
Chapter 13
Data Replication

As we discussed in previous chapters, distributed databases are typically replicated.
The purposes of replication are multiple:

1. System availability. As discussed in Chapter 1, distributed DBMSs may
remove single points of failure by replicating data, so that data items are
accessible from multiple sites. Consequently, even when some sites are down,
data may be accessible from other sites.

2. Performance. As we have seen previously, one of the major contributors
to response time is the communication overhead. Replication enables us to
locate the data closer to their access points, thereby localizing most of the
access that contributes to a reduction in response time.

3. Scalability. As systems grow geographically and in terms of the number of
sites (consequently, in terms of the number of access requests), replication
allows for a way to support this growth with acceptable response times.

4. Application requirements. Finally, replication may be dictated by the ap-
plications, which may wish to maintain multiple data copies as part of their
operational specifications.

Although data replication has clear benefits, it poses the considerable challenge
of keeping different copies synchronized. We will discuss this shortly, but let us first
consider the execution model in replicated databases. Each replicated data item x has
a number of copies x1,x2, . . . ,xn. We will refer to x as the logical data item and to
its copies (or replicas)1 as physical data items. If replication transparency is to be
provided, user transactions will issue read and write operations on the logical data
item x. The replica control protocol is responsible for mapping these operations to
reads and writes on the physical data items x1, . . . ,xn. Thus, the system behaves as
if there is a single copy of each data item – referred to as single system image or
one-copy equivalence. The specific implementation of the Read and Write interfaces

1 In this chapter, we use the terms “replica”, “copy”, and “physical data item” interchangeably.
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460 13 Data Replication

of the transaction monitor differ according to the specific replication protocol, and
we will discuss these differences in the appropriate sections.

There are a number of decisions and factors that impact the design of replication
protocols. Some of these were discussed in previous chapters, while others will be
discussed here.

• Database design. As discussed in Chapter 3, a distributed database may be
fully or partially replicated. In the case of a partially replicated database, the
number of physical data items for each logical data item may vary, and some
data items may even be non-replicated. In this case, transactions that access only
non-replicated data items are local transactions (since they can be executed
locally at one site) and their execution typically does not concern us here.
Transactions that access replicated data items have to be executed at multiple
sites and they are global transactions.

• Database consistency. When global transactions update copies of a data item at
different sites, the values of these copies may be different at a given point in time.
A replicated database is said to be in a mutually consistent state if all the replicas
of each of its data items have identical values. What differentiates different
mutual consistency criteria is how tightly synchronized replicas have to be.
Some ensure that replicas are mutually consistent when an update transaction
commits, thus, they are usually called strong consistency criteria. Others take a
more relaxed approach, and are referred to as weak consistency criteria.

• Where updates are performed. A fundamental design decision in designing
a replication protocol is where the database updates are first performed [Gray
et al., 1996]. The techniques can be characterized as centralized if they perform
updates first on a master copy, versus distributed if they allow updates over any
replica. Centralized techniques can be further identified as single master when
there is only one master database copy in the system, or primary copy where
the master copy of each data item may be different2.

• Update propagation. Once updates are performed on a replica (master or
otherwise), the next decision is how updates are propagated to the others.
The alternatives are identified as eager versus lazy [Gray et al., 1996]. Eager
techniques perform all of the updates within the context of the global transaction
that has initiated the write operations. Thus, when the transaction commits, its
updates will have been applied to all of the copies. Lazy techniques, on the
other hand, propagate the updates sometime after the initiating transaction has
committed. Eager techniques are further identified according to when they push
each write to the other replicas – some push each write operation individually,
others batch the writes and propagate them at the commit point.

2 Centralized techniques are referred to, in the literature, as single master, while distributed ones
are referred to as multi-master or update anywhere. These terms, in particular “single master”,
are confusing, since they refer to alternative architectures for implementing centralized protocols
(more on this in Section 13.2.3). Thus, we prefer the more descriptive terms “centralized” and
“distributed”.
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• Degree of replication transparency. Certain replication protocols require each
user application to know the master site where the transaction operations are to
be submitted. These protocols provide only limited replication transparency
to user applications. Other protocols provide full replication transparency
by involving the Transaction Manager (TM) at each site. In this case, user
applications submit transactions to their local TMs rather than the master site.

We discuss consistency issues in replicated databases in Section 13.1, and analyze
centralized versus distributed update application as well as update propagation alter-
natives in Section 13.2. This will lead us to a discussion of the specific protocols in
Section 13.3. In Section 13.4, we discuss the use of group communication primitives
in reducing the messaging overhead of replication protocols. In these sections, we
will assume that no failures occur so that we can focus on the replication protocols.
We will then introduce failures and investigate how protocols are revised to handle
failures (Section 13.5). Finally, in Section 13.6, we discuss how replication services
can be provided in multidatabase systems (i.e., outside the component DBMSs).

13.1 Consistency of Replicated Databases

There are two issues related to consistency of a replicated database. One is mutual
consistency, as discussed above, that deals with the convergence of the values of
physical data items corresponding to one logical data item. The second is transaction
consistency as we discussed in Chapter 11. Serializability, which we introduced as the
transaction consistency criterion needs to be recast in the case of replicated databases.
In addition, there are relationships between mutual consistency and transaction
consistency. In this section we first discuss mutual consistency approaches and then
focus on the redefinition of transaction consistency and its relationship to mutual
consistency.

13.1.1 Mutual Consistency

As indicated earlier, mutual consistency criteria for replicated databases can either
be strong or weak. Each is suitable for different classes of applications with different
consistency requirements.

Strong mutual consistency criteria require that all copies of a data item have the
same value at the end of the execution of an update transaction. This is achieved
by a variety of means, but the execution of 2PC at the commit point of an update
transaction is a common way to achieve strong mutual consistency.

Weak mutual consistency criteria do not require the values of replicas of a data
item to be identical when an update transaction terminates. What is required is that,
if the update activity ceases for some time, the values eventually become identical.
This is commonly referred to as eventual consistency, which refers to the fact that
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replica values may diverge over time, but will eventually converge. It is hard to define
this concept formally or precisely, although the following definition is probably as
precise as one can hope to get [Saito and Shapiro, 2005]:

“A replicated [data item] is eventually consistent when it meets the following conditions,
assuming that all replicas start from the same initial state.

• At any moment, for each replica, there is a prefix of the [history] that is equivalent to
a prefix of the [history] of every other replica. We call this a committed prefix for the
replica.

• The committed prefix of each replica grows monotonically over time.

• All non-aborted operations in the committed prefix satisfy their preconditions.

• For every submitted operation α , either α or [its abort] will eventually be included in
the committed prefix.”

It should be noted that this definition of eventual consistency is rather strong – in
particular the requirements that history prefixes are the same at any given moment
and that the committed prefix grows monotonically. Many systems that claim to
provide eventual consistency would violate these requirements.

Epsilon serializability (ESR) [Pu and Leff, 1991; Ramamritham and Pu, 1995]
allows a query to see inconsistent data while replicas are being updated, but requires
that the replicas converge to a one-copy serializable state once the updates are
propagated to all of the copies. It bounds the error on the read values by an epsilon
(ε) value (hence the name), which is defined in terms of the number of updates
(write operations) that a query “misses”. Given a read-only transaction (query) TQ,
let TU be all the update transactions that are executing concurrently with TQ. If
RS(TQ)

⋂
WS(TU ) 6= /0 (TQ is reading some copy of some data items while TU is

updating (possibly a different) copy of those data items) then there is a read-write
conflict and TQ may be reading inconsistent data. The inconsistency is bounded by
the changes performed by TU . Clearly, ESR does not sacrifice database consistency,
but only allows read-only transactions (queries) to read inconsistent data. For this
reason, it has been claimed that ESR does not weaken database consistency, but
“stretches” it [Wu et al., 1997].

Other looser bounds have also been discussed. It has even been suggested that
users should be allowed to specify freshness constraints that are suitable for particular
applications and the replication protocols should enforce these [Pacitti and Simon,
2000; Röhm et al., 2002b; Bernstein et al., 2006]. The types of freshness constraints
that can be specified are the following:

• Time-bound constraints. Users may accept divergence of physical copy values
up to a certain time: xi may reflect the value of an update at time t while x j may
reflect the value at t−∆ and this may be acceptable.

• Value-bound constraints. It may be acceptable to have values of all physical
data items within a certain range of each other. The user may consider the
database to be mutually consistent if the values do not diverge more than a
certain amount (or percentage).
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• Drift constraints on multiple data items. For transactions that read multiple data
items, users may be satisfied if the time drift between the update timestamps
of two data items is less than a threshold (i.e., they were updated within that
threshold) or, in the case of aggregate computation, if the aggregate computed
over a data item is within a certain range of the most recent value (i.e., even if the
individual physical copy values may be more out of sync than this range, as long
as a particular aggregate computation is within range, it may be acceptable).

An important criterion in analyzing protocols that employ criteria that allow
replicas to diverge is degree of freshness. The degree of freshness of a given replica
ri at time t is defined as the proportion of updates that have been applied at ri at time
t to the total number of updates [Pacitti et al., 1998, 1999].

13.1.2 Mutual Consistency versus Transaction Consistency

Mutual consistency, as we have defined it here, and transactional consistency as we
discussed in Chapter 11 are related, but different. Mutual consistency refers to the
replicas converging to the same value, while transaction consistency requires that
the global execution history be serializable. It is possible for a replicated DBMS
to ensure that data items are mutually consistent when a transaction commits, but
the execution history may not be globally serializable. This is demonstrated in the
following example.

Example 13.1. Consider three sites (A, B, and C) and three data items (x,y,z) that
are distributed as follows: Site A hosts x, Site B hosts x,y, Site C hosts x,y,z. We will
use site identifiers as subscripts on the data items to refer to a particular replica.

Now consider the following three transactions:

T1: x← 20 T2: Read(x) T3: Read(x)
Write(x) y← x+ y Read(y)
Commit Write(y) z← (x∗ y)/100

Commit Write(z)
Commit

Note that T1’s Write has to be executed at all three sites (since x is replicated
at all three sites), T2’s Write has to be executed at B and C, and T3’s Write has
to be executed only at C. We are assuming a transaction execution model where
transactions can read their local replicas, but have to update all of the replicas.

Assume that the following three local histories are generated at the sites:

HA = {W1(xA),C1}
HB = {W1(xB),C1,R2(xB),W2(yB),C2}
HC = {W2(yC),C2,R3(xC),R3(yC),W3(zC),C3,W1(xC),C1}
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The serialization order in HB is T1→ T2 while in HC it is T2→ T3→ T1. Therefore,
the global history is not serializable. However, the database is mutually consistent.
Assume, for example, that initially xA = xB = xC = 10,yB = yC = 15, and zC = 7. With
the above histories, the final values will be xA = xB = xC = 20,yB = yC = 35,zC = 3.5.
All the physical copies (replicas) have indeed converged to the same value. �

Of course, it is possible for both the database to be mutually inconsistent, and the
execution history to be globally non-serializable, as demonstrated in the following
example.

Example 13.2. Consider two sites (A and B), and one data item (x) that is replicated
at both sites (xA and xB). Further consider the following two transactions:

T1: Read(x) T2: Read(x)
x← x+5 x← x∗10
Write(x) Write(x)
Commit Commit

Assume that the following two local histories are generated at the two sites (again
using the execution model of the previous example):

HA = {R1(xA),W1(xA),C1,R2(xA),W2(xA),C2}
HB = {R2(xB),W2(xB),C2,R1(xB),W1(xB),C1}

Although both of these histories are serial, they serialize T1 and T2 in reverse order;
thus the global history is not serializable. Furthermore, the mutual consistency is
violated as well. Assume that the value of x prior to the execution of these transactions
was 1. At the end of the execution of these schedules, the value of x is 60 at site A
while it is 15 at site B. Thus, in this example, the global history is non-serializable,
and the databases are mutually inconsistent. �

Given the above observation, the transaction consistency criterion given in Chapter
11 is extended in replicated databases to define one-copy serializability. One-copy
serializability (1SR) states that the effects of transactions on replicated data items
should be the same as if they had been performed one at-a-time on a single set of
data items. In other words, the histories are equivalent to some serial execution over
non-replicated data items.

Snapshot isolation that we introduced in Chapter 11 has been extended for repli-
cated databases [Lin et al., 2005] and used as an alternative transactional consistency
criterion within the context of replicated databases [Plattner and Alonso, 2004;
Daudjee and Salem, 2006]. Similarly, a weaker form of serializability, called re-
laxed concurrency (RC-) serializability has been defined that corresponds to “read
committed” isolation level (Section 10.2.3) [Bernstein et al., 2006].
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13.2 Update Management Strategies

As discussed earlier, the replication protocols can be classified according to when the
updates are propagated to copies (eager versus lazy) and where updates are allowed
to occur (centralized versus distributed). These two decisions are generally referred
to as update management strategies. In this section, we discuss these alternatives
before we present protocols in the next section.

13.2.1 Eager Update Propagation

The eager update propagation approaches apply the changes to all the replicas within
the context of the update transaction. Consequently, when the update transaction
commits, all the copies have the same value. Typically, eager propagation techniques
use 2PC at commit point, but, as we will see later, alternatives are possible to achieve
agreement. Furthermore, eager propagation may use synchronous propagation of
each update by applying it on all the replicas at the same time (when the Write is
issued), or deferred propagation whereby the updates are applied to one replica when
they are issued, but their application on the other replicas is batched and deferred to
the end of the transaction. Deferred propagation can be implemented by including
the updates in the “Prepare-to-Commit” message at the start of 2PC execution.

Eager techniques typically enforce strong mutual consistency criteria. Since all the
replicas are mutually consistent at the end of an update transaction, a subsequent read
can read from any copy (i.e., one can map a Read(x) to Read(xi) for any xi). However,
a Write(x) has to be applied to all xi (i.e., Write(xi),∀xi). Thus, protocols that follow
eager update propagation are known as read-one/write-all (ROWA) protocols.

The advantages of eager update propagation are threefold. First, they typically
ensure that mutual consistency is enforced using 1SR; therefore, there are no transac-
tional inconsistencies. Second, a transaction can read a local copy of the data item (if
a local copy is available) and be certain that an up-to-date value is read. Thus, there
is no need to do a remote read. Finally, the changes to replicas are done atomically;
thus recovery from failures can be governed by the protocols we have already studied
in the previous chapter.

The main disadvantage of eager update propagation is that a transaction has to
update all the copies before it can terminate. This has two consequences. First, the
response time performance of the update transaction suffers, since it typically has
to participate in a 2PC execution, and because the update speed is restricted by the
slowest machine. Second, if one of the copies is unavailable, then the transaction
cannot terminate since all the copies need to be updated. As discussed in Chapter 12,
if it is possible to differentiate between site failures and network failures, then one
can terminate the transaction as long as only one replica is unavailable (recall that
more than one site unavailability causes 2PC to be blocking), but it is generally not
possible to differentiate between these two types of failures.
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13.2.2 Lazy Update Propagation

In lazy update propagation the replica updates are not all performed within the
context of the update transaction. In other words, the transaction does not wait until
its updates are applied to all the copies before it commits – it commits as soon as
one replica is updated. The propagation to other copies is done asynchronously from
the original transaction, by means of refresh transactions that are sent to the replica
sites some time after the update transaction commits. A refresh transaction carries
the sequence of updates of the corresponding update transaction.

Lazy propagation is used in those applications for which strong mutual consis-
tency may be unnecessary and too restrictive. These applications may be able to
tolerate some inconsistency among the replicas in return for better performance.
Examples of such applications are Domain Name Service (DNS), databases over ge-
ographically widely distributed sites, mobile databases, and personal digital assistant
databases [Saito and Shapiro, 2005]. In these cases, usually weak mutual consistency
is enforced.

The primary advantage of lazy update propagation techniques is that they gener-
ally have lower response times for update transactions, since an update transaction
can commit as soon as it has updated one copy. The disadvantages are that the replicas
are not mutually consistent and some replicas may be out-of-date, and, consequently,
a local read may read stale data and does not guarantee to return the up-to-date
value. Furthermore, under some scenarios that we will discuss later, transactions
may not see their own writes, i.e., Readi(x) of an update transaction Ti may not see
the effects of Writei(x) that was executed previously. This has been referred to as
transaction inversion. Strong one-copy serializability (strong 1SR) [Daudjee and
Salem, 2004] and strong snapshot isolation (strong SI) [Daudjee and Salem, 2006]
prevent all transaction inversions at 1SR and SI isolation levels, respectively, but
are expensive to provide. The weaker guarantees of 1SR and global SI, while being
much less expensive to provide than their stronger counterparts, do not prevent trans-
action inversions. Session-level transactional guarantees at the 1SR and SI isolation
levels have been proposed that address these shortcomings by preventing transaction
inversions within a client session but not necessarily across sessions [Daudjee and
Salem, 2004, 2006]. These session-level guarantees are less costly to provide than
their strong counterparts while preserving many of the desirable properties of the
strong counterparts.

13.2.3 Centralized Techniques

Centralized update propagation techniques require that updates are first applied at a
master copy and then propagated to other copies (which are called slaves). The site
that hosts the master copy is similarly called the master site, while the sites that host
the slave copies for that data item are called slave sites.
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In some techniques, there is a single master for all replicated data. We refer to
these as single master centralized techniques. In other protocols, the master copy
for each data item may be different (i.e., for data item x, the master copy may be
xi stored at site Si, while for data item y, it may be y j stored at site S j). These are
typically known as primary copy centralized techniques.

The advantages of centralized techniques are two-fold. First, application of the
updates is easy since they happen at only the master site, and they do not require
synchronization among multiple replica sites. Second, there is the assurance that
at least one site – the site that holds the master copy – has up-to-date values for
a data item. These protocols are generally suitable in data warehouses and other
applications where data processing is centralized at one or a few master sites.

The primary disadvantage is that, as in any centralized algorithm, if there is one
central site that hosts all of the masters, this site can be overloaded and can become a
bottleneck. Distributing the master site responsibility for each data item as in primary
copy techniques is one way of reducing this overhead, but it raises consistency issues,
in particular with respect to maintaining global serializability in lazy replication
techniques since the refresh transactions have to be executed at the replicas in the
same serialization order. We discuss these further in relevant sections.

13.2.4 Distributed Techniques

Distributed techniques apply the update on the local copy at the site where the
update transaction originates, and then the updates are propagated to the other replica
sites. These are called distributed techniques since different transactions can update
different copies of the same data item located at different sites. They are appropriate
for collaborative applications with distributive decision/operation centers. They can
more evenly distribute the load, and may provide the highest system availability if
coupled with lazy propagation techniques.

A serious complication that arises in these systems is that different replicas of a
data item may be updated at different sites (masters) concurrently. If distributed tech-
niques are coupled by eager propagation methods, then the distributed concurrency
control methods can adequately address the concurrent updates problem. However, if
lazy propagation methods are used, then transactions may be executed in different
orders at different sites causing non-1SR global history. Furthermore, various replicas
will get out of sync. To manage these problems, a reconciliation method is applied
involving undoing and redoing transactions in such a way that transaction execution
is the same at each site. This is not an easy issue since the reconciliation is generally
application dependent.
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13.3 Replication Protocols

In the previous section, we discussed two dimensions along which update manage-
ment techniques can be classified. These dimensions are orthogonal; therefore four
combinations are possible: eager centralized, eager distributed, lazy centralized, and
lazy distributed. We discuss each of these alternatives in this section. For simplicity
of exposition, we assume a fully replicated database, which means that all update
transactions are global. We further assume that each site implements a 2PL-based
concurrency control technique.

13.3.1 Eager Centralized Protocols

In eager centralized replica control, a master site controls the operations on a data
item. These protocols are coupled with strong consistency techniques, so that updates
to a logical data item are applied to all of its replicas within the context of the
update transaction, which is committed using the 2PC protocol (although non-2PC
alternatives exist as we discuss shortly). Consequently, once the update transaction
completes, all replicas have the same values for the updated data items (i.e., mutually
consistent), and the resulting global history is 1SR.

The two design parameters that we discussed earlier determine the specific im-
plementation of eager centralized replica protocols: where updates are performed,
and degree of replication transparency. The first parameter, which was discussed in
Section 13.2.3, refers to whether there is a single master site for all data items (single
master), or different master sites for each, or, more likely, for a group of data items
(primary copy). The second parameter indicates whether each application knows
the location of the master copy (limited application transparency) or whether it can
rely on its local TM for determining the location of the master copy (full replication
transparency).

13.3.1.1 Single Master with Limited Replication Transparency

The simplest case is to have a single master for the entire database (i.e., for all
data items) with limited replication transparency so that user applications know the
master site. In this case, global update transactions (i.e., those that contain at least
one Write(x) operation where x is a replicated data item) are submitted directly to
the master site – more specifically, to the transaction manager (TM) at the master
site. At the master, each Read(x) operation is performed on the master copy (i.e.,
Read(x) is converted to Read(xM), where M signifies master copy) and executed
as follows: a read lock is obtained on xM , the read is performed, and the result is
returned to the user. Similarly, each Write(x) causes an update of the master copy
(i.e., executed as Write(xM)) by first obtaining a write lock and then performing the
write operation. The master TM then forwards the Write to the slave sites either
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synchronously or in a deferred fashion (Figure 13.1). In either case, it is important
to propagate updates such that conflicting updates are executed at the slaves in the
same order they are executed at the master. This can be achieved by timestamping or
by some other ordering scheme.

Master

Site

Update Transaction

Op(x) ... Commit

Slave

Site A

Slave

Site B

Slave

Site C

�

�

�

Read-only Transaction

Read(x) ... 

�

Fig. 13.1 Eager Single Master Replication Protocol Actions. (1) A Write is applied on the master
copy; (2) Write is then propagated to the other replicas; (3) Updates become permanent at commit
time; (4) Read-only transaction’s Read goes to any slave copy.

The user application may submit a read-only transaction (i.e., all operations are
Read) to any slave site. The execution of read-only transactions at the slaves can
follow the process of centralized concurrency control algorithms, such as C2PL
(Algorithms 11.1-11.3), where the centralized lock manager resides at the master
replica site. Implementations within C2PL require minimal changes to the TM at the
non-master sites, primarily to deal with the Write operations as described above, and
its consequences (e.g., in the processing of Commit command). Thus, when a slave
site receives a Read operation (from a read-only transaction), it forwards it to the
master site to obtain a read lock. The Read can then be executed at the master and
the result returned to the application, or the master can simply send a “lock granted”
message to the originating site, which can then execute the Read on the local copy.

It is possible to reduce the load on the master by performing the Read on the local
copy without obtaining a read lock from the master site. Whether synchronous or
deferred propagation is used, the local concurrency control algorithm ensures that
the local read-write conflicts are properly serialized, and since the Write operations
can only be coming from the master as part of update propagation, local write-
write conflicts won’t occur as the propagation transactions are executed in each
slave in the order dictated by the master. However, a Read may read data item
values at a slave either before an update is installed or after. The fact that a read
transaction at one slave site may read the value of one replica before an update while
another read transaction reads another replica at another slave after the same update
is inconsequential from the perspective of ensuring global 1SR histories. This is
demonstrated by the following example.

Example 13.3. Consider a data item x whose master site is at Site A with slaves at
sites B and C. Consider the following three transactions:
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T1: Write(x) T2: Read(x) T3: Read(x)
Commit Commit Commit

Assume that T2 is sent to slave at Site B and T3 to slave at Site C. Assume that
T2 reads x at B [Read(xB)] before T1’s update is applied at B, while T3 reads x at C
[Read(xC)] after T1’s update at C. Then the histories generated at the two slaves will
be as follows:

HB = {R2(x),C2,W1(x),C1}
HC = {W1(x),C1,R3(x),C3}

The serialization order at Site B is T2 → T1, while at Site C it is T1 → T3. The
global serialization order, therefore, is T2→ T1→ T3, which is fine. Therefore the
history is 1SR. �

Consequently, if this approach is followed, read transactions may read data that
are concurrently updated at the master, but the global history will still be 1SR.

In this alternative protocol, when a slave site receives a Read(x), it obtains a local
read lock, reads from its local copy (i.e., Read(xi)) and returns the result to the user
application; this can only come from a read-only transaction. When it receives a
Write(x), if the Write is coming from the master site, then it performs it on the local
copy (i.e., Write(xi)). If it receives a Write from a user application, then it rejects it,
since this is obviously an error given that update transactions have to be submitted to
the master site.

These alternatives of a single master eager centralized protocol are simple to
implement. One important issue to address is how one recognizes a transaction as
“update” or “read-only” – it may be possible to do this by explicit declaration within
the Begin Transaction command.

13.3.1.2 Single Master with Full Replication Transparency

Single master eager centralized protocols require each user application to know the
master site, and they put significant load on the master that has to deal with (at least)
the Read operations within update transactions as well as acting as the coordinator
for these transactions during 2PC execution. These issues can be addressed, to some
extent, by involving, in the execution of the update transactions, the TM at the site
where the application runs. Thus, the update transactions are not submitted to the
master, but to the TM at the site where the application runs (since they don’t need
to know the master). This TM can act as the coordinating TM for both update and
read-only transactions. Applications can simply submit their transactions to their
local TM, providing full transparency.

There are alternatives to implementing full transparency – the coordinating TM
may only act as a “router”, forwarding each operation directly to the master site. The
master site can then execute the operations locally (as described above) and return
the results to the application. Although this alternative implementation provides full
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transparency and has the advantage of being simple to implement, it does not address
the overloading problem at the master. An alternative implementation may be as
follows.

1. The coordinating TM sends each operation, as it gets it, to the central (master)
site. This requires no change to the C2PL-TM algorithm (Algorithm 11.1).

2. If the operation is a Read(x), then the centralized lock manager (C2PL-LM in
Algorithm 11.2) can proceed by setting a read lock on its copy of x (call it xM)
on behalf of this transaction and informs the coordinating TM that the read
lock is granted. The coordinating TM can then forward the Read(x) to any
slave site that holds a replica of x (i.e., converts it to a Read(xi)). The read
can then be carried out by the data processor (DP) at that slave.

3. If the operation is a Write(x), then the centralized lock manager (master)
proceeds as follows:

(a) It first sets a write lock on its copy of x.

(b) It then calls its local DP to perform the Write on its own copy of x
(i.e., converts the operation to Write(xM)).

(c) Finally, it informs the coordinating TM that the write lock is granted.

The coordinating TM, in this case, sends the Write(x) to all the slaves where a
copy of x exists; the DPs at these slaves apply the Write to their local copies.

The fundamental difference in this case is that the master site does not deal with
Reads or with the coordination of the updates across replicas. These are left to the
TM at the site where the user application runs.

It is straightforward to see that this algorithm guarantees that the histories are 1SR
since the serialization orders are determined at a single master (similar to centralized
concurrency control algorithms). It is also clear that the algorithm follows the ROWA
protocol, as discussed above – since all the copies are ensured to be up-to-date when
an update transaction completes, a Read can be performed on any copy.

To demonstrate how eager algorithms combine replica control and concurrency
control, we show how the Transaction Management algorithm for the coordinating
TM (Algorithm 13.1) and the Lock Management algorithm for the master site
(Algorithm 13.2). We show only the revisions to the centralized 2PL algorithms
(Algorithms 11.1 and 11.2 in Chapter 11).

Note that in the algorithm fragments that we have given, the LM simply sends back
a “Lock granted” message and not the result of the update operation. Consequently,
when the update is forwarded to the slaves by the coordinating TM, they need to
execute the update operation themselves. This is sometimes referred to as operation
transfer. The alternative is for the “Lock granted” message to include the result of the
update computation, which is then forwarded to the slaves who simply need to apply
the result and update their logs. This is referred to as state transfer. The distinction
may seem trivial if the operations are simply in the form Write(x), but recall that this
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Algorithm 13.1: Eager Single Master Modifications to C2PL-TM

begin
...
if lock request granted then

if op.Type = W then
S← set of all sites that are slaves for the data item

else
S← any one site which has a copy of data item

DPS(op) {send operation to all sites in set S}
else

inform user about the termination of transaction
...

end

Algorithm 13.2: Eager Single Master Modifications to C2PL-LM

begin
...
switch op.Type do

case R or W {lock request; see if it can be granted}
find the lock unit lu such that op.arg⊆ lu ;
if lu is unlocked or lock mode of lu is compatible with op.Type
then

set lock on lu in appropriate mode on behalf of transaction
op.tid ;
if op.Type = W then

DPM(op) {call local DP (M for “master”) with operation}
send “Lock granted” to coordinating TM of transaction

else
put op on a queue for lu

...
end
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Write operation is an abstraction; each update operation may require the execution
of an SQL expression, in which case the distinction is quite important.

The above implementation of the protocol relieves some of the load on the master
site and alleviates the need for user applications to know the master. However,
its implementation is more complicated than the first alternative we discussed. In
particular, now the TM at the site where transactions are submitted has to act as the
2PC coordinator and the master site becomes a participant. This requires some care
in revising the algorithms at these sites.

13.3.1.3 Primary Copy with Full Replication Transparency

Let us now relax the requirement that there is one master for all data items; each data
item can have a different master. In this case, for each replicated data item, one of the
replicas is designated as the primary copy. Consequently, there is no single master
to determine the global serialization order, so more care is required. In the case of
fully replicated databases, any replica can be primary copy for a data item, however
for partially replicated databases, limited replication transparency option only makes
sense if an update transaction accesses only data items whose primary sites are at the
same site. Otherwise, the application program cannot forward the update transactions
to one master; it will have to do it operation-by-operation, and, furthermore, it is not
clear which primary copy master would serve as the coordinator for 2PC execution.
Therefore, the reasonable alternative is the full transparency support, where the TM
at the application site acts as the coordinating TM and forwards each operation to
the primary site of the data item that it acts on. Figure 13.2 depicts the sequence of
operations in this case where we relax our previous assumption of fully replication.
Site A is the master for data item x and sites B and C hold replicas (i.e., they are
slaves); similarly data item y’s master is site C with slave sites B and D.

Master(x)

Site A

Transaction

Op(x) ... Op(y) ... Commit

Slave(x, y)

Site B

Master(y)

Slave(x)

Site C

Slave(y)

Site D

�

� �
�

�

�

Fig. 13.2 Eager Primary Copy Replication Protocol Actions. (1) Operations (Read or Write) for
each data item are routed to that data item’s master and a Write is first applied at the master; (2)
Write is then propagated to the other replicas; (3) Updates become permanent at commit time.
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Recall that this version still applies the updates to all the replicas within transac-
tional boundaries, requiring integration with concurrency control techniques. A very
early proposal is the primary copy two-phase locking (PC2PL) algorithm proposed
for the prototype distributed version of INGRES [Stonebraker and Neuhold, 1977].
PC2PL is a straightforward extension of the single master protocol discussed above
in an attempt to counter the latter’s potential performance problems. Basically, it
implements lock managers at a number of sites and makes each lock manager respon-
sible for managing the locks for a given set of lock units for which it is the master
site. The transaction managers then send their lock and unlock requests to the lock
managers that are responsible for that specific lock unit. Thus the algorithm treats
one copy of each data item as its primary copy.

As a combined replica control/concurrency control technique, primary copy ap-
proach demands a more sophisticated directory at each site, but it also improves
the previously discussed approaches by reducing the load of the master site without
causing a large amount of communication among the transaction managers and lock
managers.

13.3.2 Eager Distributed Protocols

In eager distributed replica control, the updates can originate anywhere, and they are
first applied on the local replica, then the updates are propagated to other replicas.
If the update originates at a site where a replica of the data item does not exist, it is
forwarded to one of the replica sites, which coordinates its execution. Again, all of
these are done within the context of the update transaction, and when the transaction
commits, the user is notified and the updates are made permanent. Figure 13.3 depicts
the sequence of operations for one logical data item x with copies at sites A, B, C
and D, and where two transactions update two different copies (at sites A and D).

Site A

Transaction 1

Write(x) ... Commit

Site B Site C Site D

�

�

Transaction 2

Write(x) ... Commit

��

�

��

Fig. 13.3 Eager Distributed Replication Protocol Actions. (1) Two Write operations are applied on
two local replicas of the same data item; (2) The Write operations are independently propagated to
the other replicas; (3) Updates become permanent at commit time (shown only for Transaction 1).
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As can be clearly seen, the critical issue is to ensure that concurrent conflicting
Writes initiated at different sites are executed in the same order at every site where
they execute together (of course, the local executions at each site also have to be
serializable). This is achieved by means of the concurrency control techniques that
are employed at each site. Consequently, read operations can be performed on any
copy, but writes are performed on all copies within transactional boundaries (e.g.,
ROWA) using a concurrency control protocol.

13.3.3 Lazy Centralized Protocols

Lazy centralized replication algorithms are similar to eager centralized replication
ones in that the updates are first applied to a master replica and then propagated
to the slaves. The important difference is that the propagation does not take place
within the update transaction, but after the transaction commits as a separate refresh
transaction. Consequently, if a slave site performs a Read(x) operation on its local
copy, it may read stale (non-fresh) data, since x may have been updated at the master,
but the update may not have yet been propagated to the slaves.

13.3.3.1 Single Master with Limited Transparency

In this case, the update transactions are submitted and executed directly at the master
site (as in the eager single master); once the update transaction commits, the refresh
transaction is sent to the slaves. The sequence of execution steps are as follows:
(1) an update transaction is first applied to the master replica, (2) the transaction is
committed at the master, and then (3) the refresh transaction is sent to the slaves
(Figure 13.4).

Master

Site

Transaction 1

Write(x) Commit

Slave

Site A

Slave

Site B

Slave

Site C

�� �

Transaction 2

Read(x)

�

Fig. 13.4 Lazy Single Master Replication Protocol Actions. (1) Update is applied on the local
replica; (2) Transaction commit makes the updates permanent at the master; (3) Update is propagated
to the other replicas in refresh transactions; (4) Transaction 2 reads from local copy.
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When a slave (secondary) site receives a Read(x), it reads from its local copy and
returns the result to the user. Notice that, as indicated above, its own copy may not
be up-to-date if the master is being updated and the slave has not yet received and
executed the corresponding refresh transaction. A Write(x) received by a slave is
rejected (and the transaction aborted), as this should have been submitted directly to
the master site. When a slave receives a refresh transaction from the master, it applies
the updates to its local copy. When it receives a Commit or Abort (Abort can happen
for only locally submitted read-only transactions), it locally performs these actions.

The case of primary copy with limited transparency is similar, so we don’t discuss
it in detail. Instead of going to a single master site, Write(x) is submitted to the
primary copy of x; the rest is straightforward.

How can it be ensured that the refresh transactions can be applied at all of the
slaves in the same order? In this architecture, since there is a single master copy
for all data items, the ordering can be established by simply using timestamps. The
master site would attach a timestamp to each refresh transaction according to the
commit order of the actual update transaction, and the slaves would apply the refresh
transactions in timestamp order.

A similar approach may be followed in the primary copy, limited transparency
case. In this case, a site contains slave copies of a number of data items, causing
it to get refresh transactions from multiple masters. The execution of these refresh
transactions need to be ordered the same way at all of the involved slaves to ensure
that the database states eventually converge. There are a number of alternatives that
can be followed.

One alternative is to assign timestamps such that refresh transactions issued from
different masters have different timestamps (by appending the site identifier to a
monotonic counter at each site). Then the refresh transactions at each site can be
executed in their timestamp order. However, those that come out of order cause
difficulty. In traditional timestamp-based techniques discussed in Chapter 11, these
transactions would be aborted; however in lazy replication, this is not possible
since the transaction has already been committed at the primary copy site. The
only possibility is to run a compensating transaction (which, effectively, aborts the
transaction by rolling back its effects) or to perform update reconciliation that will be
discussed shortly. The issue can be addressed by a more careful study of the resulting
histories. An approach proposed by Breitbart and Korth [1997] uses a serialization
graph approach that builds a replication graph whose nodes consist of transactions
(T ) and sites (S) and an edge 〈Ti,S j〉 exists in the graph if and only if Ti performs a
Write on a (replicated) physical copy that is stored at S j. When an operation (opk)
is submitted, the appropriate nodes (Tk) and edges are inserted into the replication
graph, which is checked for cycles. If there is no cycle, then the execution can
proceed. If a cycle is detected and it involves a transaction that has committed at the
master, but whose refresh transactions have not yet committed at all of the involved
slaves, then the current transaction (Tk) is aborted (to be restarted later) since its
execution would cause the history to be non-1SR. Otherwise, Tk can wait until the
other transactions in the cycle are completed (i.e., they are committed at their masters
and their refresh transactions are committed at all of the slaves). When a transaction
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is completed in this manner, the corresponding node and all of its incident edges are
removed from the replication graph. This protocol is proven to produce 1SR histories.
An important issue is the maintenance of the replication graph. If it is maintained
by a single site, then this becomes a centralized algorithm. We leave the distributed
construction and maintenance of the replication graph as an exercise.

Another alternative is to rely on the group communication mechanism provided
by the underlying communication infrastructure (if it can provide it). We discuss this
alternative in Section 13.4.

Recall from Section 13.3.1 that, in the case of partially replicated databases, eager
primary copy with limited replication transparency approach makes sense if the
update transactions access only data items whose master sites are the same, since the
update transactions are run completely at a master. The same problem exists in the
case of lazy primary copy, limited replication approach. The issue that arises in both
cases is how to design the distributed database so that meaningful transactions can be
executed. This problem has been studied within the context of lazy protocols [Chundi
et al., 1996] and a primary site selection algorithm was proposed that, given a set of
transactions, a set of sites, and a set of data items, finds a primary site assignment to
these data items (if one exists) such that the set of transactions can be executed to
produce a 1SR global history.

13.3.3.2 Single Master or Primary Copy with Full Replication Transparency

We now turn to alternatives that provide full transparency by allowing (both read
and update) transactions to be submitted at any site and forwarding their operations
to either the single master or to the appropriate primary master site. This is tricky
and involves two problems: the first is that, unless one is careful, 1SR global history
may not be guaranteed; the second problem is that a transaction may not see its own
updates. The following two examples demonstrate these problems.

Example 13.4. Consider the single master scenario and two sites M and B where M
holds the master copies of x and y and B holds their slave copies. Now consider the
following two transactions: T1 submitted at site B, while transaction T2 submitted at
site M:

T1: Read(x) T2: Write(x)
Write(y) Write(y)
Commit Commit

One way these would be executed under full transparency is as follows. T2 would
be executed at site M since it contains the master copies of both x and y. Sometime
after it commits, refresh transactions for its Writes are sent to site B to update the
slave copies. On the other hand, T1 would read the local copy of x at site B, but its
Write(x) would be forwarded to x’s master copy, which is at site M. Some time after
Write1(x) is executed at the master site and commits there, a refresh transaction
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would be sent back to site B to update the slave copy. The following is a possible
sequence of steps of execution (Figure 13.5):

1. Read1(x) is submitted at site B, where it is performed;

2. Write2(x) is submitted at site M, and it is executed;

3. Write2(y) is submitted at site M, and it is executed;

4. T2 submits its Commit at site M and commits there;

5. Write1(x) is submitted at site B; since the master copy of x is at site M, the
Write is forwarded to M;

6. Write1(x) is executed at site M and the confirmation is sent back to site B;

7. T1 submits Commit at site B, which forwards it to site M; it is executed there
and B is informed of the commit where T1 also commits;

8. Site M now sends refresh transaction for T2 to site B where it is executed and
commits;

9. Site M finally sends refresh transaction for T1 to site B (this is for T1’s Write
that was executed at the master), it is executed at B and commits.

The following two histories are now generated at the two sites where the super-
script r on operations indicate that they are part of a refresh transaction:

HM = {W2(xM),W2(yM),C2,W1(yM),C1}
HB = {R1(xB),C1,W r

2 (xB),W r
2 (yB),Cr

2,W
r
1 (xB),Cr

1}

The resulting global history over the logical data items x and y is non-1SR. �

Example 13.5. Again consider a single master scenario, where site M holds the
master copy of x and site D holds its slave. Consider the following simple transaction:

T3: Write(x)
Read(x)
Commit

Following the same execution model as in Example 13.4, the sequence of steps
would be as follows:

1. Write3(x) is submitted at site D, which forwards it to site M for execution;

2. The Write is executed at M and the confirmation is sent back to site D;

3. Read3(x) is submitted at site D and is executed on the local copy;

4. T3 submits commit at D, which is forwarded to M, executed there and a
notification is sent back to site D, which also commits the transaction;

5. Site M sends a refresh transaction to site D for the W3(x) operation;

6. Site D executes the refresh transaction and commits it.
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Fig. 13.5 Time sequence of executions of transactions
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Note that, since the refresh transaction is sent to site D sometime after T3 commits
at site M, at step 3 when it reads the value of x at site D, it reads the old value and
does not see the value of its own Write that just precedes Read. �

Because of these problems, there are not too many proposals for full transparency
in lazy replication algorithms. A notable exception is that by Bernstein et al. [2006]
that considers the single master case and provides a method for validity testing
by the master site, at commit point, similar to optimistic concurrency control. The
fundamental idea is the following. Consider a transaction T that writes a data item x.
At commit time of transaction T , the master generates a timestamp for it and uses this
timestamp to set a timestamp for the master copy of x (xM) that records the timestamp
of the last transaction that updated it (last modi f ied(xM)). This is appended to
refresh transactions as well. When refresh transactions are received at slaves they
also set their copies to this same value, i.e., last modi f ied(xi)← last modi f ied(xM).
The timestamp generation for T at the master follows the following rule:

The timestamp for transaction T should be greater than all previously issued timestamps and
should be less than the last modi f ied timestamps of the data items it has accessed. If such a
timestamp cannot be generated, then T is aborted.3

This test ensures that read operations read correct values. For example, in Ex-
ample 13.4, master site M would not be able to assign an appropriate timestamp
to transaction T1 when it commits, since the last modi f ied(xM) would reflect the
update performed by T2. Therefore, T1 would be aborted.

Although this algorithm handles the first problem we discussed above, it does not
automatically handle the problem of a transaction not seeing its own writes (what
we referred to as transaction inversion earlier). To address this issue, it has been
suggested that a list be maintained of all the updates that a transaction performs and
this list is consulted when a Read is executed. However, since only the master knows
the updates, the list has to be maintained at the master and all the Reads (as well as
Writes) have to be executed at the master.

13.3.4 Lazy Distributed Protocols

Lazy distributed replication protocols are the most complex ones owing to the fact
that updates can occur on any replica and they are propagated to the other replicas
lazily (Figure 13.6).

The operation of the protocol at the site where the transaction is submitted is
straightforward: both Read and Write operations are executed on the local copy,
and the transaction commits locally. Sometime after the commit, the updates are
propagated to the other sites by means of refresh transactions.

3 The original proposal handles a wide range of freshness constraints, as we discussed earlier;
therefore, the rule is specified more generically. However, since our discussion primarily focuses on
1SR behavior, this (more strict) recasting of the rule is appropriate.
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Site A

Transaction

Write(x) Commit

Site B Site C Site D

Transaction

Write(x) Commit

�� � ��

�

Fig. 13.6 Lazy Distributed Replication Protocol Actions. (1) Two updates are applied on two local
replicas; (2) Transaction commit makes the updates permanent; (3) The updates are independently
propagated to the other replicas.

The complications arise in processing these updates at the other sites. When
the refresh transactions arrive at a site, they need to be locally scheduled, which
is done by the local concurrency control mechanism. The proper serialization of
these refresh transactions can be achieved using the techniques discussed in previous
sections. However, multiple transactions can update different copies of the same data
item concurrently at different sites, and these updates may conflict with each other.
These changes need to be reconciled, and this complicates the ordering of refresh
transactions. Based on the results of reconciliation, the order of execution of the
refresh transactions is determined and updates are applied at each site.

The critical issue here is reconciliation. One can design a general purpose rec-
onciliation algorithm based on heuristics. For example, updates can be applied in
timestamp order (i.e., those with later timestamps will always win) or one can give
preference to updates that originate at certain sites (perhaps there are more important
sites). However, these are ad hoc methods and reconciliation is really dependent
upon application semantics. Furthermore, whatever reconciliation technique is used,
some of the updates are lost. Note that timestamp-based ordering will only work if
timestamps are based on local clocks that are synchronized. As we discussed earlier,
this is hard to achieve in large-scale distributed systems. Simple timestamp-based
approach, which concatenates a site number and local clock, gives arbitrary pref-
erence between transactions that may have no real basis in application logic. The
reason timestamps work well in concurrency control and not in this case is because
in concurrency control we are only interested in determining some order; here we
are interested in determining a particular order that is consistent with application
semantics.
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13.4 Group Communication

As discussed in the previous section, the overhead of replication protocols can be
high – particularly in terms of message overhead. A very simple cost model for
the replication algorithms is as follows. If there are n replicas and each transaction
consists of m update operations, then each transaction issues n ∗m messages (if
multicast communication is possible, m messages would be sufficient). If the system
wishes to maintain a throughput of k transactions-per-second, this results in k ∗n∗m
messages per second (or k∗m in the case of multicasting). One can add sophistication
to this cost function by considering the execution time of each operation (perhaps
based on system load) to get a cost function in terms of time. The problem with many
of the replication protocols discussed above (in particular the distributed ones) is that
their message overhead is high.

A critical issue in efficient implementation of these protocols is to reduce the
message overhead. Solutions have been proposed that use group communication pro-
tocols [Chockler et al., 2001] together with non-traditional techniques for processing
local transactions [Stanoi et al., 1998; Kemme and Alonso, 2000a,b; Patiño-Martı́nez
et al., 2000; Jiménez-Peris et al., 2002]. These solutions introduce two modifications:
they do not employ 2PC at commit time, but rely on the underlying group commu-
nication protocols to ensure agreement, and they use deferred update propagation
rather than synchronous.

Let us first review the group communication idea. A group communication system
enables a node to multicast a message to all nodes of a group with a delivery
guarantee, i.e., the message is eventually delivered to all nodes. Furthermore, it
can provide multicast primitives with different delivery orders only one of which is
important for our discussion: total order. In total ordered multicast, all messages sent
by different nodes are delivered in the same total order at all nodes. This is important
in understanding the following discussion.

We will demonstrate the use of group communication by considering two proto-
cols. The first one is an alternative eager distributed protocol [Kemme and Alonso,
2000a], while the second one is a lazy centralized protocol [Pacitti et al., 1999].

The group communication-based eager distributed protocol due to Kemme and
Alonso [2000a] uses a local processing strategy where Write operations are carried
out on local shadow copies where the transaction is submitted and utilizes total or-
dered group communication to multicast the set of write operations of the transaction
to all the other replica sites. Total ordered communication guarantees that all sites
receive the write operations in exactly the same order, thereby ensuring identical seri-
alization order at every site. For simplicity of exposition, in the following discussion,
we assume that the database is fully replicated and that each site implements a 2PL
concurrency control algorithm.

The protocol executes a transaction Ti in four steps (local concurrency control
actions are not indicated):

I. Local processing phase. A Readi(x) operation is performed at the site where
it is submitted (this is the master site for this transaction). A Writei(x) op-



13.4 Group Communication 483

eration is also performed at the master site, but on a shadow copy (see the
previous chapter for a discussion of shadow paging).

II. Communication phase. If Ti consists only of Read operations, then it can
be committed at the master site. If it involves Write operations (i.e., if it is
an update transaction), then the TM at Ti’s master site (i.e., the site where
Ti is submitted) assembles the writes into one write message WMi

4 and
multicasts it to all the replica sites (including itself) using total ordered group
communication.

III. Lock phase. When WMi is delivered at a site S j, it requests all locks in WMi
in an atomic step. This can be done by acquiring a latch (lighter form of a
lock) on the lock table that is kept until all the locks are granted or requests
are enqueued. The following actions are performed:

1. For each Write(x) in WMi (let x j refer to the copy of x that exists at
site S j), the following are performed:

(a) If there are no other transactions that have locked x j, then the
write lock on x j is granted.

(b) Otherwise a conflict test is performed:

• If there is a local transaction Tk that has already locked
x j, but is in its local read or communication phases, then
Tk is aborted. Furthermore, if Tk is in its communication
phase, a final decision message Abort is multicast to all
the sites. At this stage, read/write conflicts are detected
and local read transactions are simply aborted. Note that
only local read operations obtain locks during the local
execution phase, since local writes are only executed on
shadow copies. Therefore, there is no need to check for
write/write conflicts at this stage.

• Otherwise, Wi(x j) lock request is put on queue for x j.

2. If Ti is a local transaction (recall that the message is also sent to the site
where Ti originates, in which case j = i), then the site can commit the
transaction, so it multicasts a Commit message. Note that the commit
message is sent as soon as the locks are requested and not after writes;
thus this is not a 2PC execution.

IV. Write phase. When a site is able to obtain the write lock, it applies the
corresponding update (for the master site, this means that the shadow copy
is made the valid version). The site where Ti is submitted can commit and
release all the locks. Other sites have to wait for the decision message and
terminate accordingly.

4 What is being sent are the updated data items (i.e., state transfer).
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Note that in this protocol, the important thing is to ensure that the lock phases of
the concurrent transactions are executed in the same order at each site; that is what
total ordered multicasting achieves. Also note that there is no ordering requirement
on the decision messages (step III.2) and these may be delivered in any order, even
before the delivery of the corresponding WM. If this happens, then the sites that
receive the decision message before WM simply register the decision, but do not take
any action. When WM message arrives, they can execute the lock and write phases
and terminate the transaction according to the previously delivered decision message.

This protocol is significantly better, in terms of performance, than the naive one
discussed in Section 13.3.2. For each transaction, the master site sends two messages:
one when it sends the WM and the second one when it communicates the decision.
Thus, if we wish to maintain a system throughput of k transactions-per-second, the
total number of messages is 2k rather than k∗m, as is the case with the naive protocol
(assuming multicast in both cases). Furthermore, system performance is improved by
the use of deferred eager propagation since synchronization among replica sites for
all Write operations is done once at the end rather than throughout the transaction
execution.

The second example of the use of group communication that we will discuss is in
the context of lazy centralized algorithms. Recall that an important issue in this case
is to ensure that the refresh transactions are ordered the same way at all the involved
slaves so that the database states converge. If totally ordered multicasting is available,
the refresh transactions sent by different master sites would be delivered in the same
order at all the slaves. However, total order multicast has high messaging overhead
which may limit its scalability. It is possible to relax the ordering requirement of
the communication system and let the replication protocol take responsibility for
ordering the execution of refresh transactions. We will demonstrate this alternative by
means of a proposal due to Pacitti et al. [1999]. The protocol assumes FIFO ordered
multicast communication with a bounded delay for communication (call it Max), and
assumes that the clocks are loosely synchronized so that they may only be out of sync
by up to ε . It further assumes that there is an appropriate transaction management
functionality at each site. The result of the replication protocol at each slave is
to maintain a “running queue” that holds an ordered list of refresh transactions,
which is the input to the transaction manager for local execution. Thus, the protocol
ensures that the orders in the running queues at each slave site where a set of refresh
transactions run are the same.

At each slave site, a “pending queue” is maintained for each master site of this
slave (i.e., if the slave site has replicas of x and y whose master sites are Site1 and
Site2, respectively, then there are two pending queues, q1 and q2, corresponding to
master sites Site1 and Site2, respectively). When a refresh transaction RT k

i is created
at a master site Sitek, it is assigned a timestamp ts(RTi) that corresponds to the real
time value at the commit time of the corresponding update transaction Ti. When RTi
arrives at a slave, it is put on queue qk. At each message arrival the top elements
of all pending queues are scanned and the one with the lowest timestamp is chosen
as the new RT (new RT ) to be handled. If the new RT has changed since the last
cycle (i.e., a new RT arrived with a lower timestamp than what was chosen in the
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previous cycle), then the one with the lower timestamp becomes the new RT and is
considered for scheduling.

When a refresh transaction is chosen as the new RT , it is not immediately put
on the “running queue” for the transaction manager; the scheduling of a refresh
transaction takes into account the maximum delay and the possible drift in local
clocks. This is done to ensure that any refresh transaction that may be delayed has a
chance of reaching the slave. The time when an RTi is put into the “running queue” at
a slave site is delivery time = ts(new RT )+Max+ε . Since the communication sys-
tem guarantees an upper bound of Max for message delivery and since the maximum
drift in local clocks (that determine timestamps) is ε , a refresh transaction cannot be
delayed by more than the delivery time before reaching all of the intended slaves.
Thus, the protocol guarantees that a refresh transaction is scheduled for execution at
a slave when the following hold: (1) all the write operations of the corresponding
update transaction are performed at the master, (2) according to the order determined
by the timestamp of the refresh transaction (which reflects the commit order of the
update transaction), and (3) at the earliest at real time equivalent to its delivery time.
This ensures that the updates on secondary copies at the slave sites follow the same
chronological order in which their primary copies were updated and this order will be
the same at all of the involved slaves, assuming that the underlying communication
infrastructure can guarantee Max and ε . This is an example of a lazy algorithm that
ensures 1SR global history, but weak mutual consistency, allowing the replica values
to diverge by up to a predetermined time period.

13.5 Replication and Failures

Up to this point, we have focused on replication protocols in the absence of any fail-
ures. What happens to mutual consistency concerns if there are system failures? The
handling of failures differs between eager replication and lazy replication approaches.

13.5.1 Failures and Lazy Replication

Let us first consider how lazy replication techniques deal with failures. This case
is relatively easy since these protocols allow divergence between the master copies
and the replicas. Consequently, when communication failures make one or more
sites unreachable (the latter due to network partitioning), the sites that are available
can simply continue processing. Even in the case of network partitioning, one can
allow operations to proceed in multiple partitions independently and then worry
about the convergence of the database states upon repair using the conflict resolution
techniques discussed in Section 13.3.4. Before the merge, databases at multiple
partitions diverge, but they are reconciled at merge time.
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13.5.2 Failures and Eager Replication

Let us now focus on eager replication, which is considerably more involved. As we
noted earlier, all eager techniques implement some sort of ROWA protocol, ensuring
that, when the update transaction commits, all of the replicas have the same value.
ROWA family of protocols is attractive and elegant. However, as we saw during the
discussion of commit protocols, it has one significant drawback. Even if one of the
replicas is unavailable, then the update transaction cannot be terminated. So, ROWA
fails in meeting one of the fundamental goals of replication, namely providing higher
availability.

An alternative to ROWA which attempts to address the low availability problem
is the Read-One/Write-All Available (ROWA-A) protocol. The general idea is that
the write commands are executed on all the available copies and the transaction
terminates. The copies that were unavailable at the time will have to “catch up” when
they become available.

There have been various versions of this protocol [Helal et al., 1997], two of
which will be discussed here. The first one is known as the available copies protocol
[Bernstein and Goodman, 1984; Bernstein et al., 1987]. The coordinator of an update
transaction Ti (i.e., the master where the transaction is executing) sends each Wi(x) to
all the slave sites where replicas of x reside, and waits for confirmation of execution
(or rejection). If it times out before it gets acknowledgement from all the sites, it
considers those which have not replied as unavailable and continues with the update
on the available sites. The unavailable slave sites update their databases to the latest
state when they recover. Note, however, that these sites may not even be aware of the
existence of Ti and the update to x that Ti has made if they had become unavailable
before Ti started.

There are two complications that need to be addressed. The first one is the
possibility that the sites that the coordinator thought were unavailable were in fact up
and running and may have already updated x but their acknowledgement may not
have reached the coordinator before its timer ran out. Second, some of these sites may
have been unavailable when Ti started and may have recovered since then and have
started executing transactions. Therefore, the coordinator undertakes a validation
procedure before committing Ti:

1. The coordinator checks to see if all the sites it thought were unavailable are
still unavailable. It does this by sending an inquiry message to every one
of these sites. Those that are available reply. If the coordinator gets a reply
from one of these sites, it aborts Ti since it does not know the state that the
previously unavailable site is in: it could have been that the site was available
all along and had performed the original Wi(x) but its acknowledgement
was delayed (in which case everything is fine), or it could be that it was
indeed unavailable when Ti started but became available later on and perhaps
even executed Wj(x) on behalf of another transaction Tj. In the latter case,
continuing with Ti would make the execution schedule non-serializable.
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2. If the coordinator of T does not get any response from any of the sites that it
thought were unavailable, then it checks to make sure that all the sites that
were available when Wi(x) executed are still available. If they are, then T
can proceed to commit. Naturally, this second step can be integrated into a
commit protocol.

The second ROWA-A variant that we will discuss is the distributed ROWA-A
protocol. In this case, each site S maintains a set, VS, of sites that it believes to be
available; this is the “view” that S has of the system configuration. In particular,
when a transaction Ti is submitted, its coordinator’s view reflects all the sites that the
coordinator knows to be available (let us denote this as VC(Ti) for simplicity). A Ri(x)
is performed on any replica in VC(Ti) and a Wi(x) updates all copies in VC(Ti). The
coordinator checks its view at the end of Ti, and if the view has changed since Ti’s
start, then Ti is aborted. To modify V , a special atomic transaction is run at all sites,
ensuring that no concurrent views are generated. This can be achieved by assigning
timestamps to each V when it is generated and ensuring that a site only accepts a new
view if its version number is greater than the version number of that site’s current
view.

The ROWA-A class of protocols are more resilient to failures, including network
partitioning, than the simple ROWA protocol.

Another class of eager replication protocols are those based on voting. The
fundamental characteristics of voting were presented in the previous chapter when
we discussed network partitioning in non-replicated databases. The general ideas
hold in the replicated case. Fundamentally, each read and write operation has to
obtain a sufficient number of votes to be able to commit. These protocols can be
pessimistic or optimistic. In what follows we discuss only pessimistic protocols. An
optimistic version compensates transactions to recover if the commit decision cannot
be confirmed at completion [Davidson, 1984]. This version is suitable wherever
compensating transactions are acceptable (see Chapter 10).

The initial voting algorithm was proposed by Thomas [1979] and an early sug-
gestion to use quorum-based voting for replica control is due to Gifford [1979].
Thomas’s algorithm works on fully replicated databases and assigns an equal vote to
each site. For any operation of a transaction to execute, it must collect affirmative
votes from a majority of the sites. Gifford’s algorithm, on the other hand, works with
partially replicated databases (as well as with fully replicated ones) and assigns a
vote to each copy of a replicated data item. Each operation then has to obtain a read
quorum (Vr) or a write quorum (Vw) to read or write a data item, respectively. If a
given data item has a total of V votes, the quorums have to obey the following rules:

1. Vr +Vw >V

2. Vw >V/2

As the reader may recall from the preceding chapter, the first rule ensures that a
data item is not read and written by two transactions concurrently (avoiding the read-
write conflict). The second rule, on the other hand, ensures that two write operations
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from two transactions cannot occur concurrently on the same data item (avoiding
write-write conflict). Thus the two rules ensure that serializability and one-copy
equivalence are maintained.

In the case of network partitioning, the quorum-based protocols work well since
they basically determine which transactions are going to terminate based on the votes
that they can obtain. The vote allocation and threshold rules given above ensure that
two transactions that are initiated in two different partitions and access the same data
cannot terminate at the same time.

The difficulty with this version of the protocol is that transactions are required
to obtain a quorum even to read data. This significantly and unnecessarily slows
down read access to the database. We describe below another quorum-based voting
protocol that overcomes this serious performance drawback [Abbadi et al., 1985].

The protocol makes certain assumptions about the underlying communication
layer and the occurrence of failures. The assumption about failures is that they are
“clean.” This means two things:

1. Failures that change the network’s topology are detected by all sites instanta-
neously.

2. Each site has a view of the network consisting of all the sites with which it
can communicate.

Based on the presence of a communication network that can ensure these two
conditions, the replica control protocol is a simple implementation of the ROWA-A
principle. When the replica control protocol attempts to read or write a data item, it
first checks if a majority of the sites are in the same partition as the site at which the
protocol is running. If so, it implements the ROWA rule within that partition: it reads
any copy of the data item and writes all copies that are in that partition.

Notice that the read or the write operation will execute in only one partition.
Therefore, this is a pessimistic protocol that guarantees one-copy serializability, but
only within that partition. When the partitioning is repaired, the database is recovered
by propagating the results of the update to the other partitions.

A fundamental question with respect to implementation of this protocol is whether
or not the failure assumptions are realistic. Unfortunately, they may not be, since
most network failures are not “clean.” There is a time delay between the occurrence
of a failure and its detection by a site. Because of this delay, it is possible for one
site to think that it is in one partition when in fact subsequent failures have placed
it in another partition. Furthermore, this delay may be different for various sites.
Thus two sites that were in the same partition but are now in different partitions may
proceed for a while under the assumption that they are still in the same partition. The
violations of these two failure assumptions have significant negative consequences
on the replica control protocol and its ability to maintain one-copy serializability.

The suggested solution is to build on top of the physical communication layer
another layer of abstraction which hides the “unclean” failure characteristics of the
physical communication layer and presents to the replica control protocol a com-
munication service that has “clean” failure properties. This new layer of abstraction
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provides virtual partitions within which the replica control protocol operates. A
virtual partition is a group of sites that have agreed on a common view of who is in
that partition. Sites join and depart from virtual partitions under the control of this
new communication layer, which ensures that the clean failure assumptions hold.

The advantage of this protocol is its simplicity. It does not incur any overhead to
maintain a quorum for read accesses. Thus the reads can proceed as fast as they would
in a non-partitioned network. Furthermore, it is general enough so that the replica
control protocol does not need to differentiate between site failures and network
partitions.

Given alternative methods for achieving fault-tolerance in the case of replicated
databases, a natural question is what the relative advantages of these methods are.
There have been a number of studies that analyze these techniques, each with vary-
ing assumptions. A comprehensive study suggests that ROWA-A implementations
achieve better scalability and availability than quorum techniques [Jiménez-Peris
et al., 2003].

13.6 Replication Mediator Service

The replication protocols we have covered so far are suitable for tightly integrated
distributed database systems where we can insert the protocols into each component
DBMS. In multidatabase systems, replication support has to be supported outside the
DBMSs by mediators. In this section we discuss how to provide replication support at
the mediator level by means of an example protocol called NODO [Patiño-Martı́nez
et al., 2000].

The NODO (NOn-Disjoint conflict classes and Optimistic multicast) protocol
is a hybrid between distributed and primary copy – it permits transactions to be
submitted at any site, but it does have the notion of a primary copy for a data item. It
uses group communications and optimistic delivery to reduce latency. The optimistic
delivery technique delivers a message optimistically as soon as it is received without
guaranteeing any order among messages. The message is said to be “opt-delivered”.
When the total order of the message is established, then the message is to-delivered.
Although optimistic delivery does not guarantee any order, most of the time the order
will be the same as total ordering. This fact is exploited by NODO to overlap the total
ordering of the transaction request with the transaction execution at the master node,
thus masking the latency of total ordering. The protocol also executes transactions
optimistically (see Section 11.5), and may abort them if necessary.

In the following discussion, we will assume a fully replicated database for sim-
plicity. This allows us to ignore issues such as finding the primary copy site, how to
execute a transaction over a set of data items that have different primary copies, etc.
In the fully replicated environment, all of the sites in the system form a multicast
group.

It is assumed that the data items are grouped into disjoint sets and each set has
a primary copy. Each transaction accesses a particular set of items, and, as in all
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primary copy techniques, it first executes at the primary copy site, and its writes are
then propagated to the slave sites. The transaction is said to be local to its primary
copy site.

Each set of data items is called a conflict class, and the protocol exploits the
knowledge of transactions’ conflict classes to increase concurrency. Two transactions
that access the same conflict class have a high probability of conflict, while two
transactions that access different conflict classes can run in parallel. A transaction
can access several conflict classes and this must be statically known before execution
(e.g., by analyzing the transaction code). Thus, conflict classes are further abstracted
into conflict class groups. Each conflict class group has a single primary copy (i.e.,
the primary copy of one of the individual conflict classes in the group) where all
transactions on that conflict class group must be executed. The same individual
conflict class can be in different conflict class groups. For instance, if Si be the
primary copy site of {Cx,Cy} and S j be the primary copy site of {Cy}, transactions
T1 on {Cx,Cy} and T2 on {Cy} are executed at Si and S j, respectively.

Each transaction is associated with a single conflict class group, and therefore, it
has a single primary copy. Each site manages a number of queues for its incoming
transactions, one per individual conflict class (not one per conflict class group). The
processing of a transaction proceeds in the following way:

1. A transaction is submitted by an application at a site.

2. That site multicasts the transaction to the multicast group (which is the entire
set of sites since we are assuming full replication).

3. When the transaction is opt-delivered at a site, it is appended to the queue of
all the individual classes included in its conflict class group.

4. At the primary copy site, when the transaction becomes the first in the queue of
all the individual conflict classes of its conflict class group, it is optimistically
executed.

5. When the transaction is to-delivered at a site, it is checked whether its op-
timistic ordering was the same as the total ordering. If the optimistic order
was wrong, the transaction is reordered in all the queues according to the
total order. The primary copy site, in addition, aborts the transaction (if it was
already executed) and re-executes it when it again gets to the head of all the
relevant queues. If the optimistic ordering was correct, the primary copy site
extracts the resulting write set of the transaction and multicasts (without total
ordering) it to the multicast group.

6. When the write set is received at the primary copy site (remember that in this
case the primary copy site is also in the multicast group, so it receives its own
transmission), it commits the transaction. When the write set is received at a
slave site and the transaction becomes the first in all the relevant queues, its
write set is applied, and then the transaction commits.
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Example 13.6. Let site Si, respectively S j, be the master of the conflict class group
{Cx,Cy}, respectively {Cx} and {Cy}. Let transaction T1 be on {Cx,Cy}, T2 on {Cy}
and T3 on {Cx}. Thus, T1 is local to Si while T2 and T3 are local to S j. At Si and S j,
let transaction Ti be the i-th in the total order (i.e., the total order is T1→ T2→ T3).
Consider the following state of the queues Cx and Cy at Si and S j after the transactions
have been opt-delivered.

Si : Cx = [T1,T3];Cy = [T1,T2]

S j : Cx = [T3,T1];Cy = [T1,T2]

At Si T1 is the first in the queues Cx and Cy and thus it is executed. Similarly, at S j
T3 is at the head of Cx and thus, executed. When Si to-delivers T1, since the optimistic
ordering was correct, it extracts T1’s write set and multicasts it. Upon delivering
the write set of T1 at Si, T1 is committed. Upon delivering T1’s write set at S j, it is
realized that T1 was wrongly ordered after T3, and T1 is reordered before T3 and T3 is
aborted since its optimistic ordering was wrong. T1’s write set is then applied and
committed. At both Si and S j, T1 is removed from all the queues. Now T2 and T3 are
first of their queues at S j, their primary copy site, and both are executed in parallel.
Since they are in disjoint conflict class groups, their relative ordering is irrelevant.
Now T2 is to-delivered and since it is optimistic delivery was correct, its write set is
extracted and multicast. Upon delivery of the T2’s write set, S j commits T2, while Si
applies the write set and commits it. Finally, T3 is to-delivered and since its execution
was performed according to the total order, S j extracts T3’s write set and multicasts
it. Upon delivery of the T3’s writeset, S j commits T3. Similarly, Si applies the write
set and commits T3. The final ordering is T1→ T2→ T3 at both nodes. �

Interestingly, there are many cases where, in spite of an ordering mismatch
between opt and to-delivery, it is possible to commit transactions consistently by
using the optimistic rather than total ordering, thus minimizing the number of aborts
due to optimism failures. This fact is exploited by the REORDERING protocol
[Patiño-Martı́nez et al., 2005].

The implementation of the NODO protocol combines concurrency control with
group communication primitives and what has been traditionally done inside the
DBMS. This solution can be implemented outside a DBMS without a negligible
overhead, and thus supports DBMS autonomy Jiménez-Peris et al. [2002]. Similar
eager replication protocols have been proposed to support partial replication, where
copies can be stored at subsets of nodes [Sousa et al., 2001; Serrano et al., 2007].
Unlike full replication, partial replication increases access locality and reduces the
number of messages for propagating updates to replicas.

13.7 Conclusion

In this chapter we discussed different approaches to data replication and presented
protocols that are appropriate under different circumstances. Each of the alterna-
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tive protocols we have discussed have their advantages and disadvantages. Eager
centralized protocols are simple to implement, they do not require update coordina-
tion across sites, and they are guaranteed to lead to one-copy serializable histories.
However, they put a significant load on the master sites, potentially causing them to
become bottlenecks. Consequently, they are harder to scale, in particular in the single
master site architecture – primary copy versions have better scalability properties
since the master responsibilities are somewhat distributed. These protocols result in
long response times (the longest among the four alternatives), since the access to
any data has to wait until the commit of any transaction that is currently updating it
(using 2PC, which is expensive). Furthermore, the local copies are used sparingly,
only for read operations. Thus, if the workload is update-intensive, eager centralized
protocols are likely to suffer from bad performance.

Eager distributed protocols also guarantee one-copy serializability and provide an
elegant symmetric solution where each site performs the same function. However,
unless there is communication system support for efficient multicasting, they result
in very high number of messages that increase network load and result in high
transaction response times. This also constrains their scalability. Furthermore, naive
implementations of these protocols will cause significant number of deadlocks since
update operations are executed at multiple sites concurrently.

Lazy centralized protocols have very short response times since transactions
execute and commit at the master, and do not need to wait for completion at the
slave sites. There is also no need to coordinate across sites during the execution of an
update transaction, thus reducing the number of messages. On the other hand, mutual
consistency (i.e., freshness of data at all copies) is not guaranteed as local copies can
be out of date. This means that it is not possible to do a local read and be assured
that the most up-to-date copy is read.

Finally, lazy multi-master protocols have the shortest response times and the
highest availability. This is because each transaction is executed locally, with no
distributed coordination. Only after they commit are the other replicas updated
through refresh transactions. However, this is also the shortcoming of these protocols
– different replicas can be updated by different transactions, requiring elaborate
reconciliation protocols and resulting in lost updates.

Replication has been studied extensively within the distributed computing commu-
nity as well as the database community. Although there are considerable similarities
in the problem definition in the two environments, there are also important differ-
ences. Perhaps the two more important differences are the following. Data replication
focuses on data, while replication of computation is equally important in distributed
computing. In particular, concerns about data replication in mobile environments
that involve disconnected operation have received considerable attention. Secondly,
database and transaction consistency is of paramount importance in data replication;
in distributed computing, consistency concerns are not as high on the list of priorities.
Consequently, considerably weaker consistency criteria have been defined.

Replication has been studied within the context of parallel database systems, in
particular within parallel database clusters. We discuss these separately in Chapter
14.
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Exercises

Problem 13.1. For each of the four replication protocols (eager centralized, eager
distributed, lazy centralized, lazy distributed), give a scenario/application where the
approach is more suitable than the other approaches. Explain why.

Problem 13.2. A company has several geographically distributed warehouses storing
and selling products. Consider the following partial database schema:

ITEM(ID, ItemName, Price, . . .)

STOCK(ID, Warehouse, Quantity, . . .)

CUSTOMER(ID, CustName, Address, CreditAmt, . . .)

CLIENT-ORDER(ID, Warehouse, Balance, . . .)
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ORDER(ID, Warehouse, CustID, Date)

ORDER-LINE(ID, ItemID, Amount, . . .)
The database contains relations with product information (ITEM contains the gen-

eral product information, STOCK contains, for each product and for each warehouse,
the number of pieces currently on stock). Furthermore, the database stores informa-
tion about the clients/customers, e.g., general information about the clients is stored
in the CUSTOMER table. The main activities regarding the clients are the rdering of
products, the payment of bills and general information requests. There exist several
tables to register the orders of a customer. Each order is regustered in the ORDER
and ORDER-LINE tables. For each order/purchase, one entry exists in the order
table, having an ID, indicating the customer-id, the warehouse at which the order
was submitted, the date of the order, etc. A client can have several orders pending
at a warehouse. Within each order, several products can be ordered. ORDER-LINE
contains an entry for each product of the order, which may include one or more
products. CLIENT-ORDER is a summary table that lists, for each client and for each
warehouse, the sum of all existing orders.

(a) The company has a customer service group consisting of several employees
that receive customers’ orders and payments, query the data of local customers
to write bills or register paychecks, etc. Furthermore, they answer any type
of requests which the customers might have. For instance, ordering products
changes (update/insert) the CLIENT-ORDER, ORDER, ORDER-LINE, and
STOCK tables. To be flexible, each employee must be able to work with any
of the clients. The workload is estimated to be 80% queries and 20% updates.
Since the workload is query oriented, the management has decided to build
a cluster of PCs each equipped with its own database to accelerate queries
through fast local access. How would you replicate the data for this purpose?
Which replica control protocol(s) wold you use to keep the data consistent?

(b) The company’s management has to decide each fiscal quarter on their product
offerings and sales strategies. For this purpose, they must continually observe
and analyze the sales of the different products at the different warehouses as
well as observe consumer behavior. How would you replicate the data for this
purpose? Which replica control protocol(s) would you use to keep the data
consistent?

Problem 13.3 (*). An alternative to ensuring that the refresh transactions can be
applied at all of the slaves in the same order in lazy single master protocols with
limited transparency is the use of a replication graph as discussed in Section 13.3.3.
Develop a method for distributed management of the replication graph.

Problem 13.4. Consider data items x and y replicated across the sites as follows:

Site 1 Site 2 Site 3 Site 4
x x x

y y y
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(a) Assign votes to each site and give the read and write quorum.
(b) Determine the possible ways that the network can partition and for each specify

in which group of sites a transaction that updates (reads and writes) x can be
terminated and what the termination condition would be.

(c) Repeat (b) for y.

Problem 13.5 (**). In the NODO protocol, we have seen that each conflict class
group has a master. However, this is not inherent to the protocol. Design a multi-
master variation of NODO in which a transaction might be executed by any replica.
What condition should be enforced to guarantee that each updated transaction is
processed only by one replica?

Problem 13.6 (**). In the NODO protocol, if the DBMS could provide additional
introspection functionality, it would be possible to execute in certain circumstances
transactions of the same conflict class in parallel. Determine which functionality
would be needed from the DBMS. Also characterize formally under which circum-
stances concurrent execution of transactions in the same conflict class could be
allowed to be executed in parallel whilst respecting 1-copy consistency. Extend the
NODO protocol with this enhancement.
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