horizontally fragmented based on the two predicates

p1 : PNO < “P3”
p2 : PNO ≥ “P3”

5.3 Semantic Integrity Control 197

In this case each tuple NEW of ASG is compared with either fragment
PROJ1, if NEW.PNO < “P3”, or fragment PROJ2 if NEW.PNO ≥ “P3”.

3. PROJ is horizontally fragmented based on the two predicates

p1 : PNAME = “CAD/CAM”
p2 : PNAME 6= “CAD/CAM”

In this case each tuple of ASG must be compared with both fragments PROJ1
and PROJ2.

�

5.3.2.2 Enforcement of Distributed Integrity Assertions

Enforcing distributed integrity assertions is more complex than needed in centralized
DBMSs, even with global transaction management support. The main problem is to
decide where (at which site) to enforce the integrity constraints. The choice depends
on the class of the constraint, the type of update, and the nature of the site where the
update is issued (called the query master site). This site may, or may not, store the
updated relation or some of the relations involved in the integrity constraints. The
critical parameter we consider is the cost of transferring data, including messages,
from one site to another. We now discuss the different types of strategies according
to these criteria.

Individual constraints.

Two cases are considered. If the update transaction is an insert statement, all the
tuples to be inserted are explicitly provided by the user. In this case, all individual
constraints can be enforced at the site where the update is submitted. If the update
is a qualified update (delete or modify statements), it is sent to the sites storing the
relation that will be updated. The query processor executes the update qualification
for each fragment. The resulting tuples at each site are combined into one temporary
relation in the case of a delete statement, or two, in the case of a modify statement
(i.e., R+ and R−). Each site involved in the distributed update enforces the assertions
relevant at that site (e.g., domain constraints when it is a delete).

Set-oriented constraints.

We first study single-relation constraints by means of an example. Consider the
functional dependency of Example 5.14. The pretest associated with update type
INSERT is

(EMP, INSERT, C)

198 5 Data and Access Control

where C is

(∀e ∈ EMP)(∀NEW1 ∈ EMP)(∀NEW2 ∈ EMP) (1)

(NEW1.ENO = e.ENO ⇒ NEW1.ENAME = e.ENAME)∧ (2)

(NEW1.ENO = NEW2.ENO ⇒ NEW1.ENAME = NEW2.ENAME)(3)

The second line in the definition of C checks the constraint between the inserted
tuples (NEW1) and the existing ones (e), while the third checks it between the inserted
tuples themselves. That is why two variables (NEW1 and NEW2) are declared in the
first line.

Consider now an update of EMP. First, the update qualification is executed by
the query processor and returns one or two temporary relations, as in the case of
individual constraints. These temporary relations are then sent to all sites storing
EMP. Assume that the update is an INSERT statement. Then each site storing a
fragment of EMP will enforce constraint C described above. Because e in C is
universally quantified, C must be satisfied by the local data of each site. This is due
to the fact that ∀x ∈ {a1, . . . ,an} f (x) is equivalent to [f (a1)∧ f (a2)∧ ·· · ∧ f (an)].
Thus the site where the update is submitted must receive for each site a message
indicating that this constraint is satisfied and that it is a condition for all sites. If the
constraint is not true for one site, this site sends an error message indicating that the
constraint has been violated. The update is then invalid, and it is the responsibility of
the integrity manager to decide if the entire transaction must be rejected using the
global transaction manager.

Let us now consider multirelation constraints. For the sake of clarity, we assume
that the integrity constraints do not have more than one tuple variable ranging over
the same relation. Note that this is likely to be the most frequent case. As with
single-relation constraints, the update is computed at the site where it was submitted.
The enforcement is done at the query master site, using the ENFORCE algorithm
given in Algorithm 5.2.

Example 5.26. We illustrate this algorithm through an example based on the foreign
key constraint of Example 5.13. Let u be an insertion of a new tuple into ASG. The
previous algorithm uses the pretest (ASG, INSERT, C), where C is

∀ NEW ∈ ASG+, ∃ j ∈ PROJ : NEW.PNO = j.PNO

For this constraint, the retrieval statement is to retrieve all new tuples in ASG+

where C is not true. This statement can be expressed in SQL as

SELECT NEW.*
FROM ASG+ NEW, PROJ
WHERE COUNT(PROJ.PNO WHERE NEW.PNO = PROJ.PNO)=0

Note that NEW.* denotes all the attributes of ASG+. �

Thus the strategy is to send new tuples to sites storing relation PROJ in order to
perform the joins, and then to centralize all results at the query master site. For each

5.3 Semantic Integrity Control 199

Algorithm 5.2: ENFORCE Algorithm
Input: U : update type; R: relation
begin

retrieve all compiled assertions (R, U, Ci) ;
inconsistent← false ;
for each compiled assertion do

result← all new (respectively old), tuples of R where ¬(Ci)

if card(result) 6= 0 then
inconsistent← true

if ¬inconsistent then
send the tuples to update to all the sites storing fragments of R

else
reject the update

end

site storing a fragment of PROJ, the site joins the fragment with ASG+ and sends the
result to the query master site, which performs the union of all results. If the union is
empty, the database is consistent. Otherwise, the update leads to an inconsistent state
and should be rejected, using the global transaction manager. More sophisticated
strategies that notify or compensate inconsistencies can also be devised.

Constraints involving aggregates.

These constraints are among the most costly to test because they require the calcu-
lation of the aggregate functions. The aggregate functions generally manipulated
are MIN, MAX, SUM, and COUNT. Each aggregate function contains a projection
part and a selection part. To enforce these constraints efficiently, it is possible to
produce pretest that isolate redundant data which can be stored at each site storing
the associated relation [Bernstein and Blaustein, 1982]. This data is what we called
materialized views in Section 5.1.2.

5.3.2.3 Summary of Distributed Integrity Control

The main problem of distributed integrity control is that the communication and
processing costs of enforcing distributed constraints can be prohibitive. The two
main issues in designing a distributed integrity manager are the definition of the
distributed assertions and of the enforcement algorithms, which minimize the cost of
distributed integrity checking. We have shown in this chapter that distributed integrity
control can be completely achieved, by extending a preventive method based on the
compilation of semantic integrity constraints into pretests. The method is general
since all types of constraints expressed in first-order predicate logic can be handled.

200 5 Data and Access Control

It is compatible with fragment definition and minimizes intersite communication. A
better performance of distributed integrity enforcement can be obtained if fragments
are defined carefully. Therefore, the specification of distributed integrity constraints
is an important aspect of the distributed database design process.

The method described above assumes global transaction support. Without global
transaction support as in some loosely-coupled multidatabase systems, the problem is
more difficult [Grefen and Widom, 1997]. First, the interface between the constraint
manager and the component DBMS is different since constraint checking can no
longer be part of the global transaction validation. Instead, the component DBMSs
should notify the integrity manager to perform constraint checking after some events,
e.g., as a result of local transactions’s commitments. This can be done using triggers
whose events are updates to relations involved in global constraints. Second, if a
global constraint violation is detected, since there is no way to specify global aborts,
specific correcting transactions should be provided to produce global database states
that are consistent. A family of protocols for global integrity checking has been
proposed [Grefen and Widom, 1997]. The root of the family is a simple strategy,
based on the computation of differential relations (as in the previous method), which
is shown to be safe (correctly identifies constraint violations) but inaccurate (may
raise an error event though there is no constraint violation). Inaccuracy is due to the
fact that producing differential relations at different times at different sites may yield
phantom states for the global database, i.e., states that never existed. Extensions of
the basic protocol with either timestamping or using local transaction commands are
proposed to solve that problem.

5.4 Conclusion

Semantic data and access control includes view management, security control, and
semantic integrity control. In the relational framework, these functions can be uni-
formly achieved by enforcing rules that specify data manipulation control. Solutions
initially designed for handling these functions in centralized systems have been
significantly extended and enriched for distributed systems, in particular, support for
materialized views and group-based discretionary access control. Semantic integrity
control has received less attention and is generally not supported by distributed
DBMS products.

Full semantic data control is more complex and costly in terms of performance in
distributed systems. The two main issues for efficiently performing data control are
the definition and storage of the rules (site selection) and the design of enforcement
algorithms which minimize communication costs. The problem is difficult since
increased functionality (and generality) tends to increase site communication. The
problem is simplified if control rules are fully replicated at all sites and harder if
site autonomy is to be preserved. In addition, specific optimizations can be done
to minimize the cost of data control but with extra overhead such as managing
materialized views or redundant data. Thus the specification of distributed data

5.5 Bibliographic Notes 201

control must be included in the distributed database design so that the cost of control
for update programs is also considered.

5.5 Bibliographic Notes

Semantic data control is well-understood in centralized systems [Ramakrishnan and
Gehrke, 2003] and all major DBMSs provide extensive support for it. Research on
semantic data control in distributed systems started in the early 1980’s with the R*
project at IBM Research and has increased much since then to address new important
applications such as data warehousing or data integration.

Most of the work on view management has concerned updates through views and
support for materialized views. The two basic papers on centralized view management
are [Chamberlin et al., 1975] and [Stonebraker, 1975]. The first reference presents an
integrated solution for view and authorization management in System R. The second
reference describes INGRES’s query modification technique for uniformly handling
views, authorizations, and semantic integrity control. This method was presented in
Section 5.1.

Theoretical solutions to the problem of view updates are given in [Bancilhon and
Spyratos, 1981; Dayal and Bernstein, 1978], and [Keller, 1982]. The first of these is
the seminal paper on view update semantics [Bancilhon and Spyratos, 1981] where
the authors formalize the view invariance property after updating, and show how
a large class of views including joins can be updated. Semantic information about
the base relations is particularly useful for finding unique propagation of updates.
However, the current commercial systems are very restrictive in supporting updates
through views.

Materialized views have received much attention. The notion of snapshot for
optimizing view derivation in distributed database systems is due to [Adiba and
Lindsay, 1980]. Adiba [1981] generalizes the notion of snapshot by that of derived
relation in a distributed context. He also proposes a unified mechanism for managing
views, and snapshots, as well as fragmented and replicated data. Gupta and Mumick
[1999c] have edited a thorough collection of papers on materialized view management
in. In [Gupta and Mumick, 1999a], they describe the main techniques to perform
incremental maintenance of materialized views. The counting algorithm which we
presented in Section 5.1.3 has been proposed in [Gupta et al., 1993].

Security in computer systems in general is presented in [Hoffman, 1977]. Security
in centralized database systems is presented in [Lunt and Fernández, 1990; Castano
et al., 1995]. Discretionary access control in distributed systems has first received
much attention in the context of the R* project. The access control mechanism of
System R Griffiths and Wade [1976] is extended in [Wilms and Lindsay, 1981] to
handle groups of users and to run in a distributed environment. Multilevel access
control for distributed DBMS has recently gained much interest. The seminal paper
on multilevel access control is the Bell and Lapaduda model originally designed for
operating system security [Bell and Lapuda, 1976]. Multilevel access control for

202 5 Data and Access Control

databases is described in [Lunt and Fernández, 1990; Jajodia and Sandhu, 1991].
A good introduction to multilevel security in relational DBMS can be found in
[Rjaibi, 2004]. Transaction management in multilevel secure DBMS is addressed in
[Ray et al., 2000; Jajodia et al., 2001]. Extensions of multilevel access control for
distributed DBMS are proposed in [Thuraisingham, 2001].

The content of Section 5.3 comes largely from the work on semantic integrity
control described in [Simon and Valduriez, 1984, 1986] and [Simon and Valduriez,
1987]. In particular, [Simon and Valduriez, 1986] extends a preventive strategy for
centralized integrity control based on pretests to run in a distributed environment,
assuming global transaction support. The initial idea of declarative methods, that is, to
use assertions of predicate logic to specify integrity constraints, is due to [Florentin,
1974]. The most important declarative methods are in [Bernstein et al., 1980a;
Blaustein, 1981; Nicolas, 1982; Simon and Valduriez, 1984], and [Stonebraker, 1975].
The notion of concrete views for storing redundant data is described in [Bernstein and
Blaustein, 1982]. Note that concrete views are useful in optimizing the enforcement
of constraints involving aggregates. [Civelek et al., 1988; Sheth et al., 1988b] and
Sheth et al. [1988a] describe systems and tools for semantic data control, particularly
view management. Semantic intergrity checking in loosely-coupled multidatabase
systems without global transaction support is addressed in [Grefen and Widom,
1997].

Exercises

Problem 5.1. Define in SQL-like syntax a view of the engineering database V(ENO,
ENAME, PNO, RESP), where the duration is 24. Is view V updatable? Assume that
relations EMP and ASG are horizontally fragmented based on access frequencies as
follows:

Site 1 Site 2 Site 3
EMP1 EMP2

ASG1 ASG2

where

EMP1 = σTITLE6=“Engineer”(EMP)
EMP2 = σTITLE = “Engineer” (EMP)
ASG1 = σ0<DUR<36(ASG)
ASG2 = σDUR≥36(ASG)

At which site(s) should the definition of V be stored without being fully replicated,
to increase locality of reference?

Problem 5.2. Express the following query: names of employees in view V who work
on the CAD project.

Problem 5.3 (*). Assume that relation PROJ is horizontally fragmented as

5.5 Bibliographic Notes 203

PROJ1 = σPNAME = “CAD”(PROJ)
PROJ2 = σPNAME6=“CAD”(PROJ)

Modify the query obtained in Exercise 5.2 to a query expressed on the fragments.

Problem 5.4 (**). Propose a distributed algorithm to efficiently refresh a snapshot
at one site derived by projection from a relation horizontally fragmented at two other
sites. Give an example query on the view and base relations which produces an
inconsistent result.

Problem 5.5 (*). Consider the view EG of Example 5.5 which uses relations EMP
and ASG as base data and assume its state is derived from that of Example 3.1, so
that EG has 9 tuples (see Figure 5.4). Assume that tuple 〈E3, P3, Consultant, 10〉
from ASG is updated to 〈E3, P3, Engineer, 10〉. Apply the basic counting algorithm
for refreshing the view EG. What projected attributes should be added to view EG to
make it self-maintainable?

Problem 5.6. Propose a relation schema for storing the access rights associated with
user groups in a distributed database catalog, and give a fragmentation scheme for
that relation, assuming that all members of a group are at the same site.

Problem 5.7 (**). Give an algorithm for executing the REVOKE statement in a
distributed DBMS, assuming that the GRANT privilege can be granted only to a
group of users where all its members are at the same site.

Problem 5.8 (**). Consider the multilevel relation PROJ** in Figure 5.8. Assuming
that there are only two classification levels for attributes (S and C), propose an
allocation of PROJ** on two sites using fragmentation and replication that avoids
covert channels on read queries. Discuss the constraints on updates for this allocation
to work.

Problem 5.9. Using the integrity constraint specification language of this chapter,
express an integrity constraint which states that the duration spent in a project cannot
exceed 48 months.

Problem 5.10 (*). Define the pretests associated with integrity constraints covered
in Examples 5.11 to 5.14.

Problem 5.11. Assume the following vertical fragmentation of relations EMP, ASG
and PROJ:

Site 1 Site 2 Site 3 Site 4
EMP1 EMP2

PROJ1 PROJ2
ASG1 ASG2

where

204 5 Data and Access Control

EMP1 = ΠENO, ENAME(EMP)
EMP2 = ΠENO, TITLE(EMP)
PROJ1 = ΠPNO, PNAME(PROJ)
PROJ2 = ΠPNO, BUDGET(PROJ)
ASG1 = ΠENO, PNO, RESP(ASG)
ASG2 = ΠENO, PNO, DUR(ASG)

Where should the pretests obtained in Exercise 5.9 be stored?

Problem 5.12 (**). Consider the following set-oriented constraint:

CHECK ON e:EMP, a:ASG
(e.ENO = a.ENO and (e.TITLE = "Programmer")
IF a.RESP = "Programmer")

What does it mean? Assuming that EMP and ASG are allocated as in the previ-
ous exercice, define the corresponding pretests and theri storage. Apply algorithm
ENFORCE for an update of type INSERT in ASG.

Problem 5.13 (**). Assume a distributed multidatabase system with no global trans-
action support. Assume also that there are two sites, each with a (different) EMP
relation and a integrity manager that communicates with the component DBMS. Sup-
pose that we want to have a global unique key constraint on EMP. Propose a simple
strategy using differential relations to check this constraint. Discuss the possible
actions when a constraint is violated.

	Chapter 5:Data and Access Control
	5.1 View Management
	5.1.1 Views in Centralized DBMSs
	5.1.2 Views in Distributed DBMSs
	5.1.3 Maintenance of Materialized Views

	5.2 Data Security
	5.2.1 Discretionary Access Control
	5.2.2 Multilevel Access Control
	5.2.3 Distributed Access Control

	5.3 Semantic Integrity Control
	5.3.1 Centralized Semantic Integrity Control
	5.3.1.1 Specification of Integrity Constraints
	5.3.1.2 Integrity Enforcement

	5.3.2 Distributed Semantic Integrity Control
	5.3.2.1 Definition of Distributed Integrity Constraints
	5.3.2.2 Enforcement of Distributed Integrity Assertions
	5.3.2.3 Summary of Distributed Integrity Control

	5.4 Conclusion
	5.5 Bibliographic Notes

