
Chapter 16
Peer-to-Peer Data Management

In this chapter, we discuss the data management issues in the “modern” peer-to-peer
(P2P) data management systems. We intentionally use the phrase “modern” to dif-
ferentiate these from the early P2P systems that were common prior to client/server
computing. As indicated in Chapter 1, early work on distributed DBMSs had pri-
marily focused on P2P architectures where there was no differentiation between the
functionality of each site in the system. So, in one sense, P2P data management is
quite old – if one simply interprets P2P to mean that there are no identifiable “servers”
and “clients” in the system. However, the “modern” P2P systems go beyond this
simple characterization and differ from the old systems that are referred to by the
same name in a number of important ways, as mentioned in Chapter 1.

The first difference is the massive distribution in current systems. While the early
systems focused on a few (perhaps at most tens of) sites, current systems consider
thousands of sites. Furthermore, these sites are geographically very distributed, with
possible clusters forming at certain locations.

The second is the inherent heterogeneity of every aspect of the sites and their
autonomy. While this has always been a concern of distributed databases, coupled
with massive distribution, site heterogeneity and autonomy take on added significance,
disallowing some of the approaches from consideration.

The third major difference is the considerable volatility of these systems. Dis-
tributed DBMSs are well-controlled environments, where additions of new sites or
the removal of existing sites is done very carefully and rarely. In modern P2P systems,
the sites are (quite often) people’s individual machines and they join and leave the
P2P system at will, creating considerable hardship in the management of data.

In this chapter, we focus on this modern incarnation of P2P systems. In these
systems, the following requirements are typically cited [Daswani et al., 2003]:

• Autonomy. An autonomous peer should be able to join or leave the system at
any time without restriction. It should also be able to control the data it stores
and which other peers can store its data (e.g., some other trusted peers).

• Query expressiveness. The query language should allow the user to describe
the desired data at the appropriate level of detail. The simplest form of query

611
DOI 10.1007/978-1-4419-8834-8_16, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

612 16 Peer-to-Peer Data Management

is key look-up, which is only appropriate for finding files. Keyword search
with ranking of results is appropriate for searching documents, but for more
structured data, an SQL-like query language is necessary.

• Efficiency. The efficient use of the P2P system resources (bandwidth, comput-
ing power, storage) should result in lower cost, and, thus, higher throughput of
queries, i.e., a higher number of queries can be processed by the P2P system in
a given time interval.

• Quality of service. This refers to the user-perceived efficiency of the system,
such as completeness of query results, data consistency, data availability, query
response time, etc.

• Fault-tolerance. Efficiency and quality of service should be maintained despite
the failures of peers. Given the dynamic nature of peers that may leave or fail
at any time, it is important to properly exploit data replication.

• Security. The open nature of a P2P system gives rise to serious security chal-
lenges since one cannot rely on trusted servers. With respect to data man-
agement, the main security issue is access control which includes enforcing
intellectual property rights on data contents.

A number of different uses of P2P systems have been developed [Valduriez
and Pacitti, 2004]: they have been successfully used for sharing computation (e.g.,
SETI@home – http://www.setiathome.ssl.berkeley.edu), communication (e.g., ICQ –
http://www.icq.com), or data sharing (e.g., Gnutella – http://www.gnutelliums.com – and
Kazaa – http://www.kazaa.com). Our interest, naturally, is on data sharing systems.
The commercial systems (such as Gnutella, Kazaa and others) are quite limited when
viewed from the perspective of database functionality. Two important limitations
are that they provide only file level sharing with no sophisticated content-based
search/query facilities, and they are single-application systems that focus on per-
forming one task, and it is not straightforward to extend them for other applica-
tions/functions [Ooi et al., 2003b]. In this chapter, we discuss the research activities
towards providing proper database functionality over P2P infrastructures. Within this
context, data management issues that must be addressed include the following:

• Data location: peers must be able to refer to and locate data stored in other
peers.

• Query processing: given a query, the system must be able to discover the peers
that contribute relevant data and efficiently execute the query.

• Data integration: when shared data sources in the system follow different
schemas or representations, peers should still be able to access that data, ideally
using the data representation used to model their own data.

• Data consistency: if data are replicated or cached in the system, a key issue is
to maintain the consistency between these duplicates.

Figure 16.1 shows a reference architecture for a peer participating in a data
sharing P2P system. Depending on the functionality of the P2P system, one or more

http://www.setiathome.ssl.berkeley.edu
http://www.icq.com
http://www.gnutelliums.com
http://www.kazaa.com

16 Peer-to-Peer Data Management 613

Local Data

Source

Wrapper

Peer

Peer

Peer

Peer

D
a
ta

 M
a
n
a
g
e
m

e
n
t
A

P
I/

U
s
e
r

In
te

rf
a
c
e

local query

global query

answer

P
2
P

 N
e
tw

o
rk

 S
u
b
la

y
e
r

Data Management Layer

Update

Manager

Cache

Manager

Query

Manager

Remote

Data Cache
Semantic

Mappings

Fig. 16.1 Peer Reference Architecture

of the components in the reference architecture may not exist, may be combined
together, or may be implemented by specialized peers. The key aspect of the proposed
architecture is the separation of the functionality into three main components: (1) an
interface used for submitting the queries; (2) a data management layer that handles
query processing and metadata information (e.g., catalogue services); and (3) a P2P
infrastructure, which is composed of the P2P network sublayer and P2P network. In
this chapter, we focus on the P2P data management layer and P2P infrastructure.

Queries are submitted using a user interface or data management API and handled
by the data management layer. Queries may refer to data stored locally or globally in
the system. The query request is processed by a query manager module that retrieves
semantic mapping information from a repository when the system integrates hetero-
geneous data sources. This semantic mapping repository contains meta-information
that allows the query manager to identify peers in the system with data relevant to the
query and to reformulate the original query in terms that other peers can understand.
Some P2P systems may store the semantic mapping in specialized peers. In this case,
the query manager will need to contact these specialized peers or transmit the query to
them for execution. If all data sources in the system follow the same schema, neither
the semantic mapping repository nor its associated query reformulation functionality
are required.

Assuming a semantic mapping repository, the query manager invokes services
implemented by the P2P network sublayer to communicate with the peers that will be
involved in the execution of the query. The actual execution of the query is influenced
by the implementation of the P2P infrastructure. In some systems, data are sent to
the peer where the query was initiated and then combined at this peer. Other systems
provide specialized peers for query execution and coordination. In either case, result
data returned by the peers involved in the execution of the query may be cached

614 16 Peer-to-Peer Data Management

locally to speed up future executions of similar queries. The cache manager maintains
the local cache of each peer. Alternatively, caching may occur only at specialized
peers.

The query manager is also responsible for executing the local portion of a global
query when data are requested by a remote peer. A wrapper may hide data, query
language, or any other incompatibilities between the local data source and the data
management layer. When data are updated, the update manager coordinates the
execution of the update between the peers storing replicas of the data being updated.

The P2P network infrastructure, which can be implemented as either structured
or unstructured network topology, provides communication services to the data
management layer.

In the remainder of this chapter, we will address each component of this reference
architecture, starting with infrastructure issues in Section 16.1. The problems of data
mapping and the approaches to address them are the topics of Section 16.2. Query
processing is discussed in Section 16.3. Data consistency and replication issues are
discussed in Section 16.4.

16.1 Infrastructure

The infrastructure of all P2P systems is a P2P network, which is built on top of a
physical network (usually the Internet); thus it is commonly referred to as the overlay
network. The overlay network may (and usually does) have a different topology than
the physical network and all the algorithms focus on optimizing communication over
the overlay network (usually in terms of minimizing the number of “hops” that a
message needs to go through from a source node to a destination node – both in
the overlay network). The possible disconnect between the overlay network and
the physical network may be a problem in that two nodes that are neighbors in
the overlay network may, in some cases, be considerably far apart in the physical
network. Therefore, the cost of communication within the overlay network may not
reflect the actual cost of communication in the physical network. We address this
issue at the appropriate points during the infrastructure discussion.

Overlay networks can be of two general types: pure and hybrid. Pure overlay
networks (more commonly referred to as pure P2P networks) are those where there
is no differentiation between any of the network nodes – they are all equal. In hybrid
P2P networks, on the other hand, some nodes are given special tasks to perform.
Hybrid networks are commonly known as super-peer systems, since some of the
peers are responsible for “controlling” a set of other peers in their domain. The pure
networks can be further divided into structured and unstructured networks. Structured
networks tightly control the topology and message routing, whereas in unstructured
networks each node can directly communicate with its neighbors and can join the
network by attaching themselves to any node.

16.1 Infrastructure 615

16.1.1 Unstructured P2P Networks

Unstructured P2P networks refer to those with no restriction on data placement in
the overlay topology. The overlay network is created in a nondeterministic (ad hoc)
manner and the data placement is completely unrelated to the overlay topology. Each
peer knows its neighbors, but does not know the resources that they have. Figure
16.2 shows an example unstructured P2P network.

Fig. 16.2 Unstructured P2P Network

Unstructured networks are the earliest examples of P2P systems whose core func-
tionality was (and remains) file sharing. In these systems replicated copies of popular
files are shared among peers, without the need to download them from a centralized
server. Examples of these systems are Napster (http://www.napster.com), Gnutella,
Freenet [Clarke et al., 2000, 2002], Kazaa, and BitTorrent (http://www.bittorrent.com).

A fundamental issue in all P2P networks is the type of index to the resources
that each peer holds, since this determines how resources are searched. Note that
what is called “index management” in the context of P2P systems is very similar
to catalog management that we studied in Chapter 3. Indexes are stored metadata
that the system maintains. The exact content of the metadata differs in different P2P
systems. In general, it includes, at a minimum, information on the resources and
sizes.

There are two alternatives to maintaining indices: centralized, where one peer
stores the metadata for the entire P2P system, and distributed, where each peer
maintains metadata for resources that it holds. Again, the alternatives are identical to
those for directory management. Napster is an example of a system that maintains a
centralized index, while Gnutella maintains a distributed one.

http://www.napster.com
http://www.bittorrent.com

616 16 Peer-to-Peer Data Management

The type of index supported by a P2P system (centralized or distributed) impacts
how resources are searched. Note that we are not, at this point, referring to running
queries; we are merely discussing how, given a resource identifier, the underlying P2P
infrastructure can locate the relevant resource. In systems that maintain a centralized
index, the process involves consulting the central peer to find the location of the
resource, followed by directly contacting the peer where the resource is located
(Figure 16.3). Thus, the system operates similar to a client/server one up to the point
of obtaining the necessary index information (i.e., the metadata), but from that point
on, the communication is only between the two peers. Note that the central peer may
return a set of peers who hold the resource and the requesting peer may choose one
among them, or the central peer may make the choice (taking into account loads and
network conditions, perhaps) and return only a single recommended peer.

Directory

Server

(1) Resource X?

(2) Peer n?

Peer n

(3
)
R

e
q
u
e
st

 X
(4

)
X

Fig. 16.3 Search over a Centralized Index. (1) A peer asks the central index manager for resource,
(2) The response identifies the peer with the resource, (3) The peer is asked for the resource, (4) It is
transferred.

In systems that maintain a distributed index, there are a number of search alter-
natives. The most popular one is flooding, where the peer looking for a resource
sends the search request to all of its neighbors on the overlay network. If any of these
neighbors have the resource, they respond; otherwise, each of them forwards the
request to its neighbors until the resource is found or the overlay network is fully
spanned (Figure 16.4).

Naturally, flooding puts very heavy demands on network resources and is not
scalable – as the overlay network gets larger, more communication is initiated. This
has been addressed by establishing a Time-to-Live (TTL) limit that restricts the

16.1 Infrastructure 617

(1
)

R
e
s
o
u
rc

e
 X

?

(1) Resource X?

(1
) R

esource X
?

(2
)

R
e
s
o
u
rc

e
 X

?

(2) Resource X?

(2
)

R
e
s
o
u
rc

e
 X

?

(2
) R

eso
urc

e X
?

(2
)

R
e
s
o
u
rc

e
 X

?

(2) Resource X?(3) X

Fig. 16.4 Search over a Decentralized Index. (1) A peer sends the request for resource to all its
neighbors, (2) Each neighbor propagates to its neighbors if it doesn’t have the resource, (3) The
peer who has the resource responds by sending the resource.

number of hops that a request message makes before it is dropped from the network.
However, TTL also restricts the number of nodes that are reachable.

There have been other approaches to address this problem. A straightforward
method is for each peer to choose a subset of its neighbors and forward the request
only to those [Kalogeraki et al., 2002]. How this subset can be determined may vary.
For example, the concept of random walks can be used [Lv et al., 2002] where each
peer chooses a neighbor at random and propagates the request only to it. Alternatively,
each neighbor can maintain not only indices for local resources, but also for resources
that are on peers within a radius of itself and use the historical information about
their performance in routing queries [Yang and Garcia-Molina, 2002]. Still another
alternative is to use similar indices based on resources at each node to provide a list of
neighbors that are most likely to be in the direction of the peer holding the requested
resources [Crespo and Garcia-Molina, 2002]. These are referred to as routing indices
and are used more commonly in structured networks, where we discuss them in more
detail.

Another approach is to exploit gossip protocols, also known as epidemic protocols
[Kermarrec and van Steen, 2007]. Gossiping has been initially proposed to maintain
the mutual consistency of replicated data by spreading replica updates to all nodes
over the network [Demers et al., 1987]. It has since been successfully used in
P2P networks for data dissemination. Basic gossiping is simple. Each node in the
network has a complete view of the network (i.e., a list of all nodes’ addresses) and
chooses a node at random to spread the request. The main advantage of gossiping
is robustness over node failures since, with very high probability, the request is
eventually propagated to all the nodes in the network. In large P2P networks, however,

618 16 Peer-to-Peer Data Management

the basic gossiping model does not scale as maintaining the complete view of the
network at each node would generate very heavy communication traffic. A solution to
scalable gossiping is to maintain at each node only a partial view of the network, e.g.,
a list of tens of neighbour nodes [Voulgaris et al., 2003]. To gossip a request, a node
chooses, at random, a node in its partial view and sends it the request. In addition, the
nodes involved in a gossip exchange their partial views to reflect network changes
in their own views. Thus, by continuously refreshing their partial views, nodes can
self-organize into randomized overlays that scale up very well.

The final issue that we would like to discuss with respect to unstructured networks
is how peers join and leave the network. The process is different for centralized
versus distributed index approaches. In a centralized index system, a peer that wishes
to join simply notifies the central index peer and informs it of the resources that it
wishes to contribute to the P2P system. In the case of a distributed index, the joining
peer needs to know one other peer in the system to which it “attaches” itself by
notifying it and receiving information about its neighbors. At that point, the peer is
part of the system and starts building its own neighbors. Peers that leave the system
do not need to take any special action, they simply disappear. Their disappearance
will be detected in time, and the overlay network will adjust itself.

16.1.2 Structured P2P Networks

Structured P2P networks have emerged to address the scalability issues faced by
unstructured P2P networks [Ritter, 2001; Ratnasamy et al., 2001b; Stoica et al.,
2001a]. They achieve this goal by tightly controlling the overlay topology and the
placement of resources. Thus, they achieve higher scalability at the expense of lower
autonomy as each peer that joins the network allows its resources to be placed on the
network based on the particular control method that is used.

As with unstructured P2P networks, there are two fundamental issues to be
addressed: how are the resources indexed, and how are they searched. The most
popular indexing and data location mechanism that is used in structured P2P networks
is dynamic hash table (DHT). DHT-based systems provide two API’s: put(key,
data) and get(key), where key is an object identifier. The key is hashed to
generate a peer id, which stores the data corresponding to object contents (Figure
16.5). Dynamic hashing has also been successfully used to address the scalability
issues of very large distributed file structures [Devine, 1993; Litwin et al., 1993].

A straightforward approach could be to use the URI of the resource as the IP
address of the peer that would hold the resource [Harvey et al., 2003]. However, one
of the important design requirements is to provide a uniform distribution of resources
over the overlay network and URIs/IP addresses do not provide sufficient flexibility.
Consequently, consistent hashing techniques that provide uniform hashing of values
are used to evenly place the data on the overlay. Although many hash functions may
be employed for generating virtual address mappings for the resource, SHA-1 has

16.1 Infrastructure 619

h(k
1
)=p

1
h(k

2
)=p

4
h(k

3
)=p

6

p
1

p
4

p
6

value(k
1
) value(k

2
) value(k

3
)

DHT overlay

routing

Peers

Fig. 16.5 DHT-based P2P Network

become the most widely accepted base1 hash function that supports both uniformity
as well as security (by supporting data-integrity for the keys). The actual design of
the hash function may be implementation dependent and we won’t discuss that issue
any further.

Search (commonly called “lookup”) over a DHT-based structured P2P network
also involves the hash function: the key of the resource is hashed to get the id of
the peer in the overlay network that is responsible for that key. The lookup is then
initiated on the overlay network to locate the target node in question. This is referred
to as the routing protocol, and it differs between different implementations and is
closely associated with the overlay structure used. We will discuss one example
approach shortly.

While all routing protocols aim to provide efficient lookups, they also try to mini-
mize the routing information (also called routing state) that needs to be maintained in
a routing table at each peer in the overlay. This information differs between various
routing protocols and overlay structures, but it needs to provide sufficient directory-
type information to route the put and get requests to the appropriate peer on the
overlay. All routing table implementations require the use of maintenance algorithms
in order to keep the routing state up-to-date and consistent. In contrast to routers
on the Internet that also maintain routing databases, P2P systems pose a greater
challenge since they are characterized by high node volatility and undependable
network links. Since DHTs also need to support perfect recall (i.e., all the resources
that are accessible through a given key have to be found), routing state consistency
becomes a key challenge. Therefore, the maintenance of consistent routing state
in the face of concurrent lookups and during periods of high network volatility is
essential.

Many DHT-based overlays have been proposed. These can be categorized ac-
cording to their routing geometry and routing algorithm [Gummadi et al., 2003].
Routing geometry essentially defines the manner in which neighbors and routes are
arranged. The routing algorithm corresponds to the routing protocol discussed above

1 A base hash function is defined as a function that is used as a basis for the design of another hash
function.

620 16 Peer-to-Peer Data Management

and is defined as the manner in which next-hops/routes are chosen on a given routing
geometry. The more important existing DHT-based overlays can be categorized as
follows:

• Tree. In the tree approach, the leaf nodes correspond to the node identifiers
that store the keys to be searched. The height of the tree is log(n), where n
is the number of nodes in the tree. The search proceeds from the root to the
leaves by doing a longest prefix match at each of the intermediate nodes until
the target node is found. Therefore, in this case, matching can be thought of
as correcting bit values from left-to-right at each successive hop in the tree. A
popular DHT implementation that falls into this category is Tapestry [Zhao
et al., 2004], which uses surrogate routing in order to forward requests at each
node to the closest digit in the routing table. Surrogate routing is defined as
routing to the closest digit when an exact match in the longest prefix cannot be
found. In Tapestry, each unique identifier is associated with a node that is the
root of a unique spanning tree used to route messages for the given identifier.
Therefore, lookups proceed from the base of the spanning tree all the way to the
root node of the identifier. Although this is somewhat different from traditional
tree structures, Tapestry routing geometry is very closely associated to a tree
structure and we classify it as such.
In tree structures, a node in the system has 2i−1 nodes to choose from as its
neighbor from the subtree with whom it has log(n− i) prefix bits in common.
The number of potential neighbors increases exponentially as we proceed fur-
ther up in the tree. Thus, in total there are nlog(n)/2 possible routing tables per
node (note, however that, only one such routing table can be selected for a
node). Therefore, the tree geometry has good neighbor selection characteristics
that would provide it with fault tolerance. However, routing can only be done
through one neighboring node when sending to a particular destination. Conse-
quently, the tree-structured DHTs do not provide any flexibility in the selection
of routes.

• Hypercube. The hypercube routing geometry is based on d-dimensional Carte-
sian coordinate space that is partitioned into an individual set of zones such
that each node maintains a separate zone of the coordinate space. An example
of hypercube-based DHT is the Content Addressable Network (CAN) [Rat-
nasamy et al., 2001a]. The number of neighbors that a node may have in a
d-dimensional coordinate space is 2d (for the sake of discussion, we consider
d = log(n)). If we consider each coordinate to represent a set of bits, then each
node identifier can be represented as a bit string of length log(n). In this way,
the hypercube geometry is very similar to the tree since it also simply fixes
the bits at each hop to reach the destination. However, in the hypercube, since
the bits of neighboring nodes only differ in exactly one bit, each forwarding
node needs to modify only a single bit in the bit string, which can be done in
any order. Thus, if we consider the correction of the bit string, the first correc-
tion can be applied to any log(n) nodes, the next correction can be applied to
any log(n)−1 nodes, etc. Therefore, we have log(n)! possible routes between

16.1 Infrastructure 621

nodes which provides high route flexibility in the hypercube routing geometry.
However, a node in the coordinate space does not have any choice over its
neighbors’ coordinates since adjacent coordinate zones in the coordinate space
can’t change. Therefore, hypercubes have poor neighbor selection flexibility.

• Ring. The ring geometry is represented as a one-dimensional circular identifier
space where the nodes are placed at different locations on the circle. The
distance between any two nodes on the circle is the numeric identifier difference
(clockwise) around the circle. Since the circle is one-dimensional, the data
identifiers can be represented as single decimal digits (represented as binary
bit strings) that map to a node that is closest in the identifier space to the
given decimal digit. Chord [Stoica et al., 2001b] is a popular example of the
ring geometry. Specifically, in Chord, a node whose identifier is a maintains
information about log(n) other neighbors on the ring where the ith neighbor
is the node closest to a+2i−1 on the circle. Using these links (called fingers),
Chord is able to route to any other node in log(n) hops.
A careful analysis of Chord’s structure reveals that a node does not necessarily
need to maintain the node closest to a+ 2i−1 as its neighbor. In fact, it can
still maintain the log(n) lookup upper bound if any node from the range [(a+
2i−1),(a+2i)] is chosen. Therefore, in terms of route flexibility, it is able to
select between nlog(n)/2 routing tables for each node. This provides a great deal
of neighbor selection flexibility. Moreover, for routing to any node, the first hop
has log(n) neighbors that can route the search to the destination and the next
node has log(n)− 1 nodes, and so on. Therefore, there are typically log(n)!
possible routes to the destination. Consequently, ring geometry also provides
good route selection flexibility.

In addition to these most popular geometries, there have been many other DHT-
based structured overlays that have been proposed that use different topologies. Some
of these are Viceroy [Malkhi et al., 2002], Kademlia [Maymounkov and Mazières,
2002], and Pastry [Rowstron and Druschel, 2001].

DHT-based overlays are efficient in that they guarantee finding the node on
which to place or find the data in log(n) hops where n is the number of nodes in
the system. However, they have a number of problems, in particular when viewed
from the data management perspective. One of the issues with DHTs that employ
consistent hashing functions for better distribution of resources is that two peers
that are “neighbors” in the overlay network because of the proximity of their hash
values may be geographically quite apart in the actual network. Thus, communicating
with a neighbor in the overlay network may incur high transmission delays in the
actual network. There have been studies to overcome this difficulty by designing
proximity-aware or locality-aware hash functions. Another difficulty is that they do
not provide any flexibility in the placement of data – a data item has to be placed on
the node that is determined by the hash function. Thus, if there are P2P nodes that
contribute their own data, they need to be willing to have data moved to other nodes.
This is problematic from the perspective of node autonomy. The third difficulty
is in that it is hard to run range queries over DHT-based architectures since, as is

622 16 Peer-to-Peer Data Management

well-known, it is hard to run range queries over hash indices. There have been studies
to overcome this difficulty that we discuss later.

These concerns have caused the development of structured overlays that do not
use DHT for routing. In these systems, peers are mapped into the data space rather
than the hash key space. There are multiple ways to partition the data space among
multiple peers.

• Hierarchical structure. Many systems employ hierarchical overlay structures,
including trie, balanced trees, randomized balance trees (e.g., skip list [Pugh,
1989]), and others. Specifically PHT [Ramabhadran et al., 2004] and P-Grid
[Aberer, 2001; Aberer et al., 2003a] employ a binary trie structure, where peers
whose data share common prefixes cluster under common branches. Balanced
trees are also widely used due to their guaranteed routing efficiency (the ex-
pected “hop length” between arbitrary peers is proportional to the tree height).
For instance, BATON [Jagadish et al., 2005], VBI-tree [Jagadish et al., 2005],
and BATON* [Jagadish et al., 2006] employ k-way balanced tree structure to
manage peers, and data are evenly partitioned among peers at the leaf-level.
In comparison, P-Tree [Crainiceanu et al., 2004] uses a B-tree structure with
better flexibility on tree structural changes. SkipNet [Harvey et al., 2003] and
Skip Graph [Aspnes and Shah, 2003] are based on the skip list, and they link
peers according to a randomized balanced tree structure where the node order
is determined by each node’s data values.

• Space-filling curve. This architecture is usually used to linearize sort data in
multi-dimensional data space. Peers are arranged along the space-filling curve
(e.g., Hilbert curve) so that sorted traversal of peers according to data order is
possible [Schmidt and Parashar, 2004].

• Hyper-rectangle structure. In these systems, each dimension of the hyper-
rectangle corresponds to one attribute of the data according to which an or-
ganization is desired. Peers are distributed in the data space either uniformly
or based on data locality (e.g., through data intersection relationship). The
hyper-rectangle space is then partitioned by peers based on their geometric
positions in the space, and neighboring peers are interconnected to form the
overlay network [Ganesan et al., 2004].

16.1.3 Super-peer P2P Networks

Super-peer P2P systems are hybrid between pure P2P systems and the traditional
client-server architectures. They are similar to client-server architectures in that not
all peers are equal; some peers (called super-peers) act as dedicated serves for some
other peers and can perform complex functions such as indexing, query processing,
access control, and meta-data management. If there is only one super-peer in the
system, then this reduces to the client-server architecture. They are considered P2P
systems, however, since the organization of the super-peers follow P2P organization,

16.1 Infrastructure 623

and super-peers can communicate with each other in sophisticated ways. Thus, unlike
client-server systems, global information is not necessarily centralized and can be
partitioned or replicated across super-peers.

In a super-peer network, a requesting peer sends the request, which can be ex-
pressed in a high-level language, to its responsible super-peer. The super-peer can
then find the relevant peers either directly through its index or indirectly using its
neighbor super-peers. More precisely, the search for a resource proceeds as follows
(see Figure 16.6):

1. A peer, say Peer 1, asks for a resource by sending a request to its super-peer.

2. If the resource exists at one of the peers controlled by this super-peer, it
notifies Peer 1, and the two peers then communicate to retrieve the resource.
Otherwise, the super-peer sends the request to the other super-peers.

3. If the resource does not exist at one of the peers controlled by this super-peer,
the super-peer asks the other super-peers. The super-peer of the node that
contains the resource (say Peer n) responds to the requesting super-peer.

4. Peer n’s identity is sent to Peer 1, after which the two peers can communicate
directly to retrieve the resource.

Directory

Server

Directory

Server

Directory

Server

Super-peer 1

Super-peer 2

Super-peer 3

(2) R
esource X?

(2
)

R
e
s
o
u
rc

e
 X

?

(4) Peer n

Peer n

(3) Peer n

(1) Resource X?

Peer 1

Fig. 16.6 Search over a Super-peer System. (1) A peer sends the request for resource to all its
super-peer, (2) The super-peer sends the request to other super-peers if necessary, (3) The super-peer
one of whose peers has the resource responds by indicating that peer, (4) The super-peer notifies the
original peer.

624 16 Peer-to-Peer Data Management

Requirements Unstructured Structured Super-peer

Autonomy

Query expressiveness

E�ciency

QoS

Fault-tolerance

Security

Low

High

Low

Low

High

Low

Low

Low

High

High

High

Low

Moderate

High

High

High

Low

High

Fig. 16.7 Comparison of Approaches.

The main advantages of super-peer networks are efficiency and quality of service
(e.g., completeness of query results, query response time, etc.). The time needed
to find data by directly accessing indices in a super-peer is very small compared
with flooding. In addition, super-peer networks exploit and take advantage of peers’
different capabilities in terms of CPU power, bandwidth, or storage capacity as
super-peers take on a large portion of the entire network load. Access control can
also be better enforced since directory and security information can be maintained at
the super-peers. However, autonomy is restricted since peers cannot log in freely to
any super-peer. Fault-tolerance is typically lower since super-peers are single points
of failure for their sub-peers (dynamic replacement of super-peers can alleviate this
problem).

Examples of super-peer networks include Edutella [Nejdl et al., 2003] and JXTA
(http://www.jxta.org).

16.1.4 Comparison of P2P Networks

Figure 16.7 summarizes how the requirements for data management (autonomy,
query expressiveness, efficiency, quality of service, fault-tolerance, and security)
are possibly attained by the three main classes of P2P networks. This is a rough
comparison to understand the respective merits of each class. Obviously, there is room
for improvement in each class of P2P networks. For instance, fault-tolerance can be
improved in super-peer systems by relying on replication and fail-over techniques.
Query expressiveness can be improved by supporting more complex queries on top
of structured networks.

16.2 Schema Mapping in P2P Systems

We discussed the importance of, and the techniques for, designing database integra-
tion systems in Chapter 4. Similar issues arise in data sharing P2P systems.

http://www.jxta.org

16.2 Schema Mapping in P2P Systems 625

Due to specific characteristics of P2P systems, e.g., the dynamic and autonomous
nature of peers, the approaches that rely on centralized global schemas no longer
apply. The main problem is to support decentralized schema mapping so that a query
expressed on one peer’s schema can be reformulated to a query on another peer’s
schema. The approaches which are used by P2P systems for defining and creating the
mappings between peers’ schemas can be classified as follows: pairwise schema map-
ping, mapping based on machine learning techniques, common agreement mapping,
and schema mapping using information retrieval (IR) techniques.

16.2.1 Pairwise Schema Mapping

In this approach, each user defines the mapping between the local schema and the
schema of any other peer that contains data that are of interest. Relying on the
transitivity of the defined mappings, the system tries to extract mappings between
schemas that have no defined mapping.

Piazza [Tatarinov et al., 2003] follows this approach (see Figure 16.8). The data are
shared as XML documents, and each peer has a schema that defines the terminology
and the structural constraints of the peer. When a new peer (with a new schema) joins
the system for the first time, it maps its schema to the schema of some other peers
in the system. Each mapping definition begins with an XML template that matches
some path or subtree of an instance of the target schema. Elements in the template
may be annotated with query expressions that bind variables to XML nodes in the
source. Active XML [Abiteboul et al., 2002, 2008b] also relies on XML documents
for data sharing. The main innovation is that XML documents are active in the sense
that they can include Web service calls. Therefore, data and queries can be seamlessly
integrated. We discuss this further in Chapter 17.

The Local Relational Model (LRM) [Bernstein et al., 2002] is another example
that follows this approach. LRM assumes that the peers hold relational databases,
and each peer knows a set of peers with which it can exchange data and services.
This set of peers is called peer’s acquaintances. Each peer must define semantic
dependencies and translation rules between its data and the data shared by each of
its acquaintances. The defined mappings form a semantic network, which is used
for query reformulation in the P2P system. Hyperion [Kementsietsidis et al., 2003]
generalizes this approach to deal with autonomous peers that form acquaintances at
run-time, using mapping tables to define value correspondences among heterogeneous
databases. Peers perform local querying and update processing, and also propagate
queries and updates to their acquainted peers.

PGrid [Aberer et al., 2003b] also assumes the existence of pairwise mappings
between peers, initially constructed by skilled experts. Relying on the transitivity of
these mappings and using a gossip algorithm, PGrid extracts new mappings that relate
the schemas of the peers between which there is no predefined schema mapping.

626 16 Peer-to-Peer Data Management

Stanford

MSR

IBM

UW CiteSeer

UPenn

DBLP

ACM

SIGMOD

PODS

Fig. 16.8 An Example of Pairwise Schema Mapping in Piazza

16.2.2 Mapping based on Machine Learning Techniques

This approach is generally used when the shared data are defined based on ontolo-
gies and taxonomies as proposed for the semantic web. It uses machine learning
techniques to automatically extract the mappings between the shared schemas. The
extracted mappings are stored over the network, in order to be used for processing
future queries. GLUE [Doan et al., 2003b] uses this approach. Given two ontologies,
for each concept in one, GLUE finds the most similar concept in the other. It gives
well founded probabilistic definitions to several practical similarity measures, and
uses multiple learning strategies, each of which exploits a different type of informa-
tion either in the data instances or in the taxonomic structure of the ontologies. To
further improve mapping accuracy, GLUE incorporates commonsense knowledge
and domain constraints into the schema mapping process. The basic idea is to provide
classifiers for the concepts. To decide the similarity between two concepts A and B,
the data of concept B are classified using A’s classifier and vice versa. The amount
of values that can be successfully classified into A and B represent the similarity
between A and B.

16.2.3 Common Agreement Mapping

In this approach, the peers that have a common interest agree on a common schema
description for data sharing. The common schema is usually prepared and maintained
by expert users. APPA [Akbarinia et al., 2006a; Akbarinia and Martins, 2007] makes
the assumption that peers wishing to cooperate, e.g., for the duration of an experiment,

16.2 Schema Mapping in P2P Systems 627

agree on a Common Schema Description (CSD). Given a CSD, a peer schema can
be specified using views. This is similar to the LAV approach in data integration
systems, except that queries at a peer are expressed in terms of the local views, not
the CSD. Another difference between this approach and LAV is that the CSD is not a
global schema, i.e., it is common to a limited set of peers with a common interest
(see Figure 16.9). Thus, the CSD does not pose scalability challenges. When a peer
decides to share data, it needs to map its local schema to the CSD.

Example 16.1. Given two CSD relation definitions r1 and r2, an example of peer
mapping at peer p is:

p : r(A,B,D)⊆ csd : r1(A,B,C),csd : r2(C,D,E)

In this example, the relation r(A,B,D) that is shared by peer p is mapped to
relations r1(A,B,C), r2(C,D,E) both of which are involved in the CSD. In APPA,
the mappings between the CSD and each peer’s local schema are stored locally at
the peer. Given a query Q on the local schema, the peer reformulates Q to a query on
the CSD using locally stored mappings. �

AutoMed [McBrien and Poulovassilis, 2003] is another system that relies on
common agreements for schema mapping. It defines the mappings by using primitive
bidirectional transformations defined in terms of a low-level data model.

...p p p ...p p p

CSD1 CSD1

Community 1 Community 2

Fig. 16.9 Common Agreement Schema Mapping in APPA

16.2.4 Schema Mapping using IR Techniques

This approach extracts the schema mappings at query execution time using IR
techniques by exploring the schema descriptions provided by users. PeerDB [Ooi

628 16 Peer-to-Peer Data Management

et al., 2003a] follows this approach for query processing in unstructured P2P networks.
For each relation that is shared by a peer, the description of the relation and its
attributes is maintained at that peer. The descriptions are provided by users upon
creation of relations, and serve as a kind of synonymous names of relation names
and attributes. When a query is issued, a request to find out potential matches
is produced and flooded to the peers that return the corresponding metadata. By
matching keywords from the metadata of the relations, PeerDB is able to find
relations that are potentially similar to the query relations. The relations that are
found are presented to the issuer of the query who decides whether or not to proceed
with the execution of the query at the remote peer that owns the relations.

Edutella [Nejdl et al., 2003] also follows this approach for schema mapping in
super-peer networks. Resources in Edutella are described using the RDF metadata
model, and the descriptions are stored at super-peers. When a user issues a query at
a peer p, the query is sent to p’s super-peer where the stored schema descriptions
are explored and the addresses of the relevant peers are returned to the user. If the
super-peer does not find relevant peers, it sends the query to other super-peers such
that they search relevant peers by exploring their stored schema descriptions. In order
to explore stored schemas, super-peers use the RDF-QEL query language, which is
based on Datalog semantics and thus compatible with all existing query languages,
supporting query functionalities that extend the usual relational query languages.

16.3 Querying Over P2P Systems

P2P networks provide basic techniques for routing queries to relevant peers and this
is sufficient for supporting simple, exact-match queries. For instance, as noted earlier,
a DHT provides a basic mechanism to efficiently look up data based on a key value.
However, supporting more complex queries in P2P systems, particularly in DHTs, is
difficult and has been the subject of much recent research. The main types of complex
queries which are useful in P2P systems are top-k queries, join queries, and range
queries. In this section, we discuss the techniques for processing them.

16.3.1 Top-k Queries

Top-k queries have been used in many domains such as network and system monitor-
ing, information retrieval, and multimedia databases [Ilyas et al., 2008]. With a top-k
query, the user requests k most relevant answers to be returned by the system. The
degree of relevance (score) of the answers to the query is determined by a scoring
function. Top-k queries are very useful for data management in P2P systems, in
particular when the number of all the answers is very large [Akbarinia et al., 2006b].

Example 16.2. Consider a P2P system with medical doctors who want to share some
(restricted) patient data for an epidemiological study. Assume that all doctors agreed

16.3 Querying Over P2P Systems 629

on a common Patient description in relational format. Then, one doctor may want to
submit the following query to obtain the top 10 answers ranked by a scoring function
over height and weight:

SELECT *
FROM Patient P
WHERE P.disease = ‘‘diabetes’’
AND P.height < 170
AND P.weight > 160
ORDER BY scoring-function(height,weight)
STOP AFTER 10

The scoring function specifies how closely each data item matches the conditions.
For instance, in the query above, the scoring function could compute the ten most
overweight people. �

Efficient execution of top-k queries in large-scale P2P systems is difficult. In
this section, we first discuss the most efficient techniques proposed for top-k query
processing in distributed systems. Then, we present the techniques proposed for P2P
systems.

16.3.1.1 Basic Techniques

An efficient algorithm for top-k query processing in centralized and distributed
systems is the Threshold Algorithm (TA) [Nepal and Ramakrishna, 1999; Güntzer
et al., 2000; Fagin et al., 2003]. TA is applicable for queries where the scoring
function is monotonic, i.e., any increase in the value of the input does not decrease
the value of the output. Many of the popular aggregation functions such as Min, Max,
and Average are monotonic. TA has been the basis for several algorithms, and we
discuss these in this section.

Threshold Algorithm (TA).

TA assumes a model based on lists of data items sorted by their local scores [Fagin,
1999]. The model is as follows. Suppose we have m lists of n data items such that
each data item has a local score in each list and the lists are sorted according to the
local scores of their data items. Furthermore, each data item has an overall score that
is computed based on its local scores in all lists using a given scoring function. For
example, consider the database (i.e., three sorted lists) in Figure 16.10. Assuming
the scoring function computes the sum of the local scores of the same data item in all
lists, the overall score of item d1 is 30+21+14 = 65.

Then the problem of top-k query processing is to find the k data items whose
overall scores are the highest. This problem model is simple and general. Suppose we
want to find the top-k tuples in a relational table according to some scoring function
over its attributes. To answer this query, it is sufficient to have a sorted (indexed) list

630 16 Peer-to-Peer Data Management

of the values of each attribute involved in the scoring function, and return the k tuples
whose overall scores in the lists are the highest. As another example, suppose we
want to find the top-k documents whose aggregate rank is the highest with respect to
some given set of keywords. To answer this query, the solution is to have, for each
keyword, a ranked list of documents, and return the k documents whose aggregate
rank over all lists are the highest.

TA considers two modes of access to a sorted list. The first mode is sorted (or
sequential) access that accesses each data item in their order of appearance in the list.
The second mode is random access by which a given data item in the list is directly
looked up, for example, by using an index on item id.

Given the m sorted lists of n data items, TA (see Algorithm 16.1), goes down
the sorted lists in parallel, and, for each data item, retrieves its local scores in all
lists through random access and computes the overall score. It also maintains in
a set Y the k data items whose overall scores are the highest so far. The stopping
mechanism of TA uses a threshold that is computed using the last local scores seen
under sorted access in the lists. For example, consider the database in Figure 16.10. At
position 1 for all lists (i.e., when only the first data items have been seen under sorted
access) assuming that the scoring function is the sum of the scores, the threshold is
30+28+30 = 88. At position 2, it is 84. Since data items are sorted in the lists in
decreasing order of local score, the threshold decreases as one moves down the list.
This process continues until k data items are found whose overall scores are greater
than a threshold.

Example 16.3. Consider again the database (i.e., three sorted lists) shown in Figure
16.10. Assume a top-3 query Q (i.e., k = 3), and suppose the scoring function
computes the sum of the local scores of the data item in all lists. TA first looks at
the data items which are at position 1 in all lists, i.e., d1,d2, and d3. It looks up the
local scores of these data items in other lists using random access and computes their
overall scores (which are 65, 63 and 70, respectively). However, none of them has
an overall score that is as high as the threshold of position 1 (which is 88). Thus, at
position 1, TA does not stop. At this position, we have Y = {d1,d2,d3}, i.e., the k
highest scored data items seen so far. At positions 2 and 3, Y is set to {d3,d4,d5}
and {d3,d5,d8} respectively. Before position 6, none of the data items involved in Y
has an overall score higher than or equal to the threshold value. At position 6, the
threshold value is 63, which is less than the overall score of the three data items
involved in Y , i.e., Y = {d3,d5,d8}. Thus, TA stops. Note that the contents of Y
at position 6 is exactly the same as at position 3. In other words, at position 3, Y
already contains all top-k answers. In this example, TA does three additional sorted
accesses in each list that do not contribute to the final result. This is a characteristic
of TA algorithm in that it has a conservative stopping condition that causes it to stop
later than necessary – in this example, it performs 9 sorted accesses and 18 = (9∗2)
random accesses that do not contribute to the final result. �

16.3 Querying Over P2P Systems 631

Algorithm 16.1: Threshold Algorithm (TA)
Input: L1,L2, . . . ,Lm: m sorted lists of n data items ;
f : scoring function
Output: Y : list of top-k data items
begin

j← 1 ;
threshold← 1 ;
min overall score← 0 ;
while j 6= n+1 and min overall score < threshold do
{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do
{Process each data item at position j}
for each data item d at position j in Li do
{access the local scores of d in the other lists through random
access}
overall score(d)← f (scores of d in each Li)

Y ← k data items with highest score so far ;
min overall score← smallest overall score of data items in Y ;
threshold← f (local scores at position j in each Li) ;
j← j+1

end

TA-Style Algorithms.

Several TA-style algorithms, i.e., extensions of TA, have been proposed for distributed
top-k query processing. We illustrate these by means of the Three Phase Uniform
Threshold (TPUT) algorithm that executes top-k queries in three round trips [Cao
and Wang, 2004], assuming that each list is held by one node (which we call the list
holder) and that the scoring function is sum. The TPUT algorithm (see Algorithm
16.2 executed by the query originator) works as follows.

1. The query originator first gets from each list holder its k top data items. Let f
be the scoring function, d be a received data item, and si(d) be the local score
of d in list Li. Then the partial sum of d is defined as psum(d) = ∑

m
i=1 s

′
i(d)

where s′i(d) = si(d) if d has been sent to the coordinator by the holder of Li,
else s′i(d) = 0. The query originator computes the partial sums for all received
data items and identifies the items with the k highest partial sums. The partial
sum of the k−th data item (called phase-1 bottom) is denoted by λ1.

2. The query originator sends a threshold value τ = λ1/m to every list holder.
In response, each list holder sends back all its data items whose local scores
are not less than τ . The intuition is that if a data item is not reported by any
node in this phase, its score must be less than λ1, so it cannot be one of the

632 16 Peer-to-Peer Data Management

Data
Item

Local
score
s

1

d
1

d
4

d
9

d
3

d
7

d
8

d
5

d
6

d
2

d
11

...

30

28

27

26

25

23

17

14

11

10

...

List 1

1

2

3

4

5

6

7

8

9

10

...

Position Data
Item

Local
score
s

2

d
2

d
6

d
7

d
5

d
9

d
1

d
8

d
3

d
4

d
14

...

28

27

25

24

23

21

20

14

13

12

...

List 2

Data
Item

Local
score
s

3

d
3

d
5

d
8

d
4

d
2

d
6

d
13

d
1

d
9

d
7

...

30

29

28

25

24

19

15

14

12

11

...

List 3

Fig. 16.10 Example database with 3 sorted lists

top-k data items. Let Y be the set of data items received from list holders. The
query originator computes the new partial sums for the data items in Y , and
identifies the items with the k highest partial sums. The partial sum of the
k-th data item (called phase-2 bottom) is denoted by λ2. Let the upper bound
score of a data item d be defined as u(d) = ∑

m
i=1 ui(d) where ui(d) = si(d) if

d has been received, else ui(d) = τ . For each data item d ∈ D, if u(d) is less
than λ2, it is removed from Y . The data items that remain in Y are called top-k
candidates because there may be some data items in Y that have not been
obtained from all list holders. A third phase is necessary to retrieve those.

3. The query originator sends the set of top-k candidate data items to each list
holder that returns their scores. Then, it computes the overall score, extracts
the k data items with highest scores, and returns the answer to the user.

Example 16.4. Consider the first two sorted lists (List 1 and List 2) in Figure 16.10.
Assume a top-2 query Q, i.e., k = 2, where the scoring function is sum. Phase 1
produces the sets Y = {d1,d2,d4,d6} and Z = {d1,d2}. Thus we get λ1/2 = 28/2 =
14. Let us now denote each data item d in Y as (d,scoreinList1,scoreinList2).
Phase 2 produces Y = {(d1,30,21),(d2,0,28),(d3,26,14),(d4,28,0),(d5,17,24),
(d6,14,27),(d7,25,25),(d8,23,20),(d9,27,23)} and Z = {(d1,30,21),(d7,25,25)}.
Note that d9 could also have been picked instead of d7 because it has same partial
sum. Thus we get λ2/2=50. The upper bound scores of the data items in Y are
obtained as:

u(d1) = 30+21 = 51
u(d2) = 14+28 = 42
u(d3) = 26+14 = 40

16.3 Querying Over P2P Systems 633

Algorithm 16.2: Three Phase Uniform Threshold(TPUT)
Input: L1,L2, . . . ,Lm: m sorted lists of n data items, each at a different list

holder;
f : scoring function
Output: Y : list of top-k data items
begin
{Phase 1}
for i from 1 to m in parallel do

Y ← receive top-k data items from Li holder
Z← data items with the k highest partial sum in Y ;
λ1←partial sum of k-th data item in Z ;
{Phase 2}
for i from 1 to m in parallel do

send λ1/m to Li’s holder ;
Y ← all data items from Li’s holder whose local scores are not less than
λ1/m

Z← data items with the k highest partial sum in Y ;
λ2← partial sum of k-th data item in Z ;
Y ← Y −{data items in Y whose upper bound score is less than λ2} ;
{Phase 3}
for i from 1 to m in parallel do

send Y to Li holder ;
Z← data items from Li’s holder that are in both Y and Li

Y ← k data items with highest overall score in Z
end

u(d4) = 28+14 = 42
u(d5) = 17+24 = 41
u(d6) = 14+27 = 41
u(d7) = 25+25 = 50
u(d8) = 23+20 = 43
u(d9) = 27+23 = 50

After removal of the data items in Y whose upper bound score is less than λ2, we
have Y = {d1,d7,d9}. The third phase is not necessary in this case as all data items
have all their local scores. Thus the final result is Y = {d1,d7} or Y = {d1,d9}. �

When the number of lists (i.e., m) is high, the response time of TPUT is much
better than that of the basic TA algorithm [Cao and Wang, 2004].

634 16 Peer-to-Peer Data Management

Best Position Algorithm (BPA).

There are many database instances over which TA keeps scanning the lists although
it has seen all top-k answers (as in Example 16.3). Thus, it is possible to stop much
sooner. Based on this observation, best position algorithms (BPA) that execute top-k
queries much more efficiently than TA have been proposed [Akbarinia et al., 2007a].
The key idea of BPA is that the stopping mechanism takes into account special seen
positions in the lists, called the best positions. Intuitively, the best position in a list is
the highest position such that any position before it has also been seen. The stopping
condition is based on the overall score computed using the best positions in all lists.

The basic version of BPA (see Algorithm 16.3) works like TA, except that it keeps
track of all positions that are seen under sorted or random access, computes best
positions, and has a different stopping condition. For each list Li, let Pi be the set of
positions that are seen under sorted or random access in Li. Let bpi, the best position
in Li, be the highest position in Pi such that any position of Li between 1 and bpi
is also in Pi. In other words, bpi is best because we are sure that all positions of Li
between 1 and bpi have been seen under sorted or random access. Let si(bpi) be the
local score of the data item that is at position bpi in list Li. Then, BPA’s threshold is
f (s1(bp1),s2(bp2), . . . ,sm(bpm)) for some function f .

Example 16.5. To illustrate basic BPA, consider again the three sorted lists shown in
Figure 16.10 and the query Q in Example 16.3.

1. At position 1, BPA sees the data items d1,d2, and d3. For each seen data item,
it does random access and obtains its local score and position in all the lists.
Therefore, at this step, the positions that are seen in list L1 are positions 1, 4,
and 9, which are respectively the positions of d1,d3 and d2. Thus, we have
P1 = {1,4,9} and the best position in L1 is bp1 = 1 (since the next position is
4 meaning that positions 2 and 3 have not been seen). For L2 and L3 we have
P2 = {1,6,8} and P3 = {1,5,8}, so bp2 = 1 and bp3 = 1. Therefore, the best
positions overall score is λ = f (s1(1),s2(1),s3(1)) = 30+28+30 = 88. At
position 1, the set of the three highest scored data items is Y = {d1,d2,d3},
and since the overall score of these data items is less than λ , BPA cannot
stop.

2. At position 2, BPA sees d4,d5, and d6. Thus, we have P1 = {1,2,4,7,8,9},
P2 = {1,2,4,6,8,9} and P3 = {1,2,4,5,6,8}. Therefore, we have bp1 = 2,
bp2 = 2 and bp3 = 2, so λ = f (s1(2),s2(2),s3(2)) = 28+27+29 = 84. The
overall score of the data items involved in Y = {d3,d4,d5} is less than 84, so
BPA does not stop.

3. At position 3, BPA sees d7,d8, and d9. Thus, we have P1 = P2 = {1,2,3,4,5,
6,7,8,9}, and P3 = {1,2,3,4,5,6,7,8,10}. Thus, we have bp1 = 9, bp2 = 9
and bp3 = 8. The best positions overall score is λ = f (s1(9),s2(9),s3(8)) =
11+13+14 = 38. At this position, we have Y = {d3,d5,d8}. Since the score
of all data items involved in Y is higher than λ , BPA stops, i.e., exactly at the
first position where BPA has all top-k answers.

16.3 Querying Over P2P Systems 635

Algorithm 16.3: Best Position Algorithm (BPA)
Input: L1,L2, . . . ,Lm: m sorted lists of n data items ;
f : scoring function
Output: Y : list of top-k data items
begin

j← 1 ;
threshold← 1 ;
min overall score← 0 ;
for i from 1 to m in parallel do

Pi← /0
while j 6= n+1 and min overall score < threshold do
{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do
{Process each data item at position j}
for each data item d at position j in Li do
{access the local scores of d in the other lists through random
access}
overall score(d)← f (scores of d in each Li)

Pi← Pi∪ {positions seen under sorted or random access} ;
bpi← best position in Li

Y ← k data items with highest score so far ;
min overall score← smallest overall score of data items in Y ;
threshold← f (local scores at position bpi in each Li) ;
j← j+1

end

Recall that over this database, TA stops at position 6. �

It has been proven that, for any set of sorted lists, BPA stops as early as TA, and
its execution cost is never higher than TA [Akbarinia et al., 2007a]. It has also been
shown that the execution cost of BPA can be (m−1) times lower than that of TA.
Although BPA is quite efficient, it still does redundant work. One of the redundancies
with BPA (and also TA) is that it may access some data items several times under
sorted access in different lists. For example, a data item that is accessed at a position
in a list through sorted access and thus accessed in other lists via random access,
may be accessed again in the other lists by sorted access at the next positions. An
improved algorithm, BPA2 [Akbarinia et al., 2007a], avoids this and is therefore
much more efficient than BPA. It does not transfer the seen positions from list owners
to the query originator. Thus, the query originator does not need to maintain the seen
positions and their local scores. It also accesses each position in a list at most once.
The number of accesses to the lists done by BPA2 can be about (m−1) times lower
than that of BPA.

636 16 Peer-to-Peer Data Management

16.3.1.2 Top-k Queries in Unstructured Systems

One possible approach for processing top-k queries in unstructured systems is to
route the query to all the peers, retrieve all available answers, score them using the
scoring function, and return to the user the k highest scored answers. However, this
approach is not efficient in terms of response time and communication cost.

The first efficient solution that has been proposed is that of PlanetP [Cuenca-
Acuna et al., 2003], which is an unstructured P2P system. In PlanetP, a content-
addressable publish/subscribe service replicates data across P2P communities of up
to ten thousand peers. The top-k query processing algorithm works as follows. Given
a query Q, the query originator computes a relevance ranking of peers with respect
to Q, contacts them one by one in decreasing rank order and asks them to return a set
of their top-scored data items together with their scores. To compute the relevance
of peers, a global fully replicated index is used that contains term-to-peer mappings.
This algorithm has very good performance in moderate-scale systems. However, in a
large P2P system, keeping the replicated index up-to-date may hurt scalability.

We describe another solution that was developed within the context of APPA,
which is a P2P network-independent data management system [Akbarinia et al.,
2006a]. A fully distributed framework to execute top-k queries has been proposed
that also addresses the volatility of peers during query execution, and deals with
situations where some peers leave the system before finishing query processing. Given
a top-k query Q with a specified TTL, the basic algorithm called Fully Decentralized
Top-k (FD) proceeds as follows (see Algorithm 16.4).

1. Query forward. The query originator forwards Q to the accessible peers
whose hop-distance from the query originator is less than TTL.

2. Local query execution and wait. Each peer p that receives Q executes it
locally: it accesses the local data items that match the query predicate, scores
them using a scoring function, selects the k top data items and saves them
as well as their scores locally. Then p waits to receive its neighbors’ results.
However, since some of the neighbors may leave the P2P system and never
send a score-list to p, the wait time has a limit that is computed for each peer
based on the received TTL, network parameters and peer’s local processing
parameters.

3. Merge-and-backward. In this phase, the top scores are bubbled up to the
query originator using a tree-based algorithm as follows. After its wait time
has expired, p merges its k local top scores with those received from its
neighbors and sends the result to its parent (the peer from which it received
Q) in the form of a score-list. In order to minimize network traffic, FD does
not bubble up the top data items (which could be large), only their scores and
addresses. A score-list is simply a list of k pairs (a,s) where a is the address
of the peer owning the data item and s its score.

4. Data retrieval. After receiving the score-lists from its neighbors, the query
originator forms the final score-list by merging its k local top scores with the

16.3 Querying Over P2P Systems 637

merged score-lists received from its neighbors. Then it directly retrieves the k
top data items from the peers that hold them.

Algorithm 16.4: Fully Decentralized Top-k (FD)
Input: Q: top-k query ;
f : scoring function;
T T L: time to live;
w: wait time
Output: Y : list of top-k data items
begin

At query originator peer
begin

send Q to neighbors ;
Final score list← merge local score lists received from neighbors
for each peer p in Final score list do

Y ← retrieve top-k data items in p

end
for each peer that receives Q from a peer p do

T T L← T T L−1 ;
if T T L > 0 then

send Q to neighbors
Local score list← extract top-k local scores;
Wait a time w;
Local score list← Local score list ∪ top-k received scores;
Send Local score list to p

end

The algorithm is completely distributed and does not depend on the existence
of certain peers, and this makes it possible to address the volatility of peers during
query execution. In particular, the following problems are addressed: peers becom-
ing inaccessible in the merge-and-backward phase; peers that hold top data items
becoming inaccessible in the data retrieval phase; late reception of score-lists by a
peer after its wait time has expired. The performance evaluation of FD shows that it
can achieve major performance gains in terms of communication cost and response
time [Akbarinia et al., 2006b].

16.3.1.3 Top-k Queries in DHTs

As we discussed earlier, the main functionality of a DHT is to map a set of keys
to the peers of the P2P system and lookup efficiently the peer that is responsible
for a given key. This offers efficient and scalable support for exact-match queries.

638 16 Peer-to-Peer Data Management

However, supporting top-k queries on top of DHTs is not easy. A simple solution
is to retrieve all tuples of the relations involved in the query, compute the score of
each retrieved tuple, and finally return the k tuples whose scores are the highest.
However, this solution cannot scale up to a large number of stored tuples. Another
solution is to store all tuples of each relation using the same key (e.g., relation’s
name), so that all tuples are stored at the same peer. Then, top-k query processing can
be performed at that central peer using well-known centralized algorithms. However,
the peer becomes a bottleneck and a single point of failure.

A solution has been proposed as part of APPA project that is based on TA (see
Section 16.3.1.1) and a mechanism that stores the shared data in the DHT in a fully
distributed fashion [Akbarinia et al., 2007c]. In APPA, peers can store their tuples
in the DHT using two complementary methods: tuple storage and attribute-value
storage. With tuple storage, each tuple is stored in the DHT using its identifier
(e.g., its primary key) as the storage key. This enables looking up a tuple by its
identifier similar to a primary index. Attribute value storage individually stores in the
DHT the attributes that may appear in a query’s equality predicate or in a query’s
scoring function. Thus, as in secondary indices, it allows looking up the tuples using
their attribute values. Attribute value storage has two important properties: (1) after
retrieving an attribute value from the DHT, peers can retrieve easily the corresponding
tuple of the attribute value; (2) attribute values that are relatively “close” are stored
at the same peer. To provide the first property, the key, which is used for storing the
entire tuple, is stored along with the attribute value. The second property is provided
using the concept of domain partitioning as follows. Consider an attribute a and
let Da be its domain of values. Assume that there is a total order < on Da (e.g.,
Da is numeric). Da is partitioned into n non-empty sub-domains d1,d2, . . . ,dn such
that their union is equal to Da, the intersection of any two different sub-domains
is empty, and for each v1 ∈ di and v2 ∈ d j, if i < j then we have v1 < v2. The hash
function is applied on the sub-domain of the attribute value. Thus, for the attribute
values that fall in the same sub-domain, the storage key is the same and they are
stored at the same peer. To avoid attribute storage skew (i.e., skewed distribution
of attribute values within sub-domains), domain partitioning is done in such a way
that attribute values are uniformly distributed in sub-domains. This technique uses
histogram-based information that describes the distribution of values of the attribute.

Using this storage model, the top-k query processing algorithm, called DHTop
(see Algorithm 16.5), works as follows. Let Q be a given top-k query, f be its scoring
function, and p0 be the peer at which Q is issued. For simplicity, let us assume that f
is a monotonic scoring function. Let scoring attributes be the set of attributes that
are passed to the scoring function as arguments. DHTop starts at p0 and proceeds
in two phases: first it prepares ordered lists of candidate sub-domains, and then it
continuously retrieves candidate attribute values and their tuples until it finds k top
tuples. The details of the two steps are as follows:

1. For each scoring attribute a, p0 prepares the list of sub-domains and sorts
them in descending order of their positive impact on the scoring function. For
each list, p0 removes from the list the sub-domains in which no member can

16.3 Querying Over P2P Systems 639

satisfy Q’s conditions. For instance, if there is a condition that enforces the
scoring attribute to be equal to a constant, (e.g., a = 10), then p0 removes
from the list all the sub-domains except the sub-domain to which the constant
value belongs. Let us denote by La the list prepared in this phase for a scoring
attribute a.

2. For each scoring attribute a, in parallel, p0 proceeds as follows. It sends Q
and a to the peer, say p, that is responsible for storing the values of the first
sub-domain of La, and requests it to return the values of a at p. The values are
returned to p0 in order of their positive impact on the scoring function. After
receiving each attribute value, p0 retrieves its corresponding tuple, computes
its score, and keeps it if the score is one of the k highest scores yet computed.
This process continues until k tuples are obtained whose scores are higher
than a threshold that is computed based on the attribute values retrieved so far.
If the attribute values that p returns to p0 are not sufficient for determining
the k top tuples, p0 sends Q and a to the site that is responsible for the second
sub-domain of La and so on until k top tuples are found.

Let a1,a2, . . . ,am be the scoring attributes and v1,v2, . . . ,vm be the last val-
ues retrieved respectively for each of them. The threshold is defined to be τ =
f (v1,v2, . . . ,vm). A main feature of DHTop is that after retrieving each new attribute
value, the value of the threshold decreases. Thus, after retrieving a certain num-
ber of attribute values and their tuples, the threshold becomes less than k of the
retrieved data items and the algorithm stops. It has been analytically proven that
DHTop works correctly for monotonic scoring functions and also for a large group
of non-monotonic functions.

16.3.1.4 Top-k Queries in Super-peer Systems

A typical algorithm for top-k query processing in super-peer systems is that of
Edutella [Balke et al., 2005]. In Edutella, a small percentage of nodes are super-peers
and are assumed to be highly available with very good computing capacity. The super-
peers are responsible for top-k query processing and the other peers only execute the
queries locally and score their resources. The algorithm is quite simple and works as
follows. Given a query Q, the query originator sends Q to its super-peer, which then
sends it to the other super-peers. The super-peers forward Q to the relevant peers
connected to them. Each peer that has some data items relevant to Q scores them
and sends its maximum scored data item to its super-peer. Each super-peer chooses
the overall maximum scored item from all received data items. For determining
the second best item, it only asks one peer, one that has returned the first top item,
to return its second top scored item. The super-peer selects the overall second top
item from the previously received items and the newly received item. Then, it asks
the peer which has returned the second top item and so on until all k top items are
retrieved. Finally the super-peers send their top items to the super-peer of the query
originator, to extract the overall k top items, and send them to the query originator.

640 16 Peer-to-Peer Data Management

Algorithm 16.5: DHT Top-k (DHTop)
Input: Q: top-k query;
f : scoring function;
A: set of m attributes used in f
Output: Y : list of top-k tuples
begin
{Phase 1: prepare lists of attributes’ subdomains}
for each scoring attribute a in A do

La← all sub-domains of a;
La← La− sub-domains which do not satisfy Q’s condition;
Sort La in descending order of its sub-domains

{Phase 2: continuously retrieve attribute values and their tuples until finding
k top tuples}
Done← false;
for each scoring attribute a in A in parallel do

i← 1
while (i < number of sub-domains of a) and not Done do

send Q to peer p that maintains the attribute values of sub-domain i
in La;
Z← a values (in descending order) from p that satisfy Q’s
condition, along with their corresponding data storage keys ;
for each received value v do

get the tuple of v;
Y ← k tuples with highest score so far;
threshold← f (v1,v2, . . . ,vm) such that vi is the last value
received for attribute ai in A;
min overall score← smallest overall score of tuples in Y ;
if min overall score≤ threshold then

Done← true
i← i+1

end

This algorithm minimizes communication between peers and super-peers since, after
having received the maximum scored data items from each peer connected to it, each
super-peer asks only one peer for the next top item.

16.3.2 Join Queries

The most efficient join algorithms in distributed and parallel databases are hash-based.
Thus, the fact that a DHT relies on hashing to store and locate data can be naturally
exploited to support join queries efficiently. A basic solution has been proposed in

16.3 Querying Over P2P Systems 641

the context of the PIER P2P system [Huebsch et al., 2003] that provides support
for complex queries on top of DHTs. The solution is a variation of the parallel
hash join algorithm (PHJ) (see Section 14.3.2) which we call PIERjoin. As in the
PHJ algorithm, PIERjoin assumes that the joined relations and the result relations
have a home (called namespace in PIER), which are the nodes that store horizontal
fragments of the relation. Then it makes use of the put method for distributing
tuples onto a set of peers based on their join attribute so that tuples with the same
join attribute values are stored at the same peers. To perform joins locally, PIER
implements a version of the symmetric hash join algorithm [Wilschut and Apers,
1991] that provides efficient support for pipelined parallelism. In symmetric hash join,
with two joining relations, each node that receives tuples to be joined maintains two
hash tables, one per relation. Thus, upon receiving a new tuple from either relation,
the node adds the tuple into the corresponding hash table and probes it against the
opposite hash table based on the tuples received so far. PIER also relies on the DHT
to deal with the dynamic behavior of peers (joining or leaving the network during
query execution) and thus does not give guarantees on result completeness.

For a binary join query Q (which may include select predicates), PIERjoin works
in three phases (see Algorithm 16.6): multicast, hash and probe/join.

1. Multicast phase. The query originator peer multicasts Q to all peers that
store tuples of the join relations R and S, i.e., their homes.

2. Hash phase. Each peer that receives Q scans its local relation, searching for
the tuples that satisfy the select predicate (if any). Then, it sends the selected
tuples to the home of the result relation, using put operations. The DHT key
used in the put operation is calculated using the home of the result relation
and the join attribute.

3. Probe/join phase. Each peer in the home of the result relation, upon receiving
a new tuple, inserts it in the corresponding hash table, probes the opposite
hash table to find tuples that match the join predicate (and a select predicate
if any) and constructs the result joined tuples. Recall that the “home” of a
(horizontally partitioned) relation was defined in Chapter 8 as a set of peers
where each peer has a different partition. In this case, the partitioning is
by hashing on the join attribute. The home of the result relation is also a
partitioned relation (using put operations) so it is also at multiple peers.

This basic algorithm can be improved in several ways. For instance, if one of the
relations is already hashed on the join attributes, we may use its home as result home,
using a variation of the parallel associative join algorithm (PAJ) (see Section 14.3.2),
where only one relation needs to be hashed and sent over the DHT.

To avoid multicasting the query to large numbers of peers, another approach is to
allocate a limited number of special powerful peers, called range guards, for the task
of join query processing [Triantafillou and Pitoura, 2003]. The domains of the join
attributes are divided, and each partition is dedicated to a range guard. Then, join
queries are sent only to range guards, where the query is executed.

642 16 Peer-to-Peer Data Management

Algorithm 16.6: PIERjoin
Input: Q: join query over relations R and S on attribute A;
h: hash function;
HR,HS: homes of R and S
Output: T : join result relation;
HT : home of T
begin
{Multicast phase}
At query originator peer send Q to all peers in HR and HS ;
{Hash phase}
for each peer p in HR that received Q in parallel do

for each tuple r in Rp that satisfies the select predicate do
place r using h(HT ,A)

for each peer p in HS that received Q in parallel do
for each tuple s in Sp that satisfies the select predicate do

place s using h(HT ,A)

{Probe/join phase}
for each peer p in HT in parallel do

if a new tuple i has arrived then
if i is an r tuple then

probe s tuples in Sp using h(A)
else

probe r tuples in Rp using h(A)
Tp← r 1 s

end

16.3.3 Range Queries

Recall that range queries have a WHERE clause of the form “attribute A in range
[a,b]”, with a and b being numerical values. Structured P2P systems, in particular,
DHTs are very efficient at supporting exact-match queries (of the form “A = a”) but
have difficuties with range queries. The main reason is that hashing tends to destroy
the ordering of data that is useful in finding ranges quickly.

There are two main approaches for supporting range queries in structured P2P
systems: extend a DHT with proximity or order-preserving properties, or maintain the
key ordering with a tree-based structure. The first approach has been used in several
systems. Locality sentitive hashing [Gupta et al., 2003] is an extension to DHTs that
hashes similar ranges to the same DHT node with high probability. However, this
method can only obtain approximate answers and may cause unbalanced loads in
large networks. SkipNet [Harvey et al., 2003] is a lexicographic order-preserving
DHT that allows data items with similar values to be placed on contiguous peers. It

16.3 Querying Over P2P Systems 643

uses names rather than hashed identifiers to order peers in the overlay network, and
each peer is responsible for a range of strings. This facilitates the execution of range
queries. However, the number of peers to be visited is linear in the query range.

The Prefix Hash Tree (PHT) [Ramabhadran et al., 2004] is a trie-based distributed
data structure that supports range queries over a DHT, by simply using the DHT
lookup operation. The data being indexed are binary strings of length D. Each node
has either 0 or 2 children, and a key k is stored at a leaf node whose label is a prefix
of k. Furthermore, leaf nodes are linked to their neighbors. PHT’s lookup operation
on key k must return the unique leaf node lea f (k) whose label is a prefix of k. Given
a key k of length D, there are D+1 distinct prefixes of k. Obtaining lea f (k) can be
performed by a linear scan of these potential D+1 nodes. However, since a PHT is a
binary trie, the linear scan can be improved using a binary search on prefix length.
This reduces the number of DHT lookups from (D+1) to (log D). Given two keys
a and b such as a≤ b, two algorithms for range queries are supported, using PHT’s
lookup. The first one is sequential: it searches lea f (a) and then scans sequentially
the linked list of leaf nodes until the node lea f (b) is reached. The second algorithm
is parallel: it first identifies the node which corresponds to the smallest prefix range
that completely covers the range [a,b]. To reach this node, a simple DHT lookup is
used and the query is forwarded recursively to those children that overlap with the
range [a,b].

As in all hashing schemes, the first approach suffers from data skew that can
result in peers with unbalanced ranges, which hurts load balancing. To overcome this
problem, the second approach exploits tree-based structures to maintain balanced
ranges of keys. The first attempt to build a P2P network based on a balanced tree
structure is BATON (BAlanced Tree Overlay Network) [Jagadish et al., 2005]. We
now present BATON and its support for range queries in more detail.

BATON organizes peers as a balanced binary tree (each node of the tree is main-
tained by a peer). The position of a node in BATON is determined by a (level,number)
tuple, with level starting from 0 at the root, number starting from 1 at the root and
sequentially assigned using in-order traversal. Each tree node stores links to its parent,
children, adjacent nodes and selected neighbor nodes that are nodes at the same level.
Two routing tables: a left routing table and a right routing table store links to the
selected neighbor nodes. For a node numbered i, these routing tables contain links
to nodes located at the same level with numbers that are less (left routing table) and
greater (right routing table) than i by a power of 2. The jth element in the left (right)
routing table at node i contains a link to the node numbered i−2 j−1 (respectively
i+2 j−1) at the same level in the tree. Figure 16.11 shows the routing table of node 6.

In BATON, each leaf and internal node (or peer) is assigned a range of values. For
each link this range is stored at the routing table and when its range changes, the link
is modified to record the change. The range of values managed by a peer is required
to be to the right of the range managed by its left subtree and less than the range
managed by its right subtree (see Figure 16.12). Thus, BATON builds an effective
distributed index structure. The joining and departure of peers are processed such
that the tree remains balanced by forwarding the request upward in the tree for joins

644 16 Peer-to-Peer Data Management

8 9 10

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

Node Left

Child

Right

Child

Lower

Bound

Upper

Bound

0 5 10 null LB5 UB5

1 4 8 9 LB4 UB4

Left routing table

Node Left

Child

Right

Child

Lower

Bound

Upper

Bound

0 7 null null LB7 UB7

Right routing table

Node 6: level 2, number=3

parent=3, leftchild=null, rightchild=null

leftadjacent=1, rightadjacent=3

Fig. 16.11 BATON structure-tree index and routing table of node 6

and downward in the tree for leaves, thus with no more than O(log n) steps for a tree
of n nodes.

8 9 10

4 5 6 7

2 3

1

[35,40)

[15,20) [46,50)

[5,10) [27,35) [40,46) [50,55)

[0,5) [10,15) [20,27)

Q=[7,45]

Fig. 16.12 Range query processing in BATON

A range query is processed as follows (Algorithm 16.7). For a range query Q
with range [a,b] submitted by node i, it looks for a node that intersects with the
lower bound of the searched range. The peer that stores the lower bound of the range
checks locally for tuples belonging to the range and forwards the query to its right
adjacent node. In general, each node receiving the query checks for local tuples and
contacts its right adjacent node until the node containing the upper bound of the
range is reached. Partial answers obtained when an intersection is found are sent
to the node that submits the query. The first intersection is found in O(log n) steps

16.4 Replica Consistency 645

using an algorithm for exact match queries. Therefore, a range query with X nodes
covering the range is answered in O(log n+X) steps.

Algorithm 16.7: BatonRange
Input: Q: a range query in the form [a,b]
Output: T : result relation
begin
{Search for the peer storing the lower bound of the range}
At query originator peer
begin

find peer p that holds value a ;
send Q to p;

end
for each peer p that receives Q do

Tp← Range(p)∩ [a,b];
send Tp to query originator ;
if Range(RightAd jacent(p))∩ [a,b] 6= /0 then

let p be right adjacent peer of p ;
send Q to p

end

Example 16.6. Consider the query Q with range [7,45] issued at node 7 in Figure
16.12. First, BATON executes an exact match query looking for a node containing
the lower bound of the range (see dashed line in the figure). Since the lower bound is
in the range assigned to node 4, it checks locally for tuples belonging to the range
and forwards the query to its adjacent right node (node 9). Node 9 checks for local
tuples belonging to the range and forwards the query to node 2. Nodes 10, 5, 1 and
6 receive the query, they check for local tuples and contact their respective right
adjacent node until the node containing the upper bound of the range is reached. �

16.4 Replica Consistency

To increase data availability and access performance, P2P systems replicate data.
However, different P2P systems provide very different levels of replica consistency.
The earlier, simple P2P systems such as Gnutella and Kazaa deal only with static data
(e.g., music files) and replication is “passive” as it occurs naturally as peers request
and copy files from one another (basically, caching data). In more advanced P2P
systems where replicas can be updated, there is a need for proper replica management
techniques. Unfortunately, most of the work on replica consistency has been done
only in the context of DHTs. We can distinguish three approaches to deal with replica

646 16 Peer-to-Peer Data Management

consistency: basic support in DHTs, data currency in DHTs, and replica reconciliation.
In this section, we introduce the main techniques used in these approaches.

16.4.1 Basic Support in DHTs

To improve data availability, most DHTs rely on data replication by storing (key,data)
pairs at several peers by, for example, using several hash functions. If one peer is
unavailable, its data can still be retrieved from the other peers that hold a replica.
Some DHTs provide basic support for the application to deal with replica consistency.
In this section, we describe the techniques used in two popular DHTs: CAN and
Tapestry.

CAN provides two approaches for supporting replication [Ratnasamy et al.,
2001a]. The first one is to use m hash functions to map a single key onto m points in
the coordinate space, and, accordingly, replicate a single (key,data) pair at m distinct
nodes in the network. The second approach is an optimization over the basic design
of CAN that consists of a node proactively pushing out popular keys towards its
neighbors when it finds it is being overloaded by requests for these keys. In this
approach, replicated keys should have an associated TTL field to automatically undo
the effect of replication at the end of the overloaded period. In addition, the technique
assumes immutable (read-only) data.

Tapestry [Zhao et al., 2004] is an extensible P2P system that provides decentralized
object location and routing on top of a structured overlay network. It routes messages
to logical end-points (i.e., endpoints whose identifiers are not associated with physical
location), such as nodes or object replicas. This enables message delivery to mobile or
replicated endpoints in the presence of instability of the underlying infrastructure. In
addition, Tapestry takes latency into account to establish each node’s neighborhood.
The location and routing mechanisms of Tapestry work as follows. Let o be an object
identified by id(o); the insertion of o in the P2P network involves two nodes: the
server node (noted ns) that holds o and the root node (noted nr) that holds a mapping
in the form (id(o),ns) indicating that the object identified by id(o) is stored at node
ns. The root node is dynamically determined by a globally consistent deterministic
algorithm. Figure 16.13a shows that when o is inserted into ns, ns publishes id(o) at
its root node by routing a message from ns to nr containing the mapping (id(o),ns).
This mapping is stored at all nodes along the message path. During a location
query (e.g., “id(o)?” in Figure 16.13a, the message that looks for id(o) is initially
routed towards nr, but it may be stopped before reaching it once a node containing
the mapping (id(o),ns) is found. For routing a message to id(o)’s root, each node
forwards this message to its neighbor whose logical identifier is the most similar to
id(o) [Plaxton et al., 1997].

Tapestry offers the entire infrastructure needed to take advantage of replicas, as
shown in Figure 16.13b. Each node in the graph represents a peer in the P2P network
and contains the peer’s logical identifier in hexadecimal format. In this example,
two replicas O1 and O2 of object O (e.g., a book file) are inserted into distinct peers

16.4 Replica Consistency 647

n
s

n
r

(id,n
s
) (id,n

s
)

(id,n
s
)

id? n
s

id?

insert(id,O)

Obj ID

O id

(a) Object publishing

(b) Replica management

Obj ID

O
1

4378

Obj ID

O
2

4378

4228 43FE 437A

4361 4A6D

E791 4B4F 57EC

4664 4377

AA93

AA93

AA93

4378

4378

4378?

insert(4378,O
1
)

insert(4378,O
2
)

α

α

α

α

α

β β
β

β

(AA93,4378)

(4228,4378)

Fig. 16.13 Tapestry (a) Object publishing (b) Replica management.

(O1→ peer 4228 and O2→ peer AA93). The identifier of O1 is equal to that of O2
(i.e., 4378 in hexadecimal) as O1 and O2 are replicas of the same object O. When O1
is inserted into its server node (peer 4228), the mapping (4378,4228) is routed from
peer 4228 to peer 4377 (the root node for O1’s identifier). As the message approaches
the root node, the object and the node identifiers become increasingly similar. In
addition, the mapping (4378,4228) is stored at all peers along the message path. The
insertion of O2 follows the same procedure. In Figure 16.13b, if peer E791 looks
for a replica of O, the associated message routing stops at peer 4361. Therefore,
applications can replicate data across multiple server nodes and rely on Tapestry to
direct requests to nearby replicas.

648 16 Peer-to-Peer Data Management

16.4.2 Data Currency in DHTs

Although DHTs provide basic support for replication, the mutual consistency of the
replicas after updates can be compromised as a result of peers leaving the network or
concurrent updates. Let us illustrate the problem with a simple update scenario in a
typical DHT.

Example 16.7. Let us assume that the operation put(k,d0) (issued by some peer)
maps onto peers p1 and p2 both of which get to store data d0. Now consider an
update (from the same or another peer) with the operation put(k,d1) that also maps
onto peers p1 and p2. Assuming that p2 cannot be reached (e.g., because it has left
the network), only p1 gets updated to store d1. When p2 rejoins the network later on,
the replicas are not consistent: p1 holds the current state of the data associated with k
while p2 holds a stale state.

Concurrent updates also cause problems. Consider now two updates put(k,d2)
and put(k,d3) (issued by two different peers) that are sent to p1 and p2 in reverse
order, so that p1’s last state is d2 while p2’s last state is d3. Thus, a subsequent
get(k) operation will return either stale or current data depending on which peer is
looked up, and there is no way to tell whether it is current or not. �

For some applications (e.g., agenda management, bulletin boards, cooperative
auction management, reservation management, etc.) that could take advantage of a
DHT, the ability to get the current data are very important. Supporting data currency
in replicated DHTs requires the ability to return a current replica despite peers
leaving the network or concurrent updates. Of course, replica consistency is a more
general problem, as discussed in Chapter 13, but the issue is particularly difficult
and important in P2P systems, since there is considerable dynamism in the peers
joining and leaving the system. The problem can be partially addressed by using data
versioning [Knezevic et al., 2005]. Each replica has a version number that is increased
after each update. To return a current replica, all replicas need to be retrieved in order
to select the latest version. However, because of concurrent updates, it may happen
that two different replicas have the same version number, thus making it impossible
to decide which one is the current replica.

A more complete solution has been proposed that considers both data availability
and data currency [Akbarinia et al., 2007b]. To provide high data availability, data are
replicated in the DHT using a set of independent hash functions Hr, called replication
hash functions. The peer that is responsible for key k with respect to hash function h
at the current time is denoted by rsp(k,h). To be able to retrieve a current replica,
each pair (k,data) is stamped with a logical timestamp, and for each h ∈ Hr, the
pair (k,newData) is replicated at rsp(k,h) where newData = {data, timestamp},
i.e., newdata is composed of the initial data and the timestamp. Upon a request for
the data associated with a key, we can return one of the replicas that are stamped
with the latest timestamp. The number of replication hash functions, i.e., Hr, can be
different for different DHTs. For instance, if in a DHT the availability of peers is low,
a high value of Hr (e.g., 30) can be used to increase data availability.

16.4 Replica Consistency 649

This solution is the basis for a service called Update Management Service (UMS)
that deals with efficient insertion and retrieval of current replicas based on times-
tamping. Experimental validation has shown that UMS incurs very little overhead in
terms of communication cost. After retrieving a replica, UMS detects whether it is
current or not, i.e., without having to compare with the other replicas, and returns it
as output. Thus, UMS does not need to retrieve all replicas to find a current one; it
only requires the DHT’s lookup service with put and get operations.

To generate timestamps, UMS uses a distributed service called Key-based Times-
tamping Service (KTS). The main operation of KTS is gen ts(k), which, given
a key k, generates a real number as a timestamp for k. The timestamps generated
by KTS are monotonic such that if tsi and ts j are two timestamps generated for the
same key at times ti and t j, respectively, ts j > tsi if t j is later than ti. This property
allows ordering the timestamps generated for the same key according to the time at
which they have been generated. KTS has another operation denoted by last ts(k),
which, given a key k, returns the last timestamp generated for k by KTS. At anytime,
gen ts(k) generates at most one timestamp for k, and different timestamps for k
are monotonic. Thus, in the case of concurrent calls to insert a pair (k,data), i.e.,
from different peers, only the one that obtains the latest timestamp will succeed to
store its data in the DHT.

16.4.3 Replica Reconciliation

Replica reconciliation goes one step further than data currency by enforcing mutual
consistency of replicas. Since a P2P network is typically very dynamic, with peers
joining or leaving the network at will, eager replication solutions (see Chapter
13) are not appropriate; lazy replication is preferred. In this section, we describe
the reconciliation techniques used in OceanStore, P-Grid and APPA to provide a
spectrum of proposed solutions.

16.4.3.1 OceanStore

OceanStore [Kubiatowicz et al., 2000] is a data management system designed to
provide continuous access to persistent information. It relies on Tapestry and assumes
an infrastructure composed of untrusted powerful servers that are connected by
high-speed links. For security reasons, data are protected through redundancy and
cryptographic techniques. To improve performance, data are allowed to be cached
anywhere, anytime.

OceanStore allows concurrent updates on replicated objects; it relies on recon-
ciliation to assure data consistency. Figure 16.14 illustrates update management
in OceanStore. In this example, R is a replicated object whereas Ri and ri denote,
respectively, a primary and a secondary copy of R. Nodes n1 and n2 are concurrently
updating R. Such updates are managed as follows. Nodes that hold primary copies of

650 16 Peer-to-Peer Data Management

Fig. 16.14 OceanStore reconciliation. (a) Nodes n1 and n2 send updates to the master group of R
and to several random secondary replicas. (b) The master group of R orders updates while secondary
replicas propagate them epidemically. (c) After the master group agreement, the result of updates is
multicast to secondary replicas.

R, called the master group of R, are responsible for ordering updates. So, n1 and n2
perform tentative updates on their local secondary replicas and send these updates
to the master group of R as well as to other random secondary replicas (see Figure
16.14a). The tentative updates are ordered by the master group based on timestamps
assigned by n1 and n2; at the same time, these updates are epidemically propagated
among secondary replicas (Figure 16.14b). Once the master group obtains an agree-

r5

r9 r10

r6 r7 r7 r8

r13r11

r13 r14

r5 r6

r10r9

r5 r6 r7 r8

r12r11r10

r13 r14

r9

r8

r11 r12

r13

n1

n1 n2

n2 n1 n2

r14

(a) (b)

(c)

R1 R1 R2

R4R3

R1 R2

R4R3

R2

R4R3

16.4 Replica Consistency 651

ment, the result of updates is multicast to secondary replicas (Figure 16.14c), which
contain both tentative2 and committed data.

Replica management adjusts the number and location of replicas in order to
service requests more efficiently. By monitoring the system load, OceanStore detects
when a replica is overwhelmed and creates additional replicas on nearby nodes to
alleviate load. Conversely, these additional replicas are eliminated when they are no
longer needed.

16.4.3.2 P-Grid

P-Grid [Aberer et al., 2003a] is a structured P2P network based on a binary trie
structure. A decentralized and self-organizing process builds P-Grid’s routing infras-
tructure which is adapted to a given distribution of data keys stored by peers. This
process addresses uniform load distribution of data storage and uniform replication
of data to support availability.

To address updates of replicated objects, P-Grid employs gossiping, without strong
consistency guarantees. P-Grid assumes that quasi-consistency of replicas (instead of
full consistency which is too hard to provide in a dynamic environment) is enough.

The update propagation scheme has a push phase and a pull phase. When a peer
p receives a new update to a replicated object R, it pushes the update to a subset
of peers that hold replicas of R, which, in turn, propagate it to other peers holding
replicas of R, and so on. Peers that have been disconnected and get connected again,
peers that do not receive updates for a long time, or peers that receive a pull request
but are not sure whether they have the latest update, enter the pull phase to reconcile.
In this phase, multiple peers are contacted and the most up-to-date among them is
chosen to provide the object content.

16.4.3.3 APPA

APPA provides a general lazy distributed replication solution that assures eventual
consistency of replicas [Martins et al., 2006a; Martins and Pacitti, 2006; Martins
et al., 2008]. It uses the action-constraint framework [Kermarrec et al., 2001] to
capture the application semantics and resolve update conflicts.

The application semantics is described by means of constraints between update
actions. An action is defined by the application programmer and represents an
application-specific operation (e.g., a write operation on a file or document, or a
database transaction). A constraint is the formal representation of an application
invariant. For instance, the predSucc(a1, a2) constraint establishes causal ordering
between actions (i.e., action a2 executes only after a1 has succeeded); the mutual-
lyExclusive(a1, a2) constraint states that either a1 or a2 can be executed. The aim of
reconciliation is to take a set of actions with the associated constraints and produce

2 Tentative data are data that the primary replicas have not yet committed.

652 16 Peer-to-Peer Data Management

a schedule, i.e., a list of ordered actions that do not violate constraints. In order to
reduce the schedule production complexity, the set of actions to be ordered is divided
into subsets called clusters. A cluster is a subset of actions related by constraints
that can be ordered independently of other clusters. Therefore, the global schedule is
composed by the concatenation of clusters’ ordered actions.

Data managed by the APPA reconciliation algorithm are stored in data structures
called reconciliation objects. Each reconciliation object has a unique identifier in
order to enable its storage and retrieval in the DHT. Data replication proceeds as
follows. First, nodes execute local actions to update a replica of an object while
respecting user-defined constraints. Then, these actions (with the associated con-
straints) are stored in the DHT based on the object’s identifier. Finally, reconciler
nodes retrieve actions and constraints from the DHT and produce the global schedule,
by reconciling conflicting actions based on the application semantics. This schedule
is locally executed at every node, thereby assuring eventual consistency.

Any connected node can try to start reconciliation by inviting other available
nodes to engage with it. Only one reconciliation can run at-a-time. The reconciliation
of update actions is performed in 6 distributed steps as follows. Nodes at step 2 start
reconciliation. The outputs produced at each step become the input to the next one.

• Step 1 - node allocation: a subset of connected replica nodes is selected to
proceed as reconcilers based on communication costs.

• Step 2 - action grouping: reconcilers take actions from the action logs and
put actions that try to update common objects into the same group since these
actions are potentially in conflict. Groups of actions that try to update object R
are stored in the action log R reconciliation object (LR).

• Step 3 - cluster creation: reconcilers take action groups from the action logs
and split them into clusters of semantically dependent conflicting actions (two
actions a1 and a2 are semantically independent if the application judges it safe
to execute them together, in any order, even if they update a common object;
otherwise, a1 and a2 are semantically dependent. Clusters produced in this step
are stored in the cluster set reconciliation object.

• Step 4 - clusters extension: user-defined constraints are not taken into account
in cluster creation. Thus, in this step, reconcilers extend clusters by adding to
them new conflicting actions, according to user-defined constraints.

• Step 5 - cluster integration: cluster extensions lead to cluster overlapping (an
overlap occurs when the intersection of two clusters results in a non-null set
of actions). In this step, reconcilers bring together overlapping clusters. At
this point, clusters become mutually-independent, i.e., there are no constraints
involving actions of distinct clusters.

• Step 6 - cluster ordering: in this step, reconcilers take each cluster from the
cluster set and order the cluster’s actions. The ordered actions associated with
each cluster are stored in the schedule reconciliation object. The concatenation
of all clusters’ ordered actions makes up the global schedule that is executed by
all replica nodes.

16.6 Bibliographic Notes 653

At every step, the reconciliation algorithm takes advantage of data parallelism,
i.e., several nodes per-form simultaneously independent activities on a distinct subset
of actions (e.g., ordering of different clusters).

16.5 Conclusion

By distributing data storage and processing across autonomous peers in the network,
“modern” P2P systems can scale without the need for powerful servers. Advanced
P2P applications such as scientific cooperation must deal with semantically rich data
(e.g., XML documents, relational tables, etc.). Supporting such applications requires
significant revisiting of distributed database techniques (schema management, access
control, query processing, transaction management, consistency management, relia-
bility and replication). When considering data management, the main requirements of
a P2P system are autonomy, query expressiveness, efficiency, quality of service, and
fault-tolerance. Depending on the P2P network architecture (unstructured, structured
DHT, or hybrid super-peer), these requirements can be achieved to varying degrees.
Unstructured networks have better fault-tolerance but can be quite inefficient because
they rely on flooding for query routing. Hybrid systems have better potential to
satisfy high-level data management requirements. However, DHT systems are best
for key-based search and could be combined with super-peer networks for more
complex searching.

Most of the work on sharing semantically rich data in P2P systems has focused on
schema management and query processing. However, there has been very little work
on update management, replication, transactions and access control. Much more
work is needed to revisit distributed database techniques for large-scale P2P systems.
The main issues that have to be dealt with include schema management, complex
query processing, transaction support and replication, and privacy. Furthermore, it is
unlikely that all kinds of data management applications are suited for P2P systems.
Typical applications that can take advantage of P2P systems are probably light-weight
and involve some sort of cooperation. Characterizing carefully these applications is
important and will be useful to produce performance benchmarks.

16.6 Bibliographic Notes

Data management in “modern” P2P systems, those characterized by massive distri-
bution, inherent heterogeneity, and high volatility, has become an important research
topic. The topic is fully covered in a recent book [Vu et al., 2009]. A shorter survey
can be found in [Ulusoy, 2007]. Discussions on the requirements, architectures,
and issues faced by P2P data management systems are provided in [Bernstein et al.,
2002; Daswani et al., 2003; Valduriez and Pacitti, 2004]. A number of P2P data
management systems are presented in [Aberer, 2003].

654 16 Peer-to-Peer Data Management

An extensive survey of query processing in P2P systems is provided in [Akbarinia
et al., 2007d] and has been the basis for writing Sections 16.2 and 16.3. A good
discussion of the issues of schema mapping in P2P systems can be found in [Tatarinov
et al., 2003]. An important kind of query in P2P systems is top-k queries. A survey
of top-k query processing techniques in relational database systems is provided in
[Ilyas et al., 2008]. An efficient algorithm for top-k query processing is the Threshold
Algorithm (TA) which was proposed independently by several researchers [Nepal
and Ramakrishna, 1999; Güntzer et al., 2000; Fagin et al., 2003]. TA has been the
basis for several algorithms in P2P systems, in particular in DHTs [Akbarinia et al.,
2007c]. A more efficient algorithm than TA is the Best Position Algorithm [Akbarinia
et al., 2007a]. A survey of ranking algorithms in databases (not necessarily in P2P
systems) is given in [Ilyas et al., 2008].

The survey of replication in P2P systems by Martins et al. [2006b] has been the
basis for Section 16.4. A complete solution to data currency in replicated DHTs, i.e.,
providing the ability to find the most current replica, is given in [Akbarinia et al.,
2007b]. Reconciliation of replicated data are addressed in OceanStore [Kubiatowicz
et al., 2000], P-Grid [Aberer et al., 2003a] and APPA [Martins et al., 2006a; Martins
and Pacitti, 2006].

P2P techniques have recently received attention to help scaling up data manage-
ment in the context of Grid Computing. This triggered open problems and new issues
which are discussed in [Pacitti et al., 2007a].

Exercises

Problem 16.1. What is the fundamental difference between P2P and client-server
architectures? Is a P2P system with a centralized index equivalent to a client-server
system? List the main advantages and drawbacks of P2P file sharing systems from
different points of view:

• end-users;

• file owners;

• network administrators.

Problem 16.2 (**). A P2P overlay network is built as a layer on top of a physical
network, typically the Internet. Thus, they have different topologies and two nodes
that are neighbors in the P2P network may be far apart in the physical network. What
are the advantages and drawbacks of this layering? What is the impact of this layering
on the design of the three main types of P2P networks (unstructured, structured and
superpeer)?

Problem 16.3 (*). Consider the unstructured P2P network in Figure 16.4 and the
bottom-left peer that sends a request for resource. Illustrate and discuss the two
following search strategies in terms of result completeness:

16.6 Bibliographic Notes 655

• flooding with TTL=3;

• gossiping with each peer has a partial view of at most 3 neighbours.

Problem 16.4 (*). Consider Figure 16.7, focusing on structured networks. Refine
the comparison using the scale 1-5 (instead of low - moderate - high) by considering
the three main types of DHTs: tree, hypercube and ring.

Problem 16.5 (**). The objective is to design a P2P social network application, on
top of a DHT. The application should provide basic functions of social networks:
register a new user with her profile; invite or retrieve friends; create lists of friends;
post a message to friends; read friends’ messages; post a comment on a message.
Assume a generic DHT with put and get operations, where each user is a peer in the
DHT.

Problem 16.6 (**). Propose a P2P architecture of the social network application,
with the (key, data) pairs for the different entities which need be distributed. Describe
how the following operations: create or remove a user; create or remove a friendship;
read messages from a list of friends. Discuss the advantages and drawbacks of the
design.

Problem 16.7 (**). Same question, but with the additional requirement that private
data (e.g., user profile) must be stored at the user peer.

Problem 16.8. Discuss the commonalities and differences of schema mapping in
multidatabase systems and P2P systems. In particular, compare the local-as-view
approach presented in Chapter 4 with the pairwise schema mapping approach in
Section 16.2.1.

Problem 16.9 (*). The FD algorithm for top-k query processing in unstructured P2P
networks (see Algorithm 16.4) relies on flooding. Propose a variation of FD where,
instead of flooding, random walk or gossiping is used. What are the advantages and
drawbacks?

Problem 16.10 (*). Apply the TPUT algorithm (Algorithm 16.2) to the three lists
of the database in Figure 16.10 witk k=3. For each step of the algorithm, show the
intermediate results.

Problem 16.11 (*). Same question applied to Algorithm DHTop (see Algorithm
16.5.

Problem 16.12 (*). Algorithm 16.6 assumes that the input relations to be joined are
placed arbitrarily in the DHT. Assuming that one of the relations is already hashed
on the join attributes, propose an improvement of Algorithm 16.6.

Problem 16.13 (*). To improve data availability in DHTs, a common solution is to
replicate (k,data) pairs at several peers using several hash functions. This produces
the problem illustrated in Example 16.7. An alternative solution is to use a non-
replicated DHT (with a single hash function) and have the nodes replicating (k, data)
pairs at some of their neighbors. What is the effect on the scenario in Example 16.7?
What are the advantages and drawbacks of this approach, in terms of availability and
load balancing?

	Chapter 16:Peer-to-Peer Data Management
	16.1 Infrastructure
	16.1.1 Unstructured P2P Networks
	16.1.2 Structured P2P Networks
	16.1.3 Super-peer P2P Networks
	16.1.4 Comparison of P2P Networks

	16.2 Schema Mapping in P2P Systems
	16.2.1 Pairwise Schema Mapping
	16.2.2 Mapping based on Machine Learning Techniques
	16.2.3 Common Agreement Mapping
	16.2.4 Schema Mapping using IR Techniques

	16.3 Querying Over P2P Systems
	16.3.1 Top-k Queries
	16.3.2 Join Queries
	16.3.3 Range Queries

	16.4 Replica Consistency
	Basic Support in DHTs
	Data Currency in DHTs
	Replica Reconciliation

	16.5 Conclusion
	16.6 Bibliographic Notes

