
Chapter 10
Introduction to Transaction Management

Up to this point the basic access primitive that we have considered has been a query.
Our focus has been on retrieve-only (or read-only) queries that read data from a
distributed database. We have not yet considered what happens if, for example,
two queries attempt to update the same data item, or if a system failure occurs
during execution of a query. For retrieve-only queries, neither of these conditions
is a problem. One can have two queries reading the value of the same data item
concurrently. Similarly, a read-only query can simply be restarted after a system
failure is handled. On the other hand, it is not difficult to see that for update queries,
these conditions can have disastrous effects on the database. We cannot, for example,
simply restart the execution of an update query following a system failure since
certain data item values may already have been updated prior to the failure and
should not be updated again when the query is restarted. Otherwise, the database
would contain incorrect data.

The fundamental point here is that there is no notion of “consistent execution”
or “reliable computation” associated with the concept of a query. The concept of
a transaction is used in database systems as a basic unit of consistent and reliable
computing. Thus queries are executed as transactions once their execution strategies
are determined and they are translated into primitive database operations.

In the discussion above, we used the terms consistent and reliable quite informally.
Due to their importance in our discussion, we need to define them more precisely.
We differentiate between database consistency and transaction consistency.

A database is in a consistent state if it obeys all of the consistency (integrity)
constraints defined over it (see Chapter 5). State changes occur due to modifications,
insertions, and deletions (together called updates). Of course, we want to ensure
that the database never enters an inconsistent state. Note that the database can
be (and usually is) temporarily inconsistent during the execution of a transaction.
The important point is that the database should be consistent when the transaction
terminates (Figure 10.1).

Transaction consistency, on the other hand, refers to the actions of concurrent
transactions. We would like the database to remain in a consistent state even if there
are a number of user requests that are concurrently accessing (reading or updating)

335
DOI 10.1007/978-1-4419-8834-8_10, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

336 10 Introduction to Transaction Management

Database in a

consistent

state

Execution of

Transaction T

End

Transaction T

Database may be

temporarily in an

inconsistent state

during execution

Database in a

consistent

state

Begin

Transaction T

Fig. 10.1 A Transaction Model

the database. A complication arises when replicated databases are considered. A
replicated database is in a mutually consistent state if all the copies of every data
item in it have identical values. This is referred to as one-copy equivalence since
all replica copies are forced to assume the same state at the end of a transaction’s
execution. There are more relaxed notions of replica consistency that allow replica
values to diverge. These will be discussed later in Chapter 13.

Reliability refers to both the resiliency of a system to various types of failures and
its capability to recover from them. A resilient system is tolerant of system failures
and can continue to provide services even when failures occur. A recoverable DBMS
is one that can get to a consistent state (by moving back to a previous consistent state
or forward to a new consistent state) following various types of failures.

Transaction management deals with the problems of always keeping the database
in a consistent state even when concurrent accesses and failures occur. In the up-
coming two chapters, we investigate the issues related to managing transactions. A
third chapter will address issues related to keeping replicated databases consistent.
The purpose of the current chapter is to define the fundamental terms and to provide
the framework within which these issues can be discussed. It also serves as a con-
cise introduction to the problem and the related issues. We will therefore discuss
the concepts at a high level of abstraction and will not present any management
techniques.

The organization of this chapter is as follows. In the next section we formally
and intuitively define the concept of a transaction. In Section 10.2 we discuss the
properties of transactions and what the implications of each of these properties are
in terms of transaction management. In Section 10.3 we present various types of
transactions. In Section 10.4 we revisit the architectural model defined in Chapter 1
and indicate the modifications that are necessary to support transaction management.

10.1 Definition of a Transaction 337

10.1 Definition of a Transaction

Gray [1981] indicates that the transaction concept has its roots in contract law. He
states, “In making a contract, two or more parties negotiate for a while and then make
a deal. The deal is made binding by the joint signature of a document or by some
other act (as simple as a handshake or a nod). If the parties are rather suspicious of
one another or just want to be safe, they appoint an intermediary (usually called an
escrow officer) to coordinate the commitment of the transaction.” The nice aspect of
this historical perspective is that it does indeed encompass some of the fundamental
properties of a transaction (atomicity and durability) as the term is used in database
systems. It also serves to indicate the differences between a transaction and a query.

As indicated before, a transaction is a unit of consistent and reliable computation.
Thus, intuitively, a transaction takes a database, performs an action on it, and gener-
ates a new version of the database, causing a state transition. This is similar to what
a query does, except that if the database was consistent before the execution of the
transaction, we can now guarantee that it will be consistent at the end of its execution
regardless of the fact that (1) the transaction may have been executed concurrently
with others, and (2) failures may have occurred during its execution.

In general, a transaction is considered to be made up of a sequence of read and
write operations on the database, together with computation steps. In that sense,
a transaction may be thought of as a program with embedded database access
queries [Papadimitriou, 1986]. Another definition of a transaction is that it is a single
execution of a program [Ullman, 1988]. A single query can also be thought of as a
program that can be posed as a transaction.

Example 10.1. Consider the following SQL query for increasing by 10% the budget
of the CAD/CAM project that we discussed (in Example 5.20):

UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= "CAD/CAM"

This query can be specified, using the embedded SQL notation, as a transaction
by giving it a name (e.g., BUDGET UPDATE) and declaring it as follows:

Begin transaction BUDGET UPDATE
begin

EXEC SQL UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= “CAD/CAM”

end.
�

The Begin transaction and end statements delimit a transaction. Note that the
use of delimiters is not enforced in every DBMS. If delimiters are not specified, a
DBMS may simply treat as a transaction the entire program that performs a database
access.

338 10 Introduction to Transaction Management

Example 10.2. In our discussion of transaction management concepts, we will use an
airline reservation system example instead of the one used in the first nine chapters.
The real-life implementation of this application almost always makes use of the
transaction concept. Let us assume that there is a FLIGHT relation that records the
data about each flight, a CUST relation for the customers who book flights, and an
FC relation indicating which customers are on what flights. Let us also assume that
the relation definitions are as follows (where the underlined attributes constitute the
keys):

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME, SPECIAL)

The definition of the attributes in this database schema are as follows: FNO is the
flight number, DATE denotes the flight date, SRC and DEST indicate the source and
destination for the flight, STSOLD indicates the number of seats that have been sold
on that flight, CAP denotes the passenger capacity on the flight, CNAME indicates
the customer name whose address is stored in ADDR and whose account balance is
in BAL, and SPECIAL corresponds to any special requests that the customer may
have for a booking.

Let us consider a simplified version of a typical reservation application, where a
travel agent enters the flight number, the date, and a customer name, and asks for a
reservation. The transaction to perform this function can be implemented as follows,
where database accesses are specified in embedded SQL notation:

Begin transaction Reservation
begin

input(flight no, date, customer name); (1)
EXEC SQL UPDATE FLIGHT (2)

SET STSOLD = STSOLD + 1
WHERE FNO = flight no
AND DATE = date;

EXEC SQL INSERT (3)
INTO FC(FNO,DATE,CNAME,SPECIAL)
VALUES (flight no,date,customer name, null);

output(“reservation completed”) (4)
end.

Let us explain this example. First a point about notation. Even though we use
embedded SQL, we do not follow its syntax very strictly. The lowercase terms are
the program variables; the uppercase terms denote database relations and attributes
as well as the SQL statements. Numeric constants are used as they are, whereas
character constants are enclosed in quotes. Keywords of the host language are written
in boldface, and null is a keyword for the null string.

10.1 Definition of a Transaction 339

The first thing that the transaction does [line (1)], is to input the flight number,
the date, and the customer name. Line (2) updates the number of sold seats on the
requested flight by one. Line (3) inserts a tuple into the FC relation. Here we assume
that the customer is an old one, so it is not necessary to have an insertion into the
CUST relation, creating a record for the client. The keyword null in line (3) indicates
that the customer has no special requests on this flight. Finally, line (4) reports the
result of the transaction to the agent’s terminal. �

10.1.1 Termination Conditions of Transactions

The reservation transaction of Example 10.2 has an implicit assumption about its
termination. It assumes that there will always be a free seat and does not take into
consideration the fact that the transaction may fail due to lack of seats. This is
an unrealistic assumption that brings up the issue of termination possibilities of
transactions.

A transaction always terminates, even when there are failures as we will see in
Chapter 12. If the transaction can complete its task successfully, we say that the
transaction commits. If, on the other hand, a transaction stops without completing its
task, we say that it aborts. Transactions may abort for a number of reasons, which
are discussed in the upcoming chapters. In our example, a transaction aborts itself
because of a condition that would prevent it from completing its task successfully.
Additionally, the DBMS may abort a transaction due to, for example, deadlocks or
other conditions. When a transaction is aborted, its execution is stopped and all of
its already executed actions are undone by returning the database to the state before
their execution. This is also known as rollback.

The importance of commit is twofold. The commit command signals to the DBMS
that the effects of that transaction should now be reflected in the database, thereby
making it visible to other transactions that may access the same data items. Second,
the point at which a transaction is committed is a “point of no return.” The results of
the committed transaction are now permanently stored in the database and cannot be
undone. The implementation of the commit command is discussed in Chapter 12.

Example 10.3. Let us return to our reservation system example. One thing we did
not consider is that there may not be any free seats available on the desired flight. To
cover this possibility, the reservation transaction needs to be revised as follows:

Begin transaction Reservation
begin

input(flight no, date, customer name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight no
AND DATE = date;

340 10 Introduction to Transaction Management

if temp1 = temp2 then
begin

output(“no free seats”);
Abort

end
else begin

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight no
AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO,DATE,CNAME,SPECIAL)
VALUES (flight no, date, customer name, null);

Commit;
output(“reservation completed”)
end

end-if
end.

In this version the first SQL statement gets the STSOLD and CAP into the two
variables temp1 and temp2. These two values are then compared to determine if any
seats are available. The transaction either aborts if there are no free seats, or updates
the STSOLD value and inserts a new tuple into the FC relation to represent the seat
that was sold. �

Several things are important in this example. One is, obviously, the fact that if no
free seats are available, the transaction is aborted1. The second is the ordering of the
output to the user with respect to the abort and commit commands. Transactions can
be aborted either due to application logic, as is the case here, or due to deadlocks
or system failures. If the transaction is aborted, the user can be notified before the
DBMS is instructed to abort it. However, in case of commit, the user notification
has to follow the successful servicing (by the DBMS) of the commit command, for
reliability reasons. These are discussed further in Section 10.2.4 and in Chapter 12.

10.1.2 Characterization of Transactions

Observe in the preceding examples that transactions read and write some data. This
has been used as the basis for characterizing a transaction. The data items that a
transaction reads are said to constitute its read set (RS). Similarly, the data items that
a transaction writes are said to constitute its write set (WS). The read set and write

1 We will be kind to the airlines and assume that they never overbook. Thus our reservation
transaction does not need to check for that condition.

10.1 Definition of a Transaction 341

set of a transaction need not be mutually exclusive. The union of the read set and
write set of a transaction constitutes its base set (BS = RS∪WS).

Example 10.4. Considering the reservation transaction as specified in Example 10.3
and the insert to be a number of write operations, the above-mentioned sets are
defined as follows:

RS[Reservation] = {FLIGHT.STSOLD, FLIGHT.CAP}
WS[Reservation] = {FLIGHT.STSOLD, FC.FNO, FC.DATE,

FC.CNAME, FC.SPECIAL}
BS[Reservation] = {FLIGHT.STSOLD, FLIGHT.CAP,

FC.FNO, FC.DATE, FC.CNAME, FC.SPECIAL}

Note that it may be appropriate to include FLIGHT.FNO and FLIGHT.DATE
in the read set of Reservation since they are accessed during execution of the SQL
query. We omit them to simplify the example. �

We have characterized transactions only on the basis of their read and write
operations, without considering the insertion and deletion operations. We therefore
base our discussion of transaction management concepts on static databases that do
not grow or shrink. This simplification is made in the interest of simplicity. Dynamic
databases have to deal with the problem of phantoms, which can be explained using
the following example. Consider that transaction T1, during its execution, searches
the FC table for the names of customers who have ordered a special meal. It gets a
set of CNAME for customers who satisfy the search criteria. While T1 is executing,
transaction T2 inserts new tuples into FC with the special meal request, and commits.
If T1 were to re-issue the same search query later in its execution, it will get back a
set of CNAME that is different than the original set it had retrieved. Thus, “phantom”
tuples have appeared in the database. We do not discuss phantoms any further in this
book; the topic is discussed at length by Eswaran et al. [1976] and Bernstein et al.
[1987].

We should also point out that the read and write operations to which we refer
are abstract operations that do not have one-to-one correspondence to physical I/O
primitives. One read in our characterization may translate into a number of primitive
read operations to access the index structures and the physical data pages. The reader
should treat each read and write as a language primitive rather than as an operating
system primitive.

10.1.3 Formalization of the Transaction Concept

By now, the meaning of a transaction should be intuitively clear. To reason about
transactions and about the correctness of the management algorithms, it is necessary
to define the concept formally. We denote by Oi j(x) some operation O j of transaction
Ti that operates on a database entity x. Following the conventions adopted in the

342 10 Introduction to Transaction Management

preceding section, Oi j ∈ {read, write}. Operations are assumed to be atomic (i.e.,
each is executed as an indivisible unit). We let OSi denote the set of all operations in
Ti (i.e., OSi =

⋃
j Oi j). We denote by Ni the termination condition for Ti, where Ni ∈

{abort, commit}2.
With this terminology we can define a transaction Ti as a partial ordering over

its operations and the termination condition. A partial order P = {Σ, ≺} defines an
ordering among the elements of Σ (called the domain) according to an irreflexive and
transitive binary relation ≺ defined over Σ. In our case Σ consists of the operations
and termination condition of a transaction, whereas ≺ indicates the execution order
of these operations (which we will read as “precedes in execution order”). Formally,
then, a transaction Ti is a partial order Ti = {Σi,≺i}, where

1. Σi = OSi∪{Ni}.
2. For any two operations Oi j,Oik ∈ OSi, if Oi j = {R(x)or W (x)} and Oik =

W (x) for any data item x, then either Oi j ≺i Oik or Oik ≺i Oi j.

3. ∀Oi j ∈ OSi,Oi j ≺i Ni.

The first condition formally defines the domain as the set of read and write
operations that make up the transaction, plus the termination condition, which may
be either commit or abort. The second condition specifies the ordering relation
between the conflicting read and write operations of the transaction, while the final
condition indicates that the termination condition always follows all other operations.

There are two important points about this definition. First, the ordering relation
≺ is given and the definition does not attempt to construct it. The ordering relation
is actually application dependent. Second, condition two indicates that the ordering
between conflicting operations has to exist within ≺. Two operations, Oi(x) and
O j(x), are said to be in conflict if Oi = Write or O j = Write (i.e., at least one of them
is a Write and they access the same data item).

Example 10.5. Consider a simple transaction T that consists of the following steps:

Read(x)
Read(y)
x← x+ y
Write(x)
Commit

The specification of this transaction according to the formal notation that we have
introduced is as follows:

Σ = {R(x),R(y),W (x),C}
≺ = {(R(x),W (x)),(R(y),W (x)),(W (x),C),(R(x),C),(R(y),C)}

where (Oi,O j) as an element of the ≺ relation indicates that Oi ≺ O j. �

2 From now on, we use the abbreviations R, W, A and C for the Read, Write, Abort, and Commit
operations, respectively.

10.1 Definition of a Transaction 343

Notice that the ordering relation specifies the relative ordering of all operations
with respect to the termination condition. This is due to the third condition of
transaction definition. Also note that we do not specify the ordering between every
pair of operations. That is why it is a partial order.

Example 10.6. The reservation transaction developed in Example 10.3 is more com-
plex. Notice that there are two possible termination conditions, depending on the
availability of seats. It might first seem that this is a contradiction of the definition
of a transaction, which indicates that there can be only one termination condition.
However, remember that a transaction is the execution of a program. It is clear that
in any execution, only one of the two termination conditions can occur. Therefore,
what exists is one transaction that aborts and another one that commits. Using this
formal notation, the former can be specified as follows:

Σ = {R(STSOLD), R(CAP), A}
≺ = {(O1,A),(O2,A)}

and the latter can be specified as

Σ = {R(STSOLD), R(CAP), W (STSOLD),
W (FNO), W (DATE), W (CNAME), W (SPECIAL), C}

≺ = {(O1,O3),(O2,O3),(O1,O4),(O1,O5),(O1,O6),(O1,O7),(O2,O4),
(O2,O5),(O2,O6),(O2,O7),(O1,C),(O2,C),(O3,C),(O4,C),
(O5,C),(O6,C),(O7,C)}

where O1 = R(STSOLD), O2 = R(CAP), O3 =W (STSOLD), O4 =W (FNO), O5 =
W (DATE), O6 =W (CNAME), and O7 =W (SPECIAL). �

One advantage of defining a transaction as a partial order is its correspondence to
a directed acyclic graph (DAG). Thus a transaction can be specified as a DAG whose
vertices are the operations of a transaction and whose arcs indicate the ordering
relationship between a given pair of operations. This will be useful in discussing the
concurrent execution of a number of transactions (Chapter 11) and in arguing about
their correctness by means of graph-theoretic tools.

Example 10.7. The transaction discussed in Example 10.5 can be represented as a
DAG as depicted in Figure 10.2. Note that we do not draw the arcs that are implied
by transitivity even though we indicate them as elements of ≺. �

In most cases we do not need to refer to the domain of the partial order separately
from the ordering relation. Therefore, it is common to drop Σ from the transaction
definition and use the name of the partial order to refer to both the domain and the
name of the partial order. This is convenient since it allows us to specify the ordering
of the operations of a transaction in a more straightforward manner by making use of
their relative ordering in the transaction definition. For example, we can define the
transaction of Example 10.5 as follows:

T = {R(x),R(y),W (x),C}

344 10 Introduction to Transaction Management

R(x)

R(y)

W(x) C

Fig. 10.2 DAG Representation of a Transaction

instead of the longer specification given before. We will therefore use the modified
definition in this and subsequent chapters.

10.2 Properties of Transactions

The previous discussion clarifies the concept of a transaction. However, we have
not yet provided any justification of our earlier claim that it is a unit of consistent
and reliable computation. We do that in this section. The consistency and reliability
aspects of transactions are due to four properties: (1) atomicity, (2) consistency, (3)
isolation, and (4) durability. Together, these are commonly referred to as the ACID
properties of transactions. They are not entirely independent of each other; usually
there are dependencies among them as we will indicate below. We discuss each of
these properties in the following sections.

10.2.1 Atomicity

Atomicity refers to the fact that a transaction is treated as a unit of operation. Therefore,
either all the transaction’s actions are completed, or none of them are. This is also
known as the “all-or-nothing property.” Notice that we have just extended the concept
of atomicity from individual operations to the entire transaction. Atomicity requires
that if the execution of a transaction is interrupted by any sort of failure, the DBMS
will be responsible for determining what to do with the transaction upon recovery
from the failure. There are, of course, two possible courses of action: it can either be
terminated by completing the remaining actions, or it can be terminated by undoing
all the actions that have already been executed.

One can generally talk about two types of failures. A transaction itself may fail due
to input data errors, deadlocks, or other factors. In these cases either the transaction
aborts itself, as we have seen in Example 10.2, or the DBMS may abort it while
handling deadlocks, for example. Maintaining transaction atomicity in the presence
of this type of failure is commonly called the transaction recovery. The second type

10.2 Properties of Transactions 345

of failure is caused by system crashes, such as media failures, processor failures,
communication link breakages, power outages, and so on. Ensuring transaction
atomicity in the presence of system crashes is called crash recovery. An important
difference between the two types of failures is that during some types of system
crashes, the information in volatile storage may be lost or inaccessible. Both types of
recovery are parts of the reliability issue, which we discuss in considerable detail in
Chapter 12.

10.2.2 Consistency

The consistency of a transaction is simply its correctness. In other words, a transaction
is a correct program that maps one consistent database state to another. Verifying that
transactions are consistent is the concern of integrity enforcement, covered in Chapter
5. Ensuring transaction consistency as defined at the beginning of this chapter, on the
other hand, is the objective of concurrency control mechanisms, which we discuss in
Chapter 11.

There is an interesting classification of consistency that parallels our discussion
above and is equally important. This classification groups databases into four levels
of consistency [Gray et al., 1976]. In the following definition (which is taken verbatim
from the original paper), dirty data refers to data values that have been updated by a
transaction prior to its commitment. Then, based on the concept of dirty data, the
four levels are defined as follows:

“Degree 3: Transaction T sees degree 3 consistency if:

1. T does not overwrite dirty data of other transactions.

2. T does not commit any writes until it completes all its writes [i.e., until the
end of transaction (EOT)].

3. T does not read dirty data from other transactions.

4. Other transactions do not dirty any data read by T before T completes.

Degree 2: Transaction T sees degree 2 consistency if:

1. T does not overwrite dirty data of other transactions.

2. T does not commit any writes before EOT.

3. T does not read dirty data from other transactions.

Degree 1: Transaction T sees degree 1 consistency if:

1. T does not overwrite dirty data of other transactions.

2. T does not commit any writes before EOT.

346 10 Introduction to Transaction Management

Degree 0: Transaction T sees degree 0 consistency if:

1. T does not overwrite dirty data of other transactions.”

Of course, it is true that a higher degree of consistency encompasses all the lower
degrees. The point in defining multiple levels of consistency is to provide application
programmers the flexibility to define transactions that operate at different levels.
Consequently, while some transactions operate at Degree 3 consistency level, others
may operate at lower levels and may see, for example, dirty data.

10.2.3 Isolation

Isolation is the property of transactions that requires each transaction to see a consis-
tent database at all times. In other words, an executing transaction cannot reveal its
results to other concurrent transactions before its commitment.

There are a number of reasons for insisting on isolation. One has to do with
maintaining the interconsistency of transactions. If two concurrent transactions
access a data item that is being updated by one of them, it is not possible to guarantee
that the second will read the correct value.

Example 10.8. Consider the following two concurrent transactions (T1 and T2), both
of which access data item x. Assume that the value of x before they start executing is
50.

T1: Read(x) T2: Read(x)
x← x+1 x← x+1
Write(x) Write(x)
Commit Commit

The following is one possible sequence of execution of the actions of these
transactions:

T1: Read(x)
T1: x← x+1
T1: Write(x)
T1: Commit
T2: Read(x)
T2: x← x+1
T2: Write(x)
T2: Commit

In this case, there are no problems; transactions T1 and T2 are executed one after
the other and transaction T2 reads 51 as the value of x. Note that if, instead, T2
executes before T1, T2 reads 51 as the value of x. So, if T1 and T2 are executed
one after the other (regardless of the order), the second transaction will read 51 as

10.2 Properties of Transactions 347

the value of x and x will have 52 as its value at the end of execution of these two
transactions. However, since transactions are executing concurrently, the following
execution sequence is also possible:

T1: Read(x)
T1: x← x+1
T2: Read(x)
T1: Write(x)
T2: x← x+1
T2: Write(x)
T1: Commit
T2: Commit

In this case, transaction T2 reads 50 as the value of x. This is incorrect since T2
reads x while its value is being changed from 50 to 51. Furthermore, the value of x is
51 at the end of execution of T1 and T2 since T2’s Write will overwrite T1’s Write. �

Ensuring isolation by not permitting incomplete results to be seen by other trans-
actions, as the previous example shows, solves the lost updates problem. This type of
isolation has been called cursor stability. In the example above, the second execution
sequence resulted in the effects of T1 being lost3. A second reason for isolation is
cascading aborts. If a transaction permits others to see its incomplete results before
committing and then decides to abort, any transaction that has read its incomplete
values will have to abort as well. This chain can easily grow and impose considerable
overhead on the DBMS.

It is possible to treat consistency levels discussed in the preceding section from
the perspective of the isolation property (thus demonstrating the dependence between
isolation and consistency). As we move up the hierarchy of consistency levels, there is
more isolation among transactions. Degree 0 provides very little isolation other than
preventing lost updates. However, since transactions commit write operations before
the entire transaction is completed (and committed), if an abort occurs after some
writes are committed to disk, the updates to data items that have been committed
will need to be undone. Since at this level other transactions are allowed to read the
dirty data, it may be necessary to abort them as well. Degree 2 consistency avoids
cascading aborts. Degree 3 provides full isolation which forces one of the conflicting
transactions to wait until the other one terminates. Such execution sequences are
called strict and will be discussed further in the next chapter. It is obvious that the
issue of isolation is directly related to database consistency and is therefore the topic
of concurrency control.

3 A more dramatic example may be to consider x to be your bank account and T1 a transaction that
executes as a result of your depositing money into your account. Assume that T2 is a transaction
that is executing as a result of your spouse withdrawing money from the account at another branch.
If the same problem as described in Example 10.8 occurs and the results of T1 are lost, you will be
terribly unhappy. If, on the other hand, the results of T2 are lost, the bank will be furious. A similar
argument can be made for the reservation transaction example we have been considering.

348 10 Introduction to Transaction Management

ANSI, as part of the SQL2 (also known as SQL-92) standard specification, has
defined a set of isolation levels [ANSI, 1992]. SQL isolation levels are defined on
the basis of what ANSI call phenomena which are situations that can occur if proper
isolation is not maintained. Three phenomena are specified:

Dirty Read: As defined earlier, dirty data refer to data items whose values have
been modified by a transaction that has not yet committed. Consider the case
where transaction T1 modifies a data item value, which is then read by another
transaction T2 before T1 performs a Commit or Abort. In case T1 aborts, T2 has
read a value which never exists in the database.
A precise specification4 of this phenomenon is as follows (where subscripts
indicate the transaction identifiers)

. . . ,W1(x), . . . ,R2(x), . . . ,C1(or A1), . . . ,C2(or A2)

or

. . . ,W1(x), . . . ,R2(x), . . . ,C2(or A2), . . . ,C1(or A1)

Non-repeatable or Fuzzy read: Transaction T1 reads a data item value. Another
transaction T2 then modifies or deletes that data item and commits. If T1 then
attempts to reread the data item, it either reads a different value or it can’t find
the data item at all; thus two reads within the same transaction T1 return different
results.
A precise specification of this phenomenon is as follows:

. . . ,R1(x), . . . ,W2(x), . . . ,C1(or A1), . . . ,C2(or A2)

or

. . . ,R1(x), . . . ,W2(x), . . . ,C2(or A2), . . . ,C1(or A1)

Phantom: The phantom condition that was defined earlier occurs when T1 does a
search with a predicate and T2 inserts new tuples that satisfy the predicate. Again,
the precise specification of this phenomenon is (where P is the search predicate)

. . . ,R1(P), . . . ,W2(y in P), . . . ,C1(or A1), . . . ,C2(or A2)

or

. . . ,R1(P), . . . ,W2(y in P), . . . ,C2(or A2), . . . ,C1(or A1)

4 The precise specifications of these phenomena are due to Berenson et al. [1995] and correspond to
their loose interpretations which they indicate are the more appropriate interpretations.

10.3 Types of Transactions 349

Based on these phenomena, the isolation levels are defined as follows. The objec-
tive of defining multiple isolation levels is the same as defining multiple consistency
levels.

Read uncommitted: For transactions operating at this level all three phenomena
are possible.

Read committed: Fuzzy reads and phantoms are possible, but dirty reads are not.
Repeatable read: Only phantoms are possible.
Anomaly serializable: None of the phenomena are possible.

ANSI SQL standard uses the term “serializable” rather than “anomaly serializable.”
However, a serializable isolation level, as precisely defined in the next chapter,
cannot be defined solely in terms of the three phenomena identified above; thus
this isolation level is called “anomaly serializable” [Berenson et al., 1995]. The
relationship between SQL isolation levels and the four levels of consistency defined
in the previous section are also discussed in [Berenson et al., 1995].

One non-serializable isolation level that is commonly implemented in commercial
products is snapshot isolation [Berenson et al., 1995]. Snapshot isolation provides
repeatable reads, but not serializable isolation. Each transaction “sees” a snapshot of
the database when it starts and its reads and writes are performed on this snapshot –
thus the writes are not visible to other transactions and it does not see the writes of
other transactions.

10.2.4 Durability

Durability refers to that property of transactions which ensures that once a transaction
commits, its results are permanent and cannot be erased from the database. Therefore,
the DBMS ensures that the results of a transaction will survive subsequent system
failures. This is exactly why in Example 10.2 we insisted that the transaction commit
before it informs the user of its successful completion. The durability property
brings forth the issue of database recovery, that is, how to recover the database to a
consistent state where all the committed actions are reflected. This issue is discussed
further in Chapter 12.

10.3 Types of Transactions

A number of transaction models have been proposed in literature, each being appro-
priate for a class of applications. The fundamental problem of providing “ACID”ity
usually remains, but the algorithms and techniques that are used to address them may
be considerably different. In some cases, various aspects of ACID requirements are
relaxed, removing some problems and adding new ones. In this section we provide

350 10 Introduction to Transaction Management

an overview of some of the transaction models that have been proposed and then
identify our focus in Chapters 11 and 12.

Transactions have been classified according to a number of criteria. One criterion
is the duration of transactions. Accordingly, transactions may be classified as online
or batch [Gray, 1987]. These two classes are also called short-life and long-life
transactions, respectively. Online transactions are characterized by very short execu-
tion/response times (typically, on the order of a couple of seconds) and by access
to a relatively small portion of the database. This class of transactions probably
covers a large majority of current transaction applications. Examples include banking
transactions and airline reservation transactions.

Batch transactions, on the other hand, take longer to execute (response time
being measured in minutes, hours, or even days) and access a larger portion of
the database. Typical applications that might require batch transactions are design
databases, statistical applications, report generation, complex queries, and image
processing. Along this dimension, one can also define a conversational transaction,
which is executed by interacting with the user issuing it.

Another classification that has been proposed is with respect to the organization
of the read and write actions. The examples that we have considered so far intermix
their read and write actions without any specific ordering. We call this type of
transactions general. If the transactions are restricted so that all the read actions are
performed before any write action, the transaction is called a two-step transaction
[Papadimitriou, 1979]. Similarly, if the transaction is restricted so that a data item
has to be read before it can be updated (written), the corresponding class is called
restricted (or read-before-write) [Stearns et al., 1976]. If a transaction is both two-
step and restricted, it is called a restricted two-step transaction. Finally, there is the
action model of transactions [Kung and Papadimitriou, 1979], which consists of the
restricted class with the further restriction that each 〈read, write〉 pair be executed
atomically. This classification is shown in Figure 10.3, where the generality increases
upward.

Example 10.9. The following are some examples of the above-mentioned models.
We omit the declaration and commit commands.
General:

T1 : {R(x),R(y),W (y),R(z),W (x),W (z),W (w),C}

Two-step:

T2 : {R(x),R(y),R(z),W (x),W (z),W (y),W (w),C}

Restricted:

T3 : {R(x),R(y),W (y),R(z),W (x),W (z),R(w),W (w),C}

Note that T3 has to read w before writing.
Two-step restricted:

10.3 Types of Transactions 351

General model

Two-step model Restricted model

Restricted two-step
model Action model

Fig. 10.3 Various Transaction Models (From: C.H. Papadimitriou and P.C. Kanellakis, ON CON-
CURRENCY CONTROL BY MULTIPLE VERSIONS. ACM Trans. Database Sys.; December
1984; 9(1): 89–99.)

T4 : {R(x),R(y),R(z),R(w),W (x),W (z),W (y),W (w),C}

Action:

T5 : {[R(x),W (x)], [R(y),W (y)], [R(z),W (z)], [R(w),W (w)],C}

Note that each pair of actions within square brackets is executed atomically. �

Transactions can also be classified according to their structure. We distinguish four
broad categories in increasing complexity: flat transactions, closed nested transac-
tions as in [Moss, 1985], and open nested transactions such as sagas [Garcia-Molina
and Salem, 1987], and workflow models which, in some cases, are combinations of
various nested forms. This classification is arguably the most dominant one and we
will discuss it at some length.

10.3.1 Flat Transactions

Flat transactions have a single start point (Begin transaction) and a single termi-
nation point (End transaction). All our examples in this section are of this type.
Most of the transaction management work in databases has concentrated on flat
transactions. This model will also be our main focus in this book, even though we
discuss management techniques for other transaction types, where appropriate.

352 10 Introduction to Transaction Management

10.3.2 Nested Transactions

An alternative transaction model is to permit a transaction to include other transac-
tions with their own begin and commit points. Such transactions are called nested
transactions. These transactions that are embedded in another one are usually called
subtransactions.

Example 10.10. Let us extend the reservation transaction of Example 10.2. Most
travel agents will make reservations for hotels and car rentals in addition to the flights.
If one chooses to specify all of this as one transaction, the reservation transaction
would have the following structure:

Begin transaction Reservation
begin

Begin transaction Airline
. . .

end. {Airline}
Begin transaction Hotel

. . .
end. {Hotel}
Begin transaction Car

. . .
end. {Car}

end.
�

Nested transactions have received considerable interest as a more generalized
transaction concept. The level of nesting is generally open, allowing subtransactions
themselves to have nested transactions. This generality is necessary to support appli-
cation areas where transactions are more complex than in traditional data processing.

In this taxonomy, we differentiate between closed and open nesting because of
their termination characteristics. Closed nested transactions [Moss, 1985] commit
in a bottom-up fashion through the root. Thus, a nested subtransaction begins af-
ter its parent and finishes before it, and the commitment of the subtransactions is
conditional upon the commitment of the parent. The semantics of these transactions
enforce atomicity at the top-most level. Open nesting relaxes the top-level atomicity
restriction of closed nested transactions. Therefore, an open nested transaction al-
lows its partial results to be observed outside the transaction. Sagas [Garcia-Molina
and Salem, 1987; Garcia-Molina et al., 1990] and split transactions [Pu, 1988] are
examples of open nesting.

A saga is a “sequence of transactions that can be interleaved with other trans-
actions” [Garcia-Molina and Salem, 1987]. The DBMS guarantees that either all
the transactions in a saga are successfully completed or compensating transac-
tions [Garcia-Molina, 1983; Korth et al., 1990] are run to recover from a partial
execution. A compensating transaction effectively does the inverse of the transaction
that it is associated with. For example, if the transaction adds $100 to a bank account,

10.3 Types of Transactions 353

its compensating transaction deducts $100 from the same bank account. If a transac-
tion is viewed as a function that maps the old database state to a new database state,
its compensating transaction is the inverse of that function.

Two properties of sagas are: (1) only two levels of nesting are allowed, and (2) at
the outer level, the system does not support full atomicity. Therefore, a saga differs
from a closed nested transaction in that its level structure is more restricted (only
2) and that it is open (the partial results of component transactions or sub-sagas are
visible to the outside). Furthermore, the transactions that make up a saga have to be
executed sequentially.

The saga concept is extended and placed within a more general model that deals
with long-lived transactions and with activities that consist of multiple steps [Garcia-
Molina et al., 1990] . The fundamental concept of the model is that of a module
that captures code segments each of which accomplishes a given task and access a
database in the process. The modules are modeled (at some level) as sub-sagas that
communicate with each other via messages over ports. The transactions that make up
a saga can be executed in parallel. The model is multi-layer where each subsequent
layer adds a level of abstraction.

The advantages of nested transactions are the following. First, they provide a
higher-level of concurrency among transactions. Since a transaction consists of a
number of other transactions, more concurrency is possible within a single transaction.
For example, if the reservation transaction of Example 10.10 is implemented as a
flat transaction, it may not be possible to access records about a specific flight
concurrently. In other words, if one travel agent issues the reservation transaction
for a given flight, any concurrent transaction that wishes to access the same flight
data will have to wait until the termination of the first, which includes the hotel
and car reservation activities in addition to flight reservation. However, a nested
implementation will permit the second transaction to access the flight data as soon
as the Airline subtransaction of the first reservation transaction is completed. In
other words, it may be possible to perform a finer level of synchronization among
concurrent transactions.

A second argument in favor of nested transactions is related to recovery. It is
possible to recover independently from failures of each subtransaction. This limits
the damage to a smaller part of the transaction, making it less costly to recover. In
a flat transaction, if any operation fails, the entire transaction has to be aborted and
restarted, whereas in a nested transaction, if an operation fails, only the subtransaction
containing that operation needs to be aborted and restarted.

Finally, it is possible to create new transactions from existing ones simply by
inserting the old one inside the new one as a subtransaction.

10.3.3 Workflows

Flat transactions model relatively simple and short activities very well. However,
they are less appropriate for modeling longer and more elaborate activities.That is

354 10 Introduction to Transaction Management

the reason for the development of the various nested transaction models discussed
above. It has been argued that these extensions are not sufficiently powerful to model
business activities: “after several decades of data processing, we have learned that we
have not won the battle of modeling and automating complex enterprises” [Medina-
Mora et al., 1993]. To meet these needs, more complex transaction models which
are combinations of open and nested transactions have been proposed. There are
well-justified arguments for not calling these transactions, since they hardly follow
any of the ACID properties; a more appropriate name that has been proposed is a
workflow [Dogac et al., 1998b; Georgakopoulos et al., 1995].

The term “workflow,” unfortunately, does not have a clear and uniformly accepted
meaning. A working definition is that a workflow is “a collection of tasks organized
to accomplish some business process.” [Georgakopoulos et al., 1995]. This defini-
tion, however, leaves a lot undefined. This is perhaps unavoidable given the very
different contexts where this term is used. Three types of workflows are identified
[Georgakopoulos et al., 1995]:

1. Human-oriented workflows, which involve humans in performing the tasks.
The system support is provided to facilitate collaboration and coordination
among humans, but it is the humans themselves who are ultimately responsible
for the consistency of the actions.

2. System-oriented workflows are those that consist of computation-intensive
and specialized tasks that can be executed by a computer. The system support
in this case is substantial and involves concurrency control and recovery,
automatic task execution, notification, etc.

3. Transactional workflows range in between human-oriented and system-
oriented workflows and borrow characteristics from both. They involve “coor-
dinated execution of multiple tasks that (a) may involve humans, (b) require
access to HAD [heterogeneous, autonomous, and/or distributed] systems, and
(c) support selective use of transactional properties [i.e., ACID properties] for
individual tasks or entire workflows.” [Georgakopoulos et al., 1995].
Among the features of transactional workflows, the selective use of transac-
tional properties is particularly important as it characterizes possible relax-
ations of ACID properties.

In this book, our primary interest is with transactional workflows. There have
been many transactional workflow proposals [Elmagarmid et al., 1990; Nodine and
Zdonik, 1990; Buchmann et al., 1982; Dayal et al., 1991; Hsu, 1993], and they differ
in a number of ways. The common point among them is that a workflow is defined
as an activity consisting of a set of tasks with well-defined precedence relationship
among them.

Example 10.11. Let us further extend the reservation transaction of Example 10.3.
The entire reservation activity consists of the following taks and involves the follow-
ing data:

10.3 Types of Transactions 355

• Customer request is obtained (task T1) and Customer Database is accessed to
obtain customer information, preferences, etc.;

• Airline reservation is performed (T2) by accessing the Flight Database;

• Hotel reservation is performed (T3), which may involve sending a message to
the hotel involved;

• Auto reservation is performed (T4), which may also involve communication
with the car rental company;

• Bill is generated (T5) and the billing info is recorded in the billing database.

Figure 10.4 depicts this workflow where there is a serial dependency of T2 on T1,
and T3, T4 on T2; however, T3 and T4 (hotel and car reservations) are performed in
parallel and T5 waits until their completion. �

T1 T2

T3

T4

T5

Customer

Database

Customer

Database

Customer

Database

Fig. 10.4 Example Workflow

A number of workflow models go beyond this basic model by both defining more
precisely what tasks can be and by allocating different relationships among the tasks.
In the following, we define one model that is similar to the models of Buchmann
et al. [1982] and Dayal et al. [1991].

A workflow is modeled as an activity with open nesting semantics in that it permits
partial results to be visible outside the activity boundaries. Thus, tasks that make up
the activity are allowed to commit individually. Tasks may be other activities (with
the same open transaction semantics) or closed nested transactions that make their
results visible to the entire system when they commit. Even though an activity can
have both other activities and closed nested transactions as its component, a closed
nested transaction task can only be composed of other closed nested transactions
(i.e., once closed nesting semantics begins, it is maintained for all components).

An activity commits when its components are ready to commit. However, the
components commit individually, without waiting for the root activity to commit.

356 10 Introduction to Transaction Management

This raises problems in dealing with aborts since when an activity aborts, all of its
components should be aborted. The problem is dealing with the components that
have already committed. Therefore, compensating transactions are defined for the
components of an activity. Thus, if a component has already committed when an
activity aborts, the corresponding compensating transaction is executed to “undo” its
effects.

Some components of an activity may be marked as vital. When a vital component
aborts, its parent must also abort. If a non-vital component of a workflow model
aborts, it may continue executing. A workflow, on the other hand, always aborts
when one of its components aborts. For example, in the reservation workflow of
Example 10.11, T2 (airline reservation) and T3 (hotel reservation) may be declared
as vital so that if an airline reservation or a hotel reservation cannot be made, the
workflow aborts and the entire trip is canceled. However, if a car reservation cannot
be committed, the workflow can still successfully terminate.

It is possible to define contingency tasks that are invoked if their counterparts fail.
For example, in the Reservation example presented earlier, one can specify that the
contingency to making a reservation at Hilton is to make a reservation at Sheraton.
Thus, if the hotel reservation component for Hilton fails, the Sheraton alternative is
tried rather than aborting the task and the entire workflow.

10.4 Architecture Revisited

With the introduction of the transaction concept, we need to revisit the architectural
model introduced in Chapter 1. We do not need to revise the model but simply need
to expand the role of the distributed execution monitor.

The distributed execution monitor consists of two modules: a transaction manager
(TM) and a scheduler (SC). The transaction manager is responsible for coordinating
the execution of the database operations on behalf of an application. The scheduler,
on the other hand, is responsible for the implementation of a specific concurrency
control algorithm for synchronizing access to the database.

A third component that participates in the management of distributed transactions
is the local recovery managers (LRM) that exist at each site. Their function is to
implement the local procedures by which the local database can be recovered to a
consistent state following a failure.

Each transaction originates at one site, which we will call its originating site. The
execution of the database operations of a transaction is coordinated by the TM at that
transaction’s originating site.

The transaction managers implement an interface for the application programs
which consists of five commands: begin transaction, read, write, commit, and abort.
The processing of each of these commands in a non-replicated distributed DBMS
is discussed below at an abstract level. For simplicity, we ignore the scheduling of
concurrent transactions as well as the details of how data is physically retrieved by
the data processor. These assumptions permit us to concentrate on the interface to

10.5 Conclusion 357

the TM. The details are presented in the Chapters 11 and 12, while the execution of
these commands in a replicated distributed database is discussed in Chapter 13.

1. Begin transaction. This is an indicator to the TM that a new transaction is
starting. The TM does some bookkeeping, such as recording the transaction’s
name, the originating application, and so on, in coordination with the data
processor.

2. Read. If the data item to be read is stored locally, its value is read and returned
to the transaction. Otherwise, the TM finds where the data item is stored
and requests its value to be returned (after appropriate concurrency control
measures are taken).

3. Write. If the data item is stored locally, its value is updated (in coordination
with the data processor). Otherwise, the TM finds where the data item is
located and requests the update to be carried out at that site after appropriate
concurrency control measures are taken).

4. Commit. The TM coordinates the sites involved in updating data items on
behalf of this transaction so that the updates are made permanent at every site.

5. Abort. The TM makes sure that no effects of the transaction are reflected in
any of the databases at the sites where it updated data items.

In providing these services, a TM can communicate with SCs and data processors
at the same or at different sites. This arrangement is depicted in Figure 10.5.

As we indicated in Chapter 1, the architectural model that we have described
is only an abstraction that serves a pedagogical purpose. It enables the separation
of many of the transaction management issues and their independent and isolated
discussion. In Chapter 11 we focus on the interface between a TM and an SC and
between an SC and a data processor, in addition to the scheduling algorithms. In
Chapter 12 we consider the execution strategies for the commit and abort commands
in a distributed environment, in addition to the recovery algorithms that need to be
implemented for the recovery manager. In Chapter 13, we extend this discussion to
the case of replicated databases. We should point out that the computational model
that we described here is not unique. Other models have been proposed such as, for
example, using a private workspace for each transaction.

10.5 Conclusion

In this chapter we introduced the concept of a transaction as a unit of consistent
and reliable access to the database. The properties of transactions indicate that they
are larger atomic units of execution which transform one consistent database to
another consistent database. The properties of transactions also indicate what the
requirements for managing them are, which is the topic of the next two chapters.
Consistency requires a definition of integrity enforcement (which we did in Chapter

358 10 Introduction to Transaction Management

With other

SCs

With other

data

processors

Begin_transaction,

Read, Write,

Commit, Abort Results

Transaction

Manager

(TM)

Distributed Execution

Monitor

Scheduling/

Descheduling

Requests

To data

processors

Scheduler

(TM)

With other

TMs

Fig. 10.5 Detailed Model of the Distributed Execution Monitor

5), as well as concurrency control algorithms (which is the topic of Chapter 11).
Concurrency control also deals with the issue of isolation. Durability and atomicity
properties of transactions require a discussion of reliability, which we cover in
Chapter 12. Specifically, durability is supported by various commit protocols and
commit management, whereas atomicity requires the development of appropriate
recovery protocols.

10.6 Bibliographic Notes

Transaction management has been the topic of considerable study since DBMSs
have become a significant research area. There are two excellent books on the
subject: [Gray and Reuter, 1993] and [Weikum and Vossen, 2001]. An excellent
companion to these is [Bernstein and Newcomer, 1997] which provides an in-depth
discussion of transaction processing principles. It also gives a view of transaction
processing and transaction monitors which is more general than the database-centric
view that we provide in this book. A good collection of papers that focus on the
concurrency control and reliability aspects of distributed systems is [Bhargava, 1987].
Two books focus on the performance of concurrency control mechanisms with a focus
on centralized systems [Kumar, 1996; Thomasian, 1996]. Distributed concurrency
control is the topic of [Cellary et al., 1988].

10.6 Bibliographic Notes 359

Advanced transaction models are discussed and various examples are given in
[Elmagarmid, 1992]. Nested transactions are also covered in [Lynch et al., 1993]. A
good introduction to workflow systems is [Georgakopoulos et al., 1995]. The same
topic is covered in detail in [Dogac et al., 1998b].

A very important work is a set of notes on database operating systems by Gray
[1979]. These notes contain valuable information on transaction management, among
other things.

The discussion concerning transaction classification in Section 10.3 comes from a
number of sources. Part of it is from [Farrag, 1986]. The structure discussion is from
[Özsu, 1994] and [Buchmann et al., 1982], where the authors combine transaction
structure with the structure of the objects that these transactions operate upon to
develop a more complete classification.

There are numerous papers dealing with various transaction management issues.
The ones referred to in this chapter are those that deal with the concept of a transaction.
More detailed references on their management are left to Chapters 11 and 12.

	Chapter 10:
Introduction to Transaction Management

	10.1 Definition of a Transaction

	10.1.1 Termination Conditions of Transactions

	10.1.2 Characterization of Transactions

	10.1.3 Formalization of the Transaction Concept

	10.2 Properties of Transactions

	10.2.1 Atomicity

	10.2.2 Consistency

	10.2.3 Isolation

	10.2.4 Durability

	10.3 Types of Transactions

	10.3.1 Flat Transactions

	10.3.2 Nested Transactions

	10.3.3 Workflows

	10.4 Architecture Revisited

	10.5 Conclusion

	10.6 Bibliographic Notes

