

Principles of Distributed Database Systems

M. Tamer Özsu • Patrick Valduriez

Principles of Distributed
Database Systems

Third Edition

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer, software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book was previously published by: Pearson Education, Inc.

M. Tamer Özsu
David R. Cheriton School of
Computer Science
University of Waterloo
Waterloo Ontario
Canada N2L 3G1
Tamer.Ozsu@uwaterloo.ca

Patrick Valduriez

LIRMM

34392 Montpellier Cedex
France
Patrick.Valduriez@inria.fr

INRIA

161 rue Ada

Springer New York Dordrecht Heidelberg London

ISBN 978-1-4419-8833-1 e-ISBN 978-1-4419-8834-8
DOI 10.1007/978-1-4419-8834-8

Library of Congress Control Number: 2011922491

© Springer Science+Business Media, LLC 2011

Additional material to this book can be downloaded from http://extras.springer.com.

mailto:Tamer.Ozsu@uwaterloo.ca
http://www.springer.com
mailto: Patrick.Valduriez@inria.fr

To my family
and my parents
M.T.Ö.

To Esther, my daughters Anna, Juliette and
Sarah, and my parents

P.V.

Preface

It has been almost twenty years since the first edition of this book appeared, and ten
years since we released the second edition. As one can imagine, in a fast changing
area such as this, there have been significant changes in the intervening period.
Distributed data management went from a potentially significant technology to one
that is common place. The advent of the Internet and the World Wide Web have
certainly changed the way we typically look at distribution. The emergence in recent
years of different forms of distributed computing, exemplified by data streams and
cloud computing, has regenerated interest in distributed data management. Thus, it
was time for a major revision of the material.

We started to work on this edition five years ago, and it has taken quite a while to
complete the work. The end result, however, is a book that has been heavily revised –
while we maintained and updated the core chapters, we have also added new ones.
The major changes are the following:

1. Database integration and querying is now treated in much more detail, re-
flecting the attention these topics have received in the community in the
past decade. Chapter 4 focuses on the integration process, while Chapter 9
discusses querying over multidatabase systems.

2. The previous editions had only brief discussion of data replication protocols.
This topic is now covered in a separate chapter (Chapter 13) where we provide
an in-depth discussion of the protocols and how they can be integrated with
transaction management.

3. Peer-to-peer data management is discussed in depth in Chapter 16. These
systems have become an important and interesting architectural alternative to
classical distributed database systems. Although the early distributed database
systems architectures followed the peer-to-peer paradigm, the modern incar-
nation of these systems have fundamentally different characteristics, so they
deserve in-depth discussion in a chapter of their own.

4. Web data management is discussed in Chapter 17. This is a difficult topic
to cover since there is no unifying framework. We discuss various aspects

vii

viii Preface

of the topic ranging from web models to search engines to distributed XML
processing.

5. Earlier editions contained a chapter where we discussed “recent issues” at the
time. In this edition, we again have a similar chapter (Chapter 18) where we
cover stream data management and cloud computing. These topics are still
in a flux and are subjects of considerable ongoing research. We highlight the
issues and the potential research directions.

The resulting manuscript strikes a balance between our two objectives, namely to
address new and emerging issues, and maintain the main characteristics of the book
in addressing the principles of distributed data management.

The organization of the book can be divided into two major parts. The first part
covers the fundamental principles of distributed data management and consist of
Chapters 1 to 14. Chapter 2 in this part covers the background and can be skipped if
the students already have sufficient knowledge of the relational database concepts
and the computer network technology. The only part of this chapter that is essential
is Example 2.3, which introduces the running example that we use throughout much
of the book. The second part covers more advanced topics and includes Chapters 15 –
18. What one covers in a course depends very much on the duration and the course
objectives. If the course aims to discuss the fundamental techniques, then it might
cover Chapters 1, 3, 5, 6–8, 10–12. An extended coverage would include, in addition
to the above, Chapters 4, 9, and 13. Courses that have time to cover more material
can selectively pick one or more of Chapters 15 – 18 from the second part.

Many colleagues have assisted with this edition of the book. S. Keshav (Univer-
sity of Waterloo) has read and provided many suggestions to update the sections
on computer networks. Renée Miller (University of Toronto) and Erhard Rahm
(University of Leipzig) read an early draft of Chapter 4 and provided many com-
ments, Alon Halevy (Google) answered a number of questions about this chapter
and provided a draft copy of his upcoming book on this topic as well as reading
and providing feedback on Chapter 9, Avigdor Gal (Technion) also reviewed and
critiqued this chapter very thoroughly. Matthias Jarke and Xiang Li (University of
Aachen), Gottfried Vossen (University of Muenster), Erhard Rahm and Andreas
Thor (University of Leipzig) contributed exercises to this chapter. Hubert Naacke
(University of Paris 6) contributed to the section on heterogeneous cost modeling
and Fabio Porto (LNCC, Petropolis) to the section on adaptive query processing of
Chapter 9. Data replication (Chapter 13) could not have been written without the
assistance of Gustavo Alonso (ETH Zürich) and Bettina Kemme (McGill University).
Tamer spent four months in Spring 2006 visiting Gustavo where work on this chapter
began and involved many long discussions. Bettina read multiple iterations of this
chapter over the next one year criticizing everything and pointing out better ways of
explaining the material. Esther Pacitti (University of Montpellier) also contributed to
this chapter, both by reviewing it and by providing background material; she also
contributed to the section on replication in database clusters in Chapter 14. Ricardo
Jimenez-Peris also contributed to that chapter in the section on fault-tolerance in
database clusters. Khuzaima Daudjee (University of Waterloo) read and provided

Preface ix

comments on this chapter as well. Chapter 15 on Distributed Object Database Man-
agement was reviewed by Serge Abiteboul (INRIA), who provided important critique
of the material and suggestions for its improvement. Peer-to-peer data management
(Chapter 16) owes a lot to discussions with Beng Chin Ooi (National University
of Singapore) during the four months Tamer was visiting NUS in the fall of 2006.
The section of Chapter 16 on query processing in P2P systems uses material from
the PhD work of Reza Akbarinia (INRIA) and Wenceslao Palma (PUC-Valparaiso,
Chile) while the section on replication uses material from the PhD work of Vidal
Martins (PUCPR, Curitiba). The distributed XML processing section of Chapter 17
uses material from the PhD work of Ning Zhang (Facebook) and Patrick Kling at
the University of Waterloo, and Ying Zhang at CWI. All three of them also read
the material and provided significant feedback. Victor Muntés i Mulero (Universitat
Politècnica de Catalunya) contributed to the exercises in that chapter. Özgür Ulusoy
(Bilkent University) provided comments and corrections on Chapters 16 and 17.
Data stream management section of Chapter 18 draws from the PhD work of Lukasz
Golab (AT&T Labs-Research), and Yingying Tao at the University of Waterloo.
Walid Aref (Purdue University) and Avigdor Gal (Technion) used the draft of the
book in their courses, which was very helpful in debugging certain parts. We thank
them, as well as many colleagues who had helped out with the first two editions,
for all their assistance. We have not always followed their advice, and, needless
to say, the resulting problems and errors are ours. Students in two courses at the
University of Waterloo (Web Data Management in Winter 2005, and Internet-Scale
Data Distribution in Fall 2005) wrote surveys as part of their coursework that were
very helpful in structuring some chapters. Tamer taught courses at ETH Zürich
(PDDBS – Parallel and Distributed Databases in Spring 2006) and at NUS (CS5225 –
Parallel and Distributed Database Systems in Fall 2010) using parts of this edition.
We thank students in all these courses for their contributions and their patience as
they had to deal with chapters that were works-in-progress – the material got cleaned
considerably as a result of these teaching experiences.

You will note that the publisher of the third edition of the book is different than
the first two editions. Pearson, our previous publisher, decided not to be involved
with the third edition. Springer subsequently showed considerable interest in the
book. We would like to thank Susan Lagerstrom-Fife and Jennifer Evans of Springer
for their lightning-fast decision to publish the book, and Jennifer Mauer for a ton
of hand-holding during the conversion process. We would also like to thank Tracy
Dunkelberger of Pearson who shepherded the reversal of the copyright to us without
delay.

As in earlier editions, we will have presentation slides that can be used to teach
from the book as well as solutions to most of the exercises. These will be available
from Springer to instructors who adopt the book and there will be a link to them
from the book’s site at springer.com.

Finally, we would be very interested to hear your comments and suggestions
regarding the material. We welcome any feedback, but we would particularly like to
receive feedback on the following aspects:

x Preface

1. any errors that may have remained despite our best efforts (although we hope
there are not many);

2. any topics that should no longer be included and any topics that should be
added or expanded; and

3. any exercises that you may have designed that you would like to be included
in the book.

M. Tamer Özsu (Tamer.Ozsu@uwaterloo.ca)
Patrick Valduriez (Patrick.Valduriez@inria.fr)

November 2010

mailto:Ozsu@uwaterloo.ca
mailto:Valduriez@inria.fr

Contents

1 Introduction . 1
1.1 Distributed Data Processing . 2
1.2 What is a Distributed Database System? . 3
1.3 Data Delivery Alternatives . 5
1.4 Promises of DDBSs . 7

1.4.1 Transparent Management of Distributed and Replicated Data 7
1.4.2 Reliability Through Distributed Transactions 12
1.4.3 Improved Performance . 14
1.4.4 Easier System Expansion . 15

1.5 Complications Introduced by Distribution . 16
1.6 Design Issues . 16

1.6.1 Distributed Database Design . 17
1.6.2 Distributed Directory Management . 17
1.6.3 Distributed Query Processing . 17
1.6.4 Distributed Concurrency Control . 18
1.6.5 Distributed Deadlock Management . 18
1.6.6 Reliability of Distributed DBMS . 18
1.6.7 Replication . 19
1.6.8 Relationship among Problems . 19
1.6.9 Additional Issues . 20

1.7 Distributed DBMS Architecture . 21
1.7.1 ANSI/SPARC Architecture . 21
1.7.2 A Generic Centralized DBMS Architecture 23
1.7.3 Architectural Models for Distributed DBMSs 25
1.7.4 Autonomy . 25
1.7.5 Distribution . 27
1.7.6 Heterogeneity . 27
1.7.7 Architectural Alternatives . 28
1.7.8 Client/Server Systems . 28
1.7.9 Peer-to-Peer Systems . 32
1.7.10 Multidatabase System Architecture . 35

xi

xii Contents

1.8 Bibliographic Notes . 38

2 Background . 41
2.1 Overview of Relational DBMS . 41

2.1.1 Relational Database Concepts . 41
2.1.2 Normalization . 43
2.1.3 Relational Data Languages . 45

2.2 Review of Computer Networks . 58
2.2.1 Types of Networks . 60
2.2.2 Communication Schemes . 63
2.2.3 Data Communication Concepts . 65
2.2.4 Communication Protocols . 67

2.3 Bibliographic Notes . 70

3 Distributed Database Design . 71
3.1 Top-Down Design Process . 73
3.2 Distribution Design Issues . 75

3.2.1 Reasons for Fragmentation . 75
3.2.2 Fragmentation Alternatives . 76
3.2.3 Degree of Fragmentation . 77
3.2.4 Correctness Rules of Fragmentation . 79
3.2.5 Allocation Alternatives . 79
3.2.6 Information Requirements . 80

3.3 Fragmentation . 81
3.3.1 Horizontal Fragmentation . 81
3.3.2 Vertical Fragmentation . 98
3.3.3 Hybrid Fragmentation . 112

3.4 Allocation . 113
3.4.1 Allocation Problem . 114
3.4.2 Information Requirements . 116
3.4.3 Allocation Model . 118
3.4.4 Solution Methods . 121

3.5 Data Directory . 122
3.6 Conclusion . 123
3.7 Bibliographic Notes . 125

4 Database Integration . 131
4.1 Bottom-Up Design Methodology . 133
4.2 Schema Matching . 137

4.2.1 Schema Heterogeneity . 140
4.2.2 Linguistic Matching Approaches . 141
4.2.3 Constraint-based Matching Approaches 143
4.2.4 Learning-based Matching . 145
4.2.5 Combined Matching Approaches . 146

4.3 Schema Integration . 147

Contents xiii

4.4 Schema Mapping . 149
4.4.1 Mapping Creation . 150
4.4.2 Mapping Maintenance . 155

4.5 Data Cleaning . 157
4.6 Conclusion . 159
4.7 Bibliographic Notes . 160

5 Data and Access Control . 171
5.1 View Management . 172

5.1.1 Views in Centralized DBMSs . 172
5.1.2 Views in Distributed DBMSs . 175
5.1.3 Maintenance of Materialized Views . 177

5.2 Data Security . 180
5.2.1 Discretionary Access Control . 181
5.2.2 Multilevel Access Control . 183
5.2.3 Distributed Access Control . 185

5.3 Semantic Integrity Control . 187
5.3.1 Centralized Semantic Integrity Control 189
5.3.2 Distributed Semantic Integrity Control 194

5.4 Conclusion . 200
5.5 Bibliographic Notes . 201

6 Overview of Query Processing . 205
6.1 Query Processing Problem . 206
6.2 Objectives of Query Processing . 209
6.3 Complexity of Relational Algebra Operations 210
6.4 Characterization of Query Processors . 211

6.4.1 Languages . 212
6.4.2 Types of Optimization . 212
6.4.3 Optimization Timing . 213
6.4.4 Statistics . 213
6.4.5 Decision Sites . 214
6.4.6 Exploitation of the Network Topology 214
6.4.7 Exploitation of Replicated Fragments 215
6.4.8 Use of Semijoins . 215

6.5 Layers of Query Processing . 215
6.5.1 Query Decomposition . 216
6.5.2 Data Localization . 217
6.5.3 Global Query Optimization . 218
6.5.4 Distributed Query Execution . 219

6.6 Conclusion . 219
6.7 Bibliographic Notes . 220

xiv Contents

7 Query Decomposition and Data Localization . 221
7.1 Query Decomposition . 222

7.1.1 Normalization . 222
7.1.2 Analysis . 223
7.1.3 Elimination of Redundancy . 226
7.1.4 Rewriting . 227

7.2 Localization of Distributed Data . 231
7.2.1 Reduction for Primary Horizontal Fragmentation 232
7.2.2 Reduction for Vertical Fragmentation 235
7.2.3 Reduction for Derived Fragmentation 237
7.2.4 Reduction for Hybrid Fragmentation . 238

7.3 Conclusion . 241
7.4 Bibliographic NOTES . 241

8 Optimization of Distributed Queries . 245
8.1 Query Optimization . 246

8.1.1 Search Space . 246
8.1.2 Search Strategy . 248
8.1.3 Distributed Cost Model . 249

8.2 Centralized Query Optimization . 257
8.2.1 Dynamic Query Optimization . 257
8.2.2 Static Query Optimization . 261
8.2.3 Hybrid Query Optimization . 265

8.3 Join Ordering in Distributed Queries . 267
8.3.1 Join Ordering . 267
8.3.2 Semijoin Based Algorithms . 269
8.3.3 Join versus Semijoin . 272

8.4 Distributed Query Optimization . 273
8.4.1 Dynamic Approach . 274
8.4.2 Static Approach . 277
8.4.3 Semijoin-based Approach . 281
8.4.4 Hybrid Approach . 286

8.5 Conclusion . 290
8.6 Bibliographic Notes . 292

9 Multidatabase Query Processing . 297
9.1 Issues in Multidatabase Query Processing . 298
9.2 Multidatabase Query Processing Architecture 299
9.3 Query Rewriting Using Views . 301

9.3.1 Datalog Terminology . 301
9.3.2 Rewriting in GAV . 302
9.3.3 Rewriting in LAV . 304

9.4 Query Optimization and Execution . 307
9.4.1 Heterogeneous Cost Modeling . 307
9.4.2 Heterogeneous Query Optimization . 314

Contents xv

9.4.3 Adaptive Query Processing . 320
9.5 Query Translation and Execution . 327
9.6 Conclusion . 330
9.7 Bibliographic Notes . 331

10 Introduction to Transaction Management . 335
10.1 Definition of a Transaction . 337

10.1.1 Termination Conditions of Transactions 339
10.1.2 Characterization of Transactions . 340
10.1.3 Formalization of the Transaction Concept 341

10.2 Properties of Transactions . 344
10.2.1 Atomicity . 344
10.2.2 Consistency . 345
10.2.3 Isolation . 346
10.2.4 Durability . 349

10.3 Types of Transactions . 349
10.3.1 Flat Transactions . 351
10.3.2 Nested Transactions . 352
10.3.3 Workflows . 353

10.4 Architecture Revisited . 356
10.5 Conclusion . 357
10.6 Bibliographic Notes . 358

11 Distributed Concurrency Control . 361
11.1 Serializability Theory . 362
11.2 Taxonomy of Concurrency Control Mechanisms 367
11.3 Locking-Based Concurrency Control Algorithms 369

11.3.1 Centralized 2PL . 373
11.3.2 Distributed 2PL . 374

11.4 Timestamp-Based Concurrency Control Algorithms 377
11.4.1 Basic TO Algorithm . 378
11.4.2 Conservative TO Algorithm . 381
11.4.3 Multiversion TO Algorithm. 383

11.5 Optimistic Concurrency Control Algorithms . 384
11.6 Deadlock Management . 387

11.6.1 Deadlock Prevention . 389
11.6.2 Deadlock Avoidance . 390
11.6.3 Deadlock Detection and Resolution . 391

11.7 “Relaxed” Concurrency Control . 394
11.7.1 Non-Serializable Histories . 395
11.7.2 Nested Distributed Transactions . 396

11.8 Conclusion . 398
11.9 Bibliographic Notes . 401

xvi Contents

12 Distributed DBMS Reliability . 405
12.1 Reliability Concepts and Measures . 406

12.1.1 System, State, and Failure . 406
12.1.2 Reliability and Availability . 408
12.1.3 Mean Time between Failures/Mean Time to Repair 409

12.2 Failures in Distributed DBMS . 410
12.2.1 Transaction Failures . 411
12.2.2 Site (System) Failures . 411
12.2.3 Media Failures . 412
12.2.4 Communication Failures . 412

12.3 Local Reliability Protocols . 413
12.3.1 Architectural Considerations . 413
12.3.2 Recovery Information . 416
12.3.3 Execution of LRM Commands . 420
12.3.4 Checkpointing . 425
12.3.5 Handling Media Failures . 426

12.4 Distributed Reliability Protocols . 427
12.4.1 Components of Distributed Reliability Protocols 428
12.4.2 Two-Phase Commit Protocol . 428
12.4.3 Variations of 2PC . 434

12.5 Dealing with Site Failures . 436
12.5.1 Termination and Recovery Protocols for 2PC 437
12.5.2 Three-Phase Commit Protocol . 443

12.6 Network Partitioning . 448
12.6.1 Centralized Protocols . 450
12.6.2 Voting-based Protocols . 450

12.7 Architectural Considerations . 453
12.8 Conclusion . 454
12.9 Bibliographic Notes . 455

13 Data Replication . 459
13.1 Consistency of Replicated Databases . 461

13.1.1 Mutual Consistency . 461
13.1.2 Mutual Consistency versus Transaction Consistency 463

13.2 Update Management Strategies . 465
13.2.1 Eager Update Propagation . 465
13.2.2 Lazy Update Propagation . 466
13.2.3 Centralized Techniques . 466
13.2.4 Distributed Techniques . 467

13.3 Replication Protocols . 468
13.3.1 Eager Centralized Protocols . 468
13.3.2 Eager Distributed Protocols . 474
13.3.3 Lazy Centralized Protocols . 475
13.3.4 Lazy Distributed Protocols . 480

13.4 Group Communication . 482

Contents xvii

13.5 Replication and Failures . 485
13.5.1 Failures and Lazy Replication . 485
13.5.2 Failures and Eager Replication . 486

13.6 Replication Mediator Service . 489
13.7 Conclusion . 491
13.8 Bibliographic Notes . 493

14 Parallel Database Systems . 497
14.1 Parallel Database System Architectures . 498

14.1.1 Objectives . 498
14.1.2 Functional Architecture . 501
14.1.3 Parallel DBMS Architectures . 502

14.2 Parallel Data Placement . 508
14.3 Parallel Query Processing . 512

14.3.1 Query Parallelism . 513
14.3.2 Parallel Algorithms for Data Processing 515
14.3.3 Parallel Query Optimization . 521

14.4 Load Balancing . 525
14.4.1 Parallel Execution Problems . 525
14.4.2 Intra-Operator Load Balancing . 527
14.4.3 Inter-Operator Load Balancing . 529
14.4.4 Intra-Query Load Balancing . 530

14.5 Database Clusters . 534
14.5.1 Database Cluster Architecture . 535
14.5.2 Replication . 537
14.5.3 Load Balancing . 540
14.5.4 Query Processing . 542
14.5.5 Fault-tolerance . 545

14.6 Conclusion . 546
14.7 Bibliographic Notes . 547

15 Distributed Object Database Management . 551
15.1 Fundamental Object Concepts and Object Models 553

15.1.1 Object . 553
15.1.2 Types and Classes . 556
15.1.3 Composition (Aggregation) . 557
15.1.4 Subclassing and Inheritance . 558

15.2 Object Distribution Design . 560
15.2.1 Horizontal Class Partitioning . 561
15.2.2 Vertical Class Partitioning . 563
15.2.3 Path Partitioning . 563
15.2.4 Class Partitioning Algorithms . 564
15.2.5 Allocation . 565
15.2.6 Replication . 565

15.3 Architectural Issues . 566

xviii Contents

15.3.1 Alternative Client/Server Architectures 567
15.3.2 Cache Consistency . 572

15.4 Object Management . 574
15.4.1 Object Identifier Management . 574
15.4.2 Pointer Swizzling . 576
15.4.3 Object Migration . 577

15.5 Distributed Object Storage . 578
15.6 Object Query Processing . 582

15.6.1 Object Query Processor Architectures 583
15.6.2 Query Processing Issues . 584
15.6.3 Query Execution . 589

15.7 Transaction Management . 593
15.7.1 Correctness Criteria . 594
15.7.2 Transaction Models and Object Structures 596
15.7.3 Transactions Management in Object DBMSs 596
15.7.4 Transactions as Objects . 605

15.8 Conclusion . 606
15.9 Bibliographic Notes . 607

16 Peer-to-Peer Data Management . 611
16.1 Infrastructure . 614

16.1.1 Unstructured P2P Networks . 615
16.1.2 Structured P2P Networks . 618
16.1.3 Super-peer P2P Networks . 622
16.1.4 Comparison of P2P Networks . 624

16.2 Schema Mapping in P2P Systems . 624
16.2.1 Pairwise Schema Mapping . 625
16.2.2 Mapping based on Machine Learning Techniques 626
16.2.3 Common Agreement Mapping . 626
16.2.4 Schema Mapping using IR Techniques 627

16.3 Querying Over P2P Systems . 628
16.3.1 Top-k Queries . 628
16.3.2 Join Queries . 640
16.3.3 Range Queries . 642

16.4 Replica Consistency . 645
16.4.1 Basic Support in DHTs . 646
16.4.2 Data Currency in DHTs . 648
16.4.3 Replica Reconciliation . 649

16.5 Conclusion . 653
16.6 Bibliographic Notes . 653

17 Web Data Management . 657
17.1 Web Graph Management . 658

17.1.1 Compressing Web Graphs . 660
17.1.2 Storing Web Graphs as S-Nodes . 661

Contents xix

17.2 Web Search . 663
17.2.1 Web Crawling . 664
17.2.2 Indexing . 667
17.2.3 Ranking and Link Analysis . 668
17.2.4 Evaluation of Keyword Search . 669

17.3 Web Querying . 670
17.3.1 Semistructured Data Approach . 671
17.3.2 Web Query Language Approach . 676
17.3.3 Question Answering . 681
17.3.4 Searching and Querying the Hidden Web 685

17.4 Distributed XML Processing . 689
17.4.1 Overview of XML . 691
17.4.2 XML Query Processing Techniques . 699
17.4.3 Fragmenting XML Data . 703
17.4.4 Optimizing Distributed XML Processing 710

17.5 Conclusion . 718
17.6 Bibliographic Notes . 719

18 723
18.1 Data Stream Management . 723

18.1.1 Stream Data Models . 725
18.1.2 Stream Query Languages . 727
18.1.3 Streaming Operators and their Implementation 732
18.1.4 Query Processing . 734
18.1.5 DSMS Query Optimization . 738
18.1.6 Load Shedding and Approximation . 739
18.1.7 Multi-Query Optimization . 740
18.1.8 Stream Mining . 741

18.2 Cloud Data Management . 744
18.2.1 Taxonomy of Clouds . 745
18.2.2 Grid Computing . 748
18.2.3 Cloud architectures . 751
18.2.4 Data management in the cloud . 753

18.3 Conclusion . 760
18.4 Bibliographic Notes . 762

References . 765

Index . 833

Current Issues: Streaming Data and Cloud Computing

Chapter 1
Introduction

Distributed database system (DDBS) technology is the union of what appear to
be two diametrically opposed approaches to data processing: database system and
computer network technologies. Database systems have taken us from a paradigm
of data processing in which each application defined and maintained its own data
(Figure 1.1) to one in which the data are defined and administered centrally (Figure
1.2). This new orientation results in data independence, whereby the application
programs are immune to changes in the logical or physical organization of the data,
and vice versa.

One of the major motivations behind the use of database systems is the desire
to integrate the operational data of an enterprise and to provide centralized, thus
controlled access to that data. The technology of computer networks, on the other
hand, promotes a mode of work that goes against all centralization efforts. At first
glance it might be difficult to understand how these two contrasting approaches can
possibly be synthesized to produce a technology that is more powerful and more
promising than either one alone. The key to this understanding is the realization

PROGRAM 1

Data

Description

PROGRAM 2

FILE 1

FILE 2

FILE 3
PROGRAM 3

Data

Description

Data

Description

R
E

D
U

N
D

A
N

T
 D

A
T
A

Fig. 1.1 Traditional File Processing

1
DOI 10.1007/978-1-4419-8834-8_1, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

2 1 Introduction

...

Data Description

Data Manipulation
DATABASE

PROGRAM 1

PROGRAM 2

PROGRAM 3

Fig. 1.2 Database Processing

that the most important objective of the database technology is integration, not
centralization. It is important to realize that either one of these terms does not
necessarily imply the other. It is possible to achieve integration without centralization,
and that is exactly what the distributed database technology attempts to achieve.

In this chapter we define the fundamental concepts and set the framework for
discussing distributed databases. We start by examining distributed systems in general
in order to clarify the role of database technology within distributed data processing,
and then move on to topics that are more directly related to DDBS.

1.1 Distributed Data Processing

The term distributed processing (or distributed computing) is hard to define precisely.
Obviously, some degree of distributed processing goes on in any computer system,
even on single-processor computers where the central processing unit (CPU) and in-
put/output (I/O) functions are separated and overlapped. This separation and overlap
can be considered as one form of distributed processing. The widespread emergence
of parallel computers has further complicated the picture, since the distinction be-
tween distributed computing systems and some forms of parallel computers is rather
vague.

In this book we define distributed processing in such a way that it leads to a
definition of a distributed database system. The working definition we use for a
distributed computing system states that it is a number of autonomous processing
elements (not necessarily homogeneous) that are interconnected by a computer
network and that cooperate in performing their assigned tasks. The “processing
element” referred to in this definition is a computing device that can execute a
program on its own. This definition is similar to those given in distributed systems
textbooks (e.g., [Tanenbaum and van Steen, 2002] and [Colouris et al., 2001]).

A fundamental question that needs to be asked is: What is being distributed?
One of the things that might be distributed is the processing logic. In fact, the
definition of a distributed computing system given above implicitly assumes that the

1.2 What is a Distributed Database System? 3

processing logic or processing elements are distributed. Another possible distribution
is according to function. Various functions of a computer system could be delegated
to various pieces of hardware or software. A third possible mode of distribution is
according to data. Data used by a number of applications may be distributed to a
number of processing sites. Finally, control can be distributed. The control of the
execution of various tasks might be distributed instead of being performed by one
computer system. From the viewpoint of distributed database systems, these modes
of distribution are all necessary and important. In the following sections we talk
about these in more detail.

Another reasonable question to ask at this point is: Why do we distribute at all?
The classical answers to this question indicate that distributed processing better
corresponds to the organizational structure of today’s widely distributed enterprises,
and that such a system is more reliable and more responsive. More importantly,
many of the current applications of computer technology are inherently distributed.
Web-based applications, electronic commerce business over the Internet, multimedia
applications such as news-on-demand or medical imaging, manufacturing control
systems are all examples of such applications.

From a more global perspective, however, it can be stated that the fundamental
reason behind distributed processing is to be better able to cope with the large-scale
data management problems that we face today, by using a variation of the well-known
divide-and-conquer rule. If the necessary software support for distributed processing
can be developed, it might be possible to solve these complicated problems simply
by dividing them into smaller pieces and assigning them to different software groups,
which work on different computers and produce a system that runs on multiple
processing elements but can work efficiently toward the execution of a common task.

Distributed database systems should also be viewed within this framework and
treated as tools that could make distributed processing easier and more efficient. It is
reasonable to draw an analogy between what distributed databases might offer to the
data processing world and what the database technology has already provided. There
is no doubt that the development of general-purpose, adaptable, efficient distributed
database systems has aided greatly in the task of developing distributed software.

1.2 What is a Distributed Database System?

We define a distributed database as a collection of multiple, logically interrelated
databases distributed over a computer network. A distributed database management
system (distributed DBMS) is then defined as the software system that permits the
management of the distributed database and makes the distribution transparent to the
users. Sometimes “distributed database system” (DDBS) is used to refer jointly to
the distributed database and the distributed DBMS. The two important terms in these
definitions are “logically interrelated” and “distributed over a computer network.”
They help eliminate certain cases that have sometimes been accepted to represent a
DDBS.

4 1 Introduction

A DDBS is not a “collection of files” that can be individually stored at each
node of a computer network. To form a DDBS, files should not only be logically
related, but there should be structured among the files, and access should be via
a common interface. We should note that there has been much recent activity in
providing DBMS functionality over semi-structured data that are stored in files on
the Internet (such as Web pages). In light of this activity, the above requirement
may seem unnecessarily strict. Nevertheless, it is important to make a distinction
between a DDBS where this requirement is met, and more general distributed data
management systems that provide a “DBMS-like” access to data. In various chapters
of this book, we will expand our discussion to cover these more general systems.

It has sometimes been assumed that the physical distribution of data is not the
most significant issue. The proponents of this view would therefore feel comfortable
in labeling as a distributed database a number of (related) databases that reside in the
same computer system. However, the physical distribution of data is important. It
creates problems that are not encountered when the databases reside in the same com-
puter. These difficulties are discussed in Section 1.5. Note that physical distribution
does not necessarily imply that the computer systems be geographically far apart;
they could actually be in the same room. It simply implies that the communication
between them is done over a network instead of through shared memory or shared
disk (as would be the case with multiprocessor systems), with the network as the only
shared resource.

This suggests that multiprocessor systems should not be considered as DDBSs.
Although shared-nothing multiprocessors, where each processor node has its own
primary and secondary memory, and may also have its own peripherals, are quite
similar to the distributed environment that we focus on, there are differences. The
fundamental difference is the mode of operation. A multiprocessor system design
is rather symmetrical, consisting of a number of identical processor and memory
components, and controlled by one or more copies of the same operating system
that is responsible for a strict control of the task assignment to each processor. This
is not true in distributed computing systems, where heterogeneity of the operating
system as well as the hardware is quite common. Database systems that run over
multiprocessor systems are called parallel database systems and are discussed in
Chapter 14.

A DDBS is also not a system where, despite the existence of a network, the
database resides at only one node of the network (Figure 1.3). In this case, the
problems of database management are no different than the problems encountered in
a centralized database environment (shortly, we will discuss client/server DBMSs
which relax this requirement to a certain extent). The database is centrally managed
by one computer system (site 2 in Figure 1.3) and all the requests are routed to
that site. The only additional consideration has to do with transmission delays. It
is obvious that the existence of a computer network or a collection of “files” is not
sufficient to form a distributed database system. What we are interested in is an
environment where data are distributed among a number of sites (Figure 1.4).

1.3 Data Delivery Alternatives 5

Site 1

Site 2

Site 3Site 4

Site 5

Communication
Network

Fig. 1.3 Central Database on a Network

Site 1

Site 2

Site 3Site 4

Site 5

Communication
Network

Fig. 1.4 DDBS Environment

1.3 Data Delivery Alternatives

In distributed databases, data are “delivered” from the sites where they are stored to
where the query is posed. We characterize the data delivery alternatives along three
orthogonal dimensions: delivery modes, frequency and communication methods. The
combinations of alternatives along each of these dimensions (that we discuss next)
provide a rich design space.

The alternative delivery modes are pull-only, push-only and hybrid. In the pull-
only mode of data delivery, the transfer of data from servers to clients is initiated
by a client pull. When a client request is received at a server, the server responds by
locating the requested information. The main characteristic of pull-based delivery is
that the arrival of new data items or updates to existing data items are carried out at a

6 1 Introduction

server without notification to clients unless clients explicitly poll the server. Also, in
pull-based mode, servers must be interrupted continuously to deal with requests from
clients. Furthermore, the information that clients can obtain from a server is limited
to when and what clients know to ask for. Conventional DBMSs offer primarily
pull-based data delivery.

In the push-only mode of data delivery, the transfer of data from servers to clients
is initiated by a server push in the absence of any specific request from clients.
The main difficulty of the push-based approach is in deciding which data would be
of common interest, and when to send them to clients – alternatives are periodic,
irregular, or conditional. Thus, the usefulness of server push depends heavily upon
the accuracy of a server to predict the needs of clients. In push-based mode, servers
disseminate information to either an unbounded set of clients (random broadcast)
who can listen to a medium or selective set of clients (multicast), who belong to some
categories of recipients that may receive the data.

The hybrid mode of data delivery combines the client-pull and server-push mech-
anisms. The continuous (or continual) query approach (e.g., [Liu et al., 1996],[Terry
et al., 1992],[Chen et al., 2000],[Pandey et al., 2003]) presents one possible way of
combining the pull and push modes: namely, the transfer of information from servers
to clients is first initiated by a client pull (by posing the query), and the subsequent
transfer of updated information to clients is initiated by a server push.

There are three typical frequency measurements that can be used to classify the
regularity of data delivery. They are periodic, conditional, and ad-hoc or irregular.

In periodic delivery, data are sent from the server to clients at regular intervals.
The intervals can be defined by system default or by clients using their profiles. Both
pull and push can be performed in periodic fashion. Periodic delivery is carried out
on a regular and pre-specified repeating schedule. A client request for IBM’s stock
price every week is an example of a periodic pull. An example of periodic push is
when an application can send out stock price listing on a regular basis, say every
morning. Periodic push is particularly useful for situations in which clients might not
be available at all times, or might be unable to react to what has been sent, such as in
the mobile setting where clients can become disconnected.

In conditional delivery, data are sent from servers whenever certain conditions
installed by clients in their profiles are satisfied. Such conditions can be as simple
as a given time span or as complicated as event-condition-action rules. Conditional
delivery is mostly used in the hybrid or push-only delivery systems. Using condi-
tional push, data are sent out according to a pre-specified condition, rather than
any particular repeating schedule. An application that sends out stock prices only
when they change is an example of conditional push. An application that sends out a
balance statement only when the total balance is 5% below the pre-defined balance
threshold is an example of hybrid conditional push. Conditional push assumes that
changes are critical to the clients, and that clients are always listening and need to
respond to what is being sent. Hybrid conditional push further assumes that missing
some update information is not crucial to the clients.

Ad-hoc delivery is irregular and is performed mostly in a pure pull-based system.
Data are pulled from servers to clients in an ad-hoc fashion whenever clients request

1.4 Promises of DDBSs 7

it. In contrast, periodic pull arises when a client uses polling to obtain data from
servers based on a regular period (schedule).

The third component of the design space of information delivery alternatives is the
communication method. These methods determine the various ways in which servers
and clients communicate for delivering information to clients. The alternatives are
unicast and one-to-many. In unicast, the communication from a server to a client
is one-to-one: the server sends data to one client using a particular delivery mode
with some frequency. In one-to-many, as the name implies, the server sends data
to a number of clients. Note that we are not referring here to a specific protocol;
one-to-many communication may use a multicast or broadcast protocol.

We should note that this characterization is subject to considerable debate. It is
not clear that every point in the design space is meaningful. Furthermore, specifi-
cation of alternatives such as conditional and periodic (which may make sense) is
difficult. However, it serves as a first-order characterization of the complexity of
emerging distributed data management systems. For the most part, in this book, we
are concerned with pull-only, ad hoc data delivery systems, although examples of
other approaches are discussed in some chapters.

1.4 Promises of DDBSs

Many advantages of DDBSs have been cited in literature, ranging from sociological
reasons for decentralization [D’Oliviera, 1977] to better economics. All of these can
be distilled to four fundamentals which may also be viewed as promises of DDBS
technology: transparent management of distributed and replicated data, reliable
access to data through distributed transactions, improved performance, and easier
system expansion. In this section we discuss these promises and, in the process,
introduce many of the concepts that we will study in subsequent chapters.

1.4.1 Transparent Management of Distributed and Replicated Data

Transparency refers to separation of the higher-level semantics of a system from
lower-level implementation issues. In other words, a transparent system “hides” the
implementation details from users. The advantage of a fully transparent DBMS is the
high level of support that it provides for the development of complex applications. It
is obvious that we would like to make all DBMSs (centralized or distributed) fully
transparent.

Let us start our discussion with an example. Consider an engineering firm that
has offices in Boston, Waterloo, Paris and San Francisco. They run projects at
each of these sites and would like to maintain a database of their employees, the
projects and other related data. Assuming that the database is relational, we can store

8 1 Introduction

this information in two relations: EMP(ENO, ENAME, TITLE)1 and PROJ(PNO,
PNAME, BUDGET). We also introduce a third relation to store salary information:
SAL(TITLE, AMT) and a fourth relation ASG which indicates which employees
have been assigned to which projects for what duration with what responsibility:
ASG(ENO, PNO, RESP, DUR). If all of this data were stored in a centralized DBMS,
and we wanted to find out the names and employees who worked on a project for
more than 12 months, we would specify this using the following SQL query:

SELECT ENAME, AMT
FROM EMP, ASG, SAL
WHERE ASG.DUR > 12
AND EMP.ENO = ASG.ENO
AND SAL.TITLE = EMP.TITLE

However, given the distributed nature of this firm’s business, it is preferable, under
these circumstances, to localize data such that data about the employees in Waterloo
office are stored in Waterloo, those in the Boston office are stored in Boston, and
so forth. The same applies to the project and salary information. Thus, what we
are engaged in is a process where we partition each of the relations and store each
partition at a different site. This is known as fragmentation and we discuss it further
below and in detail in Chapter 3.

Furthermore, it may be preferable to duplicate some of this data at other sites
for performance and reliability reasons. The result is a distributed database which
is fragmented and replicated (Figure 1.5). Fully transparent access means that the
users can still pose the query as specified above, without paying any attention to
the fragmentation, location, or replication of data, and let the system worry about
resolving these issues.

For a system to adequately deal with this type of query over a distributed, frag-
mented and replicated database, it needs to be able to deal with a number of different
types of transparencies. We discuss these in this section.

1.4.1.1 Data Independence

Data independence is a fundamental form of transparency that we look for within a
DBMS. It is also the only type that is important within the context of a centralized
DBMS. It refers to the immunity of user applications to changes in the definition and
organization of data, and vice versa.

As is well-known, data definition occurs at two levels. At one level the logical
structure of the data are specified, and at the other level its physical structure. The
former is commonly known as the schema definition, whereas the latter is referred
to as the physical data description. We can therefore talk about two types of data

1 We discuss relational systems in Chapter 2 (Section 2.1) where we develop this example further.
For the time being, it is sufficient to note that this nomenclature indicates that we have just defined
a relation with three attributes: ENO (which is the key, identified by underlining), ENAME and
TITLE.

1.4 Promises of DDBSs 9

Paris

San

FranciscoWaterloo

Boston

Communication

Network

Boston employees, Paris employees,

Boston projects

Waterloo employees,

Waterloo projects, Paris projects

San Francisco employees,

San Francisco projects

Paris employees, Boston employees,

Paris projects, Boston projects

Fig. 1.5 A Distributed Application

independence: logical data independence and physical data independence. Logical
data independence refers to the immunity of user applications to changes in the
logical structure (i.e., schema) of the database. Physical data independence, on the
other hand, deals with hiding the details of the storage structure from user applications.
When a user application is written, it should not be concerned with the details of
physical data organization. Therefore, the user application should not need to be
modified when data organization changes occur due to performance considerations.

1.4.1.2 Network Transparency

In centralized database systems, the only available resource that needs to be shielded
from the user is the data (i.e., the storage system). In a distributed database envi-
ronment, however, there is a second resource that needs to be managed in much
the same manner: the network. Preferably, the user should be protected from the
operational details of the network; possibly even hiding the existence of the network.
Then there would be no difference between database applications that would run on
a centralized database and those that would run on a distributed database. This type
of transparency is referred to as network transparency or distribution transparency.

One can consider network transparency from the viewpoint of either the services
provided or the data. From the former perspective, it is desirable to have a uniform
means by which services are accessed. From a DBMS perspective, distribution
transparency requires that users do not have to specify where data are located.

Sometimes two types of distribution transparency are identified: location trans-
parency and naming transparency. Location transparency refers to the fact that the

10 1 Introduction

command used to perform a task is independent of both the location of the data and
the system on which an operation is carried out. Naming transparency means that a
unique name is provided for each object in the database. In the absence of naming
transparency, users are required to embed the location name (or an identifier) as part
of the object name.

1.4.1.3 Replication Transparency

The issue of replicating data within a distributed database is introduced in Chapter
3 and discussed in detail in Chapter 13. At this point, let us just mention that for
performance, reliability, and availability reasons, it is usually desirable to be able
to distribute data in a replicated fashion across the machines on a network. Such
replication helps performance since diverse and conflicting user requirements can be
more easily accommodated. For example, data that are commonly accessed by one
user can be placed on that user’s local machine as well as on the machine of another
user with the same access requirements. This increases the locality of reference.
Furthermore, if one of the machines fails, a copy of the data are still available on
another machine on the network. Of course, this is a very simple-minded description
of the situation. In fact, the decision as to whether to replicate or not, and how many
copies of any database object to have, depends to a considerable degree on user
applications. We will discuss these in later chapters.

Assuming that data are replicated, the transparency issue is whether the users
should be aware of the existence of copies or whether the system should handle the
management of copies and the user should act as if there is a single copy of the data
(note that we are not referring to the placement of copies, only their existence). From
a user’s perspective the answer is obvious. It is preferable not to be involved with
handling copies and having to specify the fact that a certain action can and/or should
be taken on multiple copies. From a systems point of view, however, the answer is not
that simple. As we will see in Chapter 11, when the responsibility of specifying that
an action needs to be executed on multiple copies is delegated to the user, it makes
transaction management simpler for distributed DBMSs. On the other hand, doing
so inevitably results in the loss of some flexibility. It is not the system that decides
whether or not to have copies and how many copies to have, but the user application.
Any change in these decisions because of various considerations definitely affects
the user application and, therefore, reduces data independence considerably. Given
these considerations, it is desirable that replication transparency be provided as a
standard feature of DBMSs. Remember that replication transparency refers only
to the existence of replicas, not to their actual location. Note also that distributing
these replicas across the network in a transparent manner is the domain of network
transparency.

1.4 Promises of DDBSs 11

1.4.1.4 Fragmentation Transparency

The final form of transparency that needs to be addressed within the context of a
distributed database system is that of fragmentation transparency. In Chapter 3 we
discuss and justify the fact that it is commonly desirable to divide each database
relation into smaller fragments and treat each fragment as a separate database object
(i.e., another relation). This is commonly done for reasons of performance, avail-
ability, and reliability. Furthermore, fragmentation can reduce the negative effects of
replication. Each replica is not the full relation but only a subset of it; thus less space
is required and fewer data items need be managed.

There are two general types of fragmentation alternatives. In one case, called
horizontal fragmentation, a relation is partitioned into a set of sub-relations each
of which have a subset of the tuples (rows) of the original relation. The second
alternative is vertical fragmentation where each sub-relation is defined on a subset of
the attributes (columns) of the original relation.

When database objects are fragmented, we have to deal with the problem of
handling user queries that are specified on entire relations but have to be executed on
subrelations. In other words, the issue is one of finding a query processing strategy
based on the fragments rather than the relations, even though the queries are specified
on the latter. Typically, this requires a translation from what is called a global query to
several fragment queries. Since the fundamental issue of dealing with fragmentation
transparency is one of query processing, we defer the discussion of techniques by
which this translation can be performed until Chapter 7.

1.4.1.5 Who Should Provide Transparency?

In previous sections we discussed various possible forms of transparency within a
distributed computing environment. Obviously, to provide easy and efficient access
by novice users to the services of the DBMS, one would want to have full trans-
parency, involving all the various types that we discussed. Nevertheless, the level of
transparency is inevitably a compromise between ease of use and the difficulty and
overhead cost of providing high levels of transparency. For example, Gray argues
that full transparency makes the management of distributed data very difficult and
claims that “applications coded with transparent access to geographically distributed
databases have: poor manageability, poor modularity, and poor message performance”
[Gray, 1989]. He proposes a remote procedure call mechanism between the requestor
users and the server DBMSs whereby the users would direct their queries to a specific
DBMS. This is indeed the approach commonly taken by client/server systems that
we discuss shortly.

What has not yet been discussed is who is responsible for providing these services.
It is possible to identify three distinct layers at which the transparency services can be
provided. It is quite common to treat these as mutually exclusive means of providing
the service, although it is more appropriate to view them as complementary.

12 1 Introduction

We could leave the responsibility of providing transparent access to data resources
to the access layer. The transparency features can be built into the user language,
which then translates the requested services into required operations. In other words,
the compiler or the interpreter takes over the task and no transparent service is
provided to the implementer of the compiler or the interpreter.

The second layer at which transparency can be provided is the operating system
level. State-of-the-art operating systems provide some level of transparency to system
users. For example, the device drivers within the operating system handle the details
of getting each piece of peripheral equipment to do what is requested. The typical
computer user, or even an application programmer, does not normally write device
drivers to interact with individual peripheral equipment; that operation is transparent
to the user.

Providing transparent access to resources at the operating system level can ob-
viously be extended to the distributed environment, where the management of the
network resource is taken over by the distributed operating system or the middleware
if the distributed DBMS is implemented over one. There are two potential problems
with this approach. The first is that not all commercially available distributed operat-
ing systems provide a reasonable level of transparency in network management. The
second problem is that some applications do not wish to be shielded from the details
of distribution and need to access them for specific performance tuning.

The third layer at which transparency can be supported is within the DBMS. The
transparency and support for database functions provided to the DBMS designers
by an underlying operating system is generally minimal and typically limited to
very fundamental operations for performing certain tasks. It is the responsibility of
the DBMS to make all the necessary translations from the operating system to the
higher-level user interface. This mode of operation is the most common method today.
There are, however, various problems associated with leaving the task of providing
full transparency to the DBMS. These have to do with the interaction of the operating
system with the distributed DBMS and are discussed throughout this book.

A hierarchy of these transparencies is shown in Figure 1.6. It is not always easy
to delineate clearly the levels of transparency, but such a figure serves an important
instructional purpose even if it is not fully correct. To complete the picture we
have added a “language transparency” layer, although it is not discussed in this
chapter. With this generic layer, users have high-level access to the data (e.g., fourth-
generation languages, graphical user interfaces, natural language access).

1.4.2 Reliability Through Distributed Transactions

Distributed DBMSs are intended to improve reliability since they have replicated
components and, thereby eliminate single points of failure. The failure of a single site,
or the failure of a communication link which makes one or more sites unreachable,
is not sufficient to bring down the entire system. In the case of a distributed database,
this means that some of the data may be unreachable, but with proper care, users

1.4 Promises of DDBSs 13

Data
Data I

ndependence

Network Transparency

Replication Transparency

Fragmentation Transparency
Language

 Transparency

Fig. 1.6 Layers of Transparency

may be permitted to access other parts of the distributed database. The “proper care”
comes in the form of support for distributed transactions and application protocols.

We discuss transactions and transaction processing in detail in Chapters 10–12.
A transaction is a basic unit of consistent and reliable computing, consisting of a
sequence of database operations executed as an atomic action. It transforms a consis-
tent database state to another consistent database state even when a number of such
transactions are executed concurrently (sometimes called concurrency transparency),
and even when failures occur (also called failure atomicity). Therefore, a DBMS
that provides full transaction support guarantees that concurrent execution of user
transactions will not violate database consistency in the face of system failures as
long as each transaction is correct, i.e., obeys the integrity rules specified on the
database.

Let us give an example of a transaction based on the engineering firm example
that we introduced earlier. Assume that there is an application that updates the
salaries of all the employees by 10%. It is desirable to encapsulate the query (or
the program code) that accomplishes this task within transaction boundaries. For
example, if a system failure occurs half-way through the execution of this program,
we would like the DBMS to be able to determine, upon recovery, where it left off
and continue with its operation (or start all over again). This is the topic of failure
atomicity. Alternatively, if some other user runs a query calculating the average
salaries of the employees in this firm while the original update action is going on, the
calculated result will be in error. Therefore we would like the system to be able to
synchronize the concurrent execution of these two programs. To encapsulate a query
(or a program code) within transactional boundaries, it is sufficient to declare the
begin of the transaction and its end:

Begin transaction SALARY UPDATE
begin
EXEC SQL UPDATE PAY

SET SAL = SAL*1.1
end.

14 1 Introduction

Distributed transactions execute at a number of sites at which they access the
local database. The above transaction, for example, will execute in Boston, Waterloo,
Paris and San Francisco since the data are distributed at these sites. With full support
for distributed transactions, user applications can access a single logical image of
the database and rely on the distributed DBMS to ensure that their requests will be
executed correctly no matter what happens in the system. “Correctly” means that
user applications do not need to be concerned with coordinating their accesses to
individual local databases nor do they need to worry about the possibility of site or
communication link failures during the execution of their transactions. This illustrates
the link between distributed transactions and transparency, since both involve issues
related to distributed naming and directory management, among other things.

Providing transaction support requires the implementation of distributed concur-
rency control (Chapter 11) and distributed reliability (Chapter 12) protocols — in
particular, two-phase commit (2PC) and distributed recovery protocols — which are
significantly more complicated than their centralized counterparts. Supporting repli-
cas requires the implementation of replica control protocols that enforce a specified
semantics of accessing them (Chapter 13).

1.4.3 Improved Performance

The case for the improved performance of distributed DBMSs is typically made
based on two points. First, a distributed DBMS fragments the conceptual database,
enabling data to be stored in close proximity to its points of use (also called data
localization). This has two potential advantages:

1. Since each site handles only a portion of the database, contention for CPU
and I/O services is not as severe as for centralized databases.

2. Localization reduces remote access delays that are usually involved in wide
area networks (for example, the minimum round-trip message propagation
delay in satellite-based systems is about 1 second).

Most distributed DBMSs are structured to gain maximum benefit from data localiza-
tion. Full benefits of reduced contention and reduced communication overhead can
be obtained only by a proper fragmentation and distribution of the database.

This point relates to the overhead of distributed computing if the data have
to reside at remote sites and one has to access it by remote communication. The
argument is that it is better, in these circumstances, to distribute the data management
functionality to where the data are located rather than moving large amounts of data.
This has lately become a topic of contention. Some argue that with the widespread
use of high-speed, high-capacity networks, distributing data and data management
functions no longer makes sense and that it may be much simpler to store data
at a central site and access it (by downloading) over high-speed networks. This
argument, while appealing, misses the point of distributed databases. First of all, in

1.4 Promises of DDBSs 15

most of today’s applications, data are distributed; what may be open for debate is
how and where we process it. Second, and more important, point is that this argument
does not distinguish between bandwidth (the capacity of the computer links) and
latency (how long it takes for data to be transmitted). Latency is inherent in the
distributed environments and there are physical limits to how fast we can send data
over computer networks. As indicated above, for example, satellite links take about
half-a-second to transmit data between two ground stations. This is a function of the
distance of the satellites from the earth and there is nothing that we can do to improve
that performance. For some applications, this might constitute an unacceptable delay.

The second case point is that the inherent parallelism of distributed systems
may be exploited for inter-query and intra-query parallelism. Inter-query parallelism
results from the ability to execute multiple queries at the same time while intra-query
parallelism is achieved by breaking up a single query into a number of subqueries each
of which is executed at a different site, accessing a different part of the distributed
database.

If the user access to the distributed database consisted only of querying (i.e.,
read-only access), then provision of inter-query and intra-query parallelism would
imply that as much of the database as possible should be replicated. However, since
most database accesses are not read-only, the mixing of read and update operations
requires the implementation of elaborate concurrency control and commit protocols.

1.4.4 Easier System Expansion

In a distributed environment, it is much easier to accommodate increasing database
sizes. Major system overhauls are seldom necessary; expansion can usually be
handled by adding processing and storage power to the network. Obviously, it may
not be possible to obtain a linear increase in “power,” since this also depends on the
overhead of distribution. However, significant improvements are still possible.

One aspect of easier system expansion is economics. It normally costs much less
to put together a system of “smaller” computers with the equivalent power of a single
big machine. In earlier times, it was commonly believed that it would be possible
to purchase a fourfold powerful computer if one spent twice as much. This was
known as Grosh’s law. With the advent of microcomputers and workstations, and
their price/performance characteristics, this law is considered invalid.

This should not be interpreted to mean that mainframes are dead; this is not the
point that we are making here. Indeed, in recent years, we have observed a resurgence
in the world-wide sale of mainframes. The point is that for many applications, it is
more economical to put together a distributed computer system (whether composed
of mainframes or workstations) with sufficient power than it is to establish a single,
centralized system to run these tasks. In fact, the latter may not even be feasible these
days.

16 1 Introduction

1.5 Complications Introduced by Distribution

The problems encountered in database systems take on additional complexity in a
distributed environment, even though the basic underlying principles are the same.
Furthermore, this additional complexity gives rise to new problems influenced mainly
by three factors.

First, data may be replicated in a distributed environment. A distributed database
can be designed so that the entire database, or portions of it, reside at different sites
of a computer network. It is not essential that every site on the network contain the
database; it is only essential that there be more than one site where the database
resides. The possible duplication of data items is mainly due to reliability and effi-
ciency considerations. Consequently, the distributed database system is responsible
for (1) choosing one of the stored copies of the requested data for access in case of
retrievals, and (2) making sure that the effect of an update is reflected on each and
every copy of that data item.

Second, if some sites fail (e.g., by either hardware or software malfunction), or
if some communication links fail (making some of the sites unreachable) while an
update is being executed, the system must make sure that the effects will be reflected
on the data residing at the failing or unreachable sites as soon as the system can
recover from the failure.

The third point is that since each site cannot have instantaneous information
on the actions currently being carried out at the other sites, the synchronization of
transactions on multiple sites is considerably harder than for a centralized system.

These difficulties point to a number of potential problems with distributed DBMSs.
These are the inherent complexity of building distributed applications, increased
cost of replicating resources, and, more importantly, managing distribution, the
devolution of control to many centers and the difficulty of reaching agreements,
and the exacerbated security concerns (the secure communication channel problem).
These are well-known problems in distributed systems in general, and, in this book,
we discuss their manifestations within the context of distributed DBMS and how they
can be addressed.

1.6 Design Issues

In Section 1.4, we discussed the promises of distributed DBMS technology, highlight-
ing the challenges that need to be overcome in order to realize them. In this section
we build on this discussion by presenting the design issues that arise in building a
distributed DBMS. These issues will occupy much of the remainder of this book.

1.6 Design Issues 17

1.6.1 Distributed Database Design

The question that is being addressed is how the database and the applications that run
against it should be placed across the sites. There are two basic alternatives to placing
data: partitioned (or non-replicated) and replicated. In the partitioned scheme the
database is divided into a number of disjoint partitions each of which is placed at
a different site. Replicated designs can be either fully replicated (also called fully
duplicated) where the entire database is stored at each site, or partially replicated (or
partially duplicated) where each partition of the database is stored at more than one
site, but not at all the sites. The two fundamental design issues are fragmentation,
the separation of the database into partitions called fragments, and distribution, the
optimum distribution of fragments.

The research in this area mostly involves mathematical programming in order
to minimize the combined cost of storing the database, processing transactions
against it, and message communication among sites. The general problem is NP-hard.
Therefore, the proposed solutions are based on heuristics. Distributed database design
is the topic of Chapter 3.

1.6.2 Distributed Directory Management

A directory contains information (such as descriptions and locations) about data
items in the database. Problems related to directory management are similar in nature
to the database placement problem discussed in the preceding section. A directory
may be global to the entire DDBS or local to each site; it can be centralized at one
site or distributed over several sites; there can be a single copy or multiple copies.
We briefly discuss these issues in Chapter 3.

1.6.3 Distributed Query Processing

Query processing deals with designing algorithms that analyze queries and convert
them into a series of data manipulation operations. The problem is how to decide
on a strategy for executing each query over the network in the most cost-effective
way, however cost is defined. The factors to be considered are the distribution of
data, communication costs, and lack of sufficient locally-available information. The
objective is to optimize where the inherent parallelism is used to improve the perfor-
mance of executing the transaction, subject to the above-mentioned constraints. The
problem is NP-hard in nature, and the approaches are usually heuristic. Distributed
query processing is discussed in detail in Chapter 6 - 8.

18 1 Introduction

1.6.4 Distributed Concurrency Control

Concurrency control involves the synchronization of accesses to the distributed data-
base, such that the integrity of the database is maintained. It is, without any doubt,
one of the most extensively studied problems in the DDBS field. The concurrency
control problem in a distributed context is somewhat different than in a centralized
framework. One not only has to worry about the integrity of a single database, but
also about the consistency of multiple copies of the database. The condition that
requires all the values of multiple copies of every data item to converge to the same
value is called mutual consistency.

The alternative solutions are too numerous to discuss here, so we examine them in
detail in Chapter 11. Let us only mention that the two general classes are pessimistic ,
synchronizing the execution of user requests before the execution starts, and opti-
mistic, executing the requests and then checking if the execution has compromised
the consistency of the database. Two fundamental primitives that can be used with
both approaches are locking, which is based on the mutual exclusion of accesses to
data items, and timestamping, where the transaction executions are ordered based on
timestamps. There are variations of these schemes as well as hybrid algorithms that
attempt to combine the two basic mechanisms.

1.6.5 Distributed Deadlock Management

The deadlock problem in DDBSs is similar in nature to that encountered in operating
systems. The competition among users for access to a set of resources (data, in this
case) can result in a deadlock if the synchronization mechanism is based on locking.
The well-known alternatives of prevention, avoidance, and detection/recovery also
apply to DDBSs. Deadlock management is covered in Chapter 11.

1.6.6 Reliability of Distributed DBMS

We mentioned earlier that one of the potential advantages of distributed systems
is improved reliability and availability. This, however, is not a feature that comes
automatically. It is important that mechanisms be provided to ensure the consistency
of the database as well as to detect failures and recover from them. The implication
for DDBSs is that when a failure occurs and various sites become either inoperable
or inaccessible, the databases at the operational sites remain consistent and up to date.
Furthermore, when the computer system or network recovers from the failure, the
DDBSs should be able to recover and bring the databases at the failed sites up-to-date.
This may be especially difficult in the case of network partitioning, where the sites
are divided into two or more groups with no communication among them. Distributed
reliability protocols are the topic of Chapter 12.

1.6 Design Issues 19

Directory
Management

Query
Processing

Distributed
DB Design

Concurrency
Control

Deadlock

Management

Reliability

Replication

Fig. 1.7 Relationship Among Research Issues

1.6.7 Replication

If the distributed database is (partially or fully) replicated, it is necessary to implement
protocols that ensure the consistency of the replicas,i.e., copies of the same data item
have the same value. These protocols can be eager in that they force the updates
to be applied to all the replicas before the transaction completes, or they may be
lazy so that the transaction updates one copy (called the master) from which updates
are propagated to the others after the transaction completes. We discuss replication
protocols in Chapter 13.

1.6.8 Relationship among Problems

Naturally, these problems are not isolated from one another. Each problem is affected
by the solutions found for the others, and in turn affects the set of feasible solutions
for them. In this section we discuss how they are related.

The relationship among the components is shown in Figure 1.7. The design of
distributed databases affects many areas. It affects directory management, because the
definition of fragments and their placement determine the contents of the directory
(or directories) as well as the strategies that may be employed to manage them.
The same information (i.e., fragment structure and placement) is used by the query
processor to determine the query evaluation strategy. On the other hand, the access
and usage patterns that are determined by the query processor are used as inputs to
the data distribution and fragmentation algorithms. Similarly, directory placement
and contents influence the processing of queries.

20 1 Introduction

The replication of fragments when they are distributed affects the concurrency
control strategies that might be employed. As we will study in Chapter 11, some
concurrency control algorithms cannot be easily used with replicated databases.
Similarly, usage and access patterns to the database will influence the concurrency
control algorithms. If the environment is update intensive, the necessary precautions
are quite different from those in a query-only environment.

There is a strong relationship among the concurrency control problem, the dead-
lock management problem, and reliability issues. This is to be expected, since to-
gether they are usually called the transaction management problem. The concurrency
control algorithm that is employed will determine whether or not a separate deadlock
management facility is required. If a locking-based algorithm is used, deadlocks will
occur, whereas they will not if timestamping is the chosen alternative.

Reliability mechanisms involve both local recovery techniques and distributed
reliability protocols. In that sense, they both influence the choice of the concurrency
control techniques and are built on top of them. Techniques to provide reliability also
make use of data placement information since the existence of duplicate copies of
the data serve as a safeguard to maintain reliable operation.

Finally, the need for replication protocols arise if data distribution involves replicas.
As indicated above, there is a strong relationship between replication protocols and
concurrency control techniques, since both deal with the consistency of data, but from
different perspectives. Furthermore, the replication protocols influence distributed
reliability techniques such as commit protocols. In fact, it is sometimes suggested
(wrongly, in our view) that replication protocols can be used instead of implementing
distributed commit protocols.

1.6.9 Additional Issues

The above design issues cover what may be called “traditional” distributed database
systems. The environment has changed significantly since these topics started to be
investigated, posing additional challenges and opportunities.

One of the important developments has been the move towards “looser” federation
among data sources, which may also be heterogeneous. As we discuss in the next
section, this has given rise to the development of multidatabase systems (also called
federated databases and data integration systems) that require re-investigation of
some of the fundamental database techniques. These systems constitute an important
part of today’s distributed environment. We discuss database design issues in multi-
database systems (i.e., database integration) in Chapter 4 and the query processing
challenges in Chapter 9.

The growth of the Internet as a fundamental networking platform has raised
important questions about the assumptions underlying distributed database systems.
Two issues are of particular concern to us. One is the re-emergence of peer-to-peer
computing, and the other is the development and growth of the World Wide Web
(web for short). Both of these aim at improving data sharing, but take different

1.7 Distributed DBMS Architecture 21

approaches and pose different data management challenges. We discuss peer-to-peer
data management in Chapter 16 and web data management in Chapter 17.

We should note that peer-to-peer is not a new concept in distributed databases,
as we discuss in the next section. However, their new re-incarnation has significant
differences from the earlier versions. In Chapter 16, it is these new versions that we
focus on.

Finally, as earlier noted, there is a strong relationship between distributed
databases and parallel databases. Although the former assumes each site to be a
single logical computer, most of these installations are, in fact, parallel clusters. Thus,
while most of the book focuses on issues that arise in managing data distributed
across these sites, interesting data management issues exist within a single logical
site that may be a parallel system. We discuss these issues in Chapter 14.

1.7 Distributed DBMS Architecture

The architecture of a system defines its structure. This means that the components of
the system are identified, the function of each component is specified, and the interre-
lationships and interactions among these components are defined. The specification
of the architecture of a system requires identification of the various modules, with
their interfaces and interrelationships, in terms of the data and control flow through
the system.

In this section we develop three “reference” architectures2 for a distributed DBMS:
client/server systems, peer-to-peer distributed DBMS, and multidatabase systems.
These are “idealized” views of a DBMS in that many of the commercially available
systems may deviate from them; however, the architectures will serve as a reasonable
framework within which the issues related to distributed DBMS can be discussed.

We first start with a brief presentation of the “ANSI/SPARC architecture”, which is
a datalogical approach to defining a DBMS architecture – it focuses on the different
user classes and roles and their varying views on data. This architecture is helpful in
putting certain concepts we have discussed so far in their proper perspective. We then
have a short discussion of a generic architecture of a centralized DBMSs, that we
subsequently extend to identify the set of alternative architectures for a distributed
DBMS. Whithin this characterization, we focus on the three alternatives that we
identified above.

1.7.1 ANSI/SPARC Architecture

In late 1972, the Computer and Information Processing Committee (X3) of the Amer-
ican National Standards Institute (ANSI) established a Study Group on Database

2 A reference architecture is commonly created by standards developers to clearly define the
interfaces that need to be standardized.

22 1 Introduction

External
Schema

Conceptual
Schema

 Internal
Schema

Internal
view

Conceptual
view

External
view

External
view

External
view

Users

Fig. 1.8 The ANSI/SPARC Architecture

Management Systems under the auspices of its Standards Planning and Requirements
Committee (SPARC). The mission of the study group was to study the feasibility
of setting up standards in this area, as well as determining which aspects should be
standardized if it was feasible. The study group issued its interim report in 1975
[ANSI/SPARC, 1975], and its final report in 1977 [Tsichritzis and Klug, 1978].
The architectural framework proposed in these reports came to be known as the
“ANSI/SPARC architecture,” its full title being “ANSI/X3/SPARC DBMS Frame-
work.” The study group proposed that the interfaces be standardized, and defined
an architectural framework that contained 43 interfaces, 14 of which would deal
with the physical storage subsystem of the computer and therefore not be considered
essential parts of the DBMS architecture.

A simplified version of the ANSI/SPARC architecture is depicted in Figure 1.8.
There are three views of data: the external view, which is that of the end user, who
might be a programmer; the internal view, that of the system or machine; and
the conceptual view, that of the enterprise. For each of these views, an appropriate
schema definition is required.

At the lowest level of the architecture is the internal view, which deals with the
physical definition and organization of data. The location of data on different storage
devices and the access mechanisms used to reach and manipulate data are the issues
dealt with at this level. At the other extreme is the external view, which is concerned
with how users view the database. An individual user’s view represents the portion of
the database that will be accessed by that user as well as the relationships that the user
would like to see among the data. A view can be shared among a number of users,
with the collection of user views making up the external schema. In between these
two ends is the conceptual schema, which is an abstract definition of the database. It
is the “real world” view of the enterprise being modeled in the database [Yormark,
1977]. As such, it is supposed to represent the data and the relationships among data
without considering the requirements of individual applications or the restrictions
of the physical storage media. In reality, however, it is not possible to ignore these

1.7 Distributed DBMS Architecture 23

requirements completely, due to performance reasons. The transformation between
these three levels is accomplished by mappings that specify how a definition at one
level can be obtained from a definition at another level.

This perspective is important, because it provides the basis for data independence
that we discussed earlier. The separation of the external schemas from the conceptual
schema enables logical data independence, while the separation of the conceptual
schema from the internal schema allows physical data independence.

1.7.2 A Generic Centralized DBMS Architecture

A DBMS is a reentrant program shared by multiple processes (transactions), that
run database programs. When running on a general purpose computer, a DBMS is
interfaced with two other components: the communication subsystem and the operat-
ing system. The communication subsystem permits interfacing the DBMS with other
subsystems in order to communicate with applications. For example, the terminal
monitor needs to communicate with the DBMS to run interactive transactions. The
operating system provides the interface between the DBMS and computer resources
(processor, memory, disk drives, etc.).

The functions performed by a DBMS can be layered as in Figure 1.9, where the
arrows indicate the direction of the data and the control flow. Taking a top-down
approach, the layers are the interface, control, compilation, execution, data access,
and consistency management.

The interface layer manages the interface to the applications. There can be
several interfaces such as, in the case of relational DBMSs discussed in Chapter
2, SQL embedded in a host language, such as C and QBE (Query-by-Example).
Database application programs are executed against external views of the database.
For an application, a view is useful in representing its particular perception of the
database (shared by many applications). A view in relational DBMSs is a virtual
relation derived from base relations by applying relational algebra operations.3 These
concepts are defined more precisely in Chapter 2, but they are usually covered in
undergraduate database courses, so we expect many readers to be familiar with
them. View management consists of translating the user query from external data to
conceptual data.

The control layer controls the query by adding semantic integrity predicates and
authorization predicates. Semantic integrity constraints and authorizations are usually
specified in a declarative language, as discussed in Chapter 5. The output of this layer
is an enriched query in the high-level language accepted by the interface.

The query processing (or compilation) layer maps the query into an optimized
sequence of lower-level operations. This layer is concerned with performance. It

3 Note that this does not mean that the real-world views are, or should be, specified in relational
algebra. On the contrary, they are specified by some high-level data language such as SQL. The
translation from one of these languages to relational algebra is now well understood, and the effects
of the view definition can be specified in terms of relational algebra operations.

24 1 Introduction

Applications

User Interfaces

View Management

Semantic Integrity Control

Authorization Checking

Query Decomposition and Optimization

Access Plan Management

Access Plan Execution Control

Algebra Operation Execution

Buffer Management

Access Methods

Concurrency Control

Logging

retrieval/update

retrieval/update

relational algebra

relational calculus

relational calculus

Interface

Control

Compilation

Execution

Data Access

Consistency

Results

Database

Fig. 1.9 Functional Layers of a Centralized DBMS

decomposes the query into a tree of algebra operations and tries to find the “optimal”
ordering of the operations. The result is stored in an access plan. The output of this
layer is a query expressed in lower-level code (algebra operations).

The execution layer directs the execution of the access plans, including transaction
management (commit, restart) and synchronization of algebra operations. It interprets
the relational operations by calling the data access layer through the retrieval and
update requests.

The data access layer manages the data structures that implement the files, indices,
etc. It also manages the buffers by caching the most frequently accessed data. Careful
use of this layer minimizes the access to disks to get or write data.

Finally, the consistency layer manages concurrency control and logging for update
requests. This layer allows transaction, system, and media recovery after failure.

1.7 Distributed DBMS Architecture 25

1.7.3 Architectural Models for Distributed DBMSs

We now consider the possible ways in which a distributed DBMS may be architected.
We use a classification (Figure 1.10) that organizes the systems as characterized
with respect to (1) the autonomy of local systems, (2) their distribution, and (3) their
heterogeneity.

Distribution

Heterogeneity

Autonomy

Client/Server

Systems

Multidatabase

Systems

Peer-to-Peer

DDBSs

Fig. 1.10 DBMS Implementation Alternatives

1.7.4 Autonomy

Autonomy, in this context, refers to the distribution of control, not of data. It indi-
cates the degree to which individual DBMSs can operate independently. Autonomy
is a function of a number of factors such as whether the component systems (i.e.,
individual DBMSs) exchange information, whether they can independently exe-
cute transactions, and whether one is allowed to modify them. Requirements of an
autonomous system have been specified as follows [Gligor and Popescu-Zeletin,
1986]:

1. The local operations of the individual DBMSs are not affected by their partic-
ipation in the distributed system.

26 1 Introduction

2. The manner in which the individual DBMSs process queries and optimize
them should not be affected by the execution of global queries that access
multiple databases.

3. System consistency or operation should not be compromised when individual
DBMSs join or leave the distributed system.

On the other hand, the dimensions of autonomy can be specified as follows [Du
and Elmagarmid, 1989]:

1. Design autonomy: Individual DBMSs are free to use the data models and
transaction management techniques that they prefer.

2. Communication autonomy: Each of the individual DBMSs is free to make its
own decision as to what type of information it wants to provide to the other
DBMSs or to the software that controls their global execution.

3. Execution autonomy: Each DBMS can execute the transactions that are sub-
mitted to it in any way that it wants to.

We will use a classification that covers the important aspects of these features.
One alternative is tight integration, where a single-image of the entire database
is available to any user who wants to share the information, which may reside in
multiple databases. From the users’ perspective, the data are logically integrated in
one database. In these tightly-integrated systems, the data managers are implemented
so that one of them is in control of the processing of each user request even if
that request is serviced by more than one data manager. The data managers do
not typically operate as independent DBMSs even though they usually have the
functionality to do so.

Next we identify semiautonomous systems that consist of DBMSs that can (and
usually do) operate independently, but have decided to participate in a federation to
make their local data sharable. Each of these DBMSs determine what parts of their
own database they will make accessible to users of other DBMSs. They are not fully
autonomous systems because they need to be modified to enable them to exchange
information with one another.

The last alternative that we consider is total isolation, where the individual systems
are stand-alone DBMSs that know neither of the existence of other DBMSs nor how
to communicate with them. In such systems, the processing of user transactions that
access multiple databases is especially difficult since there is no global control over
the execution of individual DBMSs.

It is important to note at this point that the three alternatives that we consider for
autonomous systems are not the only possibilities. We simply highlight the three
most popular ones.

1.7 Distributed DBMS Architecture 27

1.7.5 Distribution

Whereas autonomy refers to the distribution (or decentralization) of control, the
distribution dimension of the taxonomy deals with data. Of course, we are considering
the physical distribution of data over multiple sites; as we discussed earlier, the user
sees the data as one logical pool. There are a number of ways DBMSs have been
distributed. We abstract these alternatives into two classes: client/server distribution
and peer-to-peer distribution (or full distribution). Together with the non-distributed
option, the taxonomy identifies three alternative architectures.

The client/server distribution concentrates data management duties at servers
while the clients focus on providing the application environment including the
user interface. The communication duties are shared between the client machines
and servers. Client/server DBMSs represent a practical compromise to distributing
functionality. There are a variety of ways of structuring them, each providing a
different level of distribution. With respect to the framework, we abstract these
differences and leave that discussion to Section 1.7.8, which we devote to client/server
DBMS architectures. What is important at this point is that the sites on a network are
distinguished as “clients” and “servers” and their functionality is different.

In peer-to-peer systems, there is no distinction of client machines versus servers.
Each machine has full DBMS functionality and can communicate with other ma-
chines to execute queries and transactions. Most of the very early work on distributed
database systems have assumed peer-to-peer architecture. Therefore, our main focus
in this book are on peer-to-peer systems (also called fully distributed), even though
many of the techniques carry over to client/server systems as well.

1.7.6 Heterogeneity

Heterogeneity may occur in various forms in distributed systems, ranging from
hardware heterogeneity and differences in networking protocols to variations in data
managers. The important ones from the perspective of this book relate to data models,
query languages, and transaction management protocols. Representing data with
different modeling tools creates heterogeneity because of the inherent expressive
powers and limitations of individual data models. Heterogeneity in query languages
not only involves the use of completely different data access paradigms in different
data models (set-at-a-time access in relational systems versus record-at-a-time access
in some object-oriented systems), but also covers differences in languages even
when the individual systems use the same data model. Although SQL is now the
standard relational query language, there are many different implementations and
every vendor’s language has a slightly different flavor (sometimes even different
semantics, producing different results).

28 1 Introduction

1.7.7 Architectural Alternatives

The distribution of databases, their possible heterogeneity, and their autonomy are
orthogonal issues. Consequently, following the above characterization, there are
18 different possible architectures. Not all of these architectural alternatives that
form the design space are meaningful. Furthermore, not all are relevant from the
perspective of this book.

In Figure 1.10, we have identified three alternative architectures that are the focus
of this book and that we discuss in more detail in the next three subsections: (A0,
D1, H0) that corresponds to client/server distributed DBMSs, (A0, D2, H0) that
is a peer-to-peer distributed DBMS and (A2, D2, H1) which represents a (peer-to-
peer) distributed, heterogeneous multidatabase system. Note that we discuss the
heterogeneity issues within the context of one system architecture, although the issue
arises in other models as well.

1.7.8 Client/Server Systems

Client/server DBMSs entered the computing scene at the beginning of 1990’s and
have made a significant impact on both the DBMS technology and the way we do
computing. The general idea is very simple and elegant: distinguish the functionality
that needs to be provided and divide these functions into two classes: server functions
and client functions. This provides a two-level architecture which makes it easier to
manage the complexity of modern DBMSs and the complexity of distribution.

As with any highly popular term, client/server has been much abused and has
come to mean different things. If one takes a process-centric view, then any process
that requests the services of another process is its client and vice versa. However, it
is important to note that “client/server computing” and “client/server DBMS,” as it is
used in our context, do not refer to processes, but to actual machines. Thus, we focus
on what software should run on the client machines and what software should run on
the server machine.

Put this way, the issue is clearer and we can begin to study the differences in client
and server functionality. The functionality allocation between clients and serves
differ in different types of distributed DBMSs (e.g., relational versus object-oriented).
In relational systems, the server does most of the data management work. This means
that all of query processing and optimization, transaction management and storage
management is done at the server. The client, in addition to the application and the
user interface, has a DBMS client module that is responsible for managing the data
that is cached to the client and (sometimes) managing the transaction locks that may
have been cached as well. It is also possible to place consistency checking of user
queries at the client side, but this is not common since it requires the replication
of the system catalog at the client machines. Of course, there is operating system
and communication software that runs on both the client and the server, but we only
focus on the DBMS related functionality. This architecture, depicted in Figure 1.11,

1.7 Distributed DBMS Architecture 29

Database

SQL

queries

Semantic Data Controller

Query Optimizer

Transaction Manager

Recovery Manager

Runtime Support Processor

Communication SoftwareO

p

e

r

a

t

i

n

g

S y s t e m

Communication Software

Client DBMS

User

Interface

Application

Program
…

O
p
e
ra

ti
n
g

S
y
s
te

m

Result

relation

Fig. 1.11 Client/Server Reference Architecture

is quite common in relational systems where the communication between the clients
and the server(s) is at the level of SQL statements. In other words, the client passes
SQL queries to the server without trying to understand or optimize them. The server
does most of the work and returns the result relation to the client.

There are a number of different types of client/server architecture. The simplest is
the case where there is only one server which is accessed by multiple clients. We call
this multiple client/single server. From a data management perspective, this is not
much different from centralized databases since the database is stored on only one
machine (the server) that also hosts the software to manage it. However, there are
some (important) differences from centralized systems in the way transactions are
executed and caches are managed. We do not consider such issues at this point. A
more sophisticated client/server architecture is one where there are multiple servers in
the system (the so-called multiple client/multiple server approach). In this case, two
alternative management strategies are possible: either each client manages its own
connection to the appropriate server or each client knows of only its “home server”
which then communicates with other servers as required. The former approach
simplifies server code, but loads the client machines with additional responsibilities.
This leads to what has been called “heavy client” systems. The latter approach, on

30 1 Introduction

the other hand, concentrates the data management functionality at the servers. Thus,
the transparency of data access is provided at the server interface, leading to “light
clients.”

From a datalogical perspective, client/server DBMSs provide the same view of
data as do peer-to-peer systems that we discuss next. That is, they give the user the
appearance of a logically single database, while at the physical level data may be
distributed. Thus the primary distinction between client/server systems and peer-
to-peer ones is not in the level of transparency that is provided to the users and
applications, but in the architectural paradigm that is used to realize this level of
transparency.

Client/server can be naturally extended to provide for a more efficient function
distribution on different kinds of servers: client servers run the user interface (e.g.,
web servers), application servers run application programs, and database servers
run database management functions. This leads to the present trend in three-tier
distributed system architecture, where sites are organized as specialized servers
rather than as general-purpose computers.

The original idea, which is to offload the database management functions to a
special server, dates back to the early 1970s [Canaday et al., 1974]. At the time, the
computer on which the database system was run was called the database machine,
database computer, or backend computer, while the computer that ran the applica-
tions was called the host computer. More recent terms for these are the database
server and application server, respectively. Figure 1.12 illustrates a simple view of
the database server approach, with application servers connected to one database
server via a communication network.

The database server approach, as an extension of the classical client/server archi-
tecture, has several potential advantages. First, the single focus on data management
makes possible the development of specific techniques for increasing data reliability
and availability, e.g. using parallelism. Second, the overall performance of database
management can be significantly enhanced by the tight integration of the database
system and a dedicated database operating system. Finally, a database server can
also exploit recent hardware architectures, such as multiprocessors or clusters of PC
servers to enhance both performance and data availability.

Although these advantages are significant, they can be offset by the overhead
introduced by the additional communication between the application and the data
servers. This is an issue, of course, in classical client/server systems as well, but
in this case there is an additional layer of communication to worry about. The
communication cost can be amortized only if the server interface is sufficiently high
level to allow the expression of complex queries involving intensive data processing.

The application server approach (indeed, a n-tier distributed approach) can be
extended by the introduction of multiple database servers and multiple application
servers (Figure 1.13), as can be done in classical client/server architectures. In this
case, it is typically the case that each application server is dedicated to one or a few
applications, while database servers operate in the multiple server fashion discussed
above.

1.7 Distributed DBMS Architecture 31

network

Application

server

Database

server

Client Client...

network

Fig. 1.12 Database Server Approach

network

Database

server

Client

Application

server

Client...

network

Database

server

Database

server

Application

server
...

Fig. 1.13 Distributed Database Servers

32 1 Introduction

1.7.9 Peer-to-Peer Systems

If the term “client/server” is loaded with different interpretations, “peer-to-peer” is
even worse as its meaning has changed and evolved over the years. As noted earlier,
the early works on distributed DBMSs all focused on peer-to-peer architectures where
there was no differentiation between the functionality of each site in the system4.
After a decade of popularity of client/server computing, peer-to-peer have made
a comeback in the last few years (primarily spurred by file sharing applications)
and some have even positioned peer-to-peer data management as an alternative
to distributed DBMSs. While this may be a stretch, modern peer-to-peer systems
have two important differences from their earlier relatives. The first is the massive
distribution in current systems. While in the early days we focused on a few (perhaps
at most tens of) sites, current systems consider thousands of sites. The second is the
inherent heterogeneity of every aspect of the sites and their autonomy. While this has
always been a concern of distributed databases, as discussed earlier, coupled with
massive distribution, site heterogeneity and autonomy take on an added significance,
disallowing some of the approaches from consideration.

Discussing peer-to-peer database systems within this backdrop poses real chal-
lenges; the unique issues of database management over the “modern” peer-to-peer
architectures are still being investigated. What we choose to do, in this book, is to
initially focus on the classical meaning of peer-to-peer (the same functionality of
each site), since the principles and fundamental techniques of these systems are
very similar to those of client/server systems, and discuss the modern peer-to-peer
database issues in a separate chapter (Chapter 16).

Let us start the description of the architecture by looking at the data organizational
view. We first note that the physical data organization on each machine may be, and
probably is, different. This means that there needs to be an individual internal schema
definition at each site, which we call the local internal schema (LIS). The enterprise
view of the data is described by the global conceptual schema (GCS), which is global
because it describes the logical structure of the data at all the sites.

To handle data fragmentation and replication, the logical organization of data
at each site needs to be described. Therefore, there needs to be a third layer in the
architecture, the local conceptual schema (LCS). In the architectural model we have
chosen, then, the global conceptual schema is the union of the local conceptual
schemas. Finally, user applications and user access to the database is supported by
external schemas (ESs), defined as being above the global conceptual schema.

This architecture model, depicted in Figure 1.14, provides the levels of trans-
parency discussed earlier. Data independence is supported since the model is an
extension of ANSI/SPARC, which provides such independence naturally. Location
and replication transparencies are supported by the definition of the local and global
conceptual schemas and the mapping in between. Network transparency, on the
other hand, is supported by the definition of the global conceptual schema. The user

4 In fact, in the first edition of this book which appeared in early 1990 and whose writing was
completed in 1989, there wasn’t a single mention of the term “client/server”.

1.7 Distributed DBMS Architecture 33

...

...

...

ES
1 2 n

GCS

LCS LCS LCS
1 2 n

LIS
1

LIS
2

LIS
n

ES ES

Fig. 1.14 Distributed Database Reference Architecture

queries data irrespective of its location or of which local component of the distributed
database system will service it. As mentioned before, the distributed DBMS translates
global queries into a group of local queries, which are executed by distributed DBMS
components at different sites that communicate with one another.

The detailed components of a distributed DBMS are shown in Figure 1.15. One
component handles the interaction with users, and another deals with the storage. The
first major component, which we call the user processor, consists of four elements:

1. The user interface handler is responsible for interpreting user commands as
they come in, and formatting the result data as it is sent to the user.

2. The semantic data controller uses the integrity constraints and authorizations
that are defined as part of the global conceptual schema to check if the user
query can be processed. This component, which is studied in detail in Chapter
5, is also responsible for authorization and other functions.

3. The global query optimizer and decomposer determines an execution strategy
to minimize a cost function, and translates the global queries into local ones
using the global and local conceptual schemas as well as the global directory.
The global query optimizer is responsible, among other things, for generating
the best strategy to execute distributed join operations. These issues are
discussed in Chapters 6 through 8.

4. The distributed execution monitor coordinates the distributed execution of the
user request. The execution monitor is also called the distributed transaction
manager. In executing queries in a distributed fashion, the execution monitors
at various sites may, and usually do, communicate with one another.

The second major component of a distributed DBMS is the data processor and
consists of three elements:

34 1 Introduction

USER

User
requests

System
responses

USER
PROCESSOR

DATA
PROCESSOR

User Interface
Handler

Semantic Data
Controller

Global Query
Optimizer

Global Execution
Monitor

Local
Recovery Manager

Local Internal
Schema

Runtime Support
Processor

External
Schema

Global
Conceptual

Schema

System
Log

Local
Query Processor

Local
Conceptual

Schema

Fig. 1.15 Components of a Distributed DBMS

1.7 Distributed DBMS Architecture 35

1. The local query optimizer, which actually acts as the access path selector,
is responsible for choosing the best access path5 to access any data item
(touched upon briefly in Chapter 8).

2. The local recovery manager is responsible for making sure that the local
database remains consistent even when failures occur (Chapter 12).

3. The run-time support processor physically accesses the database according
to the physical commands in the schedule generated by the query optimizer.
The run-time support processor is the interface to the operating system and
contains the database buffer (or cache) manager, which is responsible for
maintaining the main memory buffers and managing the data accesses.

It is important to note, at this point, that our use of the terms “user processor”
and “data processor” does not imply a functional division similar to client/server
systems. These divisions are merely organizational and there is no suggestion that
they should be placed on different machines. In peer-to-peer systems, one expects
to find both the user processor modules and the data processor modules on each
machine. However, there have been suggestions to separate “query-only sites” in a
system from full-functionality ones. In this case, the former sites would only need to
have the user processor.

In client/server systems where there is a single server, the client has the user
interface manager while the server has all of the data processor functionality as
well as semantic data controller; there is no need for the global query optimizer
or the global execution monitor. If there are multiple servers and the home server
approach described in the previous section is employed, then each server hosts all of
the modules except the user interface manager that resides on the client. If, however,
each client is expected to contact individual servers on its own, then, most likely,
the clients will host the full user processor functionality while the data processor
functionality resides in the servers.

1.7.10 Multidatabase System Architecture

Multidatabase systems (MDBS) represent the case where individual DBMSs (whether
distributed or not) are fully autonomous and have no concept of cooperation; they may
not even “know” of each other’s existence or how to talk to each other. Our focus is,
naturally, on distributed MDBSs, which is what the term will refer to in the remainder.
In most current literature, one finds the term data integration system used instead.
We avoid using that term since data integration systems consider non-database data
sources as well. Our focus is strictly on databases. We discuss these systems and
their relationship to database integration in Chapter 4. We note, however, that there
is considerable variability of the use of the term “multidatabase” in literature. In this

5 The term access path refers to the data structures and the algorithms that are used to access the
data. A typical access path, for example, is an index on one or more attributes of a relation.

36 1 Introduction

book, we use it consistently as defined above, which may devitate from its use in
some of the existing literature.

The differences in the level of autonomy between the distributed multi-DBMSs
and distributed DBMSs are also reflected in their architectural models. The fun-
damental difference relates to the definition of the global conceptual schema. In
the case of logically integrated distributed DBMSs, the global conceptual schema
defines the conceptual view of the entire database, while in the case of distributed
multi-DBMSs, it represents only the collection of some of the local databases that
each local DBMS wants to share. The individual DBMSs may choose to make some
of their data available for access by others (i.e., federated database architectures) by
defining an export schema [Heimbigner and McLeod, 1985]. Thus the definition of a
global database is different in MDBSs than in distributed DBMSs. In the latter, the
global database is equal to the union of local databases, whereas in the former it is
only a (possibly proper) subset of the same union. In a MDBS, the GCS (which is
also called a mediated schema) is defined by integrating either the external schemas
of local autonomous databases or (possibly parts of their) local conceptual schemas.

Furthermore, users of a local DBMS define their own views on the local database
and do not need to change their applications if they do not want to access data from
another database. This is again an issue of autonomy.

Designing the global conceptual schema in multidatabase systems involves the
integration of either the local conceptual schemas or the local external schemas
(Figure 1.16). A major difference between the design of the GCS in multi-DBMSs
and in logically integrated distributed DBMSs is that in the former the mapping is
from local conceptual schemas to a global schema. In the latter, however, mapping
is in the reverse direction. As we discuss in Chapters 3 and 4, this is because the
design in the former is usually a bottom-up process, whereas in the latter it is usually
a top-down procedure. Furthermore, if heterogeneity exists in the multidatabase
system, a canonical data model has to be found to define the GCS.

...

...

GCS

LCS
1 LCS

n

LIS
1

LIS
n

...GES
2

GES
3

GES
1

...LES
11 ...LES

12
LES

13
LES

n1
LES

n2
LES

nm

Fig. 1.16 MDBS Architecture with a GCS

1.7 Distributed DBMS Architecture 37

Once the GCS has been designed, views over the global schema can be defined
for users who require global access. It is not necessary for the GES and GCS to be
defined using the same data model and language; whether they do or not determines
whether the system is homogeneous or heterogeneous.

If heterogeneity exists in the system, then two implementation alternatives exist:
unilingual and multilingual. A unilingual multi-DBMS requires the users to utilize
possibly different data models and languages when both a local database and the
global database are accessed. The identifying characteristic of unilingual systems is
that any application that accesses data from multiple databases must do so by means
of an external view that is defined on the global conceptual schema. This means that
the user of the global database is effectively a different user than those who access
only a local database, utilizing a different data model and a different data language.

An alternative is multilingual architecture, where the basic philosophy is to permit
each user to access the global database (i.e., data from other databases) by means
of an external schema, defined using the language of the user’s local DBMS. The
GCS definition is quite similar in the multilingual architecture and the unilingual
approach, the major difference being the definition of the external schemas, which
are described in the language of the external schemas of the local database. Assuming
that the definition is purely local, a query issued according to a particular schema is
handled exactly as any query in the centralized DBMSs. Queries against the global
database are made using the language of the local DBMS, but they generally require
some processing to be mapped to the global conceptual schema.

The component-based architectural model of a multi-DBMS is significantly dif-
ferent from a distributed DBMS. The fundamental difference is the existence of
full-fledged DBMSs, each of which manages a different database. The MDBS pro-
vides a layer of software that runs on top of these individual DBMSs and provides
users with the facilities of accessing various databases (Figure 1.17). Note that in a
distributed MDBS, the multi-DBMS layer may run on multiple sites or there may be
central site where those services are offered. Also note that as far as the individual
DBMSs are concerned, the MDBS layer is simply another application that submits
requests and receives answers.

A popular implementation architecture for MDBSs is the mediator/wrapper ap-
proach (Figure 1.18) [Wiederhold, 1992]. A mediator “is a software module that
exploits encoded knowledge about certain sets or subsets of data to create information
for a higher layer of applications.” Thus, each mediator performs a particular function
with clearly defined interfaces. Using this architecture to implement a MDBS, each
module in the multi-DBMS layer of Figure 1.17 is realized as a mediator. Since
mediators can be built on top of other mediators, it is possible to construct a layered
implementation. In mapping this architecture to the datalogical view of Figure 1.16,
the mediator level implements the GCS. It is this level that handles user queries over
the GCS and performs the MDBS functionality.

The mediators typically operate using a common data model and interface lan-
guage. To deal with potential heterogeneities of the source DBMSs, wrappers are
implemented whose task is to provide a mapping between a source DBMSs view and
the mediators’ view. For example, if the source DBMS is a relational one, but the

38 1 Introduction

USER

User
requests

System
responses

Multi-DBMS
Layer

...
DBMS DBMS

Fig. 1.17 Components of an MDBS

mediator implementations are object-oriented, the required mappings are established
by the wrappers. The exact role and function of mediators differ from one imple-
mentation to another. In some cases, thin mediators have been implemented who do
nothing more than translation. In other cases, wrappers take over the execution of
some of the query functionality.

One can view the collection of mediators as a middleware layer that provides
services above the source systems. Middleware is a topic that has been the subject of
significant study in the past decade and very sophisticated middleware systems have
been developed that provide advanced services for development of distributed appli-
cations. The mediators that we discuss only represent a subset of the functionality
provided by these systems.

1.8 Bibliographic Notes

There are not many books on distributed DBMSs. Ceri and Pelagatti’s book [Ceri
and Pelagatti, 1983] was the first on this topic though it is now dated. The book
by Bell and Grimson [Bell and Grimson, 1992] also provides an overview of the
topics addressed here. In addition, almost every database book now has a chapter on
distributed DBMSs. A brief overview of the technology is provided in [Özsu and
Valduriez, 1997]. Our papers [Özsu and Valduriez, 1994, 1991] provide discussions
of the state-of-the-art at the time they were written.

Database design is discussed in an introductory manner in [Levin and Morgan,
1975] and more comprehensively in [Ceri et al., 1987]. A survey of the file distribu-
tion algorithms is given in [Dowdy and Foster, 1982]. Directory management has not
been considered in detail in the research community, but general techniques can be
found in Chu and Nahouraii [1975] and [Chu, 1976]. A survey of query processing

1.8 Bibliographic Notes 39

USER

User

requests
System

responses

...

Wrapper Wrapper Wrapper

Mediator Mediator

Mediator Mediator

DBMS DBMS DBMS DBMS

Fig. 1.18 Mediator/Wrapper Architecture

techniques can be found in [Sacco and Yao, 1982]. Concurrency control algorithms
are reviewed in [Bernstein and Goodman, 1981] and [Bernstein et al., 1987]. Dead-
lock management has also been the subject of extensive research; an introductory
paper is [Isloor and Marsland, 1980] and a widely quoted paper is [Obermarck,
1982]. For deadlock detection, good surveys are [Knapp, 1987] and [Elmagarmid,
1986]. Reliability is one of the issues discussed in [Gray, 1979], which is one of the
landmark papers in the field. Other important papers on this topic are [Verhofstadt,
1978] and [Härder and Reuter, 1983]. [Gray, 1979] is also the first paper discussing
the issues of operating system support for distributed databases; the same topic is
addressed in [Stonebraker, 1981]. Unfortunately, both papers emphasize centralized
database systems.

There have been a number of architectural framework proposals. Some of the inter-
esting ones include Schreiber’s quite detailed extension of the ANSI/SPARC frame-
work which attempts to accommodate heterogeneity of the data models [Schreiber,
1977], and the proposal by Mohan and Yeh [Mohan and Yeh, 1978]. As expected,
these date back to the early days of the introduction of distributed DBMS technology.
The detailed component-wise system architecture given in Figure 1.15 derives from

40 1 Introduction

[Rahimi, 1987]. An alternative to the classification that we provide in Figure 1.10
can be found in [Sheth and Larson, 1990].

Most of the discussion on architectural models for multi-DBMSs is from [Özsu
and Barker, 1990]. Other architectural discussions on multi-DBMSs are given in
[Gligor and Luckenbaugh, 1984], [Litwin, 1988], and [Sheth and Larson, 1990]. All
of these papers provide overview discussions of various prototype and commercial
systems. An excellent overview of heterogeneous and federated database systems is
[Sheth and Larson, 1990].

Chapter 2
Background

As indicated in the previous chapter, there are two technological bases for distributed
database technology: database management and computer networks. In this chapter,
we provide an overview of the concepts in these two fields that are more important
from the perspective of distributed database technology.

2.1 Overview of Relational DBMS

The aim of this section is to define the terminology and framework used in subsequent
chapters, since most of the distributed database technology has been developed using
the relational model. In later chapters, when appropriate, we introduce other models.
Our focus here is on the language and operators.

2.1.1 Relational Database Concepts

A database is a structured collection of data related to some real-life phenomena that
we are trying to model. A relational database is one where the database structure is
in the form of tables. Formally, a relation R defined over n sets D1,D2, . . . ,Dn (not
necessarily distinct) is a set of n-tuples (or simply tuples) 〈d1,d2, . . . ,dn〉 such that
d1 ∈ D1,d2 ∈ D2, . . . ,dn ∈ Dn.

Example 2.1. As an example we use a database that models an engineering company.
The entities to be modeled are the employees (EMP) and projects (PROJ). For
each employee, we would like to keep track of the employee number (ENO), name
(ENAME), title in the company (TITLE), salary (SAL), identification number of
the project(s) the employee is working on (PNO), responsibility within the project
(RESP), and duration of the assignment to the project (DUR) in months. Similarly,
for each project we would like to store the project number (PNO), the project name
(PNAME), and the project budget (BUDGET).

41
DOI 10.1007/978-1-4419-8834-8_2, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

42 2 Background

ENO

EMP

ENAME TITLE SAL PNO RESP DUR

PROJ

PNO PNAME BUDGET

Fig. 2.1 Sample Database Scheme

The relation schemas for this database can be defined as follows:

EMP(ENO, ENAME, TITLE, SAL, PNO, RESP, DUR)

PROJ(PNO,PNAME, BUDGET)

In relation scheme EMP, there are seven attributes: ENO, ENAME, TITLE, SAL,
PNO, RESP, DUR. The values of ENO come from the domain of all valid employee
numbers, say D1, the values of ENAME come from the domain of all valid names,
say D2, and so on. Note that each attribute of each relation does not have to come
from a distinct domain. Various attributes within a relation or from a number of
relations may be defined over the same domain. �

The key of a relation scheme is the minimum non-empty subset of its attributes
such that the values of the attributes comprising the key uniquely identify each tuple
of the relation. The attributes that make up key are called prime attributes. The
superset of a key is usually called a superkey. Thus in our example the key of PROJ
is PNO, and that of EMP is the set (ENO, PNO). Each relation has at least one key.
Sometimes, there may be more than one possibility for the key. In such cases, each
alternative is considered a candidate key, and one of the candidate keys is chosen
as the primary key, which we denote by underlining. The number of attributes of a
relation defines its degree, whereas the number of tuples of the relation defines its
cardinality.

In tabular form, the example database consists of two tables, as shown in Figure
2.1. The columns of the tables correspond to the attributes of the relations; if there
were any information entered as the rows, they would correspond to the tuples. The
empty table, showing the structure of the table, corresponds to the relation schema;
when the table is filled with rows, it corresponds to a relation instance. Since the
information within a table varies over time, many instances can be generated from
one relation scheme. Note that from now on, the term relation refers to a relation
instance. In Figure 2.2 we depict instances of the two relations that are defined in
Figure 2.1.

An attribute value may be undefined. This lack of definition may have various
interpretations, the most common being “unknown” or “not applicable”. This special
value of the attribute is generally referred to as the null value. The representation of
a null value must be different from any other domain value, and special care should
be given to differentiate it from zero. For example, value “0” for attribute DUR is

2.1 Overview of Relational DBMS 43

ENO

EMP

ENAME TITLE SAL

J. Doe Elect. Eng. 40000

M. Smith 34000

M. Smith

Analyst

Analyst 34000

A. Lee Mech. Eng. 27000

A. Lee Mech. Eng. 27000

J. Miller Programmer 24000

B. Casey Syst. Anal. 34000

L. Chu Elect. Eng. 40000

R. Davis Mech. Eng. 27000

E1

E2

E2

E3

E3

E4

E5

E6

E7

E8 J. Jones Syst. Anal. 34000

24

PNO RESP DUR

P1 Manager 12

P1 Analyst

P2 Analyst 6

P3 Consultant 10

P4 Engineer 48

P2 Programmer 18

P2 Manager 24

P4 Manager 48

P3 Engineer 36

P3 Manager 40

PROJ

PNO PNAME BUDGET

P1 Instrumentation 150000

P2 Database Develop. 135000

P3 CAD/CAM 250000

P4 Maintenance 310000

Fig. 2.2 Sample Database Instance

known information (e.g., in the case of a newly hired employee), while value “null”
for DUR means unknown. Supporting null values is an important feature necessary
to deal with maybe queries [Codd, 1979].

2.1.2 Normalization

The aim of normalization is to eliminate various anomalies (or undesirable aspects)
of a relation in order to obtain “better” relations. The following four problems might
exist in a relation scheme:

1. Repetition anomaly. Certain information may be repeated unnecessarily. Con-
sider, for example, the EMP relation in Figure 2.2. The name, title, and salary
of an employee are repeated for each project on which this person serves. This
is obviously a waste of storage and is contrary to the spirit of databases.

44 2 Background

2. Update anomaly. As a consequence of the repetition of data, performing
updates may be troublesome. For example, if the salary of an employee
changes, multiple tuples have to be updated to reflect this change.

3. Insertion anomaly. It may not be possible to add new information to the
database. For example, when a new employee joins the company, we cannot
add personal information (name, title, salary) to the EMP relation unless an
appointment to a project is made. This is because the key of EMP includes
the attribute PNO, and null values cannot be part of the key.

4. Deletion anomaly. This is the converse of the insertion anomaly. If an em-
ployee works on only one project, and that project is terminated, it is not
possible to delete the project information from the EMP relation. To do so
would result in deleting the only tuple about the employee, thereby resulting
in the loss of personal information we might want to retain.

Normalization transforms arbitrary relation schemes into ones without these
problems. A relation with one or more of the above mentioned anomalies is split into
two or more relations of a higher normal form. A relation is said to be in a normal
form if it satisfies the conditions associated with that normal form. Codd initially
defined the first, second, and third normal forms (1NF, 2NF, and 3NF, respectively).
Boyce and Codd [Codd, 1974] later defined a modified version of the third normal
form, commonly known as the Boyce-Codd normal form (BCNF). This was followed
by the definition of the fourth (4NF) [Fagin, 1977] and fifth normal forms (5NF)
[Fagin, 1979].

The normal forms are based on certain dependency structures. BCNF and lower
normal forms are based on functional dependencies (FDs), 4NF is based on multi-
valued dependencies, and 5NF is based on projection-join dependencies. We only
introduce functional dependency, since that is the only relevant one for the example
we are considering.

Let R be a relation defined over the set of attributes A = {A1,A2, . . . ,An} and let
X ⊂ A, Y ⊂ A. If for each value of X in R, there is only one associated Y value, we
say that “X functionally determines Y” or that “Y is functionally dependent on X .”
Notationally, this is shown as X → Y . The key of a relation functionally determines
the non-key attributes of the same relation.

Example 2.2. For example, in the PROJ relation of Example 2.1 (one can observe
these in Figure 2.2 as well), the valid FD is

PNO→ (PNAME, BUDGET)

In the EMP relation we have

(ENO, PNO)→ (ENAME,TITLE,SAL,RESP,DUR)

This last FD is not the only FD in EMP, however. If each employee is given unique
employee numbers, we can write

2.1 Overview of Relational DBMS 45

ENO→ (ENAME, TITLE, SAL)

(ENO, PNO)→ (RESP, DUR)

It may also happen that the salary for a given position is fixed, which gives rise to
the FD

TITLE→ SAL
�

We do not discuss the normal forms or the normalization algorithms in detail;
these can be found in database textbooks. The following example shows the result of
normalization on the sample database that we introduced in Example 2.1.

Example 2.3. The following set of relation schemes are normalized into BCNF with
respect to the functional dependencies defined over the relations.

EMP(ENO, ENAME, TITLE)

PAY(TITLE, SAL)

PROJ(PNO, PNAME, BUDGET)

ASG(ENO, PNO, RESP, DUR)

The normalized instances of these relations are shown in Figure 2.3. �

2.1.3 Relational Data Languages

Data manipulation languages developed for the relational model (commonly called
query languages) fall into two fundamental groups: relational algebra languages and
relational calculus languages. The difference between them is based on how the user
query is formulated. The relational algebra is procedural in that the user is expected
to specify, using certain high-level operators, how the result is to be obtained. The
relational calculus, on the other hand, is non-procedural; the user only specifies the
relationships that should hold in the result. Both of these languages were originally
proposed by Codd [1970], who also proved that they were equivalent in terms of
expressive power [Codd, 1972].

2.1.3.1 Relational Algebra

Relational algebra consists of a set of operators that operate on relations. Each
operator takes one or two relations as operands and produces a result relation, which,
in turn, may be an operand to another operator. These operations permit the querying
and updating of a relational database.

46 2 Background

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E2 M. Smith Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E5 B. Casey Syst. Anal.

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP

TITLE SAL

PAY

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

PROJ

PNO PNAME BUDGET

P1 Instrumentation 150000

P2 Database Develop. 135000

P3 CAD/CAM 250000

P4 Maintenance 310000

ENO PNO RESP

E1 P1 Manager 12

DUR

E2 P1 Analyst 24

E2 P2 Analyst 6

E3 P3 Consultant 10

E3 P4 Engineer 48

E4 P2 Programmer 18

E5 P2 Manager 24

E6 P4 Manager 48

E7 P3 Engineer 36

E8 P3 Manager 40

ASG

Fig. 2.3 Normalized Relations

There are five fundamental relational algebra operators and five others that can be
defined in terms of these. The fundamental operators are selection, projection, union,
set difference, and Cartesian product. The first two of these operators are unary
operators, and the last three are binary operators. The additional operators that can be
defined in terms of these fundamental operators are intersection, θ − join, natural
join, semijoin and division. In practice, relational algebra is extended with operators
for grouping or sorting the results, and for performing arithmetic and aggregate
functions. Other operators, such as outer join and transitive closure, are sometimes
used as well to provide additional functionality. We only discuss the more common
operators.

The operands of some of the binary relations should be union compatible. Two
relations R and S are union compatible if and only if they are of the same degree
and the i-th attribute of each is defined over the same domain. The second part of
the definition holds, obviously, only when the attributes of a relation are identified
by their relative positions within the relation and not by their names. If relative
ordering of attributes is not important, it is necessary to replace the second part of the
definition by the phrase “the corresponding attributes of the two relations should be
defined over the same domain.” The correspondence is defined rather loosely here.

Many operator definitions refer to “formula”, which also appears in relational
calculus expressions we discuss later. Thus, let us define precisely, at this point, what
we mean by a formula. We define a formula within the context of first-order predicate

2.1 Overview of Relational DBMS 47

calculus (since we use that formalism later), and follow the notation of Gallaire et al.
[1984]. First-order predicate calculus is based on a symbol alphabet that consists of
(1) variables, constants, functions, and predicate symbols; (2) parentheses; (3) the
logical connectors ∧ (and), ∨ (or), ¬ (not),→ (implication), and↔ (equivalence);
and (4) quantifiers ∀ (for all) and ∃ (there exists). A term is either a constant or a
variable. Recursively, if f is an n-ary function and t1, . . . , tn are terms, f (t1, . . . , tn)
is also a term. An atomic formula is of the form P(t1, . . . , tn), where P is an n-ary
predicate symbol and the ti’s are terms. A well-formed formula (wff) can be defined
recursively as follows: If wi and w j are wffs, then (wi), ¬(wi),(wi)∧ (w j),(wi)∨
(w j),(wi)→ (w j), and (wi)↔ (w j) are all wffs. Variables in a wff may be free or
they may be bound by one of the two quantifiers.

Selection.

Selection produces a horizontal subset of a given relation. The subset consists of all
the tuples that satisfy a formula (condition). The selection from a relation R is

σF(R)

where R is the relation and F is a formula.
The formula in the selection operation is called a selection predicate and is an

atomic formula whose terms are of the form Aθc, where A is an attribute of R and
θ is one of the arithmetic comparison operators <, >, =, 6=, ≤, and ≥. The terms
can be connected by the logical connectors ∧,∨, and ¬. Furthermore, the selection
predicate does not contain any quantifiers.

Example 2.4. Consider the relation EMP shown in Figure 2.3. The result of selecting
those tuples for electrical engineers is shown in Figure 2.4. �

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E6 L. Chu Elect. Eng.

σ
TITLE="Elect. Eng."

(EMP)

Fig. 2.4 Result of Selection

48 2 Background

Projection.

Projection produces a vertical subset of a relation. The result relation contains only
those attributes of the original relation over which projection is performed. Thus the
degree of the result is less than or equal to the degree of the original relation.

The projection of relation R over attributes A and B is denoted as

ΠA,B(R)

Note that the result of a projection might contain tuples that are identical. In that
case the duplicate tuples may be deleted from the result relation. It is possible to
specify projection with or without duplicate elimination.

Example 2.5. The projection of relation PROJ shown in Figure 2.3 over attributes
PNO and BUDGET is depicted in Figure 2.5. �

PNO BUDGET

P1 150000

P2 135000

P3 250000

P4 310000

Π
PNO,BUDGET

(PROJ)

Fig. 2.5 Result of Projection

Union.

The union of two relations R and S (denoted as R ∪ S) is the set of all tuples that are
in R, or in S, or in both. We should note that R and S should be union compatible. As
in the case of projection, the duplicate tuples are normally eliminated. Union may be
used to insert new tuples into an existing relation, where these tuples form one of the
operand relations.

Set Difference.

The set difference of two relations R and S (R− S) is the set of all tuples that are
in R but not in S. In this case, not only should R and S be union compatible, but
the operation is also asymmetric (i.e., R− S 6= S−R). This operation allows the

2.1 Overview of Relational DBMS 49

ENO ENAME EMP.TITLE PAY.TITLE SAL

E1 J. Doe Elect. Eng.

E1 J. Doe Elect. Eng.

E1 J. Doe Elect. Eng.

E1 J. Doe Elect. Eng.

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

E2 M. Smith Syst. Anal.

E2 M. Smith Syst. Anal.

E2 M. Smith Syst. Anal.

E2 M. Smith Syst. Anal.

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

E3 A. Lee Mech. Eng.

E3 A. Lee Mech. Eng.

E3 A. Lee Mech. Eng.

E3 A. Lee Mech. Eng.

E8 J. Jones Syst. Anal.

E8 J. Jones Syst. Anal.

E8 J. Jones Syst. Anal.

E8 J. Jones Syst. Anal.

EMP x PAY

≈≈≈≈≈≈

Fig. 2.6 Partial Result of Cartesian Product

deletion of tuples from a relation. Together with the union operation, we can perform
modification of tuples by deletion followed by insertion.

Cartesian Product.

The Cartesian product of two relations R of degree k1 and S of degree k2 is the set
of (k1 + k2)-tuples, where each result tuple is a concatenation of one tuple of R with
one tuple of S, for all tuples of R and S. The Cartesian product of R and S is denoted
as R×S.

It is possible that the two relations might have attributes with the same name. In
this case the attribute names are prefixed with the relation name so as to maintain the
uniqueness of the attribute names within a relation.

Example 2.6. Consider relations EMP and PAY in Figure 2.3. EMP × PAY is shown
in Figure 2.6. Note that the attribute TITLE, which is common to both relations,
appears twice, prefixed with the relation name. �

50 2 Background

Intersection.

Intersection of two relations R and S (R ∩ S) consists of the set of all tuples that are
in both R and S. In terms of the basic operators, it can be specified as follows:

R∩S = R− (R−S)

θ -Join.

Join is a derivative of Cartesian product. There are various forms of join; the primary
classification is between inner join and outer join. We first discuss inner join and its
variants and then describe outer join.

The most general type of inner join is the θ -join. The θ -join of two relations R
and S is denoted as

R 1F S

where F is a formula specifying the join predicate. A join predicate is specified
similar to a selection predicate, except that the terms are of the form R.AθS.B, where
A and B are attributes of R and S, respectively.

The join of two relations is equivalent to performing a selection, using the join
predicate as the selection formula, over the Cartesian product of the two operand
relations. Thus

R 1F S = σF(R×S)

In the equivalence above, we should note that if F involves attributes of the two
relations that are common to both of them, a projection is necessary to make sure
that those attributes do not appear twice in the result.

Example 2.7. Let us consider that the EMP relation in Figure 2.3 and add two more
tuples as depicted in Figure 2.7(a). Then Figure 2.7(b) shows the θ -join of relations
EMP and ASG over the join predicate EMP.ENO=ASG.ENO.

The same result could have been obtained as

EMP 1EMP.ENO=ASG.ENO ASG =
ΠENO, ENAME, TITLE, SAL(σEMP.ENO =PAY.ENO(EMP×ASG))

Notice that the result does not have tuples E9 and E10 since these employees
have not yet been assigned to a project. Furthermore, the information about some
employees (e.g., E2 and E3) who have been assigned to multiple projects appear
more than once in the result. �

This example demonstrates a special case of θ -join which is called the equi-join.
This is a case where the formula F only contains equality (=) as the arithmetic
operator. It should be noted, however, that an equi-join does not have to be specified
over a common attribute as the example above might suggest.

2.1 Overview of Relational DBMS 51

ENO ENAME TITLE PNO

E1 J. Doe Elect. Eng.

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP
EMP.ENO=ASG.ENO

ASG

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E2 M. Smith Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E5 B. Casey Syst. Anal.

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP

E9 A. Hsu Programmer

E10 T. Wong Syst. Anal.

(a)

RESP DUR

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E5 J. Miller Syst. Anal.

P1 Manager 12

P1 Analyst 12

P2 Analyst 12

P3 Consultant 12

P4 Engineer 12

P2 Programmer 12

P2 Manager 12

P4 Manager 12

P3 Engineer 12

P3 Manager 12

(b)

Fig. 2.7 The Result of Join

A natural join is an equi-join of two relations over a specified attribute, more
specifically, over attributes with the same domain. There is a difference, however, in
that usually the attributes over which the natural join is performed appear only once
in the result. A natural join is denoted as the join without the formula

R 1A S

where A is the attribute common to both R and S. We should note here that the natural
join attribute may have different names in the two relations; what is required is that
they come from the same domain. In this case the join is denoted as

RA 1B S

where B is the corresponding join attribute of S.

Example 2.8. The join of EMP and ASG in Example 2.7 is actually a natural join.
Here is another example – Figure 2.8 shows the natural join of relations EMP and
PAY in Figure 2.3 over the attribute TITLE.

�

Inner join requires the joined tuples from the two operand relations to satisfy the
join predicate. In contrast, outer join does not have this requirement – tuples exist in
the result relation regardless. Outer join can be of three types: left outer join (1),
right outer join (2) and full outer join (3). In the left outer join, the tuples from
the left operand relation are always in the result, in the case of right outer join, the
tuples from the right operand are always in the result, and in the case of full outer
relation, tuples from both relations are always in the result. Outer join is useful in
those cases where we wish to include information from one or both relations even if
the do not satisfy the join predicate.

52 2 Background

ENO ENAME TITLE SAL

E1 J. Doe Elect. Eng. 40000

M. Smith 34000E2 Analyst

E3 A. Lee Mech. Eng. 27000

E4 J. Miller Programmer 24000

E5 B. Casey Syst. Anal. 34000

E6 L. Chu Elect. Eng. 40000

E7 R. Davis Mech. Eng. 27000

E8 J. Jones Syst. Anal. 34000

EMP
TITLE

PAY

Fig. 2.8 The Result of Natural Join

Example 2.9. Consider the left outer join of EMP (as revised in Example 2.7) and
ASG over attribute ENO (i.e., EMP1ENO ASG). The result is given in Figure 2.9.
Notice that the information about two employees, E9 and E10 are included in the
result even thought they have not yet been assigned to a project with “Null” values
for the attributes from the ASG relation. �

ENO ENAME TITLE PNO

E1 J. Doe Elect. Eng.

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP
ENO

ASG

RESP DUR

M. SmithE2 Syst. Anal.

E3 A. Lee Mech. Eng.

E5 J. Miller Syst. Anal.

P1 Manager 12

P1 Analyst 12

P2 Analyst 12

P3 Consultant 12

P4 Engineer 12

P2 Programmer 12

P2 Manager 12

P4 Manager 12

P3 Engineer 12

P3 Manager 12

Null Null Null

Null Null Null

E9 A. Hsu Programmer

E10 T. Wong Syst. Anal.

Fig. 2.9 The Result of Left Outer Join

2.1 Overview of Relational DBMS 53

Semijoin.

The semijoin of relation R, defined over the set of attributes A, by relation S, defined
over the set of attributes B, is the subset of the tuples of R that participate in the join
of R with S. It is denoted as RnF S (where F is a predicate as defined before) and
can be obtained as follows:

RnF S = ΠA(R 1F S) = ΠA(R) 1F ΠA∩B(S)

= R 1F ΠA∩B(S)

The advantage of semijoin is that it decreases the number of tuples that need to be
handled to form the join. In centralized database systems, this is important because
it usually results in a decreased number of secondary storage accesses by making
better use of the memory. It is even more important in distributed databases since
it usually reduces the amount of data that needs to be transmitted between sites in
order to evaluate a query. We talk about this in more detail in Chapters 3 and 8. At
this point note that the operation is asymmetric (i.e., RnF S 6= SnF R).

Example 2.10. To demonstrate the difference between join and semijoin, let us con-
sider the semijoin of EMP with PAY over the predicate EMP.TITLE = PAY.TITLE,
that is,

EMP nEMP.TITLE = PAY.TITLE PAY

The result of the operation is shown in Figure 2.10. We encourage readers to
compare Figures 2.7 and 2.10 to see the difference between the join and the semijoin
operations. Note that the resultant relation does not have the PAY attribute and is
therefore smaller. �

ENO ENAME TITLE

E1 J. Doe Elect. Eng.

M. SmithE2 Analyst

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E5 B. Casey Syst. Anal.

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP
EMP.TITLE=PAY.TITLE

PAY

Fig. 2.10 The Result of Semijoin

54 2 Background

Division.

The division of relation R of degree r with relation S of degree s (where r > s and
s 6= 0) is the set of (r− s)-tuples t such that for all s-tuples u in S, the tuple tu is in
R. The division operation is denoted as R÷S and can be specified in terms of the
fundamental operators as follows:

R÷S = ΠĀ(R)−ΠĀ((ΠĀ(R)×S)−R)

where Ā is the set of attributes of R that are not in S [i.e., the (r− s)-tuples].

Example 2.11. Assume that we have a modified version of the ASG relation (call it
ASG′) depicted in Figure 2.11a and defined as follows:

ASG′ = ΠENO,PNO (ASG) 1PNO PROJ

If one wants to find the employee numbers of those employees who are assigned
to all the projects that have a budget greater than $200,000, it is necessary to divide
ASG′ with a restricted version of PROJ, called PROJ′ (see Figure 2.11b). The result
of division (ASG′÷ PROJ′) is shown in Figure 2.11c.

The keyword in the query above is “all.” This rules out the possibility of doing
a selection on ASG′ to find the necessary tuples, since that would only give those
which correspond to employees working on some project with a budget greater than
$200,000, not those who work on all projects. Note that the result contains only the
tuple 〈E3〉 since the tuples 〈E3, P3, CAD/CAM, 250000〉 and 〈E3, P4, Maintenance,
310000〉 both exist in ASG′. On the other hand, for example, 〈E7〉 is not in the result,
since even though the tuple 〈E7, P3, CAD/CAM, 250000〉 is in ASG′, the tuple 〈E7,
P4, Maintenance, 310000〉 is not. �

Since all operations take relations as input and produce relations as outputs, we
can nest operations using a parenthesized notation and represent relational algebra
programs. The parentheses indicate the order of execution. The following are a few
examples that demonstrate the issue.

Example 2.12. Consider the relations of Figure 2.3. The retrieval query

“Find the names of employees working on the CAD/CAM project”

can be answered by the relational algebra program

ΠENAME(((σPNAME = “CAD/CAM” PROJ) 1PNO ASG) 1ENO EMP)

The order of execution is: the selection on PROJ, followed by the join with ASG,
followed by the join with EMP, and finally the project on ENAME.

An equivalent program where the size of the intermediate relations is smaller is

ΠENAME (EMP nENO(ΠENO(ASG nPNO(σPNAME= “CAD/CAM” PROJ))))
�

2.1 Overview of Relational DBMS 55

(a)

(b)

PROJ'

PNO PNAME BUDGET

P3 CAD/CAM 250000

P4 Maintenance 310000

ENO

E3

(ASG' ÷ PROJ')

(c)

ASG'

ENO PNO PNAME

E1 P1 Instrumentation 150000

BUDGET

E2 P1 Instrumentation 150000

E2 P2 Database Develop. 135000

E3 P3 CAD/CAM

E3 P4 Maintenance

E4 P2

E5 P2

E6 P4

E7 P3 CAD/CAM

E8 P3 CAD/CAM

310000

135000

135000

310000

250000

250000

Maintenance

250000

Database Develop.

Database Develop.

Fig. 2.11 The Result of Division

Example 2.13. The update query

“Replace the salary of programmers by $25,000”

can be computed by

(PAY −(σTITLE = “Programmer” PAY)) ∪(〈Programmer, 25000 〉)
�

2.1.3.2 Relational Calculus

In relational calculus-based languages, instead of specifying how to obtain the result,
one specifies what the result is by stating the relationship that is supposed to hold
for the result. Relational calculus languages fall into two groups: tuple relational
calculus and domain relational calculus. The difference between the two is in terms

56 2 Background

of the primitive variable used in specifying the queries. We briefly review these two
types of languages.

Relational calculus languages have a solid theoretical foundation since they are
based on first-order predicate logic as we discussed before. Semantics is given to
formulas by interpreting them as assertions on the database. A relational database
can be viewed as a collection of tuples or a collection of domains. Tuple relational
calculus interprets a variable in a formula as a tuple of a relation, whereas domain
relational calculus interprets a variable as the value of a domain.

Tuple relational calculus.

The primitive variable used in tuple relational calculus is a tuple variable which
specifies a tuple of a relation. In other words, it ranges over the tuples of a relation.
Tuple calculus is the original relational calculus developed by Codd [1970].

In tuple relational calculus queries are specified as {t|F(t)}, where t is a tuple
variable and F is a well-formed formula. The atomic formulas are of two forms:

1. Tuple-variable membership expressions. If t is a tuple variable ranging over
the tuples of relation R (predicate symbol), the expression “tuple t belongs to
relation R” is an atomic formula, which is usually specified as R.t or R(t).

2. Conditions. These can be defined as follows:

(a) s[A]θ t[B], where s and t are tuple variables and A and B are compo-
nents of s and t, respectively. θ is one of the arithmetic comparison
operators <, >, =, 6=, ≤, and ≥. This condition specifies that
component A of s stands in relation θ to the B component of t: for
example, s[SAL] > t[SAL].

(b) s[A]θc, where s, A, and θ are as defined above and c is a constant. For
example, s[ENAME] = “Smith”.

Note that A is defined as a component of the tuple variable s. Since the range of
s is a relation instance, say S, it is obvious that component A of s corresponds to
attribute A of relation S. The same thing is obviously true for B.

There are many languages that are based on relational tuple calculus, the most
popular ones being SQL1 [Date, 1987] and QUEL [Stonebraker et al., 1976]. SQL is
now an international standard (actually, the only one) with various versions released:
SQL1 was released in 1986, modifications to SQL1 were included in the 1989 version,
SQL2 was issued in 1992, and SQL3, with object-oriented language extensions, was
released in 1999.

1 Sometimes SQL is cited as lying somewhere between relational algebra and relational calculus. Its
originators called it a “mapping language.” However, it follows the tuple calculus definition quite
closely; hence we classify it as such.

2.1 Overview of Relational DBMS 57

SQL provides a uniform approach to data manipulation (retrieval, update), data
definition (schema manipulation), and control (authorization, integrity, etc.). We limit
ourselves to the expression, in SQL, of the queries in Examples 2.14 and 2.15.

Example 2.14. The query from Example 2.12,

“Find the names of employees working on the CAD/CAM project”

can be expressed as follows:

SELECT EMP.ENAME
FROM EMP,ASG,PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PROJ.PNAME = "CAD/CAM"

�

Note that a retrieval query generates a new relation similar to the relational algebra
operations.

Example 2.15. The update query of Example 2.13,

“Replace the salary of programmers by $25,000”

is expressed as

UPDATE PAY
SET SAL = 25000
WHERE PAY.TITLE = "Programmer"

�

Domain relational calculus.

The domain relational calculus was first proposed by Lacroix and Pirotte [1977]. The
fundamental difference between a tuple relational language and a domain relational
language is the use of a domain variable in the latter. A domain variable ranges over
the values in a domain and specifies a component of a tuple. In other words, the range
of a domain variable consists of the domains over which the relation is defined. The
wffs are formulated accordingly. The queries are specified in the following form:

x1,x2, ...,xn|F(x1,x2, ...,xn)

where F is a wff in which x1, . . . ,xn are the free variables.
The success of domain relational calculus languages is due mainly to QBE [Zloof,

1977], which is a visual application of domain calculus. QBE, designed only for
interactive use from a visual terminal, is user friendly. The basic concept is an
example: the user formulates queries by providing a possible example of the answer.
Typing relation names triggers the printing, on screen, of their schemes. Then, by
supplying keywords into the columns (domains), the user specifies the query. For
instance, the attributes of the project relation are given by P, which stands for “Print.”

58 2 Background

EMP ENO ENAME TITLE

E2 P.

ASG ENO PNO RESP DUR

E2 P3

P3

PROJ PNO PNAME BUDGET

CAD/CAM

Fig. 2.12 Retrieval Query in QBE

By default, all queries are retrieval. An update query requires the specification
of U under the name of the updated relation or in the updated column. The retrieval
query corresponding to Example 2.12 is given in Figure 2.12 and the update query
of Example 2.13 is given in Figure 2.13. To distinguish examples from constants,
examples are underlined.

PAY TITLE SAL

Programmer U.25000

Fig. 2.13 Update Query in QBE

2.2 Review of Computer Networks

In this section we discuss computer networking concepts relevant to distributed
database systems. We omit most of the details of the technological and technical
issues in favor of discussing the main concepts.

We define a computer network as an interconnected collection of autonomous
computers that are capable of exchanging information among themselves (Figure
2.14). The keywords in this definition are interconnected and autonomous. We want
the computers to be autonomous so that each computer can execute programs on its
own. We also want the computers to be interconnected so that they are capable of
exchanging information. Computers on a network are referred to as nodes, hosts, end
systems, or sites. Note that sometimes the terms host and end system are used to refer

2.2 Review of Computer Networks 59

Switches

Hosts

Network

Fig. 2.14 A Computer Network

simply to the equipment, whereas site is reserved for the equipment as well as the
software that runs on it. Similarly, node is generally used as a generic reference to
the computers or to the switches in a network. They form one of the fundamental
hardware components of a network. The other fundamental component is special
purpose devices and links that form the communication path that interconnects the
nodes. As depicted in Figure 2.14, the hosts are connected to the network through
switches (represented as circles with an X in them)2, which are special-purpose
equipment that route messages through the network. Some of the hosts may be
connected to the switches directly (using fiber optic, coaxial cable or copper wire)
and some via wireless base stations. The switches are connected to each other by
communication links that may be fiber optics, coaxial cable, satellite links, microwave
connections, etc.

The most widely used computer network these days is the Internet. It is hard
to define the Internet since the term is used to mean different things, but perhaps
the best definition is that it is a network of networks (Figure 2.15). Each of these

2 Note that the terms “switch” and “router” are sometimes used interchangeably (even within the
same text). However, other times they are used to mean slightly different things: switch refers to the
devices inside a network whereas router refers to one that is at the edge of a network connecting it
to the backbone. We use them interchangeably as in Figures 2.14 and 2.15.

60 2 Background

R

R

R

R

Server

Intranet

Intranet

ISP

Network

ISP

Network

Client

Intranet

R

Fig. 2.15 Internet

networks is referred to as an intranet to highlight the fact that they are “internal” to
an organization. An intranet, then, consists of a set of links and routers (shown as
“R” in Figure 2.15) administered by a single administrative entity or by its delegates.
For instance, the routers and links at a university constitute a single administrative
domain. Such domains may be located within a single geographical area (such as the
university network mentioned above), or, as in the case of large enterprises or Internet
Service Provider (ISP) networks, span multiple geographical areas. Each intranet is
connected to some others by means of links provisioned from ISPs. These links are
typically high-speed, long-distance duplex data transmission media (we will define
these terms shortly), such as a fiber-optic cable, or a satellite link. These links make up
what is called the Internet backbone. Each intranet has a router interface that connects
it to the backbone, as shown in Figure 2.15. Thus, each link connects an intranet
router to an ISP’s router. ISP’s routers are connected by similar links to routers of
other ISPs. This allows servers and clients within an intranet to communicate with
servers and clients in other intranets.

2.2.1 Types of Networks

There are various criteria by which computer networks can be classified. One crite-
rion is the geographic distribution (also called scale [Tanenbaum, 2003]), a second

2.2 Review of Computer Networks 61

criterion is the interconnection structure of nodes (also called topology), and the
third is the mode of transmission.

2.2.1.1 Scale

In terms of geographic distribution, networks are classified as wide area networks,
metropolitan area networks and local area networks. The distinctions among these
are somewhat blurred, but in the following, we give some general guidelines that
identify each of these networks. The primary distinction among them are probably in
terms of propagation delay, administrative control, and the protocols that are used in
managing them.

A wide area network (WAN) is one where the link distance between any two nodes
is greater than approximately 20 kilometers (km) and can go as large as thousands of
kilometers. Use of switches allow the aggregation of communication over wider areas
such as this. Owing to the distances that need to be traveled, long delays are involved
in wide area data transmission. For example, via satellite, there is a minimum delay
of half a second for data to be transmitted from the source to the destination and
acknowledged. This is because the speed with which signals can be transmitted is
limited to the speed of light, and the distances that need to be spanned are great
(about 31,000 km from an earth station to a satellite).

WANs are typically characterized by the heterogeneity of the transmission media,
the computers, and the user community involved. Early WANs had a limited capacity
of less than a few megabits-per-second (Mbps). However, most of the current ones are
broadband WANs that provide capacities of 150 Mbps and above. These individual
channels are aggregated into the backbone links; the current backbone links are
commonly OC48 at 2.4 Gbps or OC192 at 10Gbps. These networks can carry
multiple data streams with varying characteristics (e.g., data as well as audio/video
streams), the possibility of negotiating for a level of quality of service (QoS) and
reserving network resources sufficient to fulfill this level of QoS.

Local area networks (LANs) are typically limited in geographic scope (usually
less than 2 km). They provide higher capacity communication over inexpensive
transmission media. The capacities are typically in the range of 10-1000 Mbps per
connection. Higher capacity and shorter distances between hosts result in very short
delays. Furthermore, the better controlled environments in which the communication
links are laid out (within buildings, for example) reduce the noise and interference,
and the heterogeneity among the computers that are connected is easier to manage,
and a common transmission medium is used.

Metropolitan area networks (MANs) are in between LANs and WANs in scale
and cover a city or a portion of it. The distances between nodes is typically on the
order of 10 km.

62 2 Background

2.2.1.2 Topology

As the name indicates, interconnection structure or topology refers to the way nodes
on a network are interconnected. The network in Figure 2.14 is what is called an
irregular network, where the interconnections between nodes do not follow any
pattern. It is possible to find a node that is connected to only one other node, as well
as nodes that have connections to a number of nodes. Internet is a typical irregular
network.

B U S

Host
#1

Host
#3

Host
#2

Host
#4

Bus

Interface

Fig. 2.16 Bus Network

Another popular topology is the bus, where all the computers are connected to a
common channel (Figure 2.16). This type of network is primarily used in LANs. The
link control is typically performed using carrier sense medium access with collision
detection (CSMA/CD) protocol. The CSMA/CD bus control mechanism can best be
described as a “listen before and while you transmit” scheme. The fundamental point
is that each host listens continuously to what occurs on the bus. When a message
transmission is detected, the host checks if the message is addressed to it, and takes
the appropriate action. If it wants to transmit, it waits until it detects no more activity
on the bus and then places its message on the network and continues to listen to bus
activity. If it detects another transmission while it is transmitting a message itself,
then there has been a “collision.” In such a case, and when the collision is detected,
the transmitting hosts abort the transmission, each waits a random amount of time,
and then each retransmits the message. The basic CSMA/CD scheme is used in the
Ethernet local area network3.

Other common alternatives are star, ring, bus, and mesh networks.

3 In most current implementations of Ethernet, multiple busses are linked via one or more switches
(called switched hubs) for expanded coverage and to better control the load on each bus segment.
In these systems, individual computers can directly be connected to the switch as well. These are
known as switched Ethernet.

2.2 Review of Computer Networks 63

• Star networks connect all the hosts to a central node that coordinates the
transmission on the network. Thus if two hosts want to communicate, they have
to go through the central node. Since there is a separate link between the central
node and each of the others, there is a negotiation between the hosts and the
central node when they wish to communicate.

• Ring networks interconnect the hosts in the form of a loop. This type of network
was originally proposed for LANs, but their use in these networks has nearly
stopped. They are now primarily used in MANs (e.g., SONET rings). In their
current incarnation, data transmission around the ring is usually bidirectional
(original rings were unidirectional), with each station (actually the interface
to which each station is connected) serving as an active repeater that receives
a message, checks the address, copies the message if it is addressed to that
station, and retransmits it.
Control of communication in ring type networks is generally controlled by
means of a control token. In the simplest type of token ring networks, a token,
which has one bit pattern to indicate that the network is free and a different
bit pattern to indicate that it is in use, is circulated around the network. Any
site wanting to transmit a message waits for the token. When it arrives, the site
checks the token’s bit pattern to see if the network is free or in use. If it is free,
the site changes the bit pattern to indicate that the network is in use and then
places the messages on the ring. The message circulates around the ring and
returns to the sender which changes the bit pattern to free and sends the token
to the next computer down the line.

• Complete (or mesh) interconnection is one where each node is interconnected
to every other node. Such an interconnection structure obviously provides more
reliability and the possibility of better performance than that of the structures
noted previously. However, it is also the costliest. For example, a complete
connection of 10,000 computers would require approximately (10,000)2 links.4

2.2.2 Communication Schemes

In terms of the physical communication schemes employed, networks can be either
point-to-point (also called unicast) networks, or broadcast (sometimes also called
multi-point) networks.

In point-to-point networks, there are one or more (direct or indirect) links between
each pair of nodes. The communication is always between two nodes and the receiver
and sender are identified by their addresses that are included in the message header.
Data transmission from the sender to the receiver follows one of the possibly many
links between them, some of which may involve visiting other intermediate nodes.
An intermediate node checks the destination address in the message header and if
it is not addressed to it, passes it along to the next intermediate node. This is the

4 The general form of the equation is n(n−1)/2, where n is the number of nodes on the network.

64 2 Background

process of switching or routing. The selection of the links via which messages are
sent is determined by usually elaborate routing algorithms that are beyond our scope.
We discuss the details of switching in Section 2.2.3.

The fundamental transmission media for point-to-point networks are twisted pair,
coaxial or fiber optic cables. Each of these media have different capacities: twisted
pair 300 bps to 10 Mbps, coaxial up to 200 Mbps, and fiber optic 10 Gbps and even
higher.

In broadcast networks, there is a common communication channel that is utilized
by all the nodes in the network. Messages are transmitted over this common channel
and received by all the nodes. Each node checks the receiver address and if the
message is not addressed to it, ignores it.

A special case of broadcasting is multicasting where the message is sent to a
subset of the nodes in the network. The receiver address is somehow encoded to
indicate which nodes are the recipients.

Broadcast networks are generally radio or satellite-based. In case of satellite
transmission, each site beams its transmission to a satellite which then beams it back
at a different frequency. Every site on the network listens to the receiving frequency
and has to disregard the message if it is not addressed to that site. A network that
uses this technique is HughesNetTM.

Microwave transmission is another mode of data communication and it can be
over satellite or terrestrial. Terrestrial microwave links used to form a major portion
of most countries’ telephone networks although many of these have since been
converted to fiber optic. In addition to the public carriers, some companies make
use of private terrestrial microwave links. In fact, major metropolitan cities face the
problem of microwave interference among privately owned and public carrier links.
A very early example that is usually identified as having pioneered the use of satellite
microwave transmission is ALOHA [Abramson, 1973].

Satellite and microwave networks are examples of wireless networks. These types
of wireless networks are commonly referred to as wireless broadband networks.
Another type of wireless network is one that is based on cellular networks. A
cellular network control station is responsible for a geographic area called a cell and
coordinates the communication from mobile hosts in their cell. These control stations
may be linked to a “wireline” backbone network and thereby provide access from/to
mobile hosts to other mobile hosts or stationary hosts on the wireline network.

A third type of wireless network with which most of us may be more familiar are
wireless LANs (commonly referred to as Wi-LAN or WiLan). In this case a number
of “base stations” are connected to a wireline network and serve as connection points
for mobile hosts (similar to control stations in cellular networks). These networks
can provide bandwidth of up to 54 Mbps.

A final word on broadcasting topologies is that they have the advantage that it is
easier to check for errors and to send messages to more than one site than to do so in
point-to-point topologies. On the other hand, since everybody listens in, broadcast
networks are not as secure as point-to-point networks.

2.2 Review of Computer Networks 65

2.2.3 Data Communication Concepts

What we refer to as data communication is the set of technologies that enable two
hosts to communicate. We are not going to be too detailed in this discussion, since,
at the distributed DBMS level, we can assume that the technology exists to move
bits between hosts. We, instead, focus on a few important issues that are relevant to
understanding delay and routing concepts.

As indicated earlier hosts are connected by links, each of which can carry one or
more channels. Link is a physical entity whereas channel is a logical one. Communi-
cation links can carry signals either in digital form or in analog form. Telephone lines,
for example, can carry data in analog form between the home and the central office –
the rest of the telephone network is now digital and even the home-to-central office
link is becoming digital with voice-over-IP (VoIP) technology. Each communication
channel has a capacity, which can be defined as the amount of information that can
be transmitted over the channel in a given time unit. This capacity is commonly
referred to as the bandwidth of the channel. In analog transmission channels, the
bandwidth is defined as the difference (in hertz) between the lowest and highest
frequencies that can be transmitted over the channel per second. In digital links,
bandwidth refers (less formally and with abuse of terminology) to the number of bits
that can be transmitted per second (bps).

With respect to delays in getting the user’s work done, the bandwidth of a trans-
mission channel is a significant factor, but it is not necessarily the only ones. The
other factor in the transmission time is the software employed. There are usually
overhead costs involved in data transmission due to the redundancies within the
message itself, necessary for error detection and correction. Furthermore, the net-
work software adds headers and trailers to any message, for example, to specify
the destination or to check for errors in the entire message. All of these activities
contribute to delays in transmitting data. The actual rate at which data are transmitted
across the network is known as the data transfer rate and this rate is usually less than
the actual bandwidth of the transmission channel. The software issues, that generally
are referred as network protocols, are discussed in the next section.

In computer-to-computer communication, data are usually transmitted in packets,
as we mentioned earlier. Usually, upper limits on frame sizes are established for each
network and each contains data as well as some control information, such as the
destination and source addresses, block error check codes, and so on (Figure 2.17).
If a message that is to be sent from a source node to a destination node cannot fit
one frame, it is split over a number of frames. This is be discussed further in Section
2.2.4.

There are various possible forms of switching/routing that can occur in point-to-
point networks. It is possible to establish a connection such that a dedicated channel
exists between the sender and the receiver. This is called circuit switching and is
commonly used in traditional telephone connections. When a subscriber dials the
number of another subscriber, a circuit is established between the two phones by
means of various switches. The circuit is maintained during the period of conversation
and is broken when one side hangs up. Similar setup is possible in computer networks.

66 2 Background

- Source address

- Destination address

- Message number

- Packet number

- Acknowledgment

- Control information

Header Text
Block Error

Check

Fig. 2.17 Typical Frame Format

Another form of switching used in computer communication is packet switching,
where a message is broken up into packets and each packet transmitted individually.
In our discussion of the TCP/IP protocol earlier, we referred to messages being
transmitted; in fact the TCP protocol (or any other transport layer protocol) takes
each application package and breaks it up into fixed sized packets. Therefore, each
application message may be sent to the destination as multiple packets.

Packets for the same message may travel independently of each other and may,
in fact, take different routes. The result of routing packets along possibly different
links in the network is that they may arrive at the destination out-of-order. Thus
the transport layer software at the destination site should be able to sort them into
their original order to reconstruct the message. Consequently, it is the individual
packages that are routed through the network, which may result in packets reaching
the destination at different times and even out of order. The transport layer protocol
at the destination is responsible for collating and ordering the packets and generating
the application message properly.

The advantages of packet switching are many. First, packet-switching networks
provide higher link utilization since each link is not dedicated to a pair of communi-
cating equipment and can be shared by many. This is especially useful in computer
communication due to its bursty nature – there is a burst of transmission and then
some break before another burst of transmission starts. The link can be used for
other transmission when it is idle. Another reason is that packetizing may permit the
parallel transmission of data. There is usually no requirement that various packets
belonging to the same message travel the same route through the network. In such
a case, they may be sent in parallel via different routes to improve the total data
transmission time. As mentioned above, the result of routing frames this way is that
their in-order delivery cannot be guaranteed.

On the other hand, circuit switching provides a dedicated channel between the
receiver and the sender. If there is a sizable amount of data to be transmitted between
the two or if the channel sharing in packet switched networks introduces too much
delay or delay variance, or packet loss (which are important in multimedia applica-
tions), then the dedicated channel facilitates this significantly. Therefore, schemes
similar to circuit switching (i.e., reservation-based schemes) have gained favor in

2.2 Review of Computer Networks 67

the broadband networks that support applications such as multimedia with very high
data transmission loads.

2.2.4 Communication Protocols

Establishing a physical connection between two hosts is not sufficient for them
to communicate. Error-free, reliable and efficient communication between hosts
requires the implementation of elaborate software systems that are generally called
protocols. Network protocols are “layered” in that network functionality is divided
into layers, each layer performing a well-defined function relying on the services
provided by the layer below it and providing a service to the layer above. A protocol
defines the services that are performed at one layer. The resulting layered protocol
set is referred to as a protocol stack or protocol suite.

There are different protocol stacks for different types of networks; however, for
communication over the Internet, the standard one is what is referred to as TCP/IP
that stands for “Transport Control Protocol/Internet Protocol”. We focus primarily
on TCP/IP in this section as well as some of the common LAN protocols.

Before we get into the specifics of the TCP/IP protocol stack, let us first discuss
how a message from a process on host C in Figure 2.15 is transmitted to a process
on server S, assuming both hosts implement the TCP/IP protocol. The process is
depicted in Figure 2.18.

The appropriate application layer protocol takes the message from the process on
host C and creates an application layer message by adding some application layer
header information (oblique hatched part in Figure 2.18) details of which are not
important for us. The application message is handed over to the TCP protocol, which
repeats the process by adding its own header information. TCP header includes the
necessary information to facilitate the provision of TCP services we discuss shortly.
The Internet layer takes the TCP message that is generated and forms an Internet
message as we also discuss below. This message is now physically transmitted from
host C to its router using the protocol of its own network, then through a series
of routers to the router of the network that contains server S, where the process is
reversed until the original message is recovered and handed over to the appropriate
process on S. The TCP protocols at hosts C and S communicate to ensure the
end-to-end guarantees that we discussed.

2.2.4.1 TCP/IP Protocol Stack

What is referred to as TCP/IP is in fact a family of protocols, commonly referred
to as the protocol stack. It consists of two sets of protocols, one set at the transport
layer and the other at the network (Internet) layer (Figure 2.19).

The transport layer defines the types of services that the network provides to
applications. The protocols at this layer address issues such as data loss (can the

68 2 Background

Application Layer

Transport Layer

Internet Layer

Message

Local

Network

Application Layer

Transport Layer

Internet Layer

Message

Local

Network

Fig. 2.18 Message Transmission using TCP/IP

Ethernet Token Ring ATM FDDI ...

IP

TCP UDP

HTML, HTTP, FTP Telnet NFS SNMP ...

Individual

Networks

Network

Transport

Application HTML, HTTP, FTP Telnet NFS SNMP ...

Ethernet Token Ring ATM FDDI ...WiFi

Fig. 2.19 TCP/IP Protocol

2.2 Review of Computer Networks 69

application tolerate losing some of the data during transmission?), bandwidth (some
applications have minimum bandwidth requirements while others can be more elastic
in their requirements), and timing (what type of delay can the applications tolerate?).
For example, a file transfer application can not tolerate any data loss, can be flexible
in its bandwidth use (it will work whether the connection is high capacity or low
capacity, although the performance may differ), and it does not have strict timing
requirements (although we may not like a file transfer to take a few days, it would
still work). In contrast, a real-time audio/video transmission application can tolerate
a limited amount of data loss (this may cause some jitter and other problems, but the
communication will still be “understandable”), has minimum bandwidth requirement
(5-128 Kbps for audio and 5 Kbps-20 Mbps for video), and is time sensitive (audio
and video data need to be synchronized).

To deal with these varying requirements (at least with some of them), at the trans-
port layer, two protocols are provided: TCP and UDP. TCP is connection-oriented,
meaning that prior setup is required between the sender and the receiver before
actual message transmission can start; it provides reliable transmission between the
sender and the receiver by ensuring that the messages are received correctly at the
receiver (referred to as “end-to-end reliability”); ensures flow control so that the
sender does not overwhelm the receiver if the receiver process is not able to keep
up with the incoming messages, and ensures congestion control so that the sender
is throttled when network is overloaded. Note that TCP does not address the timing
and minimum bandwidth guarantees, leaving these to the application layer.

UDP, on the other hand, is a connectionless service that does not provide the
reliability, flow control and congestion control guarantees that TCP provides. Nor
does it establish a connection between the sender and receiver beforehand. Thus, each
message is transmitted hoping that it will get to the destination, but no end-to-end
guarantees are provided. Thus, UDP has significantly lower overhead than TCP,
and is preferred by applications that would prefer to deal with these requirements
themselves, rather than having the network protocol handle them.

The network layer implements the Internet Protocol (IP) that provides the facility
to “package” a message in a standard Internet message format for transmission across
the network. Each Internet message can be up to 64KB long and consists of a header
that contains, among other things, the IP addresses of the sender and the receiver
machines (the numbers such as 129.97.79.58 that you may have seen attached to your
own machines), and the message body itself. The message format of each network
that makes up the Internet can be different, but each of these messages are encoded
into an Internet message by the Internet Protocol before they are transmitted5.

The importance of TCP/IP is the following. Each of the intranets that are part of
the Internet can use its own preferred protocol, so the computers on that network
implement that particular protocol (e.g., the token ring mechanism and the CSMA/CS
technique described above are examples of these types of protocols). However, if
they are to connect to the Internet, they need to be able to communicate using TCP/IP,
which are implemented on top of these specific network protocols (Figure 2.19).

5 Today, many of the Intranets also use TCP/IP, in which case IP encapsulation may not be necessary.

70 2 Background

2.2.4.2 Other Protocol Layers

Let us now briefly consider the other two layers depicted in Figure 2.19. Although
these are not part of the TCP/IP protocol stack, they are necessary to be able to build
distributed applications. These make up the top and the bottom layers of the protocol
stack.

The Application Protocol layer provides the specifications that distributed appli-
cations have to follow. For example, if one is building a Web application, then the
documents that will be posted on the Web have to be written according to the HTML
protocol (note that HTML is not a networking protocol, but a document encoding
protocol) and the communication between the client browser and the Web server has
to follow the HTTP protocol. Similar protocols are defined at this layer for other
applications as indicated in the figure.

The bottom layer represents the specific network that may be used. Each of
those networks have their own message formats and protocols and they provide the
mechanisms for data transmission within those networks.

The standardization for LANs is spearheaded by the Institute of Electrical and
Electronics Engineers (IEEE), specifically their Committee No. 802; hence the
standard that has been developed is known as the IEEE 802 Standard. The three
layers of the IEEE 802 local area network standard are the physical layer, the medium
access control layer, and the logical link control layer.

The physical layer deals with physical data transmission issues such as signaling.
Medium access control layer defines protocols that control who can have access to the
transmission medium and when. Logical link control layer implements protocols that
ensure reliable packet transmission between two adjacent computers (not end-to-end).
In most LANs, the TCP and IP layer protocols are implemented on top of these three
layers, enabling each computer to be able to directly communicate on the Internet.

To enable it to cover a variety of LAN architectures, the 802 local area network
standard is actually a number of standards rather than a single one. Originally, it
was specified to support three mechanisms at the medium access control level: the
CSMA/CD mechanism, token ring, and token access mechanism for bus networks.

2.3 Bibliographic Notes

This chapter covered the basic issues related to relational database systems and
computer networks. These concepts are discussed in much greater detail in a number
of excellent textbooks. Related to database technology, we can name [Ramakrishnan
and Gehrke, 2003; Elmasri and Navathe, 2011; Silberschatz et al., 2002; Garcia-
Molina et al., 2002; Kifer et al., 2006], and [Date, 2004]. For computer networks one
can refer to [Tanenbaum, 2003; Kurose and Ross, 2010; Leon-Garcia and Widjaja,
2004; Comer, 2009]. More focused discussion of data communication issues can be
found in [Stallings, 2011].

Chapter 3
Distributed Database Design

The design of a distributed computer system involves making decisions on the
placement of data and programs across the sites of a computer network, as well
as possibly designing the network itself. In the case of distributed DBMSs, the
distribution of applications involves two things: the distribution of the distributed
DBMS software and the distribution of the application programs that run on it.
Different architectural models discussed in Chapter 1 address the issue of application
distribution. In this chapter we concentrate on distribution of data.

It has been suggested that the organization of distributed systems can be investi-
gated along three orthogonal dimensions [Levin and Morgan, 1975] (Figure 3.1):

1. Level of sharing

2. Behavior of access patterns

3. Level of knowledge on access pattern behavior

In terms of the level of sharing, there are three possibilities. First, there is no shar-
ing: each application and its data execute at one site, and there is no communication
with any other program or access to any data file at other sites. This characterizes the
very early days of networking and is probably not very common today. We then find
the level of data sharing; all the programs are replicated at all the sites, but data files
are not. Accordingly, user requests are handled at the site where they originate and
the necessary data files are moved around the network. Finally, in data-plus-program
sharing, both data and programs may be shared, meaning that a program at a given
site can request a service from another program at a second site, which, in turn, may
have to access a data file located at a third site.

Levin and Morgan draw a distinction between data sharing and data-plus-pro-
gram sharing to illustrate the differences between homogeneous and heterogeneous
distributed computer systems. They indicate, correctly, that in a heterogeneous
environment it is usually very difficult, and sometimes impossible, to execute a given
program on different hardware under a different operating system. It might, however,
be possible to move data around relatively easily.

71
DOI 10.1007/978-1-4419-8834-8_3, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

72 3 Distributed Database Design

Dynamic

Static

Data

Partial

information

Complete

informationData +

program

Level of

knowledge

Sharing

Access

pattern

Fig. 3.1 Framework of Distribution

Along the second dimension of access pattern behavior, it is possible to identify
two alternatives. The access patterns of user requests may be static, so that they do
not change over time, or dynamic. It is obviously considerably easier to plan for
and manage the static environments than would be the case for dynamic distributed
systems. Unfortunately, it is difficult to find many real-life distributed applications
that would be classified as static. The significant question, then, is not whether a
system is static or dynamic, but how dynamic it is. Incidentally, it is along this
dimension that the relationship between the distributed database design and query
processing is established (refer to Figure 1.7).

The third dimension of classification is the level of knowledge about the access
pattern behavior. One possibility, of course, is that the designers do not have any
information about how users will access the database. This is a theoretical possibility,
but it is very difficult, if not impossible, to design a distributed DBMS that can
effectively cope with this situation. The more practical alternatives are that the
designers have complete information, where the access patterns can reasonably
be predicted and do not deviate significantly from these predictions, or partial
information, where there are deviations from the predictions.

The distributed database design problem should be considered within this general
framework. In all the cases discussed, except in the no-sharing alternative, new
problems are introduced in the distributed environment which are not relevant in
a centralized setting. In this chapter it is our objective to focus on these unique
problems.

3.1 Top-Down Design Process 73

Two major strategies that have been identified for designing distributed databases
are the top-down approach and the bottom-up approach [Ceri et al., 1987]. As the
names indicate, they constitute very different approaches to the design process. Top-
down approach is more suitable for tightly integrated, homogeneous distributed
DBMSs, while bottom-up design is more suited to multidatabases (see the classifica-
tion in Chapter 1). In this chapter, we focus on top-down design and defer bottom-up
to the next chapter.

3.1 Top-Down Design Process

A framework for top-down design process is shown in Figure 3.2. The activity begins
with a requirements analysis that defines the environment of the system and “elicits
both the data and processing needs of all potential database users” [Yao et al., 1982a].
The requirements study also specifies where the final system is expected to stand
with respect to the objectives of a distributed DBMS as identified in Section 1.4.
These objectives are defined with respect to performance, reliability and availability,
economics, and expandability (flexibility).

The requirements document is input to two parallel activities: view design and
conceptual design. The view design activity deals with defining the interfaces for end
users. The conceptual design, on the other hand, is the process by which the enterprise
is examined to determine entity types and relationships among these entities. One
can possibly divide this process into two related activity groups [Davenport, 1981]:
entity analysis and functional analysis. Entity analysis is concerned with determining
the entities, their attributes, and the relationships among them. Functional analysis,
on the other hand, is concerned with determining the fundamental functions with
which the modeled enterprise is involved. The results of these two steps need to be
cross-referenced to get a better understanding of which functions deal with which
entities.

There is a relationship between the conceptual design and the view design. In one
sense, the conceptual design can be interpreted as being an integration of user views.
Even though this view integration activity is very important, the conceptual model
should support not only the existing applications, but also future applications. View
integration should be used to ensure that entity and relationship requirements for all
the views are covered in the conceptual schema.

In conceptual design and view design activities the user needs to specify the data
entities and must determine the applications that will run on the database as well as
statistical information about these applications. Statistical information includes the
specification of the frequency of user applications, the volume of various information,
and the like. Note that from the conceptual design step comes the definition of
global conceptual schema discussed in Section 1.7. We have not yet considered the
implications of the distributed environment; in fact, up to this point, the process is
identical to that in a centralized database design.

74 3 Distributed Database Design

System Requirements

(Objectives)

User

Input

View Integration

Global Conceptual

Schema

Distribution

Design

Local Conceptual

Schemas

Physical

Design

Physical

Schemas

Observation and

Monitoring

User

input

Requirements

Analysis

FeedbackFeedback

View Design

Access Information
External

Schema Definitions

Conceptual Design

Fig. 3.2 Top-Down Design Process

The global conceptual schema (GCS) and access pattern information collected
as a result of view design are inputs to the distribution design step. The objective
at this stage, which is the focus of this chapter, is to design the local conceptual
schemas (LCSs) by distributing the entities over the sites of the distributed system. It
is possible, of course, to treat each entity as a unit of distribution. Given that we use

3.2 Distribution Design Issues 75

the relational model as the basis of discussion in this book, the entities correspond to
relations.

Rather than distributing relations, it is quite common to divide them into subre-
lations, called fragments, which are then distributed. Thus, the distribution design
activity consists of two steps: fragmentation and allocation. The reason for separating
the distribution design into two steps is to better deal with the complexity of the
problem. However, this raises other concerns as we discuss at the end of the chapter.

The last step in the design process is the physical design, which maps the local
conceptual schemas to the physical storage devices available at the corresponding
sites. The inputs to this process are the local conceptual schema and the access pattern
information about the fragments in them.

It is well known that design and development activity of any kind is an ongoing
process requiring constant monitoring and periodic adjustment and tuning. We have
therefore included observation and monitoring as a major activity in this process.
Note that one does not monitor only the behavior of the database implementation but
also the suitability of user views. The result is some form of feedback, which may
result in backing up to one of the earlier steps in the design.

3.2 Distribution Design Issues

In the preceding section we indicated that the relations in a database schema are
usually decomposed into smaller fragments, but we did not offer any justification or
details for this process. The objective of this section is to fill in these details.

The following set of interrelated questions covers the entire issue. We will there-
fore seek to answer them in the remainder of this section.

1. Why fragment at all?

2. How should we fragment?

3. How much should we fragment?

4. Is there any way to test the correctness of decomposition?

5. How should we allocate?

6. What is the necessary information for fragmentation and allocation?

3.2.1 Reasons for Fragmentation

From a data distribution viewpoint, there is really no reason to fragment data. After
all, in distributed file systems, the distribution is performed on the basis of entire files.
In fact, the very early work dealt specifically with the allocation of files to nodes on
a computer network. We consider earlier models in Section 3.4.

76 3 Distributed Database Design

With respect to fragmentation, the important issue is the appropriate unit of distri-
bution. A relation is not a suitable unit, for a number of reasons. First, application
views are usually subsets of relations. Therefore, the locality of accesses of applica-
tions is defined not on entire relations but on their subsets. Hence it is only natural to
consider subsets of relations as distribution units.

Second, if the applications that have views defined on a given relation reside at
different sites, two alternatives can be followed, with the entire relation being the
unit of distribution. Either the relation is not replicated and is stored at only one site,
or it is replicated at all or some of the sites where the applications reside. The former
results in an unnecessarily high volume of remote data accesses. The latter, on the
other hand, has unnecessary replication, which causes problems in executing updates
(to be discussed later) and may not be desirable if storage is limited.

Finally, the decomposition of a relation into fragments, each being treated as
a unit, permits a number of transactions to execute concurrently. In addition, the
fragmentation of relations typically results in the parallel execution of a single query
by dividing it into a set of subqueries that operate on fragments. Thus fragmentation
typically increases the level of concurrency and therefore the system throughput.
This form of concurrency, which we refer to as intraquery concurrency, is dealt with
mainly in Chapters 7 and 8, under query processing.

Fragmentation raises difficulties as well. If the applications have conflicting
requirements that prevent decomposition of the relation into mutually exclusive
fragments, those applications whose views are defined on more than one fragment
may suffer performance degradation. It might, for example, be necessary to retrieve
data from two fragments and then take their join, which is costly. Minimizing
distributed joins is a fundamental fragmentation issue.

The second problem is related to semantic data control, specifically to integrity
checking. As a result of fragmentation, attributes participating in a dependency may
be decomposed into different fragments that might be allocated to different sites. In
this case, even the simpler task of checking for dependencies would result in chasing
after data in a number of sites. In Chapter 5 we return to the issue of semantic data
control.

3.2.2 Fragmentation Alternatives

Relation instances are essentially tables, so the issue is one of finding alternative
ways of dividing a table into smaller ones. There are clearly two alternatives for this:
dividing it horizontally or dividing it vertically.

Example 3.1. In this chapter we use a modified version of the relational database
scheme developed in Section 2.1. We have added to the PROJ relation a new attribute
(LOC) that indicates the place of each project. Figure 3.3 depicts the database instance
we will use. Figure 3.4 shows the PROJ relation of Figure 3.3 divided horizontally
into two relations. Subrelation PROJ1 contains information about projects whose

3.2 Distribution Design Issues 77

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E2 M. Smith Syst. Anal.

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E5 B. Casey Syst. Anal.

E6 L. Chu Elect. Eng.

E7 R. Davis Mech. Eng.

E8 J. Jones Syst. Anal.

EMP

TITLE SAL

PAY

Elect. Eng. 40000

Syst. Anal. 34000

Mech. Eng. 27000

Programmer 24000

PROJ

PNO PNAME BUDGET

P1 Instrumentation 150000

P2 Database Develop. 135000

P3 CAD/CAM 250000

P4 Maintenance 310000

ENO PNO RESP

E1 P1 Manager 12

DUR

E2 P1 Analyst 24

E2 P2 Analyst 6

E3 P3 Consultant 10

E3 P4 Engineer 48

E4 P2 Programmer 18

E5 P2 Manager 24

E6 P4 Manager 48

E7 P3 Engineer 36

E8 P3 Manager 40

ASG

LOC

Montreal

New York

New York

Paris

Fig. 3.3 Modified Example Database

budgets are less than $200,000, whereas PROJ2 stores information about projects
with larger budgets. �

Example 3.2. Figure 3.5 shows the PROJ relation of Figure 3.3 partitioned vertically
into two subrelations, PROJ1 and PROJ2. PROJ1 contains only the information about
project budgets, whereas PROJ2 contains project names and locations. It is important
to notice that the primary key to the relation (PNO) is included in both fragments. �

The fragmentation may, of course, be nested. If the nestings are of different types,
one gets hybrid fragmentation. Even though we do not treat hybrid fragmentation as
a primitive fragmentation strategy, many real-life partitionings may be hybrid.

3.2.3 Degree of Fragmentation

The extent to which the database should be fragmented is an important decision
that affects the performance of query execution. In fact, the issues in Section 3.2.1
concerning the reasons for fragmentation constitute a subset of the answers to the
question we are addressing here. The degree of fragmentation goes from one extreme,
that is, not to fragment at all, to the other extreme, to fragment to the level of

78 3 Distributed Database Design

PNO PNAME

P1

P2

Instrumentation

Database Develop.

BUDGET

150000

135000

PROJ
1

LOC

Montreal

New York

PNO PNAME BUDGET

P3 CAD/CAM 255000

P4 Maintenance 310000

PROJ
2

LOC

New York

Paris

Fig. 3.4 Example of Horizontal Partitioning

BUDGET

150000

135000

250000

310000

PNO

P1

P2

P3

P4

PROJ
1

PNO PNAME

P1

P2

P3

P4

Instrumentation

Database Develop.

CAD/CAM

Maintenance

PROJ
2

LOC

Montreal

New York

New York

Paris

Fig. 3.5 Example of Vertical Partitioning

individual tuples (in the case of horizontal fragmentation) or to the level of individual
attributes (in the case of vertical fragmentation).

We have already addressed the adverse effects of very large and very small units
of fragmentation. What we need, then, is to find a suitable level of fragmentation that
is a compromise between the two extremes. Such a level can only be defined with
respect to the applications that will run on the database. The issue is, how? In general,
the applications need to be characterized with respect to a number of parameters.
According to the values of these parameters, individual fragments can be identified.
In Section 3.3 we describe how this characterization can be carried out for alternative
fragmentations.

3.2 Distribution Design Issues 79

3.2.4 Correctness Rules of Fragmentation

We will enforce the following three rules during fragmentation, which, together,
ensure that the database does not undergo semantic change during fragmentation.

1. Completeness. If a relation instance R is decomposed into fragments FR =
{R1,R2, . . . ,Rn}, each data item that can be found in R can also be found
in one or more of Ri’s. This property, which is identical to the lossless de-
composition property of normalization (Section 2.1), is also important in
fragmentation since it ensures that the data in a global relation are mapped
into fragments without any loss [Grant, 1984]. Note that in the case of hori-
zontal fragmentation, the “item” typically refers to a tuple, while in the case
of vertical fragmentation, it refers to an attribute.

2. Reconstruction. If a relation R is decomposed into fragments FR = {R1,R2,
. . . ,Rn}, it should be possible to define a relational operator5 such that

R =5Ri, ∀Ri ∈ FR

The operator 5 will be different for different forms of fragmentation; it is
important, however, that it can be identified. The reconstructability of the
relation from its fragments ensures that constraints defined on the data in the
form of dependencies are preserved.

3. Disjointness. If a relation R is horizontally decomposed into fragments FR =
{R1, R2, . . . , Rn} and data item di is in R j, it is not in any other fragment
Rk (k 6= j). This criterion ensures that the horizontal fragments are disjoint. If
relation R is vertically decomposed, its primary key attributes are typically
repeated in all its fragments (for reconstruction). Therefore, in case of vertical
partitioning, disjointness is defined only on the non-primary key attributes of
a relation.

3.2.5 Allocation Alternatives

Assuming that the database is fragmented properly, one has to decide on the allocation
of the fragments to various sites on the network. When data are allocated, it may
either be replicated or maintained as a single copy. The reasons for replication are
reliability and efficiency of read-only queries. If there are multiple copies of a data
item, there is a good chance that some copy of the data will be accessible somewhere
even when system failures occur. Furthermore, read-only queries that access the same
data items can be executed in parallel since copies exist on multiple sites. On the other
hand, the execution of update queries cause trouble since the system has to ensure
that all the copies of the data are updated properly. Hence the decision regarding
replication is a trade-off that depends on the ratio of the read-only queries to the

80 3 Distributed Database Design

update queries. This decision affects almost all of the distributed DBMS algorithms
and control functions.

A non-replicated database (commonly called a partitioned database) contains
fragments that are allocated to sites, and there is only one copy of any fragment on
the network. In case of replication, either the database exists in its entirety at each
site (fully replicated database), or fragments are distributed to the sites in such a way
that copies of a fragment may reside in multiple sites (partially replicated database).
In the latter the number of copies of a fragment may be an input to the allocation
algorithm or a decision variable whose value is determined by the algorithm. Figure
3.6 compares these three replication alternatives with respect to various distributed
DBMS functions. We will discuss replication at length in Chapter 13.

Full replication Partial replication Partitioning

QUERY
PROCESSING Easy Same difficulty

Same difficultyDIRECTORY
MANAGEMENT

Easy or

nonexistent

CONCURRENCY
CONTROL EasyDifficultModerate

RELIABILITY Very high High Low

REALITY Possible application Realistic Possible application

Fig. 3.6 Comparison of Replication Alternatives

3.2.6 Information Requirements

One aspect of distribution design is that too many factors contribute to an optimal
design. The logical organization of the database, the location of the applications, the
access characteristics of the applications to the database, and the properties of the
computer systems at each site all have an influence on distribution decisions. This
makes it very complicated to formulate the distribution problem.

The information needed for distribution design can be divided into four categories:
database information, application information, communication network informa-
tion, and computer system information. The latter two categories are completely
quantitative in nature and are used in allocation models rather than in fragmentation
algorithms. We do not consider them in detail here. Instead, the detailed information

3.3 Fragmentation 81

requirements of the fragmentation and allocation algorithms are discussed in their
respective sections.

3.3 Fragmentation

In this section we present the various fragmentation strategies and algorithms. As
mentioned previously, there are two fundamental fragmentation strategies: horizontal
and vertical. Furthermore, there is a possibility of nesting fragments in a hybrid
fashion.

3.3.1 Horizontal Fragmentation

As we explained earlier, horizontal fragmentation partitions a relation along its tuples.
Thus each fragment has a subset of the tuples of the relation. There are two versions
of horizontal partitioning: primary and derived. Primary horizontal fragmentation
of a relation is performed using predicates that are defined on that relation. Derived
horizontal fragmentation, on the other hand, is the partitioning of a relation that
results from predicates being defined on another relation.

Later in this section we consider an algorithm for performing both of these
fragmentations. However, first we investigate the information needed to carry out
horizontal fragmentation activity.

3.3.1.1 Information Requirements of Horizontal Fragmentation

Database Information.

The database information concerns the global conceptual schema. In this context it is
important to note how the database relations are connected to one another, especially
with joins. In the relational model, these relationships are also depicted as relations.
However, in other data models, such as the entity-relationship (E–R) model [Chen,
1976], these relationships between database objects are depicted explicitly. Ceri et al.
[1983] also model the relationship explicitly, within the relational framework, for
purposes of the distribution design. In the latter notation, directed links are drawn
between relations that are related to each other by an equijoin operation.

Example 3.3. Figure 3.7 shows the expression of links among the database relations
given in Figure 2.3. Note that the direction of the link shows a one-to-many rela-
tionship. For example, for each title there are multiple employees with that title;
thus there is a link between the PAY and EMP relations. Along the same lines, the
many-to-many relationship between the EMP and PROJ relations is expressed with
two links to the ASG relation. �

82 3 Distributed Database Design

TITLE, SAL

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

ASG

L
1

PROJ

PAY

EMP

L
2

L
3

Fig. 3.7 Expression of Relationships Among Relations Using Links

The links between database objects (i.e., relations in our case) should be quite
familiar to those who have dealt with network models of data. In the relational model,
they are introduced as join graphs, which we discuss in detail in subsequent chapters
on query processing. We introduce them here because they help to simplify the
presentation of the distribution models we discuss later.

The relation at the tail of a link is called the owner of the link and the relation
at the head is called the member [Ceri et al., 1983]. More commonly used terms,
within the relational framework, are source relation for owner and target relation
for member. Let us define two functions: owner and member, both of which provide
mappings from the set of links to the set of relations. Therefore, given a link, they
return the member or owner relations of the link, respectively.

Example 3.4. Given link L1 of Figure 3.7, the owner and member functions have the
following values:

owner(L1) = PAY
member(L1) = EMP

�

The quantitative information required about the database is the cardinality of each
relation R, denoted card(R).

Application Information.

As indicated previously in relation to Figure 3.2, both qualitative and quantitative
information is required about applications. The qualitative information guides the
fragmentation activity, whereas the quantitative information is incorporated primarily
into the allocation models.

The fundamental qualitative information consists of the predicates used in user
queries. If it is not possible to analyze all of the user applications to determine these

3.3 Fragmentation 83

predicates, one should at least investigate the most “important” ones. It has been
suggested that as a rule of thumb, the most active 20% of user queries account for
80% of the total data accesses [Wiederhold, 1982]. This “80/20 rule” may be used as
a guideline in carrying out this analysis.

At this point we are interested in determining simple predicates. Given a relation
R(A1, A2, . . . , An), where Ai is an attribute defined over domain Di, a simple
predicate p j defined on R has the form

p j : Ai θ Value

where θ ∈ {=, <, 6=, ≤, >, ≥} and Value is chosen from the domain of Ai (Value∈
Di). We use Pri to denote the set of all simple predicates defined on a relation Ri.
The members of Pri are denoted by pi j.

Example 3.5. Given the relation instance PROJ of Figure 3.3,

PNAME = “Maintenance”

is a simple predicate, as well as

BUDGET ≤ 200000
�

Even though simple predicates are quite elegant to deal with, user queries quite
often include more complicated predicates, which are Boolean combinations of
simple predicates. One combination that we are particularly interested in, called a
minterm predicate, is the conjunction of simple predicates. Since it is always possible
to transform a Boolean expression into conjunctive normal form, the use of minterm
predicates in the design algorithms does not cause any loss of generality.

Given a set Pri = {pi1, pi2, . . . , pim} of simple predicates for relation Ri, the set
of minterm predicates Mi = {mi1, mi2, . . . , miz} is defined as

Mi = {mi j|mi j =
∧

pik∈Pri

p∗ik}, 1≤ k ≤ m, 1≤ j ≤ z

where p∗ik = pik or p∗ik = ¬pik. So each simple predicate can occur in a minterm
predicate either in its natural form or its negated form.

It is important to note that the negation of a predicate is meaningful for equality
predicates of the form Attribute = Value. For inequality predicates, the negation
should be treated as the complement. For example, the negation of the simple predi-
cate Attribute≤Value is Attribute >Value. Besides theoretical problems of comple-
mentation in infinite sets, there is also the practical problem that the complement may
be difficult to define. For example, if two simple predicates are defined of the form
Lower bound ≤ Attribute 1, and Attribute 1 ≤U pper bound, their complements
are ¬(Lower bound ≤ Attribute 1) and ¬(Attribute 1≤U pper bound). However,
the original two simple predicates can be written as Lower bound ≤ Attribute 1≤
U pper bound with a complement ¬(Lower bound ≤ Attribute 1≤U pper bound)

84 3 Distributed Database Design

that may not be easy to define. Therefore, the research in this area typically considers
only simple equality predicates [Ceri et al., 1982b; Ceri and Pelagatti, 1984].

Example 3.6. Consider relation PAY of Figure 3.3. The following are some of the
possible simple predicates that can be defined on PAY.

p1: TITLE = “Elect. Eng.”
p2: TITLE = “Syst. Anal.”
p3: TITLE = “Mech. Eng.”
p4: TITLE = “Programmer”
p5: SAL ≤ 30000

The following are some of the minterm predicates that can be defined based on
these simple predicates.

m1: TITLE = “Elect. Eng.” ∧ SAL ≤ 30000
m2: TITLE = “Elect. Eng.” ∧ SAL > 30000
m3: ¬(TITLE = “Elect. Eng.”) ∧ SAL ≤ 30000
m4: ¬(TITLE = “Elect. Eng.”) ∧ SAL > 30000
m5: TITLE = “Programmer” ∧ SAL ≤ 30000
m6: TITLE = “Programmer” ∧ SAL > 30000

�

There are a few points to mention here. First, these are not all the minterm
predicates that can be defined; we are presenting only a representative sample.
Second, some of these may be meaningless given the semantics of relation PAY;
we are not addressing that issue here. Third, these are simplified versions of the
minterms. The minterm definition requires each predicate to be in a minterm in either
its natural or its negated form. Thus, m1, for example, should be written as

m1: TITLE = “Elect. Eng.” ∧ TITLE 6= “Syst. Anal.” ∧ TITLE 6= “Mech. Eng.”
∧ TITLE 6= “Programmer” ∧ SAL ≤ 30000

However, clearly this is not necessary, and we use the simplified form. Finally,
note that there are logically equivalent expressions to these minterms; for example,
m3 can also be rewritten as

m3: TITLE 6= “Elect. Eng.” ∧ SAL ≤ 30000

In terms of quantitative information about user applications, we need to have two
sets of data.

1. Minterm selectivity: number of tuples of the relation that would be accessed
by a user query specified according to a given minterm predicate. For example,
the selectivity of m1 of Example 3.6 is 0 since there are no tuples in PAY that
satisfy the minterm predicate. The selectivity of m2, on the other hand, is 0.25

3.3 Fragmentation 85

since one of the four tuples in PAY satisfy m2. We denote the selectivity of a
minterm mi as sel(mi).

2. Access frequency: frequency with which user applications access data. If
Q = {q1, q2, . . . , qq} is a set of user queries, acc(qi) indicates the access
frequency of query qi in a given period.

Note that minterm access frequencies can be determined from the query frequen-
cies. We refer to the access frequency of a minterm mi as acc(mi).

3.3.1.2 Primary Horizontal Fragmentation

Before we present a formal algorithm for horizontal fragmentation, we intuitively
discuss the process for primary (and derived) horizontal fragmentation. A primary
horizontal fragmentation is defined by a selection operation on the owner relations of
a database schema. Therefore, given relation R, its horizontal fragments are given by

Ri = σFi(R), 1≤ i≤ w

where Fi is the selection formula used to obtain fragment Ri (also called the frag-
mentation predicate). Note that if Fi is in conjunctive normal form, it is a minterm
predicate (mi). The algorithm we discuss will, in fact, insist that Fi be a minterm
predicate.

Example 3.7. The decomposition of relation PROJ into horizontal fragments PROJ1
and PROJ2 in Example 3.1 is defined as follows1:

PROJ1 = σBUDGET ≤ 200000 (PROJ)
PROJ2 = σBUDGET > 200000 (PROJ)

�

Example 3.7 demonstrates one of the problems of horizontal partitioning. If
the domain of the attributes participating in the selection formulas are continuous
and infinite, as in Example 3.7, it is quite difficult to define the set of formulas
F = {F1, F2, . . . , Fn} that would fragment the relation properly. One possible course
of action is to define ranges as we have done in Example 3.7. However, there is
always the problem of handling the two endpoints. For example, if a new tuple with
a BUDGET value of, say, $600,000 were to be inserted into PROJ, one would have
had to review the fragmentation to decide if the new tuple is to go into PROJ2 or if
the fragments need to be revised and a new fragment needs to be defined as

1 We assume that the non-negativity of the BUDGET values is a feature of the relation that is
enforced by an integrity constraint. Otherwise, a simple predicate of the form 0≤ BUDGET also
needs to be included in Pr. We assume this to be true in all our examples and discussions in this
chapter.

86 3 Distributed Database Design

PROJ2 = σ200000<BUDGET ≤ 400000 (PROJ)
PROJ3 = σBUDGET > 400000 (PROJ)

Example 3.8. Consider relation PROJ of Figure 3.3. We can define the following
horizontal fragments based on the project location. The resulting fragments are shown
in Figure 3.8.

PROJ1 = σLOC=“Montreal” (PROJ)
PROJ2 = σLOC=“New York” (PROJ)
PROJ3 = σLOC=“Paris” (PROJ)

�

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

PROJ1

PNO PNAME BUDGET LOC

P2 Database Develop. 135000 New York

P3 CAD/CAM 250000 New York

PNO PNAME BUDGET LOC

P4 Maintenance 310000 Paris

PROJ2

PROJ3

Fig. 3.8 Primary Horizontal Fragmentation of Relation PROJ

Now we can define a horizontal fragment more carefully. A horizontal fragment
Ri of relation R consists of all the tuples of R that satisfy a minterm predicate mi.
Hence, given a set of minterm predicates M, there are as many horizontal fragments
of relation R as there are minterm predicates. This set of horizontal fragments is also
commonly referred to as the set of minterm fragments.

From the foregoing discussion it is obvious that the definition of the horizontal
fragments depends on minterm predicates. Therefore, the first step of any fragmenta-
tion algorithm is to determine a set of simple predicates that will form the minterm
predicates.

An important aspect of simple predicates is their completeness; another is their
minimality. A set of simple predicates Pr is said to be complete if and only if there

3.3 Fragmentation 87

is an equal probability of access by every application to any tuple belonging to any
minterm fragment that is defined according to Pr2.

Example 3.9. Consider the fragmentation of relation PROJ given in Example 3.8. If
the only application that accesses PROJ wants to access the tuples according to the
location, the set is complete since each tuple of each fragment PROJi (Example 3.8)
has the same probability of being accessed. If, however, there is a second application
which accesses only those project tuples where the budget is less than or equal to
$200,000, then Pr is not complete. Some of the tuples within each PROJi have a
higher probability of being accessed due to this second application. To make the set
of predicates complete, we need to add (BUDGET ≤ 200000, BUDGET > 200000)
to Pr:

Pr = {LOC=“Montreal”, LOC=“New York”, LOC=“Paris”,
BUDGET ≤ 200000, BUDGET > 200000}

�

The reason completeness is a desirable property is because fragments obtained ac-
cording to a complete set of predicates are logically uniform since they all satisfy the
minterm predicate. They are also statistically homogeneous in the way applications
access them. These characteristics ensure that the resulting fragmentation results
in a balanced load (with respect to the given workload) across all the fragments.
Therefore, we will use a complete set of predicates as the basis of primary horizontal
fragmentation.

It is possible to define completeness more formally so that a complete set of
predicates can be obtained automatically. However, this would require the designer
to specify the access probabilities for each tuple of a relation for each application
under consideration. This is considerably more work than appealing to the common
sense and experience of the designer to come up with a complete set. Shortly, we
will present an algorithmic way of obtaining this set.

The second desirable property of the set of predicates, according to which min-
term predicates and, in turn, fragments are to be defined, is minimality, which is
very intuitive. It simply states that if a predicate influences how fragmentation is
performed (i.e., causes a fragment f to be further fragmented into, say, fi and f j),
there should be at least one application that accesses fi and f j differently. In other
words, the simple predicate should be relevant in determining a fragmentation. If all
the predicates of a set Pr are relevant, Pr is minimal.

A formal definition of relevance can be given as follows [Ceri et al., 1982b]. Let
mi and m j be two minterm predicates that are identical in their definition, except that
mi contains the simple predicate pi in its natural form while m j contains ¬pi. Also,
let fi and f j be two fragments defined according to mi and m j, respectively. Then pi
is relevant if and only if

2 It is clear that the definition of completeness of a set of simple predicates is different from the
completeness rule of fragmentation given in Section 3.2.4.

88 3 Distributed Database Design

acc(mi)

card(fi)
6=

acc(m j)

card(f j)

Example 3.10. The set Pr defined in Example 3.9 is complete and minimal. If, how-
ever, we were to add the predicate

PNAME = “Instrumentation”

to Pr, the resulting set would not be minimal since the new predicate is not
relevant with respect to Pr – there is no application that would access the resulting
fragments any differently. �

We can now present an iterative algorithm that would generate a complete and
minimal set of predicates Pr′ given a set of simple predicates Pr. This algorithm,
called COM MIN, is given in Algorithm 3.1. To avoid lengthy wording, we have
adopted the following notation:

Rule 1: each fragment is accessed differently by at least one application.’

fi o f Pr′: fragment fi defined according to a minterm predicate defined over the
predicates of Pr′.

Algorithm 3.1: COM MIN Algorithm
Input: R: relation; Pr: set of simple predicates
Output: Pr′: set of simple predicates
Declare: F : set of minterm fragments
begin

find pi ∈ Pr such that pi partitions R according to Rule 1 ;
Pr′← pi ;
Pr← Pr− pi ;
F ← fi { fi is the minterm fragment according to pi} ;
repeat

find a p j ∈ Pr such that p j partitions some fk of Pr′ according to Rule 1
;
Pr′← Pr′∪ p j ;
Pr← Pr− p j ;
F ← F ∪ f j ;
if ∃pk ∈ Pr′ which is not relevant then

Pr′← Pr′− pk ;
F ← F− fk ;

until Pr′ is complete ;
end

3.3 Fragmentation 89

The algorithm begins by finding a predicate that is relevant and that partitions the
input relation. The repeat-until loop iteratively adds predicates to this set, ensuring
minimality at each step. Therefore, at the end the set Pr′ is both minimal and
complete.

The second step in the primary horizontal design process is to derive the set of
minterm predicates that can be defined on the predicates in set Pr′. These minterm
predicates determine the fragments that are used as candidates in the allocation step.
Determination of individual minterm predicates is trivial; the difficulty is that the
set of minterm predicates may be quite large (in fact, exponential on the number of
simple predicates). We look at ways of reducing the number of minterm predicates
that need to be considered in fragmentation.

This reduction can be achieved by eliminating some of the minterm fragments that
may be meaningless. This elimination is performed by identifying those minterms
that might be contradictory to a set of implications I. For example, if Pr′ = {p1, p2},
where

p1 : att = value 1
p2 : att = value 2

and the domain of att is {value 1,value 2}, it is obvious that I contains two implica-
tions:

i1 : (att = value 1)⇒¬(att = value 2)
i2 : ¬(att = value1)⇒ (att = value 2)

The following four minterm predicates are defined according to Pr′:

m1 : (att = value 1)∧ (att = value 2)
m2 : (att = value 1)∧¬(att = value 2)
m3 : ¬(att = value 1)∧ (att = value 2)
m4 : ¬(att = value 1)∧¬(att = value 2)

In this case the minterm predicates m1 and m4 are contradictory to the implications I
and can therefore be eliminated from M.

The algorithm for primary horizontal fragmentation is given in Algorithm 3.2.
The input to the algorithm PHORIZONTAL is a relation R that is subject to primary
horizontal fragmentation, and Pr, which is the set of simple predicates that have been
determined according to applications defined on relation R.

Example 3.11. We now consider the design of the database scheme given in Figure
3.7. The first thing to note is that there are two relations that are the subject of primary
horizontal fragmentation: PAY and PROJ.

Suppose that there is only one application that accesses PAY, which checks the
salary information and determines a raise accordingly. Assume that employee records
are managed in two places, one handling the records of those with salaries less than

90 3 Distributed Database Design

Algorithm 3.2: PHORIZONTAL Algorithm
Input: R: relation; Pr: set of simple predicates
Output: M: set of minterm fragments
begin

Pr′←COM MIN(R,Pr) ;
determine the set M of minterm predicates ;
determine the set I of implications among pi ∈ Pr′ ;
foreach mi ∈M do

if mi is contradictory according to I then
M←M−mi

end

or equal to $30,000, and the other handling the records of those who earn more than
$30,000. Therefore, the query is issued at two sites.

The simple predicates that would be used to partition relation PAY are

p1: SAL ≤ 30000
p2: SAL > 30000

thus giving the initial set of simple predicates Pr = {p1, p2}. Applying the
COM MIN algorithm with i = 1 as initial value results in Pr′ = {p1}. This is com-
plete and minimal since p2 would not partition f1 (which is the minterm fragment
formed with respect to p1) according to Rule 1. We can form the following minterm
predicates as members of M:

m1: (SAL < 30000)
m2: ¬(SAL ≤ 30000) = SAL > 30000

Therefore, we define two fragments Fs = {S1,S2} according to M (Figure 3.9).

TITLE

Mech. Eng.

Programmer

SAL

27000

24000

TITLE

Elect. Eng.

Syst. Anal.

SAL

40000

34000

1PAY 2PAY

Fig. 3.9 Horizontal Fragmentation of Relation PAY

Let us next consider relation PROJ. Assume that there are two applications. The
first is issued at three sites and finds the names and budgets of projects given their
location. In SQL notation, the query is

3.3 Fragmentation 91

SELECT PNAME, BUDGET
FROM PROJ
WHERE LOC=Value

For this application, the simple predicates that would be used are the following:

p1: LOC = “Montreal”
p2: LOC = “New York”
p3: LOC = “Paris”

The second application is issued at two sites and has to do with the management
of the projects. Those projects that have a budget of less than or equal to $200,000
are managed at one site, whereas those with larger budgets are managed at a second
site. Thus, the simple predicates that should be used to fragment according to the
second application are

p4: BUDGET ≤ 200000
p5: BUDGET > 200000

If the COM MIN algorithm is followed, the set Pr′ = {p1, p2, p4} is obviously
complete and minimal. Actually COM MIN would add any two of p1, p2, p3 to Pr′;
in this example we have selected to include p1, p2.

Based on Pr′, the following six minterm predicates that form M can be defined:

m1: (LOC = “Montreal”) ∧ (BUDGET ≤ 200000)
m2: (LOC = “Montreal”) ∧ (BUDGET > 200000)
m3: (LOC = “New York”) ∧ (BUDGET ≤ 200000)
m4: (LOC = “New York”) ∧ (BUDGET > 200000)
m5: (LOC = “Paris”) ∧ (BUDGET ≤ 200000)
m6: (LOC = “Paris”) ∧ (BUDGET > 200000)

As noted in Example 3.6, these are not the only minterm predicates that can be
generated. It is, for example, possible to specify predicates of the form

p1∧ p2∧ p3∧ p4∧ p5

However, the obvious implications

i1 :p1⇒¬p2∧¬p3

i2 :p2⇒¬p1∧¬p3

i3 :p3⇒¬p1∧¬p2

i4 :p4⇒¬p5

i5 :p5⇒¬p4

i6 :¬p4⇒ p5

i7 :¬p5⇒ p4

eliminate these minterm predicates and we are left with m1 to m6.

92 3 Distributed Database Design

Looking at the database instance in Figure 3.3, one may be tempted to claim that
the following implications hold:

i8: LOC = “Montreal”⇒¬ (BUDGET > 200000)
i9: LOC = “Paris”⇒¬ (BUDGET ≤ 200000)
i10: ¬ (LOC = “Montreal”)⇒ BUDGET ≤ 200000
i11: ¬ (LOC = “Paris”)⇒ BUDGET > 200000

However, remember that implications should be defined according to the semantics
of the database, not according to the current values. There is nothing in the database
semantics that suggest that the implications i8 through i11 hold. Some of the fragments
defined according to M = {m1, . . . ,m6} may be empty, but they are, nevertheless,
fragments.

The result of the primary horizontal fragmentation of PROJ is to form six frag-
ments FPROJ = {PROJ1, PROJ2, PROJ3, PROJ4, PROJ5, PROJ6} of relation PROJ
according to the minterm predicates M (Figure 3.10). Since fragments PROJ2, and
PROJ5 are empty, they are not depicted in Figure 3.10. �

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

PROJ1 PROJ3

PROJ4

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PROJ6

PNO PNAME BUDGET LOC

P2 Database
Develop.

135000 New York

PNO PNAME BUDGET LOC

P4 Maintenance 310000 Paris

Fig. 3.10 Horizontal Partitioning of Relation PROJ

3.3.1.3 Derived Horizontal Fragmentation

A derived horizontal fragmentation is defined on a member relation of a link accord-
ing to a selection operation specified on its owner. It is important to remember two
points. First, the link between the owner and the member relations is defined as an
equi-join. Second, an equi-join can be implemented by means of semijoins. This
second point is especially important for our purposes, since we want to partition a

3.3 Fragmentation 93

member relation according to the fragmentation of its owner, but we also want the
resulting fragment to be defined only on the attributes of the member relation.

Accordingly, given a link L where owner(L) = S and member(L) = R, the derived
horizontal fragments of R are defined as

Ri = RnSi,1≤ i≤ w

where w is the maximum number of fragments that will be defined on R, and Si = σFi

(S), where Fi is the formula according to which the primary horizontal fragment Si is
defined.

Example 3.12. Consider link L1 in Figure 3.7, where owner(L1) = PAY and
member(L1) = EMP. Then we can group engineers into two groups according to
their salary: those making less than or equal to $30,000, and those making more than
$30,000. The two fragments EMP1 and EMP2 are defined as follows:

EMP1 = EMP n PAY1
EMP2 = EMP n PAY2

where

PAY1 = σSAL ≤ 30000(PAY)
PAY2 = σSAL > 30000(PAY)

The result of this fragmentation is depicted in Figure 3.11. �

EMP1

ENO ENAME TITLE

E3 A. Lee Mech. Eng.

E4 J. Miller Programmer

E7 R. Davis Mech. Eng.

EMP2

B. Casey
Elect. Eng.

E1 J. Doe Elect. Eng.

E2 M. Smith Syst. Anal.

E5 Syst. Anal.
E6 L. Chu

E8 J. Jones Syst. Anal.

ENO ENAME TITLE

Fig. 3.11 Derived Horizontal Fragmentation of Relation EMP

To carry out a derived horizontal fragmentation, three inputs are needed: the set of
partitions of the owner relation (e.g., PAY1 and PAY2 in Example 3.12), the member
relation, and the set of semijoin predicates between the owner and the member (e.g.,
EMP.TITLE = PAY.TITLE in Example 3.12). The fragmentation algorithm, then, is
quite trivial, so we will not present it in any detail.

There is one potential complication that deserves some attention. In a database
schema, it is common that there are more than two links into a relation R (e.g., in
Figure 3.7, ASG has two incoming links). In this case there is more than one possible

94 3 Distributed Database Design

derived horizontal fragmentation of R. The choice of candidate fragmentation is
based on two criteria:

1. The fragmentation with better join characteristics

2. The fragmentation used in more applications

Let us discuss the second criterion first. This is quite straightforward if we take into
consideration the frequency with which applications access some data. If possible,
one should try to facilitate the accesses of the “heavy” users so that their total impact
on system performance is minimized.

Applying the first criterion, however, is not that straightforward. Consider, for ex-
ample, the fragmentation we discussed in Example 3.1. The effect (and the objective)
of this fragmentation is that the join of the EMP and PAY relations to answer the
query is assisted (1) by performing it on smaller relations (i.e., fragments), and (2)
by potentially performing joins in parallel.

The first point is obvious. The fragments of EMP are smaller than EMP itself.
Therefore, it will be faster to join any fragment of PAY with any fragment of EMP
than to work with the relations themselves. The second point, however, is more
important and is at the heart of distributed databases. If, besides executing a number
of queries at different sites, we can parallelize execution of one join query, the
response time or throughput of the system can be expected to improve. In the case of
joins, this is possible under certain circumstances. Consider, for example, the join
graph (i.e., the links) between the fragments of EMP and PAY derived in Example
3.10 (Figure 3.12). There is only one link coming in or going out of a fragment.
Such a join graph is called a simple graph. The advantage of a design where the join
relationship between fragments is simple is that the member and owner of a link
can be allocated to one site and the joins between different pairs of fragments can
proceed independently and in parallel.

TITLE SAL TITLE SAL

ENO ENAME TITLE ENO ENAME TITLE

PAY
1 PAY

2

EMP
1

EMP
2

Fig. 3.12 Join Graph Between Fragments

Unfortunately, obtaining simple join graphs may not always be possible. In that
case, the next desirable alternative is to have a design that results in a partitioned join

3.3 Fragmentation 95

graph. A partitioned graph consists of two or more subgraphs with no links between
them. Fragments so obtained may not be distributed for parallel execution as easily
as those obtained via simple join graphs, but the allocation is still possible.

Example 3.13. Let us continue with the distribution design of the database we started
in Example 3.11. We already decided on the fragmentation of relation EMP according
to the fragmentation of PAY (Example 3.12). Let us now consider ASG. Assume that
there are the following two applications:

1. The first application finds the names of engineers who work at certain places.
It runs on all three sites and accesses the information about the engineers who
work on local projects with higher probability than those of projects at other
locations.

2. At each administrative site where employee records are managed, users would
like to access the responsibilities on the projects that these employees work
on and learn how long they will work on those projects.

The first application results in a fragmentation of ASG according to the (non-
empty) fragments PROJ1, PROJ3, PROJ4 and PROJ6 of PROJ obtained in Example
3.11. Remember that

PROJ1: σLOC=“Montreal”∧BUDGET≤200000 (PROJ)
PROJ3: σLOC=“New York”∧BUDGET≤200000 (PROJ)
PROJ4: σLOC=“New York”∧BUDGET>200000 (PROJ)
PROJ6: σLOC=“Paris”∧BUDGET>200000 (PROJ)

Therefore, the derived fragmentation of ASG according to {PROJ1, PROJ2,
PROJ3} is defined as follows:

ASG1 = ASG n PROJ1
ASG2 = ASG n PROJ3
ASG3 = ASG n PROJ4
ASG4 = ASG n PROJ6

These fragment instances are shown in Figure 3.13.
The second query can be specified in SQL as

SELECT RESP, DUR
FROM ASG, EMPi
WHERE ASG.ENO = EMPi.ENO

where i = 1 or i = 2, depending on the site where the query is issued. The derived
fragmentation of ASG according to the fragmentation of EMP is defined below and
depicted in Figure 3.14.

ASG1 = ASG n EMP1
ASG2 = ASG n EMP2

�

96 3 Distributed Database Design

Fig. 3.13 Derived Fragmentation of ASG with respect to PROJ

Fig. 3.14 Derived Fragmentation of ASG with respect to EMP

This example demonstrates two things:

1. Derived fragmentation may follow a chain where one relation is fragmented
as a result of another one’s design and it, in turn, causes the fragmentation of
another relation (e.g., the chain PAY→EMP→ASG).

2. Typically, there will be more than one candidate fragmentation for a relation
(e.g., relation ASG). The final choice of the fragmentation scheme may be a
decision problem addressed during allocation.

ASG1 ASG2

PNO RESP DURENO

E3 P3 Consultant 10

E3 P4 Engineer 48

E4 P2 Programmer 18

E7 P3 Engineer 36

PNO RESP DURENO

ManagerE1 P1 12

AnalystE2 P1 24

Analyst 6P2E2

ManagerE5 P2 24

ManagerE6 P4 48

ManagerE8 P3 40

ASG1

PNO RESP DURENO

E1 P1 Manager 12

E2 P1 Analyst 24

PNO RESP DURENO

AnalystE2 P2 6

Programmer 18P2E4

Manager 24P2E5

ASG2

PNO RESP DURENO

E3

E6

P4

P4 Manager

48

48

Engineer

ASG4

PNO RESP DURENO

ASG3

Consultant 10P3E3

Engineer 36P3E7

Manager 40P3E8

3.3 Fragmentation 97

3.3.1.4 Checking for Correctness

We should now check the fragmentation algorithms discussed so far with respect to
the three correctness criteria presented in Section 3.2.4.

Completeness.

The completeness of a primary horizontal fragmentation is based on the selection
predicates used. As long as the selection predicates are complete, the resulting
fragmentation is guaranteed to be complete as well. Since the basis of the fragmen-
tation algorithm is a set of complete and minimal predicates, Pr′, completeness is
guaranteed as long as no mistakes are made in defining Pr′.

The completeness of a derived horizontal fragmentation is somewhat more difficult
to define. The difficulty is due to the fact that the predicate determining the fragmen-
tation involves two relations. Let us first define the completeness rule formally and
then look at an example.

Let R be the member relation of a link whose owner is relation S, where R and
S are fragmented as FR = {R1,R2, . . . ,Rw} and FS = {S1,S2, . . . ,Sw}, respectively.
Furthermore, let A be the join attribute between R and S. Then for each tuple t of Ri,
there should be a tuple t ′ of Si such that t[A] = t ′[A].

For example, there should be no ASG tuple which has a project number that is not
also contained in PROJ. Similarly, there should be no EMP tuples with TITLE values
where the same TITLE value does not appear in PAY as well. This rule is known
as referential integrity and ensures that the tuples of any fragment of the member
relation are also in the owner relation.

Reconstruction.

Reconstruction of a global relation from its fragments is performed by the union
operator in both the primary and the derived horizontal fragmentation. Thus, for a
relation R with fragmentation FR = {R1,R2, . . . ,Rw},

R =
⋃

Ri, ∀Ri ∈ FR

Disjointness.

It is easier to establish disjointness of fragmentation for primary than for derived
horizontal fragmentation. In the former case, disjointness is guaranteed as long as
the minterm predicates determining the fragmentation are mutually exclusive.

In derived fragmentation, however, there is a semijoin involved that adds con-
siderable complexity. Disjointness can be guaranteed if the join graph is simple.
Otherwise, it is necessary to investigate actual tuple values. In general, we do not

98 3 Distributed Database Design

want a tuple of a member relation to join with two or more tuples of the owner
relation when these tuples are in different fragments of the owner. This may not
be very easy to establish, and illustrates why derived fragmentation schemes that
generate a simple join graph are always desirable.

Example 3.14. In fragmenting relation PAY (Example 3.11), the minterm predicates
M = {m1,m2} were

m1: SAL ≤ 30000
m2: SAL > 30000

Since m1 and m2 are mutually exclusive, the fragmentation of PAY is disjoint.
For relation EMP, however, we require that

1. Each engineer has a single title.

2. Each title have a single salary value associated with it.

Since these two rules follow from the semantics of the database, the fragmentation
of EMP with respect to PAY is also disjoint. �

3.3.2 Vertical Fragmentation

Remember that a vertical fragmentation of a relation R produces fragments R1,R2,
. . . ,Rr, each of which contains a subset of R’s attributes as well as the primary key
of R. The objective of vertical fragmentation is to partition a relation into a set of
smaller relations so that many of the user applications will run on only one fragment.
In this context, an “optimal” fragmentation is one that produces a fragmentation
scheme which minimizes the execution time of user applications that run on these
fragments.

Vertical fragmentation has been investigated within the context of centralized
database systems as well as distributed ones. Its motivation within the centralized
context is as a design tool, which allows the user queries to deal with smaller relations,
thus causing a smaller number of page accesses [Navathe et al., 1984]. It has also
been suggested that the most “active” subrelations can be identified and placed in a
faster memory subsystem in those cases where memory hierarchies are supported
[Eisner and Severance, 1976].

Vertical partitioning is inherently more complicated than horizontal partitioning.
This is due to the total number of alternatives that are available. For example, in
horizontal partitioning, if the total number of simple predicates in Pr is n, there are
2n possible minterm predicates that can be defined on it. In addition, we know that
some of these will contradict the existing implications, further reducing the candidate
fragments that need to be considered. In the case of vertical partitioning, however,
if a relation has m non-primary key attributes, the number of possible fragments is
equal to B(m), which is the mth Bell number [Niamir, 1978]. For large values of

3.3 Fragmentation 99

m,B(m)≈ mm; for example, for m=10, B(m)≈ 115,000, for m=15, B(m)≈ 109, for
m=30, B(m) = 1023 [Hammer and Niamir, 1979; Navathe et al., 1984].

These values indicate that it is futile to attempt to obtain optimal solutions to the
vertical partitioning problem; one has to resort to heuristics. Two types of heuristic
approaches exist for the vertical fragmentation of global relations:

1. Grouping: starts by assigning each attribute to one fragment, and at each step,
joins some of the fragments until some criteria is satisfied. Grouping was first
suggested for centralized databases [Hammer and Niamir, 1979], and was
used later for distributed databases [Sacca and Wiederhold, 1985].

2. Splitting: starts with a relation and decides on beneficial partitionings based
on the access behavior of applications to the attributes. The technique was
also first discussed for centralized database design [Hoffer and Severance,
1975]. It was then extended to the distributed environment [Navathe et al.,
1984].

In what follows we discuss only the splitting technique, since it fits more naturally
within the top-down design methodology, since the “optimal” solution is probably
closer to the full relation than to a set of fragments each of which consists of a single
attribute [Navathe et al., 1984]. Furthermore, splitting generates non-overlapping
fragments whereas grouping typically results in overlapping fragments. We prefer
non-overlapping fragments for disjointness. Of course, non-overlapping refers only
to non-primary key attributes.

Before we proceed, let us clarify an issue that we only mentioned in Example 3.2,
namely, the replication of the global relation’s key in the fragments. This is a charac-
teristic of vertical fragmentation that allows the reconstruction of the global relation.
Therefore, splitting is considered only for those attributes that do not participate in
the primary key.

There is a strong advantage to replicating the key attributes despite the obvious
problems it causes. This advantage has to do with semantic integrity enforcement, to
be discussed in Chapter 5. Note that the dependencies briefly discussed in Section 2.1
is, in fact, a constraint that has to hold among the attribute values of the respective
relations at all times. Remember also that most of these dependencies involve the
key attributes of a relation. If we now design the database so that the key attributes
are part of one fragment that is allocated to one site, and the implied attributes are
part of another fragment that is allocated to a second site, every update request that
causes an integrity check will necessitate communication among sites. Replication of
the key attributes at each fragment reduces the chances of this occurring but does not
eliminate it completely, since such communication may be necessary due to integrity
constraints that do not involve the primary key, as well as due to concurrency control.

One alternative to the replication of the key attributes is the use of tuple identifiers
(TIDs), which are system-assigned unique values to the tuples of a relation. Since
TIDs are maintained by the system, the fragments are disjoint at a logical level.

100 3 Distributed Database Design

3.3.2.1 Information Requirements of Vertical Fragmentation

The major information required for vertical fragmentation is related to applications.
The following discussion, therefore, is exclusively focused on what needs to be
determined about applications that will run against the distributed database. Since
vertical partitioning places in one fragment those attributes usually accessed together,
there is a need for some measure that would define more precisely the notion of
“togetherness.” This measure is the affinity of attributes, which indicates how closely
related the attributes are. Unfortunately, it is not realistic to expect the designer or
the users to be able to easily specify these values. We now present one way by which
they can be obtained from more primitive data.

The major information requirement related to applications is their access frequen-
cies. Let Q = {q1,q2, . . . ,qq} be the set of user queries (applications) that access
relation R(A1,A2, . . . ,An). Then, for each query qi and each attribute A j, we associate
an attribute usage value, denoted as use(qi,A j), and defined as follows:

use(qi,A j) =

{
1 if attribute A j is referenced by query qi
0 otherwise

The use(qi,•) vectors for each application are easy to define if the designer knows
the applications that will run on the database. Again, remember that the 80-20 rule
discussed earlier should be helpful in this task.

Example 3.15. Consider relation PROJ of Figure 3.3. Assume that the following
applications are defined to run on this relation. In each case we also give the SQL
specification.

q1: Find the budget of a project, given its identification number.

SELECT BUDGET
FROM PROJ
WHERE PNO=Value

q2: Find the names and budgets of all projects.

SELECT PNAME, BUDGET
FROM PROJ

q3: Find the names of projects located at a given city.

SELECT PNAME
FROM PROJ
WHERE LOC=Value

q4: Find the total project budgets for each city.

SELECT SUM(BUDGET)
FROM PROJ
WHERE LOC=Value

3.3 Fragmentation 101

According to these four applications, the attribute usage values can be defined. As
a notational convenience, we let A1 = PNO, A2 = PNAME, A3 = BUDGET, and A4
= LOC. The usage values are defined in matrix form (Figure 3.15), where entry (i, j)
denotes use(qi, A j). �

A
1

A
2

A
3

A
4

q
4

q
3

q
2

q
1

1 0 1 0

0 1 1 0

0 1 0 1

0 0 1 1

Fig. 3.15 Example Attribute Usage Matrix

Attribute usage values are not sufficiently general to form the basis of attribute
splitting and fragmentation. This is because these values do not represent the weight
of application frequencies. The frequency measure can be included in the definition
of the attribute affinity measure a f f (Ai,A j), which measures the bond between two
attributes of a relation according to how they are accessed by applications.

The attribute affinity measure between two attributes Ai and A j of a relation
R(A1,A2, . . . ,An) with respect to the set of applications Q = {q1,q2, . . . ,qq} is de-
fined as

a f f (Ai,A j) = ∑
k|use(qk,Ai)=1∧use(qk,A j)=1

∑
∀Sl

re fl(qk)accl(qk)

where re fl(qk) is the number of accesses to attributes (Ai,A j) for each execution of
application qk at site Sl and accl(qk) is the application access frequency measure
previously defined and modified to include frequencies at different sites.

The result of this computation is an n×n matrix, each element of which is one of
the measures defined above. We call this matrix the attribute affinity matrix (AA).

Example 3.16. Let us continue with the case that we examined in Example 3.15.
For simplicity, let us assume that re fl(qk) = 1 for all qk and Sl . If the application
frequencies are

acc1(q1) = 15 acc2(q1) = 20 acc3(q1) = 10
acc1(q2) = 5 acc2(q2) = 0 acc3(q2) = 0
acc1(q3) = 25 acc2(q3) = 25 acc3(q3) = 25
acc1(q4) = 3 acc2(q4) = 0 acc3(q4) = 0

then the affinity measure between attributes A1 and A3 can be measured as

102 3 Distributed Database Design

a f f (A1,A3) = ∑
1
k=1 ∑

3
l=1 accl(qk) = acc1(q1)+acc2(q1)+acc3(q1) = 45

since the only application that accesses both of the attributes is q1. The complete
attribute affinity matrix is shown in Figure 3.16. Note that the diagonal values are
not computed since they are meaningless. �

A
1

A
2

A
3

A
4

A
4

A
3

A
2

A
1

0 45 0

0 5 75

45 5 3

0 75 3 -

-

-

-

Fig. 3.16 Attribute Affinity Matrix

The attribute affinity matrix will be used in the rest of this chapter to guide the
fragmentation effort. The process involves first clustering together the attributes with
high affinity for each other, and then splitting the relation accordingly.

3.3.2.2 Clustering Algorithm

The fundamental task in designing a vertical fragmentation algorithm is to find some
means of grouping the attributes of a relation based on the attribute affinity values in
AA. It has been suggested that the bond energy algorithm (BEA) [McCormick et al.,
1972] should be used for this purpose ([Hoffer and Severance, 1975] and [Navathe
et al., 1984]). It is considered appropriate for the following reasons [Hoffer and
Severance, 1975]:

1. It is designed specifically to determine groups of similar items as opposed to,
say, a linear ordering of the items (i.e., it clusters the attributes with larger
affinity values together, and the ones with smaller values together).

2. The final groupings are insensitive to the order in which items are presented
to the algorithm.

3. The computation time of the algorithm is reasonable: O(n2), where n is the
number of attributes.

4. Secondary interrelationships between clustered attribute groups are identifi-
able.

The bond energy algorithm takes as input the attribute affinity matrix, permutes its
rows and columns, and generates a clustered affinity matrix (CA). The permutation is

3.3 Fragmentation 103

done in such a way as to maximize the following global affinity measure (AM):

AM =
n

∑
i=1

n

∑
j=1

a f f (Ai,A j)[a f f (Ai,A j−1)+a f f (Ai,A j+1)

+a f f (Ai−1,A j)+a f f (Ai+1,A j)]

where

a f f (A0,A j) = a f f (Ai,A0) = a f f (An+1,A j) = a f f (Ai,An+1) = 0

The last set of conditions takes care of the cases where an attribute is being placed
in CA to the left of the leftmost attribute or to the right of the rightmost attribute
during column permutations, and prior to the topmost row and following the last
row during row permutations. In these cases, we take 0 to be the aff values between
the attribute being considered for placement and its left or right (top or bottom)
neighbors, which do not exist in CA.

The maximization function considers the nearest neighbors only, thereby resulting
in the grouping of large values with large ones, and small values with small ones.
Also, the attribute affinity matrix (AA) is symmetric, which reduces the objective
function of the formulation above to

AM =
n

∑
i=1

n

∑
j=1

a f f (Ai,A j)[a f f (Ai,A j−1)+a f f (Ai,A j+1)]

The details of the bond energy algorithm are given in Algorithm 3.3. Generation
of the clustered affinity matrix (CA) is done in three steps:

1. Initialization. Place and fix one of the columns of AA arbitrarily into CA.
Column 1 was chosen in the algorithm.

2. Iteration. Pick each of the remaining n− i columns (where i is the number of
columns already placed in CA) and try to place them in the remaining i+1
positions in the CA matrix. Choose the placement that makes the greatest
contribution to the global affinity measure described above. Continue this step
until no more columns remain to be placed.

3. Row ordering. Once the column ordering is determined, the placement of the
rows should also be changed so that their relative positions match the relative
positions of the columns.3

3 From now on, we may refer to elements of the AA and CA matrices as AA(i, j) and CA(i, j),
respectively. This is done for notational convenience only. The mapping to the affinity measures
is AA(i, j) = a f f (Ai,A j) and CA(i, j) = a f f (attribute placed at column i in CA, attribute placed at
column j in CA). Even though AA and CA matrices are identical except for the ordering of attributes,
since the algorithm orders all the CA columns before it orders the rows, the affinity measure of CA
is specified with respect to columns. Note that the endpoint condition for the calculation of the
affinity measure (AM) can be specified, using this notation, as CA(0, j) =CA(i,0) =CA(n+1, j) =
CA(i,n+1) = 0.

104 3 Distributed Database Design

Algorithm 3.3: BEA Algorithm
Input: AA: attribute affinity matrix
Output: CA: clustered affinity matrix
begin
{initialize; remember that AA is an n×n matrix}
CA(•,1)← AA(•,1) ;
CA(•,2)← AA(•,2) ;
index← 3 ;
while index≤ n do {choose the “best” location for attribute AAindex}

for i from 1 to index−1 by 1 do calculate cont(Ai−1,Aindex,Ai) ;
calculate cont(Aindex−1,Aindex,Aindex+1) ; {boundary condition}
loc← placement given by maximum cont value ;
for j from index to loc by −1 do

CA(•, j)←CA(•, j−1) {shuffle the two matrices}
CA(•, loc)← AA(•, index) ;
index← index+1

order the rows according to the relative ordering of columns
end

For the second step of the algorithm to work, we need to define what is meant
by the contribution of an attribute to the affinity measure. This contribution can be
derived as follows. Recall that the global affinity measure AM was previously defined
as

AM =
n

∑
i=1

n

∑
j=1

a f f (Ai,A j)[a f f (Ai,A j−1)+a f f (Ai,A j+1)]

which can be rewritten as

AM =
n

∑
i=1

n

∑
j=1

[a f f (Ai,A j)a f f (Ai,A j−1)+a f f (Ai,A j)a f f (Ai,A j+1)]

=
n

∑
j=1

[
n

∑
i=1

a f f (Ai,A j)a f f (Ai,A j−1)+
n

∑
i=1

a f f (Ai,A j)a f f (Ai,A j+1)

]

Let us define the bond between two attributes Ax and Ay as

bond(Ax,Ay) =
n

∑
z=1

a f f (Az,Ax)a f f (Az,Ay)

Then AM can be written as

AM =
n

∑
j=1

[bond(A j,A j−1)+bond(A j,A j+1)]

3.3 Fragmentation 105

Now consider the following n attributes

A1 A2 . . . Ai−1︸ ︷︷ ︸
AM′

Ai A j A j+1 . . . An︸ ︷︷ ︸
AM′′

The global affinity measure for these attributes can be written as

AMold = AM
′
+AM

′′

+bond(Ai−1,Ai)+bond(Ai,A j)+bond(A j,Ai)+bond(A j,A j+1)

=
i

∑
l=1

[bond(Al ,Al−1)+bond(Al ,Al+1)]

+
n

∑
l=i+2

[bond(Al ,Al−1)+bond(Al ,Al+1)]

+2bond(Ai,A j)

Now consider placing a new attribute Ak between attributes Ai and A j in the clustered
affinity matrix. The new global affinity measure can be similarly written as

AMnew = AM
′
+AM

′′
+bond(Ai,Ak)+bond(Ak,Ai)

+bond(Ak,A j)+bond(A j,Ak)

= AM
′
+AM

′′
+2bond(Ai,Ak)+2bond(Ak,A j)

Thus, the net contribution4 to the global affinity measure of placing attribute Ak
between Ai and A j is

cont(Ai,Ak,A j) = AMnew−AMold

= 2bond(Ai,Ak)+2bond(Ak,A j)−2bond(Ai,A j)

Example 3.17. Let us consider the AA matrix given in Figure 3.16 and study the
contribution of moving attribute A4 between attributes A1 and A2, given by the
formula

cont(A1,A4,A2) = 2bond(A1,A4)+2bond(A4,A2)−2bond(A1,A2)

Computing each term, we get

bond(A1,A4) = 45∗0+0∗75+45∗3+0∗78 = 135
bond(A4,A2) = 11865
bond(A1,A2) = 225

Therefore,

4 In literature [Hoffer and Severance, 1975] this measure is specified as bond(Ai,Ak) +
bond(Ak,A j)−2bond(Ai,A j). However, this is a pessimistic measure which does not follow from
the definition of AM.

106 3 Distributed Database Design

cont(A1,A4,A2) = 2∗135+2∗11865−2∗225 = 23550
�

Note that the calculation of the bond between two attributes requires the multipli-
cation of the respective elements of the two columns representing these attributes
and taking the row-wise sum.

The algorithm and our discussion so far have both concentrated on the columns of
the attribute affinity matrix. We can also make the same arguments and redesign the
algorithm to operate on the rows. Since the AA matrix is symmetric, both of these
approaches will generate the same result.

Another point about Algorithm 3.3 is that to improve its efficiency, the second
column is also fixed and placed next to the first one during the initialization step.
This is acceptable since, according to the algorithm, A2 can be placed either to the
left of A1 or to its right. The bond between the two, however, is independent of their
positions relative to one another.

Finally, we should indicate the problem of computing cont at the endpoints. If
an attribute Ai is being considered for placement to the left of the leftmost attribute,
one of the bond equations to be calculated is between a non-existent left element
and Ak [i.e., bond(A0,Ak)]. Thus we need to refer to the conditions imposed on the
definition of the global affinity measure AM, where CA(0,k) = 0. The other extreme
is if A j is the rightmost attribute that is already placed in the CA matrix and we are
checking for the contribution of placing attribute Ak to the right of A j. In this case
the bond(k,k+1) needs to be calculated. However, since no attribute is yet placed in
column k+1 of CA, the affinity measure is not defined. Therefore, according to the
endpoint conditions, this bond value is also 0.

Example 3.18. We consider the clustering of the PROJ relation attributes and use the
attribute affinity matrix AA of Figure 3.16.

According to the initialization step, we copy columns 1 and 2 of the AA matrix
to the CA matrix (Figure 3.17a) and start with column 3 (i.e., attribute A3). There
are three alternative places where column 3 can be placed: to the left of column
1, resulting in the ordering (3-1-2), in between columns 1 and 2, giving (1-3-2),
and to the right of 2, resulting in (1-2-3). Note that to compute the contribution of
the last ordering we have to compute cont(A2,A3,A4) rather than cont(A1,A2,A3).
Furthermore, in this context A4 refers to the fourth index position in the CA matrix,
which is empty (Figure 3.17b), not to the attribute column A4 of the AA matrix. Let
us calculate the contribution to the global affinity measure of each alternative.

Ordering (0-3-1):

cont(A0,A3,A1) = 2bond(A0,A3)+2bond(A3,A1)−2bond(A0,A1)

We know that

bond(A0,A1) = bond(A0,A3) = 0
bond(A3,A1) = 45∗45+5∗0+53∗45+3∗0 = 4410

3.3 Fragmentation 107

A
1

A
2

A
4

A
3

A
2

A
1

45 0

0 80

45 5

0 75

A
1

A
4

A
3

A
2

A
1

45

0

45

0

A
2

0

80

5

75

A
3

45

5

53

3

(a) (b)

(c) (d)

A
1

A
4

A
4

A
3

A
2

A
1

45 0

0 75

45 3

0 78

A
2

0

80

5

75

A
3

45

5

53

3

A
1

A
4

A
4

A
1

45 0

0 78

A
2

0

75

A
3

45

A
2

0 75805

A
3 45 3553

3

Fig. 3.17 Calculation of the Clustered Affinity (CA) Matrix

Thus

cont(A0,A3,A1) = 8820

Ordering (1-3-2):

cont(A1,A3,A2) = 2bond(A1,A3)+2bond(A3,A2)−2bond(A1,A2)

bond(A1,A3) = bond(A3,A1) = 4410
bond(A3,A2) = 890
bond(A1,A2) = 225

Thus

cont(A1,A3,A2) = 10150

Ordering (2-3-4):

cont(A2,A3,A4) = 2bond(A2,A3)+2bond(A3,A4)−2bond(A2,A4)

bond(A2,A3) = 890
bond(A3,A4) = 0
bond(A2,A4) = 0

108 3 Distributed Database Design

Thus

cont(A2,A3,A4) = 1780

Since the contribution of the ordering (1-3-2) is the largest, we select to place A3
to the right of A1 (Figure 3.17b). Similar calculations for A4 indicate that it should
be placed to the right of A2 (Figure 3.17c).

Finally, the rows are organized in the same order as the columns and the result is
shown in Figure 3.17d. �

In Figure 3.17d we see the creation of two clusters: one is in the upper left corner
and contains the smaller affinity values and the other is in the lower right corner
and contains the larger affinity values. This clustering indicates how the attributes
of relation PROJ should be split. However, in general the border for this split may
not be this clear-cut. When the CA matrix is big, usually more than two clusters are
formed and there are more than one candidate partitionings. Thus, there is a need to
approach this problem more systematically.

3.3.2.3 Partitioning Algorithm

The objective of the splitting activity is to find sets of attributes that are accessed
solely, or for the most part, by distinct sets of applications. For example, if it is
possible to identify two attributes, A1 and A2, which are accessed only by application
q1, and attributes A3 and A4, which are accessed by, say, two applications q2 and q3,
it would be quite straightforward to decide on the fragments. The task lies in finding
an algorithmic method of identifying these groups.

Consider the clustered attribute matrix of Figure 3.18. If a point along the diagonal
is fixed, two sets of attributes are identified. One set {A1,A2, . . . ,Ai} is at the upper
left-hand corner and the second set {Ai+1, . . . ,An} is to the right and to the bottom of
this point. We call the former set top and the latter set bottom and denote the attribute
sets as TA and BA, respectively.

We now turn to the set of applications Q = {q1,q2, . . . ,qq} and define the set of
applications that access only TA, only BA, or both. These sets are defined as follows:

AQ(qi) = {A j|use(qi,A j) = 1}
T Q = {qi|AQ(qi)⊆ TA}
BQ = {qi|AQ(qi)⊆ BA}
OQ = Q−{T Q∪BQ}

The first of these equations defines the set of attributes accessed by application
qi; T Q and BQ are the sets of applications that only access TA or BA, respectively,
and OQ is the set of applications that access both.

There is an optimization problem here. If there are n attributes of a relation, there
are n−1 possible positions where the dividing point can be placed along the diagonal

3.3 Fragmentation 109

A
1
A
2
A
3

A
i

A
i+1

A
n

…

A
1

A
2

…

…

A
i+1

…

A
n

A
i

BA

TA

Fig. 3.18 Locating a Splitting Point

of the clustered attribute matrix for that relation. The best position for division is
one which produces the sets T Q and BQ such that the total accesses to only one
fragment are maximized while the total accesses to both fragments are minimized.
We therefore define the following cost equations:

CQ = ∑
qi∈Q

∑
∀S j

re f j(qi)acc j(qi)

CT Q = ∑
qi∈T Q

∑
∀S j

re f j(qi)acc j(qi)

CBQ = ∑
qi∈BQ

∑
∀S j

re f j(qi)acc j(qi)

COQ = ∑
qi∈OQ

∑
∀S j

re f j(qi)acc j(qi)

Each of the equations above counts the total number of accesses to attributes by
applications in their respective classes. Based on these measures, the optimization
problem is defined as finding the point x (1≤ x≤ n) such that the expression

z =CT Q∗CBQ−COQ2

is maximized [Navathe et al., 1984]. The important feature of this expression is
that it defines two fragments such that the values of CT Q and CBQ are as nearly
equal as possible. This enables the balancing of processing loads when the fragments
are distributed to various sites. It is clear that the partitioning algorithm has linear
complexity in terms of the number of attributes of the relation, that is, O(n).

There are two complications that need to be addressed. The first is with respect
to the splitting. The procedure splits the set of attributes two-way. For larger sets of
attributes, it is quite likely that m-way partitioning may be necessary.

110 3 Distributed Database Design

Designing an m-way partitioning is possible but computationally expensive. Along
the diagonal of the CA matrix, it is necessary to try 1, 2, . . . ,m−1 split points, and for
each of these, it is necessary to check which place maximizes z. Thus, the complexity
of such an algorithm is O(2m). Of course, the definition of z has to be modified
for those cases where there are multiple split points. The alternative solution is to
recursively apply the binary partitioning algorithm to each of the fragments obtained
during the previous iteration. One would compute T Q, BQ, and OQ, as well as the
associated access measures for each of the fragments, and partition them further.

The second complication relates to the location of the block of attributes that
should form one fragment. Our discussion so far assumed that the split point is
unique and single and divides the CA matrix into an upper left-hand partition and a
second partition formed by the rest of the attributes. The partition, however, may also
be formed in the middle of the matrix. In this case, we need to modify the algorithm
slightly. The leftmost column of the CA matrix is shifted to become the rightmost
column and the topmost row is shifted to the bottom. The shift operation is followed
by checking the n−1 diagonal positions to find the maximum z. The idea behind
shifting is to move the block of attributes that should form a cluster to the topmost
left corner of the matrix, where it can easily be identified. With the addition of the
shift operation, the complexity of the partitioning algorithm increases by a factor of
n and becomes O(n2).

Assuming that a shift procedure, called SHIFT, has already been implemented, the
partitioning algorithm is given in Algorithm 3.4. The input of the PARTITION is the
clustered affinity matrix CA, the relation R to be fragmented, and the attribute usage
and access frequency matrices. The output is a set of fragments FR = {R1,R2}, where
Ri ⊆ {A1,A2 . . . ,An} and R1 ∩R2 = the key attributes of relation R. Note that for
n-way partitioning, this routine should either be invoked iteratively, or implemented
as a recursive procedure.

Example 3.19. When the PARTITION algorithm is applied to the CA matrix obtained
for relation PROJ (Example 3.18), the result is the definition of fragments FPROJ =
{PROJ1,PROJ2}, where PROJ1 = {A1,A3} and PROJ2 = {A1,A2,A4}. Thus

PROJ1 = {PNO, BUDGET}
PROJ2 = {PNO, PNAME, LOC}

Note that in this exercise we performed the fragmentation over the entire set of
attributes rather than only on the non-key ones. The reason for this is the simplicity
of the example. For that reason, we included PNO, which is the key of PROJ in
PROJ2 as well as in PROJ1. �

3.3.2.4 Checking for Correctness

We follow arguments similar to those of horizontal partitioning to prove that the
PARTITION algorithm yields a correct vertical fragmentation.

3.3 Fragmentation 111

Algorithm 3.4: PARTITION Algorithm
Input: CA: clustered affinity matrix; R: relation; re f : attribute usage matrix;

acc: access frequency matrix
Output: F : set of fragments
begin
{determine the z value for the first column}
{the subscripts in the cost equations indicate the split point}
calculate CT Qn−1 ;
calculate CBQn−1 ;
calculate COQn−1 ;
best←CT Qn−1 ∗CBQn−1− (COQn−1)

2 ;
repeat
{determine the best partitioning}
for i from n−2 to 1 by −1 do

calculate CT Qi ;
calculate CBQi ;
calculate COQi ;
z←CT Q∗CBQi−COQ2

i ;
if z > best then best← z {record the split point within shift}

call SHIFT(CA)
until no more SHIFT is possible ;
reconstruct the matrix according to the shift position ;
R1←ΠTA(R)∪K ; {K is the set of primary key attributes of R}
R2←ΠBA(R)∪K ;
F ←{R1,R2}

end

Completeness.

Completeness is guaranteed by the PARTITION algorithm since each attribute of the
global relation is assigned to one of the fragments. As long as the set of attributes A
over which the relation R is defined consists of

A =
⋃

Ri

completeness of vertical fragmentation is ensured.

Reconstruction.

We have already mentioned that the reconstruction of the original global relation is
made possible by the join operation. Thus, for a relation R with vertical fragmentation
FR = {R1,R2, . . . ,Rr} and key attribute(s) K,

112 3 Distributed Database Design

R =1K Ri,∀Ri ∈ FR

Therefore, as long as each Ri is complete, the join operation will properly reconstruct
R. Another important point is that either each Ri should contain the key attribute(s)
of R, or it should contain the system assigned tuple IDs (TIDs).

Disjointness.

As we indicated before, the disjointness of fragments is not as important in vertical
fragmentation as it is in horizontal fragmentation. There are two cases here:

1. TIDs are used, in which case the fragments are disjoint since the TIDs that are
replicated in each fragment are system assigned and managed entities, totally
invisible to the users.

2. The key attributes are replicated in each fragment, in which case one cannot
claim that they are disjoint in the strict sense of the term. However, it is
important to realize that this duplication of the key attributes is known and
managed by the system and does not have the same implications as tuple
duplication in horizontally partitioned fragments. In other words, as long as
the fragments are disjoint except for the key attributes, we can be satisfied
and call them disjoint.

3.3.3 Hybrid Fragmentation

In most cases a simple horizontal or vertical fragmentation of a database schema will
not be sufficient to satisfy the requirements of user applications. In this case a vertical
fragmentation may be followed by a horizontal one, or vice versa, producing a tree-
structured partitioning (Figure 3.19). Since the two types of partitioning strategies
are applied one after the other, this alternative is called hybrid fragmentation. It has
also been named mixed fragmentation or nested fragmentation.

R

R1 R2

R11 R12 R21 R22 R23

H H

V V V V V

Fig. 3.19 Hybrid Fragmentation

3.4 Allocation 113

A good example for the necessity of hybrid fragmentation is relation PROJ, which
we have been working with. In Example 3.11 we partitioned it into six horizontal
fragments based on two applications. In Example 3.19 we partitioned the same
relation vertically into two. What we have, therefore, is a set of horizontal fragments,
each of which is further partitioned into two vertical fragments.

The number of levels of nesting can be large, but it is certainly finite. In the case
of horizontal fragmentation, one has to stop when each fragment consists of only one
tuple, whereas the termination point for vertical fragmentation is one attribute per
fragment. These limits are quite academic, however, since the levels of nesting in
most practical applications do not exceed 2. This is due to the fact that normalized
global relations already have small degrees and one cannot perform too many vertical
fragmentations before the cost of joins becomes very high.

We will not discuss in detail the correctness rules and conditions for hybrid
fragmentation, since they follow naturally from those for vertical and horizontal frag-
mentations. For example, to reconstruct the original global relation in case of hybrid
fragmentation, one starts at the leaves of the partitioning tree and moves upward
by performing joins and unions (Figure 3.20). The fragmentation is complete if the
intermediate and leaf fragments are complete. Similarly, disjointness is guaranteed if
intermediate and leaf fragments are disjoint.

R11 R12 R21 R22 R23

∪

Fig. 3.20 Reconstruction of Hybrid Fragmentation

3.4 Allocation

The allocation of resources across the nodes of a computer network is an old problem
that has been studied extensively. Most of this work, however, does not address the
problem of distributed database design, but rather that of placing individual files on
a computer network. We will examine the differences between the two shortly. We
first need to define the allocation problem more precisely.

114 3 Distributed Database Design

3.4.1 Allocation Problem

Assume that there are a set of fragments F = {F1,F2, . . . ,Fn} and a distributed
system consisting of sites S = {S1,S2, . . . ,Sm} on which a set of applications Q =
{q1,q2, . . . ,qq} is running. The allocation problem involves finding the “optimal”
distribution of F to S.

The optimality can be defined with respect to two measures [Dowdy and Foster,
1982]:

1. Minimal cost. The cost function consists of the cost of storing each Fi at a
site S j, the cost of querying Fi at site S j, the cost of updating Fi at all sites
where it is stored, and the cost of data communication. The allocation problem,
then, attempts to find an allocation scheme that minimizes a combined cost
function.

2. Performance. The allocation strategy is designed to maintain a performance
metric. Two well-known ones are to minimize the response time and to
maximize the system throughput at each site.

Most of the models that have been proposed to date make this distinction of
optimality. However, if one really examines the problem in depth, it is apparent that
the “optimality” measure should include both the performance and the cost factors.
In other words, one should be looking for an allocation scheme that, for example,
answers user queries in minimal time while keeping the cost of processing minimal.
A similar statement can be made for throughput maximization. One can then ask
why such models have not been developed. The answer is quite simple: complexity.

Let us consider a very simple formulation of the problem. Let F and S be defined
as before. For the time being, we consider only a single fragment, Fk. We make a
number of assumptions and definitions that will enable us to model the allocation
problem.

1. Assume that Q can be modified so that it is possible to identify the update and
the retrieval-only queries, and to define the following for a single fragment Fk:

T = {t1, t2, . . . , tm}

where ti is the read-only traffic generated at site Si for Fk, and

U = {u1,u2, . . . ,um}

where ui is the update traffic generated at site Si for Fk.

2. Assume that the communication cost between any two pair of sites Si and S j
is fixed for a unit of transmission. Furthermore, assume that it is different for
updates and retrievals in order that the following can be defined:

3.4 Allocation 115

C(T) = {c12,c13, . . . ,c1m, . . . ,cm−1,m}
C′(U) = {c′12,c

′
13, . . . ,c

′
1m, . . . ,c

′
m−1,m}

where ci j is the unit communication cost for retrieval requests between sites
Si and S j, and c′i j is the unit communication cost for update requests between
sites Si and S j.

3. Let the cost of storing the fragment at site Si be di. Thus we can define
D = {d1,d2, . . . ,dm} for the storage cost of fragment Fk at all the sites.

4. Assume that there are no capacity constraints for either the sites or the com-
munication links.

Then the allocation problem can be specified as a cost-minimization problem
where we are trying to find the set I ⊆ S that specifies where the copies of the
fragment will be stored. In the following, x j denotes the decision variable for the
placement such that

x j =

{
1 if fragment Fk is assigned to site S j
0 otherwise

The precise specification is as follows:

min

 m

∑
i=1

 ∑
j|S j∈I

x ju jc
′
i j + t j min

j|S j∈I
ci j

+ ∑
j|S j∈I

x jd j

subject to

x j = 0 or 1

The second term of the objective function calculates the total cost of storing all
the duplicate copies of the fragment. The first term, on the other hand, corresponds
to the cost of transmitting the updates to all the sites that hold the replicas of the
fragment, and to the cost of executing the retrieval-only requests at the site, which
will result in minimal data transmission cost.

This is a very simplistic formulation that is not suitable for distributed database
design. But even if it were, there is another problem. This formulation, which comes
from Casey [1972], has been proven to be NP-complete [Eswaran, 1974]. Various
different formulations of the problem have been proven to be just as hard over the
years (e.g., [Sacca and Wiederhold, 1985] and [Lam and Yu, 1980]). The implication
is, of course, that for large problems (i.e., large number of fragments and sites),
obtaining optimal solutions is probably not computationally feasible. Considerable
research has therefore been devoted to finding good heuristics that may provide
suboptimal solutions.

116 3 Distributed Database Design

There are a number of reasons why simplistic formulations such as the one we
have discussed are not suitable for distributed database design. These are inherent in
all the early file allocation models for computer networks.

1. One cannot treat fragments as individual files that can be allocated one at a
time, in isolation. The placement of one fragment usually has an impact on the
placement decisions about the other fragments which are accessed together
since the access costs to the remaining fragments may change (e.g., due to
distributed join). Therefore, the relationship between fragments should be
taken into account.

2. The access to data by applications is modeled very simply. A user request
is issued at one site and all the data to answer it is transferred to that site.
In distributed database systems, access to data is more complicated than
this simple “remote file access” model suggests. Therefore, the relationship
between the allocation and query processing should be properly modeled.

3. These models do not take into consideration the cost of integrity enforcement,
yet locating two fragments involved in the same integrity constraint at two
different sites can be costly.

4. Similarly, the cost of enforcing concurrency control mechanisms should be
considered [Rothnie and Goodman, 1977].

In summary, let us remember the interrelationship between the distributed database
problems as depicted in Figure 1.7. Since the allocation is so central, its relationship
with algorithms that are implemented for other problem areas needs to be represented
in the allocation model. However, this is exactly what makes it quite difficult to solve
these models. To separate the traditional problem of file allocation from the fragment
allocation in distributed database design, we refer to the former as the file allocation
problem (FAP) and to the latter as the database allocation problem (DAP).

There are no general heuristic models that take as input a set of fragments and
produce a near-optimal allocation subject to the types of constraints discussed here.
The models developed to date make a number of simplifying assumptions and are
applicable to certain specific formulations. Therefore, instead of presenting one or
more of these allocation algorithms, we present a relatively general model and then
discuss a number of possible heuristics that might be employed to solve it.

3.4.2 Information Requirements

It is at the allocation stage that we need the quantitative data about the database, the
applications that run on it, the communication network, the processing capabilities,
and storage limitations of each site on the network. We will discuss each of these in
detail.

3.4 Allocation 117

3.4.2.1 Database Information

To perform horizontal fragmentation, we defined the selectivity of minterms. We now
need to extend that definition to fragments, and define the selectivity of a fragment Fj
with respect to query qi. This is the number of tuples of Fj that need to be accessed
in order to process qi. This value will be denoted as seli(Fj).

Another piece of necessary information on the database fragments is their size.
The size of a fragment Fj is given by

size(Fj) = card(Fj)∗ length(Fj)

where length(Fj) is the length (in bytes) of a tuple of fragment Fj.

3.4.2.2 Application Information

Most of the application-related information is already compiled during the fragmenta-
tion activity, but a few more are required by the allocation model. The two important
measures are the number of read accesses that a query qi makes to a fragment Fj
during its execution (denoted as RRi j), and its counterpart for the update accesses
(URi j). These may, for example, count the number of block accesses required by the
query.

We also need to define two matrices UM and RM, with elements ui j and ri j,
respectively, which are specified as follows:

ui j =

{
1 if query qi updates fragment Fj
0 otherwise

ri j =

{
1 if query qi retrieves from fragment Fj
0 otherwise

A vector O of values o(i) is also defined, where o(i) specifies the originating site
of query qi. Finally, to define the response-time constraint, the maximum allowable
response time of each application should be specified.

3.4.2.3 Site Information

For each computer site, we need to know its storage and processing capacity. Obvi-
ously, these values can be computed by means of elaborate functions or by simple
estimates. The unit cost of storing data at site Sk will be denoted as USCk. There is
also a need to specify a cost measure LPCk as the cost of processing one unit of work
at site Sk. The work unit should be identical to that of the RR and UR measures.

118 3 Distributed Database Design

3.4.2.4 Network Information

In our model we assume the existence of a simple network where the cost of commu-
nication is defined in terms of one frame of data. Thus gi j denotes the communication
cost per frame between sites Si and S j. To enable the calculation of the number of
messages, we use f size as the size (in bytes) of one frame. There is no question
that there are more elaborate network models which take into consideration the
channel capacities, distances between sites, protocol overhead, and so on. However,
the derivation of those equations is beyond the scope of this chapter.

3.4.3 Allocation Model

We discuss an allocation model that attempts to minimize the total cost of processing
and storage while trying to meet certain response time restrictions. The model we
use has the following form:

min(Total Cost)

subject to

response-time constraint
storage constraint
processing constraint

In the remainder of this section we expand the components of this model based
on the information requirements discussed in Section 3.4.2. The decision variable is
xi j, which is defined as

xi j =

{
1 if the fragment Fi is stored at site S j
0 otherwise

3.4.3.1 Total Cost

The total cost function has two components: query processing and storage. Thus it
can be expressed as

TOC = ∑
∀qi∈Q

QPCi + ∑
∀Sk∈S

∑
∀Fj∈F

STC jk

where QPCi is the query processing cost of application qi, and STC jk is the cost of
storing fragment Fj at site Sk.

Let us consider the storage cost first. It is simply given by

STC jk =USCk ∗ size(Fj)∗ x jk

3.4 Allocation 119

and the two summations find the total storage costs at all the sites for all the fragments.
The query processing cost is more difficult to specify. Most models of the file allo-

cation problem (FAP) separate it into two components: the retrieval-only processing
cost, and the update processing cost. We choose a different approach in our model of
the database allocation problem (DAP) and specify it as consisting of the processing
cost (PC) and the transmission cost (TC). Thus the query processing cost (QPC) for
application qi is

QPCi = PCi +TCi

According to the guidelines presented in Section 3.4.1, the processing component,
PC, consists of three cost factors, the access cost (AC), the integrity enforcement cost
(IE), and the concurrency control cost (CC):

PCi = ACi + IEi +CCi

The detailed specification of each of these cost factors depends on the algorithms
used to accomplish these tasks. However, to demonstrate the point, we specify AC in
some detail:

ACi = ∑
∀Sk∈S

∑
∀Fj∈F

(ui j ∗URi j + ri j ∗RRi j)∗ x jk ∗LPCk

The first two terms in the above formula calculate the number of accesses of user
query qi to fragment Fj. Note that (URi j +RRi j) gives the total number of update and
retrieval accesses. We assume that the local costs of processing them are identical.
The summation gives the total number of accesses for all the fragments referenced
by qi. Multiplication by LPCk gives the cost of this access at site Sk. We again use
x jk to select only those cost values for the sites where fragments are stored.

A very important issue needs to be pointed out here. The access cost function
assumes that processing a query involves decomposing it into a set of subqueries,
each of which works on a fragment stored at the site, followed by transmitting the
results back to the site where the query has originated. As we discussed earlier, this
is a very simplistic view which does not take into consideration the complexities of
database processing. For example, the cost function does not take into account the
cost of performing joins (if necessary), which may be executed in a number of ways,
studied in Chapter 8. In a model that is more realistic than the generic model we are
considering, these issues should not be omitted.

The integrity enforcement cost factor can be specified much like the processing
component, except that the unit local processing cost would probably change to reflect
the true cost of integrity enforcement. Since the integrity checking and concurrency
control methods are discussed later in the book, we do not need to study these cost
components further here. The reader should refer back to this section after reading
Chapters 5 and 11 to be convinced that the cost functions can indeed be derived.

The transmission cost function can be formulated along the lines of the access cost
function. However, the data transmission overhead for update and that for retrieval

120 3 Distributed Database Design

requests are quite different. In update queries it is necessary to inform all the sites
where replicas exist, while in retrieval queries, it is sufficient to access only one of the
copies. In addition, at the end of an update request, there is no data transmission back
to the originating site other than a confirmation message, whereas the retrieval-only
queries may result in significant data transmission.

The update component of the transmission function is

TCUi = ∑
∀Sk∈S

∑
∀Fj∈F

ui j ∗ x jk ∗go(i),k + ∑
∀Sk∈S

∑
∀Fj∈F

ui j ∗ x jk ∗gk,o(i)

The first term is for sending the update message from the originating site o(i) of
qi to all the fragment replicas that need to be updated. The second term is for the
confirmation.

The retrieval cost can be specified as

TCRi = ∑
∀Fj∈F

min
Sk∈S

(ri j ∗ x jk ∗go(i),k + ri j ∗ x jk ∗
seli(Fj)∗ length(Fj)

f size
∗gk,o(i))

The first term in TCR represents the cost of transmitting the retrieval request to
those sites which have copies of fragments that need to be accessed. The second term
accounts for the transmission of the results from these sites to the originating site.
The equation states that among all the sites with copies of the same fragment, only
the site that yields the minimum total transmission cost should be selected for the
execution of the operation.

Now the transmission cost function for query qi can be specified as

TCi = TCUi +TCRi

which fully specifies the total cost function.

3.4.3.2 Constraints

The constraint functions can be specified in similar detail. However, instead of
describing these functions in depth, we will simply indicate what they should look
like. The response-time constraint should be specified as

execution time of qi ≤ maximum response time of qi,∀qi ∈ Q

Preferably, the cost measure in the objective function should be specified in terms
of time, as it makes the specification of the execution-time constraint relatively
straightforward.

The storage constraint is

∑
∀Fj∈F

STC jk ≤ storage capacity at site Sk,∀Sk ∈ S

3.4 Allocation 121

whereas the processing constraint is

∑
∀qi∈Q

processing load of qi at site Sk ≤ processing capacity of Sk,∀Sk ∈ S

This completes our development of the allocation model. Even though we have
not developed it entirely, the precision in some of the terms indicates how one goes
about formulating such a problem. In addition to this aspect, we have indicated the
important issues that need to be addressed in allocation models.

3.4.4 Solution Methods

In the preceding section we developed a generic allocation model which is consider-
ably more complex than the FAP model presented in Section 3.4.1. Since the FAP
model is NP-complete, one would expect the solution of this formulation of the
database allocation problem (DAP) to be NP-complete as well. Even though we will
not prove this conjecture, it is indeed true. Thus one has to look for heuristic methods
that yield suboptimal solutions. The test of “goodness” in this case is, obviously, how
close the results of the heuristic algorithm are to the optimal allocation.

A number of different heuristics have been applied to the solution of FAP and
DAP models. It was observed early on that there is a correspondence between FAP
and the plant location problem that has been studied in operations research. In fact,
the isomorphism of the simple FAP and the single commodity warehouse location
problem has been shown [Ramamoorthy and Wah, 1983]. Thus heuristics developed
by operations researchers have commonly been adopted to solve the FAP and DAP
problems. Examples are the knapsack problem solution [Ceri et al., 1982a], branch-
and-bound techniques [Fisher and Hochbaum, 1980], and network flow algorithms
[Chang and Liu, 1982].

There have been other attempts to reduce the complexity of the problem. One
strategy has been to assume that all the candidate partitionings have been determined
together with their associated costs and benefits in terms of query processing. The
problem, then, is modeled so as to choose the optimal partitioning and placement for
each relation [Ceri et al., 1983]. Another simplification frequently employed is to
ignore replication at first and find an optimal non-replicated solution. Replication
is handled at the second step by applying a greedy algorithm which starts with the
non-replicated solution as the initial feasible solution, and tries to improve upon it
([Ceri et al., 1983] and [Ceri and Pernici, 1985]). For these heuristics, however, there
is not enough data to determine how close the results are to the optimal.

122 3 Distributed Database Design

3.5 Data Directory

The distributed database schema needs to be stored and maintained by the system.
This information is necessary during distributed query optimization, as we will
discuss later. The schema information is stored in a data dictionary/directory, also
called a catalog or simply a directory. A directory is a meta-database that stores a
number of information.

Within the context of the centralized ANSI/SPARC architecture discussed in
Section 1.7.1, directory is the system component that permits mapping between
different data organizational views. It should at least contain schema and mapping
definitions. It may also contain usage statistics, access control information, and
the like. It is clearly seen that the data dictionary/directory serves as the central
component in both processing different schemas and in providing mappings among
them.

In the case of a distributed database, as depicted in Figure 1.14 and discussed
earlier in this chapter, schema definition is done at the global level (i.e., the global
conceptual schema – GCS) as well as at the local sites (i.e., local conceptual schemas –
LCSs). Consequently, there are two types of directories: a global directory/dictionary
(GD/D)5 that describes the database schema as the end users see it, and that permits
the required global mappings between external schemas and the GCS, and the local
directory/dictionary (LD/D), that describes the local mappings and describes the
schema at each site. Thus, the local database management components are integrated
by means of global DBMS functions.

As stated above, the directory is itself a database that contains metadata about
the actual data stored in the database. Therefore, the techniques we discussed in
this chapter with respect to distributed database design also apply to directory man-
agement. Briefly, a directory may be either global to the entire database or local to
each site. In other words, there might be a single directory containing information
about all the data in the database, or a number of directories, each containing the
information stored at one site. In the latter case, we might either build hierarchies
of directories to facilitate searches, or implement a distributed search strategy that
involves considerable communication among the sites holding the directories.

The second issue has to do with location. In the case of a global directory, it may
be maintained centrally at one site, or in a distributed fashion by distributing it over a
number of sites. Keeping the directory at one site might increase the load at that site,
thereby causing a bottleneck as well as increasing message traffic around that site.
Distributing it over a number of sites, on the other hand, increases the complexity
of managing directories. In the case of multi-DBMSs, the choice is dependent on
whether or not the system is distributed. If it is, the directory is always distributed;
otherwise of course, it is maintained centrally.

The final issue is replication. There may be a single copy of the directory or
multiple copies. Multiple copies would provide more reliability, since the probability
of reaching one copy of the directory would be higher. Furthermore, the delays

5 In the remainder, we will simply refer to this as the global directory.

3.6 Conclusion 123

in accessing the directory would be lower, due to less contention and the relative
proximity of the directory copies. On the other hand, keeping the directory up to date
would be considerably more difficult, since multiple copies would need to be updated.
Therefore, the choice should depend on the environment in which the system operates
and should be made by balancing such factors as the response-time requirements, the
size of the directory, the machine capacities at the sites, the reliability requirements,
and the volatility of the directory (i.e., the amount of change experienced by the
database, which would cause a change to the directory).

3.6 Conclusion

In this chapter, we presented the techniques that can be used for distributed database
design with special emphasis on the fragmentation and allocation issues. There are a
number of lines of research that have been followed in distributed database design.
For example, Chang has independently developed a theory of fragmentation [Chang
and Cheng, 1980], and allocation [Chang and Liu, 1982]. However, for its maturity
of development, we have chosen to develop this chapter along the track developed by
Ceri, Pelagatti, Navathe, and Wiederhold. Our references to the literature by these
authors reflect this quite clearly.

There is a considerable body of literature on the allocation problem, focusing
mostly on the simpler file allocation issue. We still do not have sufficiently general
models that take into consideration all the aspects of data distribution. The model
presented in Section 3.4 highlights the types of issues that need to be taken into
account. Within this context, it might be worthwhile to take a somewhat different
approach to the solution of the distributed allocation problem. One might develop a
set of heuristic rules that might accompany the mathematical formulation and reduce
the solution space, thus making the solution feasible.

We have discussed, in detail, the algorithms that one can use to fragment a
relational schema in various ways. These algorithms have been developed quite
independently and there is no underlying design methodology that combines the
horizontal and vertical partitioning techniques. If one starts with a global relation,
there are algorithms to decompose it horizontally as well as algorithms to decom-
pose it vertically into a set of fragment relations. However, there are no algorithms
that fragment a global relation into a set of fragment relations some of which are
decomposed horizontally and others vertically. It is commonly pointed out that most
real-life fragmentations would be mixed, i.e., would involve both horizontal and
vertical partitioning of a relation, but the methodology research to accomplish this is
lacking. What is needed is a distribution design methodology which encompasses
the horizontal and vertical fragmentation algorithms and uses them as part of a more
general strategy. Such a methodology should take a global relation together with a set
of design criteria and come up with a set of fragments some of which are obtained
via horizontal and others obtained via vertical fragmentation.

124 3 Distributed Database Design

The second part of distribution design, namely allocation, is typically treated
independently of fragmentation. The process is, therefore, linear when the output of
fragmentation is input to allocation. At first sight, the isolation of the fragmentation
and the allocation steps appears to simplify the formulation of the problem by
reducing the decision space. However, closer examination reveals that isolating the
two steps actually contributes to the complexity of the allocation models. Both steps
have similar inputs, differing only in that fragmentation works on global relations
whereas allocation considers fragment relations. They both require information about
the user applications (e.g., how often they access data, what the relationships of
individual data objects to one another are, etc.), but ignore how each other makes
use of these inputs. The end result is that the fragmentation algorithms decide
how to partition a relation based partially on how applications access it, but the
allocation models ignore the part that this input plays in fragmentation. Therefore,
the allocation models have to include all over again detailed specification of the
relationship among the fragment relations and how user applications access them.
What would be more promising is to formulate a methodology that more properly
reflects the interdependence of the fragmentation and the allocation decisions. This
requires extensions to existing distribution design strategies. We recognize that
integrated methodologies such as the one we propose here may be considerably
complex. However, there may be synergistic effects of combining these two steps
enabling the development of quite acceptable heuristic solution methods. There
are a few studies that follow such an integrated methodology (e.g., [Muro et al.,
1983, 1985; Yoshida et al., 1985]). These methodologies build a simulation model
of the distributed DBMS, taking as input a specific database design, and measure
its effectiveness. Development of tools based on such methodologies, which aid the
human designer rather than attempt to replace him, is probably the more appropriate
approach to the design problem.

Another aspect of the work described in this chapter is that it assumes a static
environment where design is conducted only once and this design can persist. Reality,
of course, is quite different. Both physical (e.g., network characteristics, available
storage at various sites) and logical (e.g., migration of applications from one site to
another, access pattern modifications) changes occur necessitating redesign of the
database. This problem has been studied to some extent. In a dynamic environment,
the process becomes one of design-redesign-materialization of the redesign. The
design step follows techniques that have been described in this chapter. Redesign
can either be limited in that only parts of the database are affected, or total, requir-
ing a complete redistribution [Wilson and Navathe, 1986]. Materialization refers
to the reorganization of the distributed database to reflect the changes required by
the redesign step. Limited redesign, in particular, the materialization issue is stud-
ied in [Rivera-Vega et al., 1990; Varadarajan et al., 1989]. Complete redesign and
materialization issues have been studied in [Karlapalem et al., 1996b; Karlapalem
and Navathe, 1994; Kazerouni and Karlapalem, 1997]. In particular, Kazerouni and
Karlapalem [1997] describes a stepwise redesign methodology which involves a
split phase where fragments are further subdivided based on the changed application
requirements until no further subdivision is profitable based on a cost function. At

3.7 Bibliographic Notes 125

this point, the merging phase starts where fragments that are accessed together by a
set of applications are merged into one fragment.

3.7 Bibliographic Notes

Most of the known results about fragmentation have been covered in this chapter.
Work on fragmentation in distributed databases initially concentrated on horizontal
fragmentation. Most of the literature on this has been cited in the appropriate section.
The topic of vertical fragmentation for distribution design has been addressed in
several papers ([Navathe et al., 1984] and [Sacca and Wiederhold, 1985]. The original
work on vertical fragmentation goes back to Hoffer’s dissertation [Hoffer, 1975;
Hoffer and Severance, 1975] and to Hammer and Niamir’s work ([Niamir, 1978] and
[Hammer and Niamir, 1979]).

It is not possible to be as exhaustive when discussing allocation as we have
been for fragmentation, given there is no limit to the literature on the subject. The
investigation of FAP on wide area networks goes back to Chu’s work [Chu, 1969,
1973]. Most of the early work on FAP has been covered in the excellent survey by
Dowdy and Foster [1982]. Some theoretical results about FAP are reported by Grapa
and Belford [1977] and Kollias and Hatzopoulos [1981].

The DAP work dates back to the mid-1970s to the works of Eswaran [1974] and
others. In their earlier work, Levin and Morgan [1975] concentrated on data allocation,
but later they considered program and data allocation together [Morgan and Levin,
1977]. The DAP has been studied in many specialized settings as well. Work has
been done to determine the placement of computers and data in a wide area network
design [Gavish and Pirkul, 1986]. Channel capacities have been examined along with
data placement [Mahmoud and Riordon, 1976] and data allocation on supercomputer
systems [Irani and Khabbaz, 1982] as well as on a cluster of processors [Sacca and
Wiederhold, 1985]. An interesting work is the one by Apers, where the relations
are optimally placed on the nodes of a virtual network, and then the best matching
between the virtual network nodes and the physical network are found [Apers, 1981].

Some of the allocation work has also touched upon physical design. The assign-
ment of files to various levels of a memory hierarchy has been studied by Foster and
Browne [1976] and by Navathe et al. [1984]. These are outside the scope of this
chapter, as are those that deal with general resource and task allocation in distributed
systems (e.g., [Bucci and Golinelli, 1977], [Ceri and Pelagatti, 1982], and [Haessig
and Jenny, 1980]).

We should finally point out that some effort was spent to develop a general
methodology for distributed database design along the lines that we presented (Figure
3.2). Ours is similar to the DATAID-D methodology [Ceri and Navathe, 1983; Ceri
et al., 1987]. Other attempts to develop a methodology are due to Fisher et al. [1980],
Dawson [1980]; Hevner and Schneider [1980] and Mohan [1979].

126 3 Distributed Database Design

Exercises

Problem 3.1 (*). Given relation EMP as in Figure 3.3, let p1: TITLE < “Program-
mer” and p2: TITLE > “Programmer” be two simple predicates. Assume that char-
acter strings have an order among them, based on the alphabetical order.

(a) Perform a horizontal fragmentation of relation EMP with respect to {p1, p2}.
(b) Explain why the resulting fragmentation (EMP1, EMP2) does not fulfill the

correctness rules of fragmentation.
(c) Modify the predicates p1 and p2 so that they partition EMP obeying the

correctness rules of fragmentaion. To do this, modify the predicates, compose
all minterm predicates and deduce the corresponding implications, and then
perform a horizontal fragmentation of EMP based on these minterm predicates.
Finally, show that the result has completeness, reconstruction and disjointness
properties.

Problem 3.2 (*). Consider relation ASG in Figure 3.3. Suppose there are two ap-
plications that access ASG. The first is issued at five sites and attempts to find the
duration of assignment of employees given their numbers. Assume that managers,
consultants, engineers, and programmers are located at four different sites. The
second application is issued at two sites where the employees with an assignment
duration of less than 20 months are managed at one site, whereas those with longer
duration are managed at a second site. Derive the primary horizontal fragmentation
of ASG using the foregoing information.

Problem 3.3. Consider relations EMP and PAY in Figure 3.3. EMP and PAY are
horizontally fragmented as follows:

EMP1 = σTITLE=“Elect.Eng.”(EMP)
EMP2 = σTITLE=“Syst.Anal.”(EMP)
EMP3 = σTITLE=“Mech.Eng.”(EMP)
EMP4 = σTITLE=“Programmer”(EMP)

PAY1 = σSAL≥30000(PAY)
PAY2 = σSAL<30000(PAY)

Draw the join graph of EMP nTITLE PAY. Is the graph simple or partitioned? If it
is partitioned, modify the fragmentation of either EMP or PAY so that the join graph
of EMPnTITLE PAY is simple.

Problem 3.4. Give an example of a CA matrix where the split point is not unique
and the partition is in the middle of the matrix. Show the number of shift operations
required to obtain a single, unique split point.

Problem 3.5 (**). Given relation PAY as in Figure 3.3, let p1: SAL < 30000 and p2:
SAL ≥ 30000 be two simple predicates. Perform a horizontal fragmentation of PAY
with respect to these predicates to obtain PAY1, and PAY2. Using the fragmentation of
PAY, perform further derived horizontal fragmentation for EMP. Show completeness,
reconstruction, and disjointness of the fragmentation of EMP.

3.7 Bibliographic Notes 127

Problem 3.6 (**). Let Q = {q1, . . . ,q5} be a set of queries, A = {A1, . . . ,A5} be a
set of attributes, and S = {S1,S2,S3} be a set of sites. The matrix of Figure 3.21a
describes the attribute usage values and the matrix of Figure 3.21b gives the applica-
tion access frequencies. Assume that re fi(qk) = 1 for all qk and Si and that A1 is the
key attribute. Use the bond energy and vertical partitioning algorithms to obtain a
vertical fragmentation of the set of attributes in A.

A
1

A
2

A
3

A
4

q
4

q
3

q
2

q
1

0 1 1 0

1 1 1 0

1 0 0 1

0 0 1 0

A
5

1

1

1

0

q
5

1 1 1 0 0

S
1

S
2

S
3

q
4

q
3

q
2

q
1

10 20 0

5 0 10

0 35 5

0 10 0

q
5

0 15 0

(a) (b)

Fig. 3.21 Attribute Usage Values and Application Access Frequencies in Exercise 3.6

Problem 3.7 (**). Write an algorithm for derived horizontal fragmentation.

Problem 3.8 (**). Assume the following view definition

CREATE VIEW EMPVIEW(ENO, ENAME, PNO, RESP)
AS SELECT EMP.ENO, EMP.ENAME, ASG.PNO,

ASG.RESP
FROM EMP, ASG
WHERE EMP.ENO=ASG.ENO
AND DUR=24

is accessed by application q1, located at sites 1 and 2, with frequencies 10 and 20,
respectively. Let us further assume that there is another query q2 defined as

SELECT ENO, DUR
FROM ASG

which is run at sites 2 and 3 with frequencies 20 and 10, respectively. Based on the
above information, construct the use(qi,A j) matrix for the attributes of both relations
EMP and ASG. Also construct the affinity matrix containing all attributes of EMP
and ASG. Finally, transform the affinity matrix so that it could be used to split the
relation into two vertical fragments using heuristics or BEA.

Problem 3.9 (**). Formally define the three correctness criteria for derived horizon-
tal fragmentation.

128 3 Distributed Database Design

Problem 3.10 (*). Given a relation R(K,A,B,C) (where K is the key) and the fol-
lowing query

SELECT *
FROM R
WHERE R.A = 10 AND R.B=15

(a) What will be the outcome of running PHF on this query?
(b) Does the COM MIN algorithm produce in this case a complete and minimal

predicate set? Justify your answer.

Problem 3.11 (*). Show that the bond energy algorithm generates the same results
using either row or column operation.

Problem 3.12 (**). Modify algorithm PARTITION to allow n-way partitioning, and
compute the complexity of the resulting algorithm.

Problem 3.13 (**). Formally define the three correctness criteria for hybrid frag-
mentation.

Problem 3.14. Discuss how the order in which the two basic fragmentation schemas
are applied in hybrid fragmentation affects the final fragmentation.

Problem 3.15 (**). Describe how the following can be properly modeled in the
database allocation problem.

(a) Relationships among fragments
(b) Query processing
(c) Integrity enforcement
(d) Concurrency control mechanisms

Problem 3.16 (**). Consider the various heuristic algorithms for the database allo-
cation problem.

(a) What are some of the reasonable criteria for comparing these heuristics?
Discuss.

(b) Compare the heuristic algorithms with respect to these criteria.

Problem 3.17 (*). Pick one of the heuristic algorithms used to solve the DAP, and
write a program for it.

Problem 3.18 (**). Assume the environment of Exercise 3.8. Also assume that 60%
of the accesses of query q1 are updates to PNO and RESP of view EMPVIEW and
that ASG.DUR is not updated through EMPVIEW. In addition, assume that the data
transfer rate between site 1 and site 2 is half of that between site 2 and site 3. Based
on the above information, find a reasonable fragmentation of ASG and EMP and an
optimal replication and placement for the fragments, assuming that storage costs do
not matter here, but copies are kept consistent.

3.7 Bibliographic Notes 129

Hint: Consider horizontal fragmentation for ASG based on DUR=24 predicate
and the corresponding derived horizontal fragmentation for EMP. Also look at the
affinity matrix obtained in Example 3.8 for EMP and ASG together, and consider
whether it would make sense to perform a vertical fragmentation for ASG.

Chapter 4
Database Integration

In the previous chapter, we discussed top-down distributed database design, which
is suitable for tightly integrated, homogeneous distributed DBMSs. In this chapter,
we focus on bottom-up design that is appropriate in multidatabase systems. In this
case, a number of databases already exist, and the design task involves integrating
them into one database. The starting point of bottom-up design is the individual local
conceptual schemas. The process consists of integrating local databases with their
(local) schemas into a global database with its global conceptual schema (GCS) (also
called the mediated schema).

Database integration, and the related problem of querying multidatabases (see
Chapter 9), is only one part of the more general interoperability problem. In recent
years, new distributed applications have started to pose new requirements regarding
the data source(s) they access. In parallel, the management of “legacy systems”
and reuse of the data they generate have gained importance. The result has been a
renewed consideration of the broader question of information system interoperability,
including non-database sources and interoperability at the application level in addition
to the database level.

Database integration can be either physical or logical [Jhingran et al., 2002]. In the
former, the source databases are integrated and the integrated database is materialized.
These are known as data warehouses. The integration is aided by extract-transform-
load (ETL) tools that enable extraction of data from sources, their transformation
to match the GCS, and their loading (i.e., materialization). Enterprise Application
Integration (EAI), which allows data exchange between applications, perform similar
transformation functions, although data are not entirely materialized. This process
is depicted in Figure 4.1. In logical integration, the global conceptual (or mediated)
schema is entirely virtual and not materialized. This is also known as Enterprise
Information Integration (EII)1.

These two approaches are complementary and address differing needs. Data
warehousing [Inmon, 1992; Jarke et al., 2003] supports decision support applications,

1 It has been (rightly) argued that the second “I” should stand for Interoperability rather than
Integration (see J. Pollock’s contribution in [Halevy et al., 2005]).

DOI 10.1007/978-1-4419-8834-8_4, © Springer Science+Business Media, LLC 2011
131M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

132 4 Database Integration

ETL

Tools

Database 1 Database 2 Database n...

Materialized

Global

Database

Fig. 4.1 Data Warehouse Approach

which are commonly termed On-line Analytical Processing (OLAP) [Codd, 1995]
to better reflect their different requirements relative to the On-Line Transaction
Processing (OLTP) applications. OLTP applications, such as airline reservation or
banking systems, are high-throughput transaction-oriented. They need extensive data
control and availability, high multiuser throughput and predictable, fast response
times. In contrast, OLAP applications, such as trend analysis or forecasting, need to
analyze historical, summarized data coming from a number of operational databases.
They use complex queries over potentially very large tables. Because of their strategic
nature, response time is important. The users are managers or analysts. Performing
OLAP queries directly over distributed operational databases raises two problems.
First, it hurts the OLTP applications’ performance by competing for local resources.
Second, the overall response time of the OLAP queries can be very poor because large
quantities of data must be transferred over the network. Furthermore, most OLAP
applications do not need the most current versions of the data, and thus do not need
direct access to most up-to-date operational data. Consequently, data warehouses
gather data from a number of operational databases and materialize them. As updates
happen on the operational databases, they are propagated to the data warehouse (also
referred to as materialized view maintenance [Gupta and Mumick, 1999b]).

By contrast, in logical data integration, the integration is only virtual and there is
no materialized global database (see Figure 1.18). The data resides in the operational
databases and the GCS provides a virtual integration for querying over them similar
to the case described in the previous chapter. The difference is that the GCS may not
be the union of the local conceptual schamas (LCSs). It is possible for the GCS not
to capture all of the information in each of the LCSs. Furthermore, in some cases,
the GCS may be defined bottom-up, by “integrating” parts of the LCSs of the local
operational databases rather than being defined up-front (more on this shortly). User

4.1 Bottom-Up Design Methodology 133

queries are posed over this global schema, which are then decomposed and shipped
to the local operational databases for processing as is done in tightly-integrated
systems. The main differences are the autonomy and potential heterogeneity of the
local systems. These have important effects on query processing that we discuss in
Chapter 9. Although there is ample work on transaction management in these systems,
supporting global updates is quite difficult given the autonomy of the underlying
operational DBMSs. Therefore, they are primarily read-only.

Logical data integration, and the resulting systems, are known by a variety of
names; data integration and information integration are perhaps the most common
terms used in literature. The generality of these terms point to the fact that the
underlying data sources do not have to be databases. In this chapter we focus our
attention on the integration of autonomous and (possibly) heterogeneous databases;
thus we will use the term database integration (which also helps to distinguish these
systems from data warehouses).

4.1 Bottom-Up Design Methodology

Bottom-up design involves the process by which information from participating
databases can be (physically or logically) integrated to form a single cohesive multi-
database. There are two alternative approaches. In some cases, the global conceptual
(or mediated) schema is defined first, in which case the bottom-up design involves
mapping LCSs to this schema. This is the case in data warehouses, but the practice is
not restricted to these and other data integration methodologies may follow the same
strategy. In other cases, the GCS is defined as an integration of parts of LCSs. In this
case, the bottom-up design involves both the generation of the GCS and the mapping
of individual LCSs to this GCS.

If the GCS is defined up-front, the relationship between the GCS and the local
conceptual schemas (LCS) can be of two fundamental types [Lenzerini, 2002]: local-
as-view, and global-as-view. In local-as-view (LAV) systems, the GCS definition
exists, and each LCS is treated as a view definition over it. In global-as-view systems
(GAV), on the other hand, the GCS is defined as a set of views over the LCSs. These
views indicate how the elements of the GCS can be derived, when needed, from the
elements of LCSs. One way to think of the difference between the two is in terms of
the results that can be obtained from each system [Koch, 2001]. In GAV, the query
results are constrained to the set of objects that are defined in the GCS, although
the local DBMSs may be considerably richer (Figure 4.2a). In LAV, on the other
hand, the results are constrained by the objects in the local DBMSs, while the GCS
definition may be richer (Figure 4.2b). Thus, in LAV systems, it may be necessary
to deal with incomplete answers. A combination of these two approaches has also
been proposed as global-local-as-view (GLAV) [Friedman et al., 1999] where the
relationship between GCS and LCSs is specified using both LAV and GAV.

Bottom-up design occurs in two general steps (Figure 4.3): schema translation
(or simply translation) and schema generation. In the first step, the component

134 4 Database Integration

Objects

accessible

through GCS

Objects

expressible as queries

over the source DBMSs

Objects

expressible as queries

over the GCS

Source

DBMS 1

Source

DBMS n
...

(a) GAV (b) LAV

Fig. 4.2 GAV and LAV Mappings (Based on [Koch, 2001])

database schemas are translated to a common intermediate canonical representation
(InS1, InS2, . . . , InSn). The use of a canonical representation facilitates the translation
process by reducing the number of translators that need to be written. The choice of
the canonical model is important. As a principle, it should be one that is sufficiently
expressive to incorporate the concepts available in all the databases that will later
be integrated. Alternatives that have been used include the entity-relationship model
[Palopoli et al., 1998, 2003b; He and Ling, 2006], object-oriented model [Castano and
Antonellis, 1999; Bergamaschi et al., 2001], or a graph [Palopoli et al., 1999; Milo
and Zohar, 1998; Melnik et al., 2002; Do and Rahm, 2002] that may be simplified to
a tree [Madhavan et al., 2001]. The graph (tree) models have become more popular
as XML data sources have proliferated, since it is fairly straightforward to map XML
to graphs, although there are efforts to target XML directly [Yang et al., 2003]. In this
chapter, we will simply use the relational model as our canonical data model, because
we have been using it throughout the book, and the graph models used in literature
are quite diverse with no common graph representation. The choice of the relational
model as the canonical data representation does not affect in any fundamental way
the discussion of the major issues of data integration. In any case, we will not discuss
the specifics of translating various data models to relational; this can be found in
many database textbooks.

Clearly, the translation step is necessary only if the component databases are
heterogeneous and local schemas are defined using different data models. There has
been some work on the development of system federation, in which systems with
similar data models are integrated together (e.g., relational systems are integrated
into one conceptual schema and, perhaps, object databases are integrated to another
schema) and these integrated schemas are “combined” at a later stage (e.g., AURORA
project [Yan, 1997; Yan et al., 1997]). In this case, the translation step is delayed,
providing increased flexibility for applications to access underlying data sources in a
manner that is suitable for their needs.

In the second step of bottom-up design, the intermediate schemas are used to
generate a GCS. In some methodologies, local external (or export) schemas are
considered for integration rather than full database schemas, to reflect the fact that

4.1 Bottom-Up Design Methodology 135

Database 2

Schema

Translator 2

InS2

Database n

Schema

Translator n

InSn

Schema Generator

GCS

...

...

...Database 1

Schema

Translator 1

InS1

Schema

Matching

Schema

Integration

Schema

Mapping

Fig. 4.3 Database Integration Process

local systems may only be willing to contribute some of their data to the multidatabase
[Sheth and Larson, 1990].

The schema generation process consists of the following steps:

1. Schema matching to determine the syntactic and semantic correspondences
among the translated LCS elements or between individual LCS elements and
the pre-defined GCS elements (Section 4.2).

2. Integration of the common schema elements into a global conceptual (medi-
ated) schema if one has not yet been defined (Section 4.3).

3. Schema mapping that determines how to map the elements of each LCS to
the other elements of the GCS (Section 4.4).

It is also possible that the schema mapping step may be divided into two
phases [Bernstein and Melnik, 2007]: mapping constraint generation and transforma-
tion generation. In the first phase, given correspondences between two schemas, a
transformation function such as a query or view definition over the source schema
is generated that would “populate” the target schema. In the second phase, an exe-

136 4 Database Integration

cutable code is generated corresponding to this transformation function that would
actually generate a target database consistent with these constraints. In some cases,
the constraints are implicitly included in the correspondences, eliminating the need
for the first phase.

Example 4.1. To facilitate our discussion of global schema design in multidatabase
systems, we will use an example that is an extension of the engineering database we
have been using throughout the book. To demonstrate both phases of the database
integration process, we introduce some data model heterogeneity into our example.

Consider two organizations, each with their own database definitions. One is the
(relational) database example that we have developed in Chapter 2. We repeat that
definition in Figure 4.4 for completeness. The underscored attributes are the keys
of the associated relations. We have made one modification in the PROJ relation by
including attributes LOC and CNAME. LOC is the location of the project, whereas
CNAME is the name of the client for whom the project is carried out. The second
database also defined similar data, but is specified according to the entity-relationship
(E-R) data model [Chen, 1976] as depicted in Figure 4.5.

EMP(ENO, ENAME, TITLE)

PROJ(PNO, PNAME, BUDGET, LOC, CNAME)

ASG(ENO, PNO, RESP, DUR)

PAY(TITLE, SAL)

Fig. 4.4 Relational Engineering Database Representation

We assume that the reader is familiar with the entity-relationship data model.
Therefore, we will not describe the formalism, except to make the following points
regarding the semantics of Figure 4.5. This database is similar to the relational
engineering database definition of Figure 4.4, with one significant difference: it also
maintains data about the clients for whom the projects are conducted. The rectangular
boxes in Figure 4.5 represent the entities modeled in the database, and the diamonds
indicate a relationship between the entities to which they are connected. The type of
relationship is indicated around the diamonds. For example, the CONTRACTED-BY
relation is a many-to-one from the PROJECT entity to the CLIENT entity (e.g., each
project has a single client, but each client can have many projects). Similarly, the
WORKS-IN relationship indicates a many-to-many relationship between the two
connected relations. The attributes of entities and the relationships are shown as
elliptical circles. �

Example 4.2. The mapping of the E-R model to the relational model is given in
Figure 4.6. Note that we have renamed some of the attributes in order to ensure name
uniqueness. �

4.2 Schema Matching 137

Responsibility

Duration

WORKER

SalaryTitle

CLIENT

Contract
number

AddressClient
name

N 1

N

1

LocationPROJECT

Budget

Project
Name

Number

Number Name

WORKS_IN

CONTRACTED_BY

Fig. 4.5 Entity-Relationship Database

WORKER(WNUMBER, NAME, TITLE, SALARY)

PROJECT(PNUMBER, PNAME, BUDGET)

CLIENT(CNAME, ADDRESS)

WORKS IN(WNUMBER, PNUMBER, RESPONSIBILITY, DURATION)

CONTRACTED BY(PNUMBER, CNAME, CONTRACTNO)

Fig. 4.6 Relational Mapping of E-R Schema

4.2 Schema Matching

Schema matching determines which concepts of one schema match those of another.
As discussed earlier, if the GCS has already been defined, then one of these schemas
is typically the GCS, and the task is to match each LCS to the GCS. Otherwise,
matching is done on two LCSs. The matches that are determined in this phase are
then used in schema mapping to produce a set of directed mappings, which, when
applied to the source schema, would map its concepts to the target schema.

The matches that are defined or discovered during schema matching are specified
as a set of rules where each rule (r) identifies a correspondence (c) between two
elements, a predicate (p) that indicates when the correspondence may hold, and a
similarity value (s) between the two elements identified in the correspondence. A
correspondence (c) may simply identify that two concepts are similar (which we

138 4 Database Integration

will denote by ≈) or it may be a function that specifies that one concept may be
derived by a computation over the other one (for example, if the BUDGET value
of one project is specified in US dollars while the other one is specified in Euros,
the correspondence may specify that one is obtained by multiplying the other one
with the appropriate exchange rate). The predicate (p) is a condition that qualifies
the correspondence by specifying when it might hold. For example, in the budget
example specified above, p may specify that the rule holds only if the location of one
project is in US while the other one is in the Euro zone. The similarity value (s) for
each rule can be specified or calculated. Similarity values are real values in the range
[0,1]. Thus, a set of matches can be defined as M= {r} where r = 〈c, p,s〉.

As indicated above, correspondences may either be discovered or specified. As
much as it is desirable to automate this process, as we discuss below, there are many
complicating factors. The most important is schema heterogeneity, which refers to
the differences in the way real-world phenomena are captured in different schemas.
This is a critically important issue, and we devote a separate section to it (Section
4.2.1). Aside from schema heterogeneity, other issues that complicate the matching
process are the following:

• Insufficient schema and instance information: Matching algorithms depend
on the information that can be extracted from the schema and the existing
data instances. In some cases there is some ambiguity of the terms due to
the insufficient information provided about these items. For example, using
short names or ambiguous abbreviations for concepts, as we have done in our
examples, can lead to incorrect matching.

• Unavailability of schema documentation: In most cases, the database schemas
are not well documented or not documented at all. Quite often, the schema
designer is no longer available to guide the process. The lack of these vital
information sources adds to the difficulty of matching.

• Subjectivity of matching: Finally, we need to note (and admit) that matching
schema elements can be highly subjective; two designers may not agree on a
single “correct” mapping. This makes the evaluation of a given algorithm’s
accuracy significantly difficult.

Despite these difficulties, serious progress has been made in recent years in
developing algorithmic approaches to the matching problem. In this section, we
discuss a number of these algorithms and the various approaches.

A number of issues affect the particular matching algorithm [Rahm and Bernstein,
2001]. The more important ones are the following:

• Schema versus instance matching. So far in this chapter, we have been focusing
on schema integration; thus, our attention has naturally been on matching
concepts of one schema to those of another. A large number of algorithms
have been developed that work on “schema objects.” There are others, however,
that have focused instead on the data instances or a combination of schema
information and data instances. The argument is that considering data instances
can help alleviate some of the semantic issues discussed above. For example, if

4.2 Schema Matching 139

an attribute name is ambiguous, as in “contact-info”, then fetching its data may
help identify its meaning; if its data instances have the phone number format,
then obviously it is the phone number of the contact agent, while long strings
may indicate that it is the contact agent name. Furthermore, there are a large
number of attributes, such as postal codes, country names, email addresses, that
can be defined easily through their data instances.
Matching that relies solely on schema data may be more efficient, because
it does not require a search over data instances to match the attributes. Fur-
thermore, this approach is the only feasible one when few data instances are
available in the matched databases, in which case learning may not be reliable.
However, in peer-to-peer systems (see Chapter 16), there may not be a schema,
in which case instance-based matching is the only appropriate approach.

• Element-level vs. structure-level. Some matching algorithms operate on indi-
vidual schema elements while others also consider the structural relationships
between these elements. The basic concept of the element-level approach is that
most of the schema semantics are captured by the elements’ names. However,
this may fail to find complex mappings that span multiple attributes. Match
algorithms that also consider structure are based on the belief that, normally,
the structures of matchable schemas tend to be similar.

• Matching cardinality. Matching algorithms exhibit various capabilities in terms
of cardinality of mappings. The simplest approaches use 1:1 mapping, which
means that each element in one schema is matched with exactly one element in
the other schema. The majority of proposed algorithms belong to this category,
because problems are greatly simplified in this case. Of course there are many
cases where this assumption is not valid. For example, an attribute named
“Total price” could be mapped to the sum of two attributes in another schema
named “Subtotal” and “Taxes”. Such mappings require more complex matching
algorithms that consider 1:M and N:M mappings.

These criteria, and others, can be used to come up with a taxonomy of matching
approaches [Rahm and Bernstein, 2001]. According to this taxonomy (which we
will follow in this chapter with some modifications), the first level of separation
is between schema-based matchers versus instance-based matchers (Figure 4.7).
Schema-based matchers can be further classified as element-level and structure-level,
while for instance-based approaches, only element-level techniques are meaningful.
At the lowest level, the techniques are characterized as either linguistic or constraint-
based. It is at this level that fundamental differences between matching algorithms
are exhibited and we focus on these algorithms in the remainder, discussing linguis-
tic approaches in Section 4.2.2, constraint-based approaches in Section 4.2.3, and
learning-based techniques in Section 4.2.4. Rahm and Bernstein [2001] refer to all
of these as individual matcher approaches, and their combinations are possible by
developing either hybrid matchers or composite matchers (Section 4.2.5).

140 4 Database Integration

Individual Matchers

Schema-based Instance-based

Element-level Structure-level Element-level

Linguistic Constraint-based Constraint-based Linguistic Constraint-based Learning-based

Fig. 4.7 Taxonomy of Schema Matching Techniques

4.2.1 Schema Heterogeneity

Schema matching algorithms deal with both structural heterogeneity and semantic
heterogeneity among the matched schemas. We discuss these in this section before
presenting the different match algorithms.

Structural conflicts occur in four possible ways: as type conflicts, dependency
conflicts, key conflicts,, or behavioral conflicts [Batini et al., 1986]. Type conflicts
occur when the same object is represented by an attribute in one schema and by an
entity (relation) in another. Dependency conflicts occur when different relationship
modes (e.g., one-to-one versus many-to-many) are used to represent the same thing
in different schemas. Key conflicts occur when different candidate keys are available
and different primary keys are selected in different schemas. Behavioral conflicts
are implied by the modeling mechanism. For example, deleting the last item from
one database may cause the deletion of the containing entity (i.e., deletion of the last
employee causes the dissolution of the department).

Example 4.3. We have two structural conflicts in the example we are considering.
The first is a type conflict involving clients of projects. In the schema of Figure 4.5,
the client of a project is modeled as an entity. In the schema of Figure 4.4, however,
the client is included as an attribute of the PROJ entity.

The second structural conflict is a dependency conflict involving the WORKS IN
relationship in Figure 4.5 and the ASG relation in Figure 4.4. In the former, the
relationship is many-to-one from the WORKER to the PROJECT, whereas in the
latter, the relationship is many-to-many. �

Structural differences among schemas are important, but their identification and
resolution is not sufficient. Schema matching has to take into account the (possibly
different) semantics of the schema concepts. This is referred to as semantic hetero-
geneity, which is a fairly loaded term without a clear definition. It basically refers
to the differences among the databases that relate to the meaning, interpretation,
and intended use of data [Vermeer, 1997]. There are attempts to formalize semantic
heterogeneity and to establish its link to structural heterogeneity [Kashyap and Sheth,

4.2 Schema Matching 141

1996; Sheth and Kashyap, 1992]; we will take a more informal approach and discuss
some of the semantic heterogeneity issues intuitively. The following are some of
these problems that the match algorithms need to deal with.

• Synonyms, homonyms, hypernyms. Synonyms are multiple terms that all refer
to the same concept. In our database example, PROJ and PROJECT refer to the
same concept. Homonyms, on the other hand, occur when the same term is used
to mean different things in different contexts. Again, in our example, BUDGET
may refer to the gross budget in one database and it may refer to the net budget
(after some overhead deduction) in another, making their simple comparison
difficult. Hypernym is a term that is more generic than a similar word. Although
there is no direct example of it in the databases we are considering, the concept
of a Vehicle in one database is a hypernym for the concept of a Car in another
(incidentally, in this case, Car is a hyponym of Vehicle). These problems can
be addressed by the use of domain ontologies that define the organization of
concepts and terms in a particular domain.

• Different ontology: Even if domain ontologies are used to deal with issues in
one domain, it is quite often the case that schemas from different domains may
need to be matched. In this case, one has to be careful of the meaning of terms
across ontologies, as they can be highly dependent on the domain they are used
in. For example, an attribute called “load” may imply a measure of resistance in
an electrical ontology, but in a mechanical ontology, it may represent a measure
of weight.

• Imprecise wording: Schemas may contain ambiguous names. For example the
LOCATION and LOC attributes in our example database may refer to the
full address or just the city name. Similarly, an attribute named “contact-info”
may imply that the attribute contains the name of the contact agent or his/her
telephone number. These types of ambiguities are common.

4.2.2 Linguistic Matching Approaches

Linguistic matching approaches, as the name implies, use element names and other
textual information (such as textual descriptions/annotations in schema definitions)
to perform matches among elements. In many cases, they may use external sources,
such as thesauri, to assist in the process.

Linguistic techniques can be applied in both schema-based approaches and
instance-based ones. In the former case, similarities are established among schema
elements whereas in the latter, they are specified among elements of individual
data instances. To focus our discussion, we will mostly consider schema-based
linguistic matching approaches, briefly mentioning instance-based techniques. Con-
sequently, we will use the notation 〈SC1.element-1≈ SC2.element-2, p,s〉 to represent
that element-1 in schema SC1 corresponds to element-2 in schema SC2 if predicate p

142 4 Database Integration

holds, with a similarity value of s. Matchers use these rules and similarity values to
determine the similarity value of schema elements.

Linguistic matchers that operate at the schema element-level typically deal with
the names of the schema elements and handle cases such as synonyms, homonyms,
and hypernyms. In some cases, the schema definitions can have annotations (natural
language comments) that may be exploited by the linguistic matchers. In the case
of instance-based approaches, linguistic matchers focus on information retrieval
techniques such as word frequencies, key terms, etc. In these cases, the matchers
“deduce” similarities based on these information retrieval measures.

Schema linguistic matchers use a set of linguistic (also called terminological)
rules that can be hand-crafted or may be “discovered” using auxiliary data sources
such as thesauri, e.g., WordNet [Miller, 1995] (http://wordnet.princeton.edu/). In the
case of hand-crafted rules, the designer needs to specify the predicate p and the
similarity value s as well. For discovered rules, these may either be specified by an
expert following the discovery, or they may be computed using one of the techniques
we will discuss shortly.

The hand-crafted linguistic rules may deal with capitalization, abbreviations,
concept relationships, etc. In some systems, the hand-crafted rules are specified for
each schema individually (intraschema rules) by the designer, and interschema rules
are then “discovered” by the matching algorithm [Palopoli et al., 1999]. However, in
most cases, the rule base contains both intra and interschema rules.

Example 4.4. In the relational database of Example 4.2, the set of rules may have
been defined (quite intuitively) as follows where RelDB refers to the relational
schema and ERDB refers to the translated E-R schema:
〈uppercase names≈ lower case names, true,1.0)〉
〈uppercase names≈ capitalized names, true,1.0)〉
〈capitalized names≈ lower case names, true,1.0)〉
〈RelDB.ASG≈ ERDB.WORKS IN, true,0.8〉
. . .

The first three rules are generic ones specifying how to deal with capitalizations,
while the fourth one specifies a similarity between the ASG element of RelDB and the
WORKS IN element of ERDB. Since these correspondences always hold, p = true.

�

As indicated above, there are ways of determining the element name similari-
ties automatically. For example, COMA [Do and Rahm, 2002] uses the following
techniques to determine similarity of two element names:

• The affixes, which are the common prefixes and suffixes between the two
element name strings are determined.

• The n-grams of the two element name strings are compared. An n-gram is a
substring of length n and the similarity is higher if the two strings have more
n-grams in common.

• The edit distance between two element name strings is computed. The edit
distance (also called the Lewenstein metric) determines the number of character

http://wordnet.princeton.edu

4.2 Schema Matching 143

modifications (additions, deletions, insertions) that one has to perform on one
string to convert it to the second string.

• The soundex code of the element names is computed. This gives the phonetic
similarity between names based on their soundex codes. Soundex code of
English words are obtained by hashing the word to a letter and three numbers.
This hash value (roughly) corresponds to how the word would sound. The
important aspect of this code in our context is that two words that sound similar
will have close soundex codes.

Example 4.5. Consider matching the RESP and the RESPONSIBILITY attributes
in the two example schemas we are considering. The rules defined in Example 4.4
take care of the capitalization differences, so we are left with matching RESP with
RESPONSIBILITY. Let us consider how the similarity between these two strings
can be computed using the edit distance and the n-gram approaches.

The number of editing changes that one needs to do to convert one of these strings
to the other is 10 (either we add the characters ‘O’, ‘N’, ‘S’, ‘I’, ‘B’, ‘I’, ‘L’, ‘I’, ‘T’,
‘Y’, to RESP or delete the same characters from RESPONSIBILITY). Thus the ratio
of the required changes is 10/14, which defines the edit distance between these two
strings; 1− (10/14) = 4/14 = 0.29 is then their similarity.

For n-gram computation, we need to first fix the value of n. For this example, let
n = 3, so we are looking for 3-grams. The 3-grams of RESP are ‘RES’ and ‘ESP’.
Similarly, there are twelve 3-grams of RESPONSIBILITY: ‘RES’, ‘ESP’, ‘SPO’,
‘PON’, ‘ONS’, ‘NSI’, ‘SIB’, ‘IBI’, ‘BIP’, ‘ILI’, ‘LIT’, and ‘ITY’. There are two
matching 3-grams out of twelve, giving a 3-gram similarity of 2/12 = 0.17. �

The examples we have covered in this section all fall into the category of 1:1
matches – we matched one element of a particular schema to an element of another
schema. As discussed earlier, it is possible to have 1:N (e.g., Street address, City,
and Country element values in one database can be extracted from a single Address
element in another), N:1 (e.g., Total price can be calculated from Subtotal and Taxes
elements), or N:M (e.g., Book title, Rating information can be extracted via a join
of two tables one of which holds book information and the other maintains reader
reviews and ratings). Rahm and Bernstein [2001] suggest that 1:1, 1:N, and N:1
matchers are typically used in element-level matching while schema-level matching
can also use N:M matching, since, in the latter case the necessary schema information
is available.

4.2.3 Constraint-based Matching Approaches

Schema definitions almost always contain semantic information that constrain the
values in the database. These are typically data type information, allowable ranges
for data values, key constraints, etc. In the case of instance-based techniques, the
existing ranges of the values can be extracted as well as some patterns that exist in
the instance data. These can be used by matchers.

144 4 Database Integration

Consider data types that capture a large amount of semantic information. This
information can be used to disambiguate concepts and also focus the match. For
example, RESP and RESPONSIBILITY have relatively low similarity values ac-
cording to computations in Example 4.5. However, if they have the same data type
definition, this may be used to increase their similarity value. Similarly, the data type
comparison may differentiate between elements that have high lexical similarity. For
example, ENO in Figure 4.4 has the same edit distance and n-gram similarity values
to the two NUMBER attributes in Figure 4.5 (of course, we are referring to the names
of these attributes). In this case, the data types may be of assistance – if the data type
of both ENO and worker number (WORKER.NUMBER) are integer while the data
type of project number (PROJECT.NUMBER) is a string, the likelihood of ENO
matching WORKER.NUMBER is significantly higher.

In structure-based approaches, the structural similarities in the two schemas can
be exploited in determining the similarity of the schema elements. If two schema
elements are structurally similar, this enhances our confidence that they indeed
represent the same concept. For example, if two elements have very different names
and we have not been able to establish their similarity through element matchers, but
they have the same properties (e.g., same attributes) that have the same data types,
then we can be more confident that these two elements may be representing the same
concept.

The determination of structural similarity involves checking the similarity of the
“neighborhoods” of the two concepts under consideration. Definition of the neighbor-
hood is typically done using a graph representation of the schemas [Madhavan et al.,
2001; Do and Rahm, 2002] where each concept (relation, entity, attribute) is a node
and there is a directed edge between two nodes if and only if the two concepts are
related (e.g., there is an edge from a relation node to each of its attributes, or there
is an edge from a foreign key attribute node to the primary key attribute node it is
referencing). In this case, the neighborhood can be defined in terms of the nodes that
can be reached within a certain path length of each concept, and the problem reduces
to checking the similarity of the subgraphs in this neighborhood.

The traversing of the graph can be done in a number of ways; for example CUPID
[Madhavan et al., 2001] converts the graphs to trees and then looks at similarities of
subtrees rooted at the two nodes in consideration, while COMA [Do and Rahm, 2002]
considers the paths from the root to these element nodes. The fundamental point of
these algorithms is that if the subgraphs are similar, this increases the similarity of the
roots of these subtrees. The similarity of the subgraphs are determined in a bottom-
up process, starting at the leaves whose similarity are determined using element
matching (e.g., name similarity to the level of synonyms, or data type compatibility).
The similarity of the two subtrees is recursively determined based on the similarity
of the nodes in the subtree. A number of formulae may be used to for this recursive
computation. CUPID, for example, looks at the similarity of two leaf nodes and if
it is higher than a threshold value, then those two leaf nodes are said to be strongly
linked. The similarity of two subgraphs is then defined as the fraction of leaves in the
two subtrees that are strongly linked. This is based on the assumption that leafs carry
more information and that the structural similarity of two non-leaf schema elements

4.2 Schema Matching 145

is determined by the similarity of the leaf nodes in their respective subtrees, even if
their immediate children are not similar. These are heuristic rules and it is possible to
define others.

Another interesting approach to considering neighborhood in directed graphs
while computing similarity of nodes is similarity flooding [Melnik et al., 2002]. It
starts from an initial graph where the node similarities are already determined by
means of an element matcher, and propagates, iteratively, to determine the similarity
of each node to its neighbors. Hence, whenever any two elements in two schemas
are found to be similar, the similarity of their adjacent nodes increases. The iterative
process stops when the node similarities stabilize. At each iteration, to reduce the
amount of work, a subset of the nodes are selected as the “most plausible” matches,
which are then considered in the subsequent iteration.

Both of these approaches are agnostic to the edge semantics. In some graph
representations, there is additional semantics attached to these edges. For example,
containment edges from a relation or entity node to its attributes may be distinguished
from referential edges from a foreign key attribute node to the corresponding primary
key attribute node. Some systems exploit these edge semantics (e.g., DIKE [Palopoli
et al., 1998, 2003a]).

4.2.4 Learning-based Matching

A third alternative approach that has been proposed is to use machine learning
techniques to determine schema matches. Learning-based approaches formulate the
problem as one of classification where concepts from various schemas are classified
into classes according to their similarity. The similarity is determined by checking
the features of the data instances of the databases that correspond to these schemas.
How to classify concepts according to their features is learned by studying the data
instances in a training data set.

The process is as follows (Figure 4.8). A training set (τ) is prepared that consists
of instances of example correspondences between the concepts of two databases Di
and D j. This training set can be generated after manual identification of the schema
correspondences between two databases followed by extraction of example training
data instances [Doan et al., 2003a], or by the specification of a query expression that
converts data from one database to another [Berlin and Motro, 2001]. The learner
uses this training data to acquire probabilistic information about the features of
the data sets. The classifier, when given two other database instances (Dk and Dl),
then uses this knowledge to go through the data instances in Dk and Dl and make
predictions about classifying the elements of Dk and Dl .

This general approach applies to all of the proposed learning-based schema
matching approaches. Where they differ is the type of learner that they use and how
they adjust this learner’s behavior for schema matching. Some have used neural
networks (e.g., SEMINT [Li and Clifton, 2000; Li et al., 2000]), others have used
Naı̈ve Bayesian learner/classifier (Autoplex [Berlin and Motro, 2001], LSD [Doan

146 4 Database Integration

Fig. 4.8 Learning-based Matching Approach

et al., 2001, 2003a] and [Naumann et al., 2002]), and decision trees [Embley et al.,
2001, 2002]. Discussing the details of these learning techniques are beyond our
scope.

4.2.5 Combined Matching Approaches

The individual matching techniques that we have considered so far have their strong
points and their weaknesses. Each may be more suitable for matching certain cases.
Therefore, a “complete” matching algorithm or methodology usually needs to make
use of more than one individual matcher.

There are two possible ways in which matchers can be combined [Rahm and Bern-
stein, 2001]: hybrid and composite. Hybrid algorithms combine multiple matchers
within one algorithm. In other words, elements from two schemas can be compared
using a number of element matchers (e.g., string matching as well as data type
matching) and/or structural matchers within one algorithm to determine their overall
similarity. Careful readers will have noted that in discussing the constraint-based
matching algorithms that focused on structural matching, we followed a hybrid
approach since they were based on an initial similarity determination of, for example,
the leaf nodes using an element matcher, and these similarity values were then used in
structural matching. Composite algorithms, on the other hand, apply each matcher to
the elements of the two schemas (or two instances) individually, obtaining individual
similarity scores, and then they apply a method for combining these similarity scores.
More precisely, if si(Ck

j ,C
m
l) is the similarity score using matcher i (i = 1, ...,q) over

two concepts C j from schema k and Cl from schema m, then the composite similarity
of the two concepts is given by s(Ck

j ,C
m
l) = f (s1, . . . ,sq) where f is the function that

is used to combine the similarity scores. This function can be as simple as average,

Learner

Classifier

Classification
predictions

Probabilistic
knowledge

Dk,Dl

τ = {Di.em ≈ Dj.en}

4.3 Schema Integration 147

max, or min, or it can be an adaptation of more complicated ranking aggregation
functions [Fagin, 2002] that we will discuss further in Chapter 9. Composite approach
has been proposed in the LSD [Doan et al., 2001, 2003a] and iMAP [Dhamankar
et al., 2004] systems for handling 1:1 and N:M matches, respectively.

4.3 Schema Integration

Once schema matching is done, the correspondences between the various LCSs
have been identified. The next step is to create the GCS, and this is referred to as
schema integration. As indicated earlier, this step is only necessary if a GCS has
not already been defined and matching was performed on individual LCSs. If the
GSC was defined up-front, then the matching step would determine correspondences
between it and each of the LCSs and there would be no need for the integration step.
If the GCS is created as a result of the integration of LCSs based on correspondences
identified during schema matching, then, as part of integration, it is important to
identify the correspondences between the GCS and the LCSs. Although tools (e.g.,
[Sheth et al., 1988a]) have been developed to aid in the integration process, human
involvement is clearly essential.

Example 4.6. There are a number of possible integrations of the two example LCSs
we have been discussing. Figure 4.9 shows one possible GCS that can be generated
as a result of schema integration. �

Employee(ENUMBER, ENAME, TITLE)

Pay(TITLE, SALARY)

Project(PNUMBER, PNAME, BIDGET, LOCATION)

Client(CNAME, ADDRESS, CONTRACTNO, PNUMBER)

Works(ENUMBER, PNUMBER, RESP, DURATION)

Fig. 4.9 Example Integrated GCS

Integration methodologies can be classified as binary or nary mechanisms [Batini
et al., 1986] based on the manner in which the local schemas are handled in the first
phase (Figure 4.10). Binary integration methodologies involve the manipulation of
two schemas at a time. These can occur in a stepwise (ladder) fashion (Figure 4.11a)
where intermediate schemas are created for integration with subsequent schemas
[Pu, 1988], or in a purely binary fashion (Figure 4.11b), where each schema is
integrated with one other, creating an intermediate schema for integration with other
intermediate schemas ([Batini and Lenzirini, 1984] and [Dayal and Hwang, 1984]).

148 4 Database Integration

Other binary integration approaches do not make this distinction [Melnik et al.,
2002].

Integration Process

Binary n-ary

ladder balanced one-shot iterative

Fig. 4.10 Taxonomy of Integration Methodologies

Nary integration mechanisms integrate more than two schemas at each iteration.
One-pass integration (Figure 4.12a) occurs when all schemas are integrated at once,
producing the global conceptual schema after one iteration. Benefits of this approach
include the availability of complete information about all databases at integration
time. There is no implied priority for the integration order of schemas, and the
trade-offs, such as the best representation for data items or the most understandable
structure, can be made between all schemas rather than between a few. Difficulties
with this approach include increased complexity and difficulty of automation.

(a) Stepwise (b) Pure binary

Fig. 4.11 Binary Integration Methods

Iterative nary integration (Figure 4.12b) offers more flexibility (typically, more
information is available) and is more general (the number of schemas can be varied
depending on the integrator’s preferences). Binary approaches are a special case of
iterative nary. They decrease the potential integration complexity and lead toward
automation techniques, since the number of schemas to be considered at each step is
more manageable. Integration by an nary process enables the integrator to perform
the operations on more than two schemas. For practical reasons, the majority of

4.4 Schema Mapping 149

(a) One-pass (b) Iterative

Fig. 4.12 Nary Integration Methods

systems utilize binary methodology, but a number of researchers prefer the nary
approach because complete information is available ([Elmasri et al., 1987; Yao et al.,
1982b; He et al., 2004]).

4.4 Schema Mapping

Once a GCS (or mediated schema) is defined, it is necessary to identify how the
data from each of the local databases (source) can be mapped to GCS (target) while
preserving semantic consistency (as defined by both the source and the target).
Although schema matching has identified the correspondences between the LCSs
and the GCS, it may not have identified explicitly how to obtain the global database
from the local ones. This is what schema mapping is about.

In the case of data warehouses, schema mappings are used to explicitly extract data
from the sources, and translate them to the data warehouse schema for populating it.
In the case of data integration systems, these mappings are used in query processing
phase by both the query processor and the wrappers (see Chapter 9).

There are two issues related to schema mapping that we will be studying: mapping
creation, and mapping maintenance. Mapping creation is the process of creating
explicit queries that map data from a local database to the global data. Mapping
maintenance is the detection and correction of mapping inconsistencies resulting
from schema evolution. Source schemas may undergo structural or semantic changes
that invalidate mappings. Mapping maintenance is concerned with the detection
of broken mappings and the (automatic) rewriting of mappings such that semantic
consistency with the new schema and semantic equivalence with the current mapping
are achieved.

150 4 Database Integration

4.4.1 Mapping Creation

Mapping creation starts with a source LCS, the target GCS, and a set of schema
matches M and produces a set of queries that, when executed, will create GCS
data instances from the source data. In data warehouses, these queries are actually
executed to create the data warehouse (global database) while in data integration
systems, these queries are used in the reverse direction during query processing
(Chapter 9).

Let us make this more concrete by referring to the canonical relational representa-
tion that we have adopted. The source LCS under consideration consists of a set of
relations S= {S1, . . . ,Sm}, the GCS consists of a set of global (or target) relations
T = {T1, . . . ,Tn}, and M consists of a set of schema match rules as defined in Section
4.2. We are looking for a way to generate, for each Tk, a query Qk that is defined on a
(possibly proper) subset of the relations in S such that, when executed, will generate
data for Tk from the source relations.

An algorithm due to Miller et al. [2000] accomplishes this iteratively by consider-
ing each Tk in turn. It starts with Mk ⊆M (Mk is the set of rules that only apply to the
attributes of Tk) and divides it into subsets {M1

k , . . . ,M
s
k} such that each M j

k specifies
one possible way that values of Tk can be computed. Each M j

k can be mapped to a
query q j

k that, when executed, would generate some of Tk’s data. The union of all of
these queries gives Qk(= ∪ jq

j
k) that we are looking for.

The algorithm proceeds in four steps that we discuss below. It does not con-
sider the similarity values in the rules. It can be argued that the similarity values
would be used in the final stages of the matching process to finalize correspon-
dences, so that their use during mapping is unnecessary. Furthermore, by the time
this phase of the integration process is reached, the concern is how to map source
relation (LCS) data to target relation (GCS) data. Consequently, correspondences
are not symmetric equivalences (≈), but mappings (7→): attribute(s) from (possi-
bly multiple) source relations are mapped to an attribute of a target relation (i.e.,
(Si.attributek,S j.attributel) 7→ Tw.attributez)).

Example 4.7. To demonstrate the algorithm, we will use a different example database
than what we have been working with, because it does not incorporate all the com-
plexities that we wish to demonstrate. Instead, we will use the following abstract
example.

Source relations (LCS):

S1(A1,A2)
S2(B1,B2,B3)
S3(C1,C2,C3)
S4(D1,D2)

Target relation (GCS)

T (W1,W2,W3,W4)

4.4 Schema Mapping 151

We consider only one relation in GCS, since the algorithm iterates over target
relations one-at-a-time, so this is sufficient to demonstrate the operation of the
algorithm.

The foreign key relationships between the attributes are as follows:

Foreign key Refers to
A1 B1
A2 B1
C1 B1

The following matches have been discovered for attributes of relation T (these
make up MT). In the subsequent examples, we will not be concerned with the
predicates, so they are not explicitly specified.

r1 = 〈A1 7→W1, p〉
r2 = 〈A2 7→W2, p〉
r3 = 〈B2 7→W4, p〉
r4 = 〈B3 7→W3, p〉
r5 = 〈C1 7→W1, p〉
r6 = 〈C2 7→W2, p〉
r7 = 〈D1 7→W4, p〉

�

In the first step, Mk (corresponding to Tk) is partitioned into its subsets {M1
k , . . . ,M

n
k }

such that each M j
k contains at most one match for each attribute of Tk. These are

called potential candidate sets, some of which may be complete in that they include
a match for every attribute of Tk, but others may not be. The reasons for considering
incomplete sets are twofold. First, it may be the case that no match is found for one
or more attributes of the target relation (i.e., none of the match sets are complete).
Second, for large and complex database schemas, it may make sense to build the
mapping iteratively so that the designer specifies the mappings incrementally.

Example 4.8. MT is partitioned into the following fifty-three subsets (i.e., potential
candidate sets). The first eight of these are complete, while the rest are not. To make
it easier to read, the complete rules are listed in the order of the target attributes to
which they map (e.g., the third rule in M1

T is r4, because this rule maps to attribute
W3):

M1
T = {r1,r2,r4,r3} M2

T = {r1,r2,r4,r7}
M3

T = {r1,r6,r4,r3} M4
T = {r1,r6,r4,r7}

M5
T = {r5,r2,r4,r3} M6

T = {r5,r2,r4,r7}
M7

T = {r5,r6,r4,r3} M8
T = {r5,r6,r4,r7}

M9
T = {r1,r2,r3} M10

T = {r1,r2,r4}
M11

T = {r1,r3,r4} M12
T = {r2,r3,r4}

152 4 Database Integration

M13
T = {r1,r3,r6} M14

T = {r3,r4,r6}
.

M47
T = {r1} M48

T = {r2}
M49

T = {r3} M50
T = {r4}

M51
T = {r5} M52

T = {r6}
M53

T = {r7}

�

In the second step, the algorithm analyzes each potential candidate set M j
k to see

if a “good” query can be produced for it. If all the matches in M j
k map values from a

single source relation to Tk, then it is easy to generate a query corresponding to M j
k .

Of particular concern are matches that require access to multiple source relations. In
this case the algorithm checks to see if there is a referential connection between these
relations through foreign keys (i.e., whether there is a join path through the source
relations). If there isn’t, then the potential candidate set is eliminated from further
consideration. In case there are multiple join paths through foreign key relationships,
the algorithm looks for those paths that will produce the most number of tuples (i.e.,
the estimated difference in size of the outer and inner joins is the smallest). If there
are multiple such paths, then the database designer needs to be involved in selecting
one (tools such as Clio [Miller et al., 2001], OntoBuilder [Roitman and Gal, 2006]
and others facilitate this process and provide mechanisms for designers to view and
specify correspondences [Yan et al., 2001]). The result of this step is a set Mk ⊆Mk
of candidate sets.

Example 4.9. In this example, there is no M j
k where the values of all of T ’s attributes

are mapped from a single source relation. Among those that involve multiple source
relations, rules that involve S1,S2 and S3 can be mapped to “good” queries since
there are foreign key relationships between them. However, the rules that involve S4
(i.e., those that include rule r7) cannot be mapped to a “good” query since there is no
join path from S4 to the other relations (i.e., any query would involve a cross product,
which is expensive). Thus, these rules are eliminated from the potential candidate set.
Considering only the complete sets, M2

k ,M
4
k ,M

6
k , and M8

k are pruned from the set. In
the end, the candidate set (Mk) contains thirty-five rules (the readers are encouraged
to verify this to better understand the algorithm). �

In the third step, the algorithm looks for a cover of the candidate sets Mk. The
cover Ck ⊆Mk is a set of candidate sets such that each match in Mk appears in Ck at
least once. The point of determining a cover is that it accounts for all of the matches
and is, therefore, sufficient to generate the target relation Tk. If there are multiple
covers (a match can participate in multiple covers), then they are ranked in increasing
number of the candidate sets in the cover. The fewer the number of candidate sets
in the cover, the fewer are the number of queries that will be generated in the next
step; this improves the efficiency of the mappings that are generated. If there are

4.4 Schema Mapping 153

multiple covers with the same ranking, then they are further ranked in decreasing
order of the total number of unique target attributes that are used in the candidate sets
constituting the cover. The point of this ranking is that covers with higher number
of attributes generate fewer null values in the result. At this stage, the designer may
need to be consulted to choose from among the ranked covers.

Example 4.10. First note that we have six rules that define matches in Mk that we
need to consider, since M j

k that include rule r7 have been eliminated. There are a large
number of possible covers; let us start with those that involve M1

k to demonstrate the
algorithm:

C1
T = {{r1,r2,r4,r3}︸ ︷︷ ︸

M1
T

,{r1,r6,r4,r3}︸ ︷︷ ︸
M3

T

,{r2}︸︷︷︸
M48

T

}

C2
T = {{r1,r2,r4,r3}︸ ︷︷ ︸

M1
T

,{r5,r2,r4,r3}︸ ︷︷ ︸
M5

T

,{r6}︸︷︷︸
M50

T

}

C3
T = {{r1,r2,r4,r3}︸ ︷︷ ︸

M1
T

,{r5,r6,r4,r3}︸ ︷︷ ︸
M7

T

}

C4
T = {{r1,r2,r4,r3}︸ ︷︷ ︸

M1
T

,{r5,r6,r4}︸ ︷︷ ︸
M12

T

}

C5
T = {{r1,r2,r4,r3}︸ ︷︷ ︸

M1
T

,{r5,r6,r3}︸ ︷︷ ︸
M19

T

}

C6
T = {{r1,r2,r4,r3}︸ ︷︷ ︸

M1
T

,{r5,r6}︸ ︷︷ ︸
M32

T

}

At this point we observe that the covers consist of either two or three candidate
sets. Since the algorithm prefers those with fewer candidate sets, we only need to
focus on those involving two sets. Furthermore, among these covers, we note that the
number of target attributes in the candidate sets differ. Since the algorithm prefers
covers with the largest number of target attributes in each candidate set, C3

T is the
preferred cover in this case.

Note that due to the two heuristics employed by the algorithm, the only covers we
need to consider are those that involve M1

T ,M
3
T ,M

5
T , and M7

T . Similar covers can be
defined involving M3

T ,M
5
T , and M7

T ; we leave that as an exercise. In the remainder,
we will assume that the designer has chosen to use C3

T as the preferred cover. �

The final step of the algorithm builds a query q j
k for each of the candidate sets

in the cover selected in the previous step. The union of all of these queries (UNION
ALL) results in the final mapping for relation Tk in the GCS.

Query q j
k is built as follows:

• SELECT clause includes all correspondences (c) in each of the rules (ri
k) in M j

k .

154 4 Database Integration

• FROM clause includes all source relations mentioned in ri
k and in the join paths

determined in Step 2 of the algorithm.

• WHERE clause includes conjunct of all predicates (p) in ri
k and all join predi-

cates determined in Step 2 of the algorithm.

• If ri
k contains an aggregate function either in c or in p

• GROUP BY is used over attributes (or functions on attributes) in the
SELECT clause that are not within the aggregate;

• If aggregate is in the correspondence c, it is added to SELECT, else (i.e.,
aggregate is in the predicate p) a HAVING clause is created with the
aggregate.

Example 4.11. Since in Example 4.10 we have decided to use cover C3
T for the final

mapping, we need to generate two queries: q1
T and q7

T corresponding to M1
T and M7

T ,
respectively. For ease of presentation, we list the rules here again:

r1 = 〈A1 7→W1, p〉
r2 = 〈A2 7→W2, p〉
r3 = 〈B2 7→W4, p〉
r4 = 〈B3 7→W3, p〉
r5 = 〈C1 7→W1, p〉
r6 = 〈C2 7→W2, p〉

The two queries are as follows:

q1
k : SELECT A1,A2,B2,B3

FROM S1,S2
WHERE p1 AND p2 AND p3 AND p4

AND S1.A1 = S2.B1 AND S1.A2 = S2.B1

q7
k : SELECT B2,B3,C1,C2

FROM S2,S3
WHERE p3 AND p4 AND p5 AND p6

AND S3.c1 = S2.B1

Thus, the final query Qk for target relation T becomes q1
k UNION ALL q7

k . �

The output of this algorithm, after it is iteratively applied to each target relation Tk
is a set of queries Q= {Qk} that, when executed, produce data for the GCS relations.
Thus, the algorithm produces GAV mappings between relational schemas – recall
that GAV defines a GCS as a view over the LCSs and that is exactly what the set of
mapping queries do. The algorithm takes into account the semantics of the source
schema since it considers foreign key relationships in determining which queries
to generate. However, it does not consider the semantics of the target, so that the

4.4 Schema Mapping 155

tuples that are generated by the execution of the mapping queries are not guaranteed
to satisfy target semantics. This is not a major issue in the case when the GCS is
integrated from the LCSs; however, if the GCS is defined independent of the LCSs,
then this is problematic.

It is possible to extend the algorithm to deal with target semantics as well as
source semantics. This requires that inter-schema tuple-generating dependencies be
considered. In other words, it is necessary to produce GLAV mappings. A GLAV
mapping, by definition, is not simply a query over the source relations; it is a
relationship between a query over the source (i.e., LCS) relations and a query over
the target (i.e., GCS) relations. Let us be more precise. Consider a schema match v
that specifies a correspondence between attribute A of a source LCS relation S and
attribute B of a target GCS relation T (in the notation we used in this section we have
v = 〈S.A≈ T.B, p,s〉). Then the source query specifies how to retrieve S.A and the
target query specifies how to obtain T.B. The GLAV mapping, then, is a relationship
between these two queries.

An algorithm to accomplish this [Popa et al., 2002] also starts, as above, with a
source schema, a target schema, and M, and “discovers” mappings that satisfy both
the source and the target schema semantics. The algorithm is also more powerful
than the one we discussed in this section in that it can handle nested structures that
are common in XML, object databases, and nested relational systems.

The first step in discovering all of the mappings based on schema match corre-
spondences is semantic translation, which seeks to interpret schema matches in M

in a way that is consistent with the semantics of both the source and target schemas
as captured by the schema structure and the referential (foreign key) constraints. The
result is a set of logical mappings each of which captures the design choices (seman-
tics) made in both source and target schemas. Each logical mapping corresponds to
one target schema relation. The second step is data translation that implements each
logical mapping as a rule that can be translated into a query that would create an
instance of the target element when executed.

Semantic translation takes as inputs the source S and target schemas T, and M

and performs the following two steps:

• It examines intra-schema semantics within the S and T separately and produces
for each a set of logical relations that are semantically consistent.

• It then interprets inter-schema correspondences M in the context of logical
relations generated in Step 1 and produces a set of queries into Q that are
semantically consistent with T.

4.4.2 Mapping Maintenance

In dynamic environments where schemas evolve over time, schema mappings can be
made invalid as the result of structural or constraint changes made to the schemas.

156 4 Database Integration

Thus, the detection of invalid/inconsistent schema mappings and the adaptation of
such schema mappings to new schema structures/constraints becomes important.

In general, automatic detection of invalid/inconsistent schema mappings is desir-
able as the complexity of the schemas, and the number of schema mappings used in
database applications, increases. Likewise, (semi-)automatic adaptation of mappings
to schema changes is also a goal. It should be noted that automatic adaptation of
schema mappings is not the same as automatic schema matching. Schema adaptation
aims to resolve semantic correspondences using known changes in intra-schema
semantics, semantics in existing mappings, and detected semantic inconsistencies
(resulting from schema changes). Schema matching must take a much more “from
scratch” approach at generating schema mappings and does not have the ability (or
luxury) of incorporating such contextual knowledge.

4.4.2.1 Detecting invalid mappings

In general, detection of invalid mappings resulting from schema change can ei-
ther happen proactively, or reactively. In proactive detection environments, schema
mappings are tested for inconsistencies as soon as schema changes are made by a
user. The assumption (or requirement) is that the mapping maintenance system is
completely aware of any and all schema changes, as soon as they are made. The
ToMAS system [Velegrakis et al., 2004], for example, expects users to make schema
changes through its own schema editors, making the system immediately aware of
any schema changes. Once schema changes have been detected, invalid mappings
can be detected by doing a semantic translation of the existing mappings using the
logical relations of the updated schema.

In reactive detection environments, the mapping maintenance system is unaware
of when and what schema changes are made. To detect invalid schema mappings in
this setting, mappings are tested at regular intervals by performing queries against the
data sources and translating the resulting data using the existing mappings. Invalid
mappings are then determined based on the results of these mapping tests.

An alternative method that has been proposed is to use machine learning tech-
niques to detect invalid mappings (as in the Maveric system [McCann et al., 2005]).
What has been proposed is to build an ensemble of trained sensors (similar to multiple
learners in schema matching) to detect invalid mappings. Examples of such sensors
include value sensors for monitoring distribution characteristics of target instance
values, trend sensors for monitoring the average rate of data modification, and layout
and constraint sensors that monitor translated data against expected target schema
syntax and semantics. A weighted combination of the findings of the individual
sensors is then calculated where the weights are also learned. If the combined result
indicates changes and follow-up tests suggest that this may indeed be the case, an
alert is generated.

4.5 Data Cleaning 157

4.4.2.2 Adapting invalid mappings

Once invalid schema mappings are detected, they must be adapted to schema changes
and made valid once again. Various high-level mapping adaptation approaches have
been proposed [Velegrakis et al., 2004]. These can be broadly described as fixed
rule approaches that define a re-mapping rule for every type of expected schema
change, map bridging approaches that compare original schema S and the updated
schema S′, and generate new mapping from S to S′ in addition to existing mappings,
and semantic rewriting approaches, which exploit semantic information encoded in
existing mappings, schemas, and semantic changes made to schemas to propose map
rewritings that produce semantically consistent target data. In most cases, multiple
such rewritings are possible, requiring a ranking of the candidates for presentation to
users who make the final decision (based on scenario- or business-level semantics
not encoded in schemas or mappings).

Arguably, a complete remapping of schemas (i.e. from scratch, using schema
matching techniques) is another alternative to mapping adaption. However, in most
cases, map rewriting is cheaper than map regeneration as rewriting can exploit
knowledge encoded in existing mappings to avoid computation of mappings that
would be rejected by the user anyway (and to avoid redundant mappings).

4.5 Data Cleaning

Errors in source databases can always occur, requiring cleaning in order to correctly
answer user queries. Data cleaning is a problem that arises in both data warehouses
and data integration systems, but in different contexts. In data warehouses where
data are actually extracted from local operational databases and materialized as a
global database, cleaning is performed as the global database is created. In the case
of data integration systems, data cleaning is a process that needs to be performed
during query processing when data are returned from the source databases.

The errors that are subject to data cleaning can generally be broken down into
either schema-level or instance-level concerns [Rahm and Do, 2000]. Schema-level
problems can arise in each individual LCS due to violations of explicit and implicit
constraints. For example, values of attributes may be outside the range of their
domains (e.g. 14th month or negative salary value), attribute values may violate
implicit dependencies (e.g., the age attribute value may not correspond to the value
that is computed as the difference between the current date and the birth date),
uniqueness of attribute values may not hold, and referential integrity constraints may
be violated. Furthermore, in the environment that we are considering in this chapter,
the schema-level heterogeneities (both structural and semantic) among the LCSs that
we discussed earlier can all be considered problems that need to be resolved. At the
schema level, it is clear that the problems need to be identified at the schema match
stage and fixed during schema integration.

158 4 Database Integration

Instance level errors are those that exist at the data level. For example, the values
of some attributes may be missing although they were required, there could be
misspellings and word transpositions (e.g., “M.D. Mary Smith” versus “Mary Smith,
M.D.”) or differences in abbreviations (e.g., “J. Doe” in one source database while
“J.N. Doe” in another), embedded values (e.g., an aggregate address attribute that
includes street name, value, province name, and postal code), values that were
erroneously placed in other fields, duplicate values, and contradicting values (the
salary value appearing as one value in one database and another value in another
database). For instance-level cleaning, the issue is clearly one of generating the
mappings such that the data are cleaned through the execution of the mapping
functions (queries).

The popular approach to data cleaning has been to define a number of operators
that operate either on schemas or on individual data. The operators can be composed
into a data cleaning plan. Example schema operators add or drop columns from table,
restructure a table by combining columns or splitting a column into two [Raman
and Hellerstein, 2001], or define more complicated schema transformation through
a generic “map” operator [Galhardas et al., 2001] that takes a single relation and
produces one ore more relations. Example data level operators include those that
apply a function to every value of one attribute, merging values of two attributes into
the value of a single attribute and its converse split operator [Raman and Hellerstein,
2001], a matching operator that computes an approximate join between tuples of
two relations, clustering operator that groups tuples of a relation into clusters, and a
tuple merge operator that partitions the tuples of a relation into groups and collapses
the tuples in each group into a single tuple through some aggregation over them
[Galhardas et al., 2001], as well as basic operators to find duplicates and eliminate
them (this has long been known as the purge/merge problem [Hernández and Stolfo,
1998]). Many of the data level operators compare individual tuples of two relations
(from the same or different schemas) and decide whether or not they represent the
same fact. This is similar to what is done in schema matching, except that it is done
at the individual data level and what is considered are not individual attribute values,
but entire tuples. However, the same techniques we studied under schema matching
(e.g., use of edit distance or soundex value) can be used in this context. There have
been proposals for special techniques for handling this efficiently within the context
of data cleaning (e.g., [Chaudhuri et al., 2003]).

Given the large amount of data that needs to be handled, data level cleaning is
expensive and efficiency is a significant issue. The physical implementation of each
of the operators we discussed above is a considerable concern. Although cleaning can
be done off-line as a batch process in the case of data warehouses, for data integration
systems, cleaning needs to be done online as data are retrieved from the sources. The
performance of data cleaning is, of course, more critical in the latter case. In fact, the
performance and scalability concerns in the latter systems have resulted in proposals
where data cleaning is forfeited in favor of querying that is tolerant to conflicts [Yan
and Özsu, 1999].

4.6 Conclusion 159

4.6 Conclusion

In this chapter we discussed the bottom-up database design process, which we called
database integration. This is the process of creating a GCS (or a mediated schema)
and determining how each LCS maps to it. A fundamental separation is between
data warehouses where the GCS is instantiated and materialized, and data integration
systems where the GCS is merely a virtual view.

Although the topic of database integration has been studied extensively for a
long time, almost all of the work has been fragmented. Individual projects focus on
schema matching, or data cleaning, or schema mapping. There is a serious lack of
research that considers end-to-end methodology for database integration. The lack of
a methodology is made more serious by the fact that each of these research activities
work on different assumptions related to data models, types of heterogeneities and so
on. A notable exception is the work of Bernstein and Melnik [2007], which provides
the beginnings of a comprehensive “end-to-end” methodology. This is probably the
most important topic that requires attention.

A related concept that has received considerable discussion in literature is data
exchange. This is defined as “the problem of taking data structured under a source
schema and creating an instance of a target schema that reflects the source data
as accurately as possible.” [Fagin et al., 2005]. This is very similar to the physical
integration (i.e., materialized) data integration, such as data warehouses, that we
discussed in this chapter. A difference between data warehouses and the materializa-
tion approaches as addressed in data exchange environments is that data warehouse
data typically belongs to one organization and can be structured according to a well-
defined schema while in data exchange environments data may come from different
sources and contain heterogeneity [Doan et al., 2010]. However, for most of the
discussions of this chapter, this is not a major concern.

Our focus in this chapter has been on integrating databases. Increasingly, however,
the data that are used in distributed applications involve those that are not in a
database. An interesting new topic of discussion among researchers is the integration
of structured data that is stored in databases and unstructured data that is maintained
in other systems (Web servers, multimedia systems, digital libraries, etc) [Halevy
et al., 2003; Somani et al., 2002]. In next generation systems, ability to handle both
types of data will be increasingly important.

Another issue that we ignored in this chapter is interoperability when a GCS does
not exist or cannot be specified. As we discussed in Chapter 1, there have been early
objections to interoperable access to multiple data sources through a GCS, arguing
instead that the languages should provide facilities to access multiple heterogeneous
sources without requiring a GCS. The issue becomes critical in the modern peer-to-
peer systems where the scale and the variety of data sources make it quite difficult
(if not impossible) to design a GCS. We will discuss data integration in peer-to-peer
systems in Chapter 16.

160 4 Database Integration

4.7 Bibliographic Notes

A large volume of literature exists on the topic of this chapter. The work goes back to
early 1980’s and which is nicely surveyed by Batini et al. [1986]. Subsequent work
is nicely covered by Elmagarmid et al. [1999] and Sheth and Larson [1990].

There is an upcoming book on this topic that provides the broadest coverage
of the subject [Doan et al., 2010]. There are a number of recent overview papers
on the topic. Bernstein and Melnik [2007] provides a very nice discussion of the
integration methodology. It goes further by comparing the model management work
with some of the data integration research. Halevy et al. [2006] reviews the data
integration work in the 1990’s, focusing on the Information Manifold system [Levy
et al., 1996c], that uses a LAV approach. The paper provides a large bibliography
and discusses the research areas that have been opened in the intervening years. Haas
[2007] takes a comprehensive approach to the entire integration process and divides
it into four phases: understanding that involves discovering relevant information
(keys, constraints, data types, etc), analyzing it to assess quality, an to determine
statistical properties; standardization whereby the best way to represent the integrated
information is determined; specification, that involves the configuration of the integra-
tion process; and execution, which is the actual integration. The specification phase
includes the techniques defined in this paper. Doan and Halevy [2005] is another
very good overview of the various schema matching techniques. They propose a
different, and simpler, classification of the techniques as rule-based, learning-based,
and combined.

A large number of systems have been developed that have tested the LAV versus
GAV approaches. Many of these focus on querying over integrated systems, so we
will discuss them in Chapter 9. Examples of LAV approaches are described in the
papers [Duschka and Genesereth, 1997; Levy et al., 1996a; Manolescu et al., 2001]
while examples of GAV are presented in papers [Adali et al., 1996a; Garcia-Molina
et al., 1997; Haas et al., 1997b].

Topics of structural and semantic heterogeneity have occupied researchers for
quite some time. While the literature on this topic is quite extensive, some of the
interesting publications that discuss structural heterogeneity are and those that focus
on semantic heterogeneity are [Dayal and Hwang, 1984; Kim and Seo, 1991; Breitbart
et al., 1986; Krishnamurthy et al., 1991] [Hull, 1997; Ouksel and Sheth, 1999;
Kashyap and Sheth, 1996; Bright et al., 1994; Ceri and Widom, 1993]. We should
note that this list is seriously incomplete.

More recent works in schema matching are surveyed by Rahm and Bernstein
[2001] and Doan and Halevy [2005]. In particular, Rahm and Bernstein [2001] gives
a very nice comparison of various proposals.

A number of systems have been developed demonstrating the feasibility of various
schema matching approaches. Among rule-based techniques, one can cite DIKE
[Palopoli et al., 1998, 2003b,a], DIPE, which is an earlier version of this system
[Palopoli et al., 1999], TranSCM [Milo and Zohar, 1998], ARTEMIS [Bergamaschi
et al., 2001], similarity flooding [Melnik et al., 2002], CUPID [Madhavan et al.,
2001], and COMA [Do and Rahm, 2002].

4.7 Bibliographic Notes 161

Exercises

Problem 4.1. Distributed database systems and distributed multidatabase systems
represent two different approaches to systems design. Find three real-life applications
for which each of these approaches would be more appropriate. Discuss the features
of these applications that make them more favorable for one approach or the other.

Problem 4.2. Some architectural models favor the definition of a global conceptual
schema, whereas others do not. What do you think? Justify your selection with
detailed technical arguments.

Problem 4.3 (*). Give an algorithm to convert a relational schema to an entity-
relationship one.

Problem 4.4 (**). Consider the two databases given in Figures 4.13 and 4.14 and
described below. Design a global conceptual schema as a union of the two databases
by first translating them into the E-R model.

DIRECTOR(NAME, PHONE NO, ADDRESS)
LICENSES(LIC NO, CITY, DATE, ISSUES, COST, DEPT, CONTACT)
RACER(NAME, ADDRESS, MEM NUM)
SPONSOR(SP NAME, CONTACT)
RACE(R NO, LIC NO, DIR, MAL WIN, FRM WIN, SP NAME)

Fig. 4.13 Road Race Database

Figure 4.13 describes a relational race database used by organizers of road races
and Figure 4.14 describes an entity-relationship database used by a shoe manufacturer.
The semantics of each of these database schemas is discussed below. Figure 4.13
describes a relational road race database with the following semantics:
DIRECTOR is a relation that defines race directors who organize races; we assume

that each race director has a unique name (to be used as the key), a phone number,
and an address.

LICENSES is required because all races require a governmental license, which is
issued by a CONTACT in a department who is the ISSUER, possibly contained
within another government department DEPT; each license has a unique LIC NO
(the key), which is issued for use in a specific CITY on a specific DATE with a
certain COST.

RACER is a relation that describes people who participate in a race. Each person
is identified by NAME, which is not sufficient to identify them uniquely, so a
compound key formed with the ADDRESS is required. Finally, each racer may
have a MEM NUM to identify him or her as a member of the racing fraternity, but
not all competitors have membership numbers.

SPONSOR indicates which sponsor is funding a given race. Typically, one sponsor
funds a number of races through a specific person (CONTACT), and a number of
races may have different sponsors.

162 4 Database Integration

Contract MANUFACTURER

Cost

AddressName

Name

DISTRIBUTOR

Address

SIN

SHOES

ModelSize

Sells Makes Prod_cost

Cost

Employs

SALESPERSON

NameSIN

Commission

Base_sal

1 N

1

N

N

M
M

N

Fig. 4.14 Sponsor Database

RACE uniquely identifies a single race which has a license number (LIC NO) and
race number (R NO) (to be used as a key, since a race may be planned without
acquiring a license yet); each race has a winner in the male and female groups
(MAL WIN and FEM WIN) and a race director (DIR).
Figure 4.14 illustrates an entity-relationship schema used by the sponsor’s database

system with the following semantics:
SHOES are produced by sponsors of a certain MODEL and SIZE, which forms the

key to the entity.
MANUFACTURER is identified uniquely by NAME and resides at a certain AD-

DRESS.
DISTRIBUTOR is a person that has a NAME and ADDRESS (which are necessary

to form the key) and a SIN number for tax purposes.
SALESPERSON is a person (entity) who has a NAME, earns a COMMISSION,

and is uniquely identified by his or her SIN number (the key).
Makes is a relationship that has a certain fixed production cost (PROD COST). It

indicates that a number of different shoes are made by a manufacturer, and that
different manufacturers produce the same shoe.

Sells is a relationship that indicates the wholesale COST to a distributor of shoes. It
indicates that each distributor sells more than one type of shoe, and that each type
of shoe is sold by more than one distributor.

4.7 Bibliographic Notes 163

Contract is a relationship whereby a distributor purchases, for a COST, exclusive
rights to represent a manufacturer. Note that this does not preclude the distributor
from selling different manufacturers’ shoes.

Employs indicates that each distributor hires a number of salespeople to sell the
shoes; each earns a BASE SALARY.

Problem 4.5 (*). Consider three sources:

• Database 1 has one relation Area(Id, Field) providing areas of specialization of
employees; the Id field identifies an employee.

• Database 2 has two relations, Teach(Professor, Course) and In(Course, Field);
Teach indicates the courses that each professor teaches and In that specifies
possible fields that a course can blong to.

• Database 3 has two relations, Grant(Researcher, GrantNo) for grants given to
researchers, and For(GrantNo, Field) indicating which fields the grants are for.

The objective is to build a GCS with two relations: Works(Id, Project) stating
that an employee works for a particular project, and Area(Project, Field) associating
projects with one or more fields.

(a) Provide a LAV mapping between Database 1 and the GCS.
(b) Provide a GLAV mapping between the GCS and the local schemas.
(c) Suppose one extra relation, Funds(GrantNo, Project), is added to Database 3.

Provide a GAV mapping in this case.

Problem 4.6. Consider a GCS with the following relation: Person(Name, Age, Gen-
der). This relation is defined as a view over three LCSs as follows:

CREATE VIEW Person AS
SELECT Name, Age, "male" AS Gender
FROM SoccerPlayer
UNION
SELECT Name, NULL AS Age, Gender
FROM Actor
UNION
SELECT Name, Age, Gender
FROM Politician
WHERE Age > 30

For each of the following queries, discuss which of the three local schemas
(SoccerPlayer, Actor, and Politician) contribute to the global query result.

(a) SELECT Name FROM person

(b) SELECT Name FROM Person

WHERE Gender = "female"

(c) SELECT Name FROM Person WHERE Age > 25

(d) SELECT Name FROM Person WHERE Age < 25
(e) SELECT Name FROM Person

WHERE Gender = "male" AND Age = 40

164 4 Database Integration

Problem 4.7. A GCS with the relation Country(Name, Continent, Population, Has-
Coast) describes countries of the world. The attribute HasCoast indicates if the
country has direct access to the sea. Three LCSs are connected to the global schema
using the LAV approach as follows:

CREATE VIEW EuropeanCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE Continent = "Europe"

CREATE VIEW BigCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE Population >= 30000000

CREATE VIEW MidsizeOceanCountry AS
SELECT Name, Continent, Population, HasCoast
FROM Country
WHERE HasCoast = true AND Population > 10000000

(a) For each of the following queries, discuss the results with respect to their
completeness, i.e., verify if the (combination of the) local sources cover all
relevant results.

1. SELECT Name FROM Country

2. SELECT Name FROM Country
WHERE Population > 40

3. SELECT Name FROM Country
WHERE Population > 20

(b) For each of the following queries, discuss which of the three LCSs are necessary
for the global query result.

1. SELECT Name FROM Country

2. SELECT Name FROM Country
WHERE Population > 30
AND Continent = "Europe"

3. SELECT Name FROM Country
WHERE Population < 30

4. SELECT Name FROM Country
WHERE Population > 30
AND HasCoast = true

Problem 4.8. Consider the following two relations PRODUCT and ARTICLE that
are specified in a simplified SQL notation. The perfect schema matching correspon-
dences are denoted by arrows.

4.7 Bibliographic Notes 165

PRODUCT −→ ARTICLE
Id: int PRIMARY KEY −→ Key: varchar(255) PRIMARY KEY
Name: varchar(255) −→ Title: varchar(255)
DeliveryPrice: float −→ Price: real
Description: varchar(8000) −→ Information: varchar(5000)

(a) For each of the five correspondences, indicate which of the following match
approaches will probably identify the correspondence:

1. Syntactic comparison of element names, e.g., using edit distance string
similarity

2. Comparison of element names using a synonym lookup table

3. Comparison of data types

4. Analysis of instance data values

(b) Is it possible for the listed matching approaches to determine false correspon-
dences for these match tasks? If so, give an example.

Problem 4.9. Consider two relations S(a,b,c) and T (d,e, f). A match approach
determines the following similarities between the elements of S and T:

T.d T.e T. f
S.a 0.8 0.3 0.1
S.b 0.5 0.2 0.9
S.c 0.4 0.7 0.8

Based on the given matcher’s result, derive an overall schema match result with the
following characteristics:

• Each element participates in exactly one correspondence.

• There is no correspondence where both elements match an element of the
opposite schema with a higher similarity than its corresponding counterpart.

Problem 4.10 (*). Figure 4.15 illustrates the schema of three different data sources:

• MyGroup contains publications authored by members of a working group;

• MyConference contains publications of a conference series and associated
workshops;

• MyPublisher contains articles that are published in journals.

The arrows show the foreign key-to-primary key relationships.
The sources are defined as follows:
MyGroup

• Publication

166 4 Database Integration

RELATION Publication

 Pub_ID: INT PRIMARY KEY

 VenueName: VARCHAR

 VenueType: VARCHAR

 Year: INT

 Title: VARCHAR

RELATION AuthorOf

 Pub_ID_FK: INT PRIMARY KEY

 Member_ID_FK: INT PRIMARY KEY

RELATION GroupMember

 Member_ID: INT PRIMARY KEY

 Name: VARCHAR

 Email: VARCHAR

MyGroup

RELATION Journal

 Journ_ID: INT PRIMARY KEY

 Name: VARCHAR

 Volume: INT

 Issue: INT

 Year: INT

RELATION Article

 Art_ID: INT PRIMARY KEY

 Title: VARCHAR

 Journ_ID_FK: INT

RELATION Person

 Pers_ID: INT PRIMARY KEY

 LastName: VARCHAR

 FirstName: VARCHAR

 Affiliation: VARCHAR

RELATION Author

 Art_ID_FK: INT PRIMARY KEY

 Pers_ID_FK: INT PRIMARY KEY

 Position: INT

RELATION Editor

 Journ_ID_FK: INT PRIMARY KEY

 Pers_IK_FK: INT PRIMARY KEY

MyPublisher

RELATION ConfWorkshop

 CW_ID: INT PRIMARY KEY

 Year: INT

 Location: VARCHAR

 Organizer: VARCHAR

 AssociatedConf_ID_FK: INT

RELATION Paper

 Pap_ID: INT PRIMARY KEY

 Title: VARCHAR

 Authors: ARRAY[20] OF VARCHAR

 CW_ID_FK: INT

MyConference

Fig. 4.15 Figure for Exercise 10

• Pub ID: unique publication ID

• VenueName: name of the journal, conference or workshop

• VenueType: “journal”, “conference”, or “workshop”

• Year: year of publication

• Title: publication’s title

• AuthorOf

• many-to-many relationship representing “group member is author of
publication”

• GroupMember

• Member ID: unique member ID

• Name: name of the group member

• Email: email address of the group member

MyConference

4.7 Bibliographic Notes 167

• ConfWorkshop

• CW ID: unique ID for the conference/workshop

• Name: name of the conference or workshop

• Year: year when the event takes place

• Location: event’s location

• Organizer: name of the organizing person

• AssociatedConf ID FK: value is NULL if it is a conference, ID of the
associated conference if the event is a workshop (this is assuming that
workshops are organized in conjunction with a conference)

• Paper

• Pap ID: unique paper ID

• Title: paper’s title

• Author: array of author names

• CW ID FK: conference/workshop where the paper is published

MyPublisher

• Journal

• Journ ID: unique journal ID

• Name: journal’s name

• Year: year when the event takes place

• Volume: journal volume

• Issue: journal issue

• Article

• Art ID: unique article ID

• Title: title of the article

• Journ ID FK: journal where the article is published

• Person

• Pers ID: unique person ID

• LastName: last name of the person

• FirstName: first name of the person

• Affiliation: person’s affiliation (e.g., the name of a university)

• Author

• represents the many-to-many relationship for “person is author of article”

168 4 Database Integration

• Position: author’s position in the author list (e.g., first author has Position
1)

• Editor

• represents the many-to-many relationship for “person is editor of journal
issue”

(a) Identify all schema matching correspondences between the schema elements
of the sources. Use the names and data types of the schema elements as well
as the given description.

(b) Classify your correspondences along the following dimensions:

1. Type of schema elements (e.g., attribute-attribute or attribute-relation)

2. Cardinality (e.g., 1:1 or 1:N)

(c) Give a consolidated global schema that covers all information of the source
schemas.

Problem 4.11 (*). Figure 4.16 illustrates (using a simplified SQL syntax) two
sources S1 and S2. S1 has two relations, Course and Tutor, and S2 has only one
relation, Lecture. The solid arrows denote schema matching correspondences. The
dashed arrow represents a foreign key relationship between the two relations in S1.

RELATION Course

 id: INT PRIMARY KEY

 name: VARCHAR(255)

 tutor_id_fk: INT FOREIGN KEY REFERENCES(Tutor)

RELATION Tutor

 id: INT PRIMARY KEY

 lastname: VARCHAR(255)

 firstname: VARCHAR(255)

RELATION Lecture

 id: INT PRIMARY KEY

 title: VARCHAR(255)

 lecturer: VARCHAR(255)

Fig. 4.16 Figure for Exercise 11

The following are four schema mappings (represented as SQL queries) to trans-
form S1’s data into S2.

1. SELECT C.id, C.name as Title, CONCAT(T.lastname,
T.firstname) AS Lecturer)

FROM Course AS C
JOIN Tutor AS T ON (C.tutor_id_fk = T.id)

2. SELECT C.id, C.name AS Title, NULL AS Lecturer)
FROM Course AS C
UNION
SELECT T.id AS ID, NULL AS Title, T,

lastname AS Lecturer)

4.7 Bibliographic Notes 169

FROM Course AS C
FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)

3. SELECT C.id, C.name as Title, CONCAT(T.lastname,
T.firstname) AS Lecturer)

FROM Course AS C
FULL OUTER JOIN Tutor AS T ON(C.tutor_id_fk=T.id)

Discuss each of these schema mappings with respect to the following questions:

(a) Is the mapping meaningful?
(b) Is the mapping complete (i.e., are all data instances of S1 transformed)?
(c) Does the mapping potentially violate key constraints?

Problem 4.12 (*). Consider three data sources:

• Database 1 has one relation AREA(ID, FIELD) providing areas of specialization
of employees where ID identifies an employee.

FIELD) specifying possible fields a course can belong to.

• Database 3 has two relations: GRANT(RESEARCHER, GRANT#) for grants

grants are in.

Design a global schema with two relations: WORKS(ID, PROJECT) that records
which projects employees work in, and AREA(PROJECT, FIELD) that associates
projects with one or more fields for the following cases:

(a) There should be a LAV mapping between Database 1 and the global schema.
(b) There should be a GLAV mapping between the global schema and the local

schemas.
(c) There should be a GAV mapping when one extra relation FUNDS(GRANT#,

PROJECT) is added to Database 3.

Problem 4.13 (**). Logic (first-order logic, to be precise) has been suggested as a
uniform formalism for schema translation and integration. Discuss how logic can be
useful for this purpose.

given to researchers, and FOR(GRANT#, FIELD) indicating the fields that the

• Database 2 has two relations: TEACH(PROFESSOR, COURSE) and IN(COURSE,

Chapter 5
Data and Access Control

An important requirement of a centralized or a distributed DBMS is the ability to
support semantic data control, i.e., data and access control using high-level semantics.
Semantic data control typically includes view management, security control, and
semantic integrity control. Informally, these functions must ensure that authorized
users perform correct operations on the database, contributing to the maintenance of
database integrity. The functions necessary for maintaining the physical integrity of
the database in the presence of concurrent accesses and failures are studied separately
in Chapters 10 through 12 in the context of transaction management. In the relational
framework, semantic data control can be achieved in a uniform fashion. Views,
security constraints, and semantic integrity constraints can be defined as rules that the
system automatically enforces. The violation of some rules by a user program (a set
of database operations) generally implies the rejection of the effects of that program
(e.g., undoing its updates) or propagating some effects (e.g., updating related data) to
preserve the database integrity.

The definition of the rules for controlling data manipulation is part of the adminis-
tration of the database, a function generally performed by a database administrator
(DBA). This person is also in charge of applying the organizational policies. Well-
known solutions for semantic data control have been proposed for centralized DBMSs.
In this chapter we briefly review the centralized solution to semantic data control, and
present the special problems encountered in a distributed environment and solutions
to these problems. The cost of enforcing semantic data control, which is high in terms
of resource utilization in a centralized DBMS, can be prohibitive in a distributed
environment.

Since the rules for semantic data control must be stored in a catalog, the manage-
ment of a distributed directory (also called a catalog) is also relevant in this chapter.
We discussed directories in Section 3.5. Remember that the directory of a distributed
DBMS is itself a distributed database. There are several ways to store semantic
data control definitions, according to the way the directory is managed. Directory
information can be stored differently according to its type; in other words, some
information might be fully replicated whereas other information might be distributed.
For example, information that is useful at compile time, such as security control

171
DOI 10.1007/978-1-4419-8834-8_5, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

172 5 Data and Access Control

information, could be replicated. In this chapter we emphasize the impact of directory
management on the performance of semantic data control mechanisms.

This chapter is organized as follows. View management is the subject of Section
5.1. Security control is presented in Section 5.2. Finally, semantic integrity control is
treated in Section 5.3. For each section we first outline the solution in a centralized
DBMS and then give the distributed solution, which is often an extension of the
centralized one, although more difficult.

5.1 View Management

One of the main advantages of the relational model is that it provides full logical
data independence. As introduced in Chapter 1, external schemas enable user groups
to have their particular view of the database. In a relational system, a view is a virtual
relation, defined as the result of a query on base relations (or real relations), but not
materialized like a base relation, which is stored in the database. A view is a dynamic
window in the sense that it reflects all updates to the database. An external schema
can be defined as a set of views and/or base relations. Besides their use in external
schemas, views are useful for ensuring data security in a simple way. By selecting a
subset of the database, views hide some data. If users may only access the database
through views, they cannot see or manipulate the hidden data, which are therefore
secure.

In the remainder of this section we look at view management in centralized
and distributed systems as well as the problems of updating views. Note that in
a distributed DBMS, a view can be derived from distributed relations, and the
access to a view requires the execution of the distributed query corresponding to
the view definition. An important issue in a distributed DBMS is to make view
materialization efficient. We will see how the concept of materialized views helps in
solving this problem, among others, but requires efficient techniques for materialized
view maintenance.

5.1.1 Views in Centralized DBMSs

Most relational DBMSs use a view mechanism where a view is a relation derived
from base relations as the result of a relational query (this was first proposed within
the INGRES [Stonebraker, 1975] and System R [Chamberlin et al., 1975] projects).
It is defined by associating the name of the view with the retrieval query that specifies
it.

Example 5.1. The view of system analysts (SYSAN) derived from relation EMP
(ENO,ENAME,TITLE), can be defined by the following SQL query:

5.1 View Management 173

Fig. 5.1 Relation Corresponding to the View SYSAN

CREATE VIEW SYSAN(ENO, ENAME)
AS SELECT ENO, ENAME

FROM EMP
WHERE TITLE = "Syst. Anal."

�

The single effect of this statement is the storage of the view definition in the
catalog. No other information needs to be recorded. Therefore, the result of the query
defining the view (i.e., a relation having the attributes ENO and ENAME for the
system analysts as shown in Figure 5.1) is not produced. However, the view SYSAN
can be manipulated as a base relation.

Example 5.2. The query

“Find the names of all the system analysts with their project number and respon-
sibility(ies)”

involving the view SYSAN and relation ASG(ENO,PNO,RESP,DUR) can be ex-
pressed as

SELECT ENAME, PNO, RESP
FROM SYSAN, ASG
WHERE SYSAN.ENO = ASG.ENO

�

Mapping a query expressed on views into a query expressed on base relations can
be done by query modification [Stonebraker, 1975]. With this technique the variables
are changed to range on base relations and the query qualification is merged (ANDed)
with the view qualification.

Example 5.3. The preceding query can be modified to

SELECT ENAME, PNO, RESP
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND TITLE = "Syst. Anal."

The result of this query is illustrated in Figure 5.2. �

174 5 Data and Access Control

The modified query is expressed on base relations and can therefore be processed
by the query processor. It is important to note that view processing can be done at
compile time. The view mechanism can also be used for refining the access controls
to include subsets of objects. To specify any user from whom one wants to hide data,
the keyword USER generally refers to the logged-on user identifier.

ENAME PNO RESP

M.Smith P1 Analyst

M.Smith P2 Analyst

B.Casey P3 Manager

J.Jones P4 Manager

Fig. 5.2 Result of Query involving View SYSAN

Example 5.4. The view ESAME restricts the access by any user to those employees
having the same title:

CREATE VIEW ESAME
AS SELECT *

FROM EMP E1, EMP E2
WHERE E1.TITLE = E2.TITLE
AND E1.ENO = USER

In the view definition above, * stands for “all attributes” and the two tuple variables
(E1 and E2) ranging over relation EMP are required to express the join of one tuple
of EMP (the one corresponding to the logged-on user) with all tuples of EMP based
on the same title. For example, the following query issued by the user J. Doe,

SELECT *
FROM ESAME

returns the relation of Figure 5.3. Note that the user J. Doe also appears in the result.
If the user who creates ESAME is an electrical engineer, as in this case, the view
represents the set of all electrical engineers. �

ENO ENAME TITLE

E1 J. Doe Elect. Eng

E2 L. Chu Elect. Eng

Fig. 5.3 Result of Query on View ESAME

5.1 View Management 175

Views can be defined using arbitrarily complex relational queries involving selec-
tion, projection, join, aggregate functions, and so on. All views can be interrogated
as base relations, but not all views can be manipulated as such. Updates through
views can be handled automatically only if they can be propagated correctly to the
base relations. We can classify views as being updatable and not updatable. A view
is updatable only if the updates to the view can be propagated to the base relations
without ambiguity. The view SYSAN above is updatable; the insertion, for example,
of a new system analyst 〈201, Smith〉 will be mapped into the insertion of a new
employee 〈201, Smith, Syst. Anal.〉. If attributes other than TITLE were hidden by
the view, they would be assigned null values.

Example 5.5. The following view, however, is not updatable:

CREATE VIEW EG(ENAME, RESP)
AS SELECT DISTINCT ENAME, RESP

FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

The deletion, for example, of the tuple 〈Smith, Analyst〉 cannot be propagated,
since it is ambiguous. Deletions of Smith in relation EMP or analyst in relation ASG
are both meaningful, but the system does not know which is correct. �

Current systems are very restrictive about supporting updates through views.
Views can be updated only if they are derived from a single relation by selection and
projection. This precludes views defined by joins, aggregates, and so on. However, it
is theoretically possible to automatically support updates of a larger class of views
[Bancilhon and Spyratos, 1981; Dayal and Bernstein, 1978; Keller, 1982]. It is
interesting to note that views derived by join are updatable if they include the keys of
the base relations.

5.1.2 Views in Distributed DBMSs

The definition of a view is similar in a distributed DBMS and in centralized systems.
However, a view in a distributed system may be derived from fragmented relations
stored at different sites. When a view is defined, its name and its retrieval query are
stored in the catalog.

Since views may be used as base relations by application programs, their definition
should be stored in the directory in the same way as the base relation descriptions.
Depending on the degree of site autonomy offered by the system [Williams et al.,
1982], view definitions can be centralized at one site, partially duplicated, or fully
duplicated. In any case, the information associating a view name to its definition site
should be duplicated. If the view definition is not present at the site where the query
is issued, remote access to the view definition site is necessary.

The mapping of a query expressed on views into a query expressed on base
relations (which can potentially be fragmented) can also be done in the same way as

176 5 Data and Access Control

in centralized systems, that is, through query modification. With this technique, the
qualification defining the view is found in the distributed database catalog and then
merged with the query to provide a query on base relations. Such a modified query is
a distributed query, which can be processed by the distributed query processor (see
Chapter 6). The query processor maps the distributed query into a query on physical
fragments.

In Chapter 3 we presented alternative ways of fragmenting base relations. The
definition of fragmentation is, in fact, very similar to the definition of particular views.
It is possible to manage views and fragments using a unified mechanism [Adiba,
1981]. This is based on the observation that views in a distributed DBMS can
be defined with rules similar to fragment definition rules. Furthermore, replicated
data can be handled in the same way. The value of such a unified mechanism is
to facilitate distributed database administration. The objects manipulated by the
database administrator can be seen as a hierarchy where the leaves are the fragments
from which relations and views can be derived. Therefore, the DBA may increase
locality of reference by making views in one-to-one correspondence with fragments.
For example, it is possible to implement the view SYSAN illustrated in Example 5.1
by a fragment at a given site, provided that most users accessing the view SYSAN
are at the same site.

Evaluating views derived from distributed relations may be costly. In a given orga-
nization it is likely that many users access the same view which must be recomputed
for each user. We saw in Section 5.1.1 that view derivation is done by merging the
view qualification with the query qualification. An alternative solution is to avoid
view derivation by maintaining actual versions of the views, called materialized
views. A materialized view stores the tuples of a view in a database relation, like the
other database tuples, possibly with indices. Thus, access to a materialized view is
much faster than deriving the view, in particular, in a distributed DBMS where base
relations can be remote. Introduced in the early 1980s [Adiba and Lindsay, 1980],
materialized views have since gained much interest in the context of data warehous-
ing to speed up On Line Analytical Processing (OLAP) applications [Gupta and
Mumick, 1999c]. Materialized views in data warehouses typically involve aggregate
(such as SUM and COUNT) and grouping (GROUP BY) operators because they
provide compact database summaries. Today, all major database products support
materialized views.

Example 5.6. The following view over relation PROJ(PNO,PNAME,BUDGET,LOC)
gives, for each location, the number of projects and the total budget.

CREATE VIEW PL(LOC, NBPROJ, TBUDGET)
AS SELECT LOC, COUNT(*),SUM(BUDGET)

FROM PROJ
GROUP BY LOC

�

5.1 View Management 177

5.1.3 Maintenance of Materialized Views

A materialized view is a copy of some base data and thus must be kept consistent with
that base data which may be updated. View maintenance is the process of updating
(or refreshing) a materialized view to reflect the changes made to the base data. The
issues related to view materialization are somewhat similar to those of database
replication which we will address in Chapter 13. However, a major difference is
that materialized view expressions, in particular, for data warehousing, are typically
more complex than replica definitions and may include join, group by and aggregate
operators. Another major difference is that database replication is concerned with
more general replication configurations, e.g., with multiple copies of the same base
data at multiple sites.

A view maintenance policy allows a DBA to specify when and how a view should
be refreshed. The first question (when to refresh) is related to consistency (between
the view and the base data) and efficiency. A view can be refreshed in two modes:
immediate or deferred. With the immediate mode, a view is refreshed immediately
as part as the transaction that updates base data used by the view. If the view and the
base data are managed by different DBMSs, possibly at different sites, this requires
the use of a distributed transaction, for instance, using the two-phase commit (2PC)
protocol (see Chapter 12). The main advantages of immediate refreshment are that
the view is always consistent with the base data and that read-only queries can be
fast. However, this is at the expense of increased transaction time to update both the
base data and the views within the same transactions. Furthermore, using distributed
transactions may be difficult.

In practice, the deferred mode is preferred because the view is refreshed in
separate (refresh) transactions, thus without performance penalty on the transactions
that update the base data. The refresh transactions can be triggered at different times:
lazily, just before a query is evaluated on the view; periodically, at predefined times,
e.g., every day; or forcedly, after a predefined number of updates to the base data.
Lazy refreshment enables queries to see the latest consistent state of the base data but
at the expense of increased query time to include the refreshment of the view. Periodic
and forced refreshment allow queries to see views whose state is not consistent with
the latest state of the base data. The views managed with these strategies are also
called snapshots [Adiba, 1981; Blakeley et al., 1986].

The second question (how to refresh a view) is an important efficiency issue. The
simplest way to refresh a view is to recompute it from scratch using the base data.
In some cases, this may be the most efficient strategy, e.g., if a large subset of the
base data has been changed. However, there are many cases where only a small
subset of view needs to be changed. In these cases, a better strategy is to compute
the view incrementally, by computing only the changes to the view. Incremental
view maintenance relies on the concept of differential relation. Let u be an update
of relation R. R+ and R− are differential relations of R by u, where R+ contains the
tuples inserted by u into R, and R− contains the tuples of R deleted by u. If u is an
insertion, R− is empty. If u is a deletion, R+ is empty. Finally, if u is a modification,
relation R can be obtained by computing (R−R−)∪R+. Similarly, a materialized

178 5 Data and Access Control

view V can be refreshed by computing (V −V−)∪V+. Computing the changes to the
view, i.e., V+ and V−, may require using the base relations in addition to differential
relations.

Example 5.7. Consider the view EG of Example 5.5 which uses relations EMP and
ASG as base data and assume its state is derived from that of Example 3.1, so that
EG has 9 tuples (see Figure 5.4). Let EMP+ consist of one tuple 〈E9, B. Martin,
Programmer〉 to be inserted in EMP, and ASG+ consist of two tuples 〈E4, P3,
Programmer, 12〉 and 〈E9, P3, Programmer, 12〉 to be inserted in ASG. The changes
to the view EG can be computed as:

EG+ = (SELECT ENAME, RESP
FROM EMP, ASG+
WHERE EMP.ENO = ASG+.ENO)

UNION
(SELECT ENAME, RESP
FROM EMP+, ASG
WHERE EMP+.ENO = ASG.ENO)

UNION
(SELECT ENAME, RESP
FROM EMP+, ASG+
WHERE EMP+.ENO = ASG+.ENO)

which yields tuples 〈B. Martin, Programmer〉 and 〈J. Miller, Programmer〉. Note that
integrity constraints would be useful here to avoid useless work (see Section 5.3.2).
Assuming that relations EMP and ASG are related by a referential constraint that
says that ENO in ASG must exist in EMP, the second SELECT statement is useless
as it produces an empty relation. �

ENAME RESP

EG

J. Doe Manager

M. Smith Analyst

A. Lee Consultant

A. Lee Engineer

J. Miller Programmer

B. Casey Manager

L. Chu Manager

R. Davis Engineer

J.Jones Manager

Fig. 5.4 State of View EG

Efficient techniques have been devised to perform incremental view maintenance
using both the materialized views and the base relations. The techniques essen-
tially differ in their views’ expressiveness, their use of integrity constraints, and
the way they handle insertion and deletion. Gupta and Mumick [1999a] classify

5.1 View Management 179

these techniques along the view expressiveness dimension as non-recursive views,
views involving outerjoins, and recursive views. For non-recursive views, i.e., select-
project-join (SPJ) views that may have duplicate elimination, union and aggregation,
an elegant solution is the counting algorithm [Gupta et al., 1993]. One problem stems
from the fact that individual tuples in the view may be derived from several tuples
in the base relations, thus making deletion in the view difficult. The basic idea of
the counting algorithm is to maintain a count of the number of derivations for each
tuple in the view, and to increment (resp. decrement) tuple counts based on insertions
(resp. deletions); a tuple in the view of which count is zero can then be deleted.

Example 5.8. Consider the view EG in Figure 5.4. Each tuple in EG has one deriva-
tion (i.e., a count of 1) except tuple 〈M. Smith, Analyst〉 which has two (i.e., a count
of 2). Assume now that tuples 〈E2, P1, Analyst, 24〉 and 〈E3, P3, Consultant, 10〉 are
deleted from ASG. Then only tuple 〈A. Lee, Consultant〉 needs to be deleted from
EG. �

We now present the basic counting algorithm for refreshing a view V defined
over two relations R and S as a query q(R,S). Assuming that each tuple in V has
an associated derivation count, the algorithm has three main steps (see Algorithm
5.1). First, it applies the view differentiation technique to formulate the differential
views V+ and V− as queries over the view, the base relations, and the differential
relations. Second, it computes V+ and V− and their tuple counts. Third, it applies the
changes V+ and V− in V by adding positive counts and subtracting negative counts,
and deleting tuples with a count of zero.

Algorithm 5.1: COUNTING Algorithm
Input: V : view defined as q(R,S); R, S: relations; R+, R−: changes to R
begin

V+ = q+(V, R+, R, S);
V− = q−(V, R−, R, S) ;
compute V+ with positive counts for inserted tuples;
compute V− with negative counts for deleted tuples;
compute (V −V−)∪V+ by adding positive counts and substracting
negative counts deleting each tuple in V with count = 0;

end

The counting algorithm is optimal since it computes exactly the view tuples
that are inserted or deleted. However, it requires access to the base relations. This
implies that the base relations be maintained (possibly as replicas) at the sites of the
materialized view. To avoid accessing the base relations so the view can be stored at a
different site, the view should be maintainable using only the view and the differential
relations. Such views are called self-maintainable [Gupta et al., 1996].

180 5 Data and Access Control

Example 5.9. Consider the view SYSAN in Example 5.1. Let us write the view
definition as SYSAN=q(EMP) meaning that the view is defined by a query q on
EMP. We can compute the differential views using only the differential relations,
i.e., SYSAN+ = q(EMP+) and SYSAN− = q(EMP−). Thus, the view SYSAN is
self-maintainable. �

Self-maintainability depends on the views’ expressiveness and can be defined
with respect to the kind of updates (insertion, deletion or modification) [Gupta et al.,
1996]. Most SPJ views are not self-maintainable with respect to insertion but are often
self-maintainable with respect to deletion and modification. For instance, an SPJ
view is self-maintainable with respect to deletion of relation R if the key attributes of
R are included in the view.

Example 5.10. Consider the view EG of Example 5.5. Let us add attribute ENO
(which is key of EMP) in the view definition. This view is not self-maintainable with
respect to insertion. For instance, after an insertion of an ASG tuple, we need to
perform the join with EMP to get the corresponding ENAME to insert in the view.
However, this view is self-maintainable with respect to deletion on EMP. For instance,
if one EMP tuple is deleted, the view tuples having same ENO can be deleted. �

5.2 Data Security

Data security is an important function of a database system that protects data against
unauthorized access. Data security includes two aspects: data protection and access
control.

Data protection is required to prevent unauthorized users from understanding the
physical content of data. This function is typically provided by file systems in the
context of centralized and distributed operating systems. The main data protection
approach is data encryption [Fernandez et al., 1981], which is useful both for in-
formation stored on disk and for information exchanged on a network. Encrypted
(encoded) data can be decrypted (decoded) only by authorized users who “know” the
code. The two main schemes are the Data Encryption Standard [NBS, 1977] and
the public-key encryption schemes ([Diffie and Hellman, 1976] and [Rivest et al.,
1978]). In this section we concentrate on the second aspect of data security, which
is more specific to database systems. A complete presentation of database security
techniques can be found in [Castano et al., 1995].

Access control must guarantee that only authorized users perform operations they
are allowed to perform on the database. Many different users may have access to
a large collection of data under the control of a single centralized or distributed
system. The centralized or distributed DBMS must thus be able to restrict the access
of a subset of the database to a subset of the users. Access control has long been
provided by operating systems, and more recently, by distributed operating systems
[Tanenbaum, 1995] as services of the file system. In this context, a centralized
control is offered. Indeed, the central controller creates objects, and this person may

5.2 Data Security 181

allow particular users to perform particular operations (read, write, execute) on these
objects. Also, objects are identified by their external names.

Access control in database systems differs in several aspects from that in tra-
ditional file systems. Authorizations must be refined so that different users have
different rights on the same database objects. This requirement implies the ability to
specify subsets of objects more precisely than by name and to distinguish between
groups of users. In addition, the decentralized control of authorizations is of partic-
ular importance in a distributed context. In relational systems, authorizations can
be uniformly controlled by database administrators using high-level constructs. For
example, controlled objects can be specified by predicates in the same way as is a
query qualification.

There are two main approaches to database access control [Lunt and Fernández,
1990]. The first approach is called discretionary and has long been provided by
DBMS. Discretionary access control (or authorization control) defines access rights
based on the users, the type of access (e.g., SELECT, UPDATE) and the objects to be
accessed. The second approach, called mandatory or multilevel [Lunt and Fernández,
1990; Jajodia and Sandhu, 1991] further increases security by restricting access to
classified data to cleared users. Support of multilevel access control by major DBMSs
is more recent and stems from increased security threats coming from the Internet.

From solutions to access control in centralized systems, we derive those for
distributed DBMSs. However, there is the additional complexity which stems from
the fact that objects and users can be distributed. In what follows we first present
discretionary and multilevel access control in centralized systems and then the
additional problems and their solutions in distributed systems.

5.2.1 Discretionary Access Control

Three main actors are involved in discretionary access control control: the subject
(e.g., users, groups of users) who trigger the execution of application programs; the
operations, which are embedded in application programs; and the database objects,
on which the operations are performed [Hoffman, 1977]. Authorization control
consists of checking whether a given triple (subject, operation, object) can be allowed
to proceed (i.e., the user can execute the operation on the object). An authorization
can be viewed as a triple (subject, operation type, object definition) which specifies
that the subjects has the right to perform an operation of operation type on an object.
To control authorizations properly, the DBMS requires the definition of subjects,
objects, and access rights.

The introduction of a subject in the system is typically done by a pair (user name,
password). The user name uniquely identifies the users of that name in the system,
while the password, known only to the users of that name, authenticates the users.
Both user name and password must be supplied in order to log in the system. This
prevents people who do not know the password from entering the system with only
the user name.

182 5 Data and Access Control

The objects to protect are subsets of the database. Relational systems provide
finer and more general protection granularity than do earlier systems. In a file system,
the protection granule is the file, while in an object-oriented DBMS, it is the object
type. In a relational system, objects can be defined by their type (view, relation, tuple,
attribute) as well as by their content using selection predicates. Furthermore, the view
mechanism as introduced in Section 5.1 permits the protection of objects simply by
hiding subsets of relations (attributes or tuples) from unauthorized users.

A right expresses a relationship between a subject and an object for a particular
set of operations. In an SQL-based relational DBMS, an operation is a high-level
statement such as SELECT, INSERT, UPDATE, or DELETE, and rights are defined
(granted or revoked) using the following statements:

GRANT 〈operation type(s)〉 ON 〈object〉 TO 〈subject(s)〉
REVOKE 〈operation type(s)〉 FROM 〈object〉 TO 〈subject(s)〉

The keyword public can be used to mean all users. Authorization control can be
characterized based on who (the grantors) can grant the rights. In its simplest form,
the control is centralized: a single user or user class, the database administrators, has
all privileges on the database objects and is the only one allowed to use the GRANT
and REVOKE statements.

A more flexible but complex form of control is decentralized [Griffiths and Wade,
1976]: the creator of an object becomes its owner and is granted all privileges on it.
In particular, there is the additional operation type GRANT, which transfers all the
rights of the grantor performing the statement to the specified subjects. Therefore,
the person receiving the right (the grantee) may subsequently grant privileges on that
object. The main difficulty with this approach is that the revoking process must be
recursive. For example, if A, who granted B who granted C the GRANT privilege on
object O, wants to revoke all the privileges of B on O, all the privileges of C on O
must also be revoked. To perform revocation, the system must maintain a hierarchy
of grants per object where the creator of the object is the root.

The privileges of the subjects over objects are recorded in the catalog (directory)
as authorization rules. There are several ways to store the authorizations. The most
convenient approach is to consider all the privileges as an authorization matrix, in
which a row defines a subject, a column an object, and a matrix entry (for a pair
〈subject, object〉), the authorized operations. The authorized operations are specified
by their operation type (e.g., SELECT, UPDATE). It is also customary to associate
with the operation type a predicate that further restricts the access to the object. The
latter option is provided when the objects must be base relations and cannot be views.
For example, one authorized operation for the pair 〈Jones, relation EMP〉 could be

SELECT WHERE TITLE = "Syst.Anal."

which authorizes Jones to access only the employee tuples for system analysts. Figure
5.5 gives an example of an authorization matrix where objects are either relations
(EMP and ASG) or attributes (ENAME).

5.2 Data Security 183

Casey

Jones

Smith

EMP ENAME ASG

UPDATE UPDATE UPDATE

SELECT SELECT SELECT
WHERE RESP ≠ "Manager"

NONE SELECT NONE

Fig. 5.5 Example of Authorization Matrix

The authorization matrix can be stored in three ways: by row, by column, or by
element. When the matrix is stored by row, each subject is associated with the list of
objects that may be accessed together with the related access rights. This approach
makes the enforcement of authorizations efficient, since all the rights of the logged-on
user are together (in the user profile). However, the manipulation of access rights per
object (e.g., making an object public) is not efficient since all subject profiles must be
accessed. When the matrix is stored by column, each object is associated with the list
of subjects who may access it with the corresponding access rights. The advantages
and disadvantages of this approach are the reverse of the previous approach.

The respective advantages of the two approaches can be combined in the third
approach, in which the matrix is stored by element, that is, by relation (subject, object,
right). This relation can have indices on both subject and object, thereby providing
fast-access right manipulation per subject and per object.

5.2.2 Multilevel Access Control

Discretionary access control has some limitations. One problem is that a malicious
user can access unauthorized data through an authorized user. For instance, consider
user A who has authorized access to relations R and S and user B who has authorized
access to relation S only. If B somehow manages to modify an application program
used by A so it writes R data into S, then B can read unauthorized data without
violating authorization rules.

Multilevel access control answers this problem and further improves security
by defining different security levels for both subjects and data objects. Multilevel
access control in databases is based on the well-known Bell and Lapaduda model
designed for operating system security [Bell and Lapuda, 1976]. In this model,
subjects are processes acting on a user’s behalf; a process has a security level also
called clearance derived from that of the user. In its simplest form, the security levels
are Top Secret (T S), Secret (S), Confidential (C) and Unclassified (U), and ordered as
T S > S >C >U , where “>” means “more secure”. Access in read and write modes
by subjects is restricted by two simple rules:

1. A subject S is allowed to read an object of security level l only if level(S)≥ l.

184 5 Data and Access Control

2. A subject S is allowed to write an object of security level l only if class(S)≤ l.

Rule 1 (called “no read up”) protects data from unauthorized disclosure, i.e., a
subject at a given security level can only read objects at the same or lower security
levels. For instance, a subject with secret clearance cannot read top-secret data. Rule
2 (called “no write down”) protects data from unauthorized change, i.e., a subject
at a given security level can only write objects at the same or higher security levels.
For instance, a subject with top-secret clearance can only write top-secret data but
cannot write secret data (which could then contain top-secret data).

In the relational model, data objects can be relations, tuples or attributes. Thus, a
relation can be classified at different levels: relation (i.e., all tuples in the relation
have the same security level), tuple (i.e., every tuple has a security level), or attribute
(i.e., every distinct attribute value has a security level). A classified relation is thus
called multilevel relation to reflect that it will appear differently (with different data)
to subjects with different clearances. For instance, a multilevel relation classified
at the tuple level can be represented by adding a security level attribute to each
tuple. Similarly, a multilevel relation classified at attribute level can be represented
by adding a corresponding security level to each attribute. Figure 5.6 illustrates a
multilevel relation PROJ* based on relation PROJ which is classified at the attribute
level. Note that the additional security level attributes may increase significantly the
size of the relation.

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4

PROJ*

P1 C Instrumentation C 150000 C Montreal C

P2 C Database Develop. C 135000 S New York S

P3 S CAD/CAM S 250000 S New York S

Fig. 5.6 Multilevel relation PROJ* classified at the attribute level

The entire relation also has a security level which is the lowest security level of
any data it contains. For instance, relation PROJ* has security level C. A relation can
then be accessed by any subject having a security level which is the same or higher.
However, a subject can only access data for which it has clearance. Thus, attributes
for which a subject has no clearance will appear to the subject as null values with
an associated security level which is the same as the subject. Figure 5.7 shows an
instance of relation PROJ* as accessed by a subject at a confidential security level.

Multilevel access control has strong impact on the data model because users
do not see the same data and have to deal with unexpected side-effects. One major
side-effect is called polyinstantiation [Lunt et al., 1990] which allows the same object
to have different attribute values depending on the users’ security level. Figure 5.8
illustrates a multirelation with polyinstantiated tuples. Tuple of primary key P3 has
two instantiations, each one with a different security level. This may result from a
subject S with security level C inserting a tuple with key=“P3” in relation PROJ* in

5.2 Data Security 185

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4

PROJ*C

P1 C Instrumentation C 150000 C Montreal C

P2 C Database Develop. C Null C Null C

Fig. 5.7 Confidential relation PROJ*C

Figure 5.6. Because S (with confidential clearance level) should ignore the existence
of tuple with key=“P3” (classified as secret), the only practical solution is to add a
second tuple with same key and different classification. However, a user with secret
clearance would see both tuples with key=“E3” and should interpret this unexpected
effect.

PNO SL1 PNAME SL2 BUDGET SL3 LOC SL4

PROJ**

P1 C Instrumentation C 150000 C Montreal C

P2 C Database Develop. C 135000 S New York S

P3 S CAD/CAM S 250000 S New York S

P3 C Web Develop. C 200000 C Paris C

Fig. 5.8 Multilevel relation with polyinstantiation

5.2.3 Distributed Access Control

The additional problems of access control in a distributed environment stem from the
fact that objects and subjects are distributed and that messages with sensitive data
can be read by unauthorized users. These problems are: remote user authentication,
management of discretionary access rules, handling of views and of user groups, and
enforcing multilevel access control.

Remote user authentication is necessary since any site of a distributed DBMS
may accept programs initiated, and authorized, at remote sites. To prevent remote
access by unauthorized users or applications (e.g., from a site that is not part of the
distributed DBMS), users must also be identified and authenticated at the accessed
site. Furthermore, instead of using passwords that could be obtained from sniffing
messages, encrypted certificates could be used.

Three solutions are possible for managing authentication:

1. Authentication information is maintained at a central site for global users
which can then be authenticated only once and then accessed from multiple
sites.

186 5 Data and Access Control

2. The information for authenticating users (user name and password) is repli-
cated at all sites in the catalog. Local programs, initiated at a remote site, must
also indicate the user name and password.

3. All sites of the distributed DBMS identify and authenticate themselves similar
to the way users do. Intersite communication is thus protected by the use of
the site password. Once the initiating site has been authenticated, there is no
need for authenticating their remote users.

The first solution simplifies password administration significantly and enables
single authentication (also called single sign on). However, the central authentication
site can be a single point of failure and a bottleneck. The second solution is more
costly in terms of directory management given that the introduction of a new user is
a distributed operation. However, users can access the distributed database from any
site. The third solution is necessary if user information is not replicated. Nevertheless,
it can also be used if there is replication of the user information. In this case it makes
remote authentication more efficient. If user names and passwords are not replicated,
they should be stored at the sites where the users access the system (i.e., the home
site). The latter solution is based on the realistic assumption that users are more static,
or at least they always access the distributed database from the same site.

Distributed authorization rules are expressed in the same way as centralized ones.
Like view definitions, they must be stored in the catalog. They can be either fully
replicated at each site or stored at the sites of the referenced objects. In the latter case
the rules are duplicated only at the sites where the referenced objects are distributed.
The main advantage of the fully replicated approach is that authorization can be
processed by query modification [Stonebraker, 1975] at compile time. However,
directory management is more costly because of data duplication. The second solution
is better if locality of reference is very high. However, distributed authorization cannot
be controlled at compile time.

Views may be considered to be objects by the authorization mechanism. Views
are composite objects, that is, composed of other underlying objects. Therefore,
granting access to a view translates into granting access to underlying objects. If
view definition and authorization rules for all objects are fully replicated (as in many
systems), this translation is rather simple and can be done locally. The translation is
harder when the view definition and its underlying objects are all stored separately
[Wilms and Lindsay, 1981], as is the case with site autonomy assumption. In this
situation, the translation is a totally distributed operation. The authorizations granted
on views depend on the access rights of the view creator on the underlying objects. A
solution is to record the association information at the site of each underlying object.

Handling user groups for the purpose of authorization simplifies distributed
database administration. In a centralized DBMS, “all users” can be referred to
as public. In a distributed DBMS, the same notion is useful, the public denoting all
the users of the system. However an intermediate level is often introduced to specify
the public at a particular site, denoted by public@site s [Wilms and Lindsay, 1981].
The public is a particular user group. More precise groups can be defined by the
command

5.3 Semantic Integrity Control 187

DEFINE GROUP 〈group id〉 AS 〈list of subject ids〉

The management of groups in a distributed environment poses some problems
since the subjects of a group can be located at various sites and access to an object may
be granted to several groups, which are themselves distributed. If group information
as well as access rules are fully replicated at all sites, the enforcement of access
rights is similar to that of a centralized system. However, maintaining this replication
may be expensive. The problem is more difficult if site autonomy (with decentralized
control) must be maintained. Several solutions to this problem have been identified
[Wilms and Lindsay, 1981]. One solution enforces access rights by performing a
remote query to the nodes holding the group definition. Another solution replicates a
group definition at each node containing an object that may be accessed by subjects
of that group. These solutions tend to decrease the degree of site autonomy.

Enforcing multilevel access control in a distributed environment is made difficult
by the possibility of indirect means, called covert channels, to access unauthorized
data [Rjaibi, 2004]. For instance, consider a simple distributed DBMS architecture
with two sites, each managing its database at a single security level, e.g., one site
is confidential while the other is secret. According to the “no write down” rule, an
update operation from a subject with secret clearance could only be sent to the secret
site. However, according to the “no read up” rule, a read query from the same secret
subject could be sent to both the secret and the confidential sites. Since the query sent
to the confidential site may contain secret information (e.g., in a select predicate),
it is potentially a covert channel. To avoid such covert channels, a solution is to
replicate part of the database [Thuraisingham, 2001] so that a site at security level l
contains all data that a subject at level l can access. For instance, the secret site would
replicate confidential data so that it can entirely process secret queries. One problem
with this architecture is the overhead of maintaining the consistency of replicas
(see Chapter 13 on replication). Furthermore, although there are no covert channels
for queries, there may still be covert channels for update operations because the
delays involved in synchronizing transactions may be exploited [Jajodia et al., 2001].
The complete support for multilevel access control in distributed database systems,
therefore, requires significant extensions to transaction management techniques [Ray
et al., 2000] and to distributed query processing techniques [Agrawal et al., 2003].

5.3 Semantic Integrity Control

Another important and difficult problem for a database system is how to guaran-
tee database consistency. A database state is said to be consistent if the database
satisfies a set of constraints, called semantic integrity constraints. Maintaining a
consistent database requires various mechanisms such as concurrency control, re-
liability, protection, and semantic integrity control, which are provided as part of
transaction management. Semantic integrity control ensures database consistency by
rejecting update transactions that lead to inconsistent database states, or by activat-

188 5 Data and Access Control

ing specific actions on the database state, which compensate for the effects of the
update transactions. Note that the updated database must satisfy the set of integrity
constraints.

In general, semantic integrity constraints are rules that represent the knowledge
about the properties of an application. They define static or dynamic application
properties that cannot be directly captured by the object and operation concepts of a
data model. Thus the concept of an integrity rule is strongly connected with that of a
data model in the sense that more semantic information about the application can be
captured by means of these rules.

Two main types of integrity constraints can be distinguished: structural constraints
and behavioral constraints. Structural constraints express basic semantic properties
inherent to a model. Examples of such constraints are unique key constraints in the
relational model, or one-to-many associations between objects in the object-oriented
model. Behavioral constraints, on the other hand, regulate the application behavior.
Thus they are essential in the database design process. They can express associations
between objects, such as inclusion dependency in the relational model, or describe
object properties and structures. The increasing variety of database applications and
the development of database design aid tools call for powerful integrity constraints
that can enrich the data model.

Integrity control appeared with data processing and evolved from procedural meth-
ods (in which the controls were embedded in application programs) to declarative
methods. Declarative methods have emerged with the relational model to alleviate the
problems of program/data dependency, code redundancy, and poor performance of
the procedural methods. The idea is to express integrity constraints using assertions
of predicate calculus [Florentin, 1974]. Thus a set of semantic integrity assertions
defines database consistency. This approach allows one to easily declare and modify
complex integrity constraints.

The main problem in supporting automatic semantic integrity control is that
the cost of checking for constraint violation can be prohibitive. Enforcing integrity
constraints is costly because it generally requires access to a large amount of data
that are not directly involved in the database updates. The problem is more difficult
when constraints are defined over a distributed database.

Various solutions have been investigated to design an integrity manager by com-
bining optimization strategies. Their purpose is to (1) limit the number of constraints
that need to be enforced, (2) decrease the number of data accesses to enforce a given
constraint in the presence of an update transaction, (3) define a preventive strategy
that detects inconsistencies in a way that avoids undoing updates, (4) perform as
much integrity control as possible at compile time. A few of these solutions have been
implemented, but they suffer from a lack of generality. Either they are restricted to a
small set of assertions (more general constraints would have a prohibitive checking
cost) or they only support restricted programs (e.g., single-tuple updates).

In this section we present the solutions for semantic integrity control first in
centralized systems and then in distributed systems. Since our context is the relational
model, we consider only declarative methods.

5.3 Semantic Integrity Control 189

5.3.1 Centralized Semantic Integrity Control

A semantic integrity manager has two main components: a language for expressing
and manipulating integrity assertions, and an enforcement mechanism that performs
specific actions to enforce database integrity upon update transactions.

5.3.1.1 Specification of Integrity Constraints

Integrity constraints should be manipulated by the database administrator using a
high-level language. In this section we illustrate a declarative language for specifying
integrity constraints [Simon and Valduriez, 1987]. This language is much in the spirit
of the standard SQL language, but with more generality. It allows one to specify,
read, or drop integrity constraints. These constraints can be defined either at relation
creation time, or at any time, even if the relation already contains tuples. In both cases,
however, the syntax is almost the same. For simplicity and without lack of generality,
we assume that the effect of integrity constraint violation is to abort the violating
transactions. However, the SQL standard provides means to express the propagation
of update actions to correct inconsistencies, with the CASCADING clause within
the constraint declaration. More generally, triggers (event-condition-action rules)
[Ramakrishnan and Gehrke, 2003] can be used to automatically propagate updates,
and thus to maintain semantic integrity. However, triggers are quite powerful and
thus more difficult to support efficiently than specific integrity constraints.

In relational database systems, integrity constraints are defined as assertions. An
assertion is a particular expression of tuple relational calculus (see Chapter 2), in
which each variable is either universally (∀) or existentially (∃) quantified. Thus an
assertion can be seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. We can
distinguish between three types of integrity constraints: predefined, precondition, or
general constraints.

Examples of integrity constraints will be given on the following database:

EMP(ENO, ENAME, TITLE)

PROJ(PNO, PNAME, BUDGET)

ASG(ENO, PNO, RESP, DUR)

Predefined constraints are based on simple keywords. Through them, it is possible
to express concisely the more common constraints of the relational model, such as
non-null attribute, unique key, foreign key, or functional dependency [Fagin and
Vardi, 1984]. Examples 5.11 through 5.14 demonstrate predefined constraints.

Example 5.11. Employee number in relation EMP cannot be null.

ENO NOT NULL IN EMP

�

190 5 Data and Access Control

Example 5.12. The pair (ENO, PNO) is the unique key in relation ASG.

(ENO, PNO) UNIQUE IN ASG

�

Example 5.13. The project number PNO in relation ASG is a foreign key matching
the primary key PNO of relation PROJ. In other words, a project referred to in
relation ASG must exist in relation PROJ.

PNO IN ASG REFERENCES PNO IN PROJ

�

Example 5.14. The employee number functionally determines the employee name.

ENO IN EMP DETERMINES ENAME

�

Precondition constraints express conditions that must be satisfied by all tuples in a
relation for a given update type. The update type, which might be INSERT, DELETE,
or MODIFY, permits restricting the integrity control. To identify in the constraint
definition the tuples that are subject to update, two variables, NEW and OLD, are
implicitly defined. They range over new tuples (to be inserted) and old tuples (to
be deleted), respectively [Astrahan et al., 1976]. Precondition constraints can be
expressed with the SQL CHECK statement enriched with the ability to specify the
update type. The syntax of the CHECK statement is

CHECK ON 〈 relation name 〉 WHEN〈 update type 〉
(〈 qualification over relation name〉)

Examples of precondition constraints are the following:

Example 5.15. The budget of a project is between 500K and 1000K.

CHECK ON PROJ (BUDGET+ >= 500000 AND BUDGET <= 1000000)

�

Example 5.16. Only the tuples whose budget is 0 may be deleted.

CHECK ON PROJ WHEN DELETE (BUDGET = 0)

�

Example 5.17. The budget of a project can only increase.

CHECK ON PROJ (NEW.BUDGET > OLD.BUDGET
AND NEW.PNO = OLD.PNO)

�

General constraints are formulas of tuple relational calculus where all variables
are quantified. The database system must ensure that those formulas are always
true. General constraints are more concise than precompiled constraints since the
former may involve more than one relation. For instance, at least three precompiled
constraints are necessary to express a general constraint on three relations. A general
constraint may be expressed with the following syntax:

5.3 Semantic Integrity Control 191

CHECK ON list of <variable name>:<relation name>,
(<qualification>)

Examples of general constraints are given below.

Example 5.18. The constraint of Example 5.8 may also be expressed as

CHECK ON e1:EMP, e2:EMP
(e1.ENAME = e2.ENAME IF e1.ENO = e2.ENO)

�

Example 5.19. The total duration for all employees in the CAD project is less than
100.

CHECK ON g:ASG, j:PROJ (SUM(g.DUR WHERE
g.PNO=j.PNO)<100 IF j.PNAME="CAD/CAM")

�

5.3.1.2 Integrity Enforcement

We now focus on enforcing semantic integrity that consists of rejecting update
transactions that violate some integrity constraints. A constraint is violated when it
becomes false in the new database state produced by the update transaction. A major
difficulty in designing an integrity manager is finding efficient enforcement algo-
rithms. Two basic methods permit the rejection of inconsistent update transactions.
The first one is based on the detection of inconsistencies. The update transaction u is
executed, causing a change of the database state D to Du. The enforcement algorithm
verifies, by applying tests derived from these constraints, that all relevant constraints
hold in state Du. If state Du is inconsistent, the DBMS can try either to reach another
consistent state, D′u, by modifying Du with compensation actions, or to restore state
D by undoing u. Since these tests are applied after having changed the database state,
they are generally called posttests. This approach may be inefficient if a large amount
of work (the update of D) must be undone in the case of an integrity failure.

The second method is based on the prevention of inconsistencies. An update
is executed only if it changes the database state to a consistent state. The tuples
subject to the update transaction are either directly available (in the case of insert) or
must be retrieved from the database (in the case of deletion or modification). The
enforcement algorithm verifies that all relevant constraints will hold after updating
those tuples. This is generally done by applying to those tuples tests that are derived
from the integrity constraints. Given that these tests are applied before the database
state is changed, they are generally called pretests. The preventive approach is more
efficient than the detection approach since updates never need to be undone because
of integrity violation.

The query modification algorithm [Stonebraker, 1975] is an example of a pre-
ventive method that is particularly efficient at enforcing domain constraints. It adds
the assertion qualification to the query qualification by an AND operator so that the
modified query can enforce integrity.

192 5 Data and Access Control

Example 5.20. The query for increasing the budget of the CAD/CAM project by
10%, which would be specified as

UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= "CAD/CAM"

will be transformed into the following query in order to enforce the domain constraint
discussed in Example 5.9.

UPDATE PROJ
SET BUDGET = BUDGET * 1.1
WHERE PNAME= "CAD/CAM"
AND NEW.BUDGET ≥ 500000
AND NEW.BUDGET ≤ 1000000

�

The query modification algorithm, which is well known for its elegance, produces
pretests at run time by ANDing the assertion predicates with the update predicates of
each instruction of the transaction. However, the algorithm only applies to tuple cal-
culus formulas and can be specified as follows. Consider the assertion (∀x ∈ R)F(x),
where F is a tuple calculus expression in which x is the only free variable. An update
of R can be written as (∀x ∈ R)(Q(x)⇒ update(x)), where Q is a tuple calculus
expression whose only free variable is x. Roughly speaking, the query modification
consists in generating the update (∀x ∈ R)((Q(x) and F(x))⇒update(x)). Thus x
needs to be universally quantified.

Example 5.21. The foreign key constraint of Example 5.13 that can be rewritten as

∀g ∈ ASG, ∃ j ∈ PROJ : g.PNO = j.PNO

could not be processed by query modification because the variable j is not universally
quantified. �

To handle more general constraints, pretests can be generated at constraint defi-
nition time, and enforced at run time when updates occur [Bernstein et al., 1980a;
Bernstein and Blaustein, 1982; Blaustein, 1981; Nicolas, 1982]. The method de-
scribed by Nicolas [1982] is restricted to updates that insert or delete a single tuple of
a single relation. The algorithm proposed by Bernstein et al. [1980a] and Blaustein
[1981] is an improvement, although updates are single single tuple. The algorithm
builds a pretest at constraint definition time for each constraint and each update
type (insert, delete). These pretests are enforced at run time. This method accepts
multirelation, monovariable assertions, possibly with aggregates. The principle is the
substitution of the tuple variables in the assertion by constants from an updated tuple.
Despite its important contribution to research, the method is hardly usable in a real
environment because of the restriction on updates.

In the rest of this section, we present the method proposed by Simon and Valduriez
[1986, 1987], which combines the generality of updates supported by Stonebraker
[1975] with at least the generality of assertions for which pretests can be produced by
Blaustein [1981]. This method is based on the production, at assertion definition time,

5.3 Semantic Integrity Control 193

of pretests that are used subsequently to prevent the introduction of inconsistencies
in the database. This is a general preventive method that handles the entire set of
constraints introduced in the preceding section. It significantly reduces the proportion
of the database that must be checked when enforcing assertions in the presence of
updates. This is a major advantage when applied to a distributed environment.

The definition of pretest uses differential relations, as defined in Section 5.1.3. A
pretest is a triple (R,U,C) in which R is a relation, U is an update type, and C is an
assertion ranging over the differential relation(s) involved in an update of type U .
When an integrity constraint I is defined, a set of pretests may be produced for the
relations used by I. Whenever a relation involved in I is updated by a transaction
u, the pretests that must be checked to enforce I are only those defined on I for the
update type of u. The performance advantage of this approach is twofold. First, the
number of assertions to enforce is minimized since only the pretests of type u need
be checked. Second, the cost of enforcing a pretest is less than that of enforcing I
since differential relations are, in general, much smaller than the base relations.

Pretests may be obtained by applying transformation rules to the original asser-
tion. These rules are based on a syntactic analysis of the assertion and quantifier
permutations. They permit the substitution of differential relations for base relations.
Since the pretests are simpler than the original ones, the process that generates them
is called simplification.

Example 5.22. Consider the modified expression of the foreign key constraint in
Example 5.15. The pretests associated with this constraint are

(ASG, INSERT, C1), (PROJ, DELETE, C2) and (PROJ, MODIFY, C3)

where C1 is

∀ NEW ∈ ASG+, ∃ j ∈ PROJ: NEW.PNO = j.PNO

C2 is

∀g ∈ ASG, ∀ OLD ∈ PROJ− : g.PNO 6= OLD.PNO

and C3 is

∀g ∈ ASG, ∀OLD ∈ PROJ−, ∃ NEW ∈ PROJ+ : g.PNO 6= OLD.PNO OR
OLD.PNO = NEW.PNO

�

The advantage provided by such pretests is obvious. For instance, a deletion on
relation ASG does not incur any assertion checking.

The enforcement algorithm [Simon and Valduriez, 1984] makes use of pretests and
is specialized according to the class of the assertions. Three classes of constraints are
distinguished: single-relation constraints, multirelation constrainss, and constraints
involving aggregate functions.

194 5 Data and Access Control

Let us now summarize the enforcement algorithm. Recall that an update transac-
tion updates all tuples of relation R that satisfy some qualification. The algorithm
acts in two steps. The first step generates the differential relations R+ and R− from R.
The second step simply consists of retrieving the tuples of R+ and R−, which do not
satisfy the pretests. If no tuples are retrieved, the constraint is valid. Otherwise, it is
violated.

Example 5.23. Suppose there is a deletion on PROJ. Enforcing (PROJ, DELETE,
C2) consists in generating the following statement:

result← retrieve all tuples of PROJ− where ¬(C2)

Then, if the result is empty, the assertion is verified by the update and consistency
is preserved. �

5.3.2 Distributed Semantic Integrity Control

In this section we present algorithms for ensuring the semantic integrity of distributed
databases. They are extensions of the simplification method discussed previously. In
what follows, we assume global transaction management capabilities, as provided
for homogeneous systems or multidatabase systems. Thus, the two main problems
of designing an integrity manager for such a distributed DBMS are the definition
and storage of assertions, and the enforcement of these constraints. We will also
discuss the issues involved in integrity constraint checking when there is no global
transaction support.

5.3.2.1 Definition of Distributed Integrity Constraints

An integrity constraint is supposed to be expressed in tuple relational calculus. Each
assertion is seen as a query qualification that is either true or false for each tuple
in the Cartesian product of the relations determined by the tuple variables. Since
assertions can involve data stored at different sites, the storage of the constraints
must be decided so as to minimize the cost of integrity checking. There is a strategy
based on a taxonomy of integrity constraints that distinguishes three classes:

1. Individual constraints: single-relation single-variable constraints. They refer
only to tuples to be updated independently of the rest of the database. For
instance, the domain constraint of Example 5.15 is an individual assertion.

2. Set-oriented constraints: include single-relation multivariable constraints such
as functional dependency (Example 5.14) and multirelation multivariable
constraints such as foreign key constraints (Example 5.13).

5.3 Semantic Integrity Control 195

3. Constraints involving aggregates: require special processing because of the
cost of evaluating the aggregates. The assertion in Example 5.19 is representa-
tive of a constraint of this class.

The definition of a new integrity constraint can be started at one of the sites
that store the relations involved in the assertion. Remember that the relations can
be fragmented. A fragmentation predicate is a particular case of assertion of class
1. Different fragments of the same relation can be located at different sites. Thus,
defining an integrity assertion becomes a distributed operation, which is done in
two steps. The first step is to transform the high-level assertions into pretests, using
the techniques discussed in the preceding section. The next step is to store pretests
according to the class of constraints. Constraints of class 3 are treated like those of
class 1 or 2, depending on whether they are individual or set-oriented.

Individual constraints.

The constraint definition is sent to all other sites that contain fragments of the relation
involved in the constraint. The constraint must be compatible with the relation data
at each site. Compatibility can be checked at two levels: predicate and data. First,
predicate compatibility is verified by comparing the constraint predicate with the
fragment predicate. A constraint C is not compatible with a fragment predicate p
if “C is true” implies that “p is false,” and is compatible with p otherwise. If non-
compatibility is found at one of the sites, the constraint definition is globally rejected
because tuples of that fragment do not satisfy the integrity constraints. Second, if
predicate compatibility has been found, the constraint is tested against the instance
of the fragment. If it is not satisfied by that instance, the constraint is also globally
rejected. If compatibility is found, the constraint is stored at each site. Note that the
compatibility checks are performed only for pretests whose update type is “insert”
(the tuples in the fragments are considered “inserted”).

Example 5.24. Consider relation EMP, horizontally fragmented across three sites
using the predicates

p1 : 0≤ ENO < “E3”

p2 : ”E3” ≤ ENO ≤ “E6”

p3 : ENO > “E6”

and the domain constraint C: ENO < “E4”. Constraint C is compatible with p1
(if C is true, p1 is true) and p2 (if C is true, p2 is not necessarily false), but not with
p3 (if C is true, then p3 is false). Therefore, constraint C should be globally rejected
because the tuples at site 3 cannot satisfy C, and thus relation EMP does not satisfy
C. �

196 5 Data and Access Control

Set-oriented constraints.

Set-oriented constraint are multivariable; that is, they involve join predicates. Al-
though the assertion predicate may be multirelation, a pretest is associated with a
single relation. Therefore, the constraint definition can be sent to all the sites that
store a fragment referenced by these variables. Compatibility checking also involves
fragments of the relation used in the join predicate. Predicate compatibility is useless
here, because it is impossible to infer that a fragment predicate p is false if the
constraint C (based on a join predicate) is true. Therefore C must be checked for
compatibility against the data. This compatibility check basically requires joining
each fragment of the relation, say R, with all fragments of the other relation, say S,
involved in the constraint predicate. This operation may be expensive and, as any
join, should be optimized by the distributed query processor. Three cases, given in
increasing cost of checking, can occur:

1. The fragmentation of R is derived (see Chapter 3) from that of S based on a
semijoin on the attribute used in the assertion join predicate.

2. S is fragmented on join attribute.

3. S is not fragmented on join attribute.

In the first case, compatibility checking is cheap since the tuple of S matching a
tuple of R is at the same site. In the second case, each tuple of R must be compared
with at most one fragment of S, because the join attribute value of the tuple of R can
be used to find the site of the corresponding fragment of S. In the third case, each
tuple of R must be compared with all fragments of S. If compatibility is found for all
tuples of R, the constraint can be stored at each site.

Example 5.25. Consider the set-oriented pretest (ASG, INSERT, C1) defined in
Example 5.16, where C1 is

∀ NEW ∈ ASG+, ∃ j ∈ PROJ : NEW.PNO = j.PNO

Let us consider the following three cases:

1. ASG is fragmented using the predicate

ASGnPNO PROJi

where PROJi is a fragment of relation PROJ. In this case each tuple NEW of
ASG has been placed at the same site as tuple j such that NEW.PNO = j.PNO.
Since the fragmentation predicate is identical to that of C1, compatibility
checking does not incur communication.

2. PROJ is horizontally fragmented based on the two predicates

p1 : PNO < “P3”
p2 : PNO ≥ “P3”

5.3 Semantic Integrity Control 197

In this case each tuple NEW of ASG is compared with either fragment
PROJ1, if NEW.PNO < “P3”, or fragment PROJ2 if NEW.PNO ≥ “P3”.

3. PROJ is horizontally fragmented based on the two predicates

p1 : PNAME = “CAD/CAM”
p2 : PNAME 6= “CAD/CAM”

In this case each tuple of ASG must be compared with both fragments PROJ1
and PROJ2.

�

5.3.2.2 Enforcement of Distributed Integrity Assertions

Enforcing distributed integrity assertions is more complex than needed in centralized
DBMSs, even with global transaction management support. The main problem is to
decide where (at which site) to enforce the integrity constraints. The choice depends
on the class of the constraint, the type of update, and the nature of the site where the
update is issued (called the query master site). This site may, or may not, store the
updated relation or some of the relations involved in the integrity constraints. The
critical parameter we consider is the cost of transferring data, including messages,
from one site to another. We now discuss the different types of strategies according
to these criteria.

Individual constraints.

Two cases are considered. If the update transaction is an insert statement, all the
tuples to be inserted are explicitly provided by the user. In this case, all individual
constraints can be enforced at the site where the update is submitted. If the update
is a qualified update (delete or modify statements), it is sent to the sites storing the
relation that will be updated. The query processor executes the update qualification
for each fragment. The resulting tuples at each site are combined into one temporary
relation in the case of a delete statement, or two, in the case of a modify statement
(i.e., R+ and R−). Each site involved in the distributed update enforces the assertions
relevant at that site (e.g., domain constraints when it is a delete).

Set-oriented constraints.

We first study single-relation constraints by means of an example. Consider the
functional dependency of Example 5.14. The pretest associated with update type
INSERT is

(EMP, INSERT, C)

198 5 Data and Access Control

where C is

(∀e ∈ EMP)(∀NEW1 ∈ EMP)(∀NEW2 ∈ EMP) (1)

(NEW1.ENO = e.ENO ⇒ NEW1.ENAME = e.ENAME)∧ (2)

(NEW1.ENO = NEW2.ENO ⇒ NEW1.ENAME = NEW2.ENAME)(3)

The second line in the definition of C checks the constraint between the inserted
tuples (NEW1) and the existing ones (e), while the third checks it between the inserted
tuples themselves. That is why two variables (NEW1 and NEW2) are declared in the
first line.

Consider now an update of EMP. First, the update qualification is executed by
the query processor and returns one or two temporary relations, as in the case of
individual constraints. These temporary relations are then sent to all sites storing
EMP. Assume that the update is an INSERT statement. Then each site storing a
fragment of EMP will enforce constraint C described above. Because e in C is
universally quantified, C must be satisfied by the local data of each site. This is due
to the fact that ∀x ∈ {a1, . . . ,an} f (x) is equivalent to [f (a1)∧ f (a2)∧ ·· · ∧ f (an)].
Thus the site where the update is submitted must receive for each site a message
indicating that this constraint is satisfied and that it is a condition for all sites. If the
constraint is not true for one site, this site sends an error message indicating that the
constraint has been violated. The update is then invalid, and it is the responsibility of
the integrity manager to decide if the entire transaction must be rejected using the
global transaction manager.

Let us now consider multirelation constraints. For the sake of clarity, we assume
that the integrity constraints do not have more than one tuple variable ranging over
the same relation. Note that this is likely to be the most frequent case. As with
single-relation constraints, the update is computed at the site where it was submitted.
The enforcement is done at the query master site, using the ENFORCE algorithm
given in Algorithm 5.2.

Example 5.26. We illustrate this algorithm through an example based on the foreign
key constraint of Example 5.13. Let u be an insertion of a new tuple into ASG. The
previous algorithm uses the pretest (ASG, INSERT, C), where C is

∀ NEW ∈ ASG+, ∃ j ∈ PROJ : NEW.PNO = j.PNO

For this constraint, the retrieval statement is to retrieve all new tuples in ASG+

where C is not true. This statement can be expressed in SQL as

SELECT NEW.*
FROM ASG+ NEW, PROJ
WHERE COUNT(PROJ.PNO WHERE NEW.PNO = PROJ.PNO)=0

Note that NEW.* denotes all the attributes of ASG+. �

Thus the strategy is to send new tuples to sites storing relation PROJ in order to
perform the joins, and then to centralize all results at the query master site. For each

5.3 Semantic Integrity Control 199

Algorithm 5.2: ENFORCE Algorithm
Input: U : update type; R: relation
begin

retrieve all compiled assertions (R, U, Ci) ;
inconsistent← false ;
for each compiled assertion do

result← all new (respectively old), tuples of R where ¬(Ci)

if card(result) 6= 0 then
inconsistent← true

if ¬inconsistent then
send the tuples to update to all the sites storing fragments of R

else
reject the update

end

site storing a fragment of PROJ, the site joins the fragment with ASG+ and sends the
result to the query master site, which performs the union of all results. If the union is
empty, the database is consistent. Otherwise, the update leads to an inconsistent state
and should be rejected, using the global transaction manager. More sophisticated
strategies that notify or compensate inconsistencies can also be devised.

Constraints involving aggregates.

These constraints are among the most costly to test because they require the calcu-
lation of the aggregate functions. The aggregate functions generally manipulated
are MIN, MAX, SUM, and COUNT. Each aggregate function contains a projection
part and a selection part. To enforce these constraints efficiently, it is possible to
produce pretest that isolate redundant data which can be stored at each site storing
the associated relation [Bernstein and Blaustein, 1982]. This data is what we called
materialized views in Section 5.1.2.

5.3.2.3 Summary of Distributed Integrity Control

The main problem of distributed integrity control is that the communication and
processing costs of enforcing distributed constraints can be prohibitive. The two
main issues in designing a distributed integrity manager are the definition of the
distributed assertions and of the enforcement algorithms, which minimize the cost of
distributed integrity checking. We have shown in this chapter that distributed integrity
control can be completely achieved, by extending a preventive method based on the
compilation of semantic integrity constraints into pretests. The method is general
since all types of constraints expressed in first-order predicate logic can be handled.

200 5 Data and Access Control

It is compatible with fragment definition and minimizes intersite communication. A
better performance of distributed integrity enforcement can be obtained if fragments
are defined carefully. Therefore, the specification of distributed integrity constraints
is an important aspect of the distributed database design process.

The method described above assumes global transaction support. Without global
transaction support as in some loosely-coupled multidatabase systems, the problem is
more difficult [Grefen and Widom, 1997]. First, the interface between the constraint
manager and the component DBMS is different since constraint checking can no
longer be part of the global transaction validation. Instead, the component DBMSs
should notify the integrity manager to perform constraint checking after some events,
e.g., as a result of local transactions’s commitments. This can be done using triggers
whose events are updates to relations involved in global constraints. Second, if a
global constraint violation is detected, since there is no way to specify global aborts,
specific correcting transactions should be provided to produce global database states
that are consistent. A family of protocols for global integrity checking has been
proposed [Grefen and Widom, 1997]. The root of the family is a simple strategy,
based on the computation of differential relations (as in the previous method), which
is shown to be safe (correctly identifies constraint violations) but inaccurate (may
raise an error event though there is no constraint violation). Inaccuracy is due to the
fact that producing differential relations at different times at different sites may yield
phantom states for the global database, i.e., states that never existed. Extensions of
the basic protocol with either timestamping or using local transaction commands are
proposed to solve that problem.

5.4 Conclusion

Semantic data and access control includes view management, security control, and
semantic integrity control. In the relational framework, these functions can be uni-
formly achieved by enforcing rules that specify data manipulation control. Solutions
initially designed for handling these functions in centralized systems have been
significantly extended and enriched for distributed systems, in particular, support for
materialized views and group-based discretionary access control. Semantic integrity
control has received less attention and is generally not supported by distributed
DBMS products.

Full semantic data control is more complex and costly in terms of performance in
distributed systems. The two main issues for efficiently performing data control are
the definition and storage of the rules (site selection) and the design of enforcement
algorithms which minimize communication costs. The problem is difficult since
increased functionality (and generality) tends to increase site communication. The
problem is simplified if control rules are fully replicated at all sites and harder if
site autonomy is to be preserved. In addition, specific optimizations can be done
to minimize the cost of data control but with extra overhead such as managing
materialized views or redundant data. Thus the specification of distributed data

5.5 Bibliographic Notes 201

control must be included in the distributed database design so that the cost of control
for update programs is also considered.

5.5 Bibliographic Notes

Semantic data control is well-understood in centralized systems [Ramakrishnan and
Gehrke, 2003] and all major DBMSs provide extensive support for it. Research on
semantic data control in distributed systems started in the early 1980’s with the R*
project at IBM Research and has increased much since then to address new important
applications such as data warehousing or data integration.

Most of the work on view management has concerned updates through views and
support for materialized views. The two basic papers on centralized view management
are [Chamberlin et al., 1975] and [Stonebraker, 1975]. The first reference presents an
integrated solution for view and authorization management in System R. The second
reference describes INGRES’s query modification technique for uniformly handling
views, authorizations, and semantic integrity control. This method was presented in
Section 5.1.

Theoretical solutions to the problem of view updates are given in [Bancilhon and
Spyratos, 1981; Dayal and Bernstein, 1978], and [Keller, 1982]. The first of these is
the seminal paper on view update semantics [Bancilhon and Spyratos, 1981] where
the authors formalize the view invariance property after updating, and show how
a large class of views including joins can be updated. Semantic information about
the base relations is particularly useful for finding unique propagation of updates.
However, the current commercial systems are very restrictive in supporting updates
through views.

Materialized views have received much attention. The notion of snapshot for
optimizing view derivation in distributed database systems is due to [Adiba and
Lindsay, 1980]. Adiba [1981] generalizes the notion of snapshot by that of derived
relation in a distributed context. He also proposes a unified mechanism for managing
views, and snapshots, as well as fragmented and replicated data. Gupta and Mumick
[1999c] have edited a thorough collection of papers on materialized view management
in. In [Gupta and Mumick, 1999a], they describe the main techniques to perform
incremental maintenance of materialized views. The counting algorithm which we
presented in Section 5.1.3 has been proposed in [Gupta et al., 1993].

Security in computer systems in general is presented in [Hoffman, 1977]. Security
in centralized database systems is presented in [Lunt and Fernández, 1990; Castano
et al., 1995]. Discretionary access control in distributed systems has first received
much attention in the context of the R* project. The access control mechanism of
System R Griffiths and Wade [1976] is extended in [Wilms and Lindsay, 1981] to
handle groups of users and to run in a distributed environment. Multilevel access
control for distributed DBMS has recently gained much interest. The seminal paper
on multilevel access control is the Bell and Lapaduda model originally designed for
operating system security [Bell and Lapuda, 1976]. Multilevel access control for

202 5 Data and Access Control

databases is described in [Lunt and Fernández, 1990; Jajodia and Sandhu, 1991].
A good introduction to multilevel security in relational DBMS can be found in
[Rjaibi, 2004]. Transaction management in multilevel secure DBMS is addressed in
[Ray et al., 2000; Jajodia et al., 2001]. Extensions of multilevel access control for
distributed DBMS are proposed in [Thuraisingham, 2001].

The content of Section 5.3 comes largely from the work on semantic integrity
control described in [Simon and Valduriez, 1984, 1986] and [Simon and Valduriez,
1987]. In particular, [Simon and Valduriez, 1986] extends a preventive strategy for
centralized integrity control based on pretests to run in a distributed environment,
assuming global transaction support. The initial idea of declarative methods, that is, to
use assertions of predicate logic to specify integrity constraints, is due to [Florentin,
1974]. The most important declarative methods are in [Bernstein et al., 1980a;
Blaustein, 1981; Nicolas, 1982; Simon and Valduriez, 1984], and [Stonebraker, 1975].
The notion of concrete views for storing redundant data is described in [Bernstein and
Blaustein, 1982]. Note that concrete views are useful in optimizing the enforcement
of constraints involving aggregates. [Civelek et al., 1988; Sheth et al., 1988b] and
Sheth et al. [1988a] describe systems and tools for semantic data control, particularly
view management. Semantic intergrity checking in loosely-coupled multidatabase
systems without global transaction support is addressed in [Grefen and Widom,
1997].

Exercises

Problem 5.1. Define in SQL-like syntax a view of the engineering database V(ENO,
ENAME, PNO, RESP), where the duration is 24. Is view V updatable? Assume that
relations EMP and ASG are horizontally fragmented based on access frequencies as
follows:

Site 1 Site 2 Site 3
EMP1 EMP2

ASG1 ASG2

where

EMP1 = σTITLE6=“Engineer”(EMP)
EMP2 = σTITLE = “Engineer” (EMP)
ASG1 = σ0<DUR<36(ASG)
ASG2 = σDUR≥36(ASG)

At which site(s) should the definition of V be stored without being fully replicated,
to increase locality of reference?

Problem 5.2. Express the following query: names of employees in view V who work
on the CAD project.

Problem 5.3 (*). Assume that relation PROJ is horizontally fragmented as

5.5 Bibliographic Notes 203

PROJ1 = σPNAME = “CAD”(PROJ)
PROJ2 = σPNAME6=“CAD”(PROJ)

Modify the query obtained in Exercise 5.2 to a query expressed on the fragments.

Problem 5.4 (**). Propose a distributed algorithm to efficiently refresh a snapshot
at one site derived by projection from a relation horizontally fragmented at two other
sites. Give an example query on the view and base relations which produces an
inconsistent result.

Problem 5.5 (*). Consider the view EG of Example 5.5 which uses relations EMP
and ASG as base data and assume its state is derived from that of Example 3.1, so
that EG has 9 tuples (see Figure 5.4). Assume that tuple 〈E3, P3, Consultant, 10〉
from ASG is updated to 〈E3, P3, Engineer, 10〉. Apply the basic counting algorithm
for refreshing the view EG. What projected attributes should be added to view EG to
make it self-maintainable?

Problem 5.6. Propose a relation schema for storing the access rights associated with
user groups in a distributed database catalog, and give a fragmentation scheme for
that relation, assuming that all members of a group are at the same site.

Problem 5.7 (**). Give an algorithm for executing the REVOKE statement in a
distributed DBMS, assuming that the GRANT privilege can be granted only to a
group of users where all its members are at the same site.

Problem 5.8 (**). Consider the multilevel relation PROJ** in Figure 5.8. Assuming
that there are only two classification levels for attributes (S and C), propose an
allocation of PROJ** on two sites using fragmentation and replication that avoids
covert channels on read queries. Discuss the constraints on updates for this allocation
to work.

Problem 5.9. Using the integrity constraint specification language of this chapter,
express an integrity constraint which states that the duration spent in a project cannot
exceed 48 months.

Problem 5.10 (*). Define the pretests associated with integrity constraints covered
in Examples 5.11 to 5.14.

Problem 5.11. Assume the following vertical fragmentation of relations EMP, ASG
and PROJ:

Site 1 Site 2 Site 3 Site 4
EMP1 EMP2

PROJ1 PROJ2
ASG1 ASG2

where

204 5 Data and Access Control

EMP1 = ΠENO, ENAME(EMP)
EMP2 = ΠENO, TITLE(EMP)
PROJ1 = ΠPNO, PNAME(PROJ)
PROJ2 = ΠPNO, BUDGET(PROJ)
ASG1 = ΠENO, PNO, RESP(ASG)
ASG2 = ΠENO, PNO, DUR(ASG)

Where should the pretests obtained in Exercise 5.9 be stored?

Problem 5.12 (**). Consider the following set-oriented constraint:

CHECK ON e:EMP, a:ASG
(e.ENO = a.ENO and (e.TITLE = "Programmer")
IF a.RESP = "Programmer")

What does it mean? Assuming that EMP and ASG are allocated as in the previ-
ous exercice, define the corresponding pretests and theri storage. Apply algorithm
ENFORCE for an update of type INSERT in ASG.

Problem 5.13 (**). Assume a distributed multidatabase system with no global trans-
action support. Assume also that there are two sites, each with a (different) EMP
relation and a integrity manager that communicates with the component DBMS. Sup-
pose that we want to have a global unique key constraint on EMP. Propose a simple
strategy using differential relations to check this constraint. Discuss the possible
actions when a constraint is violated.

Chapter 6
Overview of Query Processing

The success of relational database technology in data processing is due, in part, to the
availability of non-procedural languages (i.e., SQL), which can significantly improve
application development and end-user productivity. By hiding the low-level details
about the physical organization of the data, relational database languages allow the
expression of complex queries in a concise and simple fashion. In particular, to
construct the answer to the query, the user does not precisely specify the procedure
to follow. This procedure is actually devised by a DBMS module, usually called a
query processor. This relieves the user from query optimization, a time-consuming
task that is best handled by the query processor, since it can exploit a large amount
of useful information about the data.

Because it is a critical performance issue, query processing has received (and
continues to receive) considerable attention in the context of both centralized and
distributed DBMSs. However, the query processing problem is much more difficult
in distributed environments than in centralized ones, because a larger number of
parameters affect the performance of distributed queries. In particular, the relations
involved in a distributed query may be fragmented and/or replicated, thereby induc-
ing communication overhead costs. Furthermore, with many sites to access, query
response time may become very high.

In this chapter we give an overview of query processing in distributed DBMSs,
leaving the details of the important aspects of distributed query processing to the next
two chapters. The context chosen is that of relational calculus and relational algebra,
because of their generality and wide use in distributed DBMSs. As we saw in Chapter
3, distributed relations are implemented by fragments. Distributed database design is
of major importance for query processing since the definition of fragments is based
on the objective of increasing reference locality, and sometimes parallel execution
for the most important queries. The role of a distributed query processor is to map
a high-level query (assumed to be expressed in relational calculus) on a distributed
database (i.e., a set of global relations) into a sequence of database operators (of
relational algebra) on relation fragments. Several important functions characterize
this mapping. First, the calculus query must be decomposed into a sequence of
relational operators called an algebraic query. Second, the data accessed by the

205
DOI 10.1007/978-1-4419-8834-8_6, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

206 6 Overview of Query Processing

query must be localized so that the operators on relations are translated to bear on
local data (fragments). Finally, the algebraic query on fragments must be extended
with communication operators and optimized with respect to a cost function to be
minimized. This cost function typically refers to computing resources such as disk
I/Os, CPUs, and communication networks.

The chapter is organized as follows. In Section 6.1 we illustrate the query process-
ing problem. In Section 6.2 we define precisely the objectives of query processing
algorithms. The complexity of relational algebra operators, which affect mainly the
performance of query processing, is given in Section 6.3. In Section 6.4 we provide a
characterization of query processors based on their implementation choices. Finally,
in Section 6.5 we introduce the different layers of query processing starting from a
distributed query down to the execution of operators on local sites and communica-
tion between sites. The layers introduced in Section 6.5 are described in detail in the
next two chapters.

6.1 Query Processing Problem

The main function of a relational query processor is to transform a high-level query
(typically, in relational calculus) into an equivalent lower-level query (typically, in
some variation of relational algebra). The low-level query actually implements the
execution strategy for the query. The transformation must achieve both correctness
and efficiency. It is correct if the low-level query has the same semantics as the
original query, that is, if both queries produce the same result. The well-defined
mapping from relational calculus to relational algebra (see Chapter 2) makes the
correctness issue easy. But producing an efficient execution strategy is more involved.
A relational calculus query may have many equivalent and correct transformations
into relational algebra. Since each equivalent execution strategy can lead to very
different consumptions of computer resources, the main difficulty is to select the
execution strategy that minimizes resource consumption.

Example 6.1. We consider the following subset of the engineering database schema
given in Figure 2.3:

EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)

and the following simple user query:

“Find the names of employees who are managing a project”

The expression of the query in relational calculus using the SQL syntax is

6.1 Query Processing Problem 207

SELECT ENAME
FROM EMP,ASG
WHERE EMP.ENO = ASG.ENO
AND RESP = ‘‘Manager’’

Two equivalent relational algebra queries that are correct transformations of the
query above are

ΠENAME(σRESP=“Manager”∧EMP.ENO=ASG.ENO (EMP × ASG))

and

ΠENAME(EMP 1ENO (σRESP=“Manager” (ASG)))

It is intuitively obvious that the second query, which avoids the Cartesian product
of EMP and ASG, consumes much less computing resources than the first, and thus
should be retained. �

In a centralized context, query execution strategies can be well expressed in an
extension of relational algebra. The main role of a centralized query processor is to
choose, for a given query, the best relational algebra query among all equivalent ones.
Since the problem is computationally intractable with a large number of relations
[Ibaraki and Kameda, 1984], it is generally reduced to choosing a solution close to
the optimum.

In a distributed system, relational algebra is not enough to express execution
strategies. It must be supplemented with operators for exchanging data between
sites. Besides the choice of ordering relational algebra operators, the distributed
query processor must also select the best sites to process data, and possibly the way
data should be transformed. This increases the solution space from which to choose
the distributed execution strategy, making distributed query processing significantly
more difficult.

Example 6.2. This example illustrates the importance of site selection and commu-
nication for a chosen relational algebra query against a fragmented database. We
consider the following query of Example 6.1:

ΠENAME (EMP 1ENO (σRESP=“Manager” (ASG)))

We assume that relations EMP and ASG are horizontally fragmented as follows:

EMP1 = σENO≤“E3” (EMP)
EMP2 = σENO>“E3”(EMP)
ASG1 = σENO≤“E3”(ASG)
ASG2 = σENO>“E3”(ASG)

Fragments ASG1, ASG2, EMP1, and EMP2 are stored at sites 1, 2, 3, and 4,
respectively, and the result is expected at site 5.

For the sake of pedagogical simplicity, we ignore the project operator in the
following. Two equivalent distributed execution strategies for the above query are

208 6 Overview of Query Processing

shown in Figure 6.1. An arrow from site i to site j labeled with R indicates that
relation R is transferred from site i to site j. Strategy A exploits the fact that relations
EMP and ASG are fragmented the same way in order to perform the select and join
operator in parallel. Strategy B centralizes all the operand data at the result site before
processing the query.

(a) Strategy A

Site 5

Site 4Site 3

Site 1 Site 2

È

ASG’
1

EMP’
1

(b) Strategy B

Site 5

Site 1 Site 2 Site 3 Site 4

ASG
1

EMP
1

EMP
2

ASG
2

result = EMP’
1
 ∪ EMP’

2

EMP’
2
 = EMP

2

ENO
 ASG’

2
EMP’

1
 = EMP

1

ENO
 ASG’

1

ASG’
1
 = σ

RESP="Manager"
ASG

1

EMP’
2

ASG’
2

ASG’
2
 = σ

RESP="Manager"
ASG

2

result = (EMP
1
 ∪ EMP

2
)

ENO
 σ

RESP="Manager"
 (ASG

1
 ∪ ASG

2
)

Fig. 6.1 Equivalent Distributed Execution Strategies

To evaluate the resource consumption of these two strategies, we use a simple
cost model. We assume that a tuple access, denoted by tupacc, is 1 unit (which we
leave unspecified) and a tuple transfer, denoted tuptrans, is 10 units. We assume
that relations EMP and ASG have 400 and 1000 tuples, respectively, and that there
are 20 managers in relation ASG. We also assume that data is uniformly distributed
among sites. Finally, we assume that relations ASG and EMP are locally clustered on
attributes RESP and ENO, respectively. Therefore, there is direct access to tuples of
ASG (respectively, EMP) based on the value of attribute RESP (respectively, ENO).

The total cost of strategy A can be derived as follows:

6.2 Objectives of Query Processing 209

1. Produce ASG′ by selecting ASG requires (10+10)∗ tupacc = 20
2. Transfer ASG′ to the sites of EMP requires (10+10)∗ tuptrans = 200
3. Produce EMP′ by joining ASG′ and EMP requires

(10+10)∗ tupacc∗2 = 40
4. Transfer EMP′ to result site requires (10+10)∗ tuptrans = 200

The total cost is 460

The cost of strategy B can be derived as follows:

1. Transfer EMP to site 5 requires 400∗ tuptrans = 4,000
2. Transfer ASG to site 5 requires 1000∗ tuptrans = 10,000
3. Produce ASG′ by selecting ASG requires 1000∗ tupacc = 1,000
4. Join EMP and ASG′ requires 400∗20∗ tupacc = 8,000

The total cost is 23,000

In strategy A, the join of ASG′ and EMP (step 3) can exploit the cluster index on
ENO of EMP. Thus, EMP is accessed only once for each tuple of ASG′. In strategy
B, we assume that the access methods to relations EMP and ASG based on attributes
RESP and ENO are lost because of data transfer. This is a reasonable assumption
in practice. We assume that the join of EMP and ASG′ in step 4 is done by the
default nested loop algorithm (that simply performs the Cartesian product of the
two input relations). Strategy A is better by a factor of 50, which is quite significant.
Furthermore, it provides better distribution of work among sites. The difference
would be even higher if we assumed slower communication and/or higher degree of
fragmentation. �

6.2 Objectives of Query Processing

As stated before, the objective of query processing in a distributed context is to trans-
form a high-level query on a distributed database, which is seen as a single database
by the users, into an efficient execution strategy expressed in a low-level language on
local databases. We assume that the high-level language is relational calculus, while
the low-level language is an extension of relational algebra with communication
operators. The different layers involved in the query transformation are detailed in
Section 6.5. An important aspect of query processing is query optimization. Because
many execution strategies are correct transformations of the same high-level query,
the one that optimizes (minimizes) resource consumption should be retained.

A good measure of resource consumption is the total cost that will be incurred
in processing the query [Sacco and Yao, 1982]. Total cost is the sum of all times
incurred in processing the operators of the query at various sites and in intersite
communication. Another good measure is the response time of the query [Epstein
et al., 1978], which is the time elapsed for executing the query. Since operators

210 6 Overview of Query Processing

can be executed in parallel at different sites, the response time of a query may be
significantly less than its total cost.

In a distributed database system, the total cost to be minimized includes CPU,
I/O, and communication costs. The CPU cost is incurred when performing operators
on data in main memory. The I/O cost is the time necessary for disk accesses. This
cost can be minimized by reducing the number of disk accesses through fast access
methods to the data and efficient use of main memory (buffer management). The
communication cost is the time needed for exchanging data between sites participat-
ing in the execution of the query. This cost is incurred in processing the messages
(formatting/deformatting), and in transmitting the data on the communication net-
work.

The first two cost components (I/O and CPU cost) are the only factors considered
by centralized DBMSs. The communication cost component is equally important
factor considered in distributed databases. Most of the early proposals for distributed
query optimization assume that the communication cost largely dominates local
processing cost (I/O and CPU cost), and thus ignore the latter. This assumption is
based on very slow communication networks (e.g., wide area networks that used
to have a bandwidth of a few kilobytes per second) rather than on networks with
bandwidths that are comparable to disk connection bandwidth. Therefore, the aim of
distributed query optimization reduces to the problem of minimizing communica-
tion costs generally at the expense of local processing. The advantage is that local
optimization can be done independently using the known methods for centralized
systems. However, modern distributed processing environments have much faster
communication networks, as discussed in Chapter 2, whose bandwidth is comparable
to that of disks. Therefore, more recent research efforts consider a weighted combi-
nation of these three cost components since they all contribute significantly to the
total cost of evaluating a query1 [Page and Popek, 1985]. Nevertheless, in distributed
environments with high bandwidths, the overhead cost incurred for communication
between sites (e.g., software protocols) makes communication cost still an important
factor.

6.3 Complexity of Relational Algebra Operations

In this chapter we consider relational algebra as a basis to express the output of query
processing. Therefore, the complexity of relational algebra operators, which directly
affects their execution time, dictates some principles useful to a query processor.
These principles can help in choosing the final execution strategy.

The simplest way of defining complexity is in terms of relation cardinalities
independent of physical implementation details such as fragmentation and storage

1 There are some studies that investigate the feasibility of retrieving data from a neighboring nodes’
main memory cache rather than accessing them from a local disk [Franklin et al., 1992; Dahlin
et al., 1994; Freeley et al., 1995]. These approaches would have a significant impact on query
optimization.

6.4 Characterization of Query Processors 211

structures. Figure 6.2 shows the complexity of unary and binary operators in the
order of increasing complexity, and thus of increasing execution time. Complexity is
O(n) for unary operators, where n denotes the relation cardinality, if the resulting
tuples may be obtained independently of each other. Complexity is O(n∗ logn) for
binary operators if each tuple of one relation must be compared with each tuple of the
other on the basis of the equality of selected attributes. This complexity assumes that
tuples of each relation must be sorted on the comparison attributes. However, using
hashing and enough memory to hold one hashed relation can reduce the complexity
of binary operators O(n) [Bratbergsengen, 1984]. Projects with duplicate elimination
and grouping operators require that each tuple of the relation be compared with each
other tuple, and thus also have O(n∗ logn) complexity. Finally, complexity is O(n2)
for the Cartesian product of two relations because each tuple of one relation must be
combined with each tuple of the other.

Operation Complexity

Select

Project (without duplicate elimination)
O(n)

Project (with duplicate elimination)

Group by

Join

Semijoin

Division

Set Operators

Cartesian Product O(n2)

O(n*log n)

O(n*log n)

Fig. 6.2 Complexity of Relational Algebra Operations

This simple look at operator complexity suggests two principles. First, because
complexity is relative to relation cardinalities, the most selective operators that reduce
cardinalities (e.g., selection) should be performed first. Second, operators should
be ordered by increasing complexity so that Cartesian products can be avoided or
delayed.

6.4 Characterization of Query Processors

It is quite difficult to evaluate and compare query processors in the context of both
centralized systems [Jarke and Koch, 1984] and distributed systems [Sacco and

212 6 Overview of Query Processing

Yao, 1982; Apers et al., 1983; Kossmann, 2000] because they may differ in many
aspects. In what follows, we list important characteristics of query processors that
can be used as a basis for comparison. The first four characteristics hold for both
centralized and distributed query processors while the next four characteristics are
particular to distributed query processors in tightly-integrated distributed DBMSs.
This characterization is used in Chapter 8 to compare various algorithms.

6.4.1 Languages

Initially, most work on query processing was done in the context of relational DBMSs
because their high-level languages give the system many opportunities for optimiza-
tion. The input language to the query processor is thus based on relational calculus.
With object DBMSs, the language is based on object calculus which is merely an
extension of relational calculus. Thus, decomposition to object algebra is also needed
(see Chapter 15). XML, another data model that we consider in this book, has its
own languages, primarily in XQuery and XPath. Their execution requires special
care that we discuss in Chapter 17.

The former requires an additional phase to decompose a query expressed in
relational calculus into relational algebra. In a distributed context, the output language
is generally some internal form of relational algebra augmented with communication
primitives. The operators of the output language are implemented directly in the
system. Query processing must perform efficient mapping from the input language
to the output language.

6.4.2 Types of Optimization

Conceptually, query optimization aims at choosing the “best” point in the solution
space of all possible execution strategies. An immediate method for query optimiza-
tion is to search the solution space, exhaustively predict the cost of each strategy, and
select the strategy with minimum cost. Although this method is effective in selecting
the best strategy, it may incur a significant processing cost for the optimization itself.
The problem is that the solution space can be large; that is, there may be many
equivalent strategies, even with a small number of relations. The problem becomes
worse as the number of relations or fragments increases (e.g., becomes greater than
5 or 6). Having high optimization cost is not necessarily bad, particularly if query
optimization is done once for many subsequent executions of the query. Therefore, an
“exhaustive” search approach is often used whereby (almost) all possible execution
strategies are considered [Selinger et al., 1979].

To avoid the high cost of exhaustive search, randomized strategies, such as iterative
improvement [Swami, 1989] and simulated annealing [Ioannidis and Wong, 1987]

6.4 Characterization of Query Processors 213

have been proposed. They try to find a very good solution, not necessarily the best one,
but avoid the high cost of optimization, in terms of memory and time consumption.

Another popular way of reducing the cost of exhaustive search is the use of
heuristics, whose effect is to restrict the solution space so that only a few strategies
are considered. In both centralized and distributed systems, a common heuristic is to
minimize the size of intermediate relations. This can be done by performing unary
operators first, and ordering the binary operators by the increasing sizes of their
intermediate relations. An important heuristic in distributed systems is to replace join
operators by combinations of semijoins to minimize data communication.

6.4.3 Optimization Timing

A query may be optimized at different times relative to the actual time of query
execution. Optimization can be done statically before executing the query or dynami-
cally as the query is executed. Static query optimization is done at query compilation
time. Thus the cost of optimization may be amortized over multiple query executions.
Therefore, this timing is appropriate for use with the exhaustive search method. Since
the sizes of the intermediate relations of a strategy are not known until run time, they
must be estimated using database statistics. Errors in these estimates can lead to the
choice of suboptimal strategies.

Dynamic query optimization proceeds at query execution time. At any point of
execution, the choice of the best next operator can be based on accurate knowledge of
the results of the operators executed previously. Therefore, database statistics are not
needed to estimate the size of intermediate results. However, they may still be useful
in choosing the first operators. The main advantage over static query optimization
is that the actual sizes of intermediate relations are available to the query processor,
thereby minimizing the probability of a bad choice. The main shortcoming is that
query optimization, an expensive task, must be repeated for each execution of the
query. Therefore, this approach is best for ad-hoc queries.

Hybrid query optimization attempts to provide the advantages of static query opti-
mization while avoiding the issues generated by inaccurate estimates. The approach
is basically static, but dynamic query optimization may take place at run time when
a high difference between predicted sizes and actual size of intermediate relations is
detected.

6.4.4 Statistics

The effectiveness of query optimization relies on statistics on the database. Dynamic
query optimization requires statistics in order to choose which operators should
be done first. Static query optimization is even more demanding since the size of
intermediate relations must also be estimated based on statistical information. In a

214 6 Overview of Query Processing

distributed database, statistics for query optimization typically bear on fragments,
and include fragment cardinality and size as well as the size and number of distinct
values of each attribute. To minimize the probability of error, more detailed statistics
such as histograms of attribute values are sometimes used at the expense of higher
management cost. The accuracy of statistics is achieved by periodic updating. With
static optimization, significant changes in statistics used to optimize a query might
result in query reoptimization.

6.4.5 Decision Sites

When static optimization is used, either a single site or several sites may participate
in the selection of the strategy to be applied for answering the query. Most systems
use the centralized decision approach, in which a single site generates the strategy.
However, the decision process could be distributed among various sites participating
in the elaboration of the best strategy. The centralized approach is simpler but requires
knowledge of the entire distributed database, while the distributed approach requires
only local information. Hybrid approaches where one site makes the major decisions
and other sites can make local decisions are also frequent. For example, System R*
[Williams et al., 1982] uses a hybrid approach.

6.4.6 Exploitation of the Network Topology

The network topology is generally exploited by the distributed query processor. With
wide area networks, the cost function to be minimized can be restricted to the data
communication cost, which is considered to be the dominant factor. This assumption
greatly simplifies distributed query optimization, which can be divided into two
separate problems: selection of the global execution strategy, based on intersite
communication, and selection of each local execution strategy, based on a centralized
query processing algorithm.

With local area networks, communication costs are comparable to I/O costs.
Therefore, it is reasonable for the distributed query processor to increase parallel
execution at the expense of communication cost. The broadcasting capability of
some local area networks can be exploited successfully to optimize the processing of
join operators [Özsoyoglu and Zhou, 1987; Wah and Lien, 1985]. Other algorithms
specialized to take advantage of the network topology are discussed by Kerschberg
et al. [1982] for star networks and by LaChimia [1984] for satellite networks.

In a client-server environment, the power of the client workstation can be exploited
to perform database operators using data shipping [Franklin et al., 1996]. The
optimization problem becomes to decide which part of the query should be performed
on the client and which part on the server using query shipping.

6.5 Layers of Query Processing 215

6.4.7 Exploitation of Replicated Fragments

A distributed relation is usually divided into relation fragments as described in Chap-
ter 3. Distributed queries expressed on global relations are mapped into queries on
physical fragments of relations by translating relations into fragments. We call this
process localization because its main function is to localize the data involved in
the query. For higher reliability and better read performance, it is useful to have
fragments replicated at different sites. Most optimization algorithms consider the lo-
calization process independently of optimization. However, some algorithms exploit
the existence of replicated fragments at run time in order to minimize communication
times. The optimization algorithm is then more complex because there are a larger
number of possible strategies.

6.4.8 Use of Semijoins

The semijoin operator has the important property of reducing the size of the operand
relation. When the main cost component considered by the query processor is commu-
nication, a semijoin is particularly useful for improving the processing of distributed
join operators as it reduces the size of data exchanged between sites. However, using
semijoins may result in an increase in the number of messages and in the local
processing time. The early distributed DBMSs, such as SDD-1 [Bernstein et al.,
1981], which were designed for slow wide area networks, make extensive use of
semijoins. Some later systems, such as R* [Williams et al., 1982], assume faster
networks and do not employ semijoins. Rather, they perform joins directly since
using joins leads to lower local processing costs. Nevertheless, semijoins are still
beneficial in the context of fast networks when they induce a strong reduction of
the join operand. Therefore, some query processing algorithms aim at selecting an
optimal combination of joins and semijoins [Özsoyoglu and Zhou, 1987; Wah and
Lien, 1985].

6.5 Layers of Query Processing

In Chapter 1 we have seen where query processing fits within the distributed DBMS
architecture. The problem of query processing can itself be decomposed into several
subproblems, corresponding to various layers. In Figure 6.3 a generic layering scheme
for query processing is shown where each layer solves a well-defined subproblem. To
simplify the discussion, let us assume a static and semicentralized query processor
that does not exploit replicated fragments. The input is a query on global data
expressed in relational calculus. This query is posed on global (distributed) relations,
meaning that data distribution is hidden. Four main layers are involved in distributed
query processing. The first three layers map the input query into an optimized

216 6 Overview of Query Processing

QUERY

DECOMPOSITION

DATA
LOCALIZATION

CALCULUS QUERY ON GLOBAL

RELATIONS

ALGEBRAIC QUERY ON GLOBAL

RELATIONS

ALGEBRAIC QUERY ON FRAGMENTS

DISTRIBUTED QUERY EXECUTION PLAN

DISTRIBUTED

 EXECUTION

GLOBAL

SCHEMA

FRAGMENT

SCHEMA

ALLOCATION

SCHEMA

CONTROL

SITE

LOCAL

SITES

GLOBAL

OPTIMIZATION

Fig. 6.3 Generic Layering Scheme for Distributed Query Processing

distributed query execution plan. They perform the functions of query decomposition,
data localization, and global query optimization. Query decomposition and data
localization correspond to query rewriting. The first three layers are performed by a
central control site and use schema information stored in the global directory. The
fourth layer performs distributed query execution by executing the plan and returns
the answer to the query. It is done by the local sites and the control site. The first
two layers are treated extensively in Chapter 7, while the two last layers are detailed
in Chapter 8. In the remainder of this chapter we present an overview of these four
layers.

6.5.1 Query Decomposition

The first layer decomposes the calculus query into an algebraic query on global
relations. The information needed for this transformation is found in the global

6.5 Layers of Query Processing 217

conceptual schema describing the global relations. However, the information about
data distribution is not used here but in the next layer. Thus the techniques used by
this layer are those of a centralized DBMS.

Query decomposition can be viewed as four successive steps. First, the calculus
query is rewritten in a normalized form that is suitable for subsequent manipulation.
Normalization of a query generally involves the manipulation of the query quantifiers
and of the query qualification by applying logical operator priority.

Second, the normalized query is analyzed semantically so that incorrect queries
are detected and rejected as early as possible. Techniques to detect incorrect queries
exist only for a subset of relational calculus. Typically, they use some sort of graph
that captures the semantics of the query.

Third, the correct query (still expressed in relational calculus) is simplified. One
way to simplify a query is to eliminate redundant predicates. Note that redundant
queries are likely to arise when a query is the result of system transformations applied
to the user query. As seen in Chapter 5, such transformations are used for performing
semantic data control (views, protection, and semantic integrity control).

Fourth, the calculus query is restructured as an algebraic query. Recall from
Section 6.1 that several algebraic queries can be derived from the same calculus
query, and that some algebraic queries are “better” than others. The quality of an
algebraic query is defined in terms of expected performance. The traditional way
to do this transformation toward a “better” algebraic specification is to start with
an initial algebraic query and transform it in order to find a “good” one. The initial
algebraic query is derived immediately from the calculus query by translating the
predicates and the target statement into relational operators as they appear in the query.
This directly translated algebra query is then restructured through transformation
rules. The algebraic query generated by this layer is good in the sense that the
worse executions are typically avoided. For instance, a relation will be accessed only
once, even if there are several select predicates. However, this query is generally far
from providing an optimal execution, since information about data distribution and
fragment allocation is not used at this layer.

6.5.2 Data Localization

The input to the second layer is an algebraic query on global relations. The main role
of the second layer is to localize the query’s data using data distribution information
in the fragment schema. In Chapter 3 we saw that relations are fragmented and stored
in disjoint subsets, called fragments, each being stored at a different site. This layer
determines which fragments are involved in the query and transforms the distributed
query into a query on fragments. Fragmentation is defined by fragmentation pred-
icates that can be expressed through relational operators. A global relation can be
reconstructed by applying the fragmentation rules, and then deriving a program,
called a localization program, of relational algebra operators, which then act on
fragments. Generating a query on fragments is done in two steps. First, the query

218 6 Overview of Query Processing

is mapped into a fragment query by substituting each relation by its reconstruction
program (also called materialization program), discussed in Chapter 3. Second,
the fragment query is simplified and restructured to produce another “good” query.
Simplification and restructuring may be done according to the same rules used in
the decomposition layer. As in the decomposition layer, the final fragment query is
generally far from optimal because information regarding fragments is not utilized.

6.5.3 Global Query Optimization

The input to the third layer is an algebraic query on fragments. The goal of query
optimization is to find an execution strategy for the query which is close to opti-
mal. Remember that finding the optimal solution is computationally intractable. An
execution strategy for a distributed query can be described with relational algebra
operators and communication primitives (send/receive operators) for transferring data
between sites. The previous layers have already optimized the query, for example,
by eliminating redundant expressions. However, this optimization is independent
of fragment characteristics such as fragment allocation and cardinalities. In addi-
tion, communication operators are not yet specified. By permuting the ordering of
operators within one query on fragments, many equivalent queries may be found.

Query optimization consists of finding the “best” ordering of operators in the
query, including communication operators that minimize a cost function. The cost
function, often defined in terms of time units, refers to computing resources such
as disk space, disk I/Os, buffer space, CPU cost, communication cost, and so on.
Generally, it is a weighted combination of I/O, CPU, and communication costs.
Nevertheless, a typical simplification made by the early distributed DBMSs, as we
mentioned before, was to consider communication cost as the most significant factor.
This used to be valid for wide area networks, where the limited bandwidth made
communication much more costly than local processing. This is not true anymore
today and communication cost can be lower than I/O cost. To select the ordering of
operators it is necessary to predict execution costs of alternative candidate orderings.
Determining execution costs before query execution (i.e., static optimization) is based
on fragment statistics and the formulas for estimating the cardinalities of results of
relational operators. Thus the optimization decisions depend on the allocation of
fragments and available statistics on fragments which are recorder in the allocation
schema.

An important aspect of query optimization is join ordering, since permutations of
the joins within the query may lead to improvements of orders of magnitude. One
basic technique for optimizing a sequence of distributed join operators is through the
semijoin operator. The main value of the semijoin in a distributed system is to reduce
the size of the join operands and then the communication cost. However, techniques
which consider local processing costs as well as communication costs may not use
semijoins because they might increase local processing costs. The output of the query
optimization layer is a optimized algebraic query with communication operators

6.6 Conclusion 219

included on fragments. It is typically represented and saved (for future executions)
as a distributed query execution plan .

6.5.4 Distributed Query Execution

The last layer is performed by all the sites having fragments involved in the query.
Each subquery executing at one site, called a local query, is then optimized using
the local schema of the site and executed. At this time, the algorithms to perform
the relational operators may be chosen. Local optimization uses the algorithms of
centralized systems (see Chapter 8).

6.6 Conclusion

In this chapter we provided an overview of query processing in distributed DBMSs.
We first introduced the function and objectives of query processing. The main assump-
tion is that the input query is expressed in relational calculus since that is the case
with most current distributed DBMS. The complexity of the problem is proportional
to the expressive power and the abstraction capability of the query language. For
instance, the problem is even harder with important extensions such as the transitive
closure operator [Valduriez and Boral, 1986].

The goal of distributed query processing may be summarized as follows: given
a calculus query on a distributed database, find a corresponding execution strategy
that minimizes a system cost function that includes I/O, CPU, and communication
costs. An execution strategy is specified in terms of relational algebra operators
and communication primitives (send/receive) applied to the local databases (i.e., the
relation fragments). Therefore, the complexity of relational operators that affect the
performance of query execution is of major importance in the design of a query
processor.

We gave a characterization of query processors based on their implementation
choices. Query processors may differ in various aspects such as type of algorithm,
optimization granularity, optimization timing, use of statistics, choice of decision
site(s), exploitation of the network topology, exploitation of replicated fragments,
and use of semijoins. This characterization is useful for comparing alternative query
processor designs and to understand the trade-offs between efficiency and complexity.

The query processing problem is very difficult to understand in distributed envi-
ronments because many elements are involved. However, the problem may be divided
into several subproblems which are easier to solve individually. Therefore, we have
proposed a generic layering scheme for describing distributed query processing. Four
main functions have been isolated: query decomposition, data localization, global
query optimization, and distributed query execution. These functions successively
refine the query by adding more details about the processing environment. Query

220 6 Overview of Query Processing

decomposition and data localization are treated in detail in Chapter 7. Distributed
query optimization and execution is the topic of Chapter 8.

6.7 Bibliographic Notes

Kim et al. [1985] provide a comprehensive set of papers presenting the results of
research and development in query processing within the context of the relational
model. After a survey of the state of the art in query processing, the book treats most
of the important topics in the area. In particular, there are three papers on distributed
query processing.

Ibaraki and Kameda [1984] have formally shown that finding the optimal execu-
tion strategy for a query is computationally intractable. Assuming a simplified cost
function including the number of page accesses, it is proven that the minimization of
this cost function for a multiple-join query is NP-complete.

Ceri and Pelagatti [1984] deal extensively with distributed query processing by
treating the problem of localization and optimization separately in two chapters.
The main assumption is that the query is expressed in relational algebra, so the
decomposition phase that maps a calculus query into an algebraic query is ignored.

There are several survey papers on query processing and query optimization
in the context of the relational model. A detailed survey is by Graefe [1993]. An
earlier survey is [Jarke and Koch, 1984]. Both of these mainly deal with centralized
query processing. The initial solutions to distributed query processing are extensively
compiled in [Sacco and Yao, 1982; Yu and Chang, 1984]. Many query processing
techniques are compiled in the book [Freytag et al., 1994].

The most complete survey on distributed query processing is by Kossmann [2000]
and deals with both distributed DBMSs and multidatabase systems. The paper
presents the traditional phases of query processing in centralized and distributed
systems, and describes the various techniques for distributed query processing. It
also discusses different distributed architectures such as client-server, multi-tier, and
multidatabases.

Chapter 7
Query Decomposition and Data Localization

In Chapter 6 we discussed a generic layering scheme for distributed query processing
in which the first two layers are responsible for query decomposition and data
localization. These two functions are applied successively to transform a calculus
query specified on distributed relations (i.e., global relations) into an algebraic query
defined on relation fragments. In this chapter we present the techniques for query
decomposition and data localization.

Query decomposition maps a distributed calculus query into an algebraic query on
global relations. The techniques used at this layer are those of the centralized DBMS
since relation distribution is not yet considered at this point. The resultant algebraic
query is “good” in the sense that even if the subsequent layers apply a straightforward
algorithm, the worst executions will be avoided. However, the subsequent layers
usually perform important optimizations, as they add to the query increasing detail
about the processing environment.

Data localization takes as input the decomposed query on global relations and ap-
plies data distribution information to the query in order to localize its data. In Chapter
3 we have seen that to increase the locality of reference and/or parallel execution,
relations are fragmented and then stored in disjoint subsets, called fragments, each
being placed at a different site. Data localization determines which fragments are
involved in the query and thereby transforms the distributed query into a fragment
query. Similar to the decomposition layer, the final fragment query is generally far
from optimal because quantitative information regarding fragments is not exploited
at this point. Quantitative information is used by the query optimization layer that
will be presented in Chapter 8.

This chapter is organized as follows. In Section 7.1 we present the four successive
phases of query decomposition: normalization, semantic analysis, simplification,
and restructuring of the query. In Section 7.2 we describe data localization, with
emphasis on reduction and simplification techniques for the four following types of
fragmentation: horizontal, vertical, derived, and hybrid.

DOI 10.1007/978-1-4419-8834-8_7, © Springer Science+Business Media, LLC 2011
221M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

222 7 Query Decomposition and Data Localization

7.1 Query Decomposition

Query decomposition (see Figure 6.3) is the first phase of query processing that
transforms a relational calculus query into a relational algebra query. Both input and
output queries refer to global relations, without knowledge of the distribution of data.
Therefore, query decomposition is the same for centralized and distributed systems.
In this section the input query is assumed to be syntactically correct. When this phase
is completed successfully the output query is semantically correct and good in the
sense that redundant work is avoided. The successive steps of query decomposition
are (1) normalization, (2) analysis, (3) elimination of redundancy, and (4) rewriting.
Steps 1, 3, and 4 rely on the fact that various transformations are equivalent for a
given query, and some can have better performance than others. We present the first
three steps in the context of tuple relational calculus (e.g., SQL). Only the last step
rewrites the query into relational algebra.

7.1.1 Normalization

The input query may be arbitrarily complex, depending on the facilities provided by
the language. It is the goal of normalization to transform the query to a normalized
form to facilitate further processing. With relational languages such as SQL, the
most important transformation is that of the query qualification (the WHERE clause),
which may be an arbitrarily complex, quantifier-free predicate, preceded by all
necessary quantifiers (∀ or ∃). There are two possible normal forms for the predicate,
one giving precedence to the AND (∧) and the other to the OR (∨). The conjunctive
normal form is a conjunction (∧ predicate) of disjunctions (∨ predicates) as follows:

(p11∨ p12∨·· ·∨ p1n)∧·· ·∧ (pm1∨ pm2∨·· ·∨ pmn)

where pi j is a simple predicate. A qualification in disjunctive normal form, on the
other hand, is as follows:

(p11∧ p12∧·· ·∧ p1n)∨·· ·∨ (pm1∧ pm2∧·· ·∧ pmn)

The transformation of the quantifier-free predicate is straightforward using the
well-known equivalence rules for logical operations (∧, ∨, and ¬):

1. p1∧ p2⇔ p2∧ p1

2. p1∨ p2⇔ p2∨ p1

3. p1∧ (p2∧ p3)⇔ (p1∧ p2)∧ p3

4. p1∨ (p2∨ p3)⇔ (p1∨ p2)∨ p3

5. p1∧ (p2∨ p3)⇔ (p1∧ p2)∨ (p1∧ p3)

6. p1∨ (p2∧ p3)⇔ (p1∨ p2)∧ (p1∨ p3)

7.1 Query Decomposition 223

7. ¬(p1∧ p2)⇔¬p1∨¬p2

8. ¬(p1∨ p2)⇔¬p1∧¬p2

9. ¬(¬p)⇔ p

In the disjunctive normal form, the query can be processed as independent con-
junctive subqueries linked by unions (corresponding to the disjunctions). However,
this form may lead to replicated join and select predicates, as shown in the following
example. The reason is that predicates are very often linked with the other predicates
by AND. The use of rule 5 mentioned above, with p1 as a join or select predicate,
would result in replicating p1. The conjunctive normal form is more practical since
query qualifications typically include more AND than OR predicates. However,
it leads to predicate replication for queries involving many disjunctions and few
conjunctions, a rare case.

Example 7.1. Let us consider the following query on the engineering database that
we have been referring to:

“Find the names of employees who have been working on project P1 for 12 or
24 months”

The query expressed in SQL is

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = "P1"
AND DUR = 12 OR DUR = 24

The qualification in conjunctive normal form is

EMP.ENO = ASG.ENO ∧ ASG.PNO = “P1” ∧ (DUR = 12 ∨ DUR = 24)

while the qualification in disjunctive normal form is

(EMP.ENO = ASG.ENO ∧ ASG.PNO = “P1” ∧ DUR = 12) ∨
(EMP.ENO = ASG.ENO ∧ ASG.PNO = “P1” ∧ DUR = 24)

In the latter form, treating the two conjunctions independently may lead to redun-
dant work if common subexpressions are not eliminated. �

7.1.2 Analysis

Query analysis enables rejection of normalized queries for which further processing
is either impossible or unnecessary. The main reasons for rejection are that the query

224 7 Query Decomposition and Data Localization

is type incorrect or semantically incorrect. When one of these cases is detected, the
query is simply returned to the user with an explanation. Otherwise, query processing
is continued. Below we present techniques to detect these incorrect queries.

A query is type incorrect if any of its attribute or relation names are not defined
in the global schema, or if operations are being applied to attributes of the wrong
type. The technique used to detect type incorrect queries is similar to type checking
for programming languages. However, the type declarations are part of the global
schema rather than of the query, since a relational query does not produce new types.

Example 7.2. The following SQL query on the engineering database is type incorrect
for two reasons. First, attribute E# is not declared in the schema. Second, the operation
“>200” is incompatible with the type string of ENAME.

SELECT E#
FROM EMP
WHERE ENAME > 200

�

A query is semantically incorrect if its components do not contribute in any way
to the generation of the result. In the context of relational calculus, it is not possible
to determine the semantic correctness of general queries. However, it is possible to
do so for a large class of relational queries, those which do not contain disjunction
and negation [Rosenkrantz and Hunt, 1980]. This is based on the representation of
the query as a graph, called a query graph or connection graph [Ullman, 1982]. We
define this graph for the most useful kinds of queries involving select, project, and
join operators. In a query graph, one node indicates the result relation, and any other
node indicates an operand relation. An edge between two nodes one of which does
not correspond to the result represents a join, whereas an edge whose destination
node is the result represents a project. Furthermore, a non-result node may be labeled
by a select or a self-join (join of the relation with itself) predicate. An important
subgraph of the query graph is the join graph, in which only the joins are considered.
The join graph is particularly useful in the query optimization phase.

Example 7.3. Let us consider the following query:

“Find the names and responsibilities of programmers who have been working on
the CAD/CAM project for more than 3 years.”

The query expressed in SQL is
SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

The query graph for the query above is shown in Figure 7.1a. Figure 7.1b shows
the join graph for the graph in Figure 7.1a. �

7.1 Query Decomposition 225

Fig. 7.1 Relation Graphs

The query graph is useful to determine the semantic correctness of a conjunctive
multivariable query without negation. Such a query is semantically incorrect if its
query graph is not connected. In this case one or more subgraphs (corresponding to
subqueries) are disconnected from the graph that contains the result relation. The
query could be considered correct (which some systems do) by considering the
missing connection as a Cartesian product. But, in general, the problem is that join
predicates are missing and the query should be rejected.

Example 7.4. Let us consider the following SQL query:

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

Its query graph, shown in Figure 7.2, is disconnected, which tells us that the query
is semantically incorrect. There are basically three solutions to the problem: (1) reject
the query, (2) assume that there is an implicit Cartesian product between relations
ASG and PROJ, or (3) infer (using the schema) the missing join predicate ASG.PNO
= PROJ.PNO which transforms the query into that of Example 7.3. �

(a) Query graph

DUR≥36

PNAME = "CAD/CAM"

ENAME

PROJ

ASG.PNO = PROJ.PNO

RESULT

TITLE =
"Programmer"

RESP

(b) Corresponding join graph

ASG.PNO = PROJ.PNOEMP.ENO = ASG.ENO ASG

EMP PROJ

ASG

EMP

EMP.ENO = ASG.ENO

226 7 Query Decomposition and Data Localization

PNAME = "CAD/CAM"

ENAME

EMP.ENO = ASG.ENO

TITLE =

"Programmer"
RESP

RESULT

DUR≥36

PROJ

ASG

EMP

Fig. 7.2 Disconnected Query Graph

7.1.3 Elimination of Redundancy

As we saw in Chapter 5, relational languages can be used uniformly for semantic data
control. In particular, a user query typically expressed on a view may be enriched
with several predicates to achieve view-relation correspondence, and ensure semantic
integrity and security. The enriched query qualification may then contain redundant
predicates. A naive evaluation of a qualification with redundancy can well lead to
duplicated work. Such redundancy and thus redundant work may be eliminated by
simplifying the qualification with the following well-known idempotency rules:

1. p∧ p⇔ p

2. p∨ p⇔ p

3. p∧ true⇔ p

4. p∨ f alse⇔ p

5. p∧ f alse⇔ f alse

6. p∨ true⇔ true

7. p∧¬p⇔ f alse

8. p∨¬p⇔ true

9. p1∧ (p1∨ p2)⇔ p1

10. p1∨ (p1∧ p2)⇔ p1

Example 7.5. The SQL query

7.1 Query Decomposition 227

SELECT TITLE
FROM EMP
WHERE (NOT (TITLE = "Programmer")
AND (TITLE = "Programmer"
OR TITLE = "Elect. Eng.")
AND NOT (TITLE = "Elect. Eng."))
OR ENAME = "J. Doe"

can be simplified using the previous rules to become

SELECT TITLE
FROM EMP
WHERE ENAME = "J. Doe"

The simplification proceeds as follows. Let p1 be TITLE = “Programmer”, p2 be
TITLE = “Elect. Eng.”, and p3 be ENAME = “J. Doe”. The query qualification is

(¬p1∧ (p1∨ p2)∧¬p2)∨ p3

The disjunctive normal form for this qualification is obtained by applying rule 5
defined in Section 7.1.1, which yields

(¬p1∧ ((p1∧¬p2)∨ (p2∧¬p2)))∨ p3

and then rule 3 defined in Section 7.1.1, which yields

(¬p1∧ p1∧¬p2)∨ (¬p1∧ p2∧¬p2)∨ p3

By applying rule 7 defined above, we obtain

(f alse∧¬p2)∨ (¬p1∧ f alse)∨ p3

By applying the same rule, we get

f alse∨ f alse∨ p3

which is equivalent to p3 by rule 4. �

7.1.4 Rewriting

The last step of query decomposition rewrites the query in relational algebra. For the
sake of clarity it is customary to represent the relational algebra query graphically by
an operator tree. An operator tree is a tree in which a leaf node is a relation stored in
the database, and a non-leaf node is an intermediate relation produced by a relational
algebra operator. The sequence of operations is directed from the leaves to the root,
which represents the answer to the query.

228 7 Query Decomposition and Data Localization

The transformation of a tuple relational calculus query into an operator tree can
easily be achieved as follows. First, a different leaf is created for each different
tuple variable (corresponding to a relation). In SQL, the leaves are immediately
available in the FROM clause. Second, the root node is created as a project operation
involving the result attributes. These are found in the SELECT clause in SQL. Third,
the qualification (SQL WHERE clause) is translated into the appropriate sequence
of relational operations (select, join, union, etc.) going from the leaves to the root.
The sequence can be given directly by the order of appearance of the predicates and
operators.

Example 7.6. The query

“Find the names of employees other than J. Doe who worked on the CAD/CAM
project for either one or two years” whose SQL expression is

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO = EMP.ENO
AND ASG.PNO = PROJ.PNO
AND ENAME != "J. Doe"
AND PROJ.PNAME = "CAD/CAM"
AND (DUR = 12 OR DUR = 24)

can be mapped in a straightforward way in the tree in Figure 7.3. The predicates have
been transformed in order of appearance as join and then select operations. �

By applying transformation rules, many different trees may be found equivalent
to the one produced by the method described above [Smith and Chang, 1975]. We
now present the six most useful equivalence rules, which concern the basic relational
algebra operators. The correctness of these rules has been proven [Ullman, 1982].

In the remainder of this section, R, S, and T are relations where R is defined over
attributes A = {A1,A2, . . . ,An} and S is defined over B = {B1,B2, . . . ,Bn}.

1. Commutativity of binary operators. The Cartesian product of two relations
R and S is commutative:

R×S⇔ S×R

Similarly, the join of two relations is commutative:

R 1 S⇔ S 1 R

This rule also applies to union but not to set difference or semijoin.

2. Associativity of binary operators. The Cartesian product and the join are
associative operators:

(R×S)×T ⇔ R× (S×T)

(R 1 S) 1 T ⇔ R 1 (S 1 T)

7.1 Query Decomposition 229

PROJ ASG EMP

project

select

join

PNO

Π
ENAME

σ
DUR=12 ∨ DUR=24

σ
PNAME=”CAD/CAM”

σ
ENAME≠”J. Doe”

ENO

Fig. 7.3 Example of Operator Tree

3. Idempotence of unary operators. Several subsequent projections on the
same relation may be grouped. Conversely, a single projection on several
attributes may be separated into several subsequent projections. If R is defined
over the attribute set A, and A′ ⊆ A,A′′ ⊆ A, and A′ ⊆ A′′, then

ΠA′(ΠA′′(R))⇔ΠA′(R)

Several subsequent selections σpi(Ai) on the same relation, where pi is a
predicate applied to attribute Ai, may be grouped as follows:

σp1(A1)(σp2(A2)(R)) = σp1(A1)∧p2(A2)(R)

Conversely, a single selection with a conjunction of predicates may be sepa-
rated into several subsequent selections.

4. Commuting selection with projection. Selection and projection on the same
relation can be commuted as follows:

ΠA1,...,An(σp(Ap)(R))⇔ΠA1,...,An(σp(Ap)(ΠA1,...,An,Ap(R)))

Note that if Ap is already a member of {A1, . . . ,An}, the last projection on
[A1, . . . ,An] on the right-hand side of the equality is useless.

5. Commuting selection with binary operators. Selection and Cartesian prod-
uct can be commuted using the following rule (remember that attribute Ai

230 7 Query Decomposition and Data Localization

belongs to relation R):

σp(Ai)(R×S)⇔ (σp(Ai)(R))×S

Selection and join can be commuted:

σp(Ai)(R 1p(A j ,Bk) S)⇔ σp(Ai)(R) 1p(A j ,Bk) S

Selection and union can be commuted if R and T are union compatible (have
the same schema):

σp(Ai)(R∪T)⇔ σp(Ai)(R)∪σp(Ai)(T)

Selection and difference can be commuted in a similar fashion.

6. Commuting projection with binary operators. Projection and Cartesian
product can be commuted. If C = A′∪B′, where A′ ⊆ A, B′ ⊆ B, and A and B
are the sets of attributes over which relations R and S, respectively, are defined,
we have

ΠC(R×S)⇔ΠA′(R)×ΠB′(S)

Projection and join can also be commuted.

ΠC(R 1p(Ai,B j) S)⇔ΠA′(R) 1p(Ai,B j) ΠB′(S)

For the join on the right-hand side of the implication to hold we need to
have Ai ∈ A′ and B j ∈ B′. Since C = A′∪B′, Ai and B j are in C and therefore
we don’t need a projection over C once the projections over A′ and B′ are
performed. Projection and union can be commuted as follows:

ΠC(R∪S)⇔ΠC(R)∪ΠC(S)

Projection and difference can be commuted similarly.

The application of these six rules enables the generation of many equivalent trees.
For instance, the tree in Figure 7.4 is equivalent to the one in Figure 7.3. However,
the one in Figure 7.4 requires a Cartesian product of relations EMP and PROJ, and
may lead to a higher execution cost than the original tree. In the optimization phase,
one can imagine comparing all possible trees based on their predicted cost. However,
the excessively large number of possible trees makes this approach unrealistic. The
rules presented above can be used to restructure the tree in a systematic way so that
the “bad” operator trees are eliminated. These rules can be used in four different
ways. First, they allow the separation of the unary operations, simplifying the query
expression. Second, unary operations on the same relation may be grouped so that
access to a relation for performing unary operations can be done only once. Third,
unary operations can be commuted with binary operations so that some operations
(e.g., selection) may be done first. Fourth, the binary operations can be ordered. This

7.2 Localization of Distributed Data 231

last rule is used extensively in query optimization. A simple restructuring algorithm
uses a single heuristic that consists of applying unary operations (select/project) as
soon as possible to reduce the size of intermediate relations [Ullman, 1982].

ASG

PROJEMP

x

PNO, ENO

Π
ENAME

σ
PNAME="CAD/CAM" ∧ (DUR=12 ∨ DUR=24) ∧ ENAME ≠ "J. Doe"

Fig. 7.4 Equivalent Operator Tree

Example 7.7. The restructuring of the tree in Figure 7.3 leads to the tree in Figure
7.5. The resulting tree is good in the sense that repeated access to the same relation
(as in Figure 7.3) is avoided and that the most selective operations are done first.
However, this tree is far from optimal. For example, the select operation on EMP
is not very useful before the join because it does not greatly reduce the size of the
operand relation. �

7.2 Localization of Distributed Data

In Section 7.1 we presented general techniques for decomposing and restructuring
queries expressed in relational calculus. These global techniques apply to both
centralized and distributed DBMSs and do not take into account the distribution
of data. This is the role of the localization layer. As shown in the generic layering
scheme of query processing described in Chapter 6, the localization layer translates
an algebraic query on global relations into an algebraic query expressed on physical
fragments. Localization uses information stored in the fragment schema.

Fragmentation is defined through fragmentation rules, which can be expressed
as relational queries. As we discussed in Chapter 3, a global relation can be recon-
structed by applying the reconstruction (or reverse fragmentation) rules and deriving
a relational algebra program whose operands are the fragments. We call this a lo-
calization program. To simplify this section, we do not consider the fact that data

232 7 Query Decomposition and Data Localization

EMPASGPROJ

PNO

ENO

Π
ENAME

Π
PNO,ENAME

Π
ENO,ENAME

Π
PNO,ENO

Π
PNO

σ
PNAME="CAD/CAM"

σ
ENAME≠"J. Doe"

σ
DUR=12 ∨ DUR=24

Fig. 7.5 Rewritten Operator Tree

fragments may be replicated, although this can improve performance. Replication is
considered in Chapter 8.

A naive way to localize a distributed query is to generate a query where each global
relation is substituted by its localization program. This can be viewed as replacing
the leaves of the operator tree of the distributed query with subtrees corresponding
to the localization programs. We call the query obtained this way the localized
query. In general, this approach is inefficient because important restructurings and
simplifications of the localized query can still be made [Ceri and Pelagatti, 1983;
Ceri et al., 1986]. In the remainder of this section, for each type of fragmentation we
present reduction techniques that generate simpler and optimized queries. We use the
transformation rules and the heuristics, such as pushing unary operations down the
tree, that were introduced in Section 7.1.4.

7.2.1 Reduction for Primary Horizontal Fragmentation

The horizontal fragmentation function distributes a relation based on selection predi-
cates. The following example is used in subsequent discussions.

Example 7.8. Relation EMP(ENO, ENAME, TITLE) of Figure 2.3 can be split into
three horizontal fragments EMP1, EMP2, and EMP3, defined as follows:

7.2 Localization of Distributed Data 233

EMP1 = σENO≤”E3”(EMP)
EMP2 = σ”E3”<ENO≤”E6”(EMP)
EMP3 = σENO>”E6”(EMP)

Note that this fragmentation of the EMP relation is different from the one discussed
in Example 3.12.

The localization program for an horizontally fragmented relation is the union of
the fragments. In our example we have

EMP = EMP1∪ EMP2∪ EMP3

Thus the localized form of any query specified on EMP is obtained by replacing it
by (EMP1∪ EMP2∪ EMP3. �

The reduction of queries on horizontally fragmented relations consists primarily of
determining, after restructuring the subtrees, those that will produce empty relations,
and removing them. Horizontal fragmentation can be exploited to simplify both
selection and join operations.

7.2.1.1 Reduction with Selection

Selections on fragments that have a qualification contradicting the qualification of
the fragmentation rule generate empty relations. Given a relation R that has been
horizontally fragmented as R1, R2, . . ., Rw, where R j = σp j (R), the rule can be stated
formally as follows:

Rule 1: σpi(R j) = φ if ∀x in R : ¬(pi(x)∧ p j(x))

where pi and p j are selection predicates, x denotes a tuple, and p(x) denotes “predi-
cate p holds for x.”

For example, the selection predicate ENO=“E1” conflicts with the predicates of
fragments EMP2 and EMP3 of Example 7.8 (i.e., no tuple in EMP2 and EMP3 can
satisfy this predicate). Determining the contradicting predicates requires theorem-
proving techniques if the predicates are quite general [Hunt and Rosenkrantz, 1979].
However, DBMSs generally simplify predicate comparison by supporting only simple
predicates for defining fragmentation rules (by the database administrator).

Example 7.9. We now illustrate reduction by horizontal fragmentation using the
following example query:

SELECT *
FROM EMP
WHERE ENO = "E5"

Applying the naive approach to localize EMP from EMP1, EMP2, and EMP3
gives the localized query of Figure 7.6a. By commuting the selection with the union
operation, it is easy to detect that the selection predicate contradicts the predicates of

234 7 Query Decomposition and Data Localization

(a) Localized query (b) Reduced query

EMP1 EMP2 EMP3 EMP2

∪

σ
ENO="E5"

σ
ENO="E5"

Fig. 7.6 Reduction for Horizontal Fragmentation (with Selection)

EMP1and EMP3, thereby producing empty relations. The reduced query is simply
applied to EMP2as shown in Figure 7.6b. �

7.2.1.2 Reduction with Join

Joins on horizontally fragmented relations can be simplified when the joined rela-
tions are fragmented according to the join attribute. The simplification consists of
distributing joins over unions and eliminating useless joins. The distribution of join
over union can be stated as:

(R1∪R2) 1 S = (R1 1 S)∪ (R2 1 S)

where Ri are fragments of R and S is a relation.
With this transformation, unions can be moved up in the operator tree so that

all possible joins of fragments are exhibited. Useless joins of fragments can be
determined when the qualifications of the joined fragments are contradicting, thus
yielding an empty result. Assuming that fragments Ri and R j are defined, respectively,
according to predicates pi and p j on the same attribute, the simplification rule can be
stated as follows:

Rule 2: Ri 1 R j = φ if ∀x in Ri,∀y in R j : ¬(pi(x)∧ p j(y))

The determination of useless joins and their elimination using rule 2 can thus
be performed by looking only at the fragment predicates. The application of this
rule permits the join of two relations to be implemented as parallel partial joins of
fragments [Ceri et al., 1986]. It is not always the case that the reduced query is better
(i.e., simpler) than the localized query. The localized query is better when there are
a large number of partial joins in the reduced query. This case arises when there
are few contradicting fragmentation predicates. The worst case occurs when each
fragment of one relation must be joined with each fragment of the other relation.
This is tantamount to the Cartesian product of the two sets of fragments, with each
set corresponding to one relation. The reduced query is better when the number of

7.2 Localization of Distributed Data 235

partial joins is small. For example, if both relations are fragmented using the same
predicates, the number of partial joins is equal to the number of fragments of each
relation. One advantage of the reduced query is that the partial joins can be done in
parallel, and thus increase response time.

Example 7.10. Assume that relation EMP is fragmented between EMP1, EMP2, and
EMP3, as above, and that relation ASG is fragmented as

ASG1 = σENO≤”E3”(ASG)
ASG2 = σENO>”E3”(ASG)

EMP1and ASG1are defined by the same predicate. Furthermore, the predicate
defining ASG2 is the union of the predicates defining EMP2 and EMP3. Now consider
the join query

SELECT *
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

The equivalent localized query is given in Figure 7.7a. The query reduced by
distributing joins over unions and applying rule 2 can be implemented as a union of
three partial joins that can be done in parallel (Figure 7.7b). �

7.2.2 Reduction for Vertical Fragmentation

The vertical fragmentation function distributes a relation based on projection attrib-
utes. Since the reconstruction operator for vertical fragmentation is the join, the
localization program for a vertically fragmented relation consists of the join of the
fragments on the common attribute. For vertical fragmentation, we use the following
example.

Example 7.11. Relation EMP can be divided into two vertical fragments where the
key attribute ENO is duplicated:

EMP1 = ΠENO,ENAME(EMP)
EMP2 = ΠENO,TITLE(EMP)

The localization program is

EMP = EMP1 1ENO EMP2
�

Similar to horizontal fragmentation, queries on vertical fragments can be reduced
by determining the useless intermediate relations and removing the subtrees that
produce them. Projections on a vertical fragment that has no attributes in common

236 7 Query Decomposition and Data Localization

ENO

EMP1 EMP2 EMP3 ASG1 ASG2

EMP1 ASG1 EMP2 ASG2 EMP3 ASG2

∪ ∪

(a) Localized query

∪

(b) Reduced query

ENO ENO ENO

Fig. 7.7 Reduction by Horizontal Fragmentation (with Join)

with the projection attributes (except the key of the relation) produce useless, though
not empty relations. Given a relation R, defined over attributes A = {A1, . . . ,An},
which is vertically fragmented as Ri =ΠA′(R), where A′ ⊆ A, the rule can be formally
stated as follows:

Rule 3: ΠD,K(Ri) is useless if the set of projection attributes D is not in A′.

Example 7.12. Let us illustrate the application of this rule using the following exam-
ple query in SQL:

SELECT ENAME
FROM EMP

The equivalent localized query on EMP1 and EMP2 (as obtained in Example 7.10)
is given in Figure 7.8a. By commuting the projection with the join (i.e., projecting on
ENO, ENAME), we can see that the projection on EMP2 is useless because ENAME
is not in EMP2. Therefore, the projection needs to apply only to EMP1, as shown in
Figure 7.8b. �

7.2 Localization of Distributed Data 237

(a) Localized query

EMP1EMP1

ENO

EMP2

Π
ENAME

Π
ENAME

(b) Reduced query

Fig. 7.8 Reduction for Vertical Fragmentation

7.2.3 Reduction for Derived Fragmentation

As we saw in previous sections, the join operation, which is probably the most impor-
tant operation because it is both frequent and expensive, can be optimized by using
primary horizontal fragmentation when the joined relations are fragmented according
to the join attributes. In this case the join of two relations is implemented as a union
of partial joins. However, this method precludes one of the relations from being frag-
mented on a different attribute used for selection. Derived horizontal fragmentation is
another way of distributing two relations so that the joint processing of select and join
is improved. Typically, if relation R is subject to derived horizontal fragmentation
due to relation S, the fragments of R and S that have the same join attribute values
are located at the same site. In addition, S can be fragmented according to a selection
predicate.

Since tuples of R are placed according to the tuples of S, derived fragmentation
should be used only for one-to-many (hierarchical) relationships of the form S→ R,
where a tuple of S can match with n tuples of R, but a tuple of R matches with exactly
one tuple of S. Note that derived fragmentation could be used for many-to-many
relationships provided that tuples of S (that match with n tuples of R) are replicated.
Such replication is difficult to maintain consistently. For simplicity, we assume and
advise that derived fragmentation be used only for hierarchical relationships.

Example 7.13. Given a one-to-many relationship from EMP to ASG, relation
ASG(ENO, PNO, RESP, DUR) can be indirectly fragmented according to the follow-
ing rules:

ASG1 = ASG nENO EMP1

ASG2 = ASG nENO EMP2

Recall from Chapter 3 that the predicate on

EMP1 = σTITLE=”Programmer”(EMP)
EMP2 = σTITLE6=”Programmer”(EMP)

238 7 Query Decomposition and Data Localization

The localization program for a horizontally fragmented relation is the union of the
fragments. In our example, we have

ASG = ASG1∪ ASG2
�

Queries on derived fragments can also be reduced. Since this type of fragmentation
is useful for optimizing join queries, a useful transformation is to distribute joins
over unions (used in the localization programs) and to apply rule 2 introduced earlier.
Because the fragmentation rules indicate what the matching tuples are, certain joins
will produce empty relations if the fragmentation predicates conflict. For example,
the predicates of ASG1 and EMP2 conflict; thus we have

ASG1 1 EMP2 = φ

Contrary to the reduction with join discussed previously, the reduced query is always
preferable to the localized query because the number of partial joins usually equals
the number of fragments of R.

Example 7.14. The reduction by derived fragmentation is illustrated by applying it
to the following SQL query, which retrieves all attributes of tuples from EMP and
ASG that have the same value of ENO and the title “Mech. Eng.”:

SELECT *
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO
AND TITLE = "Mech. Eng."

The localized query on fragments EMP1, EMP2, ASG1, and ASG2, defined
previously is given in Figure 7.9a. By pushing selection down to fragments EMP1
and EMP2, the query reduces to that of Figure 7.9b. This is because the selection
predicate conflicts with that of EMP1, and thus EMP1 can be removed. In order to
discover conflicting join predicates, we distribute joins over unions. This produces
the tree of Figure 7.9c. The left subtree joins two fragments, ASG1 and EMP2, whose
qualifications conflict because of predicates TITLE = “Programmer” in ASG1, and
TITLE 6= “Programmer” in EMP2. Therefore the left subtree which produces an
empty relation can be removed, and the reduced query of Figure 7.9d is obtained.
This example illustrates the value of fragmentation in improving the execution
performance of distributed queries. �

7.2.4 Reduction for Hybrid Fragmentation

Hybrid fragmentation is obtained by combining the fragmentation functions discussed
above. The goal of hybrid fragmentation is to support, efficiently, queries involving
projection, selection, and join. Note that the optimization of an operation or of a

7.2 Localization of Distributed Data 239

(a) Localized query

(b) Query after pushing selection down

(c) Query after moving unions up

(d) Reduced query after eliminating the left subtree

∪

ASG1 EMP1

ENO

ASG2 EMP2

σ
TITLE=”Mech. Eng.”

∪
∪

ASG1 EMP2 EMP2
ASG2

σ
TITLE=”Mech. Eng.”σ

TITLE=”Mech. Eng.”

ENO ENO

ASG2
EMP2

σ
TITLE=”Mech. Eng.”

ENO

ASG1 ASG2 EMP2

∪ σ
TITLE=”Mech. Eng.”

ENO

Fig. 7.9 Reduction for Indirect Fragmentation

combination of operations is always done at the expense of other operations. For
example, hybrid fragmentation based on selection-projection will make selection
only, or projection only, less efficient than with horizontal fragmentation (or vertical
fragmentation). The localization program for a hybrid fragmented relation uses
unions and joins of fragments.

Example 7.15. Here is an example of hybrid fragmentation of relation EMP:

EMP1 = σENO≤”E4”(ΠENO,ENAME(EMP))
EMP2 = σENO>”E4”(ΠENO,ENAME(EMP))
EMP3 = ΠENO,TITLE(EMP)

240 7 Query Decomposition and Data Localization

In our example, the localization program is

EMP = (EMP1 ∪ EMP2) 1ENO EMP3
�

Queries on hybrid fragments can be reduced by combining the rules used, respec-
tively, in primary horizontal, vertical, and derived horizontal fragmentation. These
rules can be summarized as follows:

1. Remove empty relations generated by contradicting selections on horizontal
fragments.

2. Remove useless relations generated by projections on vertical fragments.

3. Distribute joins over unions in order to isolate and remove useless joins.

Example 7.16. The following example query in SQL illustrates the application of
rules (1) and (2) to the horizontal-vertical fragmentation of relation EMP into EMP1,
EMP2 and EMP3 given above:

SELECT ENAME
FROM EMP
WHERE ENO="E5"

The localized query of Figure 7.10a can be reduced by first pushing selection
down, eliminating fragment EMP1, and then pushing projection down, eliminating
fragment EMP3. The reduced query is given in Figure 7.10b. �

(b) Reduced query(a) Localized query

EMP1

ENO

EMP2 EMP3

EMP2

Π
ENAME

Π
ΕΝΑΜΕ

σ
ENO=”E5”

σ
ENO=”E5”

∪

Fig. 7.10 Reduction for Hybrid Fragmentation

7.4 Bibliographic NOTES 241

7.3 Conclusion

In this chapter we focused on the techniques for query decomposition and data
localization layers of the localized query processing scheme that was introduced in
Chapter 6. Query decomposition and data localization are the two successive func-
tions that map a calculus query, expressed on distributed relations, into an algebraic
query (query decomposition), expressed on relation fragments (data localization).

These two layers can produce a localized query corresponding to the input query
in a naive way. Query decomposition can generate an algebraic query simply by
translating into relational operations the predicates and the target statement as they
appear. Data localization can, in turn, express this algebraic query on relation frag-
ments, by substituting for each distributed relation an algebraic query corresponding
to its fragmentation rules.

Many algebraic queries may be equivalent to the same input query. The queries
produced with the naive approach are inefficient in general, since important simplifi-
cations and optimizations have been missed. Therefore, a localized query expression
is restructured using a few transformation rules and heuristics. The rules enable
separation of unary operations, grouping of unary operations on the same relation,
commuting of unary operations with binary operations, and permutation of the binary
operations. Examples of heuristics are to push selections down the tree and do projec-
tion as early as possible. In addition to the transformation rules, data localization uses
reduction rules to simplify the query further, and therefore optimize it. Two main
types of rules may be used. The first one avoids the production of empty relations
which are generated by contradicting predicates on the same relation(s). The second
type of rule determines which fragments yield useless attributes.

The query produced by the query decomposition and data localization layers is
good in the sense that the worse executions are avoided. However, the subsequent
layers usually perform important optimizations, as they add to the query increasing
detail about the processing environment. In particular, quantitative information re-
garding fragments has not yet been exploited. This information will be used by the
query optimization layer for selecting an “optimal” strategy to execute the query.
Query optimization is the subject of Chapter 8.

7.4 Bibliographic NOTES

Traditional techniques for query decomposition are surveyed in [Jarke and Koch,
1984]. Techniques for semantic analysis and simplification of queries have their
origins in [Rosenkrantz and Hunt, 1980]. The notion of query graph or connection
graph is introduced in [Ullman, 1982]. The notion of query tree, which we called
operator tree in this chapter, and the transformation rules to manipulate algebraic
expressions have been introduced by Smith and Chang [1975] and developed in
[Ullman, 1982]. Proofs of completeness and correctness of the rules are given in the
latter reference.

242 7 Query Decomposition and Data Localization

Data localization is treated in detail in [Ceri and Pelagatti, 1983] for horizontally
partitioned relations which are referred to as multirelations. In particular, an algebra
of qualified relations is defined as an extension of relation algebra, where a qualified
relation is a relation name and the qualification of the fragment. Proofs of correctness
and completeness of equivalence transformations between expressions of algebra of
qualified relations are also given. The formal properties of horizontal and vertical
fragmentation are used in [Ceri et al., 1986] to characterize distributed joins over
fragmented relations.

Exercises

Problem 7.1. Simplify the following query, expressed in SQL, on our example
database using idempotency rules:

SELECT ENO
FROM ASG
WHERE RESP = "Analyst"
AND NOT(PNO="P2" OR DUR=12)
AND PNO != "P2"
AND DUR=12

Problem 7.2. Give the query graph of the following query, in SQL, on our example
database:

SELECT ENAME, PNAME
FROM EMP, ASG, PROJ
WHERE DUR > 12
AND EMP.ENO = ASG.ENO
AND PROJ.PNO = ASG.PNO

and map it into an operator tree.

Problem 7.3 (*). Simplify the following query:

SELECT ENAME, PNAME
FROM EMP, ASG, PROJ
WHERE (DUR > 12 OR RESP = "Analyst")
AND EMP.ENO = ASG.ENO
AND (TITLE = "Elect. Eng."
OR ASG.PNO < "P3")
AND (DUR > 12 OR RESP NOT= "Analyst")
AND ASG.PNO = PROJ.PNO

and transform it into an optimized operator tree using the restructuring algorithm
(Section 7.1.4) where select and project operations are applied as soon as possible to
reduce the size of intermediate relations.

Problem 7.4 (*). Transform the operator tree of Figure 7.5 back to the tree of Figure
7.3 using the restructuring algorithm. Describe each intermediate tree and show
which rule the transformation is based on.

7.4 Bibliographic NOTES 243

Problem 7.5 (**). Consider the following query on our Engineering database:

SELECT ENAME,SAL
FROM EMP,PROJ,ASG,PAY
WHERE EMP.ENO = ASG.ENO
AND EMP.TITLE = PAY.TITLE
AND (BUDGET>200000 OR DUR>24)
AND ASG.PNO = PROJ.PNO
AND (DUR>24 OR PNAME = "CAD/CAM")

Compose the selection predicate corresponding to the WHERE clause and transform
it, using the idempotency rules, into the simplest equivalent form. Furthermore,
compose an operator tree corresponding to the query and transform it, using relational
algebra transformation rules, to three equivalent forms.

Problem 7.6. Assume that relation PROJ of the sample database is horizontally
fragmented as follows:

PROJ1 = σPNO≤”P2” (PROJ)
PROJ2 = σPNO>”P2” (PROJ)

Transform the following query into a reduced query on fragments:

SELECT ENO, PNAME
FROM PROJ,ASG
WHERE PROJ.PNO = ASG.PNO
AND PNO = "P4"

Problem 7.7 (*). Assume that relation PROJ is horizontally fragmented as in Prob-
lem 7.6, and that relation ASG is horizontally fragmented as

ASG1 = σPNO≤”P2” (ASG)
ASG2 = σ”P2”<PNO≤”P3” (ASG)
ASG3 = σPNO>”P3” (ASG)

Transform the following query into a reduced query on fragments, and determine
whether it is better than the localized query:

SELECT RESP, BUDGET
FROM ASG, PROJ
WHERE ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"

Problem 7.8 (**). Assume that relation PROJ is fragmented as in Problem 7.6.
Furthermore, relation ASG is indirectly fragmented as

ASG1 = ASG nPNO PROJ1

ASG2 = ASG nPNO PROJ2

and relation EMP is vertically fragmented as

244 7 Query Decomposition and Data Localization

EMP1 = ΠENO,ENAME (EMP)
EMP2 = ΠENO,TITLE (EMP)

Transform the following query into a reduced query on fragments:

SELECT ENAME
FROM EMP,ASG,PROJ
WHERE PROJ.PNO = ASG.PNO
AND PNAME = "Instrumentation"
AND EMP.ENO = ASG.ENO

Chapter 8
Optimization of Distributed Queries

Chapter 7 shows how a calculus query expressed on global relations can be mapped
into a query on relation fragments by decomposition and data localization. This map-
ping uses the global and fragment schemas. During this process, the application of
transformation rules permits the simplification of the query by eliminating common
subexpressions and useless expressions. This type of optimization is independent of
fragment characteristics such as cardinalities. The query resulting from decomposi-
tion and localization can be executed in that form simply by adding communication
primitives in a systematic way. However, the permutation of the ordering of opera-
tions within the query can provide many equivalent strategies to execute it. Finding
an “optimal” ordering of operations for a given query is the main role of the query
optimization layer, or optimizer for short.

Selecting the optimal execution strategy for a query is NP-hard in the number
of relations [Ibaraki and Kameda, 1984]. For complex queries with many relations,
this can incur a prohibitive optimization cost. Therefore, the actual objective of the
optimizer is to find a strategy close to optimal and, perhaps more important, to avoid
bad strategies. In this chapter we refer to the strategy (or operation ordering) produced
by the optimizer as the optimal strategy (or optimal ordering). The output of the
optimizer is an optimized query execution plan consisting of the algebraic query
specified on fragments and the communication operations to support the execution
of the query over the fragment sites.

The selection of the optimal strategy generally requires the prediction of exe-
cution costs of the alternative candidate orderings prior to actually executing the
query. The execution cost is expressed as a weighted combination of I/O, CPU,
and communication costs. A typical simplification of the earlier distributed query
optimizers was to ignore local processing cost (I/O and CPU costs) by assuming that
the communication cost is dominant. Important inputs to the optimizer for estimating
execution costs are fragment statistics and formulas for estimating the cardinalities
of results of relational operations. In this chapter we focus mostly on the ordering
of join operations for two reasons: it is a well-understood problem, and queries
involving joins, selections, and projections are usually considered to be the most
frequent type. Furthermore, it is easier to generalize the basic algorithm for other

245
DOI 10.1007/978-1-4419-8834-8_8, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

246 8 Optimization of Distributed Queries

binary operations, such as union, intersection and difference. We also discuss how
the semijoin operation can help to process join queries efficiently.

This chapter is organized as follows. In Section 8.1 we introduce the main compo-
nents of query optimization, including the search space, the search strategy and the
cost model. Query optimization in centralized systems is described in Section 8.2 as
a prerequisite to understand distributed query optimization, which is more complex.
In Section 8.3 we discuss the major optimization issue, which deals with the join
ordering in distributed queries. We also examine alternative join strategies based on
semijoin. In Section 8.4 we illustrate the use of the techniques and concepts in four
basic distributed query optimization algorithms.

8.1 Query Optimization

This section introduces query optimization in general, i.e., independent of whether the
environment is centralized or distributed. The input query is supposed to be expressed
in relational algebra on database relations (which can obviously be fragments) after
query rewriting from a calculus expression.

Query optimization refers to the process of producing a query execution plan
(QEP) which represents an execution strategy for the query. This QEP minimizes
an objective cost function. A query optimizer, the software module that performs
query optimization, is usually seen as consisting of three components: a search space,
a cost model, and a search strategy (see Figure 8.1). The search space is the set of
alternative execution plans that represent the input query. These plans are equivalent,
in the sense that they yield the same result, but they differ in the execution order
of operations and the way these operations are implemented, and therefore in their
performance. The search space is obtained by applying transformation rules, such
as those for relational algebra described in Section 7.1.4. The cost model predicts
the cost of a given execution plan. To be accurate, the cost model must have good
knowledge about the distributed execution environment. The search strategy explores
the search space and selects the best plan, using the cost model. It defines which
plans are examined and in which order. The details of the environment (centralized
versus distributed) are captured by the search space and the cost model.

8.1.1 Search Space

Query execution plans are typically abstracted by means of operator trees (see Section
7.1.4), which define the order in which the operations are executed. They are enriched
with additional information, such as the best algorithm chosen for each operation.
For a given query, the search space can thus be defined as the set of equivalent
operator trees that can be produced using transformation rules. To characterize query
optimizers, it is useful to concentrate on join trees, which are operator trees whose

8.1 Query Optimization 247

SEARCH SPACE

GENERATION
TRANSFORMATION

RULES

SEARCH

STRATEGY
COST MODEL

EQUIVALENT QEP

INPUT QUERY

BEST QEP

Fig. 8.1 Query Optimization Process

PNO

ENO PROJ

ASGEMP

(a)

ENO

PNO EMP

PROJASG

(b)

ENO,PNO

ASG

EMPPROJ

(c)

X

Fig. 8.2 Equivalent Join Trees

operators are join or Cartesian product. This is because permutations of the join order
have the most important effect on performance of relational queries.

Example 8.1. Consider the following query:

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO

Figure 8.2 illustrates three equivalent join trees for that query, which are obtained
by exploiting the associativity of binary operators. Each of these join trees can be
assigned a cost based on the estimated cost of each operator. Join tree (c) which starts
with a Cartesian product may have a much higher cost than the other join trees. �

For a complex query (involving many relations and many operators), the number
of equivalent operator trees can be very high. For instance, the number of alternative

248 8 Optimization of Distributed Queries

Fig. 8.3 The Two Major Shapes of Join Trees

join trees that can be produced by applying the commutativity and associativity rules
is O(N!) for N relations. Investigating a large search space may make optimiza-
tion time prohibitive, sometimes much more expensive than the actual execution
time. Therefore, query optimizers typically restrict the size of the search space they
consider. The first restriction is to use heuristics. The most common heuristic is to
perform selection and projection when accessing base relations. Another common
heuristic is to avoid Cartesian products that are not required by the query. For instance,
in Figure 8.2, operator tree (c) would not be part of the search space considered by
the optimizer.

Another important restriction is with respect to the shape of the join tree. Two
kinds of join trees are usually distinguished: linear versus bushy trees (see Figure
8.3). A linear tree is a tree such that at least one operand of each operator node is
a base relation. A bushy tree is more general and may have operators with no base
relations as operands (i.e., both operands are intermediate relations). By considering
only linear trees, the size of the search space is reduced to O(2N). However, in a
distributed environment, bushy trees are useful in exhibiting parallelism. For example,
in join tree (b) of Figure 8.3, operations R1 1 R2 and R3 1 R4 can be done in parallel.

8.1.2 Search Strategy

The most popular search strategy used by query optimizers is dynamic programming,
which is deterministic. Deterministic strategies proceed by building plans, starting
from base relations, joining one more relation at each step until complete plans are
obtained, as in Figure 8.4. Dynamic programming builds all possible plans, breadth-
first, before it chooses the “best” plan. To reduce the optimization cost, partial plans
that are not likely to lead to the optimal plan are pruned (i.e., discarded) as soon as
possible. By contrast, another deterministic strategy, the greedy algorithm, builds
only one plan, depth-first.

Dynamic programming is almost exhaustive and assures that the “best” of all
plans is found. It incurs an acceptable optimization cost (in terms of time and space)

(a) linear join tree

R3

R2R1

R4

R1 R2 R3 R4

(b) bushy join tree

8.1 Query Optimization 249

R2R1

R3

R2R1

R4

R3

R2R1

Step 1 Step 2 Step 3

Fig. 8.4 Optimizer Actions in a Deterministic Strategy

R
2

R
1

R
3

R
3

R
1

R
2

Fig. 8.5 Optimizer Action in a Randomized Strategy

when the number of relations in the query is small. However, this approach becomes
too expensive when the number of relations is greater than 5 or 6. For more complex
queries, randomized strategies have been proposed, which reduce the optimization
complexity but do not guarantee the best of all plans. Unlike deterministic strategies,
randomized strategies allow the optimizer to trade optimization time for execution
time [Lanzelotte et al., 1993].

Randomized strategies, such as Simulated Annealing [Ioannidis and Wong, 1987]
and Iterative Improvement [Swami, 1989] concentrate on searching for the optimal
solution around some particular points. They do not guarantee that the best solution
is obtained, but avoid the high cost of optimization, in terms of memory and time
consumption. First, one or more start plans are built by a greedy strategy. Then,
the algorithm tries to improve the start plan by visiting its neighbors. A neighbor is
obtained by applying a random transformation to a plan. An example of a typical
transformation consists in exchanging two randomly chosen operand relations of the
plan, as in Figure 8.5. It has been shown experimentally that randomized strategies
provide better performance than deterministic strategies as soon as the query involves
more than several relations[Lanzelotte et al., 1993].

8.1.3 Distributed Cost Model

An optimizer’s cost model includes cost functions to predict the cost of operators,
statistics and base data, and formulas to evaluate the sizes of intermediate results.

250 8 Optimization of Distributed Queries

The cost is in terms of execution time, so a cost function represents the execution
time of a query.

8.1.3.1 Cost Functions

The cost of a distributed execution strategy can be expressed with respect to either
the total time or the response time. The total time is the sum of all time (also referred
to as cost) components, while the response time is the elapsed time from the initiation
to the completion of the query. A general formula for determining the total time can
be specified as follows [Lohman et al., 1985]:

Total time = TCPU ∗#insts+TI/O ∗#I/Os+TMSG ∗#msgs+TT R ∗#bytes

The two first components measure the local processing time, where TCPU is the
time of a CPU instruction and TI/O is the time of a disk I/O. The communication
time is depicted by the two last components. TMSG is the fixed time of initiating and
receiving a message, while TT R is the time it takes to transmit a data unit from one
site to another. The data unit is given here in terms of bytes (#bytes is the sum of
the sizes of all messages), but could be in different units (e.g., packets). A typical
assumption is that TT R is constant. This might not be true for wide area networks,
where some sites are farther away than others. However, this assumption greatly
simplifies query optimization. Thus the communication time of transferring #bytes
of data from one site to another is assumed to be a linear function of #bytes:

CT (#bytes) = TMSG +TT R ∗#bytes

Costs are generally expressed in terms of time units, which in turn, can be translated
into other units (e.g., dollars).

The relative values of the cost coefficients characterize the distributed database
environment. The topology of the network greatly influences the ratio between these
components. In a wide area network such as the Internet, the communication time is
generally the dominant factor. In local area networks, however, there is more of a
balance among the components. Earlier studies cite ratios of communication time to
I/O time for one page to be on the order of 20:1 for wide area networks [Selinger
and Adiba, 1980] while it is 1:1.6 for a typical early generation Ethernet (10Mbps)
[Page and Popek, 1985]. Thus, most early distributed DBMSs designed for wide area
networks have ignored the local processing cost and concentrated on minimizing
the communication cost. Distributed DBMSs designed for local area networks, on
the other hand, consider all three cost components. The new faster networks, both
at the wide area network and at the local area network levels, have improved the
above ratios in favor of communication cost when all things are equal. However,
communication is still the dominant time factor in wide area networks such as the
Internet because of the longer distances that data are retrieved from (or shipped to).

When the response time of the query is the objective function of the optimizer,
parallel local processing and parallel communications must also be considered

8.1 Query Optimization 251

[Khoshafian and Valduriez, 1987]. A general formula for response time is

Response time = TCPU ∗ seq #insts+TI/O ∗ seq #I/Os

+TMSG ∗ seq #msgs+TT R ∗ seq #bytes

where seq #x, in which x can be instructions (insts), I/O, messages (msgs) or bytes,
is the maximum number of x which must be done sequentially for the execution of
the query. Thus any processing and communication done in parallel is ignored.

Example 8.2. Let us illustrate the difference between total cost and response time
using the example of Figure 8.6, which computes the answer to a query at site 3 with
data from sites 1 and 2. For simplicity, we assume that only communication cost is
considered.

Site 1

Site 2

Site 3

x units

y units

Fig. 8.6 Example of Data Transfers for a Query

Assume that TMSGand TT R are expressed in time units. The total time of transfer-
ring x data units from site 1 to site 3 and y data units from site 2 to site 3 is

Total time = 2 TMSG +TT R ∗ (x+ y)

The response time of the same query can be approximated as

Response time = max{TMSG +TT R ∗ x,TMSG +TT R ∗ y}

since the transfers can be done in parallel. �

Minimizing response time is achieved by increasing the degree of parallel exe-
cution. This does not, however, imply that the total time is also minimized. On the
contrary, it can increase the total time, for example, by having more parallel local
processing and transmissions. Minimizing the total time implies that the utilization
of the resources improves, thus increasing the system throughput. In practice, a
compromise between the two is desired. In Section 8.4 we present algorithms that
can optimize a combination of total time and response time, with more weight on
one of them.

252 8 Optimization of Distributed Queries

8.1.3.2 Database Statistics

The main factor affecting the performance of an execution strategy is the size of the
intermediate relations that are produced during the execution. When a subsequent
operation is located at a different site, the intermediate relation must be transmitted
over the network. Therefore, it is of prime interest to estimate the size of the inter-
mediate results of relational algebra operations in order to minimize the size of data
transfers. This estimation is based on statistical information about the base relations
and formulas to predict the cardinalities of the results of the relational operations.
There is a direct trade-off between the precision of the statistics and the cost of man-
aging them, the more precise statistics being the more costly [Piatetsky-Shapiro and
Connell, 1984]. For a relation R defined over the attributes A = {A1, A2, . . . , An}
and fragmented as R1, R2, . . . , Rr, the statistical data typically are the following:

1. For each attribute Ai, its length (in number of bytes), denoted by length(Ai),
and for each attribute Ai of each fragment R j, the number of distinct values
of Ai, with the cardinality of the projection of fragment R j on Ai, denoted by
card(ΠAi(R j)).

2. For the domain of each attribute Ai, which is defined on a set of values that
can be ordered (e.g., integers or reals), the minimum and maximum possible
values, denoted by min(Ai) and max(Ai).

3. For the domain of each attribute Ai, the cardinality of the domain of Ai,
denoted by card(dom[Ai]). This value gives the number of unique values in
the dom[Ai].

4. The number of tuples in each fragment R j, denoted by card(R j).

In addition, for each attribute Ai, there may be a histogram that approximates the
frequency distribution of the attribute within a number of buckets, each corresponding
to a range of values.

Sometimes, the statistical data also include the join selectivity factor for some
pairs of relations, that is the proportion of tuples participating in the join. The join
selectivity factor, denoted SFJ , of relations R and S is a real value between 0 and 1:

SFJ(R,S) =
card(R 1 S)

card(R)∗ card(S)

For example, a join selectivity factor of 0.5 corresponds to a very large joined
relation, while 0.001 corresponds to a small one. We say that the join has bad (or
low) selectivity in the former case and good (or high) selectivity in the latter case.

These statistics are useful to predict the size of intermediate relations. Remember
that in Chapter 3 we defined the size of an intermediate relation R as follows:

size(R) = card(R)∗ length(R)

8.1 Query Optimization 253

where length(R) is the length (in bytes) of a tuple of R, computed from the lengths
of its attributes. The estimation of card(R), the number of tuples in R, requires the
use of the formulas given in the following section.

8.1.3.3 Cardinalities of Intermediate Results

Database statistics are useful in evaluating the cardinalities of the intermediate results
of queries. Two simplifying assumptions are commonly made about the database.
The distribution of attribute values in a relation is supposed to be uniform, and all
attributes are independent, meaning that the value of an attribute does not affect the
value of any other attribute. These two assumptions are often wrong in practice, but
they make the problem tractable. In what follows we give the formulas for estimating
the cardinalities of the results of the basic relational algebra operations (selection,
projection, Cartesian product, join, semijoin, union, and difference). The operand
relations are denoted by R and S. The selectivity factor of an operation, that is,
the proportion of tuples of an operand relation that participate in the result of that
operation, is denoted SFOP, where OP denotes the operation.

Selection.

The cardinality of selection is

card(σF(R)) = SFS(F)∗ card(R)

where SFS(F) is dependent on the selection formula and can be computed as follows
[Selinger et al., 1979], where p(Ai) and p(A j) indicate predicates over attributes Ai
and A j, respectively:

SFS(A = value) =
1

card(ΠA(R))

SFS(A > value) =
max(A)− value

max(A)−min(A)

SFS(A < value) =
value−min(A)

max(A)−min(A)

SFS(p(Ai)∧ p(A j)) = SFS(p(Ai))∗SFS(p(A j))

SFS(p(Ai)∨ p(A j)) = SFS(p(Ai))+SFS(p(A j))− (SFS(p(Ai))∗SFS(p(A j)))

SFS(A ∈ {values}) = SFS(A = value)∗ card({values})

254 8 Optimization of Distributed Queries

Projection.

As indicated in Section 2.1, projection can be with or without duplicate elimination.
We consider projection with duplicate elimination. An arbitrary projection is difficult
to evaluate precisely because the correlations between projected attributes are usually
unknown [Gelenbe and Gardy, 1982]. However, there are two particularly useful
cases where it is trivial. If the projection of relation R is based on a single attribute A,
the cardinality is simply the number of tuples when the projection is performed. If
one of the projected attributes is a key of R, then

card(ΠA(R)) = card(R)

Cartesian product.

The cardinality of the Cartesian product of R and S is simply

card(R×S) = card(R)∗ card(S)

Join.

There is no general way to estimate the cardinality of a join without additional
information. The upper bound of the join cardinality is the cardinality of the Cartesian
product. It has been used in the earlier distributed DBMS (e.g. [Epstein et al., 1978]),
but it is a quite pessimistic estimate. A more realistic solution is to divide this upper
bound by a constant to reflect the fact that the join result is smaller than that of the
Cartesian product [Selinger and Adiba, 1980]. However, there is a case, which occurs
frequently, where the estimation is simple. If relation R is equijoined with S over
attribute A from R, and B from S, where A is a key of relation R, and B is a foreign
key of relation S, the cardinality of the result can be approximated as

card(R 1A=B S) = card(S)

because each tuple of S matches with at most one tuple of R. Obviously, the same
thing is true if B is a key of S and A is a foreign key of R. However, this estimation
is an upper bound since it assumes that each tuple of R participates in the join. For
other important joins, it is worthwhile to maintain their join selectivity factor SFJ as
part of statistical information. In that case the result cardinality is simply

card(R 1 S) = SFJ ∗ card(R)∗ card(S)

8.1 Query Optimization 255

Semijoin.

The selectivity factor of the semijoin of R by S gives the fraction (percentage) of
tuples of R that join with tuples of S. An approximation for the semijoin selectivity
factor is given by Hevner and Yao [1979] as

SFSJ(RnA S) =
card(ΠA(S))
card(dom[A])

This formula depends only on attribute A of S. Thus it is often called the selectivity
factor of attribute A of S, denoted SFSJ(S.A), and is the selectivity factor of S.A on
any other joinable attribute. Therefore, the cardinality of the semijoin is given by

card(RnA S) = SFSJ(S.A)∗ card(R)

This approximation can be verified on a very frequent case, that of R.A being a
foreign key of S (S.A is a primary key). In this case, the semijoin selectivity factor
is 1 since ΠA(S)) = card(dom[A]) yielding that the cardinality of the semijoin is
card(R).

Union.

It is quite difficult to estimate the cardinality of the union of R and S because the
duplicates between R and S are removed by the union. We give only the simple
formulas for the upper and lower bounds, which are, respectively,

card(R)+ card(S)

max{card(R),card(S)}

Note that these formulas assume that R and S do not contain duplicate tuples.

Difference.

Like the union, we give only the upper and lower bounds. The upper bound of
card(R−S) is card(R), whereas the lower bound is 0.

More complex predicates with conjunction and disjunction can also be handled
by using the formulas given above.

8.1.3.4 Using Histograms for Selectivity Estimation

The formulae above for estimating the cardinalities of intermediate results of queries
rely on the strong assumption that the distribution of attribute values in a relation is
uniform. The advantage of this assumption is that the cost of managing the statistics

256 8 Optimization of Distributed Queries

is minimal since only the number of distinct attribute values is needed. However, this
assumption is not practical. In case of skewed data distributions, it can result in fairly
inaccurate estimations and QEPs which are far from the optimal.

An effective solution to accurately capture data distributions is to use histograms.
Today, most commercial DBMS optimizers support histograms as part of their cost
model. Various kinds of histograms have been proposed for estimating the selectivity
of query predicates with different trade-offs between accuracy and maintenance
cost [Poosala et al., 1996]. To illustrate the use of histograms, we use the basic
definition by Bruno and Chaudhuri [2002]. A histogram on attribute A from R is a
set of buckets. Each bucket bi describes a range of values of A, denoted by rangei,
with its associated frequency fi and number of distinct values di. fi gives the number
of tuples of R where R.A ∈ rangei. di gives the number of distinct values of A where
R.A ∈ rangei. This representation of a relation’s attribute can capture non-uniform
distributions of values, with the buckets adapted to the different ranges. However,
within a bucket, the distribution of attribute values is assumed to be uniform.

Histograms can be used to accurately estimate the selectivity of selection opera-
tions. They can also be used for more complex queries including selection, projection
and join. However, the precise estimation of join selectivity remains difficult and
depends on the type of the histogram [Poosala et al., 1996]. We now illustrate the use
of histograms with two important selection predicates: equality and range predicate.

Equality predicate.

With value ∈ rangei, we simply have: SFS(A = value) = 1/di.

Range predicate.

Computing the selectivity of range predicates such as A ≤ value, A < value and
A > value requires identifying the relevant buckets and summing up their frequencies.
Let us consider the range predicate R.A≤ value with value ∈ rangei. To estimate the
numbers of tuples of R that satisfy this predicate, we must sum up the frequencies of
all buckets which precede bucket i and the estimated number of tuples that satisfy
the predicate in bucket bi. Assuming uniform distribution of attribute values in bi,
we have:

card(σA≤value(R)) =
i−1

∑
j=1

f j +(
value−min(rangei)

min(rangei)
−min(rangei)∗ fi)

The cardinality of other range predicates can be computed in a similar way.

Example 8.3. Figure 8.7 shows a possible 4-bucket histogram for attribute DUR of a
relation ASG with 300 tuples. Let us consider the equality predicate ASG.DUR=18.
Since the value ”18” fits in bucket b3, the selectivity factor is 1/12. Since the cardinalty

8.2 Centralized Query Optimization 257

of b3 is 50, the cardinality of the selection is 50/12 which is approximately 5 tuples.
Let us now consider the range predicate ASG.DUR ≤ 18. We have min(range3) =
12 and max(range3) = 24. The cardinality of the selection is: 100+ 75+(((18−
12)/(24−12))∗50) = 200 tuples. �

Frequency

50

100

ASG.DURb
1

b
2

b
3

b
4

d
3
=12

0 6 12 24 30

card(ASG)=300

Fig. 8.7 Histogram of Attribute ASG.DUR

8.2 Centralized Query Optimization

In this section we present the main query optimization techniques for centralized
systems. This presentation is a prerequisite to understanding distributed query opti-
mization for three reasons. First, a distributed query is translated into local queries,
each of which is processed in a centralized way. Second, distributed query opti-
mization techniques are often extensions of the techniques for centralized systems.
Finally, centralized query optimization is a simpler problem; the minimization of
communication costs makes distributed query optimization more complex.

As discussed in Chapter 6, the optimization timing, which can be dynamic, static
or hybrid, is a good basis for classifying query optimization techniques. Therefore,
we present a representative technique of each class.

8.2.1 Dynamic Query Optimization

Dynamic query optimization combines the two phases of query decomposition and
optimization with execution. The QEP is dynamically constructed by the query
optimizer which makes calls to the DBMS execution engine for executing the query’s
operations. Thus, there is no need for a cost model.

258 8 Optimization of Distributed Queries

The most popular dynamic query optimization algorithm is that of INGRES
[Stonebraker et al., 1976], one of the first relational DBMS. In this section, we
present this algorithm based on the detailed description by Wong and Youssefi
[1976]. The algorithm recursively breaks up a query expressed in relational calculus
(i.e., SQL) into smaller pieces which are executed along the way. The query is first
decomposed into a sequence of queries having a unique relation in common. Then
each monorelation query is processed by selecting, based on the predicate, the best
access method to that relation (e.g., index, sequential scan). For example, if the
predicate is of the form A = value, an index available on attribute A would be used if
it exists. However, if the predicate is of the form A 6= value, an index on A would not
help, and sequential scan should be used.

The algorithm executes first the unary (monorelation) operations and tries to mini-
mize the sizes of intermediate results in ordering binary (multirelation) operations.
Let us denote by qi−1→ qi a query q decomposed into two subqueries, qi−1 and qi,
where qi−1 is executed first and its result is consumed by qi. Given an n-relation query
q, the optimizer decomposes q into n subqueries q1→ q2→ ··· → qn. This decom-
position uses two basic techniques: detachment and substitution. These techniques
are presented and illustrated in the rest of this section.

Detachment is the first technique employed by the query processor. It breaks a
query q into q′→ q′′, based on a common relation that is the result of q′. If the query
q expressed in SQL is of the form

SELECT R2.A2,R3.A3, . . . ,Rn.An
FROM R1,R2, . . . ,Rn

WHERE P1(R1.A
′
1)

AND P2(R1.A1,R2.A2, . . . ,Rn.An)

where Ai and A
′
i are lists of attributes of relation Ri, P1 is a predicate involving

attributes from relation R1, and P2 is a multirelation predicate involving attributes of
relations R1,R2, . . . ,Rn. Such a query may be decomposed into two subqueries, q′

followed by q′′, by detachment of the common relation R1:

q′: SELECT R1.A1INTO R
′
1

FROM R1

WHERE P1(R1.A
′
1)

where R
′
1 is a temporary relation containing the information necessary for the contin-

uation of the query:

q′′: SELECT R2.A2, . . . ,Rn.An

FROM R
′
1,R2, . . . ,Rn

WHERE P2(R
′
1.A1, . . . ,Rn.An)

This step has the effect of reducing the size of the relation on which the query q′′

is defined. Furthermore, the created relation R
′
1 may be stored in a particular structure

to speed up the following subqueries. For example, the storage of R
′
1 in a hashed file

8.2 Centralized Query Optimization 259

on the join attributes of q′′ will make processing the join more efficient. Detachment
extracts the select operations, which are usually the most selective ones. Therefore,
detachment is systematically done whenever possible. Note that this can have adverse
effects on performance if the selection has bad selectivity.

Example 8.4. To illustrate the detachment technique, we apply it to the following
query:

“Names of employees working on the CAD/CAM project”

This query can be expressed in SQL by the following query q1 on the engineering
database of Chapter 2:

q1: SELECT EMP.ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND PNAME="CAD/CAM"

After detachment of the selections, query q1 is replaced by q11 followed by q′,
where JVAR is an intermediate relation.

q11: SELECT PROJ.PNO INTO JVAR
FROM PROJ
WHERE PNAME="CAD/CAM"

q′: SELECT EMP.ENAME
FROM EMP, ASG, JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO

The successive detachments of q′ may generate

q12: SELECT ASG.ENO INTO GVAR
FROM ASG, JVAR
WHERE ASG.PNO=JVAR.PNO

q13: SELECT EMP.ENAME
FROM EMP, GVAR
WHERE EMP.ENO=GVAR.ENO

Note that other subqueries are also possible.
Thus query q1 has been reduced to the subsequent queries q11→ q12→ q13. Query

q11 is monorelation and can be executed. However, q12 and q13 are not monorelation
and cannot be reduced by detachment. �

Multirelation queries, which cannot be further detached (e.g., q12 and q13), are
irreducible. A query is irreducible if and only if its query graph is a chain with two
nodes or a cycle with k nodes where k > 2. Irreducible queries are converted into
monorelation queries by tuple substitution. Given an n-relation query q, the tuples of
one relation are substituted by their values, thereby producing a set of (n−1)-relation

260 8 Optimization of Distributed Queries

queries. Tuple substitution proceeds as follows. First, one relation in q is chosen for
tuple substitution. Let R1 be that relation. Then for each tuple t1i in R1, the attributes
referred to by in q are replaced by their actual values in t1i, thereby generating a
query q′ with n−1 relations. Therefore, the total number of queries q′ produced by
tuple substitution is card(R1). Tuple substitution can be summarized as follows:

q(R1,R2, . . . ,Rn) is replaced by {q′(t1i,R2,R3, . . . ,Rn), t1i ∈ R1}

For each tuple thus obtained, the subquery is recursively processed by substitution if
it is not yet irreducible.

Example 8.5. Let us consider the query q13:

SELECT EMP.ENAME
FROM EMP, GVAR
WHERE EMP.ENO=GVAR.ENO

The relation GVAR is over a single attribute (ENO). Assume that it contains only
two tuples: 〈E1〉 and 〈E2〉. The substitution of GVAR generates two one-relation
subqueries:

q131: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E1"

q132: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E2"

These queries may then be executed. �

This dynamic query optimization algorithm (called Dynamic-QOA) is depicted
in Algorithm 8.1. The algorithm works recursively until there remain no more
monorelation queries to be processed. It consists of applying the selections and
projections as soon as possible by detachment. The results of the monorelation queries
are stored in data structures that are capable of optimizing the later queries (such as
joins). The irreducible queries that remain after detachment must be processed by
tuple substitution. For the irreducible query, denoted by MRQ′, the smallest relation
whose cardinality is known from the result of the preceding query is chosen for
substitution. This simple method enables one to generate the smallest number of
subqueries. Monorelation queries generated by the reduction algorithm are executed
after choosing the best existing access path to the relation, according to the query
qualification.

8.2 Centralized Query Optimization 261

Algorithm 8.1: Dynamic-QOA
Input: MRQ: multirelation query with n relations
Output: out put: result of execution
begin

out put← φ ;
if n = 1 then

out put← run(MRQ) {execute the one relation query}
{detach MRQ into m one-relation queries (ORQ) and one multirelation
query} ORQ1, . . . ,ORQm,MRQ′←MRQ ;
for i from 1 to m do

out put ′← run(ORQi) ; {execute ORQi}
out put← out put ∪out put ′ {merge all results}

R← CHOOSE RELATION(MRQ′) ; {R chosen for tuple substitution}
for each tuple t ∈ R do

MRQ′′← substitute values for t in MRQ′ ;
out put ′← Dynamic-QOA(MRQ′′) ; {recursive call}
out put← out put ∪out put ′ {merge all results}

end

8.2.2 Static Query Optimization

With static query optimization, there is a clear separation between the generation of
the QEP at compile-time and its execution by the DBMS execution engine. Thus, an
accurate cost model is key to predict the costs of candidate QEPs.

The most popular static query optimization algorithm is that of System R [Astra-
han et al., 1976], also one of the first relational DBMS. In this section, we present
this algorithm based on the description by Selinger et al. [1979]. Most commercial
relational DBMSs have implemented variants of this algorithm due to its efficiency
and compatibility with query compilation.

The input to the optimizer is a relational algebra tree resulting from the decompo-
sition of an SQL query. The output is a QEP that implements the “optimal” relational
algebra tree.

The optimizer assigns a cost (in terms of time) to every candidate tree and retains
the one with the smallest cost. The candidate trees are obtained by a permutation of
the join orders of the n relations of the query using the commutativity and associativity
rules. To limit the overhead of optimization, the number of alternative trees is
reduced using dynamic programming. The set of alternative strategies is constructed
dynamically so that, when two joins are equivalent by commutativity, only the
cheapest one is kept. Furthermore, the strategies that include Cartesian products are
eliminated whenever possible.

The cost of a candidate strategy is a weighted combination of I/O and CPU costs
(times). The estimation of such costs (at compile time) is based on a cost model that

262 8 Optimization of Distributed Queries

provides a cost formula for each low-level operation (e.g., select using a B-tree index
with a range predicate). For most operations (except exact match select), these cost
formulas are based on the cardinalities of the operands. The cardinality information
for the relations stored in the database is found in the database statistics. The car-
dinality of the intermediate results is estimated based on the operation selectivity
factors discussed in Section 8.1.3.

The optimization algorithm consists of two major steps. First, the best access
method to each individual relation based on a select predicate is predicted (this is
the one with the least cost). Second, for each relation R, the best join ordering is
estimated, where R is first accessed using its best single-relation access method. The
cheapest ordering becomes the basis for the best execution plan.

In considering the joins, there are two basic algorithms available, with one of them
being optimal in a given context. For the join of two relations, the relation whose
tuples are read first is called the external, while the other, whose tuples are found
according to the values obtained from the external relation, is called the internal
relation. An important decision with either join method is to determine the cheapest
access path to the internal relation.

The first method, called nested-loop, performs two loops over the relations. For
each tuple of the external relation, the tuples of the internal relation that satisfy the
join predicate are retrieved one by one to form the resulting relation. An index or
a hashed table on the join attribute is a very efficient access path for the internal
relation. In the absence of an index, for relations of n1 and n2 tuples, respectively,
this algorithm has a cost proportional to n1 * n2, which may be prohibitive if n1 and
n2 are high. Thus, an efficient variant is to build a hashed table on the join attribute
for the internal relation (chosen as the smallest relation) before applying nested-loop.
If the internal relation is itself the result of a previous operation, then the cost of
building the hashed table can be shared with that of producing the previous result.

The second method, called merge-join, consists of merging two sorted relations
on the join attribute. Indices on the join attribute may be used as access paths. If
the join criterion is equality, the cost of joining two relations of n1 and n2 tuples,
respectively, is proportional to n1 + n2. Therefore, this method is always chosen
when there is an equijoin, and when the relations are previously sorted. If only one
or neither of the relations are sorted, the cost of the nested-loop algorithm is to be
compared with the combined cost of the merge join and of the sorting. The cost of
sorting n pages is proportional to n logn. In general, it is useful to sort and apply the
merge join algorithm when large relations are considered.

The simplified version of the static optimization algorithm, for a select-project-
join query, is shown in Algorithm 8.2. It consists of two loops, the first of which
selects the best single-relation access method to each relation in the query, while the
second examines all possible permutations of join orders (there are n! permutations
with n relations) and selects the best access strategy for the query. The permutations
are produced by the dynamic construction of a tree of alternative strategies. First,
the join of each relation with every other relation is considered, followed by joins of
three relations. This continues until joins of n relations are optimized. Actually, the
algorithm does not generate all possible permutations since some of them are useless.

8.2 Centralized Query Optimization 263

As we discussed earlier, permutations involving Cartesian products are eliminated,
as are the commutatively equivalent strategies with the highest cost. With these two
heuristics, the number of strategies examined has an upper bound of 2n rather than
n!.

Algorithm 8.2: Static-QOA
Input: QT : query tree with n relations
Output: out put: best QEP
begin

for each relation Ri ∈ QT do
for each access path APi j to Ri do

compute cost(APi j)
best APi← APi j with minimum cost ;
for each order (Ri1,Ri2, · · · ,Rin) with i = 1, · · · ,n! do

build QEP (. . .((best APi1 1 Ri2) 1 Ri3) 1 . . . 1 Rin) ;
compute cost (QEP)

out put ← QEP with minimum cost

end

Example 8.6. Let us illustrate this algorithm with the query q1 (see Example 8.4) on
the engineering database. The join graph of q1 is given in Figure 8.8. For short, the
label ENO on edge EMP–ASG stands for the predicate EMP.ENO=ASG.ENO and
the label PNO on edge ASG–PROJ stands for the predicate ASG.PNO=PROJ.PNO.
We assume the following indices:

EMP has an index on ENO
ASG has an index on PNO
PROJ has an index on PNO and an index on PNAME

EMP

ASG

PROJ

ENO PNO

Fig. 8.8 Join Graph of Query q1

We assume that the first loop of the algorithm selects the following best single-
relation access paths:

264 8 Optimization of Distributed Queries

EMP: sequential scan (because there is no selection on EMP)
ASG: sequential scan (because there is no selection on ASG)
PROJ: index on PNAME (because there is a selection on PROJ

based on PNAME)

The dynamic construction of the tree of alternative strategies is illustrated in Figure
8.9. Note that the maximum number of join orders is 3!; dynamic search considers
fewer alternatives, as depicted in Figure 8.9. The operations marked “pruned” are
dynamically eliminated. The first level of the tree indicates the best single-relation
access method. The second level indicates, for each of these, the best join method
with any other relation. Strategies (EMP × PROJ) and (PROJ × EMP) are pruned
because they are Cartesian products that can be avoided (by other strategies). We
assume that (EMP 1 ASG) and (ASG 1 PROJ) have a cost higher than (ASG 1

EMP) and (PROJ 1 ASG), respectively. Thus they can be pruned because there are
better join orders equivalent by commutativity. The two remaining possibilities are
given at the third level of the tree. The best total join order is the least costly of
((ASG 1 EMP) 1 PROJ) and ((PROJ 1 ASG) 1 EMP). The latter is the only one
that has a useful index on the select attribute and direct access to the joining tuples
of ASG and EMP. Therefore, it is chosen with the following access methods:

ASGEMP

EMP X PROJ
pruned pruned pruned

PROJ

PROJ X EMP
pruned

(PROJ ASG) EMP

PROJ ASG

(ASG EMP) PROJ

EMP ASG ASG PROJASG EMP

Fig. 8.9 Alternative Join Orders

Select PROJ using index on PNAME
Then join with ASG using index on PNO
Then join with EMP using index on ENO

�

The performance measurements substantiate the important contribution of the
CPU time to the total time of the query[Mackert and Lohman, 1986]. The accuracy
of the optimizer’s estimations is generally good when the relations can be contained
in the main memory buffers, but degrades as the relations increase in size and are

8.2 Centralized Query Optimization 265

written to disk. An important performance parameter that should also be considered
for better predictions is buffer utilization.

8.2.3 Hybrid Query Optimization

Dynamic and static query optimimization both have advantages and drawbacks.
Dynamic query optimization mixes optimization and execution and thus can make
accurate optimization choices at run-time. However, query optimization is repeated
for each execution of the query. Therefore, this approach is best for ad-hoc queries.
Static query optimization, done at compilation time, amortizes the cost of optimiza-
tion over multiple query executions. The accuracy of the cost model is thus critical
to predict the costs of candidate QEPs. This approach is best for queries embedded
in stored procedures, and has been adopted by all commercial DBMSs.

However, even with a sophisticated cost model, there is an important problem
that prevents accurate cost estimation and comparison of QEPs at compile-time.
The problem is that the actual bindings of parameter values in embedded queries is
not known until run-time. Consider for instance the selection predicate “WHERE
R.A = $a” where “$a” is a parameter value. To estimate the cardinality of this
selection, the optimizer must rely on the assumption of uniform distribution of A
values in R and cannot make use of histograms. Since there is a runtime binding
of the parameter a, the accurate selectivity of σA=$a(R) cannot be estimated until
runtime.

Thus, it can make major estimation errors that can lead to the choice of suboptimal
QEPs.

Hybrid query optimization attempts to provide the advantages of static query opti-
mization while avoiding the issues generated by inaccurate estimates. The approach
is basically static, but further optimization decisions may take place at run time.
This approach was pionnered in System R by adding a conditional runtime reopti-
mization phase for execution plans statically optimized [Chamberlin et al., 1981].
Thus, plans that have become infeasible (e.g., because indices have been dropped)
or suboptimal (e.g. because of changes in relation sizes) are reoptimized. However,
detecting suboptimal plans is hard and this approach tends to perform much more
reoptimization than necessary. A more general solution is to produce dynamic QEPs
which include carefully selected optimization decisions to be made at runtime using
“choose-plan” operators [Cole and Graefe, 1994]. The choose-plan operator links two
or more equivalent subplans of a QEP that are incomparable at compile-time because
important runtime information (e.g. parameter bindings) is missing to estimate costs.
The execution of a choose-plan operator yields the comparison of the subplans based
on actual costs and the selection of the best one. Choose-plan nodes can be inserted
anywhere in a QEP.

Example 8.7. Consider the following query expressed in relational algebra:

266 8 Optimization of Distributed Queries

σA≤$a(R1) 1 R2 1 R3

Figure 8.10 shows a dynamic execution plan for this query. We assume that each
join is performed by nested-loop, with the left operand relation as external and the
right operand relation as internal. The bottom choose-plan operator compares the
cost of two alternative subplans for joining R1 and R2, the left subplan being better
than the right one if the selection predicate has high selectivity. As stated above, since
there is a runtime binding of the parameter $a, the accurate selectivity of σA≤$a(R1)
cannot be estimated until runtime. The top choose-plan operator compares the cost
of two alternative subplans for joining the result of the bottom choose-plan operation
with R3. Depending on the estimated size of the join of R1 and R2, which indirectly
depends on the selectivity of the selection on R1 it may be better to use R3 as external
or internal relation. �

R
1

R
2

R
3

R
3

R
2 R

1

Choose-plan

Choose-plan

σ

σ

Fig. 8.10 A Dynamic Execution Plan

Dynamic QEPs are produced at compile-time using any static algorithm such as
the one presented in Section 8.2.2. However, instead of producing a total order of
operations, the optimizer must produce a partial order by introducing choose-node
operators anywhere in the QEP. The main modification necessary to a static query
optimizer to handle dynamic QEPs is that the cost model supports incomparable
costs of plans in addition to the standard values “greater than”, “less than” and “equal
to”. Costs may be incomparable because the costs of some subplans are unknown at
compile-time. Another reason for cost incomparability is when cost is modeled as an
interval of possible cost values rather than a single value [Cole and Graefe, 1994].
Therefore, if two plan costs have overlapping intervals, it is not possible to decide
which one is better and they should be considered as incomparable.

Given a dynamic QEP, produced by a static query optimizer, the choose-plan
decisions must be made at query startup time. The most effective solution is to simply
evaluate the costs of the participating subplans and compare them. In Algorithm 8.3,

8.3 Join Ordering in Distributed Queries 267

we describe the startup procedure (called Hybrid-QOA) which makes the optimization
decisions to produce the final QEP and run it. The algorithm executes the choose-plan
operators in bottom-up order and propagates cost information upward in the QEP.

Algorithm 8.3: Hybrid-QOA
Input: QEP: dynamic QEP; B: Query parameter bindinds
Output: out put: result of execution
begin

best QEP← QEP ;
for each choose-plan operator CP in bottom-up order do

for each alternative subplan SP do
compute cost(CP) using B

best QEP← best QEP without CP and SP of highest cost
out put← execute best QEP

end

Experimentation with the Volcano query optimizer [Graefe, 1994] has shown
that this hybrid query optimization outperforms both dynamic and static query
optimization. In particular, the overhead of dynamic QEP evaluation at startup time is
significantly less than that of dynamic optimization, and the reduced execution time
of dynamic QEPs relative to static QEPs more than offsets the startup time overhead.

8.3 Join Ordering in Distributed Queries

As we have seen in Section 8.2, ordering joins is an important aspect of centralized
query optimization. Join ordering in a distributed context is even more important
since joins between fragments may increase the communication time. Two basic
approaches exist to order joins in distributed queries. One tries to optimize the
ordering of joins directly, whereas the other replaces joins by combinations of
semijoins in order to minimize communication costs.

8.3.1 Join Ordering

Some algorithms optimize the ordering of joins directly without using semijoins. The
purpose of this section is to stress the difficulty that join ordering presents and to
motivate the subsequent section, which deals with the use of semijoins to optimize
join queries.

A number of assumptions are necessary to concentrate on the main issues. Since
the query is localized and expressed on fragments, we do not need to distinguish

268 8 Optimization of Distributed Queries

between fragments of the same relation and fragments of different relations. To
simplify notation, we use the term relation to designate a fragment stored at a
particular site. Also, to concentrate on join ordering, we ignore local processing time,
assuming that reducers (selection, projection) are executed locally either before or
during the join (remember that doing selection first is not always efficient). Therefore,
we consider only join queries whose operand relations are stored at different sites.
We assume that relation transfers are done in a set-at-a-time mode rather than in a
tuple-at-a-time mode. Finally, we ignore the transfer time for producing the data at a
result site.

Let us first concentrate on the simpler problem of operand transfer in a single
join. The query is R 1 S, where R and S are relations stored at different sites. The
obvious choice of the relation to transfer is to send the smaller relation to the site
of the larger one, which gives rise to two possibilities, as shown in Figure 8.11. To
make this choice we need to evaluate the sizes of R and S. We now consider the case
where there are more than two relations to join. As in the case of a single join, the
objective of the join-ordering algorithm is to transmit smaller operands. The difficulty
stems from the fact that the join operations may reduce or increase the size of the
intermediate results. Thus, estimating the size of join results is mandatory, but also
difficult. A solution is to estimate the communication costs of all alternative strategies
and to choose the best one. However, as discussed earlier, the number of strategies
grows rapidly with the number of relations. This approach makes optimization costly,
although this overhead is amortized rapidly if the query is executed frequently.

R S

if size(R) < size(S)

if size(R) > size(S)

Fig. 8.11 Transfer of Operands in Binary Operation

Example 8.8. Consider the following query expressed in relational algebra:

PROJ 1PNO ASG 1ENO EMP

whose join graph is given in Figure 8.12. Note that we have made certain assumptions
about the locations of the three relations. This query can be executed in at least five
different ways. We describe these strategies by the following programs, where (R→
site j) stands for “relation R is transferred to site j.”

1. EMP→ site 2; Site 2 computes EMP′ = EMP 1 ASG; EMP′→ site 3; Site 3
computes EMP′ 1 PROJ.

2. ASG→ site 1; Site 1 computes EMP′ = EMP 1 ASG; EMP′→ site 3; Site 3
computes EMP′ 1 PROJ.

8.3 Join Ordering in Distributed Queries 269

EMP

ASG

PROJ

PNOENO

Site 2

Site 3Site 1

Fig. 8.12 Join Graph of Distributed Query

3. ASG→ site 3; Site 3 computes ASG′ = ASG 1 PROJ; ASG′→ site 1; Site 1
computes ASG′ 1 EMP.

4. PROJ→ site 2; Site 2 computes PROJ′ = PROJ 1 ASG; PROJ′→ site 1; Site
1 computes PROJ′ 1 EMP.

5. EMP→ site 2; PROJ→ site 2; Site 2 computes EMP 1 PROJ 1 ASG

To select one of these programs, the following sizes must be known or predicted:
size(EMP), size(ASG), size(PROJ), size(EMP 1 ASG), and size(ASG 1 PROJ).
Furthermore, if it is the response time that is being considered, the optimization must
take into account the fact that transfers can be done in parallel with strategy 5. An
alternative to enumerating all the solutions is to use heuristics that consider only
the sizes of the operand relations by assuming, for example, that the cardinality of
the resulting join is the product of operand cardinalities. In this case, relations are
ordered by increasing sizes and the order of execution is given by this ordering and
the join graph. For instance, the order (EMP, ASG, PROJ) could use strategy 1, while
the order (PROJ, ASG, EMP) could use strategy 4. �

8.3.2 Semijoin Based Algorithms

In this section we show how the semijoin operation can be used to decrease the
total time of join queries. The theory of semijoins was defined by Bernstein and
Chiu [1981]. We are making the same assumptions as in Section 8.3.1. The main
shortcoming of the join approach described in the preceding section is that entire
operand relations must be transferred between sites. The semijoin acts as a size
reducer for a relation much as a selection does.

The join of two relations R and S over attribute A, stored at sites 1 and 2, respec-
tively, can be computed by replacing one or both operand relations by a semijoin
with the other relation, using the following rules:

R 1A S⇔ (RnA S) 1A S

⇔ R 1A (SnA R)

270 8 Optimization of Distributed Queries

⇔ (RnA S) 1A (SnA R)

The choice between one of the three semijoin strategies requires estimating their
respective costs.

The use of the semijoin is beneficial if the cost to produce and send it to the other
site is less than the cost of sending the whole operand relation and of doing the actual
join. To illustrate the potential benefit of the semijoin, let us compare the costs of the
two alternatives: R 1A S versus (RnA S) 1A S, assuming that size(R)< size(S).

The following program, using the notation of Section 8.3.1, uses the semijoin
operation:

1. ΠA(S)→ site 1

2. Site 1 computes R′ = RnA S

3. R′→ site 2

4. Site 2 computes R′ 1A S

For the sake of simplicity, let us ignore the constant TMSG in the communication
time assuming that the term TT R ∗ size(R) is much larger. We can then compare the
two alternatives in terms of the amount of transmitted data. The cost of the join-based
algorithm is that of transferring relation R to site 2. The cost of the semijoin-based
algorithm is the cost of steps 1 and 3 above. Therefore, the semijoin approach is
better if

size(ΠA(S))+ size(RnA S)< size(R)

The semijoin approach is better if the semijoin acts as a sufficient reducer, that
is, if a few tuples of R participate in the join. The join approach is better if almost
all tuples of R participate in the join, because the semijoin approach requires an
additional transfer of a projection on the join attribute. The cost of the projection step
can be minimized by encoding the result of the projection in bit arrays [Valduriez,
1982], thereby reducing the cost of transferring the joined attribute values. It is
important to note that neither approach is systematically the best; they should be
considered as complementary.

More generally, the semijoin can be useful in reducing the size of the operand
relations involved in multiple join queries. However, query optimization becomes
more complex in these cases. Consider again the join graph of relations EMP, ASG,
and PROJ given in Figure 8.12. We can apply the previous join algorithm using
semijoins to each individual join. Thus an example of a program to compute EMP 1

ASG 1 PROJ is EMP′ 1 ASG′ 1 PROJ, where EMP′ = EMP n ASG and ASG′ =
ASG n PROJ.

However, we may further reduce the size of an operand relation by using more
than one semijoin. For example, EMP′ can be replaced in the preceding program by
EMP′′ derived as

EMP′′ = EMP n (ASG nPROJ)

8.3 Join Ordering in Distributed Queries 271

since if size(ASG n PROJ) ≤ size(ASG), we have size(EMP′′) ≤ size(EMP′). In this
way, EMP can be reduced by the sequence of semijoins: EMP n (ASG n PROJ).
Such a sequence of semijoins is called a semijoin program for EMP. Similarly,
semijoin programs can be found for any relation in a query. For example, PROJ could
be reduced by the semijoin program PROJ n (ASG n EMP). However, not all of the
relations involved in a query need to be reduced; in particular, we can ignore those
relations that are not involved in the final joins.

For a given relation, there exist several potential semijoin programs. The number
of possibilities is in fact exponential in the number of relations. But there is one
optimal semijoin program, called the full reducer, which for each relation R reduces
R more than the others [Chiu and Ho, 1980]. The problem is to find the full reducer.
A simple method is to evaluate the size reduction of all possible semijoin programs
and to select the best one. The problems with the enumerative method are twofold:

1. There is a class of queries, called cyclic queries, that have cycles in their join
graph and for which full reducers cannot be found.

2. For other queries, called tree queries, full reducers exist, but the number of
candidate semijoin programs is exponential in the number of relations, which
makes the enumerative approach NP-hard.

In what follows we discuss solutions to these problems.

Example 8.9. Consider the following relations, where attribute CITY has been added
to relations EMP (renamed ET), PROJ (renamed PT) and ASG (renamed AT) of
the engineering database. Attribute CITY of AT corresponds to the city where the
employee identified by ENO lives.

ET(ENO, ENAME, TITLE, CITY)
AT(ENO, PNO, RESP, DUR)
PT(PNO, PNAME, BUDGET, CITY)

The following SQL query retrieves the names of all employees living in the city
in which their project is located together with the project name.

SELECT ENAME, PNAME
FROM ET, AT, PT
WHERE ET.ENO = AT.ENO
AND AT.ENO = PT.ENO
AND ET.CITY = PT.CITY

As illustrated in Figure 8.13a, this query is cyclic. �

No full reducer exists for the query in Example 8.9. In fact, it is possible to derive
semijoin programs for reducing it, but the number of operations is multiplied by
the number of tuples in each relation, making the approach inefficient. One solution
consists of transforming the cyclic graph into a tree by removing one arc of the
graph and by adding appropriate predicates to the other arcs such that the removed

272 8 Optimization of Distributed Queries

PT

ET

AT

AT.PNO =
PT.PNO

ET.ENO=AT.ENO

ET.CITY=
PT.CITY

(a) Cyclic query

PT

AT

AT.PNO=PT.PNO
and
AT.CITY=PT.CITY

 ET.ENO=AT.ENO

and ET.CITY=AT.CITY

(b) Equivalent acyclic query

ET

Fig. 8.13 Transformation of Cyclic Query

predicate is preserved by transitivity [Kambayashi et al., 1982]. In the example of
Figure 8.13b, where the arc (ET, PT) is removed, the additional predicate ET.CITY =
AT.CITY and AT.CITY = PT.CITY imply ET.CITY = PT.CITY by transitivity. Thus
the acyclic query is equivalent to the cyclic query.

Although full reducers for tree queries exist, the problem of finding them is NP-
hard. However, there is an important class of queries, called chained queries, for
which a polynomial algorithm exists [Chiu and Ho, 1980; Ullman, 1982]). A chained
query has a join graph where relations can be ordered, and each relation joins only
with the next relation in the order. Furthermore, the result of the query is at the end
of the chain. For instance, the query in Figure 8.12 is a chain query. Because of the
difficulty of implementing an algorithm with full reducers, most systems use single
semijoins to reduce the relation size.

8.3.3 Join versus Semijoin

Compared with the join, the semijoin induces more operations but possibly on smaller
operands. Figure 8.14 illustrates these differences with an equivalent pair of join and
semijoin strategies for the query whose join graph is given in Figure 8.12. The join of
two relations, EMP 1 ASG in Figure 8.12, is done by sending one relation, ASG, to
the site of the other one, EMP, to complete the join locally. When a semijoin is used,
however, the transfer of relation ASG is avoided. Instead, it is replaced by the transfer
of the join attribute values of relation EMP to the site of relation ASG, followed
by the transfer of the matching tuples of relation ASG to the site of relation EMP,
where the join is completed. If the join attribute length is smaller than the length
of an entire tuple and the semijoin has good selectivity, then the semijoin approach
can result in significant savings in communication time. Using semijoins may well
increase the local processing time, since one of the two joined relations must be
accessed twice. For example, relations EMP and PROJ are accessed twice in Figure

8.4 Distributed Query Optimization 273

8.14. Furthermore, the join of two intermediate relations produced by semijoins
cannot exploit the indices that were available on the base relations. Therefore, using
semijoins might not be a good idea if the communication time is not the dominant
factor, as is the case with local area networks [Lu and Carey, 1985].

(a) Join approach (b) Semijoin approach

EMP ASG

PROJ

PROJ

EMP

EMPASG

∏ENO

∏PNO

PROJ

Fig. 8.14 Join versus Semijoin Approaches

Semijoins can still be beneficial with fast networks if they have very good selec-
tivity and are implemented with bit arrays [Valduriez, 1982]. A bit array BA[1 : n] is
useful in encoding the join attribute values present in one relation. Let us consider
the semijoin RnS. Then BA[i] is set to 1 if there exists a join attribute value A = val
in relation S such that h(val) = i, where h is a hash function. Otherwise, BA[i] is set
to 0. Such a bit array is much smaller than a list of join attribute values. Therefore,
transferring the bit array instead of the join attribute values to the site of relation R
saves communication time. The semijoin can be completed as follows. Each tuple of
relation R, whose join attribute value is val, belongs to the semijoin if BA[h(val)] = 1.

8.4 Distributed Query Optimization

In this section we illustrate the use of the techniques presented in earlier sections
within the context of four basic query optimization algorithms. First, we present the
dynamic and static approaches which extend the centralized algorithms presented
in Section 8.2. Then, we describe a popular semijoin-based optimization algorithm.
Finally, we present a hybrid approach.

274 8 Optimization of Distributed Queries

8.4.1 Dynamic Approach

We illustrate the dynamic approach with the algorithm of Distributed INGRES
[Epstein et al., 1978] that is derived from the algorithm described in Section 8.2.1.
The objective function of the algorithm is to minimize a combination of both the
communication time and the response time. However, these two objectives may be
conflicting. For instance, increasing communication time (by means of parallelism)
may well decrease response time. Thus, the function can give a greater weight
to one or the other. Note that this query optimization algorithm ignores the cost
of transmitting the data to the result site. The algorithm also takes advantage of
fragmentation, but only horizontal fragmentation is handled for simplicity.

Since both general and broadcast networks are considered, the optimizer takes
into account the network topology. In broadcast networks, the same data unit can be
transmitted from one site to all the other sites in a single transfer, and the algorithm
explicitly takes advantage of this capability. For example, broadcasting is used to
replicate fragments and then to maximize the degree of parallelism.

The input to the algorithm is a query expressed in tuple relational calculus (in
conjunctive normal form) and schema information (the network type, as well as
the location and size of each fragment). This algorithm is executed by the site,
called the master site, where the query is initiated. The algorithm, which we call
Dynamic*-QOA, is given in Algorithm 8.4.

Algorithm 8.4: Dynamic*-QOA
Input: MRQ: multirelation query
Output: result of the last multirelation query
begin

for each detachable ORQi in MRQ do {ORQ is monorelation query}
run(ORQi) (1)

MRQ′ list← REDUCE(MRQ) {MRQ repl. by n irreducible queries} (2)
while n 6= 0 do {n is the number of irreducible queries} (3)
{choose next irreducible query involving the smallest fragments}
MRQ′← SELECT QUERY(MRQ′ list); (3.1)
{determine fragments to transfer and processing site for MRQ′}
Fragment-site-list← SELECT STRATEGY(MRQ′); (3.2)
{move the selected fragments to the selected sites}
for each pair (F,S) in Fragment-site-list do

move fragment F to site S (3.3)
execute MRQ′; (3.4)
n← n−1

{output is the result of the last MRQ′}
end

8.4 Distributed Query Optimization 275

All monorelation queries (e.g., selection and projection) that can be detached
are first processed locally [Step (1)]. Then the reduction algorithm [Wong and
Youssefi, 1976] is applied to the original query [Step (2)]. Reduction is a technique
that isolates all irreducible subqueries and monorelation subqueries by detachment
(see Section 8.2.1). Monorelation subqueries are ignored because they have already
been processed in step (1). Thus the REDUCE procedure produces a sequence of
irreducible subqueries q1→ q2→ ··· → qn, with at most one relation in common
between two consecutive subqueries. Wong and Youssefi [1976] have shown that
such a sequence is unique. Example 8.4 (in Section 8.2.1), which illustrated the
detachment technique, also illustrates what the REDUCE procedure would produce.

Based on the list of irreducible queries isolated in step (2) and the size of each
fragment, the next subquery, MRQ′, which has at least two variables, is chosen at
step (3.1) and steps (3.2), (3.3), and (3.4) are applied to it. Steps (3.1) and (3.2) are
discussed below. Step (3.2) selects the best strategy to process the query MRQ′. This
strategy is described by a list of pairs (F,S), in which F is a fragment to transfer
to the processing site S. Step (3.3) transfers all the fragments to their processing
sites. Finally, step (3.4) executes the query MRQ′. If there are remaining subqueries,
the algorithm goes back to step (3) and performs the next iteration. Otherwise, it
terminates.

Optimization occurs in steps (3.1) and (3.2). The algorithm has produced sub-
queries with several components and their dependency order (similar to the one given
by a relational algebra tree). At step (3.1) a simple choice for the next subquery is to
take the next one having no predecessor and involving the smaller fragments. This
minimizes the size of the intermediate results. For example, if a query q has the
subqueries q1, q2, and q3, with dependencies q1→ q3,q2→ q3, and if the fragments
referred to by q1 are smaller than those referred to by q2, then q1 is selected. Depend-
ing on the network, this choice can also be affected by the number of sites having
relevant fragments.

The subquery selected must then be executed. Since the relation involved in a
subquery may be stored at different sites and even fragmented, the subquery may
nevertheless be further subdivided.

Example 8.10. Assume that relations EMP, ASG, and PROJ of the query of Example
8.4 are stored as follows, where relation EMP is fragmented.

Site 1 Site 2
EMP1 EMP2
ASG PROJ

There are several possible strategies, including the following:

1. Execute the entire query (EMP 1 ASG 1 PROJ) by moving EMP1 and ASG
to site 2.

2. Execute (EMP 1 ASG) 1 PROJ by moving (EMP1 1 ASG) and ASG to site
2, and so on.

276 8 Optimization of Distributed Queries

The choice between the possible strategies requires an estimate of the size of the
intermediate results. For example, if size(EMP1 1 ASG) > size (EMP1), strategy 1
is preferred to strategy 2. Therefore, an estimate of the size of joins is required. �

At step (3.2), the next optimization problem is to determine how to execute the
subquery by selecting the fragments that will be moved and the sites where the
processing will take place. For an n-relation subquery, fragments from n−1 relations
must be moved to the site(s) of fragments of the remaining relation, say Rp, and
then replicated there. Also, the remaining relation may be further partitioned into
k “equalized” fragments in order to increase parallelism. This method is called
fragment-and-replicate and performs a substitution of fragments rather than of tuples.
The selection of the remaining relation and of the number of processing sites k on
which it should be partitioned is based on the objective function and the topology
of the network. Remember that replication is cheaper in broadcast networks than in
point-to-point networks. Furthermore, the choice of the number of processing sites
involves a trade-off between response time and total time. A larger number of sites
decreases response time (by parallel processing) but increases total time, in particular
increasing communication costs.

Epstein et al. [1978] give formulas to minimize either communication time or
processing time. These formulas use as input the location of fragments, their size,
and the network type. They can minimize both costs but with a priority to one. To
illustrate these formulas, we give the rules for minimizing communication time.
The rule for minimizing response time is even more complex. We use the following
assumptions. There are n relations R1,R2, . . . ,Rn involved in the query. R j

i denotes the
fragment of Ri stored at site j. There are m sites in the network. Finally, CTk(#bytes)
denotes the communication time of transferring #bytes to k sites, with 1≤ k ≤ m.

The rule for minimizing communication time considers the types of networks
separately. Let us first concentrate on a broadcast network. In this case we have

CTk(#bytes) =CT1(#bytes)

The rule can be stated as

if max j=1,m(∑
n
i=1 size(R j

i))> maxi=1,n(size(Ri))
then

the processing site is the j that has the largest amount of data
else

Rp is the largest relation and site of Rp is the processing site

If the inequality predicate is satisfied, one site contains an amount of data useful
to the query larger than the size of the largest relation. Therefore, this site should
be the processing site. If the predicate is not satisfied, one relation is larger than the
maximum useful amount of data at one site. Therefore, this relation should be the
Rp, and the processing sites are those which have its fragments.

Let us now consider the case of the point-to-point networks. In this case we have

CTk(#bytes) = k ∗CT1(#bytes)

8.4 Distributed Query Optimization 277

The choice of Rp that minimizes communication is obviously the largest relation.
Assuming that the sites are arranged by decreasing order of amounts of useful data
for the query, that is,

n

∑
i=1

size(R j
i)>

n

∑
i=1

size(R j+1
i)

the choice of k, the number of sites at which processing needs to be done, is given as

if ∑i 6=p(size(Ri)− size(R1
i))> size(R1

p)
then

k = 1
else

k is the largest j such that ∑i6=p(size(Ri)− size(R j
i))≤ size(R j

p)

This rule chooses a site as the processing site only if the amount of data it must
receive is smaller than the additional amount of data it would have to send if it were
not a processing site. Obviously, the then-part of the rule assumes that site 1 stores a
fragment of Rp.

Example 8.11. Let us consider the query PROJ 1 ASG, where PROJ and ASG are
fragmented. Assume that the allocation of fragments and their sizes are as follows
(in kilobytes):

Site 1 Site 2 Site 3 Site 4
PROJ 1000 1000 1000 1000
ASG 2000

With a point–to–point network, the best strategy is to send each PROJi to site 3,
which requires a transfer of 3000 kbytes, versus 6000 kbytes if ASG is sent to sites 1,
2, and 4. However, with a broadcast network, the best strategy is to send ASG (in
a single transfer) to sites 1, 2, and 4, which incurs a transfer of 2000 kbytes. The
latter strategy is faster and maximizes response time because the joins can be done in
parallel. �

This dynamic query optimization algorithm is characterized by a limited search
of the solution space, where an optimization decision is taken for each step without
concerning itself with the consequences of that decision on global optimization.
However, the algorithm is able to correct a local decision that proves to be incorrect.

8.4.2 Static Approach

We illustrate the static approach with the algorithm of R* [Selinger and Adiba, 1980;
Lohman et al., 1985] which is a substantial extension of the techniques we described
in Section 8.2.2). This algorithm performs an exhaustive search of all alternative

278 8 Optimization of Distributed Queries

strategies in order to choose the one with the least cost. Although predicting and enu-
merating these strategies may be costly, the overhead of exhaustive search is rapidly
amortized if the query is executed frequently. Query compilation is a distributed task,
coordinated by a master site, where the query is initiated. The optimizer of the master
site makes all intersite decisions, such as the selection of the execution sites and the
fragments as well as the method for transferring data. The apprentice sites, which
are the other sites that have relations involved in the query, make the remaining local
decisions (such as the ordering of joins at a site) and generate local access plans for
the query. The objective function of the optimizer is the general total time function,
including local processing and communications costs (see Section 8.1.1).

We now summarize this query optimization algorithm. The input to the algorithm
is a localized query expressed as a relational algebra tree (the query tree), the location
of relations, and their statistics. The algorithm is described by the procedure Static*-
QOA in Algorithm 8.5.

Algorithm 8.5: Static*-QOA
Input: QT : query tree
Output: strat: minimum cost strategy
begin

for each relation Ri ∈ QT do
for each access path APi j to Ri do

compute cost(APi j)

best APi← APi j with minimum cost

for each order (Ri1,Ri2, · · · ,Rin) with i = 1, · · · ,n! do
build strategy (. . .((best APi1 1 Ri2) 1 Ri3) 1 . . . 1 Rin) ;
compute the cost of strategy

strat← strategy with minimum cost ;
for each site k storing a relation involved in QT do

LSk← local strategy (strategy, k) ;
send (LSk, site k) {each local strategy is optimized at site k}

end

As in the centralized case, the optimizer must select the join ordering, the join
algorithm (nested-loop or merge-join), and the access path for each fragment (e.g.,
clustered index, sequential scan, etc.). These decisions are based on statistics and
formulas used to estimate the size of intermediate results and access path information.
In addition, the optimizer must select the sites of join results and the method of
transferring data between sites. To join two relations, there are three candidate sites:
the site of the first relation, the site of the second relation, or a third site (e.g., the site
of a third relation to be joined with). Two methods are supported for intersite data
transfers.

8.4 Distributed Query Optimization 279

1. Ship-whole. The entire relation is shipped to the join site and stored in a
temporary relation before being joined. If the join algorithm is merge join,
the relation does not need to be stored, and the join site can process incoming
tuples in a pipeline mode, as they arrive.

2. Fetch-as-needed. The external relation is sequentially scanned, and for each
tuple the join value is sent to the site of the internal relation, which selects the
internal tuples matching the value and sends the selected tuples to the site of
the external relation. This method is equivalent to the semijoin of the internal
relation with each external tuple.

The trade-off between these two methods is obvious. Ship-whole generates a
larger data transfer but fewer messages than fetch-as-needed. It is intuitively better to
ship whole relations when they are small. On the contrary, if the relation is large and
the join has good selectivity (only a few matching tuples), the relevant tuples should
be fetched as needed. The optimizer does not consider all possible combinations
of join methods with transfer methods since some of them are not worthwhile. For
example, it would be useless to transfer the external relation using fetch-as-needed
in the nested-loop join algorithm, because all the outer tuples must be processed
anyway and therefore should be transferred as a whole.

Given the join of an external relation R with an internal relation S on attribute A,
there are four join strategies. In what follows we describe each strategy in detail and
provide a simplified cost formula for each, where LT denotes local processing time
(I/O + CPU time) and CT denotes communication time. For simplicity, we ignore
the cost of producing the result. For convenience, we denote by s the average number
of tuples of S that match one tuple of R:

s =
card(SnA R)

card(R)

Strategy 1.

Ship the entire external relation to the site of the internal relation. In this case the
external tuples can be joined with S as they arrive. Thus we have

Total cost = LT (retrieve card(R) tuples from R)

+CT (size(R))

+LT (retrieve s tuples from S)∗ card(R)

Strategy 2.

Ship the entire internal relation to the site of the external relation. In this case,
the internal tuples cannot be joined as they arrive, and they need to be stored in a
temporary relation T . Thus we have

280 8 Optimization of Distributed Queries

Total cost = LT (retrieve card(S) tuples from S)

+CT (size(S))

+LT (store card(S) tuples in T)

+LT (retrieve card(R) tuples from R)

+LT (retrieve s tuples from T)∗ card(R)

Strategy 3.

Fetch tuples of the internal relation as needed for each tuple of the external relation.
In this case, for each tuple in R, the join attribute value is sent to the site of S. Then
the s tuples of S which match that value are retrieved and sent to the site of R to be
joined as they arrive. Thus we have

Total cost = LT (retrieve card(R) tuples from R)

+CT (length(A))∗ card(R)

+LT (retrieve s tuples from S)∗ card(R)

+CT (s∗ length(S))∗ card(R)

Strategy 4.

Move both relations to a third site and compute the join there. In this case the internal
relation is first moved to a third site and stored in a temporary relation T . Then the
external relation is moved to the third site and its tuples are joined with T as they
arrive. Thus we have

Total cost = LT (retrieve card(S) tuples from S)

+CT (size(S))

+LT (store card(S) tuples in T)

+LT (retrieve card(R) tuples from R)

+CT (size(R))

+LT (retrieve s tuples from T)∗ card(R)

Example 8.12. Let us consider a query that consists of the join of relations PROJ, the
external relation, and ASG, the internal relation, on attribute PNO. We assume that
PROJ and ASG are stored at two different sites and that there is an index on attribute
PNO for relation ASG. The possible execution strategies for the query are as follows:

1. Ship whole PROJ to site of ASG.

2. Ship whole ASG to site of PROJ.

3. Fetch ASG tuples as needed for each tuple of PROJ.

8.4 Distributed Query Optimization 281

4. Move ASG and PROJ to a third site.

The optimization algorithm predicts the total time of each strategy and selects the
cheapest. Given that there is no operation following the join PROJ 1 ASG, strategy
4 obviously incurs the highest cost since both relations must be transferred. If
size(PROJ) is much larger than size(ASG), strategy 2 minimizes the communication
time and is likely to be the best if local processing time is not too high compared to
strategies 1 and 3. Note that the local processing time of strategies 1 and 3 is probably
much better than that of strategy 2 since they exploit the index on the join attribute.

If strategy 2 is not the best, the choice is between strategies 1 and 3. Local
processing costs in both of these alternatives are identical. If PROJ is large and only
a few tuples of ASG match, strategy 3 probably incurs the least communication time
and is the best. Otherwise, that is, if PROJ is small or many tuples of ASG match,
strategy 1 should be the best. �

Conceptually, the algorithm can be viewed as an exhaustive search among all
alternatives that are defined by the permutation of the relation join order, join meth-
ods (including the selection of the join algorithm), result site, access path to the
internal relation, and intersite transfer mode. Such an algorithm has a combinatorial
complexity in the number of relations involved. Actually, the algorithm significantly
reduces the number of alternatives by using dynamic programming and the heuristics,
as does the System R’s optimizer (see Section 8.2.2). With dynamic programming,
the tree of alternatives is dynamically constructed and pruned by eliminating the
inefficient choices.

Performance evaluation of the algorithm in the context of both high-speed net-
works (similar to local networks) and medium-speed wide area networks con-
firm the significant contribution of local processing costs, even for wide area net-
works[Lohman and Mackert, 1986; Mackert and Lohman, 1986]. It is shown in
particular that for the distributed join, transferring the entire internal relation outper-
forms the fetch-as-needed method.

8.4.3 Semijoin-based Approach

We illustrate the semijoin-based approach with the algorithm of SDD-1 [Bernstein
et al., 1981] which takes full advantage of the semijoin to minimize communication
cost. The query optimization algorithm is derived from an earlier method called the
“hill-climbing” algorithm [Wong, 1977], which has the distinction of being the first
distributed query processing algorithm. In the hill-climbing algorithm, refinements
of an initial feasible solution are recursively computed until no more cost improve-
ments can be made. The algorithm does not use semijoins, nor does it assume data
replication and fragmentation. It is devised for wide area point-to-point networks.
The cost of transferring the result to the final site is ignored. This algorithm is quite
general in that it can minimize an arbitrary objective function, including the total
time and response time.

282 8 Optimization of Distributed Queries

The hill-climbing algorithm proceeds as follows. The input to the algorithm
includes the query graph, location of relations, and relation statistics. Following the
completion of initial local processing, an initial feasible solution is selected which is
a global execution schedule that includes all intersite communication. It is obtained
by computing the cost of all the execution strategies that transfer all the required
relations to a single candidate result site, and then choosing the least costly strategy.
Let us denote this initial strategy as ES0. Then the optimizer splits ES0 into two
strategies, ES1 followed by ES2, where ES1 consists of sending one of the relations
involved in the join to the site of the other relation. The two relations are joined
locally and the resulting relation is transmitted to the chosen result site (specified
as schedule ES2). If the cost of executing strategies ES1 and ES2, plus the cost of
local join processing, is less than that of ES0, then ES0 is replaced in the schedule by
ES1 and ES2. The process is then applied recursively to ES1 and ES2 until no more
benefit can be gained. Notice that if n-way joins are involved, ES0 will be divided
into n subschedules instead of just two.

The hill-climbing algorithm is in the class of greedy algorithms, which start
with an initial feasible solution and iteratively improve it. The main problem is that
strategies with higher initial cost, which could nevertheless produce better overall
benefits, are ignored. Furthermore, the algorithm may get stuck at a local minimum
cost solution and fail to reach the global minimum.

Example 8.13. Let us illustrate the hill-climbing algorithm using the following query
involving relations EMP, PAY, PROJ, and ASG of the engineering database:

“Find the salaries of engineers who work on the CAD/CAM project”

The query in relational algebra is

ΠSAL (PAY 1TITLE (EMP 1ENO (ASG 1PNO(σPNAME = “CAD/CAM”(PROJ)))))

We assume that TMSG = 0 and TT R = 1. Furthermore, we ignore the local processing,
following which the database is

Relation Size Site
EMP 8 1
PAY 4 2
PROJ 1 3
ASG 10 4

To simplify this example, we assume that the length of a tuple (of every relation)
is 1, which means that the size of a relation is equal to its cardinality. Furthermore,
the placement of the relation is arbitrary. Based on join selectivities, we know that
size(EMP 1 PAY) = size(EMP), size(PROJ 1 ASG) = 2∗ size(PROJ), and size(ASG
1 EMP) = size(ASG).

Considering only data transfers, the initial feasible solution is to choose site 4 as
the result site, producing the schedule

8.4 Distributed Query Optimization 283

ES0 : EMP→ site 4
PAY→ site 4
PROJ→ site 4
Total cost(ES0) = 4+8+1 = 13

This is true because the cost of any other solution is greater than the foregoing
alternative. For example, if one chooses site 2 as the result site and transmits all the
relations to that site, the total cost will be

Total cost = cost(EMP→ site 2) + cost(ASG→ site 2)
+cost(PROJ→ site 2)

= 19

Similarly, the total cost of choosing either site 1 or site 3 as the result site is 15
and 22, respectively.

One way of splitting this schedule (call it ES′) is the following:

ES1 : EMP→ site 2
ES2 : (EMP 1 PAY)→ site 4
ES3 : PROJ→ site 4
Total cost(ES′) = 8+8+1 = 17

A second splitting alternative (ES′′) is as follows:

ES1 : PAY→ site 1
ES2 : (PAY 1 EMP)→ site 4
ES3 : PROJ→ site 4
Total cost(ES′′) = 4+8+1 = 13

Since the cost of either of the alternatives is greater than or equal to the cost of
ES0,ES0 is kept as the final solution. A better solution (ignored by the algorithm) is

B : PROJ→ site 4
ASG′ = (PROJ 1 ASG)→ site 1
(ASG′ 1 EMP)→ site 2
Total cost(B) = 1+2+2 = 5

�

The semijoin-based algorithm extends the hill-climbing algorithm in a number
of ways [Bernstein et al., 1981]. In addition to the extensive use of semijoins, the
objective function is expressed in terms of total communication time (local time and
response time are not considered). Furthermore, the algorithm uses statistics on the
database, called database profiles, where a profile is associated with a relation. The
algorithm also selects an initial feasible solution that is iteratively refined. Finally, a
postoptimization step is added to improve the total time of the solution selected. The
main step of the algorithm consists of determining and ordering beneficial semijoins,
that is semijoins whose cost is less than their benefit.

The cost of a semijoin is that of transferring the semijoin attributes A,

284 8 Optimization of Distributed Queries

Cost(RnA S) = TMSG +TT R ∗ size(ΠA(S))

while its benefit is the cost of transferring irrelevant tuples of R (which is avoided by
the semijoin):

Bene f it(RnA S) = (1−SFSJ(S.A))∗ size(R)∗TT R

The semijoin-based algorithm proceeds in four phases: initialization, selection of
beneficial semijoins, assembly site selection, and postoptimization. The output of the
algorithm is a global strategy for executing the query (Algorithm 8.6).

Algorithm 8.6: Semijoin-based-QOA
Input: QG: query graph with n relations; statistics for each relation
Output: ES: execution strategy
begin

ES← local-operations (QG) ;
modify statistics to reflect the effect of local processing ;
BS← φ ; {set of beneficial semijoins}
for each semijoin SJ in QG do

if cost(SJ)< bene f it(SJ) then
BS← BS∪SJ

while BS 6= φ do
{selection of beneficial semijoins}

SJ← most bene f icial(BS); {SJ: semijoin with max(bene f it− cost)}
BS← BS−SJ; {remove SJ from BS}
ES← ES+SJ; {append SJ to execution strategy}
modify statistics to reflect the effect of incorporating SJ ;
BS← BS− non-beneficial semijoins ;
BS← BS∪ new beneficial semijoins ;

{assembly site selection}
AS(ES)← select site i such that i stores the largest amount of data after all
local operations ;
ES← ES ∪ transfers of intermediate relations to AS(ES) ;
{postoptimization}
for each relation Ri at AS(ES) do

for each semijoin SJ of Ri by R j do
if cost(ES)> cost(ES−SJ) then

ES← ES−SJ

end

The initialization phase generates a set of beneficial semijoins, BS = {SJ1,SJ2, . . . ,
SJk}, and an execution strategy ES that includes only local processing. The next
phase selects the beneficial semijoins from BS by iteratively choosing the most

8.4 Distributed Query Optimization 285

beneficial semijoin, SJi, and modifying the database statistics and BS accordingly.
The modification affects the statistics of relation R involved in SJi and the remaining
semijoins in BS that use relation R. The iterative phase terminates when all semijoins
in BS have been appended to the execution strategy. The order in which semijoins
are appended to ES will be the execution order of the semijoins.

The next phase selects the assembly site by evaluating, for each candidate site,
the cost of transferring to it all the required data and taking the one with the least
cost. Finally, a postoptimization phase permits the removal from the execution
strategy of those semijoins that affect only relations stored at the assembly site.
This phase is necessary because the assembly site is chosen after all the semijoins
have been ordered. The SDD-1 optimizer is based on the assumption that relations
can be transmitted to another site. This is true for all relations except those stored
at the assembly site, which is selected after beneficial semijoins are considered.
Therefore, some semijoins may incorrectly be considered beneficial. It is the role of
postoptimization to remove them from the execution strategy.

Example 8.14. Let us consider the following query:

SELECT R3.C
FROM R1,R2,R3
WHERE R1.A = R2.A
AND R2.B = R3.B

Figure 8.15 gives the join graph of the query and of relation statistics. We assume
that TMSG = 0 and TT R = 1. The initial set of beneficial semijoins will contain the
following two:

SJ1: R2 n R1, whose benefit is 2100 = (1−0.3)∗3000 and cost is 36
SJ2: R2 n R3, whose benefit is 1800 = (1−0.4)∗3000 and cost is 80

Furthermore there are two non-beneficial semijoins:

SJ3: R1 n R2, whose benefit is 300 = (1−0.8)∗1500 and cost is 320
SJ4: R3 n R2, whose benefit is 0 and cost is 400.

At the first iteration of the selection of beneficial semijoins, SJ1 is appended
to the execution strategy ES. One effect on the statistics is to change the size of
R2 to 900 = 3000 ∗ 0.3. Furthermore, the semijoin selectivity factor of attribute
R2.A is reduced because card(ΠA(R2)) is reduced. We approximate SFSJ(R2.A) by
0.8∗0.3 = 0.24. Finally, size of ΠR2.A is also reduced to 96 = 320∗0.3. Similarly,
the semijoin selectivity factor of attribute R2.B and ΠR2.B should also be reduced
(but they not needed in the rest of the example).

At the second iteration, there are two beneficial semijoins:

SJ2 : R′2 nR3, whose benefit is 540 = 900∗ (1−0.4) and cost is 80
(here R′2 = R2 nR1, which is obtained by SJ1

SJ3: R1 nR′2, whose benefit is 1140 = (1−0.24)∗1500 and cost is 96

286 8 Optimization of Distributed Queries

0.3

0.8

1.0

0.4

36

320

400

80

A B

relation

50

30

40

card tuple size
relation

size

attribute SF
SJ

size(Π
attribute

)

R
1
.A

R
2
.B

R
3
.B

R
2
.A

R
2

R
1

R
3

Site 1 Site 2 Site 3

R
1

R
2

R
3

30

100

50

1500

3000

2000

Fig. 8.15 Example Query and Statistics

The most beneficial semijoin is SJ3 and is appended to ES. One effect on the
statistics of relation R1 is to change the size of R1 to 360(= 1500∗0.24). Another
effect is to change the selectivity of R1 and size of ΠR1.A.

At the third iteration, the only remaining beneficial semijoin, SJ2, is appended
to ES. Its effect is to reduce the size of relation R2 to 360(= 900∗0.4). Again, the
statistics of relation R2 may also change.

After reduction, the amount of data stored is 360 at site 1, 360 at site 2, and 2000
at site 3. Site 3 is therefore chosen as the assembly site. The postoptimization does
not remove any semijoin since they all remain beneficial. The strategy selected is to
send (R2 nR1)nR3 and R1 nR2 to site 3, where the final result is computed. �

Like its predecessor hill-climbing algorithm, the semijoin-based algorithm selects
locally optimal strategies. Therefore, it ignores the higher-cost semijoins which
would result in increasing the benefits and decreasing the costs of other semijoins.
Thus this algorithm may not be able to select the global minimum cost solution.

8.4.4 Hybrid Approach

The static and dynamic distributed optimization approaches have the same advan-
tages and disadvantages as in centralized systems (see Section 8.2.3). However,
the problems of accurate cost estimation and comparison of QEPs at compile-time
are much more severe in distributed systems. In addition to unknown bindings of
parameter values in embedded queries, sites may become unvailable or overloaded at

8.4 Distributed Query Optimization 287

runtime. In addition, relations (or relation fragments) may be replicated at several
sites. Thus, site and copy selection should be done at runtime to increase availability
and load balancing of the system.

The hybrid query optimization technique using dynamic QEPs (see Section 8.2.3)
is general enough to incorporate site and copy selection decisions. However, the
search space of alternative subplans linked by choose-plan operators becomes much
larger and may result in heavy static plans and much higher startup time. Therefore,
several hybrid techniques have been proposed to optimize queries in distributed sys-
tems [Carey and Lu, 1986; Du et al., 1995; Evrendilek et al., 1997]. They essentially
rely on the following two-step approach:

1. At compile time, generate a static plan that specifies the ordering of operations
and the access methods, without considering where relations are stored.

2. At startup time, generate an execution plan by carrying out site and copy
selection and allocating the operations to the sites.

Example 8.15. Consider the following query expressed in relational algebra:

σ(R1) 1 R2 1 R3

Figure 8.16 shows a 2-step plan for this query. The static plan shows the relational
operation ordering as produced by a centralized query optimizer. The run-time plan
extends the static plan with site and copy selection and communication between sites.
For instance, the first selection is allocated at site s1 on copy R11 of relation R1 and
sends its result to site s3 to be joined with R23 and so on. �

(a) Static plan (b) Run-time plan

R
23

R
32

R
1

R
2

R
3

s
1

s
2

s
3

send

send

σ

R
11

σ

Fig. 8.16 A 2-Step Plan

The first step can be done by a centralized query optimizer. It may also include
choose-plan operators so that runtime bindings can be used at startup time to make
accurate cost estimations. The second step carries out site and copy selection, possibly
in addition to choose-plan operator execution. Furthermore, it can optimize the load

288 8 Optimization of Distributed Queries

balancing of the system. In the rest of this section, we illustrate this second step
based on the seminal paper by Carey and Lu [1986] on two-step query optimization.

We consider a distributed database system with a set of sites S = {s1, ..,sn}. A
query Q is represented as an ordered sequence of subqueries Q = {q1, ..,qm}. Each
subquery qi is the maximum processing unit that accesses a single base relation and
communicates with its neighboring subqueries. For instance, in Figure 8.16, there
are three subqueries, one for R1, one for R2, and one for R3. Each site si has a load,
denoted by load(si), which reflects the number of queries currently submitted. The
load can be expressed in different ways, e.g. as the number of I/O bound and CPU
bound queries at the site [Carey and Lu, 1986]. The average load of the system is
defined as:

Avg load(S) =
∑

n
i=1 load(si)

n

The balance of the system for a given allocation of subqueries to sites can be measured
as the variance of the site loads using the following unbalance factor [Carey and Lu,
1986]:

UF(S) =
1
n

n

∑
i=1

(load(si)−Avg load(S))2

As the system gets balanced, its unbalance factor approaches 0 (perfect balance). For
example, with load(s1)=10 and load(s1)=30, the unbalance factor of s1,s2 is 100
while with load(s1)=20 and load(s1)=20, it is 0.

The problem addressed by the second step of two-step query optimization can be
formalized as the following subquery allocation problem. Given

1. a set of sites S = {s1, ..,sn} with the load of each site;

2. a query Q = {q1, ..,qm}; and

3. for each subquery qi in Q, a feasible allocation set of sites Sq = {s1, ...,sk}
where each site stores a copy of the relation involved in qi;

the objective is to find an optimal allocation on Q to S such that

1. UF(S) is minimized, and

2. the total communication cost is minimized.

Carey and Lu [1986] propose an algorithm that finds near-optimal solutions in
a reasonable amount of time. The algorithm, which we describe in Algorithm 8.7
for linear join trees, uses several heuristics. The first heuristic (step 1) is to start by
allocating subqueries with least allocation flexibility, i.e. with the smaller feasible
allocation sets of sites. Thus, subqueries with a few candidate sites are allocated
earlier. Another heuristic (step 2) is to consider the sites with least load and best
benefit. The benefit of a site is defined as the number of subqueries already allocated
to the site and measures the communication cost savings from allocating the subquery

8.4 Distributed Query Optimization 289

to the site. Finally, in step 3 of the algorithm, the load information of any unallocated
subquery that has a selected site in its feasible allocation set is recomputed.

Algorithm 8.7: SQAllocation
Input: Q: q1, . . . ,qm ;

Feasible allocation sets: Sq1 , . . . ,Sqm ;
Loads: load(S1), . . . , load(Sm);

Output: an allocation of Q to S
begin

for each q in Q do
compute(load(Sq))

while Q not empty do
a← q ∈ Q with least allocation flexibility; {select subquery a for
allocation} (1)
b← s ∈ Sa with least load and best benefit; {select best site b for a} (2)
Q← Q−a ;
{recompute loads of remaining feasible allocation sets if necessary} (3)
for each q ∈ Q where b ∈ Sq do

compute(load(Sq)

end

Example 8.16. Consider the following query Q expressed in relational algebra:

σ(R1) 1 R2 1 R3 1 R4

Figure 8.17 shows the placement of the copies of the 4 relations at the 4 sites, and
the site loads. We assume that Q is decomposed as Q = {q1,q2,q3,q4} where q1 is
associated with R1, q2 with R2 joined with the result of q1, q3 with R3 joined with the
result of q2, and q4 with R4 joined with the result of q3. The SQAllocation algorithm
performs 4 iterations. At the first one, it selects q4 which has the least allocation
flexibility, allocates it to s1 and updates the load of s1 to 2. At the second iteration,
the next set of subqueries to be selected are either q2 or q3 since they have the same
allocation flexibility. Let us choose q2 and assume it gets allocated to s2 (it could
be allocated to s4 which has the same load as s2). The load of s2 is increased to
3. At the third iteration, the next subquery selected is q3 and it is allocated to s1
which has the same load as s3 but a benefit of 1 (versus 0 for s3) as a result of the
allocation of q4. The load of s1 is increased to 3. Finally, at the last iteration, q1 gets
allocated to either s3 or s4 which have the least loads. If in the second iteration q2
were allocated to s4 instead of to s2, then the fourth iteration would have allocated
q1 to s4 because of a benefit of 1. This would have produced a better execution plan
with less communication. This illustrates that two-step optimization can still miss
optimal plans. �

290 8 Optimization of Distributed Queries

s
1

s
2

s
3

sites load R
1

R
2

R
3

R
4

s
4

1

2

2

2

R
11

R
13

R
14

R
22

R
24

R
31

R
33

R
41

Fig. 8.17 Example Data Placement and Load

This algorithm has reasonable complexity. It considers each subquery in turn,
considering each potential site, selects a current one for allocation, and sorts the list
of remaining subqueries. Thus, its complexity can be expressed as O(max(m∗n,m2 ∗
log2m)).

Finally, the algorithm includes a refining phase to further optimize join processing
and decide whether or not to use semijoins. Although it minimizes communication
given a static plan, two-step query optimization may generate runtime plans that
have higher communication cost than the optimal plan. This is because the first
step is carried out ignoring data location and its impact on communication cost. For
instance, consider the runtime plan in 8.16 and assume that the third subquery on R3
is allocated to site s1 (instead of site s2). In this case, the plan that does the join (or
Cartesian product) of the result of the selection of R1 with R3 first at site s1 may be
better since it minimizes communication. A solution to this problem is to perform
plan reorganization using operation tree transformations at startup time [Du et al.,
1995].

8.5 Conclusion

In this chapter we have presented the basic concepts and techniques for distributed
query optimization. We first introduced the main components of query optimization,
including the search space, the cost model and the search strategy. The details of
the environment (centralized versus distributed) are captured by the search space
and the cost model. The search space describes the equivalent execution plans for
the input query. These plans differ on the execution order of operations and their
implementation, and therefore on performance. The search space is obtained by
applying transformation rules, such as those described in Section 7.1.4.

The cost model is key to estimating the cost of a given execution plan. To be
accurate, the cost model must have good knowledge about the distributed execution
environment. Important inputs are the database statistics and the formulas used to
estimate the size of intermediate results. For simplicity, earlier cost models relied
on the strong assumption that the distribution of attribute values in a relation is
uniform. However, in case of skewed data distributions, this can result in fairly
inaccurate estimations and execution plans which are far from the optimal. An

8.5 Conclusion 291

effective solution to accurately capture data distributions is to use histograms. Today,
most commercial DBMS optimizers support histograms as part of their cost model.
A difficulty remains to estimate the selectivity of the join operation when it is not
on foreign key. In this case, maintaining join selectivity factors is of great benefit
[Mackert and Lohman, 1986]. Earlier distributed DBMSs considered transmission
costs only. With the availability of faster communication networks, it is important to
consider local processing costs as well.

The search strategy explores the search space and selects the best plan, using the
cost model. It defines which plans are examined and in which order. The most popular
search strategy is dynamic programming which enumerates all equivalent execution
plans with some pruning. However, it may incur a high optimization cost for queries
involving large number of relations. Thus, it is best suited when optimization is
static (done at compile time) and amortized over multiple executions. Randomized
strategies, such as Iterative Improvement and Simulated Annealing, have received
much attention. They do not guarantee that the best solution is obtained, but avoid
the high cost of optimization. Thus, they are appropriate for ad-hoc queries which
are not repetitive.

As a prerequisite to understanding distributed query optimization, we have in-
troduced centralized query optimization with the three basic techniques: dynamic,
static and hybrid. Dynamic and static query optimimization both have advantages
and drawbacks. Dynamic query optimization can make accurate optimization choices
at run-time. but optimization is repeated for each query execution. Therefore, this
approach is best for ad-hoc queries. Static query optimization, done at compilation
time, is best for queries embedded in stored procedures, and has been adopted by all
commercial DBMSs. However, it can make major estimation errors, in particular, in
the case of parameter values not known until runtime, which can lead to the choice
of suboptimal execution plans. Hybrid query optimization attempts to provide the
advantages of static query optimization while avoiding the issues generated by inac-
curate estimates. The approach is basically static, but further optimization decisions
may take place at run time.

Next, we have seen two approaches to solve distributed join queries, which are
the most important type of queries. The first one considers join ordering. The second
one computes joins with semijoins. Semijoins are beneficial only when a join has
good selectivity, in which case the semijoins act as powerful size reducers. The
first systems that make extensive use of semijoins assumed a slow network and
therefore concentrated on minimizing only the communication time at the expense
of local processing time. However, with faster networks, the local processing time is
as important as the communication time and sometimes even more important. There-
fore, semijoins should be employed carefully since they tend to increase the local
processing time. Join and semijoin techniques should be considered complementary,
not alternative [Valduriez and Gardarin, 1984], because each technique may be better
under certain database-dependent parameters. For instance, if a relation has very
large tuples, as is the case with multimedia data, semijoin is useful to minimize data
transfers. Finally, semijoins implemented by hashed bit arrays [Valduriez, 1982] can
be made very efficient [Mackert and Lohman, 1986].

292 8 Optimization of Distributed Queries

We illustrated the use of the join and semijoin techniques in four basic distributed
query optimization algorithms: dynamic, static, semijoin-based and hybrid. The
static and dynamic distributed optimization approaches have the same advantages
and disadvantages as in centralized systems. The semijoin-based approach is best for
slow networks. The hybrid approach is best in today’s dynamic environments as it
delays important decisions such as copy selection and allocation of subqueries to sites
at query startup time. Thus, it can better increase availability and load balancing of the
system. We illustrated the hybrid approach with two-step query optimization which
first generates a static plan that specifies the operations ordering as in a centralized
system and then generates an execution plan at startup time, by carrying out site and
copy selection and allocating the operations to the sites.

In this chapter we focused mostly on join queries for two reasons: join queries
are the most frequent queries in the relational framework and they have been studied
extensively. Furthermore, the number of joins involved in queries expressed in
languages of higher expressive power than relational calculus (e.g., Horn clause
logic) can be extremely large, making the join ordering more crucial [Krishnamurthy
et al., 1986]. However, the optimization of general queries containing joins, unions,
and aggregate functions is a harder problem [Selinger and Adiba, 1980]. Distributing
unions over joins is a simple and good approach since the query can be reduced
as a union of join subqueries, which are optimized individually. Note also that the
unions are more frequent in distributed DBMSs because they permit the localization
of horizontally fragmented relations.

8.6 Bibliographic Notes

Good surveys of query optimization are provided in [Graefe, 1993], [Ioannidis, 1996]
and [Chaudhuri, 1998]. Distributed query optimization is surveyed in [Kossmann,
2000].

The three basic algorithms for query optimization in centralized systems are:
the dynamic algorithm of INGRES [Wong and Youssefi, 1976] which performs
query reduction, the static algorithm of System R [Selinger et al., 1979] which uses
dynamic programming and a cost model and the hybrid algorithm of Volcano [Cole
and Graefe, 1994] which uses choose-plan operators.

The theory of semijoins and their value for distributed query processing has been
covered in [Bernstein and Chiu, 1981], [Chiu and Ho, 1980], and [Kambayashi et al.,
1982]. Algorithms for improving the processing of semijoins in distributed systems
are proposed in [Valduriez, 1982]. The value of semijoins for multiprocessor database
machines having fast communication networks is also shown in [Valduriez and
Gardarin, 1984]. Parallel execution strategies for horizontally fragmented databases
is treated in [Ceri and Pelagatti, 1983] and [Khoshafian and Valduriez, 1987]. The
solutions in [Shasha and Wang, 1991] are also applicable to parallel systems.

The dynamic approach to distributed query optimization was was first proposed
for Distributed INGRES in [Epstein et al., 1978]. It extends the dynamic algorithm

8.6 Bibliographic Notes 293

of INGRES, with a heuristic approach. The algorithm takes advantage of the network
topology (general or broadcast networks). Improvements on this method based on
the enumeration of all possible solutions are given and analyzed in [Epstein and
Stonebraker, 1980].

The static approach to distributed query optimization was first proposed for R*
in [Selinger and Adiba, 1980] as an extension of the static algorithm of System R.
It is one of the first papers to recognize the significance of local processing on the
performance of distributed queries. Experimental validation in [Lohman and Mackert,
1986] have confirmed this important statement.

The semijoin-based approach to distributed query optimization was proposed in
[Bernstein et al., 1981] for SDD-1 [Wong, 1977]. It is one of the most complete
algorithms which make full use of semijoins.

Several hybrid approaches based on two-step query optimization have been pro-
posed for distributed systems [Carey and Lu, 1986; Du et al., 1995; Evrendilek et al.,
1997]. The content of Section 8.4.4 is based on [Carey and Lu, 1986] which is the
first paper on two-step query optimization. In [Du et al., 1995], efficient operations to
transform linear join trees (produced by the first step) into bushy trees which exhibit
more parallelism are proposed. In [Evrendilek et al., 1997], a solution to maximize
intersite join parallelism in the second step is proposed.

Exercises

Problem 8.1 (*). Apply the dynamic query optimization algorithm in Section 8.2.1 to
the query of Exercise 7.3, and illustrate the successive detachments and substitutions
by giving the monorelation subqueries generated.

Problem 8.2. Consider the join graph of Figure 8.12 and the following information:
size(EMP) = 100, size(ASG) = 200, size(PROJ) = 300, size(EMP 1 ASG) = 300,
and size(ASG 1 PROJ) = 200. Describe an optimal join program based on the
objective function of total transmission time.

Problem 8.3. Consider the join graph of Figure 8.12 and make the same assumptions
as in Problem 8.2. Describe an optimal join program that minimizes response time
(consider only communication).

Problem 8.4. Consider the join graph of Figure 8.12, and give a program (possibly
not optimal) that reduces each relation fully by semijoins.

Problem 8.5 (*). Consider the join graph of Figure 8.12 and the fragmentation de-
picted in Figure 8.18. Also assume that size(EMP 1 ASG) = 2000 and size(ASG
1 PROJ) = 1000. Apply the dynamic distributed query optimization algorithm in
Section 8.4.1 in two cases, general network and broadcast network, so that communi-
cation time is minimized.

294 8 Optimization of Distributed Queries

Rel. Site 1 Site 2 Site 3

EMP 1000 1000 1000

ASG 2000

PROJ 1000

Fig. 8.18 Fragmentation

Problem 8.6. Consider the join graph of Figure 8.19 and the statistics given in Figure
8.20. Apply the semijoin-based distributed query optimization algorithm in Section
8.4.3 with TMSG = 20 and TT R = 1.

R
1

R
2

R
3

R
4

A

B

B

B

Fig. 8.19 Join Graph

0.5

0.1

0.9

0.4

100

200

300

150

R
1
.A

R
2
.A

R
3
.B

R
4
.B

relation size

1000

1000

2000

R
1

R
2

R
3

R
3

1000

attribute size SFSJ

0.2100R
2
.A

(a) (b)

Fig. 8.20 Relation Statistics

Problem 8.7 (**). Consider the query in Problem 7.5. Assume that relations EMP,
ASG, PROJ and PAY have been stored at sites 1, 2, and 3 according to the table in
Figure 8.21. Assume also that the transfer rate between any two sites is equal and
that data transfer is 100 times slower than data processing performed by any site.
Finally, assume that size(R 1 S) = max(size(R),size(S)) for any two relations R and
S, and the selectivity factor of the disjunctive selection of the query in Exercise 7.5 is

8.6 Bibliographic Notes 295

0.5. Compose a distributed program which computes the answer to the query and
minimizes total time.

Rel. Site 1 Site 2 Site 3

EMP 2000

 500

ASG 3000

PROJ 1000

PAY

Fig. 8.21 Fragmentation Statistics

Problem 8.8 (**). In Section 8.4.4, we described Algorithm 8.7 for linear join trees.
Extend this algorithm to support bushy join trees. Apply it to the bushy join tree in
Figure 8.3 using the data placement and site loads shown in Figure 8.17.

Chapter 9
Multidatabase Query Processing

In the previous three chapters, we have considered query processing in tighly-coupled
homogeneous distributed database systems. As we discussed in Chapter 1, these sys-
tems are logically integrated and provide a single image of the database, even though
they are physically distributed. In this chapter, we concentrate on query processing in
multidatabase systems that provide interoperability among a set of DBMSs. This is
only one part of the more general interoperability problem. Distributed applications
pose major requirements regarding the databases they access, in particular, the ability
to access legacy data as well as newly developed databases. Thus, providing inte-
grated access to multiple, distributed databases and other heterogeneous data sources
has become a topic of increasing interest and focus.

Many of the distributed query processing and optimization techniques carry over
to multidatabase systems, but there are important differences. Recall from Chapter
6 that we characterized distributed query processing in four steps: query decom-
position, data localization, global optimization, and local optimization. The nature
of multidatabase systems requires slightly different steps and different techniques.
The component DBMSs may be autonomous and have different database languages
and query processing capabilities. Thus, a multi-DBMS layer (see Figure 1.17) is
necessary to communicate with component DBMSs in an effective way, and this
requires additional query processing steps (Figure 9.1). Furthermore, there may be
many component DBMSs, each of which may exhibit different behavior, thereby
posing new requirements for more adaptive query processing techniques.

This chapter is organized as follows. In Section 9.1 we introduce in more detail
the main issues in multidatabase query processing. Assuming the mediator/wrapper
architecture, we describe the multidatabase query processing architecture in Section
9.2. Section 9.3 describes the techniques for rewriting queries using multidatabase
views. Section 9.4 describes multidatabase query optimization and execution, in
particular, heterogeneous cost modeling, heterogeneous query optimization, and
adaptive query processing. Section 9.5 describes query translation and execution at
the wrappers, in particular, the techniques for translating queries for execution by the
component DBMSs and for generating and managing wrappers.

297
DOI 10.1007/978-1-4419-8834-8_9, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

298 9 Multidatabase Query Processing

9.1 Issues in Multidatabase Query Processing

Query processing in a multidatabase system is more complex than in a distributed
DBMS for the following reasons [Sheth and Larson, 1990]:

1. The computing capabilities of the component DBMSs may be different, which
prevents uniform treatment of queries across multiple DBMSs. For example,
some DBMSs may be able to support complex SQL queries with join and
aggregation while some others cannot. Thus the multidatabase query processor
should consider the various DBMS capabilities.

2. Similarly, the cost of processing queries may be different on different DBMSs,
and the local optimization capability of each DBMS may be quite different.
This increases the complexity of the cost functions that need to be evaluated.

3. The data models and languages of the component DBMSs may be quite
different, for instance, relational, object-oriented, XML, etc. This creates
difficulties in translating multidatabase queries to component DBMS and in
integrating heterogeneous results.

4. Since a multidatabase system enables access to very different DBMSs that
may have different performance and behavior, distributed query processing
techniques need to adapt to these variations.

The autonomy of the component DBMSs poses problems. DBMS autonomy can
be defined along three main dimensions: communication, design and execution [Lu
et al., 1993]. Communication autonomy means that a component DBMS communi-
cates with others at its own discretion,and, in particular, it may terminate its services
at any time. This requires query processing techniques that are tolerant to system
unavailability. The question is how the system answers queries when a component
system is either unavailable from the beginning or shuts down in the middle of query
execution. Design autonomy may restrict the availability and accuracy of cost infor-
mation that is needed for query optimization. The difficulty of determining local cost
functions is an important issue. The execution autonomy of multidatabase systems
makes it difficult to apply some of the query optimization strategies we discussed in
previous chapters. For example, semijoin-based optimization of distributed joins may
be difficult if the source and target relations reside in different component DBMSs,
since, in this case, the semijoin execution of a join translates into three queries:
one to retrieve the join attribute values of the target relation and to ship it to the
source relation’s DBMS, the second to perform the join at the source relation, and the
third to perform the join at the target relation’s DBMS. The problem arises because
communication with component DBMSs occurs at a high level of the DBMS API.

In addition to these difficulties, the architecture of a distributed multidatabase
system poses certain challenges. The architecture depicted in Figure 1.17 points to an
additional complexity. In distributed DBMSs, query processors have to deal only with
data distribution across multiple sites. In a distributed multidatabase environment,
on the other hand, data are distributed not only across sites but also across multiple

9.2 Multidatabase Query Processing Architecture 299

databases, each managed by an autonomous DBMS. Thus, while there are two parties
that cooperate in the processing of queries in a distributed DBMS (the control site
and local sites), the number of parties increases to three in the case of a distributed
multi-DBMS: the multi-DBMS layer at the control site (i.e., the mediator) receives
the global query, the multi-DBMS layers at the sites (i.e., the wrappers) participate
in processing the query, and the component DBMSs ultimately optimize and execute
the query.

9.2 Multidatabase Query Processing Architecture

Most of the work on multidatabase query processing has been done in the context
of the mediator/wrapper architecture (see Figure 1.18). In this architecture, each
component database has an associated wrapper that exports information about the
source schema, data and query processing capabilities. A mediator centralizes the
information provided by the the wrappers in a unified view of all available data
(stored in a global data dictionary) and performs query processing using the wrappers
to access the component DBMSs. The data model used by the mediator can be rela-
tional, object-oriented or even semi-structured (based on XML). In this chapter, for
consistency with the previous chapters on distributed query processing, we continue
to use the relational model, which is quite sufficient to explain the multidatabase
query processing techniques.

The mediator/wrapper architecture has several advantages. First, the specialized
components of the architecture allow the various concerns of different kinds of users
to be handled separately. Second, mediators typically specialize in a related set of
component databases with “similar” data, and thus export schemas and semantics
related to a particular domain. The specialization of the components leads to a
flexible and extensible distributed system. In particular, it allows seamless integration
of different data stored in very different components, ranging from full-fledged
relational DBMSs to simple files.

Assuming the mediator/wrapper architecture, we can now discuss the various
layers involved in query processing in distributed multidatabase systems as shown in
Figure 9.1. As before, we assume the input is a query on global relations expressed
in relational calculus. This query is posed on global (distributed) relations, meaning
that data distribution and heterogeneity are hidden. Three main layers are involved in
multidatabase query processing. This layering is similar to that of query processing
in homogeneous distributed DBMSs (see Figure 6.3). However, since there is no
fragmentation, there is no need for the data localization layer.

The first two layers map the input query into an optimized distributed query execu-
tion plan (QEP). They perform the functions of query rewriting, query optimization
and some query execution. The first two layers are performed by the mediator and
use meta-information stored in the global directory (global schema, allocation and
capability schema). Query rewriting transforms the input query into a query on local
relations, using the global schema. Recall from Chapter 4 that there are two main

300 9 Multidatabase Query Processing

 REWRITING

QUERY ON GLOBAL

RELATIONS

QUERY ON LOCAL

RELATIONS

DISTRIBUTED

QUERY EXECUTION PLAN

TRANSLATION &

 EXECUTION

GLOBAL

SCHEMA

ALLOC. & CAP.

SCHEMA

MEDIATOR

SITE

WRAPPER

SITES

OPTIMIZATION &

 EXECUTION

WRAPPER

SCHEMA

Results

Fig. 9.1 Generic Layering Scheme for Multidatabase Query Processing

approaches for database integration: global-as-view (GAV) and local-as-view (LAV).
Thus, the global schema provides the view definitions (i.e., mappings between the
global relations and the local relations stored in the component databases) and the
query is rewritten using the views.

Rewriting can be done at the relational calculus or algebra levels. In this chapter,
we will use a generalized form of relational calculus called Datalog [Ullman, 1988]
which is well suited for such rewriting. Thus, there is an additional step of calculus
to algebra translation that is similar to the decomposition step in homogeneous
distributed DBMSs.

The second layer performs query optimization and (some) execution by consider-
ing the allocation of the local relations and the different query processing capabilities
of the component DBMSs exported by the wrappers. The allocation and capability
schema used by this layer may also contain heterogeneous cost information. The
distributed QEP produced by this layer groups within subqueries the operations
that can be performed by the component DBMSs and wrappers. Similar to dis-
tributed DBMSs, query optimization can be static or dynamic. However, the lack of
homogeneity in multidatabase systems (e.g., some component DBMSs may have
unexpectedly long delays in answering) make dynamic query optimization more
critical. In the case of dynamic optimization, there may be subsequent calls to this
layer after execution by the next layer. This is illustrated by the arrow showing results
coming from the next layer. Finally, this layer integrates the results coming from the

9.3 Query Rewriting Using Views 301

different wrappers to provide a unified answer to the user’s query. This requires the
capability of executing some operations on data coming from the wrappers. Since the
wrappers may provide very limited execution capabilities, e.g., in the case of very
simple component DBMSs, the mediator must provide the full execution capabilities
to support the mediator interface.

The third layer performs query translation and execution using the wrappers. Then
it returns the results to the mediator that can perform result integration from different
wrappers and subsequent execution. Each wrapper maintains a wrapper schema
that includes the local export schema (see Chapter 4) and mapping information to
facilitate the translation of the input subquery (a subset of the QEP) expressed in a
common language into the language of the component DBMS. After the subquery is
translated, it is executed by the component DBMS and the local result is translated
back to the common format.

The wrapper schema contains information describing how mappings from/to par-
ticipating local schemas and global schema can be performed. It enables conversions
between components of the database in different ways. For example, if the global
schema represents temperatures in Fahrenheit degrees, but a participating database
uses Celsius degrees, the wrapper schema must contain a conversion formula to
provide the proper presentation to the global user and the local databases. If the con-
version is across types and simple formulas cannot perform the translation, complete
mapping tables could be used in the wrapper schema.

9.3 Query Rewriting Using Views

Query rewriting reformulates the input query expressed on global relations into a
query on local relations. It uses the global schema, which describes in terms of
views the correspondences between the global relations and the local relations. Thus,
the query must be rewritten using views. The techniques for query rewriting differ
in major ways depending on the database integration approach that is used, i.e.,
global-as-view (GAV) or local-as-view (LAV). In particular, the techniques for LAV
(and its extension GLAV) are much more involved [Halevy, 2001]. Most of the work
on query rewriting using views has been done using Datalog [Ullman, 1988], which
is a logic-based database language. Datalog is more concise than relational calculus
and thus more convenient for describing complex query rewriting algorithms. In
this section, we first introduce Datalog terminology. Then, we describe the main
techniques and algorithms for query rewriting in the GAV and LAV approaches.

9.3.1 Datalog Terminology

Datalog can be viewed as an in-line version of domain relational calculus. Let us first
define conjunctive queries, i.e., select-project-join queries, which are the basis for

302 9 Multidatabase Query Processing

more complex queries. A conjuntive query in Datalog is expressed as a rule of the
form:

Q(T) :−R1(T1), . . . ,Rn(Tn)

The atom Q(T) is the head of the query and denotes the result relation. The atoms
R1(T1), . . . ,Rn(Tn) are the subgoals in the body of the query and denote database
relations. Q and R1, . . . ,Rn are predicate names and correspond to relation names.
T,T1, . . . ,Tn refer to the relation tuples and contain variables or constants. The vari-
ables are similar to domain variables in domain relational calculus. Thus, the use of
the same variable name in multiple predicates expresses equijoin predicates. Con-
stants correspond to equality predicates. More complex comparison predicates (e.g.,
using comparators such as 6=, ≤ and <) must be expressed as other subgoals. We
consider queries which are safe, i.e., those where each variable in the head also
appears in the body. Disjunctive queries can also be expressed in Datalog using
unions, by having several conjuntive queries with the same head predicate.

Example 9.1. Let us consider relations EMP(ENO, ENAME, TITLE, CITY) and
ASG(ENO, PNO, DUR) assuming that ENO is the primary key of EMP and (ENO,
PNO) is the primary key of ASG. Consider the following SQL query:

SELECT ENO, TITLE, PNO
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
AND TITLE = "Programmer" OR DUR = 24

The corresponding query in Datalog can be expressed as:

Q(ENO,TITLE,PNO) :− EMP(ENO,ENAME,”Programmer”,CITY),
ASG(ENO,PNO,DUR)

Q(ENO,TITLE,PNO) :− EMP(ENO,ENAME,TITLE,CITY),
ASG(ENO,PNO,24)

�

9.3.2 Rewriting in GAV

In the GAV approach, the global schema is expressed in terms of the data sources and
each global relation is defined as a view over the local relations. This is similar to the
global schema definition in tightly-integrated distributed DBMS. In particular, the
local relations (i.e., relations in a component DBMS) can correspond to fragments.
However, since the local databases pre-exist and are autonomous, it may happen that
tuples in a global relation do not exist in local relations or that a tuple in a global
relation appears in different local relations. Thus, the properties of completeness and
disjointness of fragmentation cannot be guaranteed. The lack of completeness may
yield incomplete answers to queries. The lack of disjointness may yield duplicate

9.3 Query Rewriting Using Views 303

results that may still be useful information and may not need to be eliminated. Similar
to queries, view definitions can use Datalog notation.

Example 9.2. Let us consider the local relations EMP1(ENO, ENAME, TITLE,
CITY), EMP2(ENO, ENAME, TITLE, CITY) and ASG1(ENO, PNO, DUR). The
global relations EMP(ENO, ENAME, CITY) and ASG(ENO, PNO, TITLE, DUR)
can be simply defined with the following Datalog rules:

EMP(ENO,ENAME,CITY) :−EMP1(ENO,ENAME,TITLE,CITY) (r1)
EMP(ENO,ENAME,CITY) :−EMP2(ENO,ENAME,TITLE,CITY) (r2)

ASG(ENO,PNO,TITLE,DUR) :−EMP1(ENO,ENAME,TITLE,CITY),

ASG1(ENO,PNO,DUR) (r3)
ASG(ENO,PNO,TITLE,DUR) :−EMP2(ENO,ENAME,TITLE,CITY),

ASG1(ENO,PNO,DUR) (r4)

�

Rewriting a query expressed on the global schema into an equivalent query on the
local relations is relatively simple and similar to data localization in tightly-integrated
distributed DBMS (see Section 7.2). The rewriting technique using views is called
unfolding [Ullman, 1997], and it replaces each global relation invoked in the query
with its corresponding view. This is done by applying the view definition rules to the
query and producing a union of conjunctive queries, one for each rule application.
Since a global relation may be defined by several rules (see Example 9.2), unfolding
can generate redundant queries that need to be eliminated.

Example 9.3. Let us consider the global schema in Example 9.2 and the following
query Q that asks for assignment information about the employees living in “Paris”:

Q(e, p) :−EMP(e,ENAME,“Paris”),ASG(e, p,TITLE,DUR).

Unfolding Q produces Q′ as follows:

Q′(e, p) :−EMP1(e,ENAME,TITLE,“Paris”),ASG1(e, p,DUR). (q1)
Q′(e, p) :−EMP2(e,ENAME,TITLE,“Paris”),ASG1(e, p,DUR). (q2)

Q′ is the union of two conjunctive queries labeled as q1 and q2. q1 is obtained by
applying rule r3 or both rules r1 and r3. In the latter case, the query obtained is
redundant with respect to that obtained with r3 only. Similarly, q2 is obtained by
applying rule r4 or both rules r2 and r4. �

Although the basic technique is simple, rewriting in GAV becomes difficult when
local databases have limited access patterns [Calı̀ and Calvanese, 2002]. This is the
case for databases accessed over the web where relations can be only accessed using
certain binding patterns for their attributes. In this case, simply substituing the global

304 9 Multidatabase Query Processing

relations with their views is not sufficient, and query rewriting requires the use of
recursive Datalog queries.

9.3.3 Rewriting in LAV

In the LAV approach, the global schema is expressed independent of the local
databases and each local relation is defined as a view over the global relations. This
enables considerable flexibility for defining local relations.

Example 9.4. To facilitate comparison with GAV, we develop an example that is sym-
metric to Example 9.2 with EMP(ENO, ENAME, CITY) and ASG(ENO, PNO, TI-
TLE, DUR) as global relations. In the LAV approach, the local relations EMP1(ENO,
ENAME, TITLE, CITY), EMP2(ENO, ENAME, TITLE, CITY) and ASG1(ENO,
PNO, DUR) can be defined with the following Datalog rules:

EMP1(ENO,ENAME,TITLE,CITY) :−EMP(ENO,ENAME,CITY), (r1)
ASG(ENO,PNO,TITLE,DUR)

EMP2(ENO,ENAME,TITLE,CITY) :−EMP(ENO,ENAME,CITY), (r2)
ASG(ENO,PNO,TITLE,DUR)

ASG1(ENO,PNO,DUR) :−ASG(ENO,PNO,TITLE,DUR) (r3)

�

Rewriting a query expressed on the global schema into an equivalent query on
the views describing the local relations is difficult for three reasons. First, unlike
in the GAV approach, there is no direct correspondence between the terms used in
the global schema, (e.g., EMP, ENAME) and those used in the views (e.g., EMP1,
EMP2, ENAME). Finding the correspondences requires comparison with each view.
Second, there may be many more views than global relations, thus making view
comparison time consuming. Third, view definitions may contain complex predicates
to reflect the specific contents of the local relations, e.g., view EMP3 containing
only programmers. Thus, it is not always possible to find an equivalent rewriting of
the query. In this case, the best that can be done is to find a maximally-contained
query, i.e., a query that produces the maximum subset of the answer [Halevy, 2001].
For instance, EMP3 could only return a subset of all employees, those who are
programmers.

Rewriting queries using views has received much attention because of its relevance
to both logical and physical data integration problems. In the context of physical
integration (i.e., data warehousing), using materialized views may be much more
efficient than accessing base relations. However, the problem of finding a rewriting
using views is NP-complete in the number of views and the number of subgoals in
the query [Levy et al., 1995]. Thus, algorithms for rewriting a query using views
essentially try to reduce the numbers of rewritings that need to be considered. Three

9.3 Query Rewriting Using Views 305

main algorithms have been proposed for this purpose: the bucket algorithm [Levy
et al., 1996b], the inverse rule algorithm [Duschka and Genesereth, 1997], and the
MinCon algorithm [Pottinger and Levy, 2000]. The bucket algorithm and the inverse
rule algorithm have similar limitations that are addressed by the MinCon algorithm.

The bucket algorithm considers each predicate of the query independently to select
only the views that are relevant to that predicate. Given a query Q, the algorithm
proceeds in two steps. In the first step, it builds a bucket b for each subgoal q of Q
that is not a comparison predicate and inserts in b the heads of the views that are
relevant to answer q. To determine whether a view V should be in b, there must be a
mapping that unifies q with one subgoal v in V .

For instance, consider query Q in Example 9.3 and the views in Example 9.4.
The following mapping unifies the subgoal EMP(e, ENAME, “Paris”) of Q with the
subgoal EMP(ENO, ENAME, CITY) in view EMP1:

e→ ENO,“Paris”→ CITY

In the second step, for each view V of the Cartesian product of the non-empty
buckets (i.e., some subset of the buckets), the algorithm produces a conjuntive query
and checks whether it is contained in Q. If it is, the conjuntive query is kept as it
represents one way to anwer part of Q from V . Thus, the rewritten query is a union
of conjunctive queries.

Example 9.5. Let us consider query Q in Example 9.3 and the views in Example 9.4.
In the first step, the bucket algorithm creates two buckets, one for each subgoal of
Q. Let us denote by b1 the bucket for the subgoal EMP(e, ENAME, “Paris”) and by
b2 the bucket for the subgoal ASG(e, p, TITLE, DUR). Since the algorithm inserts
only the view heads in a bucket, there may be variables in a view head that are not in
the unifying mapping. Such variables are simply primed. We obtain the following
buckets:

b1 = {EMP1(ENO,ENAME,TITLE′,CITY),

EMP2(ENO,ENAME,TITLE′,CITY)}
b2 = {ASG1(ENO,PNO,DUR′)}

In the second step, the algorithm combines the elements from the buckets, which
produces a union of two conjuntive queries:

Q′(e, p) :−EMP1(e,ENAME,TITLE,“Paris”),ASG1(e, p,DUR) (q1)
Q′(e, p) :−EMP2(e,ENAME,TITLE,“Paris”),ASG1(e, p,DUR) (q2)

�

The main advantage of the bucket algorithm is that, by considering the predicates
in the query, it can significantly reduce the number of rewritings that need to be
considered. However, considering the predicates in the query in isolation may yield
the addition of a view in a bucket that is irrelevant when considering the join with

306 9 Multidatabase Query Processing

other views. Furthermore, the second step of the algorithm may still generate a large
number of rewritings as a result of the Cartesian product of the buckets.

Example 9.6. Let us consider query Q in Example 9.3 and the views in Example 9.4
with the addition of the following view that gives the projects for which there are
employees who live in Paris.

PROJ1(PNO) :−EMP1(ENO,ENAME,“Paris”),
ASG(ENO,PNO,TITLE,DUR) (r4)

Now, the following mapping unifies the subgoal ASG(e, p, TITLE, DUR) of Q
with the subgoal ASG(ENO, PNO, TITLE, DUR) in view PROJ1:

p→ PNAME

Thus, in the first step of the bucket algorithm, PROJ1 is added to bucket b2.
However, PROJ1 cannot be useful in a rewriting of Q since the variable ENAME is
not in the head of PROJ1 and thus makes it impossible to join PROJ1 on the variable
e of Q. This can be discovered only in the second step when building the conjunctive
queries. �

The MinCon algorithm addresses the limitations of the bucket algorithm (and
the inverse rule algorithm) by considering the query globally and considering how
each predicate in the query interacts with the views. It proceeds in two steps like
the bucket algorithm. The first step starts similar to that of the bucket algorithm,
selecting the views that contain subgoals corresponding to subgoals of query Q.
However, upon finding a mapping that unifies a subgoal q of Q with a subgoal v in
view V , it considers the join predicates in Q and finds the minimum set of additional
subgoals of Q that must be mapped to subgoals in V . This set of subgoals of Q
is captured by a MinCon description (MCD) associated with V . The second step
of the algorithm produces a rewritten query by combining the different MCDs. In
this second step, unlike in the bucket algorithm, it is not necessary to check that the
proposed rewritings are contained in the query because the way the MCDs are created
guarantees that the resulting rewritings will be contained in the original query.

Applied to Example 9.6, the algorithm would create 3 MCDs: two for the views
EMP1 and EMP2 containing the subgoal EMP of Q and one for ASG1 containing the
subgoal ASG. However, the algorithm cannot create an MCD for PROJ1 because it
cannot apply the join predicate in Q. Thus, the algorithm would produce the rewritten
query Q′ of Example 9.5. Compared with the bucket algorithm, the second step of
the MinCon algorithm is much more efficient since it performs fewer combinations
of MCDs than buckets.

9.4 Query Optimization and Execution 307

9.4 Query Optimization and Execution

The three main problems of query optimization in multidatabase systems are het-
erogeneous cost modeling, heterogeneous query optimization (to deal with different
capabilities of component DBMSs), and adaptive query processing (to deal with
strong variations in the environment – failures, unpredictable delays, etc.). In this
section, we describe the techniques for these three problems. We note that the result
is a distributed execution plan to be executed by the wrappers and the mediator.

9.4.1 Heterogeneous Cost Modeling

Global cost function definition, and the associated problem of obtaining cost-related
information from component DBMSs, is perhaps the most-studied of the three
problems. A number of possible solutions have emerged, which we discuss below.

The first thing to note is that we are primarily interested in determining the cost
of the lower levels of a query execution tree that correspond to the parts of the query
executed at component DBMSs. If we assume that all local processing is “pushed
down” in the tree, then we can modify the query plan such that the leaves of the tree
correspond to subqueries that will be executed at individual component DBMSs. In
this case, we are talking about the determination of the costs of these subqueries that
are input to the first level (from the bottom) operators. Cost for higher levels of the
query execution tree may be calculated recursively, based on the leaf node costs.

Three alternative approaches exist for determining the cost of executing queries at
component DBMSs [Zhu and Larson, 1998]:

1. Black Box Approach. This approach treats each component DBMS as a
black box, running some test queries on it, and from these determines the
necessary cost information [Du et al., 1992; Zhu and Larson, 1994].

2. Customized Approach. This approach uses previous knowledge about the
component DBMSs, as well as their external characteristics, to subjectively
determine the cost information [Zhu and Larson, 1996a; Roth et al., 1999;
Naacke et al., 1999].

3. Dynamic Approach. This approach monitors the run-time behavior of com-
ponent DBMSs, and dynamically collects the cost information [Lu et al.,
1992; Zhu et al., 2000, 2003; Rahal et al., 2004].

We discuss each approach, focusing on the proposals that have attracted the most
attention.

308 9 Multidatabase Query Processing

9.4.1.1 Black box approach

In the black box approach, which is used in the Pegasus project [Du et al., 1992], the
cost functions are expressed logically (e.g., aggregate CPU and I/O costs, selectivity
factors), rather than on the basis of physical characteristics (e.g., relation cardinalities,
number of pages, number of distinct values for each column). Thus, the cost functions
for component DBMSs are expressed as

Cost = initialization cost + cost to f ind quali f ying tuples

+ cost to process selected tuples

The individual terms of this formula will differ for different operators. However,
these differences are not difficult to specify a priori. The fundamental difficulty is the
determination of the term coefficients in these formulae, which change with different
component DBMSs. The approach taken in the Pegasus project is to construct a
synthetic database (called a calibrating database), run queries against it in isolation,
and measure the elapsed time to deduce the coefficients.

A problem with this approach is that the calibration database is synthetic, and
the results obtained by using it may not apply well to real DBMSs [Zhu and Larson,
1994]. An alternative is proposed in the CORDS project [Zhu and Larson, 1996b],
that is based on running probing queries on component DBMSs to determine cost
information. Probing queries can, in fact, be used to gather a number of cost infor-
mation factors. For example, probing queries can be issued to retrieve data from
component DBMSs to construct and update the multidatabase catalog. Statistical
probing queries can be issued that, for example, count the number of tuples of a
relation. Finally, performance measuring probing queries can be issued to measure
the elapsed time for determining cost function coefficients.

A special case of probing queries is sample queries [Zhu and Larson, 1998]. In
this case, queries are classified according to a number of criteria, and sample queries
from each class are issued and measured to derive component cost information.
Query classification can be performed according to query characteristics (e.g., unary
operation queries, two-way join queries), characteristics of the operand relations
(e.g., cardinality, number of attributes, information on indexed attributes), and char-
acteristics of the underlying component DBMSs (e.g., the access methods that are
supported and the policies for choosing access methods).

Classification rules are defined to identify queries that execute similarly, and
thus could share the same cost formula. For example, one may consider that two
queries that have similar algebraic expressions (i.e., the same algebraic tree shape),
but different operand relations, attributes, or constants, are executed the same way
if their attributes have the same physical properties. Another example is to assume
that join order of a query has no effect on execution since the underlying query
optimizer applies reordering techniques to choose an efficient join ordering. Thus,
two queries that join the same set of relations belong to the same class, whatever
ordering is expressed by the user. Classification rules are combined to define query
classes. The classification is performed either top-down by dividing a class into more

9.4 Query Optimization and Execution 309

specific ones, or bottom-up by merging two classes into a larger one. In practice,
an efficient classification is obtained by mixing both approaches. The global cost
function is similar to the Pegasus cost function in that it consists of three components:
initialization cost, cost of retrieving a tuple, and cost of processing a tuple. The
difference is in the way the parameters of this function are determined. Instead of
using a calibrating database, sample queries are executed and costs are measured. The
global cost equation is treated as a regression equation, and the regression coefficients
are calculated using the measured costs of sample queries [Zhu and Larson, 1996a].
The regression coefficients are the cost function parameters. Eventually, the cost
model quality is controlled through statistical tests (e.g., F-test): if the tests fail,
the query classification is refined until quality is sufficient. This approach has been
validated over various DBMS and has been shown to yield good results [Zhu and
Larson, 2000].

The above approaches require a preliminary step to instantiate the cost model
(either by calibration or sampling). This may not be appropriate in MDBMSs because
it would slow down the system each time a new DBMS component is added. One
way to address this problem, as proposed in the Hermes project, is to progressively
learn the cost model from queries [Adali et al., 1996b]. The cost model designed in
the Hermes mediator assumes that the underlying component DBMSs are invoked by
a function call. The cost of a call is composed of three values: the response time to
access the first tuple, the whole result response time, and the result cardinality. This
allows the query optimizer to minimize either the time to receive the first tuple or
the time to process the whole query, depending on end-user requirements. Initially
the query processor does not know any statistics about components DBMSs. Then
it monitors on-going queries: it collects processing time of every call and stores it
for future estimation. To manage the large amount of collected statistics, the cost
manager summarizes them, either without loss of precision or with less precision at
the benefit of lower space use and faster cost estimation. Summarization consists
of aggregating statistics: the average response time is computed of all the calls
that match the same pattern, i.e., those with identical function name and zero or
more identical argument values. The cost estimator module is implemented in a
declarative language. This allows adding new cost formulae describing the behavior
of a particular component DBMS. However, the burden of extending the mediator
cost model remains with the mediator developer.

The major drawback of the black box approach is that the cost model, although
adjusted by calibration, is common for all component DBMSs and may not capture
their individual specifics. Thus it might fail to estimate accurately the cost of a query
executed at a component DBMS that exposes unforeseen behavior.

9.4.1.2 Customized Approach

The basis of this approach is that the query processors of the component DBMSs
are too different to be represented by a unique cost model as used in the black-
box approach. It also assumes that the ability to accurately estimate the cost of

310 9 Multidatabase Query Processing

local subqueries will improve global query optimization. The approach provides a
framework to integrate the component DBMSs’ cost model into the mediator query
optimizer. The solution is to extend the wrapper interface such that the mediator gets
some specific cost information from each wrapper. The wrapper developer is free
to provide a cost model, partially or entirely. Then, the challenge is to integrate this
(potentially partial) cost description into the mediator query optimizer. There are two
main solutions.

A first solution is to provide the logic within the wrapper to compute three cost
estimates: the time to initiate the query process and receive the first result item
(called reset cost), the time to get the next item (called advance cost), and the result
cardinality. Thus, the total query cost is:

Total access cost = reset cost +(cardinality−1)∗advance cost

This solution can be extended to estimate the cost of database procedure calls. In
that case, the wrapper provides a cost formula that is a linear equation depending
on the procedure parameters. This solution has been successfully implemented to
model a wide range of heterogeneous components DBMSs, ranging from a relational
DBMS to an image server [Roth et al., 1999]. It shows that a little effort is sufficient
to implement a rather simple cost model and this significantly improves distributed
query processing over heterogeneous sources.

A second solution is to use a hierarchical generic cost model. As shown in Figure
9.2, each node represents a cost rule that associates a query pattern with a cost
function for various cost parameters.

The node hierarchy is divided into five levels depending on the genericity of
the cost rules (in Figure 9.2, the increasing width of the boxes shows the increased
focus of the rules). At the top level, cost rules apply by default to any DBMS. At
the underlying levels, the cost rules are increasingly focused on: specific DBMS,
relation, predicate or query. At the time of wrapper registration, the mediator receives
wrapper metadata including cost information, and completes its built-in cost model
by adding new nodes at the appropriate level of the hierarchy. This framework is
sufficiently general to capture and integrate both general cost knowledge declared as
rules given by wrapper developers and specific information derived from recorded
past queries that were previously executed. Thus, through an inheritance hierarchy ,
the mediator cost-based optimizer can support a wide variety of data sources. The
mediator benefits from specialized cost information about each component DBMS,
to accurately estimate the cost of queries and choose a more efficient QEP [Naacke
et al., 1999].

Example 9.7. Consider the following relations:

EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)

EMP is stored at component DBMS db1 and contains 1,000 tuples. ASG is stored
at component DBMS db2 and contains 10,000 tuples. We assume uniform distribution

9.4 Query Optimization and Execution 311

Wrapper-scope

rules

Collection

scope

rules

Predicate-scope

rules

CountObject = ...

TotalSize = ...

TotalTime = ...

etc...

Source 1: Source 2:

TotalTime = ... TotalTime = ...

TotalSize = ... TotalTime = ...

TotalTime = ... TotalSize = ...

select(EMP, Predicate)

select (Collection, Predicate)

select (Collection, Predicate)

select (Collection, Predicate)

select(PROJ, Predicate)

Default-scope rules

select(EMP, TITLE = value) select(EMP, ENAME = Value)

Query

specific rules

Fig. 9.2 Hierarchical Cost Formula Tree

of attribute values. Half of the ASG tuples have a duration greater than 6. We detail
below some parts of the mediator generic cost model (we use superscripts to indicate
the access method):

cost(R) = |R|
cost(σpredicate(R)) = cost(R) (access to R by sequential scan (by default))

cost(R 1ind
A S) = cost(R)+ |R| ∗ cost(σA=v(S)) (using an index-based (ind) join

with
the index on S.A)

cost(R 1nl
A S) = cost(R)+ |R| ∗ cost(S) (using a nested-loop (nl) join)

Consider the following global query Q:

SELECT *
FROM EMP, ASG
WHERE EMP.ENO=ASG.ENO
AND ASG.DUR>6

The cost-based query optimizer generates the following plans to process Q:

312 9 Multidatabase Query Processing

P1 = σDUR>6(EMP 1ind
ENO ASG)

P2 = EMP 1nl
ENO σDUR>6(ASG)

P3 = σDUR>6(ASG) 1ind
ENO EMP

P4 = σDUR>6(ASG) 1nl
ENO EMP

Based on the generic cost model, we compute their cost as:

cost(P1) = cost(σDUR>6(EMP 1ind
ENO ASG)

= cost(EMP 1ind
ENO ASG)

= cost(EMP)+ |EMP| ∗ cost(σENO=v(ASG))

= |EMP|+ |EMP| ∗ |ASG|= 10,001,000

cost(P2) = cost(EMP)+ |EMP| ∗ cost(σDUR>6(ASG))

= cost(EMP)+ |EMP| ∗ cost(ASG)

= |EMP|+ |EMP| ∗ |ASG|= 10,001,000

cost(P3) = cost(P4) = |ASG|+ |ASG|
2
∗ |EMP|

= 5,010,000

Thus, the optimizer discards plans P1 and P2 to keep either P3 or P4 for processing
Q. Let us assume now that the mediator imports specific cost information about
component DBMSs. db1 exports the cost of accessing EMP tuples as:

cost(σA=v(R)) = |σA=v(R)|

db2 exports the specific cost of selecting ASG tuples that have a given ENO as:

cost(σENO=v(ASG)) = |σENO=v(ASG)|

The mediator integrates these cost functions in its hierarchical cost model, and can
now estimate more accurately the cost of the QEPs:

cost(P1) = |EMP|+ |EMP| ∗ |σENO=v(ASG)|

= 1,000+1,000∗10

= 11,000

cost(P2) = |EMP|+ |EMP| ∗ |σDUR>6(ASG)|

9.4 Query Optimization and Execution 313

= |EMP|+ |EMP| ∗ |ASG|
2

= 5,001,000

cost(P3) = |ASG|+ |ASG|
2
∗ |σENO=v(EMP)|

= 10,000+5,000∗1

= 15,000

cost(P4) = |ASG|+ |ASG|
2
∗ |EMP|

= 10,000+5,000∗1,000

= 5,010,000

The best QEP is now P1 which was previously discarded because of lack of cost
information about component DBMSs. In many situations P1 is actually the best
alternative to process Q1. �

The two solutions just presented are well suited to the mediator/wrapper archi-
tecture and offer a good tradeoff between the overhead of providing specific cost
information for diverse component DBMSs and the benefit of faster heterogeneous
query processing.

9.4.1.3 Dynamic Approach

The above approaches assume that the execution environment is stable over time.
However, in most cases, the execution environment factors are frequently changing.
Three classes of environmental factors can be identified based on their dynamicity
[Rahal et al., 2004]. The first class for frequently changing factors (every second
to every minute) includes CPU load, I/O throughput, and available memory. The
second class for slowly changing factors (every hour to every day) includes DBMS
configuration parameters, physical data organization on disks, and database schema.
The third class for almost stable factors (every month to every year) includes DBMS
type, database location, and CPU speed. We focus on solutions that deal with the first
two classes.

One way to deal with dynamic environments where network contention, data
storage or available memory change over time is to extend the sampling method
[Zhu, 1995] and consider user queries as new samples. Query response time is
measured to adjust the cost model parameters at run time for subsequent queries.
This avoids the overhead of processing sample queries periodically, but still requires
heavy computation to solve the cost model equations and does not guarantee that
cost model precision improves over time. A better solution, called qualitative [Zhu

314 9 Multidatabase Query Processing

et al., 2000], defines the system contention level as the combined effect of frequently
changing factors on query cost. The system contention level is divided into several
discrete categories: high, medium, low, or no system contention. This allows for
defining a multi-category cost model that provides accurate cost estimates while
dynamic factors are varying. The cost model is initially calibrated using probing
queries. The current system contention level is computed over time, based on the
most significant system parameters. This approach assumes that query executions
are short, so the environment factors remain rather constant during query execution.
However, this solution does not apply to long running queries, since the environment
factors may change rapidly during query execution.

To manage the case where the environment factor variation is predictable (e.g.,
the daily DBMS load variation is the same every day), the query cost is computed for
successive date ranges [Zhu et al., 2003]. Then, the total cost is the sum of the costs
for each range. Furthermore, it may be possible to learn the pattern of the available
network bandwidth between the MDBMS query processor and the component DBMS
[Vidal et al., 1998]. This allows adjusting the query cost depending on the actual
date.

9.4.2 Heterogeneous Query Optimization

In addition to heterogeneous cost modeling, multidatabase query optimization must
deal with the issue of the heterogeneous computing capabilities of component
DBMSs. For instance, one component DBMS may support only simple select opera-
tions while another may support complex queries involving join and aggregate. Thus,
depending on how the wrappers export such capabilities, query processing at the
mediator level can be more or less complex. There are two main approaches to deal
with this issue depending on the kind of interface between mediator and wrapper:
query-based and operator-based.

1. Query-based. In this approach, the wrappers support the same query capabil-
ity, e.g., a subset of SQL, which is translated to the capability of the component
DBMS. This approach typically relies on a standard DBMS interface such
as Open Database Connectivity (ODBC) and its extensions for the wrappers
or SQL Management of External Data (SQL/MED) [Melton et al., 2001].
Thus, since the component DBMSs appear homogeneous to the mediator,
query processing techniques designed for homogeneous distributed DBMS
can be reused. However, if the component DBMSs have limited capabilities,
the additional capabilities must be implemented in the wrappers, e.g., join
queries may need to be handled at the wrapper, if the component DBMS does
not support join.

2. Operator-based. In this approach, the wrappers export the capabilities of the
component DBMSs through compositions of relational operators. Thus, there
is more flexibility in defining the level of functionality between the mediator

9.4 Query Optimization and Execution 315

and the wrapper. In particular, the different capabilities of the component
DBMSs can be made available to the mediator. This makes wrapper construc-
tion easier at the expense of more complex query processing in the mediator.
In particular, any functionality that may not be supported by component
DBMSs (e.g., join) will need to be implemented at the mediator.

In the rest of this section, we present, in more detail, the approaches to query
optimization.

9.4.2.1 Query-based Approach

Since the component DBMSs appear homogeneous to the mediator, one approach
is to use a distributed cost-based query optimization algorithm (see Chapter 8) with
a heterogeneous cost model (see Section 9.4.1). However, extensions are needed
to convert the distributed execution plan into subqueries to be executed by the
component DBMSs and into subqueries to be executed by the mediator. The hybrid
two-step optimization technique is useful in this case (see Section 8.4.4): in the
first step, a static plan is produced by a centralized cost-based query optimizer; in
the second step, at startup time, an execution plan is produced by carrying out site
selection and allocating the subqueries to the sites. However, centralized optimizers
restrict their search space by eliminating bushy join trees from consideration. Almost
all the systems use left linear join orders where the right subtree of a join node is
always a leaf node corresponding to a base relation (Figure 9.3a). Consideration of
only left linear join trees gives good results in centralized DBMSs for two reasons:
it reduces the need to estimate statistics for at least one operand, and indexes can
still be exploited for one of the operands. However, in multidatabase systems, these
types of join execution plans are not necessarily the preferred ones as they do not
allow any parallelism in join execution. As we discussed in earlier chapters, this is
also a problem in homogeneous distributed DBMSs, but the issue is more serious in
the case of multidatabase systems, because we wish to push as much processing as
possible to the component DBMSs.

A way to resolve this problem is to somehow generate bushy join trees and
consider them at the expense of left linear ones. One way to achieve this is to apply a
cost-based query optimizer to first generate a left linear join tree, and then convert it
to a bushy tree [Du et al., 1995]. In this case, the left linear join execution plan can be
optimal with respect to total time, and the transformation improves the query response
time without severely impacting the total time. A hybrid algorithm that concurrently
performs a bottom-up and top-down sweep of the left linear join execution tree,
transforming it, step-by-step, to a bushy one has been proposed [Du et al., 1995]. The
algorithm maintains two pointers, called upper anchor nodes (UAN) on the tree. At
the beginning, one of these, called the bottom UAN (UANB), is set to the grandparent
of the leftmost root node (join with R3 in Figure 9.3a), while the second one, called
the top UAN (UANT), is set to the root (join with R5). For each UAN the algorithm
selects a lower anchor node (LAN). This is the node closest to the UAN and whose

316 9 Multidatabase Query Processing

right child subtree’s response time is within a designer-specified range, relative to
that of the UAN’s right child subtree. Intuitively, the LAN is chosen such that its
right child subtree’s response time is close to the corresponding UAN’s right child
subtree’s response time. As we will see shortly, this helps in keeping the transformed
bushy tree balanced, which reduces the response time.

R1 R2

R3

R4

R5

R1 R2 R3 R4

R5

(a) Left Linear Join Tree (b) Bushy Join Tree

Fig. 9.3 Left Linear versus Bushy Join Tree

At each step, the algorithm picks one of the UAN/LAN pairs (strictly speaking, it
picks the UAN and selects the appropriate LAN, as discussed above), and performs
the following translation for the segment between that LAN and UAN pair:

1. The left child of UAN becomes the new UAN of the transformed segment.

2. The LAN remains unchanged, but its right child node is replaced with a new
join node of two subtrees, which were the right child subtrees of the input
UAN and LAN.

The UAN mode that will be considered in that particular iteration is chosen
according to the following heuristic: choose UANB if the response time of its left
child subtree is smaller than that of UANT ’s subtree; otherwise choose UANT . If the
response times are the same, choose the one with the more unbalanced child subtree.

At the end of each transformation step, the UANB and UANT are adjusted. The
algorithm terminates when UANB = UANT , since this indicates that no further trans-
formations are possible. The resulting join execution tree will be almost balanced,
producing an execution plan whose response time is reduced due to parallel execution
of the joins.

The algorithm described above starts with a left linear join execution tree that is
generated by a commercial DBMS optimizer. While this is a good starting point, it
can be argued that the original linear execution plan may not fully account for the
peculiarities of the distributed multidatabase characteristics, such as data replication.
A special global query optimization algorithm [Evrendilek et al., 1997] can take

9.4 Query Optimization and Execution 317

these into consideration. Starting from an initial join graph, the algorithm checks
for different parenthesizations of this linear join execution order and produces a
parenthesized order, which is optimal with respect to response time. The result is
an (almost) balanced join execution tree. Performance evaluations indicate that this
approach produces better quality plans at the expense of longer optimization time.

9.4.2.2 Operator-based Approach

Expressing the capabilities of the component DBMSs through relational operators
allows tight integration of query processing between mediator and wrappers. In
particular, the mediator/wrapper communication can be in terms of subplans. We
illustrate the operator-based approach with planning functions proposed in the Garlic
project [Haas et al., 1997a]. In this approach, the capabilities of the component
DBMSs are expressed by the wrappers as planning functions that can be directly
called by a centralized query optimizer. It extends the rule-based optimizer proposed
by Lohman [1988] with operators to create temporary relations and retrieve locally-
stored data. It also creates the PushDown operator that pushes a portion of the
work to the component DBMSs where it will be executed. The execution plans are
represented, as usual, as operator trees, but the operator nodes are annotated with
additional information that specifies the source(s) of the operand(s), whether the
results are materialized, and so on. The Garlic operator trees are then translated into
operators that can be directly executed by the execution engine.

Planning functions are considered by the optimizer as enumeration rules. They are
called by the optimizer to construct subplans using two main functions: accessPlan
to access a relation, and joinPlan to join two relations using the access plans. These
functions precisely reflect the capabilities of the component DBMSs with a common
formalism.

Example 9.8. We consider three component databases, each at a different site. Com-
ponent database db1 stores relation EMP(ENO, ENAME, CITY). Component
database db2 stores relation ASG(ENO, PNAME, DUR). Component database
db3 stores only employee information with a single relation of schema EM-
PASG(ENAME, CITY, PNAME, DUR), whose primary key is (ENAME, PNAME).
Component databases db1 and db2 have the same wrapper w1 whereas db3 has a
different wrapper w2.

Wrapper w1 provides two planning functions typical of a relational DBMS. The
accessPlan rule

accessPlan(R: relation, A: attribute list, P: select predicate) =
scan(R,A,P,db(R))

produces a scan operator that accesses tuples of R from its component database
db(R) (here we can have db(R) = db1 or db(R) = db2), applies select predicate P,
and projects on the attribute list A. The joinPlan rule

318 9 Multidatabase Query Processing

joinPlan(R1,R2: relations, A: attribute list, P: join predicate) =
join (R1,R2, A, P)

condition: db(R1) 6= db(R2)

produces a join operator that accesses tuples of relations R1 and R2 and applies join
predicate P and projects on attribute list A. The condition expresses that R1 and
R2 are stored in different component databases (i.e., db1 and db2). Thus, the join
operator is implemented by the wrapper.

Wrapper w2 also provides two planning functions. The accessPlan rule

accessPlan(R: relation, A: attribute list, P: select predicate) =
fetch(CITY=“c”)

condition: (CITY=“c”) ⊆ P

produces a fetch operator that directly accesses (entire) employee tuples in component
database db3 whose CITY value is “c”. The accessPlan rule

accessPlan(R: relation, A: attribute list, P: select predicate) =
scan(R,A,P)

produces a scan operator that accesses tuples of relation R in the wrapper and applies
select predicate P and attribute project list A. Thus, the scan operator is implemented
by the wrapper, not the component DBMS.

Consider the following SQL query submitted to mediator m:

SELECT ENAME, PNAME, DUR
FROM EMPASG
WHERE CITY = "Paris" AND DUR > 24

Assuming the GAV approach, the global view EMPASG(ENAME, CITY, PNAME,
DUR) can be defined as follows (for simplicity, we prefix each relation by its
component database name):

EMPASG = (db1.EMP 1 db2.ASG) ∪ db3.EMPASG

After query rewriting in GAV and query optimization, the operator-based approach
could produce the QEP shown in Figure 9.4. This plan shows that the operators that
are not supported by the component DBMS are to be implemented by the wrappers
or the mediator. �

Using planning functions for heterogeneous query optimization has several advan-
tages in multi-DBMSs. First, planning functions provide a flexible way to express
precisely the capabilities of component data sources. In particular, they can be used
to model non-relational data sources such as web sites. Second, since these rules are
declarative, they make wrapper development easier. The only important development
for wrappers is the implementation of specific operators, e.g., the scan operator of
db3 in Example 9.8. Finally, this approach can be easily incorporated in an existing,
centralized query optimizer.

9.4 Query Optimization and Execution 319

Scan (CITY=”Paris”)

EMP ASG

Scan (DUR>24) Fetch (CITY=”Paris”)

EMPASG

Join Scan (DUR>24)

db
2db

1
db
3

w
1

w
2

Union
m

Fig. 9.4 Heterogeneous Query Execution Plan

The operator-based approach has also been successfully used in DISCO, a multi-
DBMS designed to access multiple databases over the web [Tomasic et al., 1996,
1997, 1998]. DISCO uses the GAV approach and supports an object data model
to represent both mediator and component database schemas and data types. This
allows easy introduction of new component databases, easily handling potential
type mismatches. The component DBMS capabilities are defined as a subset of an
algebraic machine (with the usual operators such as scan, join and union) that can
be partially or entirely supported by the wrappers or the mediator. This gives much
flexibility for the wrapper implementors in deciding where to support component
DBMS capabilities (in the wrapper or in the mediator). Furthermore, compositions of
operators, including specific data sets, can be specified to reflect component DBMS
limitations. However, query processing is more complicated because of the use of
an algrebraic machine and compositions of operators. After query rewriting on the
component schemas, there are three main steps [Kapitskaia et al., 1997].

1. Search space generation. The query is decomposed into a number of QEPs,
which constitutes the search space for query optimization. The search space is
generated using a traditional search strategy such as dynamic programming.

2. QEP decomposition. Each QEP is decomposed into a forest of n wrapper
QEPs and a composition QEP. Each wrapper QEP is the largest part of the
initial QEP that can be entirely executed by the wrapper. Operators that
cannot be performed by a wrapper are moved up to the composition QEP.
The composition QEP combines the results of the wrapper QEPs in the final
answer, typically through unions and joins of the intermediate results produced
by the wrappers.

3. Cost evaluation. The cost of each QEP is evaluated using a hierarchical cost
model discussed in Section 9.4.1.

320 9 Multidatabase Query Processing

9.4.3 Adaptive Query Processing

Multidatabase query processing, as discussed so far, follows essentially the principles
of traditional query processing whereby an optimal QEP is produced for a query
based on a cost model, which is then executed. The underlying assumption is that
the multidatabase query optimizer has sufficient knowledge about query runtime
conditions in order to produce an efficient QEP and the runtime conditions remain
stable during execution. This is a fair assumption for multidatabase queries with
few data sources running in a controlled environment. However, this assumption is
inappropriate for changing environments with large numbers of data sources and
unpredictable runtime conditions.

Example 9.9. Consider the QEP in Figure 9.5 with relations EMP, ASG, PROJ and
PAY at sites s1,s2,s3,s4, respectively. The crossed arrow indicates that, for some
reason (e.g., failure), site s2 (where ASG is stored) is not available at the beginning
of execution. Let us assume, for simplicity, that the query is to be executed according
to the iterator execution model [Graefe and McKenna, 1993], such that tuples flow
from the left most relation,

EMPASG

PROJ

PAY

Fig. 9.5 Query Execution Plan with Blocked Data Source

Because of the unavailability of s2, the entire pipeline is blocked, waiting for ASG
tuples to be produced. However, with some reoganization of the plan, some other
operators could be evaluated while waiting for s2, for instance, to evaluate the join of
EMP and PAY. �

This simple example illustrates that a typical static plan cannot cope with unpre-
dictable data source unavailability [Amsaleg et al., 1996a]. More complex examples
involve continuous queries [Madden et al., 2002b], expensive predicates [Porto et al.,
2003] and data skew [Shah et al., 2003]. The main solution is to have some adaptive
behavior during query processing, i.e., adaptive query processing. Adaptive query
processing is a form of dynamic query processing, with a feedback loop between
the execution environment and the query optimizer in order to react to unforeseen
variations of runtime conditions. A query processing system is defined as adaptive if
it receives information from the execution environment and determines its behavior
according to that information in an iterative manner [Hellerstein et al., 2000; Gounaris
et al., 2002b]. In the context of multidatabase systems, the execution environment

9.4 Query Optimization and Execution 321

includes the mediator, wrappers and component DBMSs. In particular, wrappers
should be able to collect information regarding execution within the component
DBMSs. Obviously, this is harder to do with legacy DBMSs.

In this section, we first provide a general presentation of the adaptive query
processing process. Then, we present, in more detail, the Eddy approach [Avnur and
Hellerstein, 2000] that provides a powerful framework for adaptive query processing
techniques. Finally, we discuss major extensions to Eddy.

9.4.3.1 Adaptive Query Processing Process

Adaptive query processing adds to the traditional query processing process the
following activities: monitoring, assessing and reacting. These activities are logically
implemented in the query processing system by sensors, assessment components,
and reaction components, respectively. These components may be embedded into
control operators of the QEP, e.g., the Exchange operator [Graefe and McKenna,
1993]. Monitoring involves measuring some environment parameters within a time
window, and reporting them to the assessment component. The latter analyzes the
reports and considers thresholds to arrive at an adaptive reaction plan. Finally, the
reaction plan is communicated to the reaction component that applies the reactions
to query execution.

Typically, an adaptive process specifies the frequency with which each component
will be executed. There is a tradeoff between reactiveness, in which higher values
lead to eager reactions, and the overhead caused by the adaptive process. A generic
representation of the adaptive process is given by the function fadapt(E,T)→ Ad,
where E is a set of monitored environment parameters, T is a set of threshold values
and Ad is a possibly empty set of adaptive reactions. The elements of E,T and Ad,
called adaptive elements, obviously may vary in a number of ways depending on
the application. The most important elements are the monitoring parameters and the
adaptive reactions. We now describe them, following the presentation in [Gounaris
et al., 2002b].

Monitoring parameters.

Monitoring query runtime parameters involves placing sensors at key places of the
QEP and defining observation windows, during which sensors collect information.
It also requires the specification of a communication mechanism to pass collected
information to the assessment component. Examples of candidates for monitoring
are:

• Memory size. Monitoring available memory size allows, for instance, operators
to react to memory shortage or memory increase [Shah et al., 2003].

• Data arrival rates. Monitoring the variations in data arrival rates may enable the
query processor to do useful work while waiting for a blocked data source.

322 9 Multidatabase Query Processing

• Actual statistics. Database statistics in a multidatabase environment tend to be
inaccurate, if at all available. Monitoring the actual size of relations and inter-
mediate results may lead to important modifications in the QEP. Furthermore,
the usual data assumptions, in which the selectivity of predicates over attributes
in a relation are considered to be mutually independent, can be abandoned and
real selectivity values can be computed.

• Operator execution cost. Monitoring the actual cost of operator execution,
including production rates, is useful for better operator scheduling. Furthermore,
monitoring the size of the queues placed before operators may avoid overload
situations [Tian and DeWitt, 2003b].

• Network throughput. In multidatabase query evaluation with remote data
sources, monitoring network throughput may be helpful to define the data
retrieval block size. In a lower throughput network, the system may react with
larger block sizes to reduce network penalty.

Adaptive reactions.

Adaptive reactions modify query execution behavior according to the decisions taken
by the assessment component. Important adaptive reactions are the following:

• Change schedule: modifies the order in which operators in the QEP get sched-
uled. Query Scrambling [Amsaleg et al., 1996a; Urhan et al., 1998a] reacts by
a change schedule of the plan, e.g., to reorganize the QEP in Example 9.9, to
avoid stalling on a blocked data source during query evaluation. Eddy adopts
finer reaction where operator scheduling can be decided on a tuple basis.

• Operator replacement: replaces a physical operator by an equivalent one. For
example, depending on the available memory, the system may choose between a
nested loop join or a hash join. Operator replacement may also change the plan
by introducing a new operator to join the intermediate results produced by a
previous adaptive reaction. Query Scrambling, for instance, may introduce new
operators to evaluate joins between the results of change schedule reactions.

• Operator behavior: modifies the physical behavior of an operator. For example,
the symmetric hash join [Wilschut and Apers, 1991] or ripple join algorithms
[Haas and Hellerstein, 1999b] constantly alternate the inner/outer relation roles
between their input tuples.

• Data repartitioning: considers the dynamic repartitioning of a relation through
multiple nodes using intra-operator parallelism [Shah et al., 2003]. Static par-
titioning of a relation tends to produce load imbalance between nodes. For
example, information partitioned according to their associated geographical
region (i.e., continent) may exhibit different access rates during the day because
of the time differences in users’ locations.

9.4 Query Optimization and Execution 323

• Plan reformulation: computes a new QEP to replace an inefficient one. The
optimizer considers actual statistics and state information, collected on the fly,
to produce a new plan.

9.4.3.2 Eddy Approach

Eddy is a general framework for adaptive query processing. It was developed in the
context of the Telegraph project with the goal of running queries on large volumes of
online data with unpredictable input rates and fluctuations in the running environment.

For simplicity, we only consider select-project-join (SPJ) queries. Select operators
can include expensive predicates [Hellerstein and Stonebraker, 1993]. The process
of generating a QEP from an input SPJ query begins by producing a spanning tree
of the query graph G modeling the input query. The choice among join algorithms
and relation access methods favors adaptiveness. A QEP can be modeled as a tuple
Q = 〈D,P,C〉, where D is a set of data sources, P is a set of query predicates with
associated algorithms, and C is a set of ordering constraints that must be followed
during execution. Observe that multiple valid spanning trees can be derived from G
that obey the constraints in C, by exploring the search space composed of equivalent
plans with different predicate orders. There is no need to find an optimal QEP during
query compilation. Instead, operator ordering is done on the fly on a tuple-per-tuple
basis (i.e., tuple routing). The process of QEP compilation is completed by adding
the Eddy operator which is an n-ary physical operator placed between data sources
in D and query predicates in P.

Example 9.10. Consider a three-relation query Q = σp(R) 1 S 1 T , where joins are
equi-joins. Assume that the only access method to relation T is through an index on
join attribute T.A, i.e., the second join can only be an index join over T.A. Assume
also that σp is an expensive predicate (e.g., a predicate over the results of running
a program over values of R.B). Under these assumptions, the QEP is defined as
D = {R,S,T}, P = {σp(R),R 11 S,S 12 T} and C = {S ≺ T}. The constraint ≺
imposes S tuples to probe T tuples, based on the index on T.A.

Figure 9.6 shows a QEP produced by the compilation of query Q with Eddy.
An ellipse corresponds to a physical operator (i.e., either the Eddy operator or
an algorithm implementing a predicate p ∈ P). As usual, the bottom of the plan
presents the data sources. In the absence of a scan access method, relation T access is
wrapped by the index join implementing the second join, and, thus, does not appear as
a data source. The arrows specify pipeline dataflow following a producer-consumer
relationship. Finally, an arrow departing from the Eddy models the production of
output tuples. �

Eddy provides fine-grain adaptiveness by deciding on the fly how to route tuples
through predicates according to a scheduling policy. During query execution, tuples
in data sources are retrieved and staged into an input buffer managed by the Eddy
operator. Eddy responds to data source unavailability by simply reading from another
data source and staging tuples in the buffer pool.

324 9 Multidatabase Query Processing

Eddy

 R S

R S (R)S T

Fig. 9.6 A Query Execution Plan with Eddy.

The flexibility of choosing the currently available data source is obtained by
relaxing the fixed order of predicates in a QEP. In Eddy, there is no fixed QEP and
each tuple follows its own path through predicates according to the constraints in the
plan and its own history of predicate evaluation.

The tuple-based routing strategy produces a new QEP topology. The Eddy operator
together with its managed predicates form a circular dataflow in which tuples leave
the Eddy operator to be evaluated by the predicates, which in turn bounce back output
tuples to the Eddy operator. A tuple leaves the circular dataflow either when it is
eliminated by a predicate evaluation or the Eddy operator realizes that the tuple has
passed through all the predicates in its list. The lack of a fixed QEP requires each
tuple to register the set of predicates it is eligible for. For example, in Figure 9.6, S
tuples are eligible for the two join predicates but are not eligible for predicate σp(R).

Let us now present, in more detail, how Eddy adaptively performs join ordering
and scheduling.

Adaptive join ordering.

A fixed QEP (produced at compile time) dictates the join ordering and specifies which
relations can be pipelined through the join operators. This makes query execution
simple. When, as in Eddy, there is no fixed QEP, the challenge is to dynamically order
pipelined join operators at run time, while tuples from different relations are flowing
in. Ideally, when a tuple of a relation participating in a join arrives, it should be sent to
a join operator (chosen by the scheduling policy) to be processed on the fly. However,
most join algorithms cannot process some incoming tuples on the fly because they are
asymmetric with respect to the way inner and outer tuples are processed. Consider the
basic hash-based join algorithm, for instance: the inner relation is fully read during

9.4 Query Optimization and Execution 325

the build phase to construct a hash table, whereas tuples in the outer relation are
pipelined during the probe phase. Thus, an incoming inner tuple cannot be processed
on the fly as it must be stored in the hash table and the processing will be possible
when the entire hash table has been built. Similarly, the nested loop join algorithm
is asymmetric as only the inner relation must be read entirely for each tuple of the
outer relation. Join algorithms with some kind of asymmetry offer few opportunities
for alternating input relations between inner and outer roles. Thus, to relax the order
in which join inputs are consumed, symmetric join algorithms are needed where the
role played by the relations in a join may change without producing incorrect results.

The earliest example of a symmetric join algorithm is the symmetric hash join
[Wilschut and Apers, 1991], which uses two hash tables, one for each input relation.
The traditional build and probe phases of the basic hash join algorithm are simply
interleaved. When a tuple arrives, it is used to probe the hash table corresponding to
the other relation and find matching tuples. Then, it is inserted in its corresponding
hash table so that tuples of the other relation arriving later can be joined. Thus,
each arriving tuple can be processed on the fly. Another popular symmetric join
algorithm is the ripple join [Haas and Hellerstein, 1999b], which can be viewed as a
generalization of the nested loop join algorithm where the roles of inner and outer
relation continually alternate during query execution. The main idea is to keep the
probing state of each input relation, with a pointer that indicates the last tuple used
to probe the other relation. At each toggling point, a change of roles between inner
and outer relations occurs. At this point, the new outer relation starts to probe the
inner input from its pointer position onwards, to a specified number of tuples. The
inner relation, in turn, is scanned from its first tuple to its pointer position minus 1.
The number of tuples processed at each stage in the outer relation gives the toggling
rate and can be adaptively monitored.

Using symmetric join algorithms, Eddy can achieve flexible join ordering by
controlling the history and constraints regarding predicate evaluation on a tuple basis.
This control is implemented using two sets of progress bits carried by each tuple,
which indicate, respectively, the predicates to which the tuple is ready to be evaluated
by (i.e., the “ready bits”) and the set of predicates already evaluated (i.e., the “done
bits”). When a tuple t is read into an Eddy operator, all done bits are zeroed and
the predicates without ordering constraints, and to which t is eligible for, have their
corresponding ready bits set. After each predicate evaluation, the corresponding done
bit is set and the ready bits are updated, accordingly. When a join concatenates a
pair of tuples, their done bits are ORed and a new set of ready bits are turned on.
Combining progress bits and symmetric join algorithms allows Eddy to schedule
predicates in an adaptive way.

Adaptive scheduling.

Given a set of candidate predicates, Eddy must adaptively select the one to which
each tuple will be sent. Two main principles drive the choice of a predicate in Eddy:
cost and selectivity. Predicate costs are measured as a function of the consumption

326 9 Multidatabase Query Processing

rate of each predicate. Remember that the Eddy operator holds tuples in its internal
buffer, which is shared by all predicates. Low cost (i.e., fast) predicates finish their
work quicker and request new tuples from the Eddy. As a result, low cost predicates
get allocated more tuples than high cost predicates. This strategy, however, is agnostic
with respect to predicate selectivity. Eddy’s tuple routing strategy is complemented
by a simple lottery scheduling mechanism that learns about predicate selectivity
[Arpaci-Dusseau et al., 1999]. The strategy credits a ticket to a predicate whenever
the latter gets scheduled a tuple. Once a tuple has been processed and is bounced
back to the Eddy, the corresponding predicate gets its ticket amount decremented.
Combining cost and selectivity criteria becomes easy. Eddy continuously runs a
lottery among predicates currently requesting tuples. The predicate with higher count
of tickets wins the lottery and gets scheduled.

Another interesting issue is the choice of the running tuple from the input buffer.
In order to end query processing, all tuples in the input buffer must be evaluated.
Thus, a difference in tuple scheduling may reflect user preferences with respect to
tuple output. For example, Eddy may favor tuples with higher number of done bits
set, so that the user receives first results earlier.

9.4.3.3 Extensions to Eddy

The Eddy approach has been extended in various directions. In the cherry pick-
ing approach [Porto et al., 2003], context is used instead of simple ticket-based
scheduling. The relationship among expensive predicate input attribute values are
discovered at runtime and used as the basis for adaptive tuple scheduling. Given a
query Q with D = {R[A,B,C]}, P = {σ1

p(R.A),σ
2
p(R.B),σ

3
p(R.C)} and C = /0, the

main idea is to model the input attribute values of the expensive predicates in P as
a hypergraph G = (V,E), where V is a set of n node partitions, with n being the
number of expensive predicates. Each partition corresponds to a single attribute of
the input relation R that are input to a predicate in P and each node corresponds to a
distinct value of that attribute. An hyperedge e = {ai,b j,ck} corresponds to a tuple
of relation R. The degree of a node vi corresponds to the number of hyperedges in
which vi takes part. With this modeling, efficiently evaluating query Q corresponds to
eliminating as quickly as possible the hyperedges in G. An hyperedge is eliminated
whenever a value associated with one of its nodes is evaluated by a predicate in P and
returns false. Furthermore, node degrees model hidden attribute dependencies, so that
when the result of a predicate evaluation over a value vi returns false, all hyperedges
(i.e., tuples) that vi takes part in are also eliminated. An adaptive content-sensitive
strategy to evaluate a query Q is proposed for this model. It schedules values to be
evaluated by a predicate according to the Fanout of its corresponding node, computed
as the product of the node degree in the hypergraph G with the ratio between the
corresponding predicate selectivity and predicate unitary evaluation cost.

Another interesting extension is distributed Eddies [Tian and DeWitt, 2003b]
to deal with distributed input data streams. Since a centralized Eddy operator may
quickly become a bottleneck, a distributed approach is proposed for tuple routing.

9.5 Query Translation and Execution 327

Each operator decides on the next operator to route a tuple to based on its history
of operator’s evaluation (i.e., done bits) and statistics collected from the remain-
ing operators. In a distributed setting, each operator may run at a different node
in the network with a queue holding input tuples. The query optimization problem
is specified by considering two new metrics for measuring stream query perfor-
mance: average response time and maximum data rate. The former corresponds to
the average time tuples take to traverse the operators in a plan, whereas the latter
measures the maximum throughput the system can withstand without overloading.
Routing strategies use the following parameters: operator’s cost, selectivity, length
of operator’s input queue and probability of an operator being routed a tuple. The
combination of these parameters yields efficient query evaluation. Using operator’s
cost and selectivity guarantee that low-cost and highly selective operators are given
higher routing priority. Queue length provides information on the average time tuples
are staged in queues. Managing operator’s queue length allows the routing decision
to avoid overloaded operators. Thus, by supporting routing policies, each operator
is able to individually make routing decisions, thereby avoiding the bottlneck of a
centralized router.

9.5 Query Translation and Execution

Query translation and execution is performed by the wrappers using the component
DBMSs. A wrapper encapsulates the details of one or more component databases,
each supported by the same DBMS (or file system). It also exports to the mediator
the component DBMS capabilities and cost functions in a common interface. One
of the major practical uses of wrappers has been to allow an SQL-based DBMS to
access non-SQL databases [Roth and Schwartz, 1997].

The main function of a wrapper is conversion between the common interface and
the DBMS-dependent interface. Figure 9.7 shows these different levels of interfaces
between the mediator, the wrapper and the component DBMSs. Note that, depending
on the level of autonomy of the component DBMSs, these three components can
be located differently. For instance, in the case of strong autonomy, the wrapper
should be at the mediator site, possibly on the same server. Thus, communication
between a wrapper and its component DBMS incurs network cost. However, in the
case of a cooperative component database (e.g., within the same organization), the
wrapper could be installed at the component DBMS site, much like an ODBC driver.
Thus, communication between the wrapper and the component DBMS is much more
efficient.

The information necessary to perform conversion is stored in the wrapper schema
that includes the local schema exported to the mediator in the common interface (e.g.,
relational) and the schema mappings to transform data between the local schema and
the component database schema and vice-versa. We discussed schema mappings in
Chapter 4. Two kinds of conversion are needed. First, the wrapper must translate
the input QEP generated by the mediator and expressed in a common interface

328 9 Multidatabase Query Processing

into calls to the component DBMS using its DBMS-dependent interface. These
calls yield query execution by the component DBMS that return results expressed
in the DBMS-dependent interface. Second, the wrapper must translate the results
to the common interface format so that they can be returned to the mediator for
integration. In addition, the wrapper can execute operations that are not supported by
the component DBMS (e.g., the scan operation by wrapper w2 in Figure 9.4).

 MEDIATOR

COMPONENT

 DBMS

COMMON INTERFACE

WRAPPER

DBMS-DEPENDENT

 INTERFACE

Fig. 9.7 Wrapper interfaces

As discussed in Section 9.4.2, the common interface to the wrappers can be query-
based or operator-based. The problem of translation is similar in both approaches.
To illustrate query translation in the following example, we use the query-based
approach with the SQL/MED standard that allows a relational DBMS to access
external data represented as foreign relations in the wrapper’s local schema. This
example, borrowed from [Melton et al., 2001], illustrates how a very simple data
source can be wrapped to be accessed through SQL.

Example 9.11. We consider relation EMP(ENO, ENAME, CITY) stored in a very
simple component database, in server ComponentDB, built with Unix text files. Each
EMP tuple can then be stored as a line in a file, e.g., with the attributes separated by
“:”. In SQL/MED, the definition of the local schema for this relation together with
the mapping to a Unix file can be declared as a foreign relation with the following
statement:

CREATE FOREIGN TABLE EMP
ENO INTEGER,
ENAME VARCHAR(30),
CITY VARCHAR(20)

SERVER ComponentDB
OPTIONS (Filename ’/usr/EngDB/emp.txt’, Delimiter ’:’)

Then, the mediator can send the wrapper supporting access to this relation SQL
statements. For instance, the query:

9.5 Query Translation and Execution 329

SELECT ENAME
FROM EMP

can be translated by the wrapper using the following Unix shell command to extract
the relevant attribute:

cut -d: -f2 /usr/EngDB/emp

Additional processing, e.g., for type conversion, can then be done using programming
code. �

Wrappers are mostly used for read-only queries, which makes query translation
and wrapper construction relatively easy. Wrapper construction typically relies on
CASE tools with reusable components to generate most of the wrapper code [Tomasic
et al., 1997]. Furthermore, DBMS vendors provide wrappers for transparently access-
ing their DBMS using standard interfaces. However, wrapper construction is much
more difficult if updates to component databases are to be supported through wrap-
pers (as opposed to directly updating the component databases through their DBMS).
The main problem is due to the heterogeneity of integrity constraints between the
common interface and the DBMS-dependent interface. As discussed in Chapter 5,
integrity constraints are used to reject updates that violate database consistency. In
modern DBMSs, integrity constraints are explicit and specified as rules as part of
the database schema. However, in older DBMSs or simpler data sources (e.g., files),
integrity constraints are implicit and implemented by specific code in the applications.
For instance, in Example 9.11, there could be applications with some embedded
code that rejects insertions of new lines with an existing ENO in the EMP text file.
This code corresponds to a unique key constraint on ENO in relation EMP but is
not readily available to the wrapper. Thus, the main problem of updating through
a wrapper is to guarantee component database consistency by rejecting all updates
that violate integrity constraints, whether they are explicit or implicit. A software
engineering solution to this problem uses a CASE tool with reverse engineering
techniques to identify within application code the implicit integrity constraints which
are then translated into validation code in the wrappers [Thiran et al., 2006].

Another major problem is wrapper maintenance. Query translation relies heavily
on the mappings between the component database schema and the local schema. If
the component database schema is changed to reflect the evolution of the component
database, then the mappings can become invalid. For instance, in Example 9.11, the
administrator may switch the order of the fields in the EMP file. Using invalid map-
pings may prevent the wrapper from producing correct results. Since the component
databases are autonomous, detecting and correcting invalid mappings is important.
The techniques to do so are those for mapping maintenance that we presented in
Chapter 4.

330 9 Multidatabase Query Processing

9.6 Conclusion

Query processing in multidatabase systems is significantly more complex than in
tightly-integrated and homogeneous distributed DBMSs. In addition to being dis-
tributed, component databases may be autonomous, have different database languages
and query processing capabilities, and exhibit varying behavior. In particular, com-
ponent databases may range from full-fledged SQL databases to very simple data
sources (e.g., text files).

In this chapter, we addressed these issues by extending and modifying the dis-
tributed query processing architecture presented in Chapter 6. Assuming the popular
mediator/wrapper architecture, we isolated the three main layers by which a query
is successively rewritten (to bear on local relations) and optimized by the mediator,
and then translated and executed by the wrappers and component DBMSs. We also
discussed how to support OLAP queries in a multidatabase, an important requirement
of decision-support applications. This requires an additional layer of translation from
OLAP multidimensional queries to relational queries. This layered architecture for
multidatabase query processing is general enough to capture very different varia-
tions. This has been useful to describe various query processing techniques, typically
designed with different objectives and assumptions.

The main techniques for multidatabase query processing are query rewriting using
multidatabase views, multidatabase query optimization and execution, and query
translation and execution. The techniques for query rewriting using multidatabase
views differ in major ways depending on whether the GAV or LAV integration
approach is used. Query rewriting in GAV is similar to data localization in homoge-
neous distributed database systems. But the techniques for LAV (and its extension
GLAV) are much more involved and it is often not possible to find an equivalent
rewriting for a query, in which case a query that produces a maximum subset of the
answer is necessary. The techniques for multidatabase query optimization include
cost modeling and query optimization for component databases with different com-
puting capabilities. These techniques extend traditional distributed query processing
by focusing on heterogeneity. Besides heterogeneity, an important problem is to deal
with the dynamic behavior of the component DBMSs. Adaptive query processing
addresses this problem with a dynamic approach whereby the query optimizer com-
municates at run time with the execution environment in order to react to unforeseen
variations of runtime conditions. Finally, we discussed the techniques for translating
queries for execution by the components DBMSs and for generating and managing
wrappers.

The data model used by the mediator can be relational, object-oriented or even
semi-structured (based on XML). In this chapter, for simplicity, we assumed a
mediator with a relational model that is sufficient to explain the multidatabase query
processing techniques. However, when dealing with data sources on the Web, a richer
mediator model such as object-oriented or semi-structured (e.g., XML-based) may
be preferred. This requires significant extensions to query processing techniques.

9.7 Bibliographic Notes 331

9.7 Bibliographic Notes

Work on multidatabase query processing started in the early 1980’s with the first
multidatabase systems (e.g., [Brill et al., 1984; Dayal and Hwang, 1984] and [Landers
and Rosenberg, 1982]). The objective then was to access different databases within
an organization. In the 1990’s, the increasing use of the Web for accessing all kinds
of data sources triggered renewed interest and much more work in multidatabase
query processing, following the popular mediator/wrapper architecture [Wiederhold,
1992]. A brief overview of multidatabase query optimization issues can be found
in [Meng et al., 1993]. Good discussions of multidatabase query processing can
be found in [Lu et al., 1992, 1993], in Chapter 4 of [Yu and Meng, 1998] and in
[Kossmann, 2000].

Query rewriting using views is surveyed in [Halevy, 2001]. In [Levy et al., 1995],
the general problem of finding a rewriting using views is shown to be NP-complete in
the number of views and the number of subgoals in the query The unfolding technique
for rewriting a query expressed in Datalog in GAV was proposed in [Ullman, 1997].
The main techniques for query rewriting using views in LAV are the bucket algorithm
[Levy et al., 1996b], the inverse rule algorithm [Duschka and Genesereth, 1997], and
the MinCon algorithm [Pottinger and Levy, 2000].

The three main approaches for heterogeneous cost modeling are discussed in [Zhu
and Larson, 1998]. The black-box approach is used in [Du et al., 1992; Zhu and
Larson, 1994]. The customized approach is developped in [Zhu and Larson, 1996a;
Roth et al., 1999; Naacke et al., 1999]. The dynamic approach is used in [Zhu et al.,
2000], [Zhu et al., 2003] and [Rahal et al., 2004].

The algorithm we described to illustrate the query-based approach to heteroge-
neous query optimization has been proposed in [Du et al., 1995]. To illustrate the
operator-based approach, we described the popular solution with planning functions
proposed in the Garlic project [Haas et al., 1997a]. The operator-based approach has
been also used in DISCO, a multidatabase system to access component databases
over the web [Tomasic et al., 1996, 1998].

Adaptive query processing is surveyed in [Hellerstein et al., 2000; Gounaris et al.,
2002b]. The seminal paper on the Eddy approach which we used to illustrate adaptive
query processing is [Avnur and Hellerstein, 2000]. Other important techniques for
adaptive query processing are query scrambling [Amsaleg et al., 1996a; Urhan et al.,
1998a], Ripple joins [Haas and Hellerstein, 1999b], adaptive partitioning [Shah et al.,
2003] and Cherry picking [Porto et al., 2003]. Major extensions to Eddy are state
modules [Raman et al., 2003] and distributed Eddies [Tian and DeWitt, 2003b].

A software engineering solution to the problem of wrapper creation and mainte-
nance, considering integrity control, is proposed in [Thiran et al., 2006].

332 9 Multidatabase Query Processing

Exercises

Problem 9.1 (**). Can any type of global optimization be performed on global
queries in a multidatabase system? Discuss and formally specify the conditions under
which such optimization would be possible.

Problem 9.2 (*). Consider a marketing application with a ROLAP server at site s1
which needs to integrate information from two customer databases, each at site s2
within the corporate network. Assume also that the application needs to combine
customer information with information extracted from Web data sources about cities
in 10 different countries. For security reasons, a web server at site s3 is dedicated to
Web access outside the corporate network. Propose a multidatabase system archi-
tecture with mediator and wrappers to support this application. Discuss and justify
design choices.

Problem 9.3 (**). Consider the global relations EMP(ENAME, TITLE, CITY) and
ASG(ENAME, PNAME, CITY, DUR). City in ASG is the location of the project
of name PNAME (i.e., PNAME functionnally determines CITY). Consider the
local relations EMP1(ENAME, TITLE, CITY), EMP2(ENAME, TITLE, CITY),
PROJ1(PNAME, CITY), PROJ2(PNAME, CITY) and ASG1(ENAME, PNAME,
DUR). Consider query Q which selects the names of the employees assigned to a
project in Rio de Janeiro for more than 6 months and the duration of their assignment.

(a) Assuming the GAV approach, perform query rewriting.
(b) Assuming the LAV approach, perform query rewriting using the bucket algo-

rithm.
(c) Same as (b) using the MinCon algorithm.

Problem 9.4 (*). Consider relations EMP and ASG of Example 9.7. We denote by
|R| the number of pages to store R on disk. Consider the following statistics about
the data:

|EMP|= 1 000
|EMP|= 100
|ASG|= 10 000
|ASG|= 2 000
selectivity(ASG.DUR > 36) = 1%

The mediator generic cost model is:

cost(σA=v(R)) = |R|
cost(σ(X)) = cost(X) where X contains at least one operator.

cost(R 1ind
A S) = cost(R)+ |R| ∗ cost(σA=v(S)) using an indexed join algorithm.

cost(R 1nl
A S) = cost(R)+ |R| ∗ cost(S) using a nested loop join algorithm.

Consider the MDBMS input query Q:

9.7 Bibliographic Notes 333

SELECT *
FROM EMP, ASG
WHERE EMP.ENO=ASG.ENO
AND ASG.DUR>36

Consider four plans to process Q:

P1 = EMP 1ind
ENO σDUR>36(ASG)

P2 = EMP 1nl
ENO σDUR>36(ASG)

P3 = σDUR>36(ASG)1ind
ENO EMP

P4 = σDUR>36(ASG)1nl
ENO EMP

(a) What is the cost of plans P1 to P4?
(b) Which plan has the minimal cost?

Problem 9.5 (*). Consider relations EMP and ASG of the previous exercice. Suppose
now that the mediator cost model is completed with the following cost information
issued from the component DBMSs.

The cost of accessing EMP tuples at db1 is:

cost(σA=v(R)) = |σA=v(R)|

The specific cost of selecting ASG tuples that have a given ENO at D2 is:

cost(σENO=v(ASG)) = |σENO=v(ASG)|

(a) What is the cost of plans P1 to P4?
(b) Which plan has the minimal cost?

Problem 9.6 (**). What are the respective advantages and limitations of the query-
based and operator-based approaches to heterogeneous query optimization from the
points of view of query expressiveness, query performance, development cost of
wrappers, system (mediator and wrappers) maintenance and evolution?

Problem 9.7 (**). Consider Example 9.8 by adding, at a new site, component
database db4 which stores relations EMP(ENO, ENAME, CITY) and ASG(ENO,
PNAME, DUR). db4 exports through its wrapper w3 join and scan capabilities. Let
us assume that there can be employees in db1 with corresponding assignments in
db4 and employees in db4 with corresponding assignments in db2.

(a) Define the planning functions of wrapper w3.
(b) Give the new definition of global view EMPASG(ENAME, CITY, PNAME,

DUR).
(c) Give a QEP for the same query as in Example 9.8.

Problem 9.8 (**). Consider three relations R(A,B), S(B,C) and T (C,D) and query
Q (σ1

p(R)11 S 12 T), where 11 and 12 are natural joins. Assume that S has an index

334 9 Multidatabase Query Processing

on attribute B and T has an index on attribute C. Furthermore, σ1
p is an expensive

predicate (i.e., a predicate over the results of running a program over values of
R.A). Using the Eddy approach for adaptive query processing, answer the following
questions:

(a) Propose the set C of constraints on Q to produce an Eddy-based QEP.
(b) Give a query graph G for Q.
(c) Using C and G, propose an Eddy-based QEP.
(d) Propose a second QEP that uses State Modules. Discuss the advantages ob-

tained by using state modules in this QEP.

Problem 9.9 (**). Propose a data structure to store tuples in the Eddy buffer pool
to help choosing quickly the next tuple to be evaluated according to user specified
preference, for instance, produce first results earlier.

Problem 9.10 (**). Propose a predicate scheduling algorithm based on the Cherry
picking approach introduced in Section 9.4.3.3.

Chapter 10
Introduction to Transaction Management

Up to this point the basic access primitive that we have considered has been a query.
Our focus has been on retrieve-only (or read-only) queries that read data from a
distributed database. We have not yet considered what happens if, for example,
two queries attempt to update the same data item, or if a system failure occurs
during execution of a query. For retrieve-only queries, neither of these conditions
is a problem. One can have two queries reading the value of the same data item
concurrently. Similarly, a read-only query can simply be restarted after a system
failure is handled. On the other hand, it is not difficult to see that for update queries,
these conditions can have disastrous effects on the database. We cannot, for example,
simply restart the execution of an update query following a system failure since
certain data item values may already have been updated prior to the failure and
should not be updated again when the query is restarted. Otherwise, the database
would contain incorrect data.

The fundamental point here is that there is no notion of “consistent execution”
or “reliable computation” associated with the concept of a query. The concept of
a transaction is used in database systems as a basic unit of consistent and reliable
computing. Thus queries are executed as transactions once their execution strategies
are determined and they are translated into primitive database operations.

In the discussion above, we used the terms consistent and reliable quite informally.
Due to their importance in our discussion, we need to define them more precisely.
We differentiate between database consistency and transaction consistency.

A database is in a consistent state if it obeys all of the consistency (integrity)
constraints defined over it (see Chapter 5). State changes occur due to modifications,
insertions, and deletions (together called updates). Of course, we want to ensure
that the database never enters an inconsistent state. Note that the database can
be (and usually is) temporarily inconsistent during the execution of a transaction.
The important point is that the database should be consistent when the transaction
terminates (Figure 10.1).

Transaction consistency, on the other hand, refers to the actions of concurrent
transactions. We would like the database to remain in a consistent state even if there
are a number of user requests that are concurrently accessing (reading or updating)

335
DOI 10.1007/978-1-4419-8834-8_10, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

336 10 Introduction to Transaction Management

Database in a

consistent

state

Execution of

Transaction T

End

Transaction T

Database may be

temporarily in an

inconsistent state

during execution

Database in a

consistent

state

Begin

Transaction T

Fig. 10.1 A Transaction Model

the database. A complication arises when replicated databases are considered. A
replicated database is in a mutually consistent state if all the copies of every data
item in it have identical values. This is referred to as one-copy equivalence since
all replica copies are forced to assume the same state at the end of a transaction’s
execution. There are more relaxed notions of replica consistency that allow replica
values to diverge. These will be discussed later in Chapter 13.

Reliability refers to both the resiliency of a system to various types of failures and
its capability to recover from them. A resilient system is tolerant of system failures
and can continue to provide services even when failures occur. A recoverable DBMS
is one that can get to a consistent state (by moving back to a previous consistent state
or forward to a new consistent state) following various types of failures.

Transaction management deals with the problems of always keeping the database
in a consistent state even when concurrent accesses and failures occur. In the up-
coming two chapters, we investigate the issues related to managing transactions. A
third chapter will address issues related to keeping replicated databases consistent.
The purpose of the current chapter is to define the fundamental terms and to provide
the framework within which these issues can be discussed. It also serves as a con-
cise introduction to the problem and the related issues. We will therefore discuss
the concepts at a high level of abstraction and will not present any management
techniques.

The organization of this chapter is as follows. In the next section we formally
and intuitively define the concept of a transaction. In Section 10.2 we discuss the
properties of transactions and what the implications of each of these properties are
in terms of transaction management. In Section 10.3 we present various types of
transactions. In Section 10.4 we revisit the architectural model defined in Chapter 1
and indicate the modifications that are necessary to support transaction management.

10.1 Definition of a Transaction 337

10.1 Definition of a Transaction

Gray [1981] indicates that the transaction concept has its roots in contract law. He
states, “In making a contract, two or more parties negotiate for a while and then make
a deal. The deal is made binding by the joint signature of a document or by some
other act (as simple as a handshake or a nod). If the parties are rather suspicious of
one another or just want to be safe, they appoint an intermediary (usually called an
escrow officer) to coordinate the commitment of the transaction.” The nice aspect of
this historical perspective is that it does indeed encompass some of the fundamental
properties of a transaction (atomicity and durability) as the term is used in database
systems. It also serves to indicate the differences between a transaction and a query.

As indicated before, a transaction is a unit of consistent and reliable computation.
Thus, intuitively, a transaction takes a database, performs an action on it, and gener-
ates a new version of the database, causing a state transition. This is similar to what
a query does, except that if the database was consistent before the execution of the
transaction, we can now guarantee that it will be consistent at the end of its execution
regardless of the fact that (1) the transaction may have been executed concurrently
with others, and (2) failures may have occurred during its execution.

In general, a transaction is considered to be made up of a sequence of read and
write operations on the database, together with computation steps. In that sense,
a transaction may be thought of as a program with embedded database access
queries [Papadimitriou, 1986]. Another definition of a transaction is that it is a single
execution of a program [Ullman, 1988]. A single query can also be thought of as a
program that can be posed as a transaction.

Example 10.1. Consider the following SQL query for increasing by 10% the budget
of the CAD/CAM project that we discussed (in Example 5.20):

UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= "CAD/CAM"

This query can be specified, using the embedded SQL notation, as a transaction
by giving it a name (e.g., BUDGET UPDATE) and declaring it as follows:

Begin transaction BUDGET UPDATE
begin

EXEC SQL UPDATE PROJ
SET BUDGET = BUDGET*1.1
WHERE PNAME= “CAD/CAM”

end.
�

The Begin transaction and end statements delimit a transaction. Note that the
use of delimiters is not enforced in every DBMS. If delimiters are not specified, a
DBMS may simply treat as a transaction the entire program that performs a database
access.

338 10 Introduction to Transaction Management

Example 10.2. In our discussion of transaction management concepts, we will use an
airline reservation system example instead of the one used in the first nine chapters.
The real-life implementation of this application almost always makes use of the
transaction concept. Let us assume that there is a FLIGHT relation that records the
data about each flight, a CUST relation for the customers who book flights, and an
FC relation indicating which customers are on what flights. Let us also assume that
the relation definitions are as follows (where the underlined attributes constitute the
keys):

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME, SPECIAL)

The definition of the attributes in this database schema are as follows: FNO is the
flight number, DATE denotes the flight date, SRC and DEST indicate the source and
destination for the flight, STSOLD indicates the number of seats that have been sold
on that flight, CAP denotes the passenger capacity on the flight, CNAME indicates
the customer name whose address is stored in ADDR and whose account balance is
in BAL, and SPECIAL corresponds to any special requests that the customer may
have for a booking.

Let us consider a simplified version of a typical reservation application, where a
travel agent enters the flight number, the date, and a customer name, and asks for a
reservation. The transaction to perform this function can be implemented as follows,
where database accesses are specified in embedded SQL notation:

Begin transaction Reservation
begin

input(flight no, date, customer name); (1)
EXEC SQL UPDATE FLIGHT (2)

SET STSOLD = STSOLD + 1
WHERE FNO = flight no
AND DATE = date;

EXEC SQL INSERT (3)
INTO FC(FNO,DATE,CNAME,SPECIAL)
VALUES (flight no,date,customer name, null);

output(“reservation completed”) (4)
end.

Let us explain this example. First a point about notation. Even though we use
embedded SQL, we do not follow its syntax very strictly. The lowercase terms are
the program variables; the uppercase terms denote database relations and attributes
as well as the SQL statements. Numeric constants are used as they are, whereas
character constants are enclosed in quotes. Keywords of the host language are written
in boldface, and null is a keyword for the null string.

10.1 Definition of a Transaction 339

The first thing that the transaction does [line (1)], is to input the flight number,
the date, and the customer name. Line (2) updates the number of sold seats on the
requested flight by one. Line (3) inserts a tuple into the FC relation. Here we assume
that the customer is an old one, so it is not necessary to have an insertion into the
CUST relation, creating a record for the client. The keyword null in line (3) indicates
that the customer has no special requests on this flight. Finally, line (4) reports the
result of the transaction to the agent’s terminal. �

10.1.1 Termination Conditions of Transactions

The reservation transaction of Example 10.2 has an implicit assumption about its
termination. It assumes that there will always be a free seat and does not take into
consideration the fact that the transaction may fail due to lack of seats. This is
an unrealistic assumption that brings up the issue of termination possibilities of
transactions.

A transaction always terminates, even when there are failures as we will see in
Chapter 12. If the transaction can complete its task successfully, we say that the
transaction commits. If, on the other hand, a transaction stops without completing its
task, we say that it aborts. Transactions may abort for a number of reasons, which
are discussed in the upcoming chapters. In our example, a transaction aborts itself
because of a condition that would prevent it from completing its task successfully.
Additionally, the DBMS may abort a transaction due to, for example, deadlocks or
other conditions. When a transaction is aborted, its execution is stopped and all of
its already executed actions are undone by returning the database to the state before
their execution. This is also known as rollback.

The importance of commit is twofold. The commit command signals to the DBMS
that the effects of that transaction should now be reflected in the database, thereby
making it visible to other transactions that may access the same data items. Second,
the point at which a transaction is committed is a “point of no return.” The results of
the committed transaction are now permanently stored in the database and cannot be
undone. The implementation of the commit command is discussed in Chapter 12.

Example 10.3. Let us return to our reservation system example. One thing we did
not consider is that there may not be any free seats available on the desired flight. To
cover this possibility, the reservation transaction needs to be revised as follows:

Begin transaction Reservation
begin

input(flight no, date, customer name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight no
AND DATE = date;

340 10 Introduction to Transaction Management

if temp1 = temp2 then
begin

output(“no free seats”);
Abort

end
else begin

EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = flight no
AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO,DATE,CNAME,SPECIAL)
VALUES (flight no, date, customer name, null);

Commit;
output(“reservation completed”)
end

end-if
end.

In this version the first SQL statement gets the STSOLD and CAP into the two
variables temp1 and temp2. These two values are then compared to determine if any
seats are available. The transaction either aborts if there are no free seats, or updates
the STSOLD value and inserts a new tuple into the FC relation to represent the seat
that was sold. �

Several things are important in this example. One is, obviously, the fact that if no
free seats are available, the transaction is aborted1. The second is the ordering of the
output to the user with respect to the abort and commit commands. Transactions can
be aborted either due to application logic, as is the case here, or due to deadlocks
or system failures. If the transaction is aborted, the user can be notified before the
DBMS is instructed to abort it. However, in case of commit, the user notification
has to follow the successful servicing (by the DBMS) of the commit command, for
reliability reasons. These are discussed further in Section 10.2.4 and in Chapter 12.

10.1.2 Characterization of Transactions

Observe in the preceding examples that transactions read and write some data. This
has been used as the basis for characterizing a transaction. The data items that a
transaction reads are said to constitute its read set (RS). Similarly, the data items that
a transaction writes are said to constitute its write set (WS). The read set and write

1 We will be kind to the airlines and assume that they never overbook. Thus our reservation
transaction does not need to check for that condition.

10.1 Definition of a Transaction 341

set of a transaction need not be mutually exclusive. The union of the read set and
write set of a transaction constitutes its base set (BS = RS∪WS).

Example 10.4. Considering the reservation transaction as specified in Example 10.3
and the insert to be a number of write operations, the above-mentioned sets are
defined as follows:

RS[Reservation] = {FLIGHT.STSOLD, FLIGHT.CAP}
WS[Reservation] = {FLIGHT.STSOLD, FC.FNO, FC.DATE,

FC.CNAME, FC.SPECIAL}
BS[Reservation] = {FLIGHT.STSOLD, FLIGHT.CAP,

FC.FNO, FC.DATE, FC.CNAME, FC.SPECIAL}

Note that it may be appropriate to include FLIGHT.FNO and FLIGHT.DATE
in the read set of Reservation since they are accessed during execution of the SQL
query. We omit them to simplify the example. �

We have characterized transactions only on the basis of their read and write
operations, without considering the insertion and deletion operations. We therefore
base our discussion of transaction management concepts on static databases that do
not grow or shrink. This simplification is made in the interest of simplicity. Dynamic
databases have to deal with the problem of phantoms, which can be explained using
the following example. Consider that transaction T1, during its execution, searches
the FC table for the names of customers who have ordered a special meal. It gets a
set of CNAME for customers who satisfy the search criteria. While T1 is executing,
transaction T2 inserts new tuples into FC with the special meal request, and commits.
If T1 were to re-issue the same search query later in its execution, it will get back a
set of CNAME that is different than the original set it had retrieved. Thus, “phantom”
tuples have appeared in the database. We do not discuss phantoms any further in this
book; the topic is discussed at length by Eswaran et al. [1976] and Bernstein et al.
[1987].

We should also point out that the read and write operations to which we refer
are abstract operations that do not have one-to-one correspondence to physical I/O
primitives. One read in our characterization may translate into a number of primitive
read operations to access the index structures and the physical data pages. The reader
should treat each read and write as a language primitive rather than as an operating
system primitive.

10.1.3 Formalization of the Transaction Concept

By now, the meaning of a transaction should be intuitively clear. To reason about
transactions and about the correctness of the management algorithms, it is necessary
to define the concept formally. We denote by Oi j(x) some operation O j of transaction
Ti that operates on a database entity x. Following the conventions adopted in the

342 10 Introduction to Transaction Management

preceding section, Oi j ∈ {read, write}. Operations are assumed to be atomic (i.e.,
each is executed as an indivisible unit). We let OSi denote the set of all operations in
Ti (i.e., OSi =

⋃
j Oi j). We denote by Ni the termination condition for Ti, where Ni ∈

{abort, commit}2.
With this terminology we can define a transaction Ti as a partial ordering over

its operations and the termination condition. A partial order P = {Σ, ≺} defines an
ordering among the elements of Σ (called the domain) according to an irreflexive and
transitive binary relation ≺ defined over Σ. In our case Σ consists of the operations
and termination condition of a transaction, whereas ≺ indicates the execution order
of these operations (which we will read as “precedes in execution order”). Formally,
then, a transaction Ti is a partial order Ti = {Σi,≺i}, where

1. Σi = OSi∪{Ni}.
2. For any two operations Oi j,Oik ∈ OSi, if Oi j = {R(x)or W (x)} and Oik =

W (x) for any data item x, then either Oi j ≺i Oik or Oik ≺i Oi j.

3. ∀Oi j ∈ OSi,Oi j ≺i Ni.

The first condition formally defines the domain as the set of read and write
operations that make up the transaction, plus the termination condition, which may
be either commit or abort. The second condition specifies the ordering relation
between the conflicting read and write operations of the transaction, while the final
condition indicates that the termination condition always follows all other operations.

There are two important points about this definition. First, the ordering relation
≺ is given and the definition does not attempt to construct it. The ordering relation
is actually application dependent. Second, condition two indicates that the ordering
between conflicting operations has to exist within ≺. Two operations, Oi(x) and
O j(x), are said to be in conflict if Oi = Write or O j = Write (i.e., at least one of them
is a Write and they access the same data item).

Example 10.5. Consider a simple transaction T that consists of the following steps:

Read(x)
Read(y)
x← x+ y
Write(x)
Commit

The specification of this transaction according to the formal notation that we have
introduced is as follows:

Σ = {R(x),R(y),W (x),C}
≺ = {(R(x),W (x)),(R(y),W (x)),(W (x),C),(R(x),C),(R(y),C)}

where (Oi,O j) as an element of the ≺ relation indicates that Oi ≺ O j. �

2 From now on, we use the abbreviations R, W, A and C for the Read, Write, Abort, and Commit
operations, respectively.

10.1 Definition of a Transaction 343

Notice that the ordering relation specifies the relative ordering of all operations
with respect to the termination condition. This is due to the third condition of
transaction definition. Also note that we do not specify the ordering between every
pair of operations. That is why it is a partial order.

Example 10.6. The reservation transaction developed in Example 10.3 is more com-
plex. Notice that there are two possible termination conditions, depending on the
availability of seats. It might first seem that this is a contradiction of the definition
of a transaction, which indicates that there can be only one termination condition.
However, remember that a transaction is the execution of a program. It is clear that
in any execution, only one of the two termination conditions can occur. Therefore,
what exists is one transaction that aborts and another one that commits. Using this
formal notation, the former can be specified as follows:

Σ = {R(STSOLD), R(CAP), A}
≺ = {(O1,A),(O2,A)}

and the latter can be specified as

Σ = {R(STSOLD), R(CAP), W (STSOLD),
W (FNO), W (DATE), W (CNAME), W (SPECIAL), C}

≺ = {(O1,O3),(O2,O3),(O1,O4),(O1,O5),(O1,O6),(O1,O7),(O2,O4),
(O2,O5),(O2,O6),(O2,O7),(O1,C),(O2,C),(O3,C),(O4,C),
(O5,C),(O6,C),(O7,C)}

where O1 = R(STSOLD), O2 = R(CAP), O3 =W (STSOLD), O4 =W (FNO), O5 =
W (DATE), O6 =W (CNAME), and O7 =W (SPECIAL). �

One advantage of defining a transaction as a partial order is its correspondence to
a directed acyclic graph (DAG). Thus a transaction can be specified as a DAG whose
vertices are the operations of a transaction and whose arcs indicate the ordering
relationship between a given pair of operations. This will be useful in discussing the
concurrent execution of a number of transactions (Chapter 11) and in arguing about
their correctness by means of graph-theoretic tools.

Example 10.7. The transaction discussed in Example 10.5 can be represented as a
DAG as depicted in Figure 10.2. Note that we do not draw the arcs that are implied
by transitivity even though we indicate them as elements of ≺. �

In most cases we do not need to refer to the domain of the partial order separately
from the ordering relation. Therefore, it is common to drop Σ from the transaction
definition and use the name of the partial order to refer to both the domain and the
name of the partial order. This is convenient since it allows us to specify the ordering
of the operations of a transaction in a more straightforward manner by making use of
their relative ordering in the transaction definition. For example, we can define the
transaction of Example 10.5 as follows:

T = {R(x),R(y),W (x),C}

344 10 Introduction to Transaction Management

R(x)

R(y)

W(x) C

Fig. 10.2 DAG Representation of a Transaction

instead of the longer specification given before. We will therefore use the modified
definition in this and subsequent chapters.

10.2 Properties of Transactions

The previous discussion clarifies the concept of a transaction. However, we have
not yet provided any justification of our earlier claim that it is a unit of consistent
and reliable computation. We do that in this section. The consistency and reliability
aspects of transactions are due to four properties: (1) atomicity, (2) consistency, (3)
isolation, and (4) durability. Together, these are commonly referred to as the ACID
properties of transactions. They are not entirely independent of each other; usually
there are dependencies among them as we will indicate below. We discuss each of
these properties in the following sections.

10.2.1 Atomicity

Atomicity refers to the fact that a transaction is treated as a unit of operation. Therefore,
either all the transaction’s actions are completed, or none of them are. This is also
known as the “all-or-nothing property.” Notice that we have just extended the concept
of atomicity from individual operations to the entire transaction. Atomicity requires
that if the execution of a transaction is interrupted by any sort of failure, the DBMS
will be responsible for determining what to do with the transaction upon recovery
from the failure. There are, of course, two possible courses of action: it can either be
terminated by completing the remaining actions, or it can be terminated by undoing
all the actions that have already been executed.

One can generally talk about two types of failures. A transaction itself may fail due
to input data errors, deadlocks, or other factors. In these cases either the transaction
aborts itself, as we have seen in Example 10.2, or the DBMS may abort it while
handling deadlocks, for example. Maintaining transaction atomicity in the presence
of this type of failure is commonly called the transaction recovery. The second type

10.2 Properties of Transactions 345

of failure is caused by system crashes, such as media failures, processor failures,
communication link breakages, power outages, and so on. Ensuring transaction
atomicity in the presence of system crashes is called crash recovery. An important
difference between the two types of failures is that during some types of system
crashes, the information in volatile storage may be lost or inaccessible. Both types of
recovery are parts of the reliability issue, which we discuss in considerable detail in
Chapter 12.

10.2.2 Consistency

The consistency of a transaction is simply its correctness. In other words, a transaction
is a correct program that maps one consistent database state to another. Verifying that
transactions are consistent is the concern of integrity enforcement, covered in Chapter
5. Ensuring transaction consistency as defined at the beginning of this chapter, on the
other hand, is the objective of concurrency control mechanisms, which we discuss in
Chapter 11.

There is an interesting classification of consistency that parallels our discussion
above and is equally important. This classification groups databases into four levels
of consistency [Gray et al., 1976]. In the following definition (which is taken verbatim
from the original paper), dirty data refers to data values that have been updated by a
transaction prior to its commitment. Then, based on the concept of dirty data, the
four levels are defined as follows:

“Degree 3: Transaction T sees degree 3 consistency if:

1. T does not overwrite dirty data of other transactions.

2. T does not commit any writes until it completes all its writes [i.e., until the
end of transaction (EOT)].

3. T does not read dirty data from other transactions.

4. Other transactions do not dirty any data read by T before T completes.

Degree 2: Transaction T sees degree 2 consistency if:

1. T does not overwrite dirty data of other transactions.

2. T does not commit any writes before EOT.

3. T does not read dirty data from other transactions.

Degree 1: Transaction T sees degree 1 consistency if:

1. T does not overwrite dirty data of other transactions.

2. T does not commit any writes before EOT.

346 10 Introduction to Transaction Management

Degree 0: Transaction T sees degree 0 consistency if:

1. T does not overwrite dirty data of other transactions.”

Of course, it is true that a higher degree of consistency encompasses all the lower
degrees. The point in defining multiple levels of consistency is to provide application
programmers the flexibility to define transactions that operate at different levels.
Consequently, while some transactions operate at Degree 3 consistency level, others
may operate at lower levels and may see, for example, dirty data.

10.2.3 Isolation

Isolation is the property of transactions that requires each transaction to see a consis-
tent database at all times. In other words, an executing transaction cannot reveal its
results to other concurrent transactions before its commitment.

There are a number of reasons for insisting on isolation. One has to do with
maintaining the interconsistency of transactions. If two concurrent transactions
access a data item that is being updated by one of them, it is not possible to guarantee
that the second will read the correct value.

Example 10.8. Consider the following two concurrent transactions (T1 and T2), both
of which access data item x. Assume that the value of x before they start executing is
50.

T1: Read(x) T2: Read(x)
x← x+1 x← x+1
Write(x) Write(x)
Commit Commit

The following is one possible sequence of execution of the actions of these
transactions:

T1: Read(x)
T1: x← x+1
T1: Write(x)
T1: Commit
T2: Read(x)
T2: x← x+1
T2: Write(x)
T2: Commit

In this case, there are no problems; transactions T1 and T2 are executed one after
the other and transaction T2 reads 51 as the value of x. Note that if, instead, T2
executes before T1, T2 reads 51 as the value of x. So, if T1 and T2 are executed
one after the other (regardless of the order), the second transaction will read 51 as

10.2 Properties of Transactions 347

the value of x and x will have 52 as its value at the end of execution of these two
transactions. However, since transactions are executing concurrently, the following
execution sequence is also possible:

T1: Read(x)
T1: x← x+1
T2: Read(x)
T1: Write(x)
T2: x← x+1
T2: Write(x)
T1: Commit
T2: Commit

In this case, transaction T2 reads 50 as the value of x. This is incorrect since T2
reads x while its value is being changed from 50 to 51. Furthermore, the value of x is
51 at the end of execution of T1 and T2 since T2’s Write will overwrite T1’s Write. �

Ensuring isolation by not permitting incomplete results to be seen by other trans-
actions, as the previous example shows, solves the lost updates problem. This type of
isolation has been called cursor stability. In the example above, the second execution
sequence resulted in the effects of T1 being lost3. A second reason for isolation is
cascading aborts. If a transaction permits others to see its incomplete results before
committing and then decides to abort, any transaction that has read its incomplete
values will have to abort as well. This chain can easily grow and impose considerable
overhead on the DBMS.

It is possible to treat consistency levels discussed in the preceding section from
the perspective of the isolation property (thus demonstrating the dependence between
isolation and consistency). As we move up the hierarchy of consistency levels, there is
more isolation among transactions. Degree 0 provides very little isolation other than
preventing lost updates. However, since transactions commit write operations before
the entire transaction is completed (and committed), if an abort occurs after some
writes are committed to disk, the updates to data items that have been committed
will need to be undone. Since at this level other transactions are allowed to read the
dirty data, it may be necessary to abort them as well. Degree 2 consistency avoids
cascading aborts. Degree 3 provides full isolation which forces one of the conflicting
transactions to wait until the other one terminates. Such execution sequences are
called strict and will be discussed further in the next chapter. It is obvious that the
issue of isolation is directly related to database consistency and is therefore the topic
of concurrency control.

3 A more dramatic example may be to consider x to be your bank account and T1 a transaction that
executes as a result of your depositing money into your account. Assume that T2 is a transaction
that is executing as a result of your spouse withdrawing money from the account at another branch.
If the same problem as described in Example 10.8 occurs and the results of T1 are lost, you will be
terribly unhappy. If, on the other hand, the results of T2 are lost, the bank will be furious. A similar
argument can be made for the reservation transaction example we have been considering.

348 10 Introduction to Transaction Management

ANSI, as part of the SQL2 (also known as SQL-92) standard specification, has
defined a set of isolation levels [ANSI, 1992]. SQL isolation levels are defined on
the basis of what ANSI call phenomena which are situations that can occur if proper
isolation is not maintained. Three phenomena are specified:

Dirty Read: As defined earlier, dirty data refer to data items whose values have
been modified by a transaction that has not yet committed. Consider the case
where transaction T1 modifies a data item value, which is then read by another
transaction T2 before T1 performs a Commit or Abort. In case T1 aborts, T2 has
read a value which never exists in the database.
A precise specification4 of this phenomenon is as follows (where subscripts
indicate the transaction identifiers)

. . . ,W1(x), . . . ,R2(x), . . . ,C1(or A1), . . . ,C2(or A2)

or

. . . ,W1(x), . . . ,R2(x), . . . ,C2(or A2), . . . ,C1(or A1)

Non-repeatable or Fuzzy read: Transaction T1 reads a data item value. Another
transaction T2 then modifies or deletes that data item and commits. If T1 then
attempts to reread the data item, it either reads a different value or it can’t find
the data item at all; thus two reads within the same transaction T1 return different
results.
A precise specification of this phenomenon is as follows:

. . . ,R1(x), . . . ,W2(x), . . . ,C1(or A1), . . . ,C2(or A2)

or

. . . ,R1(x), . . . ,W2(x), . . . ,C2(or A2), . . . ,C1(or A1)

Phantom: The phantom condition that was defined earlier occurs when T1 does a
search with a predicate and T2 inserts new tuples that satisfy the predicate. Again,
the precise specification of this phenomenon is (where P is the search predicate)

. . . ,R1(P), . . . ,W2(y in P), . . . ,C1(or A1), . . . ,C2(or A2)

or

. . . ,R1(P), . . . ,W2(y in P), . . . ,C2(or A2), . . . ,C1(or A1)

4 The precise specifications of these phenomena are due to Berenson et al. [1995] and correspond to
their loose interpretations which they indicate are the more appropriate interpretations.

10.3 Types of Transactions 349

Based on these phenomena, the isolation levels are defined as follows. The objec-
tive of defining multiple isolation levels is the same as defining multiple consistency
levels.

Read uncommitted: For transactions operating at this level all three phenomena
are possible.

Read committed: Fuzzy reads and phantoms are possible, but dirty reads are not.
Repeatable read: Only phantoms are possible.
Anomaly serializable: None of the phenomena are possible.

ANSI SQL standard uses the term “serializable” rather than “anomaly serializable.”
However, a serializable isolation level, as precisely defined in the next chapter,
cannot be defined solely in terms of the three phenomena identified above; thus
this isolation level is called “anomaly serializable” [Berenson et al., 1995]. The
relationship between SQL isolation levels and the four levels of consistency defined
in the previous section are also discussed in [Berenson et al., 1995].

One non-serializable isolation level that is commonly implemented in commercial
products is snapshot isolation [Berenson et al., 1995]. Snapshot isolation provides
repeatable reads, but not serializable isolation. Each transaction “sees” a snapshot of
the database when it starts and its reads and writes are performed on this snapshot –
thus the writes are not visible to other transactions and it does not see the writes of
other transactions.

10.2.4 Durability

Durability refers to that property of transactions which ensures that once a transaction
commits, its results are permanent and cannot be erased from the database. Therefore,
the DBMS ensures that the results of a transaction will survive subsequent system
failures. This is exactly why in Example 10.2 we insisted that the transaction commit
before it informs the user of its successful completion. The durability property
brings forth the issue of database recovery, that is, how to recover the database to a
consistent state where all the committed actions are reflected. This issue is discussed
further in Chapter 12.

10.3 Types of Transactions

A number of transaction models have been proposed in literature, each being appro-
priate for a class of applications. The fundamental problem of providing “ACID”ity
usually remains, but the algorithms and techniques that are used to address them may
be considerably different. In some cases, various aspects of ACID requirements are
relaxed, removing some problems and adding new ones. In this section we provide

350 10 Introduction to Transaction Management

an overview of some of the transaction models that have been proposed and then
identify our focus in Chapters 11 and 12.

Transactions have been classified according to a number of criteria. One criterion
is the duration of transactions. Accordingly, transactions may be classified as online
or batch [Gray, 1987]. These two classes are also called short-life and long-life
transactions, respectively. Online transactions are characterized by very short execu-
tion/response times (typically, on the order of a couple of seconds) and by access
to a relatively small portion of the database. This class of transactions probably
covers a large majority of current transaction applications. Examples include banking
transactions and airline reservation transactions.

Batch transactions, on the other hand, take longer to execute (response time
being measured in minutes, hours, or even days) and access a larger portion of
the database. Typical applications that might require batch transactions are design
databases, statistical applications, report generation, complex queries, and image
processing. Along this dimension, one can also define a conversational transaction,
which is executed by interacting with the user issuing it.

Another classification that has been proposed is with respect to the organization
of the read and write actions. The examples that we have considered so far intermix
their read and write actions without any specific ordering. We call this type of
transactions general. If the transactions are restricted so that all the read actions are
performed before any write action, the transaction is called a two-step transaction
[Papadimitriou, 1979]. Similarly, if the transaction is restricted so that a data item
has to be read before it can be updated (written), the corresponding class is called
restricted (or read-before-write) [Stearns et al., 1976]. If a transaction is both two-
step and restricted, it is called a restricted two-step transaction. Finally, there is the
action model of transactions [Kung and Papadimitriou, 1979], which consists of the
restricted class with the further restriction that each 〈read, write〉 pair be executed
atomically. This classification is shown in Figure 10.3, where the generality increases
upward.

Example 10.9. The following are some examples of the above-mentioned models.
We omit the declaration and commit commands.
General:

T1 : {R(x),R(y),W (y),R(z),W (x),W (z),W (w),C}

Two-step:

T2 : {R(x),R(y),R(z),W (x),W (z),W (y),W (w),C}

Restricted:

T3 : {R(x),R(y),W (y),R(z),W (x),W (z),R(w),W (w),C}

Note that T3 has to read w before writing.
Two-step restricted:

10.3 Types of Transactions 351

General model

Two-step model Restricted model

Restricted two-step
model Action model

Fig. 10.3 Various Transaction Models (From: C.H. Papadimitriou and P.C. Kanellakis, ON CON-
CURRENCY CONTROL BY MULTIPLE VERSIONS. ACM Trans. Database Sys.; December
1984; 9(1): 89–99.)

T4 : {R(x),R(y),R(z),R(w),W (x),W (z),W (y),W (w),C}

Action:

T5 : {[R(x),W (x)], [R(y),W (y)], [R(z),W (z)], [R(w),W (w)],C}

Note that each pair of actions within square brackets is executed atomically. �

Transactions can also be classified according to their structure. We distinguish four
broad categories in increasing complexity: flat transactions, closed nested transac-
tions as in [Moss, 1985], and open nested transactions such as sagas [Garcia-Molina
and Salem, 1987], and workflow models which, in some cases, are combinations of
various nested forms. This classification is arguably the most dominant one and we
will discuss it at some length.

10.3.1 Flat Transactions

Flat transactions have a single start point (Begin transaction) and a single termi-
nation point (End transaction). All our examples in this section are of this type.
Most of the transaction management work in databases has concentrated on flat
transactions. This model will also be our main focus in this book, even though we
discuss management techniques for other transaction types, where appropriate.

352 10 Introduction to Transaction Management

10.3.2 Nested Transactions

An alternative transaction model is to permit a transaction to include other transac-
tions with their own begin and commit points. Such transactions are called nested
transactions. These transactions that are embedded in another one are usually called
subtransactions.

Example 10.10. Let us extend the reservation transaction of Example 10.2. Most
travel agents will make reservations for hotels and car rentals in addition to the flights.
If one chooses to specify all of this as one transaction, the reservation transaction
would have the following structure:

Begin transaction Reservation
begin

Begin transaction Airline
. . .

end. {Airline}
Begin transaction Hotel

. . .
end. {Hotel}
Begin transaction Car

. . .
end. {Car}

end.
�

Nested transactions have received considerable interest as a more generalized
transaction concept. The level of nesting is generally open, allowing subtransactions
themselves to have nested transactions. This generality is necessary to support appli-
cation areas where transactions are more complex than in traditional data processing.

In this taxonomy, we differentiate between closed and open nesting because of
their termination characteristics. Closed nested transactions [Moss, 1985] commit
in a bottom-up fashion through the root. Thus, a nested subtransaction begins af-
ter its parent and finishes before it, and the commitment of the subtransactions is
conditional upon the commitment of the parent. The semantics of these transactions
enforce atomicity at the top-most level. Open nesting relaxes the top-level atomicity
restriction of closed nested transactions. Therefore, an open nested transaction al-
lows its partial results to be observed outside the transaction. Sagas [Garcia-Molina
and Salem, 1987; Garcia-Molina et al., 1990] and split transactions [Pu, 1988] are
examples of open nesting.

A saga is a “sequence of transactions that can be interleaved with other trans-
actions” [Garcia-Molina and Salem, 1987]. The DBMS guarantees that either all
the transactions in a saga are successfully completed or compensating transac-
tions [Garcia-Molina, 1983; Korth et al., 1990] are run to recover from a partial
execution. A compensating transaction effectively does the inverse of the transaction
that it is associated with. For example, if the transaction adds $100 to a bank account,

10.3 Types of Transactions 353

its compensating transaction deducts $100 from the same bank account. If a transac-
tion is viewed as a function that maps the old database state to a new database state,
its compensating transaction is the inverse of that function.

Two properties of sagas are: (1) only two levels of nesting are allowed, and (2) at
the outer level, the system does not support full atomicity. Therefore, a saga differs
from a closed nested transaction in that its level structure is more restricted (only
2) and that it is open (the partial results of component transactions or sub-sagas are
visible to the outside). Furthermore, the transactions that make up a saga have to be
executed sequentially.

The saga concept is extended and placed within a more general model that deals
with long-lived transactions and with activities that consist of multiple steps [Garcia-
Molina et al., 1990] . The fundamental concept of the model is that of a module
that captures code segments each of which accomplishes a given task and access a
database in the process. The modules are modeled (at some level) as sub-sagas that
communicate with each other via messages over ports. The transactions that make up
a saga can be executed in parallel. The model is multi-layer where each subsequent
layer adds a level of abstraction.

The advantages of nested transactions are the following. First, they provide a
higher-level of concurrency among transactions. Since a transaction consists of a
number of other transactions, more concurrency is possible within a single transaction.
For example, if the reservation transaction of Example 10.10 is implemented as a
flat transaction, it may not be possible to access records about a specific flight
concurrently. In other words, if one travel agent issues the reservation transaction
for a given flight, any concurrent transaction that wishes to access the same flight
data will have to wait until the termination of the first, which includes the hotel
and car reservation activities in addition to flight reservation. However, a nested
implementation will permit the second transaction to access the flight data as soon
as the Airline subtransaction of the first reservation transaction is completed. In
other words, it may be possible to perform a finer level of synchronization among
concurrent transactions.

A second argument in favor of nested transactions is related to recovery. It is
possible to recover independently from failures of each subtransaction. This limits
the damage to a smaller part of the transaction, making it less costly to recover. In
a flat transaction, if any operation fails, the entire transaction has to be aborted and
restarted, whereas in a nested transaction, if an operation fails, only the subtransaction
containing that operation needs to be aborted and restarted.

Finally, it is possible to create new transactions from existing ones simply by
inserting the old one inside the new one as a subtransaction.

10.3.3 Workflows

Flat transactions model relatively simple and short activities very well. However,
they are less appropriate for modeling longer and more elaborate activities.That is

354 10 Introduction to Transaction Management

the reason for the development of the various nested transaction models discussed
above. It has been argued that these extensions are not sufficiently powerful to model
business activities: “after several decades of data processing, we have learned that we
have not won the battle of modeling and automating complex enterprises” [Medina-
Mora et al., 1993]. To meet these needs, more complex transaction models which
are combinations of open and nested transactions have been proposed. There are
well-justified arguments for not calling these transactions, since they hardly follow
any of the ACID properties; a more appropriate name that has been proposed is a
workflow [Dogac et al., 1998b; Georgakopoulos et al., 1995].

The term “workflow,” unfortunately, does not have a clear and uniformly accepted
meaning. A working definition is that a workflow is “a collection of tasks organized
to accomplish some business process.” [Georgakopoulos et al., 1995]. This defini-
tion, however, leaves a lot undefined. This is perhaps unavoidable given the very
different contexts where this term is used. Three types of workflows are identified
[Georgakopoulos et al., 1995]:

1. Human-oriented workflows, which involve humans in performing the tasks.
The system support is provided to facilitate collaboration and coordination
among humans, but it is the humans themselves who are ultimately responsible
for the consistency of the actions.

2. System-oriented workflows are those that consist of computation-intensive
and specialized tasks that can be executed by a computer. The system support
in this case is substantial and involves concurrency control and recovery,
automatic task execution, notification, etc.

3. Transactional workflows range in between human-oriented and system-
oriented workflows and borrow characteristics from both. They involve “coor-
dinated execution of multiple tasks that (a) may involve humans, (b) require
access to HAD [heterogeneous, autonomous, and/or distributed] systems, and
(c) support selective use of transactional properties [i.e., ACID properties] for
individual tasks or entire workflows.” [Georgakopoulos et al., 1995].
Among the features of transactional workflows, the selective use of transac-
tional properties is particularly important as it characterizes possible relax-
ations of ACID properties.

In this book, our primary interest is with transactional workflows. There have
been many transactional workflow proposals [Elmagarmid et al., 1990; Nodine and
Zdonik, 1990; Buchmann et al., 1982; Dayal et al., 1991; Hsu, 1993], and they differ
in a number of ways. The common point among them is that a workflow is defined
as an activity consisting of a set of tasks with well-defined precedence relationship
among them.

Example 10.11. Let us further extend the reservation transaction of Example 10.3.
The entire reservation activity consists of the following taks and involves the follow-
ing data:

10.3 Types of Transactions 355

• Customer request is obtained (task T1) and Customer Database is accessed to
obtain customer information, preferences, etc.;

• Airline reservation is performed (T2) by accessing the Flight Database;

• Hotel reservation is performed (T3), which may involve sending a message to
the hotel involved;

• Auto reservation is performed (T4), which may also involve communication
with the car rental company;

• Bill is generated (T5) and the billing info is recorded in the billing database.

Figure 10.4 depicts this workflow where there is a serial dependency of T2 on T1,
and T3, T4 on T2; however, T3 and T4 (hotel and car reservations) are performed in
parallel and T5 waits until their completion. �

T1 T2

T3

T4

T5

Customer

Database

Customer

Database

Customer

Database

Fig. 10.4 Example Workflow

A number of workflow models go beyond this basic model by both defining more
precisely what tasks can be and by allocating different relationships among the tasks.
In the following, we define one model that is similar to the models of Buchmann
et al. [1982] and Dayal et al. [1991].

A workflow is modeled as an activity with open nesting semantics in that it permits
partial results to be visible outside the activity boundaries. Thus, tasks that make up
the activity are allowed to commit individually. Tasks may be other activities (with
the same open transaction semantics) or closed nested transactions that make their
results visible to the entire system when they commit. Even though an activity can
have both other activities and closed nested transactions as its component, a closed
nested transaction task can only be composed of other closed nested transactions
(i.e., once closed nesting semantics begins, it is maintained for all components).

An activity commits when its components are ready to commit. However, the
components commit individually, without waiting for the root activity to commit.

356 10 Introduction to Transaction Management

This raises problems in dealing with aborts since when an activity aborts, all of its
components should be aborted. The problem is dealing with the components that
have already committed. Therefore, compensating transactions are defined for the
components of an activity. Thus, if a component has already committed when an
activity aborts, the corresponding compensating transaction is executed to “undo” its
effects.

Some components of an activity may be marked as vital. When a vital component
aborts, its parent must also abort. If a non-vital component of a workflow model
aborts, it may continue executing. A workflow, on the other hand, always aborts
when one of its components aborts. For example, in the reservation workflow of
Example 10.11, T2 (airline reservation) and T3 (hotel reservation) may be declared
as vital so that if an airline reservation or a hotel reservation cannot be made, the
workflow aborts and the entire trip is canceled. However, if a car reservation cannot
be committed, the workflow can still successfully terminate.

It is possible to define contingency tasks that are invoked if their counterparts fail.
For example, in the Reservation example presented earlier, one can specify that the
contingency to making a reservation at Hilton is to make a reservation at Sheraton.
Thus, if the hotel reservation component for Hilton fails, the Sheraton alternative is
tried rather than aborting the task and the entire workflow.

10.4 Architecture Revisited

With the introduction of the transaction concept, we need to revisit the architectural
model introduced in Chapter 1. We do not need to revise the model but simply need
to expand the role of the distributed execution monitor.

The distributed execution monitor consists of two modules: a transaction manager
(TM) and a scheduler (SC). The transaction manager is responsible for coordinating
the execution of the database operations on behalf of an application. The scheduler,
on the other hand, is responsible for the implementation of a specific concurrency
control algorithm for synchronizing access to the database.

A third component that participates in the management of distributed transactions
is the local recovery managers (LRM) that exist at each site. Their function is to
implement the local procedures by which the local database can be recovered to a
consistent state following a failure.

Each transaction originates at one site, which we will call its originating site. The
execution of the database operations of a transaction is coordinated by the TM at that
transaction’s originating site.

The transaction managers implement an interface for the application programs
which consists of five commands: begin transaction, read, write, commit, and abort.
The processing of each of these commands in a non-replicated distributed DBMS
is discussed below at an abstract level. For simplicity, we ignore the scheduling of
concurrent transactions as well as the details of how data is physically retrieved by
the data processor. These assumptions permit us to concentrate on the interface to

10.5 Conclusion 357

the TM. The details are presented in the Chapters 11 and 12, while the execution of
these commands in a replicated distributed database is discussed in Chapter 13.

1. Begin transaction. This is an indicator to the TM that a new transaction is
starting. The TM does some bookkeeping, such as recording the transaction’s
name, the originating application, and so on, in coordination with the data
processor.

2. Read. If the data item to be read is stored locally, its value is read and returned
to the transaction. Otherwise, the TM finds where the data item is stored
and requests its value to be returned (after appropriate concurrency control
measures are taken).

3. Write. If the data item is stored locally, its value is updated (in coordination
with the data processor). Otherwise, the TM finds where the data item is
located and requests the update to be carried out at that site after appropriate
concurrency control measures are taken).

4. Commit. The TM coordinates the sites involved in updating data items on
behalf of this transaction so that the updates are made permanent at every site.

5. Abort. The TM makes sure that no effects of the transaction are reflected in
any of the databases at the sites where it updated data items.

In providing these services, a TM can communicate with SCs and data processors
at the same or at different sites. This arrangement is depicted in Figure 10.5.

As we indicated in Chapter 1, the architectural model that we have described
is only an abstraction that serves a pedagogical purpose. It enables the separation
of many of the transaction management issues and their independent and isolated
discussion. In Chapter 11 we focus on the interface between a TM and an SC and
between an SC and a data processor, in addition to the scheduling algorithms. In
Chapter 12 we consider the execution strategies for the commit and abort commands
in a distributed environment, in addition to the recovery algorithms that need to be
implemented for the recovery manager. In Chapter 13, we extend this discussion to
the case of replicated databases. We should point out that the computational model
that we described here is not unique. Other models have been proposed such as, for
example, using a private workspace for each transaction.

10.5 Conclusion

In this chapter we introduced the concept of a transaction as a unit of consistent
and reliable access to the database. The properties of transactions indicate that they
are larger atomic units of execution which transform one consistent database to
another consistent database. The properties of transactions also indicate what the
requirements for managing them are, which is the topic of the next two chapters.
Consistency requires a definition of integrity enforcement (which we did in Chapter

358 10 Introduction to Transaction Management

With other

SCs

With other

data

processors

Begin_transaction,

Read, Write,

Commit, Abort Results

Transaction

Manager

(TM)

Distributed Execution

Monitor

Scheduling/

Descheduling

Requests

To data

processors

Scheduler

(TM)

With other

TMs

Fig. 10.5 Detailed Model of the Distributed Execution Monitor

5), as well as concurrency control algorithms (which is the topic of Chapter 11).
Concurrency control also deals with the issue of isolation. Durability and atomicity
properties of transactions require a discussion of reliability, which we cover in
Chapter 12. Specifically, durability is supported by various commit protocols and
commit management, whereas atomicity requires the development of appropriate
recovery protocols.

10.6 Bibliographic Notes

Transaction management has been the topic of considerable study since DBMSs
have become a significant research area. There are two excellent books on the
subject: [Gray and Reuter, 1993] and [Weikum and Vossen, 2001]. An excellent
companion to these is [Bernstein and Newcomer, 1997] which provides an in-depth
discussion of transaction processing principles. It also gives a view of transaction
processing and transaction monitors which is more general than the database-centric
view that we provide in this book. A good collection of papers that focus on the
concurrency control and reliability aspects of distributed systems is [Bhargava, 1987].
Two books focus on the performance of concurrency control mechanisms with a focus
on centralized systems [Kumar, 1996; Thomasian, 1996]. Distributed concurrency
control is the topic of [Cellary et al., 1988].

10.6 Bibliographic Notes 359

Advanced transaction models are discussed and various examples are given in
[Elmagarmid, 1992]. Nested transactions are also covered in [Lynch et al., 1993]. A
good introduction to workflow systems is [Georgakopoulos et al., 1995]. The same
topic is covered in detail in [Dogac et al., 1998b].

A very important work is a set of notes on database operating systems by Gray
[1979]. These notes contain valuable information on transaction management, among
other things.

The discussion concerning transaction classification in Section 10.3 comes from a
number of sources. Part of it is from [Farrag, 1986]. The structure discussion is from
[Özsu, 1994] and [Buchmann et al., 1982], where the authors combine transaction
structure with the structure of the objects that these transactions operate upon to
develop a more complete classification.

There are numerous papers dealing with various transaction management issues.
The ones referred to in this chapter are those that deal with the concept of a transaction.
More detailed references on their management are left to Chapters 11 and 12.

Chapter 11
Distributed Concurrency Control

As we discussed in Chapter 10, concurrency control deals with the isolation and
consistency properties of transactions. The distributed concurrency control mecha-
nism of a distributed DBMS ensures that the consistency of the database, as defined
in Section 10.2.2, is maintained in a multiuser distributed environment. If transac-
tions are internally consistent (i.e., do not violate any consistency constraints), the
simplest way of achieving this objective is to execute each transaction alone, one
after another. It is obvious that such an alternative is only of theoretical interest and
would not be implemented in any practical system, since it minimizes the system
throughput. The level of concurrency (i.e., the number of concurrent transactions) is
probably the most important parameter in distributed systems [Balter et al., 1982].
Therefore, the concurrency control mechanism attempts to find a suitable trade-off
between maintaining the consistency of the database and maintaining a high level of
concurrency.

In this chapter, we make two major assumptions: the distributed system is fully
reliable and does not experience any failures (of hardware or software), and the
database is not replicated. Even though these are unrealistic assumptions, they permit
us to delineate the issues related to the management of concurrency from those related
to the operation of a reliable distributed system and those related to maintaining
replicas. In Chapter 12, we discuss how the algorithms that are presented in this
chapter need to be enhanced to operate in an unreliable environment. In Chapter 13
we address the issues related to replica management.

We start our discussion of concurrency control with a presentation of serializabil-
ity theory in Section 11.1. Serializability is the most widely accepted correctness
criterion for concurrency control algorithms. In Section 11.2 we present a taxonomy
of algorithms that will form the basis for most of the discussion in the remainder
of the chapter. Sections 11.3 and 11.4 cover the two major classes of algorithms:
locking-based and timestamp ordering-based. Both locking and timestamp ordering
classes cover what is called pessimistic algorithms; optimistic concurrency control
is discussed in Section 11.5. Any locking-based algorithm may result in deadlocks,
requiring special management methods. Various deadlock management techniques
are therefore the topic of Section 11.6. In Section 11.7, we discuss “relaxed” con-

DOI 10.1007/978-1-4419-8834-8_11, © Springer Science+Business Media, LLC 2011
361M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

362 11 Distributed Concurrency Control

currency control approaches. These are mechanisms which use weaker correctness
criteria than serializability, or relax the isolation property of transactions.

11.1 Serializability Theory

In Section 10.1.3 we discussed the issue of isolating transactions from one another
in terms of their effects on the database. We also pointed out that if the concurrent
execution of transactions leaves the database in a state that can be achieved by their
serial execution in some order, problems such as lost updates will be resolved. This
is exactly the point of the serializability argument. The remainder of this section
addresses serializability issues more formally.

A history R (also called a schedule) is defined over a set of transactions T =
{T1,T2, . . . ,Tn} and specifies an interleaved order of execution of these transactions’
operations. Based on the definition of a transaction introduced in Section 10.1, the
history can be specified as a partial order over T . We need a few preliminaries,
though, before we present the formal definition.

Recall the definition of conflicting operations that we gave in Chapter 10. Two
operations Oi j(x) and Okl(x) (i and k representing transactions and are not necessarily
distinct) accessing the same database entity x are said to be in conflict if at least one
of them is a write operation. Note two things in this definition. First, read operations
do not conflict with each other. We can, therefore, talk about two types of conflicts:
read-write (or write-read), and write-write. Second, the two operations can belong
to the same transaction or to two different transactions. In the latter case, the two
transactions are said to be conflicting. Intuitively, the existence of a conflict between
two operations indicates that their order of execution is important. The ordering of
two read operations is insignificant.

We first define a complete history, which defines the execution order of all opera-
tions in its domain. We will then define a history as a prefix of a complete history. For-
mally, a complete history Hc

T defined over a set of transactions T = {T1,T2, . . . ,Tn}
is a partial order Hc

T = {ΣT ,≺H} where

1. ΣT =
⋃n

i=1 Σi.

2. ≺H⊇
⋃n

i=1 ≺Ti .

3. For any two conflicting operations Oi j,Okl ∈ ΣT , either Oi j ≺H Okl , or Okl ≺H
Oi j.

The first condition simply states that the domain of the history is the union of
the domains of individual transactions. The second condition defines the ordering
relation of the history as a superset of the ordering relations of individual transactions.
This maintains the ordering of operations within each transaction. The final condition
simply defines the execution order among conflicting operations in H.

11.1 Serializability Theory 363

Example 11.1. Consider the two transactions from Example 10.8, which were as
follows:

T1: Read(x) T2: Read(x)
x← x+1 x← x+1
Write(x) Write(x)
Commit Commit

A possible complete history Hc
T over T = {T1,T2} is the partial order Hc

T =
{ΣT ,≺T} where

Σ1 ={R1(x),W1(x),C1}
Σ2 ={R2(x),W2(x),C2}

Thus

ΣT = Σ1∪Σ2 = {R1(x),W1(x),C1,R2(x),W2(x),C2}

and

≺H={(R1,R2),(R1,W1),(R1,C1),(R1,W2),(R1,C2),(R2,W1),(R2,C1),(R2,W2),

(R2,C2),(W1,C1),(W1,W2),(W1,C2),(C1,W2),(C1,C2),(W2,C2)}

which can be specified as a DAG as depicted in Figure 11.1. Note that consistent
with our earlier adopted convention (see Example 10.7), we do not draw the arcs that
are implied by transitivity [e.g., (R1,C1)].

C
1

C
2

R
1
(x) R

2
(x)

W
2
(x)W

1
(x)

Fig. 11.1 DAG Representation of a Complete History

It is quite common to specify a history as a listing of the operations in ΣT , where
their execution order is relative to their order in this list. Thus Hc

T can be specified as

Hc
T = {R1(x),R2(x),W1(x),C1,W2(x),C2}

�

364 11 Distributed Concurrency Control

A history is defined as a prefix of a complete history. A prefix of a partial order
can be defined as follows. Given a partial order P = {Σ,≺},P′ = {Σ′,≺′} is a
prefix of P if

1. Σ′ ⊆ Σ;

2. ∀ei ∈ Σ′,e1 ≺′ e2 if and only if e1 ≺ e2; and

3. ∀ei ∈ Σ′, if ∃e j ∈ Σ and e j ≺ ei, then e j ∈ Σ′.

The first two conditions define P′ as a restriction of P on domain Σ′, whereby the
ordering relations in P are maintained in P′. The last condition indicates that for any
element of Σ′, all its predecessors in Σ have to be included in Σ′ as well.

What does this definition of a history as a prefix of a partial order provide for
us? The answer is simply that we can now deal with incomplete histories. This is
useful for a number of reasons. From the perspective of the serializability theory, we
deal only with conflicting operations of transactions rather than with all operations.
Furthermore, and perhaps more important, when we introduce failures, we need to
be able to deal with incomplete histories, which is what a prefix enables us to do.

The history discussed in Example 11.1 is special in that it is complete. It needs
to be complete in order to talk about the execution order of these two transactions’
operations. The following example demonstrates a history that is not complete.

Example 11.2. Consider the following three transactions:
T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit
A complete history Hc for these transactions is given in Figure 11.2, and a history H
(as a prefix of Hc) is depicted in Figure 11.3. �

W
2
(x) R

3
(x)

W
2
(y) R

3
(y)

R
1
(x)

W
1
(x)

C
1

C
2

R
2
(z)

C
3

R
3
(z)

Fig. 11.2 A Complete History

11.1 Serializability Theory 365

W
2
(x) R

3
(x)

W
2
(y) R

3
(y)

R
1
(x)

R
2
(z) R

3
(z)

Fig. 11.3 Prefix of Complete History in Figure 11.2

If in a complete history H, the operations of various transactions are not interleaved
(i.e., the operations of each transaction occur consecutively), the history is said to be
serial. As we indicated before, the serial execution of a set of transactions maintains
the consistency of the database. This follows naturally from the consistency property
of transactions: each transaction, when executed alone on a consistent database, will
produce a consistent database.

Example 11.3. Consider the three transactions of Example 11.2. The following his-
tory is serial since all the operations of T2 are executed before all the operations of
T1 and all operations of T1 are executed before all operations of T3

1.

H = {W2(x),W2(y),R2(z)︸ ︷︷ ︸
T2

,R1(x),W1(x)︸ ︷︷ ︸
T1

,R3(x),R3(y),R3(z)︸ ︷︷ ︸
T3

}

One common way to denote this precedence relationship between transaction execu-
tions is T2→ T1→ T3 rather than the more formal T2 ≺H T1 ≺H T3. �

Based on the precedence relationship introduced by the partial order, it is possible
to discuss the equivalence of histories with respect to their effects on the database.
Intuitively, two histories H1 and H2, defined over the same set of transactions T , are
equivalent if they have the same effect on the database. More formally, two histories,
H1 and H2, defined over the same set of transactions T , are said to be equivalent if
for each pair of conflicting operations Oi j and Okl (i 6= k), whenever Oi j ≺H1 Okl ,
then Oi j ≺H2 Okl . This is called conflict equivalence since it defines equivalence of
two histories in terms of the relative order of execution of the conflicting operations
in those histories. Here, for the sake of simplicity, we assume that T does not include
any aborted transaction. Otherwise, the definition needs to be modified to specify
only those conflicting operations that belong to unaborted transactions.

Example 11.4. Again consider the three transactions given in Example 11.2. The
following history H ′ defined over them is conflict equivalent to H given in Example
11.3:

H ′ = {W2(x),R1(x),W1(x),R3(x),W2(y),R3(y),R2(z),R3(z)}
1 From now on we will generally omit the Commit operation from histories.

366 11 Distributed Concurrency Control

�

We are now ready to define serializability more precisely. A history H is said to
be serializable if and only if it is conflict equivalent to a serial history. Note that seri-
alizability roughly corresponds to degree 3 consistency, which we defined in Section
10.2.2. Serializability so defined is also known as conflict-based serializability since
it is defined according to conflict equivalence.

Example 11.5. History H ′ in Example 11.4 is serializable since it is equivalent to the
serial history H of Example 11.3. Also note that the problem with the uncontrolled
execution of transactions T1 and T2 in Example 10.8 was that they could generate an
unserializable history. �

Now that we have formally defined serializability, we can indicate that the primary
function of a concurrency controller is to generate a serializable history for the
execution of pending transactions. The issue, then, is to devise algorithms that are
guaranteed to generate only serializable histories.

Serializability theory extends in a straightforward manner to the non-replicated
(or partitioned) distributed databases. The history of transaction execution at each
site is called a local history. If the database is not replicated and each local history is
serializable, their union (called the global history) is also serializable as long as local
serialization orders are identical.

Example 11.6. We will give a very simple example to demonstrate the point. Consider
two bank accounts, x (stored at Site 1) and y (stored at Site 2), and the following two
transactions where T1 transfers $100 from x to y, while T2 simply reads the balances
of x and y:

T1: Read(x) T2: Read(x)
x← x−100 Read(y)
Write(x) Commit
Read(y)
y← y+100
Write(y)
Commit

Obviously, both of these transactions need to run at both sites. Consider the
following two histories that may be generated locally at the two sites (Hi is the
history at Site i):

H1 ={R1(x),W1(x),R2(x)}
H2 ={R1(y),W1(y),R2(y)}

Both of these histories are serializable; indeed, they are serial. Therefore, each
represents a correct execution order. Furthermore, the serialization order for both are
the same T1→ T2. Therefore, the global history that is obtained is also serializable
with the serialization order T1→ T2.

11.2 Taxonomy of Concurrency Control Mechanisms 367

However, if the histories generated at the two sites are as follows, there is a
problem:

H
′
1 ={R1(x),W1(x),R2(x)}

H
′
2 ={R2(y),R1(y),W1(y)}

Although each local history is still serializable, the serialization orders are differ-
ent: H

′
1 serializes T1 before T2 while H

′
2 serializes T2 before T1. Therefore, there can

be no global history that is serializable. �

A weaker version of serializability that has gained importance in recent years
is snapshot isolation [Berenson et al., 1995] that is now provided as a standard
consistency criterion in a number of commercial systems. Snapshot isolation allows
read transactions (queries) to read stale data by allowing them to read a snapshot
of the database that reflects the committed data at the time the read transaction
starts. Consequently, the reads are never blocked by writes, even though they may
read old data that may be dirtied by other transactions that were still running when
the snapshot was taken. Hence, the resulting histories are not serializable, but this
is accepted as a reasonable tradeoff between a lower level of isolation and better
performance.

11.2 Taxonomy of Concurrency Control Mechanisms

There are a number of ways that the concurrency control approaches can be classified.
One obvious classification criterion is the mode of database distribution. Some
algorithms that have been proposed require a fully replicated database, while others
can operate on partially replicated or partitioned databases. The concurrency control
algorithms may also be classified according to network topology, such as those
requiring a communication subnet with broadcasting capability or those working in a
star-type network or a circularly connected network.

The most common classification criterion, however, is the synchronization prim-
itive. The corresponding breakdown of the concurrency control algorithms results
in two classes [Bernstein and Goodman, 1981]: those algorithms that are based on
mutually exclusive access to shared data (locking), and those that attempt to order the
execution of the transactions according to a set of rules (protocols). However, these
primitives may be used in algorithms with two different viewpoints: the pessimistic
view that many transactions will conflict with each other, or the optimistic view that
not too many transactions will conflict with one another.

We will thus group the concurrency control mechanisms into two broad classes:
pessimistic concurrency control methods and optimistic concurrency control methods.
Pessimistic algorithms synchronize the concurrent execution of transactions early in
their execution life cycle, whereas optimistic algorithms delay the synchronization
of transactions until their termination. The pessimistic group consists of locking-

368 11 Distributed Concurrency Control

based algorithms, ordering (or transaction ordering) based algorithms, and hybrid
algorithms. The optimistic group can, similarly, be classified as locking-based or
timestamp ordering-based. This classification is depicted in Figure 11.4.

Centralized

Primary

Copy

Distributed

Basic

Multiversion

Conservative

Locking
Timestamp

Ordering
Hybrid

Pessimistic

Concurrency

Control

Algorithms

Optimistic

Locking
Timestamp

Ordering

Fig. 11.4 Classification of Concurrency Control Algorithms

In the locking-based approach, the synchronization of transactions is achieved
by employing physical or logical locks on some portion or granule of the database.
The size of these portions (usually called locking granularity) is an important issue.
However, for the time being, we will ignore it and refer to the chosen granule as a
lock unit. This class is subdivided further according to where the lock management
activities are performed: centralized and decentralized (or distributed) locking.

The timestamp ordering (TO) class involves organizing the execution order of
transactions so that they maintain transaction consistency. This ordering is maintained
by assigning timestamps to both the transactions and the data items that are stored in
the database. These algorithms can be basic TO, multiversion TO, or conservative
TO.

We should indicate that in some locking-based algorithms, timestamps are also
used. This is done primarily to improve efficiency and the level of concurrency. We
call these hybrid algorithms. We will not discuss these algorithms in this chapter since
they have not been implemented in any commercial or research prototype distributed

11.3 Locking-Based Concurrency Control Algorithms 369

DBMS. The rules for integrating locking and timestamp ordering protocols are
discussed by Bernstein and Goodman [1981].

11.3 Locking-Based Concurrency Control Algorithms

The main idea of locking-based concurrency control is to ensure that a data item
that is shared by conflicting operations is accessed by one operation at a time. This
is accomplished by associating a “lock” with each lock unit. This lock is set by a
transaction before it is accessed and is reset at the end of its use. Obviously a lock
unit cannot be accessed by an operation if it is already locked by another. Thus a
lock request by a transaction is granted only if the associated lock is not being held
by any other transaction.

Since we are concerned with synchronizing the conflicting operations of con-
flicting transactions, there are two types of locks (commonly called lock modes)
associated with each lock unit: read lock (rl) and write lock (wl). A transaction Ti that
wants to read a data item contained in lock unit x obtains a read lock on x [denoted
rli(x)]. The same happens for write operations. Two lock modes are compatible if
two transactions that access the same data item can obtain these locks on that data
item at the same time. As Figure 11.5 shows, read locks are compatible, whereas
read-write or write-write locks are not. Therefore, it is possible, for example, for two
transactions to read the same data item concurrently.

compatible

not compatible

not compatible

not compatible

rl
i
(x)

rl
j
(x)

wl
j
(x)

wl
j
(x)

Fig. 11.5 Compatibility Matrix of Lock Modes

The distributed DBMS not only manages locks but also handles the lock manage-
ment responsibilities on behalf of the transactions. In other words, users do not need
to specify when a data item needs to be locked; the distributed DBMS takes care of
that every time the transaction issues a read or write operation.

In locking-based systems, the scheduler (see Figure 10.5) is a lock manager (LM).
The transaction manager passes to the lock manager the database operation (read or
write) and associated information (such as the item that is accessed and the identifier
of the transaction that issues the database operation). The lock manager then checks
if the lock unit that contains the data item is already locked. If so, and if the existing
lock mode is incompatible with that of the current transaction, the current operation
is delayed. Otherwise, the lock is set in the desired mode and the database operation
is passed on to the data processor for actual database access. The transaction manager
is then informed of the results of the operation. The termination of a transaction

370 11 Distributed Concurrency Control

results in the release of its locks and the initiation of another transaction that might
be waiting for access to the same data item.

The locking algorithm as described above will not, unfortunately, properly syn-
chronize transaction executions. This is because to generate serializable histories,
the locking and releasing operations of transactions also need to be coordinated. We
demonstrate this by an example.
Example 11.7. Consider the following two transactions:

T1: Read(x) T2: Read(x)
x← x+1 x← x∗2
Write(x) Write(x)
Read(y) Read(y)
y← y−1 y← y∗2
Write(y) Write(y)
Commit Commit

The following is a valid history that a lock manager employing the locking
algorithm may generate:

H ={wl1(x),R1(x),W1(x), lr1(x),wl2(x),R2(x),w2(x), lr2(x),wl2(y),

R2(y),W2(y), lr2(y),wl1(y),R1(y),W1(y), lr1(y)}

where lri(z) indicates the release of the lock on z that transaction Ti holds.
Note that H is not a serializable history. For example, if prior to the execution of

these transactions, the values of x and y are 50 and 20, respectively, one would expect
their values following execution to be, respectively, either 102 and 38 if T1 executes
before T2, or 101 and 39 if T2 executes before T1. However, the result of executing H
would give x and y the values 102 and 39. Obviously, H is not serializable. �

The problem with history H in Example 11.7 is the following. The locking
algorithm releases the locks that are held by a transaction (say, Ti) as soon as the
associated database command (read or write) is executed, and that lock unit (say x)
no longer needs to be accessed. However, the transaction itself is locking other items
(say, y), after it releases its lock on x. Even though this may seem to be advantageous
from the viewpoint of increased concurrency, it permits transactions to interfere with
one another, resulting in the loss of isolation and atomicity. Hence the argument for
two-phase locking (2PL).

The two-phase locking rule simply states that no transaction should request a
lock after it releases one of its locks. Alternatively, a transaction should not release a
lock until it is certain that it will not request another lock. 2PL algorithms execute
transactions in two phases. Each transaction has a growing phase, where it obtains
locks and accesses data items, and a shrinking phase, during which it releases locks
(Figure 11.6). The lock point is the moment when the transaction has achieved all its
locks but has not yet started to release any of them. Thus the lock point determines the
end of the growing phase and the beginning of the shrinking phase of a transaction.
It has been proven that any history generated by a concurrency control algorithm that
obeys the 2PL rule is serializable [Eswaran et al., 1976].

11.3 Locking-Based Concurrency Control Algorithms 371

N
u

m
b

e
r

o
f

lo
c
k
s

Obtain lock

Release lock

BEGIN LOCK

POINT

END Transaction

duration

Fig. 11.6 2PL Lock Graph

ENDBEGIN

Period of

data item

use

Transaction

duration

Obtain lock

Release lock

N
u
m

b
e
r

o
f
lo

c
k
s

Fig. 11.7 Strict 2PL Lock Graph

Figure 11.6 indicates that the lock manager releases locks as soon as access to
that data item has been completed. This permits other transactions awaiting access to
go ahead and lock it, thereby increasing the degree of concurrency. However, this is
difficult to implement since the lock manager has to know that the transaction has
obtained all its locks and will not need to lock another data item. The lock manager
also needs to know that the transaction no longer needs to access the data item in
question, so that the lock can be released. Finally, if the transaction aborts after it
releases a lock, it may cause other transactions that may have accessed the unlocked
data item to abort as well. This is known as cascading aborts. These problems may
be overcome by strict two-phase locking, which releases all the locks together when
the transaction terminates (commits or aborts). Thus the lock graph is as shown in
Figure 11.7.

We should note that even though a 2PL algorithm enforces conflict serializability,
it does not allow all histories that are conflict serializable. Consider the following
history discussed by Agrawal and El-Abbadi [1990]:

372 11 Distributed Concurrency Control

H = {W1(x),R2(x),W3(y),W1(y)}

H is not allowed by 2PL algorithm since T1 would need to obtain a write lock on y
after it releases its write lock on x. However, this history is serializable in the order
T3→ T1→ T2. The order of locking can be exploited to design locking algorithms
that allow histories such as these [Agrawal and El-Abbadi, 1990].

The main idea is to observe that in serializability theory, the order of serialization
of conflicting operations is as important as detecting the conflict in the first place and
this can be exploited in defining locking modes. Consequently, in addition to read
(shared) and write (exclusive) locks, a third lock mode is defined: ordered shared.
Ordered shared locking of an object x by transactions Ti and Tj has the following
meaning: Given a history H that allows ordered shared locks between operations
o ∈ Ti and p ∈ Tj, if Ti acquires o-lock before Tj acquires p-lock, then o is executed
before p. Consider the compatibility table between read and write locks given in
Figure 11.5. If the ordered shared mode is added, there are eight variants of this
table. Figure 11.5 depicts one of them and two more are shown in Figure 11.8. In
Figure 11.8(b), for example, there is an ordered shared relationship between rl j(x)
and wli(x) indicating that Ti can acquire a write lock on x while Tj holds a read lock
on x as long as the ordered shared relationship from rl j(x) to wli(x) is observed. The
eight compatibility tables can be compared with respect to their permissiveness (i.e.,
with respect to the histories that can be produced using them) to generate a lattice of
tables such that the one in Figure 11.5 is the most restrictive and the one in Figure
11.8(b) is the most liberal.

rl
i
(x) wl

i
(x)

compatible

ordered shared

not compatible

not compatible

compatible

ordered shared

ordered shared

ordered shared

(a) (b)

rl
i
(x)

rl
j
(x)rl

j
(x)

wl
i
(x)

wl
j
(x) wl

j
(x)

Fig. 11.8 Commutativity Table with Ordered Shared Lock Mode

The locking protocol that enforces a compatibility matrix involving ordered shared
lock modes is identical to 2PL, except that a transaction may not release any locks as
long as any of its locks are on hold. Otherwise circular serialization orders can exist.

Locking-based algorithms may cause deadlocks since they allow exclusive access
to resources. It is possible that two transactions that access the same data items may
lock them in reverse order, causing each to wait for the other to release its locks
causing a deadlock. We discuss deadlock management in Section 11.6.

11.3 Locking-Based Concurrency Control Algorithms 373

11.3.1 Centralized 2PL

The 2PL algorithm discussed in the preceding section can easily be extended to the
distributed DBMS environment. One way of doing this is to delegate lock manage-
ment responsibility to a single site only. This means that only one of the sites has a
lock manager; the transaction managers at the other sites communicate with it rather
than with their own lock managers. This approach is also known as the primary site
2PL algorithm [Alsberg and Day, 1976].

The communication between the cooperating sites in executing a transaction
according to a centralized 2PL (C2PL) algorithm is depicted in Figure 11.9. This
communication is between the transaction manager at the site where the transaction
is initiated (called the coordinating TM), the lock manager at the central site, and the
data processors (DP) at the other participating sites. The participating sites are those
that store the data item and at which the operation is to be carried out. The order of
messages is denoted in the figure.

1

2

3

4

5

Data Processors at

participating sites Coordinating TM Central SiteTM

Lock Request

End of Operation

Release Locks

Lock Granted

Operation

Fig. 11.9 Communication Structure of Centralized 2PL

The centralized 2PL transaction management algorithm (C2PL-TM) that incor-
porates these changes is given at a very high level in Algorithm 11.1, while the
centralized 2PL lock management algorithm (C2PL-LM) is shown in Algorithm 11.2.
A highly simplified data processor algorithm (DP) is given in Algorithm 11.3; this
is the algorithm that will see major changes when we discuss reliability issues in
Chapter 12. For the time being, this is sufficient for our purposes.

374 11 Distributed Concurrency Control

There is one important data structure that is used in these algorithms and that
is the operation that is defined as a 5-tuple: Op : 〈Type = {BT,R,W,A,C},arg :
Data item,val : Value, tid : Transaction identifier,res : Result〉. The meaning of the
components is as follows: for an operation o : Op, o.Type∈{BT,R,W,A,C} specifies
its type where BT = Begin transaction, R = Read, W = Write, A = Abort, and C =
Commit, arg is the data item that the operation accesses (reads or writes; for other
operations this field is null), val is also used in case of Read and Write operations
to specify the value that has been read or the value to be written for data item arg
(otherwise it is null), tid is the transaction that this operation belongs to (strictly
speaking, this is the transaction identifier), and res indicates the completion code of
operations requested of DP. In the high level descriptions of the algorithms in this
chapter, res may seem unnecessary, but we will see in Chapter 12 that these return
codes will be important.

The transaction manager (C2PL-TM) algorithm is written as a process that runs
forever and waits until a message arrives from either an application (with a transaction
operation) or from a lock manager, or from a data processor. The lock manager (C2PL-
LM) and data processor (DP) algorithms are written as procedures that are called
when needed. Since the algorithms are given at a high level of abstraction, this is not
a major concern, but actual implementations may, naturally, be quite different.

One common criticism of C2PL algorithms is that a bottleneck may quickly form
around the central site. Furthermore, the system may be less reliable since the failure
or inaccessibility of the central site would cause major system failures. There are
studies that indicate that the bottleneck will indeed form as the transaction rate
increases.

11.3.2 Distributed 2PL

Distributed 2PL (D2PL) requires the availability of lock managers at each site. The
communication between cooperating sites that execute a transaction according to the
distributed 2PL protocol is depicted in Figure 11.10.

The distributed 2PL transaction management algorithm is similar to the C2PL-
TM, with two major modifications. The messages that are sent to the central site
lock manager in C2PL-TM are sent to the lock managers at all participating sites
in D2PL-TM. The second difference is that the operations are not passed to the
data processors by the coordinating transaction manager, but by the participating
lock managers. This means that the coordinating transaction manager does not
wait for a “lock request granted” message. Another point about Figure 11.10 is the
following. The participating data processors send the “end of operation” messages
to the coordinating TM. The alternative is for each DP to send it to its own lock
manager who can then release the locks and inform the coordinating TM. We have
chosen to describe the former since it uses an LM algorithm identical to the strict
2PL lock manager that we have already discussed and it makes the discussion of the
commit protocols simpler (see Chapter 12). Owing to these similarities, we do not

11.3 Locking-Based Concurrency Control Algorithms 375

Algorithm 11.1: Centralized 2PL Transaction Manager (C2PL-TM) Algorithm
Input: msg : a message
begin

repeat
wait for a msg ;
switch msg do

case transaction operation
let op be the operation ;
if op.Type = BT then DP(op) {call DP with operation}
else C2PL-LM(op) {call LM with operation}

case Lock Manager response {lock request granted or locks
released}

if lock request granted then
find site that stores the requested data item (say Hi) ;
DPSi(op) {call DP at site Si with operation}

else {must be lock release message}
inform user about the termination of transaction

case Data Processor response {operation completed message}
switch transaction operation do

let op be the operation ;
case R

return op.val (data item value) to the application
case W

inform application of completion of the write
case C

if commit msg has been received from all participants
then

inform application of successful completion of
transaction ;
C2PL-LM(op) {need to release locks}

else {wait until commit messages come from all}
record the arrival of the commit message

case A
inform application of completion of the abort ;
C2PL-LM(op) {need to release locks}

until forever ;
end

376 11 Distributed Concurrency Control

Algorithm 11.2: Centralized 2PL Lock Manager (C2PL-LM) Algorithm
Input: op : Op
begin

switch op.Type do
case R or W {lock request; see if it can be granted}

find the lock unit lu such that op.arg⊆ lu ;
if lu is unlocked or lock mode of lu is compatible with op.Type
then

set lock on lu in appropriate mode on behalf of transaction
op.tid ;
send “Lock granted” to coordinating TM of transaction

else
put op on a queue for lu

case C or A {locks need to be released}
foreach lock unit lu held by transaction do

release lock on lu held by transaction ;
if there are operations waiting in queue for lu then

find the first operation O on queue ;
set a lock on lu on behalf of O ;
send “Lock granted” to coordinating TM of transaction
O.tid

send “Locks released” to coordinating TM of transaction

end

3

1

2

4

Coordinating

TM

Participating

Schedulers

Participating

DMs

Operations (Lock Request)

Operation

Release Locks

End of Operation

Fig. 11.10 Communication Structure of Distributed 2PL

11.4 Timestamp-Based Concurrency Control Algorithms 377

Algorithm 11.3: Data Processor (DP) Algorithm
Input: op : Op
begin

switch op.Type do {check the type of operation}
case BT {details to be discussed in Chapter 12}

do some bookkeeping
case R

op.res← READ(op.arg) ; {database READ operation}
op.res← “Read done”

case W {database WRITE of val into data item arg}
WRITE(op.arg,op.val) ;
op.res← “Write done”

case C
COMMIT ; {execute COMMIT }
op.res← “Commit done”

case A
ABORT ; {execute ABORT }
op.res← “Abort done”

return op
end

give the distributed TM and LM algorithms here. Distributed 2PL algorithms have
been used in System R* [Mohan et al., 1986] and in NonStop SQL ([Tandem, 1987,
1988] and [Borr, 1988]).

11.4 Timestamp-Based Concurrency Control Algorithms

Unlike locking-based algorithms, timestamp-based concurrency control algorithms
do not attempt to maintain serializability by mutual exclusion. Instead, they select, a
priori, a serialization order and execute transactions accordingly. To establish this
ordering, the transaction manager assigns each transaction Ti a unique timestamp,
ts(Ti), at its initiation.

A timestamp is a simple identifier that serves to identify each transaction uniquely
and is used for ordering. Uniqueness is only one of the properties of timestamp
generation. The second property is monotonicity. Two timestamps generated by the
same transaction manager should be monotonically increasing. Thus timestamps
are values derived from a totally ordered domain. It is this second property that
differentiates a timestamp from a transaction identifier.

There are a number of ways that timestamps can be assigned. One method is to use
a global (system-wide) monotonically increasing counter. However, the maintenance

378 11 Distributed Concurrency Control

of global counters is a problem in distributed systems. Therefore, it is preferable that
each site autonomously assigns timestamps based on its local counter. To maintain
uniqueness, each site appends its own identifier to the counter value. Thus the
timestamp is a two-tuple of the form 〈local counter value, site identifier〉. Note that
the site identifier is appended in the least significant position. Hence it serves only
to order the timestamps of two transactions that might have been assigned the same
local counter value. If each system can access its own system clock, it is possible to
use system clock values instead of counter values.

With this information, it is simple to order the execution of the transactions’
operations according to their timestamps. Formally, the timestamp ordering (TO)
rule can be specified as follows:

TO Rule. Given two conflicting operations Oi j and Okl belonging, respectively, to
transactions Ti and Tk, Oi j is executed before Okl if and only if ts(Ti)< ts(Tk). In
this case Ti is said to be the older transaction and Tk is said to be the younger one.

A scheduler that enforces the TO rule checks each new operation against con-
flicting operations that have already been scheduled. If the new operation belongs
to a transaction that is younger than all the conflicting ones that have already been
scheduled, the operation is accepted; otherwise, it is rejected, causing the entire
transaction to restart with a new timestamp.

A timestamp ordering scheduler that operates in this fashion is guaranteed to
generate serializable histories. However, this comparison between the transaction
timestamps can be performed only if the scheduler has received all the operations to
be scheduled. If operations come to the scheduler one at a time (which is the realistic
case), it is necessary to be able to detect, in an efficient manner, if an operation has
arrived out of sequence. To facilitate this check, each data item x is assigned two
timestamps: a read timestamp [rts(x)], which is the largest of the timestamps of the
transactions that have read x, and a write timestamp [wts(x)], which is the largest of
the timestamps of the transactions that have written (updated) x. It is now sufficient
to compare the timestamp of an operation with the read and write timestamps of
the data item that it wants to access to determine if any transaction with a larger
timestamp has already accessed the same data item.

Architecturally (see Figure 10.5), the transaction manager is responsible for
assigning a timestamp to each new transaction and attaching this timestamp to
each database operation that it passes on to the scheduler. The latter component is
responsible for keeping track of read and write timestamps as well as performing the
serializability check.

11.4.1 Basic TO Algorithm

The basic TO algorithm is a straightforward implementation of the TO rule. The
coordinating transaction manager assigns the timestamp to each transaction, deter-

11.4 Timestamp-Based Concurrency Control Algorithms 379

mines the sites where each data item is stored, and sends the relevant operations to
these sites. The basic TO transaction manager algorithm (BTO-TM) is depicted in
Algorithm 11.4. The histories at each site simply enforce the TO rule. The scheduler
algorithm is given in Algorithm 11.5. The data manager is still the one given in
Algorithm 11.3. The same data structures and assumptions we used for centralized
2PL algorithms apply to these algorithms as well.

As indicated before, a transaction one of whose operations is rejected by a sched-
uler is restarted by the transaction manager with a new timestamp. This ensures
that the transaction has a chance to execute in its next try. Since the transactions
never wait while they hold access rights to data items, the basic TO algorithm never
causes deadlocks. However, the penalty of deadlock freedom is potential restart of a
transaction numerous times. There is an alternative to the basic TO algorithm that
reduces the number of restarts, which we discuss in the next section.

Another detail that needs to be considered relates to the communication between
the scheduler and the data processor. When an accepted operation is passed on to the
data processor, the scheduler needs to refrain from sending another conflicting, but
acceptable operation to the data processor until the first is processed and acknowl-
edged. This is a requirement to ensure that the data processor executes the operations
in the order in which the scheduler passes them on. Otherwise, the read and write
timestamp values for the accessed data item would not be accurate.

Example 11.8. Assume that the TO scheduler first receives Wi(x) and then receives
Wj(x), where ts(Ti)< ts(Tj). The scheduler would accept both operations and pass
them on to the data processor. The result of these two operations is that wts(x) =
ts(Tj), and we then expect the effect of Wj(x) to be represented in the database.
However, if the data processor does not execute them in that order, the effects on the
database will be wrong. �

The scheduler can enforce the ordering by maintaining a queue for each data item
that is used to delay the transfer of the accepted operation until an acknowledgment
is received from the data processor regarding the previous operation on the same data
item. This detail is not shown in Algorithm 11.5.

Such a complication does not arise in 2PL-based algorithms because the lock
manager effectively orders the operations by releasing the locks only after the oper-
ation is executed. In one sense the queue that the TO scheduler maintains may be
thought of as a lock. However, this does not imply that the history generated by a TO
scheduler and a 2PL scheduler would always be equivalent. There are some histories
that a TO scheduler would generate that would not be admissible by a 2PL history.

Remember that in the case of strict 2PL algorithms, the releasing of locks is
delayed further, until the commit or abort of a transaction. It is possible to develop a
strict TO algorithm by using a similar scheme. For example, if Wi(x) is accepted and
released to the data processor, the scheduler delays all R j(x) and Wj(x) operations
(for all Tj) until Ti terminates (commits or aborts).

380 11 Distributed Concurrency Control

Algorithm 11.4: Basic Timestamp Ordering (BTO-TM) Algorithm
Input: msg : a message
begin

repeat
wait for a msg ;
switch msg type do

case transaction operation {operation from application program }
let op be the operation ;
switch op.Type do

case BT
S← /0 ; {S is the set of sites where transaction executes
}
assign a timestamp to transaction – call it ts(T) ;
DP(op) {call DP with operation}

case R, W
find site that stores the requested data item (say Si) ;
BTO-SCSi(op, ts(T)) ; {send op and ts to SC at Hi}
S← S∪Si {build list of sites where transaction runs}

case A, C {send op to DPs at all sites where transaction
runs}

DPS(op)

case SC response {operation must have been rejected by one
SC}

op.Type← A; {prepare an abort message}
BTO-SCS(op,−) ; {ask other SCs where transaction runs to
abort}
restart transaction with a new timestamp

case DP response {operation completed message}
switch transaction operation type do

let op be the operation ;
case R return op.val to the application ;
case W inform application of completion of the write ;
case C

if commit msg has been received from all participants
then

inform application of successful completion of
transaction

else {wait until commit messages come from all}
record the arrival of the commit message

case A
inform application of completion of the abort ;
BTO-SC(op) {need to reset read and write timestamps}

until forever ;
end

11.4 Timestamp-Based Concurrency Control Algorithms 381

Algorithm 11.5: Basic Timestamp Ordering Scheduler (BTO-SC) Algorithm
Input: op : Op; ts(T) : Timestamp
begin

retrieve rts(op.arg) and wts(arg) ;
save rts(op.arg) and wts(arg) ; {might be needed if aborted }
switch op.arg do

case R
if ts(T) > wts(op.arg) then

DP(op) ; {operation can be executed; send it to the data
processor}
rts(op.arg)← ts(T)

else
send “Reject transaction” message to coordinating TM

case W
if ts(T) > rts(op.arg) and ts(T) > wts(op.arg) then

DP(op) ; {operation can be executed; send it to the data
processor}
rts(op.arg)← ts(T) ;
wts(op.arg)← ts(T)

else
send“Reject transaction” message to coordinating TM

case A
forall the op.arg that has been accessed by transaction do

reset rts(op.arg) and wts(op.arg) to their initial values

end

11.4.2 Conservative TO Algorithm

We indicated in the preceding section that the basic TO algorithm never causes
operations to wait, but instead, restarts them. We also pointed out that even though
this is an advantage due to deadlock freedom, it is also a disadvantage, because
numerous restarts would have adverse performance implications. The conservative
TO algorithms attempt to lower this system overhead by reducing the number of
transaction restarts.

Let us first present a technique that is commonly used to reduce the probability of
restarts. Remember that a TO scheduler restarts a transaction if a younger conflicting
transaction is already scheduled or has been executed. Note that such occurrences
increase significantly if, for example, one site is comparatively inactive relative to
the others and does not issue transactions for an extended period. In this case its
timestamp counter indicates a value that is considerably smaller than the counters of
other sites. If the TM at this site then receives a transaction, the operations that are

382 11 Distributed Concurrency Control

sent to the histories at the other sites will almost certainly be rejected, causing the
transaction to restart. Furthermore, the same transaction will restart repeatedly until
the timestamp counter value at its originating site reaches a level of parity with the
counters of other sites.

The foregoing scenario indicates that it is useful to keep the counters at each site
synchronized. However, total synchronization is not only costly—since it requires
exchange of messages every time a counter changes—but also unnecessary. Instead,
each transaction manager can send its remote operations, rather than histories, to the
transaction managers at the other sites. The receiving transaction managers can then
compare their own counter values with that of the incoming operation. Any manager
whose counter value is smaller than the incoming one adjusts its own counter to one
more than the incoming one. This ensures that none of the counters in the system
run away or lag behind significantly. Of course, if system clocks are used instead of
counters, this approximate synchronization may be achieved automatically as long
as the clocks are of comparable speeds.

We can now return to our discussion of conservative TO algorithms. The “conser-
vative” nature of these algorithms relates to the way they execute each operation. The
basic TO algorithm tries to execute an operation as soon as it is accepted; it is there-
fore “aggressive” or “progressive.” Conservative algorithms, on the other hand, delay
each operation until there is an assurance that no operation with a smaller timestamp
can arrive at that scheduler. If this condition can be guaranteed, the scheduler will
never reject an operation. However, this delay introduces the possibility of deadlocks.

The basic technique that is used in conservative TO algorithms is based on the
following idea: the operations of each transaction are buffered until an ordering can
be established so that rejections are not possible, and they are executed in that order.
We will consider one possible implementation of the conservative TO algorithm due
to Herman and Verjus [1979].

Assume that each scheduler maintains one queue for each transaction manager
in the system. The scheduler at site i stores all the operations that it receives from
the transaction manager at site j in queue Qi j. Scheduler i has one such queue for
each j. When an operation is received from a transaction manager, it is placed in its
appropriate queue in increasing timestamp order. The histories at each site execute
the operations from these queues in increasing timestamp order.

This scheme will reduce the number of restarts, but it will not guarantee that they
will be eliminated completely. Consider the case where at site i the queue for site
j (Qi j) is empty. The scheduler at site i will choose an operation [say, R(x)] with the
smallest timestamp and pass it on to the data processor. However, site j may have
sent to i an operation [say, W (x)] with a smaller timestamp which may still be in
transit in the network. When this operation reaches site i, it will be rejected since it
violates the TO rule: it wants to access a data item that is currently being accessed
(in an incompatible mode) by another operation with a higher timestamp.

It is possible to design an extremely conservative TO algorithm by insisting that
the scheduler choose an operation to be sent to the data processor only if there
is at least one operation in each queue. This guarantees that every operation that
the scheduler receives in the future will have timestamps greater than or equal to

11.4 Timestamp-Based Concurrency Control Algorithms 383

those currently in the queues. Of course, if a transaction manager does not have
a transaction to process, it needs to send dummy messages periodically to every
scheduler in the system, informing them that the operations that it will send in the
future will have timestamps greater than that of the dummy message.

The careful reader will realize that the extremely conservative timestamp ordering
scheduler actually executes transactions serially at each site. This is very restric-
tive. One method that has been employed to overcome this restriction is to group
transactions into classes. Transaction classes are defined with respect to their read
sets and write sets. It is therefore sufficient to determine the class that a transaction
belongs to by comparing the transaction’s read set and write set, respectively, with
the read set and write set of each class. Thus the conservative TO algorithm can be
modified so that instead of requiring the existence, at each site, of one queue for
each transaction manager, it is only necessary to have one queue for each transaction
class. Alternatively, one might mark each queue with the class to which it belongs.
With either of these modifications, the conditions for sending an operation to the data
processor are changed. It is no longer necessary to wait until there is at least one
operation in each queue; it is sufficient to wait until there is at least one operation in
each class to which the transaction belongs. This and other weaker conditions that
reduce the waiting delay can be defined and are sufficient. A variant of this method
is used in the SDD-1 prototype system [Bernstein et al., 1980b].

11.4.3 Multiversion TO Algorithm

Multiversion TO is another attempt at eliminating the restart overhead cost of transac-
tions. Most of the work on multiversion TO has concentrated on centralized databases,
so we present only a brief overview. However, we should indicate that multiversion
TO algorithm would be a suitable concurrency control mechanism for DBMSs that
are designed to support applications that inherently have a notion of versions of
database objects (e.g., engineering databases and document databases).

In multiversion TO, the updates do not modify the database; each write operation
creates a new version of that data item. Each version is marked by the timestamp
of the transaction that creates it. Thus the multiversion TO algorithm trades storage
space for time. In doing so, it processes each transaction on a state of the database
that it would have seen if the transactions were executed serially in timestamp order.

The existence of versions is transparent to users who issue transactions simply by
referring to data items, not to any specific version. The transaction manager assigns
a timestamp to each transaction, which is also used to keep track of the timestamps
of each version. The operations are processed by the histories as follows:

1. A Ri(x) is translated into a read on one version of x. This is done by finding a
version of x (say, xv) such that ts(xv) is the largest timestamp less than ts(Ti).
Ri(xv) is then sent to the data processor to read xv. This case is depicted in

384 11 Distributed Concurrency Control

Figure 11.11a, which shows that Ri can read the version (xv) that it would
have read had it arrived in timestamp order.

2. A Wi(x) is translated into Wi(xw) so that ts(xw) = ts(Ti) and sent to the data
processor if and only if no other transaction with a timestamp greater than
ts(Ti) has read the value of a version of x (say, xr) such that ts(xr)> ts(xw).
In other words, if the scheduler has already processed a R j(xr) such that

ts(Ti)< ts(xr)< ts(Tj)

then Wi(x) is rejected. This case is depicted in Figure 11.11b, which shows
that if Wi is accepted, it would create a version (xw) that R j should have read,
but did not since the version was not available when R j was executed – it,
instead, read version xk, which results in the wrong history.

x
k x

v
x
w

timestamps

R
i

(a)

x
l x

k
x
r

timestamps

W
i

(b)

x
w

R
j

Fig. 11.11 Multiversion TO Cases

A scheduler that processes the read and the write requests of transactions according
to the rules noted above is guaranteed to generate serializable histories. To save space,
the versions of the database may be purged from time to time. This should be done
when the distributed DBMS is certain that it will no longer receive a transaction that
needs to access the purged versions.

11.5 Optimistic Concurrency Control Algorithms

The concurrency control algorithms discussed in Sections 11.3 and 11.4 are pes-
simistic in nature. In other words, they assume that the conflicts between transactions
are quite frequent and do not permit a transaction to access a data item if there
is a conflicting transaction that accesses that data item. Thus the execution of any

385

operation of a transaction follows the sequence of phases: validation (V), read (R),
computation (C), write (W) (Figure 11.12).2 Generally, this sequence is valid for an
update transaction as well as for each of its operations.

Validate Read Compute Write

Fig. 11.12 Phases of Pessimistic Transaction Execution

Optimistic algorithms, on the other hand, delay the validation phase until just
before the write phase (Figure 11.13). Thus an operation submitted to an optimistic
scheduler is never delayed. The read, compute, and write operations of each trans-
action are processed freely without updating the actual database. Each transaction
initially makes its updates on local copies of data items. The validation phase consists
of checking if these updates would maintain the consistency of the database. If
the answer is affirmative, the changes are made global (i.e., written into the actual
database). Otherwise, the transaction is aborted and has to restart.

Read Compute Validate Write

Fig. 11.13 Phases of Optimistic Transaction Execution

It is possible to design locking-based optimistic concurrency control algorithms
(see [Bernstein et al., 1987]). However, the original optimistic proposals [Thomas,
1979; Kung and Robinson, 1981] are based on timestamp ordering. Therefore, we
describe only the optimistic approach using timestamps.

The algorithm that we discuss was proposed by Kung and Robinson [1981] and
was later extended for distributed DBMS by Ceri and Owicki [1982]. This is not
the only extension of the model to distributed databases, however (see, for example,
[Sinha et al., 1985]). It differs from pessimistic TO-based algorithms not only by
being optimistic but also in its assignment of timestamps. Timestamps are associated
only with transactions, not with data items (i.e., there are no read or write timestamps).
Furthermore, timestamps are not assigned to transactions at their initiation but at the
beginning of their validation step. This is because the timestamps are needed only
during the validation phase, and as we will see shortly, their early assignment may
cause unnecessary transaction rejections.

Each transaction Ti is subdivided (by the transaction manager at the originating
site) into a number of subtransactions, each of which can execute at many sites.
Notationally, let us denote by Ti j a subtransaction of Ti that executes at site j. Until

2 We consider only the update transactions in this discussion because they are the ones that cause
consistency problems. Read-only transactions do not have the computation and write phases.
Furthermore, we assume that the write phase includes the commit action.

11.5 Optimistic Concurrency Control Algorithms

386 11 Distributed Concurrency Control

the validation phase, each local execution follows the sequence depicted in Figure
11.13. At that point a timestamp is assigned to the transaction which is copied to all
its subtransactions. The local validation of Ti j is performed according to the following
rules, which are mutually exclusive.

Rule 1. If all transactions Tk where ts(Tk) < ts(Ti j) have completed their write
phase before Ti j has started its read phase (Figure 11.14a),3 validation succeeds,
because transaction executions are in serial order.

WR V

T
k

WR V

T
ij

(a)

WR V

WR V

(b)

WR V

WR V

(c)

T
k

T
k

T
ij

T
ij

Fig. 11.14 Possible Execution Scenarios

Rule 2. If there is any transaction Tk such that ts(Tk) < ts(Ti j), and which com-
pletes its write phase while Ti j is in its read phase (Figure 11.14b), the validation
succeeds if WS(Tk)∩RS(Ti j) = /0.

Rule 3. If there is any transaction Tk such that ts(Tk) < ts(Ti j), and which com-
pletes its read phase before Ti j completes its read phase (Figure 11.14c), the
validation succeeds if WS(Tk)∩RS(Ti j) = /0, and WS(Tk)∩WS(Ti j) = /0.

Rule 1 is obvious; it indicates that the transactions are actually executed serially
in their timestamp order. Rule 2 ensures that none of the data items updated by Tk

3 Following the convention we have adopted, we omit the computation step in this figure and in the
subsequent discussion. Thus timestamps are assigned at the end of the read phase.

11.6 Deadlock Management 387

are read by Ti j and that Tk finishes writing its updates into the database before Ti j
starts writing. Thus the updates of Ti j will not be overwritten by the updates of Tk.
Rule 3 is similar to Rule 2, but does not require that Tk finish writing before Ti j starts
writing. It simply requires that the updates of Tk not affect the read phase or the write
phase of Ti j.

Once a transaction is locally validated to ensure that the local database consis-
tency is maintained, it also needs to be globally validated to ensure that the mutual
consistency rule is obeyed. Unfortunately, there is no known optimistic method of
doing this. A transaction is globally validated if all the transactions that precede it
in the serialization order (at that site) terminate (either by committing or aborting).
This is a pessimistic method since it performs global validation early and delays a
transaction. However, it guarantees that transactions execute in the same order at
each site.

An advantage of optimistic concurrency control algorithms is their potential to
allow a higher level of concurrency. It has been shown that when transaction conflicts
are very rare, the optimistic mechanism performs better than locking [Kung and
Robinson, 1981]. A major problem with optimistic algorithms is the higher storage
cost. To validate a transaction, the optimistic mechanism has to store the read and the
write sets of several other terminated transactions. Specifically, the read and write
sets of terminated transactions that were in progress when transaction Ti j arrived at
site j need to be stored in order to validate Ti j. Obviously, this increases the storage
cost.

Another problem is starvation. Consider a situation in which the validation phase
of a long transaction fails. In subsequent trials it is still possible that the validation
will fail repeatedly. Of course, it is possible to solve this problem by permitting
the transaction exclusive access to the database after a specified number of trials.
However, this reduces the level of concurrency to a single transaction. The exact
“mix” of transactions that would cause an intolerable level of restarts is an issue that
remains to be studied.

11.6 Deadlock Management

As we indicated before, any locking-based concurrency control algorithm may result
in deadlocks, since there is mutual exclusion of access to shared resources (data)
and transactions may wait on locks. Furthermore, we have seen that some TO-based
algorithms that require the waiting of transactions (e.g., strict TO) may also cause
deadlocks. Therefore, the distributed DBMS requires special procedures to handle
them.

A deadlock can occur because transactions wait for one another. Informally, a
deadlock situation is a set of requests that can never be granted by the concurrency
control mechanism.

Example 11.9. Consider two transactions Ti and Tj that hold write locks on two
entities x and y [i.e., wli(x) and wl j(y)]. Suppose that Ti now issues a rli(y) or a
wli(y). Since y is currently locked by transaction Tj, Ti will have to wait until Tj

388 11 Distributed Concurrency Control

releases its write lock on y. However, if during this waiting period, Tj now requests a
lock (read or write) on x, there will be a deadlock. This is because, Ti will be blocked
waiting for Tj to release its lock on y while Tj will be waiting for Ti to release its lock
on x. In this case, the two transactions Ti and Tj will wait indefinitely for each other
to release their respective locks. �

A deadlock is a permanent phenomenon. If one exists in a system, it will not go
away unless outside intervention takes place. This outside interference may come
from the user, the system operator, or the software system (the operating system or
the distributed DBMS).

A useful tool in analyzing deadlocks is a wait-for graph (WFG). A WFG is a
directed graph that represents the wait-for relationship among transactions. The nodes
of this graph represent the concurrent transactions in the system. An edge Ti→ Tj
exists in the WFG if transaction Ti is waiting for Tj to release a lock on some entity.
Figure 11.15 depicts the WFG for Example 11.9.

T
i

T
j

Fig. 11.15 A WFG Example

Using the WFG, it is easier to indicate the condition for the occurrence of a
deadlock. A deadlock occurs when the WFG contains a cycle. We should indicate
that the formation of the WFG is more complicated in distributed systems, since
two transactions that participate in a deadlock condition may be running at different
sites. We call this situation a global deadlock. In distributed systems, then, it is not
sufficient that each local distributed DBMS form a local wait-for graph (LWFG) at
each site; it is also necessary to form a global wait-for graph (GWFG), which is the
union of all the LWFGs.

Example 11.10. Consider four transactions T1,T2,T3, and T4 with the following wait-
for relationship among them: T1 → T2 → T3 → T4 → T1. If T1 and T2 run at site
1 while T3 and T4 run at site 2, the LWFGs for the two sites are shown in Figure
11.16a. Notice that it is not possible to detect a deadlock simply by examining the
two LWFGs, because the deadlock is global. The deadlock can easily be detected,
however, by examining the GWFG where intersite waiting is shown by dashed lines
(Figure 11.16b). �

There are three known methods for handling deadlocks: prevention, avoidance, and
detection and resolution. In the remainder of this section we discuss each approach
in more detail.

11.6 Deadlock Management 389

T
1

Site 1 Site 2

(a)

(b)

T
2

T
3

T
4

T
1

T
2

T
3

T
4

Fig. 11.16 Difference between LWFG and GWFG

11.6.1 Deadlock Prevention

Deadlock prevention methods guarantee that deadlocks cannot occur in the first
place. Thus the transaction manager checks a transaction when it is first initiated
and does not permit it to proceed if it may cause a deadlock. To perform this check,
it is required that all of the data items that will be accessed by a transaction be
predeclared. The transaction manager then permits a transaction to proceed if all the
data items that it will access are available. Otherwise, the transaction is not permitted
to proceed. The transaction manager reserves all the data items that are predeclared
by a transaction that it allows to proceed.

Unfortunately, such systems are not very suitable for database environments. The
fundamental problem is that it is usually difficult to know precisely which data
items will be accessed by a transaction. Access to certain data items may depend on
conditions that may not be resolved until run time. For example, in the reservation
transaction that we developed in Example 10.3, access to CID and CNAME is
conditional upon the availability of free seats. To be safe, the system would thus
need to consider the maximum set of data items, even if they end up not being
accessed. This would certainly reduce concurrency. Furthermore, there is additional
overhead in evaluating whether a transaction can proceed safely. On the other hand,
such systems require no run-time support, which reduces the overhead. It has the
additional advantage that it is not necessary to abort and restart a transaction due to

390 11 Distributed Concurrency Control

deadlocks. This not only reduces the overhead but also makes such methods suitable
for systems that have no provisions for undoing processes.4

11.6.2 Deadlock Avoidance

Deadlock avoidance schemes either employ concurrency control techniques that will
never result in deadlocks or require that potential deadlock situations are detected in
advance and steps are taken such that they will not occur. We consider both of these
cases.

The simplest means of avoiding deadlocks is to order the resources and insist
that each process request access to these resources in that order. This solution was
long ago proposed for operating systems. A revised version has been proposed for
database systems as well [Garcia-Molina, 1979]. Accordingly, the lock units in the
distributed database are ordered and transactions always request locks in that order.
This ordering of lock units may be done either globally or locally at each site. In
the latter case, it is also necessary to order the sites and require that transactions
which access data items at multiple sites request their locks by visiting the sites in
the predefined order.

Another alternative is to make use of transaction timestamps to prioritize transac-
tions and resolve deadlocks by aborting transactions with higher (or lower) priorities.
To implement this type of prevention method, the lock manager is modified as follows.
If a lock request of a transaction Ti is denied, the lock manager does not automatically
force Ti to wait. Instead, it applies a prevention test to the requesting transaction
and the transaction that currently holds the lock (say Tj). If the test is passed, Ti is
permitted to wait for Tj; otherwise, one transaction or the other is aborted.

Examples of this approach is the WAIT-DIE and WOUND-WAIT algorithms
[Rosenkrantz et al., 1978], also used in the MADMAN DBMS [GE, 1976]. These
algorithms are based on the assignment of timestamps to transactions. WAIT-DIE
is a non-preemptive algorithm in that if the lock request of Ti is denied because the
lock is held by Tj, it never preempts Tj, following the rule:

WAIT-DIE Rule. If Ti requests a lock on a data item that is already locked by Tj,
Ti is permitted to wait if and only if Ti is older than Tj. If Ti is younger than Tj,
then Ti is aborted and restarted with the same timestamp.

A preemptive version of the same idea is the WOUND-WAIT algorithm, which
follows the rule:

4 This is not a significant advantage since most systems have to be able to undo transactions for
reliability purposes, as we will see in Chapter 12.

11.6 Deadlock Management 391

WOUND-WAIT Rule. If Ti requests a lock on a data item that is already locked
by Tj, then Ti is permitted to wait if only if it is younger than Tj; otherwise, Tj is
aborted and the lock is granted to Ti.

The rules are specified from the viewpoint of Ti: Ti waits, Ti dies, and Ti wounds
Tj. In fact, the result of wounding and dying are the same: the affected transaction is
aborted and restarted. With this perspective, the two rules can be specified as follows:

if ts(Ti)< ts(Tj) then Ti waits else Ti dies (WAIT-DIE)
if ts(Ti)< ts(Tj) then Tj is wounded else Ti waits (WOUND-WAIT)

Notice that in both algorithms the younger transaction is aborted. The difference
between the two algorithms is whether or not they preempt active transactions.
Also note that the WAIT-DIE algorithm prefers younger transactions and kills older
ones. Thus an older transaction tends to wait longer and longer as it gets older. By
contrast, the WOUND-WAIT rule prefers the older transaction since it never waits
for a younger one. One of these methods, or a combination, may be selected in
implementing a deadlock prevention algorithm.

Deadlock avoidance methods are more suitable than prevention schemes for
database environments. Their fundamental drawback is that they require run-time
support for deadlock management, which adds to the run-time overhead of transaction
execution.

11.6.3 Deadlock Detection and Resolution

Deadlock detection and resolution is the most popular and best-studied method.
Detection is done by studying the GWFG for the formation of cycles. We will discuss
means of doing this in considerable detail. Resolution of deadlocks is typically done
by the selection of one or more victim transaction(s) that will be preempted and
aborted in order to break the cycles in the GWFG. Under the assumption that the
cost of preempting each member of a set of deadlocked transactions is known, the
problem of selecting the minimum total-cost set for breaking the deadlock cycle has
been shown to be a difficult (NP-complete) problem [Leung and Lai, 1979]. However,
there are some factors that affect this choice [Bernstein et al., 1987]:

1. The amount of effort that has already been invested in the transaction. This
effort will be lost if the transaction is aborted.

2. The cost of aborting the transaction. This cost generally depends on the
number of updates that the transaction has already performed.

3. The amount of effort it will take to finish executing the transaction. The
scheduler wants to avoid aborting a transaction that is almost finished. To do
this, it must be able to predict the future behavior of active transactions (e.g.,
based on the transaction’s type).

392 11 Distributed Concurrency Control

4. The number of cycles that contain the transaction. Since aborting a transaction
breaks all cycles that contain it, it is best to abort transactions that are part of
more than one cycle (if such transactions exist).

Now we can return to deadlock detection. There are three fundamental methods of
detecting distributed deadlocks, referred as centralized, distributed, and hierarchical
deadlock detection.

11.6.3.1 Centralized Deadlock Detection

In the centralized deadlock detection approach, one site is designated as the deadlock
detector for the entire system. Periodically, each lock manager transmits its LWFG
to the deadlock detector, which then forms the GWFG and looks for cycles in
it. Actually, the lock managers need only send changes in their graphs (i.e., the
newly created or deleted edges) to the deadlock detector. The length of intervals for
transmitting this information is a system design decision: the smaller the interval, the
smaller the delays due to undetected deadlocks, but the larger the communication
cost.

Centralized deadlock detection has been proposed for distributed INGRES. This
method is simple and would be a very natural choice if the concurrency control
algorithm were centralized 2PL. However, the issues of vulnerability to failure, and
high communication overhead, must also be considered.

11.6.3.2 Hierarchical Deadlock Detection

An alternative to centralized deadlock detection is the building of a hierarchy of
deadlock detectors [Menasce and Muntz, 1979] (see Figure 11.17). Deadlocks that
are local to a single site would be detected at that site using the LWFG. Each site
also sends its LWFG to the deadlock detector at the next level. Thus, distributed
deadlocks involving two or more sites would be detected by a deadlock detector in
the next lowest level that has control over these sites. For example, a deadlock at site
1 would be detected by the local deadlock detector (DD) at site 1 (denoted DD21, 2
for level 2, 1 for site 1). If, however, the deadlock involves sites 1 and 2, then DD11
detects it. Finally, if the deadlock involves sites 1 and 4, DD0x detects it, where x is
either one of 1, 2, 3, or 4.

The hierarchical deadlock detection method reduces the dependence on the cen-
tral site, thus reducing the communication cost. It is, however, considerably more
complicated to implement and would involve non-trivial modifications to the lock
and transaction manager algorithms.

11.6 Deadlock Management 393

Site 1 Site 2 Site 3 Site 4

DD
0x

DD
11

DD
12

DD
21

DD
22

DD
23

DD
24

Fig. 11.17 Hierarchical Deadlock Detection

11.6.3.3 Distributed Deadlock Detection

Distributed deadlock detection algorithms delegate the responsibility of detecting
deadlocks to individual sites. Thus, as in the hierarchical deadlock detection, there
are local deadlock detectors at each site that communicate their LWFGs with one
another (in fact, only the potential deadlock cycles are transmitted). Among the
various distributed deadlock detection algorithms, the one implemented in System
R* [Obermarck, 1982; Mohan et al., 1986] seems to be the more widely known
and referenced. We therefore briefly outline that method, basing the discussion on
[Obermarck, 1982].

The LWFG at each site is formed and is modified as follows:

1. Since each site receives the potential deadlock cycles from other sites, these
edges are added to the LWFGs.

2. The edges in the LWFG which show that local transactions are waiting for
transactions at other sites are joined with edges in the LWFGs which show
that remote transactions are waiting for local ones.

Example 11.11. Consider the example depicted in Figure 11.16. The local WFG for
the two sites are modified as shown in Figure 11.18. �

Local deadlock detectors look for two things. If there is a cycle that does not
include the external edges, there is a local deadlock that can be handled locally. If,
on the other hand, there is a cycle involving these external edges, there is a potential
distributed deadlock and this cycle information has to be communicated to other
deadlock detectors. In the case of Example 11.11, the possibility of such a distributed
deadlock is detected by both sites.

A question that needs to be answered at this point is to whom to transmit the
information. Obviously, it can be transmitted to all deadlock detectors in the system.
In the absence of any more information, this is the only alternative, but it incurs a
high overhead. If, however, one knows whether the transaction is ahead or behind in
the deadlock cycle, the information can be transmitted forward or backward along

394 11 Distributed Concurrency Control

Site 1 Site 2

T
1

T
2

T
3

T
4

Fig. 11.18 Modified LWFGs

the sites in this cycle. The receiving site then modifies its LWFG as discussed above,
and checks for deadlocks. Obviously, there is no need to transmit along the deadlock
cycle in both the forward and backward directions. In the case of Example 11.11,
site 1 would send it to site 2 in both forward and backward transmission along the
deadlock cycle.

The distributed deadlock detection algorithms require uniform modification to
the lock managers at each site. This uniformity makes them easier to implement.
However, there is the potential for excessive message transmission. This happens,
for example, in the case of Example 11.11: site 1 sends its potential deadlock
information to site 2, and site 2 sends its information to site 1. In this case the deadlock
detectors at both sites will detect the deadlock. Besides causing unnecessary message
transmission, there is the additional problem that each site may choose a different
victim to abort. Obermack’s algorithm solves the problem by using transaction
timestamps as well as the following rule. Let the path that has the potential of causing
a distributed deadlock in the local WFG of a site be Ti→ ··· → Tj. A local deadlock
detector forwards the cycle information only if ts(Ti) < ts(Tj). This reduces the
average number of message transmissions by one-half. In the case of Example 11.11,
site 1 has a path T1→ T2→ T3, whereas site 2 has a path T3→ T4→ T1. Therefore,
assuming that the subscripts of each transaction denote their timestamp, only site 1
will send information to site 2.

11.7 “Relaxed” Concurrency Control

For most of this chapter, we focused only on distributed concurrency control al-
gorithms that are designed for flat transactions and enforce serializability as the
correctness criterion. This is the baseline case. There have been studies that (a) relax
serializability in arguing for correctness of concurrent execution, and (b) consider
other transaction models, primarily nested ones. We will briefly review these in this
section.

11.7 “Relaxed” Concurrency Control 395

11.7.1 Non-Serializable Histories

Serializability is a fairly simple and elegant concept which can be enforced with
acceptable overhead. However, it is considered to be too “strict” for certain appli-
cations since it does not consider as correct certain histories that might be argued
as reasonable. We have shown one case when we discussed the ordered shared lock
concept. In addition, consider the Reservation transaction of Example 10.10. One
can argue that the history generated by two concurrent executions of this transaction
can be non-serializable, but correct – one may do the Airline reservation first and
then do the Hotel reservation while the other one reverses the order – as long as both
executions successfully terminate. The question, however, is how one can generalize
these intuitive observations. The solution is to observe and exploit the “semantics”
of these transactions.

There have been a number of proposals for exploiting transaction semantics. Of
particular interest for distributed DBMS is one class that depends on identifying
transaction steps, which may consist of a single operation or a set of operations, and
establishing how transactions can interleave with each other between steps. Garcia-
Molina [1983] classifies transactions into classes such that transactions in the same
class are compatible and can interleave arbitrarily while transactions in different
classes are incompatible and have to be synchronized. The synchronization is based
on semantic notions, allowing more concurrency than serializability. The use of the
concept of transaction classes can be traced back to SDD-1 [Bernstein et al., 1980b].

The concept of compatibility is refined by Lynch [1983b] and several levels of
compatibility among transactions are defined. These levels are structured hierarchi-
cally so that interleavings at higher levels include those at lower levels. Furthermore,
Lynch [1983b] introduces the concept of breakpoints within transactions, which
represent points at which other transactions can interleave. This is an alternative to
the use of compatibility sets.

Another work along these lines uses breakpoints to indicate the interleaving
points, but does not require that the interleavings be hierarchical [Farrag and Özsu,
1989]. A transaction is modeled as consisting of a number of steps. Each step
consists of a sequence of atomic operations and a breakpoint at the end of these
operations. For each breakpoint in a transaction the set of transaction types that are
allowed to interleave at that breakpoint is specified. A correctness criterion called
relative consistency is defined based on the correct interleavings among transactions.
Intuitively, a relatively consistent history is equivalent to a history that is stepwise
serial (i.e., the operations and breakpoint of each step appear without interleaving),
and in which a step (Tik) of transaction Ti interleaves two consecutive steps (Tjm and
Tjm+1) of transaction Tj only if transactions of Ti’s type are allowed to interleave Tjm
at its breakpoint. It can be shown that some of the relatively consistent histories are
not serializable, but are still “correct” [Farrag and Özsu, 1989].

A unifying framework that combines the approaches of Lynch [1983b] and Farrag
and Özsu [1989] has been proposed by Agrawal et al. [1994]. A correctness criterion
called semantic relative atomicity is introduced which provides finer interleavings
and more concurrency.

396 11 Distributed Concurrency Control

The above mentioned relaxed correctness criteria have formal underpinnings
similar to serializability, allowing their formal analysis. However, these have not
been extended to distributed DBMS even though this possibility exists.

11.7.2 Nested Distributed Transactions

We introduced the nested transaction model in the previous chapter. The concur-
rent execution of nested transactions is interesting, especially since they are good
candidates for distributed execution.

Let us first consider closed nested transactions [Moss, 1985]. The concurrency
control of nested transactions have generally followed a locking-based approach.
The following rules govern the management of the locks and the completion of
transaction execution in the case of closed nested transactions:

1. Each subtransaction executes as a transaction and upon completion transfers
its lock to its parent transaction.

2. A parent inherits both the locks and the updates of its committed subtransac-
tions.

3. The inherited state will be visible only to descendants of the inheriting parent
transaction. However, to access the sate, a descendant must acquire appropriate
locks. Lock conflicts are determined as for flat transactions, except that one
ignores inherited locks retained by ancestor’s of the requesting subtransaction.

4. If a subtransaction aborts, then all locks and updates that the subtransaction
and its descendants are discarded. The parent of an aborted subtransaction
need not, but may, choose to abort.

From the perspective of ACID properties, closed nested transactions relax dura-
bility since the effects of successfully completed subtransactions can be erased if
an ancestor transaction aborts. They also relax the isolation property in a limited
way since they share their state with other subtransactions within the same nested
transaction.

The distributed execution potential of nested transactions is obvious. After all,
nested transactions are meant to improve intra-transaction concurrency and one
can view each subtransaction as a potential unit of distribution if data are also
appropriately distributed.

However, from the perspective of lock management, some care has to be observed.
When subtransactions release their locks to their parents, these lock releases cannot
be reflected in the lock tables automatically. The subtransaction commit commands
do not have the same semantics as flat transactions.

Open nested transactions are even more relaxed than their closed nested coun-
terparts. They have been called “anarchic” forms of nested transactions [Gray and
Reuter, 1993]. The open nested transaction model is best exemplified in the saga

11.7 “Relaxed” Concurrency Control 397

model [Garcia-Molina and Salem, 1987; Garcia-Molina et al., 1990] which was
discussed in Section 10.3.2.

From the perspective of lock management, open nested transactions are easy to
deal with. The locks held by a subtransaction are released as soon as it commits or
aborts and this is reflected in the lock tables.

A variant of open nested transactions with precise and formal semantics is the
multilevel transaction model [Weikum, 1986; Weikum and Schek, 1984; Beeri
et al., 1988; Weikum, 1991]. Multilevel transactions “are a variant of open nested
transactions in which the subtransactions correspond to operations at different levels
of a layered system architecture” [Weikum and Hasse, 1993]. We introduce the
concept with an example taken from [Weikum, 1991]. We consider a transaction
specification language which allows users to write transactions involving abstract
operations so as to be able to exploit application semantics.

Consider two transactions that transfer funds from one bank account to another:

T1: Withdraw(o,x) T2: Withdraw(o,y)
Deposit(p,x) Deposit(p,y)

The notation here is that each Ti withdraws x (y) amount from account o and deposits
that amount to account p. The semantics of Withdraw is test-and-withdraw to ensure
that the account balance is sufficient to meet the withdrawal request. In relational
systems, each of these abstract operations will be translated to tuple operations Select
(Sel), and Update (U pd) which will, in turn, be translated into page-level Read and
Write operations (assuming o is on page r and p is on page w). This results in a
layered abstraction of transaction execution as depicted in Figure 11.19.

R
1111
(r) R

2111
(r) R

1121
(r) R

1122
(r) R

2121
(r) R

2122
(r) R

2211
(w) R

2212
(w) R

1211
(w) R

1212
(w)

Sel
111
(x) Sel

211
(y) Upd

112
(x) Upd

212
(y) Upd

221
(y) Upd

121
(x)

Withdraw
11
(o,x) Withdraw

21
(o,y) Deposit

22
(p,y) Deposit

12
(p,x)

T
1

T
2

(L
0
)

(L
1
)

(L
2
)

Fig. 11.19 Multilevel Transaction Example (Based on [Weikum, 1991])

The traditional method of dealing with these types of histories is to develop a
scheduler that enforces serializability at the lowest level (L0). This, however, reduces

398 11 Distributed Concurrency Control

the level of concurrency since it does not take into account application semantics and
the granularity of synchronization is too coarse. Abstracting from the lower-level
details can provide higher concurrency. For example, the page-level history (L0) in
Figure 11.19 is not serializable with respect to transactions T1 and T2, but the tuple-
level history L1 is serializable (T2→ T1). When one goes up to level L2, it is possible
to make use of the semantics of the abstract operations (i.e., their commutativity)
to provide even more concurrency. Therefore, multilevel serializability is defined to
reason about the serializability of multilevel histories and multilevel histories are
proposed to enforce it [Weikum, 1991].

11.8 Conclusion

In this chapter we discussed distributed currency control algorithms that provide
the isolation and consistency properties of transactions. The distributed concurrency
control mechanism of a distributed DBMS ensures that the consistency of the dis-
tributed database is maintained and is therefore one of the fundamental components
of a distributed DBMS. This is evidenced by the significant amount of research that
has been conducted in this area.

Our discussion in this chapter assumed that both the hardware and the software
components of the computer systems were totally reliable. Even though this assump-
tion is completely unrealistic, it has served a didactic purpose. It has permitted us to
focus only on the concurrency control aspects, leaving to another chapter the features
that need to be added to a distributed DBMS to make it reliable in an unreliable
environment. We have also assumed a non-replicated distributed database, leaving
replication issues to Chapter 13.

There are a few issues that we have omitted from this chapter. We mention them
here for the benefit of the interested reader.

1. Performance evaluation of concurrency control algorithms. We have not ex-
plicitly included performance analysis results or methodologies. This may
be somewhat surprising given the significant number of papers that have ap-
peared in the literature. However, the reasons for this omission are numerous.
First, there is no comprehensive and definitive performance study of con-
currency control algorithms. The performance studies have developed rather
haphazardly and for specific purposes. Therefore, each has made different
assumptions and has measured different parameters. Although these have
identified a number of important performance tradeoffs, it is quite difficult, if
not impossible, to make meaningful generalizations that extend beyond the
obvious. Second, the analytical methods for conducting these performance
analysis studies have not been developed sufficiently.
The relative performance characteristics of distributed concurrency methods
is less understood than their centralized counterparts [Thomasian, 1996]. The-
main reason for this is the complexity of these algorithms. This complexity

11.8 Conclusion 399

has resulted in a number of simplifying assumptions such as a fully repli-
cated database, fully interconnected network, network delays represented by
simplistic queueing models (M/M/1), etc. [Thomasian, 1996].

2. Other concurrency control methods. There is another class of concurrency
control algorithms, called “serializability graph testing methods,” which we
have not mentioned in this chapter. Such mechanisms work by explicitly
building a dependency (or serializability) graph and checking it for cycles.
The dependency (serializability) graph of a history H, denoted DG(H), is a
directed graph representing the conflict relations among the transactions in H.
The nodes of this graph are the set of transactions in H [i.e., each transaction Ti
in H is represented by a node in DG(H)]. An edge (Ti, Tj) exists in DG(SH) if
and only if there is an operation in Ti that conflicts with and precedes another
operation in Tj.
Schedulers update their dependency graphs whenever one of the following
conditions is fulfilled: (1) a new transaction starts in the system, (2) a read or
a write operation is received by the scheduler, (3) a transaction terminates, or
(4) a transaction aborts.
It is now possible to talk about “correct” concurrency control algorithms based
on the dependency graph. Given a history H, if its dependency graph DG(S)
is acyclic, then H is serializable. In the distributed case we may use a global
dependency graph, which can be formed by taking the union of the local
dependency graphs and further annotating each transaction by the identifier
of the site where it is executed. It is then necessary to show that the global
dependency graph is acyclic.

Example 11.12. The dependency graph of history H1 discussed in Example
11.6 is given in Figure 11.20. Since the graph is acyclic, H1 is serializable.�

T
1 T

2

T
3

Fig. 11.20 Dependency Graph

3. Assumptions about transactions. In our discussions, we did not make any
distinction between read-only transactions and update transactions. It is pos-

400 11 Distributed Concurrency Control

sible to improve significantly the performance of transactions that only read
data items, or of systems with a high ratio of read-only transactions to update
transactions. These issues are beyond the scope of this book.
We have also treated read and write locks in an identical fashion. It is possible
to differentiate between them and develop concurrency control algorithms
that permit “lock conversion,” whereby transactions can obtain locks in one
mode and then modify their lock modes as they change their requirements.
Typically, the conversion is from read locks to write locks.

4. More “general” algorithms. There are some indications which suggest that it
should be possible to study the two fundamental concurrency control primi-
tives (i.e., locking and timestamp ordering) using a unifying framework. Three
major indications are worth mentioning. First, it is possible to develop both
pessimistic and optimistic algorithms based on either one of the primitives.
Second, a strict TO algorithm performs similarly to a locking algorithm, since
it delays the acceptance of a transaction until all older ones are terminated.
This does not mean that all histories which can be generated by a strict TO
scheduler would be permitted by a 2PL scheduler. However, this similarity is
interesting. Finally, it is possible to develop hybrid algorithms that use both
timestamp ordering and locking. Furthermore, it is possible to state precisely
rules for their interaction.
One study [Farrag and Özsu, 1985, 1987] has resulted in the development
of a theoretical framework for the uniform treatment of both of these prim-
itives. Based on this theoretical foundation, it was shown that 2PL and TO
algorithms are two endpoints of a range of algorithms that can be generated
by a more general concurrency control algorithm. This study, which is only
for centralized database systems, is significant not only because it indicates
that locking and timestamp ordering are related, but also because it would be
interesting to study the nature and characteristics of the algorithms that lie
between these two endpoints. In addition, such a uniform framework may be
helpful in conducting comprehensive and internally consistent performance
studies.

5. Transaction execution models. The algorithms that we have described all as-
sume a computational model where the transaction manager at the originating
site of a transaction coordinates the execution of each database operation
of that transaction. This is called centralized execution [Carey and Livny,
1988]. It is also possible to consider a distributed execution model where
a transaction is decomposed into a set of subtransactions each of which is
allocated to one site where the transaction manager coordinates its execution.
This is intuitively more attractive because it may permit load balancing across
the multiple sites of a distributed database. However, the performance studies
indicate that distributed computation performs better only under light load.

11.9 Bibliographic Notes 401

11.9 Bibliographic Notes

As indicated earlier, distributed concurrency control has been a very popular area of
study. [Bernstein and Goodman, 1981] is a comprehensive study of the fundamental
primitives which also lays down the rules for building hybrid algorithms. The issues
that are addressed in this chapter are discussed in much more detail in [Cellary et al.,
1988; Bernstein et al., 1987; Papadimitriou, 1986] and [Gray and Reuter, 1993].

Nested transaction models and their specific concurrency control algorithms have
been the subjects of some study. Specific results can be found in [Moss, 1985; Lynch,
1983a; Lynch and Merritt, 1986; Fekete et al., 1987a,b; Goldman, 1987; Beeri et al.,
1989; Fekete et al., 1989] and more recently in [Lynch et al., 1993].

The work on transaction management with semantic knowledge is presented in
[Lynch, 1983b; Garcia-Molina, 1983], and [Farrag and Özsu, 1989]. The processing
of read-only transactions is discussed in [Garcia-Molina and Wiederhold, 1982].
Transaction groups [Skarra et al., 1986; Skarra, 1989] also exploit a correctness
criterion called semantic patterns that is more relaxed than serializability. Further-
more, work on the ARIES system [Haderle et al., 1992] is also within this class of
algorithms. In particular, [Rothermel and Mohan, 1989] discusses ARIES within the
context of nested transactions. Epsilon serializability [Ramamritham and Pu, 1995;
Wu et al., 1997] and NT/PV model [Kshemkalyani and Singhal, 1994] are other
“relaxed” correctness criteria. An algorithm based on ordering transactions using
serialization numbers is discussed in [Halici and Dogac, 1989].

There are a number of papers that discuss the results of performance evaluation
studies on distributed concurrency control algorithms. These include [Gelenbe and
Sevcik, 1978; Garcia-Molina, 1979; Potier and LeBlanc, 1980; Menasce and Nakan-
ishi, 1982a,b; Lin, 1981; Lin and Nolte, 1982, 1983; Goodman et al., 1983; Sevcik,
1983; Carey and Stonebraker, 1984; Merrett and Rallis, 1985; Özsu, 1985b,a; Koon
and Özsu, 1986; Tsuchiya et al., 1986; Li, 1987; Agrawal et al., 1987; Bhide, 1988;
Carey and Livny, 1988], and [Carey and Livny, 1991]. [Liang and Tripathi, 1996]
studies the performance of sagas and Thomasian has conducted a series of perfor-
mance studies that focus on various aspects of transaction processing in centralized
and distributed DBMSs [Thomasian, 1993, 1998; Yu et al., 1989]. [Kumar, 1996]
focuses on the performance of centralized DBMSs; the performance of distributed
concurrency control methods are discussed in [Thomasian, 1996] and [Cellary et al.,
1988]. An early but comprehensive review of deadlock management is [Isloor and
Marsland, 1980]. Most of the work on distributed deadlock management has been
on detection and resolution (see, e.g., [Obermarck, 1982; Elmagarmid et al., 1988]).
Two surveys of the important algorithms are included in [Elmagarmid, 1986] and
[Knapp, 1987]. A more recent survey is [Singhal, 1989]. There are two annotated
bibliographies on the deadlock problem which do not emphasize the database issues
but consider the problem in general: [Newton, 1979; Zobel, 1983]. The research
activity on this topic has slowed down in the last years. Some of the recent relevant
papers are [Yeung and Hung, 1995; Hofri, 1994; Lee and Kim, 1995; Kshemkalyani
and Singhal, 1994; Chen et al., 1996; Park et al., 1995] and [Makki and Pissinou,
1995].

402 11 Distributed Concurrency Control

Exercises

Problem 11.1. Which of the following histories are conflict equivalent?

H1 ={W2(x),W1(x),R3(x),R1(x),W2(y),R3(y),R3(z),R2(x)}
H2 ={R3(z),R3(y),W2(y),R2(z),W1(x),R3(x),W2(x),R1(x)}
H3 ={R3(z),W2(x),W2(y),R1(x),R3(x),R2(z),R3(y),W1(x)}
H4 ={R2(z),W2(x),W2(y),W1(x),R1(x),R3(x),R3(z),R3(y)}

Problem 11.2. Which of the above histories H1−H4 are serializable?

Problem 11.3. Give a history of two complete transactions which is not allowed by
a strict 2PL scheduler but is accepted by the basic 2PL scheduler.

Problem 11.4 (*). One says that history H is recoverable if, whenever transaction
Ti reads (some item x) from transaction Tj (i 6= j) in H and Ci occurs in H, then
C j ≺S Ci. Ti “reads x from” Tj in H if

1. Wj(x)≺H Ri(x), and

2. A jnot ≺H Ri(x), and

3. if there is some Wk(x) such that Wj(x)≺H Wk(x)≺H Ri(x), then Ak ≺H Ri(x).

Which of the following histories are recoverable?

H1 ={W2(x),W1(x),R3(x),R1(x),C1,W2(y),R3(y),R3(z),C3,R2(x),C2}
H2 ={R3(z),R3(y),W2(y),R2(z),W1(x),R3(x),W2(x),R1(x),C1,C2,C3}
H3 ={R3(z),W2(x),W2(y),R1(x),R3(x),R2(z),R3(y),C3,W1(x),C2,C1}
H4 ={R2(z),W2(x),W2(y),C2,W1(x),R1(x),A1,R3(x),R3(z),R3(y),C3}

Problem 11.5 (*). Give the algorithms for the transaction managers and the lock
managers for the distributed two-phase locking approach.

Problem 11.6 (**). Modify the centralized 2PL algorithm to handle phantoms. (See
Chapter 10 for a definition of phantoms.)

Problem 11.7. Timestamp ordering-based concurrency control algorithms depend
on either an accurate clock at each site or a global clock that all sites can access
(the clock can be a counter). Assume that each site has its own clock which “ticks”
every 0.1 second. If all local clocks are resynchronized every 24 hours, what is the
maximum drift in seconds per 24 hours permissible at any local site to ensure that a
timestamp-based mechanism will successfully synchronize transactions?

Problem 11.8 (**). Incorporate the distributed deadlock strategy described in this
chapter into the distributed 2PL algorithms that you designed in Problem 11.5.

11.9 Bibliographic Notes 403

Problem 11.9. Explain the relationship between transaction manager storage require-
ment and transaction size (number of operations per transaction) for a transaction
manager using an optimistic timestamp ordering for concurrency control.

Problem 11.10 (*). Give the scheduler and transaction manager algorithms for the
distributed optimistic concurrency controller described in this chapter.

Problem 11.11. Recall from the discussion in Section 11.7 that the computational
model that is used in our descriptions in this chapter is a centralized one. How would
the distributed 2PL transaction manager and lock manager algorithms change if a
distributed execution model were to be used?

Problem 11.12. It is sometimes claimed that serializability is quite a restrictive cor-
rectness criterion. Can you give examples of distributed histories that are correct (i.e.,
maintain the consistency of the local databases as well as their mutual consistency)
but are not serializable?

Chapter 12
Distributed DBMS Reliability

We have referred to “reliability” and “availability” of the database a number of times
so far without defining these terms precisely. Specifically, we mentioned these terms
in conjunction with data replication, because the principle method of building a
reliable system is to provide redundancy in system components. We also claimed
in Chapter 1 that the distribution of data enhances system reliability. However, the
distribution of the database or the replication of data items is not sufficient to make
the distributed DBMS reliable. A number of protocols need to be implemented within
the DBMS to exploit this distribution and replication in order to make operations
more reliable.

A reliable distributed database management system is one that can continue
to process user requests even when the underlying system is unreliable. In other
words, even when components of the distributed computing environment fail, a
reliable distributed DBMS should be able to continue executing user requests without
violating database consistency.

The purpose of this chapter is to discuss the reliability features of a distributed
DBMS. From Chapter 10 the reader will recall that the reliability of a distributed
DBMS refers to the atomicity and durability properties of transactions. Two specific
aspects of reliability protocols that need to be discussed in relation to these properties
are the commit and the recovery protocols. In that sense, in this chapter we relax one
of the major assumptions of Chapter 11: that the underlying distributed system is
fully reliable and does not experience any hardware or software failures. Furthermore,
the commit protocols discussed in this chapter constitute the support provided by the
distributed DBMS for the execution of commit commands in transactions.

The organization of this chapter is as follows. We start with a definition of the
fundamental reliability concepts and reliability measures in Section 12. In Section
12.2 we discuss the reasons for failures in distributed systems and focus on the types
of failures in distributed DBMSs. Section 12.3 focuses on the functions of the local
recovery manager and provides an overview of reliability measures in centralized
DBMS. This discussion forms the foundation for the distributed commit and recovery
protocols, which are introduced in Section 12.4. In Sections 12.5 and 12.6 we present
detailed protocols for dealing with site failures and network partitioning, respectively.

405
DOI 10.1007/978-1-4419-8834-8_12, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

406 12 Distributed DBMS Reliability

Implementation of these protocols within our architectural model is the topic of
Section 12.7.

12.1 Reliability Concepts and Measures

Too often, the terms reliability and availability are used loosely in literature. Even
among the researchers in the area of reliable computer systems, the definitions of
these terms sometimes vary. In this section, we give precise definitions of a number
of concepts that are fundamental to an understanding and study of reliable systems.
Our definitions follow those of Anderson and Lee [1985] and Randell et al. [1978].
Nevertheless, we indicate where these definitions might differ from other usage of
the terms.

12.1.1 System, State, and Failure

Reliability refers to a system that consists of a set of components. The system has a
state, which changes as the system operates. The behavior of the system in providing
response to all the possible external stimuli is laid out in an authoritative specification
of its behavior. The specification indicates the valid behavior of each system state.

Any deviation of a system from the behavior described in the specification is con-
sidered a failure. For example, in a distributed transaction manager the specification
may state that only serializable schedules for the execution of concurrent transactions
should be generated. If the transaction manager generates a non-serializable schedule,
we say that it has failed.

Each failure obviously needs to be traced back to its cause. Failures in a system
can be attributed to deficiencies either in the components that make it up, or in the
design, that is, how these components are put together. Each state that a reliable
system goes through is valid in the sense that the state fully meets its specification.
However, in an unreliable system, it is possible that the system may get to an internal
state that may not obey its specification. Further transitions from this state would
eventually cause a system failure. Such internal states are called erroneous states;
the part of the state that is incorrect is called an error in the system. Any error in the
internal states of the components of a system or in the design of a system is called
a fault in the system. Thus, a fault causes an error that results in a system failure
(Figure 12.1).

Fault Error Failure
causes results in

Fig. 12.1 Chain of Events Leading to System Failure

12.1 Reliability Concepts and Measures 407

We differentiate between errors (or faults and failures) that are permanent and
those that are not permanent. Permanence can apply to a failure, a fault, or an
error, although we typically use the term with respect to faults. A permanent fault,
also commonly called a hard fault, is one that reflects an irreversible change in
the behavior of the system. Permanent faults cause permanent errors that result
in permanent failures. The characteristics of these failures is that recovery from
them requires intervention to “repair” the fault. Systems also experience intermittent
and transient faults. In the literature, these two are typically not differentiated;
they are jointly called soft faults. The dividing line in this differentiation is the
repairability of the system that has experienced the fault [Siewiorek and Swarz,
1982]. An intermittent fault refers to a fault that demonstrates itself occasionally due
to unstable hardware or varying hardware or software states. A typical example is the
faults that systems may demonstrate when the load becomes too heavy. On the other
hand, a transient fault describes a fault that results from temporary environmental
conditions. A transient fault might occur, for example, due to a sudden increase in
the room temperature. The transient fault is therefore the result of environmental
conditions that may be impossible to repair. An intermittent fault, on the other hand,
can be repaired since the fault can be traced to a component of the system.

Remember that we have also indicated that system failures can be due to design
faults. Design faults together with unstable hardware cause intermittent errors that
result in system failure. A final source of system failure that may not be attributable
to a component fault or a design fault is operator mistakes. These are the sources
of a significant number of errors as the statistics included further in this section
demonstrate. The relationship between various types of faults and failures is depicted
in Figure 12.2.

Permanent
fault

Incorrect
design

Unstable or
marginal

components

Unstable
environment

Operator
mistake

Transient
error

Intermittent
error

Permanent
error

System
failure

Fig. 12.2 Sources of System Failure (Based on [Siewiorek and Swarz, 1982])

408 12 Distributed DBMS Reliability

12.1.2 Reliability and Availability

Reliability refers to the probability that the system under consideration does not
experience any failures in a given time interval. It is typically used to describe systems
that cannot be repaired (as in space-based computers), or where the operation of the
system is so critical that no downtime for repair can be tolerated.

Formally, the reliability of a system, R(t), is defined as the following conditional
probability:

R(t) = Pr{0 failures in time [0, t] |no failures at t = 0}

If we assume that failures follow a Poisson distribution (which is usually the case
for hardware), this formula reduces to

R(t) = Pr{0 failures in time [0, t]}

Under the same assumptions, it is possible to derive that

Pr{k failures in time [0, t]}= e−m(t)[m(t)]k

k!

where m(t) =
∫ t

0 z(x) dx. Here z(t) is known as the hazard function, which gives the
time-dependent failure rate of the specific hardware component under considera-
tion. The probability distribution for z(t) may be different for different electronic
components.

The expected (mean) number of failures in time [0, t] can then be computed as

E[k] =
∞

∑
k=0

k
e−m(t)[m(t)]k

k!
= m(t)

and the variance as

Var[k] = E[k2]− (E[k])2 = m(t)

Given these values, R(t) can be written as

R(t) = e−m(t)

Note that the reliability equation above is written for one component of the system.
For a system that consists of n non-redundant components (i.e., they all have to
function properly for the system to work) whose failures are independent, the overall
system reliability can be written as

Rsys(t) = Π
n
i=1Ri(t)

Availability, A(t), refers to the probability that the system is operational according
to its specification at a given point in time t. A number of failures may have occurred

12.1 Reliability Concepts and Measures 409

prior to time t, but if they have all been repaired, the system is available at time t.
Obviously, availability refers to systems that can be repaired.

If one looks at the limit of availability as time goes to infinity, it refers to the
expected percentage of time that the system under consideration is available to
perform useful computations. Availability can be used as some measure of “goodness”
for those systems that can be repaired and which can be out of service for short
periods of time during repair. Reliability and availability of a system are considered
to be contradictory objectives [Siewiorek and Swarz, 1982]. It is usually accepted
that it is easier to develop highly available systems as opposed to highly reliable
systems.

If we assume that failures follow a Poisson distribution with a failure rate λ ,
and that repair time is exponential with a mean repair time of 1/µ , the steady-state
availability of a system can be written as

A =
µ

λ +µ

12.1.3 Mean Time between Failures/Mean Time to Repair

Two single-parameter measures have become more popular than the reliability and
availability functions given above to model the behavior of systems. These two
measures used are mean time between failures (MTBF) and mean time to repair
(MTTR). MTBF is the expected time between subsequent failures in a system with
repair.1 MTBF can be calculated either from empirical data or from the reliability
function as

MTBF =
∫

∞

0
R(t) dt

Since R(t) is related to the system failure rate, there is a direct relationship between
MTBF and the failure rate of a system. MTTR is the expected time to repair a failed
system. It is related to the repair rate as MTBF is related to the failure rate. Using
these two metrics, the steady-state availability of a system with exponential failure
and repair rates can be specified as

A =
MTBF

MTBF + MTTR

System failures may be latent, in that a failure is typically detected some time
after its occurrence. This period is called error latency, and the average error latency
time over a number of identical systems is called mean time to detect (MTTD).

1 A distinction is sometimes made between MTBF and MTTF (mean time to fail). MTTF is defined
as the expected time of the first system failure given a successful startup at time 0. MTBF is then
defined only for systems that can be repaired. An approximation for MTBF is given as MTBF =
MTTF + MTTR [McConnel and Siewiorek, 1982]. We do not make this distinction in this book.

410 12 Distributed DBMS Reliability

Figure 12.3 depicts the relationship of various reliability measures with the actual
occurrences of faults.

Fault
occurs

Error
caused

Detection
of error

Repair Fault
occurs

Error
caused

MTBF

MTTRMTTD

Multiple errors can occur
during this period

Time

Fig. 12.3 Occurrence of Events over Time

12.2 Failures in Distributed DBMS

Designing a reliable system that can recover from failures requires identifying the
types of failures with which the system has to deal. In a distributed database system,
we need to deal with four types of failures: transaction failures (aborts), site (system)
failures, media (disk) failures, and communication line failures. Some of these are
due to hardware and others are due to software. The ratio of hardware failures vary
from study to study and range from 18% to over 50%. Soft failures make up more
than 90% of all hardware system failures. It is interesting to note that this percentage
has not changed significantly since the early days of computing. A 1967 study of the
U.S. Air Force indicates that 80% of electronic failures in computers are intermittent
[Roth et al., 1967]. A study performed by IBM during the same year concludes that
over 90% of all failures are intermittent [Ball and Hardie, 1967]. More recent studies
indicate that the occurrence of soft failures is significantly higher than that of hard
failures ([Longbottom, 1980; Gray, 1987]). Gray [1987] also mentions that most of
the software failures are transient—and therefore soft—suggesting that a dump and
restart may be sufficient to recover without any need to “repair” the software.

Software failures are typically caused by “bugs” in the code. The estimates for
the number of bugs in software vary considerably. Figures such as 0.25 bug per 1000
instructions to 10 bugs per 1000 instructions have been reported. As stated before,
most of the software failures are soft failures. The statistics for software failures
are comparable to those we have previously reported on hardware failures. The
fundamental reason for the dominance of soft failures in software is the significant

12.2 Failures in Distributed DBMS 411

amount of design review and code inspection that a typical software project goes
through before it gets to the testing stage. Furthermore, most commercial software
goes through extensive alpha and beta testing before being released for field use.

12.2.1 Transaction Failures

Transactions can fail for a number of reasons. Failure can be due to an error in
the transaction caused by incorrect input data (e.g., Example 10.3) as well as the
detection of a present or potential deadlock. Furthermore, some concurrency control
algorithms do not permit a transaction to proceed or even to wait if the data that they
attempt to access are currently being accessed by another transaction. This might
also be considered a failure. The usual approach to take in cases of transaction failure
is to abort the transaction, thus resetting the database to its state prior to the start of
this transaction.2

The frequency of transaction failures is not easy to measure. An early study
reported that in System R, 3% of the transactions aborted abnormally [Gray et al.,
1981]. In general, it can be stated that (1) within a single application, the ratio of
transactions that abort themselves is rather constant, being a function of the incorrect
data, the available semantic data control features, and so on; and (2) the number of
transaction aborts by the DBMS due to concurrency control considerations (mainly
deadlocks) is dependent on the level of concurrency (i.e., number of concurrent
transactions), the interference of the concurrent applications, the granularity of locks,
and so on [Härder and Reuter, 1983].

12.2.2 Site (System) Failures

The reasons for system failure can be traced back to a hardware or to a software
failure. The important point from the perspective of this discussion is that a system
failure is always assumed to result in the loss of main memory contents. Therefore,
any part of the database that was in main memory buffers is lost as a result of a system
failure. However, the database that is stored in secondary storage is assumed to be
safe and correct. In distributed database terminology, system failures are typically
referred to as site failures, since they result in the failed site being unreachable from
other sites in the distributed system.

We typically differentiate between partial and total failures in a distributed system.
Total failure refers to the simultaneous failure of all sites in the distributed system;
partial failure indicates the failure of only some sites while the others remain opera-
tional. As indicated in Chapter 1, it is this aspect of distributed systems that makes
them more available.

2 Recall that all transaction aborts are not due to failures; in some cases, application logic requires
transaction aborts as in Example 10.3.

412 12 Distributed DBMS Reliability

12.2.3 Media Failures

Media failure refers to the failures of the secondary storage devices that store the
database. Such failures may be due to operating system errors, as well as to hardware
faults such as head crashes or controller failures. The important point from the
perspective of DBMS reliability is that all or part of the database that is on the
secondary storage is considered to be destroyed and inaccessible. Duplexing of disk
storage and maintaining archival copies of the database are common techniques that
deal with this sort of catastrophic problem.

Media failures are frequently treated as problems local to one site and therefore
not specifically addressed in the reliability mechanisms of distributed DBMSs. We
consider techniques for dealing with them in Section 12.3.5 under local recovery
management. We then turn our attention to site failures when we consider distributed
recovery functions.

12.2.4 Communication Failures

The three types of failures described above are common to both centralized and
distributed DBMSs. Communication failures, however, are unique to the distributed
case. There are a number of types of communication failures. The most common ones
are the errors in the messages, improperly ordered messages, lost (or undeliverable)
messages, and communication line failures. As discussed in Chapter 2, the first two
errors are the responsibility of the computer network; we will not consider them
further. Therefore, in our discussions of distributed DBMS reliability, we expect the
underlying computer network hardware and software to ensure that two messages
sent from a process at some originating site to another process at some destination
site are delivered without error and in the order in which they were sent.

Lost or undeliverable messages are typically the consequence of communication
line failures or (destination) site failures. If a communication line fails, in addition
to losing the message(s) in transit, it may also divide the network into two or more
disjoint groups. This is called network partitioning. If the network is partitioned, the
sites in each partition may continue to operate. In this case, executing transactions
that access data stored in multiple partitions becomes a major issue.

Network partitions point to a unique aspect of failures in distributed computer
systems. In centralized systems the system state can be characterized as all-or-
nothing: either the system is operational or it is not. Thus the failures are complete:
when one occurs, the entire system becomes non-operational. Obviously, this is not
true in distributed systems. As we indicated a number of times before, this is their
potential strength. However, it also makes the transaction management algorithms
more difficult to design.

If messages cannot be delivered, we will assume that the network does nothing
about it. It will not buffer it for delivery to the destination when the service is
reestablished and will not inform the sender process that the message cannot be

12.3 Local Reliability Protocols 413

delivered. In short, the message will simply be lost. We make this assumption because
it represents the least expectation from the network and places the responsibility of
dealing with these failures to the distributed DBMS.

As a consequence, the distributed DBMS is responsible for detecting that a mes-
sage is undeliverable is left to the application program (in this case the distributed
DBMS). The detection will be facilitated by the use of timers and a timeout mecha-
nism that keeps track of how long it has been since the sender site has not received
a confirmation from the destination site about the receipt of a message. This time-
out interval needs to be set to a value greater than that of the maximum round-trip
propagation delay of a message in the network. The term for the failure of the com-
munication network to deliver messages and the confirmations within this period
is performance failure. It needs to be handled within the reliability protocols for
distributed DBMSs.

12.3 Local Reliability Protocols

In this section we discuss the functions performed by the local recovery manager
(LRM) that exists at each site. These functions maintain the atomicity and durability
properties of local transactions. They relate to the execution of the commands that
are passed to the LRM, which are begin transaction, read, write, commit, and
abort. Later in this section we introduce a new command into the LRM’s repertoire
that initiates recovery actions after a failure. Note that in this section we discuss
the execution of these commands in a centralized environment. The complications
introduced in distributed databases are addressed in the upcoming sections.

12.3.1 Architectural Considerations

It is again time to use our architectural model and discuss the specific interface
between the LRM and the database buffer manager (BM). First note that the LRM
is implemented within the data processor introduced in Chapter 11. The simple DP
implementation that was given earlier will be enhanced with the reliability protocols
discussed in this section. Also remember that all accesses to the database are via the
database buffer manager. The detailed discussion of the algorithms that the buffer
manager implements is beyond the scope of this book; we provide a summary later
in this subsection. Even without these details, we can still specify the interface and
its function, as depicted in Figure 12.4.3

In this discussion we assume that the database is stored permanently on secondary
storage, which in this context is called the stable storage [Lampson and Sturgis,
1976]. The stability of this storage medium is due to its robustness to failures. A

3 This architectural model is similar to that used by Härder and Reuter [1983] and Bernstein et al.
[1987].

414 12 Distributed DBMS Reliability

Secondary
storage

Stable
database

Read Write

Write Read

Main memory

Database
buffers

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

(Volatile
database)

Fig. 12.4 Interface Between the Local Recovery Manager and the Buffer Manager

stable storage device would experience considerably less-frequent failures than
would a non-stable storage device. In today’s technology, stable storage is typically
implemented by means of duplexed magnetic disks which store duplicate copies of
data that are always kept mutually consistent (i.e., the copies are identical). We call
the version of the database that is kept on stable storage the stable database. The unit
of storage and access of the stable database is typically a page.

The database buffer manager keeps some of the recently accessed data in main
memory buffers. This is done to enhance access performance. Typically, the buffer is
divided into pages that are of the same size as the stable database pages. The part
of the database that is in the database buffer is called the volatile database. It is
important to note that the LRM executes the operations on behalf of a transaction
only on the volatile database, which, at a later time, is written back to the stable
database.

When the LRM wants to read a page of data4 on behalf of a transaction—strictly
speaking, on behalf of some operation of a transaction—it issues a fetch command,
indicating the page that it wants to read. The buffer manager checks to see if that page
is already in the buffer (due to a previous fetch command from another transaction)
and if so, makes it available for that transaction; if not, it reads the page from the
stable database into an empty database buffer. If no empty buffers exist, it selects
one of the buffer pages to write back to stable storage and reads the requested stable
database page into that buffer. There are a number of different algorithms by which
the buffer manager may choose the buffer page to be replaced; these are discussed in
standard database textbooks.

The buffer manager also provides the interface by which the LRM can actually
force it to write back some of the buffer pages. This can be accomplished by means
of the flush command, which specifies the buffer pages that the LRM wants to be

4 The LRM’s unit of access may be in blocks which have sizes different from a page. However, for
simplicity, we assume that the unit of access is the same.

12.3 Local Reliability Protocols 415

written back. We should indicate that different LRM implementations may or may
not use this forced writing. This issue is discussed further in subsequent sections.

As its interface suggests, the buffer manager acts as a conduit for all access to the
database via the buffers that it manages. It provides this function by fulfilling three
tasks:

1. Searching the buffer pool for a given page;

2. If it is not found in the buffer, allocating a free buffer page and loading the
buffer page with a data page that is brought in from secondary storage;

3. If no free buffer pages are available, choosing a buffer page for replacement.

Searching is quite straightforward. Typically, the buffer pages are shared among
the transactions that execute against the database, so search is global.

Allocation of buffer pages is typically done dynamically. This means that the
allocation of buffer pages to processes is performed as processes execute. The buffer
manager tries to calculate the number of buffer pages needed to run the process
efficiently and attempts to allocate that number of pages. The best known dynamic
allocation method is the working-set algorithm [Denning, 1968, 1980].

A second aspect of allocation is fetching data pages. The most common technique
is demand paging, where data pages are brought into the buffer as they are referenced.
However, a number of operating systems prefetch a group of data pages that are in
close physical proximity to the data page referenced. Buffer managers choose this
route if they detect sequential access to a file.

In replacing buffer pages, the best known technique is the least recently used
(LRU) algorithm that attempts to determine the logical reference strings [Effelsberg
and Härder, 1984] of processes to buffer pages and to replace the page that has not
been referenced for an extended period. The anticipation here is that if a buffer page
has not been referenced for a long time, it probably will not be referenced in the near
future.

The techniques discussed above are the most common. Other alternatives are
discussed in [Effelsberg and Härder, 1984].

Clearly, these functions are similar to those performed by operating system (OS)
buffer managers. However, quite frequently, DBMSs bypass OS buffer managers and
manage disks and main memory buffers themselves due to a number of problems
(see, e.g., [Stonebraker, 1981]) that are beyond the scope of this book. Basically, the
requirements of DBMSs are usually incompatible with the services that OSs provide.
The consequence is that DBMS kernels duplicate OS services with an implementation
that is more suitable for their needs.

416 12 Distributed DBMS Reliability

12.3.2 Recovery Information

In this section we assume that only system failures occur. We defer the discussion of
techniques for recovering from media failures until later. Since we are dealing with
centralized database recovery, communication failures are not applicable.

When a system failure occurs, the volatile database is lost. Therefore, the DBMS
has to maintain some information about its state at the time of the failure in order to
be able to bring the database to the state that it was in when the failure occurred. We
call this information the recovery information.

The recovery information that the system maintains is dependent on the method of
executing updates. Two possibilities are in-place updating and out-of-place updating.
In-place updating physically changes the value of the data item in the stable database.
As a result, the previous values are lost. Out-of-place updating, on the other hand,
does not change the value of the data item in the stable database but maintains the new
value separately. Of course, periodically, these updated values have to be integrated
into the stable database. We should note that the reliability issues are somewhat
simpler if in-place updating is not used. However, most DBMSs use it due to its
improved performance.

12.3.2.1 In-Place Update Recovery Information

Since in-place updates cause previous values of the affected data items to be lost, it
is necessary to keep enough information about the database state changes to facilitate
the recovery of the database to a consistent state following a failure. This information
is typically maintained in a database log. Thus each update transaction not only
changes the database but the change is also recorded in the database log (Figure
12.5). The log contains information necessary to recover the database state following
a failure.

New

stable database

state

Database Log

Update

Operation

Old

stable database

state

Fig. 12.5 Update Operation Execution

12.3 Local Reliability Protocols 417

For the following discussion assume that the LRM and buffer manager algorithms
are such that the buffer pages are written back to the stable database only when the
buffer manager needs new buffer space. In other words, the flush command is not
used by the LRM and the decision to write back the pages into the stable database is
taken at the discretion of the buffer manager. Now consider that a transaction T1 had
completed (i.e., committed) before the failure occurred. The durability property of
transactions would require that the effect os T1 be reflected in the database. However,
it is possible that the volatile database pages that have been updated by T1 may not
have been written back to the stable database at the time of the failure. Therefore,
upon recovery, it is important to be able to redo the operations of T1. This requires
some information to be stored in the database log about the effects of T1. Given this
information, it is possible to recover the database from its “old” state to the “new”
state that reflects the effects of T1 (Figure 12.6).

Database Log

REDO

New

stable database

state

Old

stable database

state

Fig. 12.6 REDO Action

Now consider another transaction, T2, that was still running when the failure
occurred. The atomicity property would dictate that the stable database not contain
any effects of T2. It is possible that the buffer manager may have had to write into
the stable database some of the volatile database pages that have been updated by T2.
Upon recovery from failures it is necessary to undo the operations of T2.5 Thus the
recovery information should include sufficient data to permit the undo by taking the
“new” database state that reflects partial effects of T2 and recovers the “old” state that
existed at the start of T2 (Figure 12.7).

We should indicate that the undo and redo actions are assumed to be idempotent.
In other words, their repeated application to a transaction would be equivalent to
performing them once. Furthermore, the undo/redo actions form the basis of different
methods of executing the commit commands. We discuss this further in Section
12.3.3.

The contents of the log may differ according to the implementation. However,
the following minimal information for each transaction is contained in almost all

5 One might think that it could be possible to continue with the operation of T2 following restart
instead of undoing its operations. However, in general it may not be possible for the LRM to
determine the point at which the transaction needs to be restarted. Furthermore, the failure may
not be a system failure but a transaction failure (i.e., T2 may actually abort itself) after some of its
actions have been reflected in the stable database. Therefore, the possibility of undoing is necessary.

418 12 Distributed DBMS Reliability

New

stable database

state

Database Log

Old

stable database

state
UNDO

Fig. 12.7 UNDO Action

database logs: a begin transaction record, the value of the data item before the update
(called the before image), the updated value of the data item (called the after image),
and a termination record indicating the transaction termination condition (commit,
abort). The granularity of the before and after images may be different, as it is
possible to log entire pages or some smaller unit. As an alternative to this form
of state logging, operational logging, as in ARIES [Haderle et al., 1992], may be
supported where the operations that cause changes to the database are logged rather
than the before and after images.

The log is also maintained in main memory buffers (called log buffers) and written
back to stable storage (called stable log) similar to the database buffer pages (Figure
12.8). The log pages can be written to stable storage in one of two ways. They
can be written synchronously (more commonly known as forcing a log) where the
addition of each log record requires that the log be moved from main memory to
stable storage. They can also be written asynchronously, where the log is moved to
stable storage either at periodic intervals or when the buffer fills up. When the log is
written synchronously, the execution of the transaction is suspended until the write is
complete. This adds some delay to the response-time performance of the transaction.
On the other hand, if a failure occurs immediately after a forced write, it is relatively
easy to recover to a consistent database state.

Secondary

storage

Stable

database

Read

WriteWrite

Read

Main memory

Database

buffers
Database Buffer

Manager (Volatile

database)

Stable

log

Log

buffers

R
eadW

rite

R
ea

d
W

rit
e

Local Recovery

Manager

Fetch,

Flush

Fig. 12.8 Logging Interface

12.3 Local Reliability Protocols 419

Whether the log is written synchronously or asynchronously, one very important
protocol has to be observed in maintaining logs. Consider a case where the updates
to the database are written into the stable storage before the log is modified in stable
storage to reflect the update. If a failure occurs before the log is written, the database
will remain in updated form, but the log will not indicate the update that makes it
impossible to recover the database to a consistent and up-to-date state. Therefore,
the stable log is always updated prior to the updating of the stable database. This is
known as the write-ahead logging (WAL) protocol [Gray, 1979] and can be precisely
specified as follows:

1. Before a stable database is updated (perhaps due to actions of a yet uncom-
mitted transaction), the before images should be stored in the stable log. This
facilitates undo.

2. When a transaction commits, the after images have to be stored in the stable
log prior to the updating of the stable database. This facilitates redo.

12.3.2.2 Out-of-Place Update Recovery Information

As we mentioned above, the most common update technique is in-place updating.
Therefore, we provide only a brief overview of the other updating techniques and
their recovery information. Details can be found in [Verhofstadt, 1978] and the other
references given earlier.

Typical techniques for out-of-place updating are shadowing ([Astrahan et al.,
1976; Gray, 1979]) and differential files [Severence and Lohman, 1976]. Shadowing
uses duplicate stable storage pages in executing updates. Thus every time an update
is made, the old stable storage page, called the shadow page, is left intact and a
new page with the updated data item values is written into the stable database. The
access path data structures are updated to point to the new page, which contains the
current data so that subsequent accesses are to this page. The old stable storage page
is retained for recovery purposes (to perform undo).

Recovery based on shadow paging is implemented in System R’s recovery man-
ager [Gray et al., 1981]. This implementation uses shadowing together with logging.

The differential file approach was discussed in Chapter 5 within the context of
integrity enforcement. In general, the method maintains each stable database file as a
read-only file. In addition, it maintains a corresponding read-write differential file
that stores the changes to that file. Given a logical database file F , let us denote its
read-only part as FR and its corresponding differential file as DF . DF consists of
two parts: an insertions part, which stores the insertions to F , denoted DF+, and a
corresponding deletions part, denoted DF−. All updates are treated as the deletion of
the old value and the insertion of a new one. Thus each logical file F is considered
to be a view defined as F = (FR∪DF+)−DF−. Periodically, the differential file
needs to be merged with the read-only base file.

Recovery schemes based on this method simply use private differential files for
each transaction, which are then merged with the differential files of each file at

420 12 Distributed DBMS Reliability

commit time. Thus recovery from failures can simply be achieved by discarding the
private differential files of non-committed transactions.

There are studies that indicate that the shadowing and differential files approaches
may be advantageous in certain environments. One study by Agrawal and DeWitt
[1985] investigates the performance of recovery mechanisms based on logging, dif-
ferential files, and shadow paging, integrated with locking and optimistic (using
timestamps) concurrency control algorithms. The results indicate that shadowing,
together with locking, can be a feasible alternative to the more common log-based
recovery integrated with locking if there are only large (in terms of the base-set
size) transactions with sequential access patterns. Similarly, differential files inte-
grated with locking can be a feasible alternative if there are medium-sized and large
transactions.

12.3.3 Execution of LRM Commands

Recall that there are five commands that form the interface to the LRM. These are the
begin transaction, read, write, commit, and abort commands. As we indicated in
Chapter 10, some DBMSs do not have an explicit commit command. In this case
the end (of transaction) indicator serves as the commit command. For simplicity, we
specify commit explicitly.

In this section we introduce a sixth interface command to the LRM: recover.
The recover command is the interface that the operating system has to the LRM. It
is used during recovery from system failures when the operating system asks the
DBMS to recover the database to the state that existed when the failure occurred.

The execution of some of these commands (specifically, abort, commit, and
recover) is quite dependent on the specific LRM algorithms that are used as well as on
the interaction of the LRM with the buffer manager. Others (i.e., begin transaction,
read, and write) are quite independent of these considerations.

The fundamental design decision in the implementation of the local recovery
manager, the buffer manager, and the interaction between the two components is
whether or not the buffer manager obeys the local recovery manager’s instructions
as to when to write the database buffer pages to stable storage. Specifically, two
decisions are involved. The first one is whether the buffer manager may write the
buffer pages updated by a transaction into stable storage during the execution of that
transaction, or it waits for the LRM to instruct it to write them back. We call this
the fix/no-fix decision. The reasons for the choice of this terminology will become
apparent shortly. Note that it is also called the steal/no-steal decision by Härder and
Reuter [1983]. The second decision is whether the buffer manager will be forced
to flush the buffer pages updated by a transaction into the stable storage at the end
of that transaction (i.e., the commit point), or the buffer manager flushes them out
whenever it needs to according to its buffer management algorithm. We call this the
flush/no-flush decision. It is called the force/no-force decision by Härder and Reuter
[1983].

12.3 Local Reliability Protocols 421

Accordingly, four alternatives can be identified: (1) no-fix/no-flush, (2) no-
fix/flush, (3) fix/no-flush, and (4) fix/flush. We will consider each of these in more
detail. However, first we present the execution methods of the begin transaction,
read, and write commands, which are quite independent of these considerations.
Where modifications are required in these methods due to different LRM and buffer
manager implementation strategies, we will indicate them.

12.3.3.1 Begin transaction, Read, and Write Commands

Begin transaction.

This command causes various components of the DBMS to carry out some bookkeep-
ing functions. We will also assume that it causes the LRM to write a begin transaction
record into the log. This is an assumption made for convenience of discussion; in
reality, writing of the begin transaction record may be delayed until the first write to
improve performance by reducing I/O.

Read.

The read command specifies a data item. The LRM tries to read the specified data
item from the buffer pages that belong to the transaction. If the data item is not in
one of these pages, it issues a fetch command to the buffer manager in order to make
the data available. Upon reading the data, the LRM returns it to the scheduler.

Write.

The write command specifies the data item and the new value. As with a read
command, if the data item is available in the buffers of the transaction, its value is
modified in the database buffers (i.e., the volatile database). If it is not in the private
buffer pages, a fetch command is issued to the buffer manager, and the data is made
available and updated. The before image of the data page, as well as its after image,
are recorded in the log. The local recovery manager then informs the scheduler that
the operation has been completed successfully.

12.3.3.2 No-fix/No-flush

This type of LRM algorithm is called a redo/undo algorithm by Bernstein et al.
[1987] since it requires, as we will see, performing both the redo and undo operations
upon recovery. It is called steal/no-force by Härder and Reuter [1983].

422 12 Distributed DBMS Reliability

Abort.

As we indicated before, abort is an indication of transaction failure. Since the buffer
manager may have written the updated pages into the stable database, abort will have
to undo the actions of the transaction. Therefore, the LRM reads the log records
for that specific transaction and replaces the values of the updated data items in the
volatile database with their before images. The scheduler is then informed about the
successful completion of the abort action. This process is called the transaction undo
or partial undo.

An alternative implementation is the use of an abort list, which stores the iden-
tifiers of all the transactions that have been aborted. If such a list is used, the abort
action is considered to be complete as soon as the transaction’s identifier is included
in the abort list.

Note that even though the values of the updated data items in the stable database
are not restored to their before images, the transaction is considered to be aborted
at this point. The buffer manager will write the “corrected” volatile database pages
into the stable database at a future time, thereby restoring it to its state prior to that
transaction.

Commit.

The commit command causes an end of transaction record to be written into the log
by the LRM. Under this scenario, no other action is taken in executing a commit
command other than informing the scheduler about the successful completion of the
commit action.

An alternative to writing an end of transaction record into the log is to add the
transaction’s identifier to a commit list, which is a list of the identifiers of transactions
that have committed. In this case the commit action is accepted as complete as soon
as the transaction identifier is stored in this list.

Recover.

The LRM starts the recovery action by going to the beginning of the log and re-
doing the operations of each transaction for which both a begin transaction and an
end of transaction record is found. This is called partial redo. Similarly, it undoes the
operations of each transaction for which a begin transaction record is found in the log
without a corresponding end of transaction record. This action is called global undo,
as opposed to the transaction undo discussed above. The difference is that the effects
of all incomplete transactions need to be rolled back, not one.

If commit list and abort list implementations are used, the recovery action consists
of redoing the operations of all the transactions in the commit list and undoing the
operations of all the transactions in the abort list. In the remainder of this chapter

12.3 Local Reliability Protocols 423

we will not make this distinction, but rather will refer to both of these recovery
implementations as global undo.

12.3.3.3 No-fix/Flush

The LRM algorithms that use this strategy are called undo/no-redo in Bernstein et al.
[1987] and steal/force by Härder and Reuter [1983].

Abort.

The execution of abort is identical to the previous case. Upon transaction failure, the
LRM initiates a partial undo for that particular transaction.

Commit.

The LRM issues a flush command to the buffer manager, forcing it to write back all
the updated volatile database pages into the stable database. The commit command is
then executed either by placing a record in the log or by insertion of the transaction
identifier into the commit list as specified for the previous case. When all of this
is complete, the LRM informs the scheduler that the commit has been carried out
successfully.

Recover.

Since all the updated pages are written into the stable database at the commit point,
there is no need to perform redo; all the effects of successful transactions will have
been reflected in the stable database. Therefore, the recovery action initiated by the
LRM consists of a global undo.

12.3.3.4 Fix/No-flush

In this case the LRM controls the writing of the volatile database pages into stable
storage. The key here is not to permit the buffer manager to write any updated volatile
database page into the stable database until at least the transaction commit point.
This is accomplished by the fix command, which is a modified version of the fetch
command whereby the specified page is fixed in the database buffer and cannot be
written back to the stable database by the buffer manager. Thus any fetch command
to the buffer manager for a write operation is replaced by a fix command.6 Note

6 Of course, any page that was previously fetched for read but is now being updated also needs to
be fixed.

424 12 Distributed DBMS Reliability

that this precludes the need for a global undo operation and is therefore called a
redo/no-undo algorithm by Bernstein et al. [1987] and a no-force/no-steal algorithm
by Härder and Reuter [1983].

Abort.

Since the volatile database pages have not been written to the stable database, no
special action is necessary. To release the buffer pages that have been fixed by the
transaction, however, it is necessary for the LRM to send an unfix command to the
buffer manager for all such pages. It is then sufficient to carry out the abort action
either by writing an abort record in the log or by including the transaction in the abort
list, informing the scheduler and then forgetting about the transaction.

Commit.

The LRM sends an unfix command to the buffer manager for every volatile database
page that was previously fixed by that transaction. Note that these pages may now
be written back to the stable database at the discretion of the buffer manager. The
commit command is then executed either by placing an end of transaction record in
the log or by inserting the transaction identifier into the commit list as specified for
the preceding case. When all of this is complete, the LRM informs the scheduler that
the commit has been successfully carried out.

Recover.

As we mentioned above, since the volatile database pages that have been updated by
ongoing transactions are not yet written into the stable database, there is no necessity
for global undo. The LRM, therefore, initiates a partial redo action to recover those
transactions that may have already committed, but whose volatile database pages
may not have yet written into the stable database.

12.3.3.5 Fix/Flush

This is the case where the LRM forces the buffer manager to write the updated
volatile database pages into the stable database at precisely the commit point—not
before and not after. This strategy is called no-undo/no-redo by Bernstein et al. [1987]
and no-steal/force by Härder and Reuter [1983].

12.3 Local Reliability Protocols 425

Abort.

The execution of abort is identical to that of the fix/no-flush case.

Commit.

The LRM sends an unfix command to the buffer manager for every volatile database
page that was previously fixed by that transaction. It then issues a flush command to
the buffer manager, forcing it to write back all the unfixed volatile database pages into
the stable database.7 Finally, the commit command is processed by either writing
an end of transaction record into the log or by including the transaction in the commit
list. The important point to note here is that all three of these operations have to be
executed as an atomic action. One step that can be taken to achieve this atomicity
is to issue only a flush command, which serves to unfix the pages as well. This
eliminates the need to send two messages from the LRM to the buffer manager, but
does not eliminate the requirement for the atomic execution of the flush operation
and the writing of the database log. The LRM then informs the scheduler that the
commit has been carried out successfully. Methods for ensuring this atomicity are
beyond the scope of our discussion (see [Bernstein et al., 1987]).

Recover.

The recover command does not need to do anything in this case. This is true since
the stable database reflects the effects of all the successful transactions and none of
the effects of the uncommitted transactions.

12.3.4 Checkpointing

In most of the LRM implementation strategies, the execution of the recovery action
requires searching the entire log. This is a significant overhead because the LRM is
trying to find all the transactions that need to be undone and redone. The overhead
can be reduced if it is possible to build a wall which signifies that the database at that
point is up-to-date and consistent. In that case, the redo has to start from that point
on and the undo only has to go back to that point. This process of building the wall is
called checkpointing.

Checkpointing is achieved in three steps [Gray, 1979]:

7 Our discussion here gives the impression that two commands (unfix and flush) need to be sent
to the BM by the LRM for each commit action. We have chosen to explain the action in this way
only for presentation simplicity. In reality, it is, of course, possible and preferable to implement one
command that instructs the BM to both unfix and flush, thereby reducing the message overhead
between DBMS components.

426 12 Distributed DBMS Reliability

1. Write a begin checkpoint record into the log.

2. Collect the checkpoint data into the stable storage.

3. Write an end checkpoint record into the log.

The first and the third steps enforce the atomicity of the checkpointing operation.
If a system failure occurs during checkpointing, the recovery process will not find an
end checkpoint record and will consider checkpointing not completed.

There are a number of different alternatives for the data that is collected in Step
2, how it is collected, and where it is stored. We will consider one example here,
called transaction-consistent checkpointing ([Gray, 1979; Gray et al., 1981]). The
checkpointing starts by writing the begin checkpoint record in the log and stopping
the acceptance of any new transactions by the LRM. Once the active transactions
are all completed, all the updated volatile database pages are flushed to the stable
database followed by the insertion of an end checkpoint record into the log. In this
case, the redo action only needs to start from the end checkpoint record in the log.
The undo action can go the reverse direction, starting from the end of the log and
stopping at the end checkpoint record.

Transaction-consistent checkpointing is not the most efficient algorithm, since a
significant delay is experienced by all the transactions. There are alternative check-
pointing schemes such as action-consistent checkpoints, fuzzy checkpoints, and
others ([Gray, 1979; Lindsay, 1979]).

12.3.5 Handling Media Failures

As we mentioned before, the previous discussion on centralized recovery considered
non-media failures, where the database as well as the log stored in the stable storage
survive the failure. Media failures may either be quite catastrophic, causing the loss
of the stable database or of the stable log, or they can simply result in partial loss of
the database or the log (e.g., loss of a track or two).

The methods that have been devised for dealing with this situation are again based
on duplexing. To cope with catastrophic media failures, an archive copy of both the
database and the log is maintained on a different (tertiary) storage medium, which
is typically the magnetic tape or CD-ROM. Thus the DBMS deals with three levels
of memory hierarchy: the main memory, random access disk storage, and magnetic
tape (Figure 12.9). To deal with less catastrophic failures, having duplicate copies of
the database and log may be sufficient.

When a media failure occurs, the database is recovered from the archive copy by
redoing and undoing the transactions as stored in the archive log. The real question is
how the archive database is stored. If we consider the large sizes of current databases,
the overhead of writing the entire database to tertiary storage is significant. Two
methods that have been proposed for dealing with this are to perform the archiving
activity concurrent with normal processing and to archive the database incrementally

12.4 Distributed Reliability Protocols 427

Read

Write

Main memory

Database

buffers

(Volatile

database)

Log

buffers

Archive
log

Archive
database

Local Recovery

Manager

Database Buffer

Manager

Stable

log

Stable

database

Secondary

storage

Fetch,

Flush

W
riteW

ri
te

W
rite

R
ead

Read

Write

R
ea

d
W

rit
e

Fig. 12.9 Full Memory Hierarchy Managed by LRM and BM

as changes occur so that each archive version contains only the changes that have
occurred since the previous archiving.

12.4 Distributed Reliability Protocols

As with local reliability protocols, the distributed versions aim to maintain the
atomicity and durability of distributed transactions that execute over a number of
databases. The protocols address the distributed execution of the begin transaction,
read, write, abort, commit, and recover commands.

At the outset we should indicate that the execution of the begin transaction, read,
and write commands does not cause any significant problems. Begin transaction
is executed in exactly the same manner as in the centralized case by the transaction
manager at the originating site of the transaction. The read and write commands are
executed as discussed in Chapter 11. At each site, the commands are executed in
the manner described in Section 12.3.3. Similarly, abort is executed by undoing its
effects.

The implementation of distributed reliability protocols within the architectural
model we have adopted in this book raises a number of interesting and difficult
issues. We discuss these in Section 12.7 after we introduce the protocols. For the
time being, we adopt a common abstraction: we assume that at the originating site of
a transaction there is a coordinator process and at each site where the transaction

428 12 Distributed DBMS Reliability

executes there are participant processes. Thus, the distributed reliability protocols
are implemented between the coordinator and the participants.

12.4.1 Components of Distributed Reliability Protocols

The reliability techniques in distributed database systems consist of commit, termina-
tion, and recovery protocols. Recall from the preceding section that the commit and
recovery protocols specify how the commit and the recover commands are executed.
Both of these commands need to be executed differently in a distributed DBMS
than in a centralized DBMS. Termination protocols are unique to distributed sys-
tems. Assume that during the execution of a distributed transaction, one of the sites
involved in the execution fails; we would like the other sites to terminate the transac-
tion somehow. The techniques for dealing with this situation are called termination
protocols. Termination and recovery protocols are two opposite faces of the recovery
problem: given a site failure, termination protocols address how the operational sites
deal with the failure, whereas recovery protocols deal with the procedure that the
process (coordinator or participant) at the failed site has to go through to recover its
state once the site is restarted. In the case of network partitioning, the termination
protocols take the necessary measures to terminate the active transactions that exe-
cute at different partitions, while the recovery protocols address the establishment of
mutual consistency of replicated databases following reconnection of the partitions
of the network.

The primary requirement of commit protocols is that they maintain the atomicity of
distributed transactions. This means that even though the execution of the distributed
transaction involves multiple sites, some of which might fail while executing, the
effects of the transaction on the distributed database is all-or-nothing. This is called
atomic commitment. We would prefer the termination protocols to be non-blocking.
A protocol is non-blocking if it permits a transaction to terminate at the operational
sites without waiting for recovery of the failed site. This would significantly improve
the response-time performance of transactions. We would also like the distributed
recovery protocols to be independent. Independent recovery protocols determine
how to terminate a transaction that was executing at the time of a failure without
having to consult any other site. Existence of such protocols would reduce the
number of messages that need to be exchanged during recovery. Note that the
existence of independent recovery protocols would imply the existence of non-
blocking termination protocols, but the reverse is not true.

12.4.2 Two-Phase Commit Protocol

Two-phase commit (2PC) is a very simple and elegant protocol that ensures the
atomic commitment of distributed transactions. It extends the effects of local atomic

12.4 Distributed Reliability Protocols 429

commit actions to distributed transactions by insisting that all sites involved in the
execution of a distributed transaction agree to commit the transaction before its effects
are made permanent. There are a number of reasons why such synchronization among
sites is necessary. First, depending on the type of concurrency control algorithm that
is used, some schedulers may not be ready to terminate a transaction. For example, if
a transaction has read a value of a data item that is updated by another transaction
that has not yet committed, the associated scheduler may not want to commit the
former. Of course, strict concurrency control algorithms that avoid cascading aborts
would not permit the updated value of a data item to be read by any other transaction
until the updating transaction terminates. This is sometimes called the recoverability
condition ([Hadzilacos, 1988; Bernstein et al., 1987]).

Another possible reason why a participant may not agree to commit is due to
deadlocks that require a participant to abort the transaction. Note that, in this case,
the participant should be permitted to abort the transaction without being told to do
so. This capability is quite important and is called unilateral abort.

A brief description of the 2PC protocol that does not consider failures is as follows.
Initially, the coordinator writes a begin commit record in its log, sends a “prepare”
message to all participant sites, and enters the WAIT state. When a participant
receives a “prepare” message, it checks if it could commit the transaction. If so, the
participant writes a ready record in the log, sends a “vote-commit” message to the
coordinator, and enters READY state; otherwise, the participant writes an abort record
and sends a “vote-abort” message to the coordinator. If the decision of the site is to
abort, it can forget about that transaction, since an abort decision serves as a veto (i.e.,
unilateral abort). After the coordinator has received a reply from every participant, it
decides whether to commit or to abort the transaction. If even one participant has
registered a negative vote, the coordinator has to abort the transaction globally. So it
writes an abort record, sends a “global-abort” message to all participant sites, and
enters the ABORT state; otherwise, it writes a commit record, sends a “global-commit”
message to all participants, and enters the COMMIT state. The participants either
commit or abort the transaction according to the coordinator’s instructions and send
back an acknowledgment, at which point the coordinator terminates the transaction
by writing an end of transaction record in the log.

Note the manner in which the coordinator reaches a global termination decision
regarding a transaction. Two rules govern this decision, which, together, are called
the global commit rule:

1. If even one participant votes to abort the transaction, the coordinator has to
reach a global abort decision.

2. If all the participants vote to commit the transaction, the coordinator has to
reach a global commit decision.

The operation of the 2PC protocol between a coordinator and one participant
in the absence of failures is depicted in Figure 12.10, where the circles indicate
the states and the dashed lines indicate messages between the coordinator and the
participants. The labels on the dashed lines specify the nature of the message.

430 12 Distributed DBMS Reliability

write ready

in log

write commit

in log

Type of msg?

Commit

Ready to

commit?

Any No?

Coordinator Participant

READY

INITIAL

READY

INITIAL

COMMIT ABORT

ABORT COMMIT

write

begin_commit

in log

write abort

in log

write commit

in log

write abort

in log

write abort

in log

write

end_of_transaction

in log

Yes

Yes

No

No

Global-abort

Ack

Ack

Abort

Vote-commit

Vo
te-
ab
ort

Pre
pare

Glo
bal-

com
mit

(U
n

ila
te

ra
l
a

b
o

rt
)

Fig. 12.10 2PC Protocol Actions

A few important points about the 2PC protocol that can be observed from Figure
12.10 are as follows. First, 2PC permits a participant to unilaterally abort a transaction
until it has decided to register an affirmative vote. Second, once a participant votes to
commit or abort a transaction, it cannot change its vote. Third, while a participant
is in the READY state, it can move either to abort the transaction or to commit it,
depending on the nature of the message from the coordinator. Fourth, the global
termination decision is taken by the coordinator according to the global commit rule.
Finally, note that the coordinator and participant processes enter certain states where
they have to wait for messages from one another. To guarantee that they can exit
from these states and terminate, timers are used. Each process sets its timer when

12.4 Distributed Reliability Protocols 431

it enters a state, and if the expected message is not received before the timer runs
out, the process times out and invokes its timeout protocol (which will be discussed
later).

There are a number of different communication paradigms that can be employed in
implementing a 2PC protocol. The one discussed above and depicted in Figure 12.10
is called a centralized 2PC since the communication is only between the coordinator
and the participants; the participants do not communicate among themselves. This
communication structure, which is the basis of our subsequent discussions in this
chapter, is depicted more clearly in Figure 12.11.

vote-abort/

vote-commit

global-commit/

global-abort? commited/aborted

Phase 1 Phase 2

Coordinator Participants Coordinator Participants Coordinator

prepare

Fig. 12.11 Centralized 2PC Communication Structure

Another alternative is linear 2PC (also called nested 2PC [Gray, 1979]) where
participants can communicate with one another. There is an ordering between the
sites in the system for the purposes of communication. Let us assume that the ordering
among the sites that participate in the execution of a transaction are 1, . . . , N, where
the coordinator is the first one in the order. The 2PC protocol is implemented by
a forward communication from the coordinator (number 1) to N, during which
the first phase is completed, and by a backward communication from N to the
coordinator, during which the second phase is completed. Thus linear 2PC operates
in the following manner.

The coordinator sends the “prepare” message to participant 2. If participant 2
is not ready to commit the transaction, it sends a “vote-abort” message (VA) to
participant 3 and the transaction is aborted at this point (unilateral abort by 2). If,
on the other hand, participant 2 agrees to commit the transaction, it sends a “vote-
commit” message (VC) to participant 3 and enters the READY state. This process
continues until a “vote-commit” vote reaches participant N. This is the end of the

432 12 Distributed DBMS Reliability

first phase. If N decides to commit, it sends back to N−1 “global-commit” (GC);
otherwise, it sends a “global-abort” message (GA). Accordingly, the participants
enter the appropriate state (COMMIT or ABORT) and propagate the message back
to the coordinator.

Linear 2PC, whose communication structure is depicted in Figure 12.12, incurs
fewer messages but does not provide any parallelism. Therefore, it suffers from low
response-time performance.

Prepare VC/VA

GC/GAGC/GAGC/GAGC/GAGC/GA

VC/VA VC/VA VC/VA

N1 2 3 4 5

Phase 1

Phase 2

Fig. 12.12 Linear 2PC Communication Structure. VC, vote.commit; VA, vote.abort; GC,
global.commit; GA, global.abort.)

Another popular communication structure for implementation of the 2PC protocol
involves communication among all the participants during the first phase of the
protocol so that they all independently reach their termination decisions with respect
to the specific transaction. This version, called distributed 2PC, eliminates the need
for the second phase of the protocol since the participants can reach a decision on
their own. It operates as follows. The coordinator sends the prepare message to all
participants. Each participant then sends its decision to all the other participants (and
to the coordinator) by means of either a “vote-commit” or a “vote-abort” message.
Each participant waits for messages from all the other participants and makes its
termination decision according to the global commit rule. Obviously, there is no need
for the second phase of the protocol (someone sending the global abort or global
commit decision to the others), since each participant has independently reached that
decision at the end of the first phase. The communication structure of distributed
commit is depicted in Figure 12.13.

One point that needs to be addressed with respect to the last two versions of 2PC
implementation is the following. A participant has to know the identity of either the
next participant in the linear ordering (in case of linear 2PC) or of all the participants
(in case of distributed 2PC). This problem can be solved by attaching the list of
participants to the prepare message that is sent by the coordinator. Such an issue does
not arise in the case of centralized 2PC since the coordinator clearly knows who the
participants are.

The algorithm for the centralized execution of the 2PC protocol by the coordinator
is given in Algorithm 12.1, and the algorithm for participants is given in Algorithm
12.2.

12.4 Distributed Reliability Protocols 433

Algorithm 12.1: 2PC Coordinator Algorithm (2PC-C)

begin
repeat

wait for an event ;
switch event do

case Msg Arrival
Let the arrived message be msg ;
switch msg do

case Commit {commit command from scheduler}
write begin commit record in the log ;
send “Prepared” message to all the involved
participants ;
set timer

case Vote-abort {one participant has voted to abort;
unilateral abort}

write abort record in the log ;
send “Global-abort” message to the other involved
participants ;
set timer

case Vote-commit
update the list of participants who have answered ;
if all the participants have answered then {all must
have voted to commit}

write commit record in the log ;
send “Global-commit” to all the involved
participants ;
set timer

case Ack
update the list of participants who have acknowledged ;
if all the participants have acknowledged then

write end of transaction record in the log
else

send global decision to the unanswering participants

case Timeout
execute the termination protocol

until forever ;
end

434 12 Distributed DBMS Reliability

prepare
vote-abort/

vote-commit

global-commit/

global-abort

decision made

independently

Phase 1

Coordinator Participants

Coordinator +

Participants

C

C

Fig. 12.13 Distributed 2PC Communication Structure

12.4.3 Variations of 2PC

Two variations of 2PC have been proposed to improve its performance. This is ac-
complished by reducing (1) the number of messages that are transmitted between the
coordinator and the participants, and (2) the number of times logs are written. These
protocols are called presumed abort and presumed commit [Mohan and Lindsay,
1983; Mohan et al., 1986]. Presumed abort is a protocol that is optimized to handle
read-only transactions as well as those update transactions, some of whose processes
do not perform any updates to the database (called partially read-only). The presumed
commit protocol is optimized to handle the general update transactions. We will
discuss briefly both of these variations.

12.4.3.1 Presumed Abort 2PC Protocol

In the presumed abort 2PC protocol the following assumption is made. Whenever a
prepared participant polls the coordinator about a transaction’s outcome and there
is no information in virtual storage about it, the response to the inquiry is to abort
the transaction. This works since, in the case of a commit, the coordinator does not
forget about a transaction until all participants acknowledge, guaranteeing that they
will no longer inquire about this transaction.

When this convention is used, it can be seen that the coordinator can forget about
a transaction immediately after it decides to abort it. It can write an abort record and

12.4 Distributed Reliability Protocols 435

Algorithm 12.2: 2PC Participant Algorithm (2PC-P)

begin
repeat

wait for an event ;
switch ev do

case Msg Arrival
Let the arrived message be msg ;
switch msg do

case Prepare {Prepare command from the coordinator}
if ready to commit then

write ready record in the log ;
send “Vote-commit” message to the coordinator ;
set timer

else {unilateral abort}
write abort record in the log ;
send “Vote-abort” message to the coordinator ;
abort the transaction

case Global-abort
write abort record in the log ;
abort the transaction

case Global-commit
write commit record in the log ;
commit the transaction

case Timeout
execute the termination protocol

until forever ;
end

not expect the participants to acknowledge the abort command. The coordinator does
not need to write an end of transaction record after an abort record.

The abort record does not need to be forced, because if a site fails before receiving
the decision and then recovers, the recovery routine will check the log to determine
the fate of the transaction. Since the abort record is not forced, the recovery routine
may not find any information about the transaction, in which case it will ask the
coordinator and will be told to abort it. For the same reason, the abort records do not
need to be forced by the participants either.

Since it saves some message transmission between the coordinator and the partic-
ipants in case of aborted transactions, presumed abort 2PC is expected to be more
efficient.

436 12 Distributed DBMS Reliability

12.4.3.2 Presumed Commit 2PC Protocol

The presumed abort 2PC protocol, as discussed above, improves performance by
forgetting about transactions once a decision is reached to abort them. Since most
transactions are expected to commit, it is reasonable to expect that it may be similarly
possible to improve performance for commits. Hence the presumed commit 2PC
protocol.

Presumed commit 2PC is based on the premise that if no information about the
transaction exists, it should be considered committed. However, it is not an exact dual
of presumed abort 2PC, since an exact dual would require that the coordinator forget
about a transaction immediately after it decides to commit it, that commit records (also
the ready records of the participants) not be forced, and that commit commands need
not be acknowledged. Consider, however, the following scenario. The coordinator
sends prepared messages and starts collecting information, but fails before being able
to collect all of them and reach a decision. In this case, the participants will wait until
they timeout, and then turn the transaction over to their recovery routines. Since there
is no information about the transaction, the recovery routines of each participant will
commit the transaction. The coordinator, on the other hand, will abort the transaction
when it recovers, thus causing inconsistency.

A simple variation of this protocol, however, solves the problem and that variant is
called the presumed commit 2PC. The coordinator, prior to sending the prepare mes-
sage, force-writes a collecting record, which contains the names of all the participants
involved in executing that transaction. The participant then enters the COLLECTING
state, following which it sends the prepare message and enters the WAIT state. The
participants, when they receive the prepare message, decide what they want to do
with the transaction, write an abort record, or write a ready record and respond with
either a “vote-abort” or a “vote-commit” message. When the coordinator receives
decisions from all the participants, it decides to abort or commit the transaction. If the
decision is to abort, the coordinator writes an abort record, enters the ABORT state,
and sends a “global-abort” message. If it decides to commit the transaction, it writes
a commit record, sends a “global-commit” command, and forgets the transaction.
When the participants receive a “global-commit” message, they write a commit record
and update the database. If they receive a “global-abort” message, they write an abort
record and acknowledge. The participant, upon receiving the abort acknowledgment,
writes an end of transaction record and forgets about the transaction.

12.5 Dealing with Site Failures

In this section we consider the failure of sites in the network. Our aim is to develop
non-blocking termination and independent recovery protocols. As we indicated
before, the existence of independent recovery protocols would imply the existence of
non-blocking recovery protocols. However, our discussion addresses both aspects

12.5 Dealing with Site Failures 437

separately. Also note that in the following discussion we consider only the standard
2PC protocol, not its two variants presented above.

Let us first set the boundaries for the existence of non-blocking termination and
independent recovery protocols in the presence of site failures. It can formally be
proven that such protocols exist when a single site fails. In the case of multiple site
failures, however, the prospects are not as promising. A negative result indicates
that it is not possible to design independent recovery protocols (and, therefore, non-
blocking termination protocols) when multiple sites fail [Skeen and Stonebraker,
1983]. We first develop termination and recovery protocols for the 2PC algorithm
and show that 2PC is inherently blocking. We then proceed to the development of
atomic commit protocols which are non-blocking in the case of single site failures.

12.5.1 Termination and Recovery Protocols for 2PC

12.5.1.1 Termination Protocols

The termination protocols serve the timeouts for both the coordinator and the par-
ticipant processes. A timeout occurs at a destination site when it cannot get an
expected message from a source site within the expected time period. In this section
we consider that this is due to the failure of the source site.

The method for handling timeouts depends on the timing of failures as well as
on the types of failures. We therefore need to consider failures at various points of
2PC execution. This discussion is facilitated by means of the state transition diagram
of the 2PC protocol given in Figure 12.14. Note that the state transition diagram
is a simplification of Figure 12.10. The states are denoted by circles and the edges
represent the state transitions. The terminal states are depicted by concentric circles.
The interpretation of the labels on the edges is as follows: the reason for the state
transition, which is a received message, is given at the top, and the message that is
sent as a result of state transition is given at the bottom.

Coordinator Timeouts.

There are three states in which the coordinator can timeout: WAIT, COMMIT, and
ABORT. Timeouts during the last two are handled in the same manner. So we need
to consider only two cases:

1. Timeout in the WAIT state. In the WAIT state, the coordinator is waiting for
the local decisions of the participants. The coordinator cannot unilaterally
commit the transaction since the global commit rule has not been satisfied.
However, it can decide to globally abort the transaction, in which case it
writes an abort record in the log and sends a “global-abort” message to all the
participants.

438 12 Distributed DBMS Reliability

INITIAL

WAIT

INITIAL

READY

Prepare

Vote-commit

ABORT ABORT COMMIT

(a) Coordinator (b) Participants

Global-abort

Ack

Prepare

Vote-abort

Global-commit

Ack

Commit

Prepare

Vote-abort

Global-abort

Vote-commit

Global-commit

COMMIT

Fig. 12.14 State Transitions in 2PC Protocol

2. Timeout in the COMMIT or ABORT states. In this case the coordinator is
not certain that the commit or abort procedures have been completed by the
local recovery managers at all of the participant sites. Thus the coordinator
repeatedly sends the “global-commit” or “global-abort” commands to the
sites that have not yet responded, and waits for their acknowledgement.

Participant Timeouts.

A participant can time out8 in two states: INITIAL and READY. Let us examine
both of these cases.

1. Timeout in the INITIAL state. In this state the participant is waiting for a
“prepare” message. The coordinator must have failed in the INITIAL state.
The participant can unilaterally abort the transaction following a timeout. If
the “prepare” message arrives at this participant at a later time, this can be
handled in one of two possible ways. Either the participant would check its
log, find the abort record, and respond with a “vote-abort,” or it can simply
ignore the “prepare” message. In the latter case the coordinator would time
out in the WAIT state and follow the course we have discussed above.

2. Timeout in the READY state. In this state the participant has voted to commit
the transaction but does not know the global decision of the coordinator. The
participant cannot unilaterally make a decision. Since it is in the READY state,

8 In some discussions of the 2PC protocol, it is assumed that the participants do not use timers and
do not time out. However, implementing timeout protocols for the participants solves some nasty
problems and may speed up the commit process. Therefore, we consider this more general case.

12.5 Dealing with Site Failures 439

it must have voted to commit the transaction. Therefore, it cannot now change
its vote and unilaterally abort it. On the other hand, it cannot unilaterally
decide to commit it since it is possible that another participant may have voted
to abort it. In this case the participant will remain blocked until it can learn
from someone (either the coordinator or some other participant) the ultimate
fate of the transaction.

Let us consider a centralized communication structure where the participants
cannot communicate with one another. In this case the participant that is trying to
terminate a transaction has to ask the coordinator for its decision and wait until it
receives a response. If the coordinator has failed, the participant will remain blocked.
This is undesirable.

If the participants can communicate with each other, a more distributed termination
protocol may be developed. The participant that times out can simply ask all the
other participants to help it make a decision. Assuming that participant Pi is the one
that times out, each of the other participants (Pj) responds in the following manner:

1. Pj is in the INITIAL state. This means that Pj has not yet voted and may not
even have received the “prepare” message. It can therefore unilaterally abort
the transaction and reply to Pi with a “vote-abort” message.

2. Pj is in the READY state. In this state Pj has voted to commit the transaction
but has not received any word about the global decision. Therefore, it cannot
help Pi to terminate the transaction.

3. Pj is in the ABORT or COMMIT states. In these states, either Pj has unilat-
erally decided to abort the transaction, or it has received the coordinator’s
decision regarding global termination. It can, therefore, send Pi either a “vote-
commit” or a “vote-abort” message.

Consider how the participant that times out (Pi) can interpret these responses. The
following cases are possible:

1. Pi receives “vote-abort” messages from all Pj. This means that none of the
other participants had yet voted, but they have chosen to abort the transaction
unilaterally. Under these conditions, Pi can proceed to abort the transaction.

2. Pi receives “vote-abort” messages from some Pj, but some other participants
indicate that they are in the READY state. In this case Pi can still go ahead
and abort the transaction, since according to the global commit rule, the
transaction cannot be committed and will eventually be aborted.

3. Pi receives notification from all Pj that they are in the READY state. In this
case none of the participants knows enough about the fate of the transaction
to terminate it properly.

4. Pi receives “global-abort” or “global-commit” messages from all Pj. In this
case all the other participants have received the coordinator’s decision. There-
fore, Pi can go ahead and terminate the transaction according to the messages

440 12 Distributed DBMS Reliability

it receives from the other participants. Incidentally, note that it is not possible
for some of the Pj to respond with a “global-abort” while others respond with
“global-commit” since this cannot be the result of a legitimate execution of
the 2PC protocol.

5. Pi receives “global-abort” or “global-commit” from some Pj, whereas others
indicate that they are in the READY state. This indicates that some sites have
received the coordinator’s decision while others are still waiting for it. In this
case Pi can proceed as in case 4 above.

These five cases cover all the alternatives that a termination protocol needs to
handle. It is not necessary to consider cases where, for example, one participant
sends a “vote-abort” message while another one sends “global-commit.” This cannot
happen in 2PC. During the execution of the 2PC protocol, no process (participant
or coordinator) is more than one state transition apart from any other process. For
example, if a participant is in the INITIAL state, all other participants are in either the
INITIAL or the READY state. Similarly, the coordinator is either in the INITIAL or
the WAIT state. Thus, all the processes in a 2PC protocol are said to be synchronous
within one state transition [Skeen, 1981].

Note that in case 3 the participant processes stay blocked, as they cannot terminate
a transaction. Under certain circumstances there may be a way to overcome this
blocking. If during termination all the participants realize that only the coordinator
site has failed, they can elect a new coordinator, which can restart the commit process.
There are different ways of electing the coordinator. It is possible either to define a
total ordering among all sites and elect the next one in order [Hammer and Shipman,
1980], or to establish a voting procedure among the participants [Garcia-Molina,
1982]. This will not work, however, if both a participant site and the coordinator site
fail. In this case it is possible for the participant at the failed site to have received the
coordinator’s decision and have terminated the transaction accordingly. This decision
is unknown to the other participants; thus if they elect a new coordinator and proceed,
there is the danger that they may decide to terminate the transaction differently from
the participant at the failed site. It is clear that it is not possible to design termination
protocols for 2PC that can guarantee non-blocking termination. The 2PC protocol is,
therefore, a blocking protocol.

Since we had assumed a centralized communication structure in developing the
2PC algorithms in Algorithms 12.1 and 12.2, we will continue with the same as-
sumption in developing the termination protocols. The portion of code that should be
included in the timeout section of the coordinator and the participant 2PC algorithms
is given in Algorithms 12.3 and 12.4, respectively.

12.5.1.2 Recovery Protocols

In the preceding section, we discussed how the 2PC protocol deals with failures from
the perspective of the operational sites. In this section, we take the opposite viewpoint:
we are interested in investigating protocols that a coordinator or participant can use

12.5 Dealing with Site Failures 441

Algorithm 12.3: 2PC Coordinator Terminate

begin
if in WAIT state then {coordinator is in ABORT state}

write abort record in the log ;
send “Global-abort” message to all the participants

else {coordinator is in COMMIT state}
check for the last log record ;
if last log record = abort then

send “Global-abort” to all participants that have not responded
else

send “Global-commit” to all the participants that have not
responded

set timer ;
end

Algorithm 12.4: 2PC-Participant Terminate

begin
if in INITIAL state then

write abort record in the log
else

send “Vote-commit” message to the coordinator ;
reset timer

end

to recover their states when their sites fail and then restart. Remember that we would
like these protocols to be independent. However, in general, it is not possible to
design protocols that can guarantee independent recovery while maintaining the
atomicity of distributed transactions. This is not surprising given the fact that the
termination protocols for 2PC are inherently blocking.

In the following discussion, we again use the state transition diagram of Figure
12.14. Additionally, we make two interpretive assumptions: (1) the combined action
of writing a record in the log and sending a message is assumed to be atomic, and (2)
the state transition occurs after the transmission of the response message. For example,
if the coordinator is in the WAIT state, this means that it has successfully written
the begin commit record in its log and has successfully transmitted the “prepare”
command. This does not say anything, however, about successful completion of
the message transmission. Therefore, the “prepare” message may never get to the
participants, due to communication failures, which we discuss separately. The first
assumption related to atomicity is, of course, unrealistic. However, it simplifies our
discussion of fundamental failure cases. At the end of this section we show that the
other cases that arise from the relaxation of this assumption can be handled by a
combination of the fundamental failure cases.

442 12 Distributed DBMS Reliability

Coordinator Site Failures.

The following cases are possible:

1. The coordinator fails while in the INITIAL state. This is before the coordinator
has initiated the commit procedure. Therefore, it will start the commit process
upon recovery.

2. The coordinator fails while in the WAIT state. In this case, the coordinator
has sent the “prepare” command. Upon recovery, the coordinator will restart
the commit process for this transaction from the beginning by sending the
“prepare” message one more time.

3. The coordinator fails while in the COMMIT or ABORT states. In this case, the
coordinator will have informed the participants of its decision and terminated
the transaction. Thus, upon recovery, it does not need to do anything if all the
acknowledgments have been received. Otherwise, the termination protocol is
involved.

Participant Site Failures.

There are three alternatives to consider:

1. A participant fails in the INITIAL state. Upon recovery, the participant should
abort the transaction unilaterally. Let us see why this is acceptable. Note that
the coordinator will be in the INITIAL or WAIT state with respect to this
transaction. If it is in the INITIAL state, it will send a “prepare” message and
then move to the WAIT state. Because of the participant site’s failure, it will
not receive the participant’s decision and will time out in that state. We have
already discussed how the coordinator would handle timeouts in the WAIT
state by globally aborting the transaction.

2. A participant fails while in the READY state. In this case the coordinator has
been informed of the failed site’s affirmative decision about the transaction
before the failure. Upon recovery, the participant at the failed site can treat
this as a timeout in the READY state and hand the incomplete transaction
over to its termination protocol.

3. A participant fails while in the ABORT or COMMIT state. These states
represent the termination conditions, so, upon recovery, the participant does
not need to take any special action.

Additional Cases.

Let us now consider the cases that may arise when we relax the assumption related to
the atomicity of the logging and message sending actions. In particular, we assume

12.5 Dealing with Site Failures 443

that a site failure may occur after the coordinator or a participant has written a log
record but before it can send a message. For this discussion, the reader may wish to
refer to Figure 12.10.

1. The coordinator fails after the begin commit record is written in the log but
before the “prepare” command is sent. The coordinator would react to this
as a failure in the WAIT state (case 2 of the coordinator failures discussed
above) and send the “prepare” command upon recovery.

2. A participant site fails after writing the ready record in the log but before
sending the “vote-commit” message. The failed participant sees this as case 2
of the participant failures discussed before.

3. A participant site fails after writing the abort record in the log but before
sending the “vote-abort” message. This is the only situation that is not covered
by the fundamental cases discussed before. However, the participant does
not need to do anything upon recovery in this case. The coordinator is in the
WAIT state and will time out. The coordinator termination protocol for this
state globally aborts the transaction.

4. The coordinator fails after logging its final decision record (abort or commit),
but before sending its “global-abort” or “global-commit” message to the
participants. The coordinator treats this as its case 3, while the participants
treat it as a timeout in the READY state.

5. A participant fails after it logs an abort or a commit record but before it sends
the acknowledgment message to the coordinator. The participant can treat this
as its case 3. The coordinator will handle this by timeout in the COMMIT or
ABORT state.

12.5.2 Three-Phase Commit Protocol

The three-phase commit protocol (3PC) [Skeen, 1981] is designed as a non-blocking
protocol. We will see in this section that it is indeed non-blocking when failures are
restricted to site failures.

Let us first consider the necessary and sufficient conditions for designing non-
blocking atomic commitment protocols. A commit protocol that is synchronous
within one state transition is non-blocking if and only if its state transition diagram
contains neither of the following:

1. No state that is “adjacent” to both a commit and an abort state.

2. No non-committable state that is “adjacent” to a commit state ([Skeen, 1981;
Skeen and Stonebraker, 1983]).

The term adjacent here means that it is possible to go from one state to the other
with a single state transition.

444 12 Distributed DBMS Reliability

Consider the COMMIT state in the 2PC protocol (see Figure 12.14). If any proc-
ess is in this state, we know that all the sites have voted to commit the transaction.
Such states are called committable. There are other states in the 2PC protocol that
are non-committable. The one we are interested in is the READY state, which is
non-committable since the existence of a process in this state does not imply that all
the processes have voted to commit the transaction.

It is obvious that the WAIT state in the coordinator and the READY state in the
participant 2PC protocol violate the non-blocking conditions we have stated above.
Therefore, one might be able to make the following modification to the 2PC protocol
to satisfy the conditions and turn it into a non-blocking protocol.

We can add another state between the WAIT (and READY) and COMMIT states
which serves as a buffer state where the process is ready to commit (if that is the final
decision) but has not yet committed. The state transition diagrams for the coordinator
and the participant in this protocol are depicted in Figure 12.15. This is called the
three-phase commit protocol (3PC) because there are three state transitions from
the INITIAL state to a COMMIT state. The execution of the protocol between the
coordinator and one participant is depicted in Figure 12.16. Note that this is identical
to Figure 12.10 except for the addition of the PRECOMMIT state. Observe that 3PC
is also a protocol where all the states are synchronous within one state transition.
Therefore, the foregoing conditions for non-blocking 2PC apply to 3PC.

COMMIT COMMIT

ABORT ABORT
PRE-

COMMIT

PRE-

COMMIT

WAIT READY

INITIAL INITIAL

Commit

Prepare

Prepare

Vote-abort

Prepare

Vote-commit

Vote-abort

Global-abort
Vote-commit

Prepare-to-commit

Global-abort

Ack

Prepare-to-commit

Ready-to-commit

Ready-to-commit

Global-commit

Global-commit

Ack

Fig. 12.15 State Transitions in 3PC Protocol

12.5 Dealing with Site Failures 445

It is possible to design different 3PC algorithms depending on the communication
topology. The one given in Figure 12.16 is centralized. It is also straightforward to
design a distributed 3PC protocol. A linear 3PC protocol is somewhat more involved,
so we leave it as an exercise.

12.5.2.1 Termination Protocol

As we did in discussing the termination protocols for handling timeouts in the 2PC
protocol, let us investigate timeouts at each state of the 3PC protocol.

Coordinator Timeouts.

In 3PC, there are four states in which the coordinator can time out: WAIT, PRECOM-
MIT, COMMIT, or ABORT.

1. Timeout in the WAIT state. This is identical to the coordinator timeout in
the WAIT state for the 2PC protocol. The coordinator unilaterally decides to
abort the transaction. It therefore writes an abort record in the log and sends a
“global-abort” message to all the participants that have voted to commit the
transaction.

2. Timeout in the PRECOMMIT state. The coordinator does not know if the
non-responding participants have already moved to the PRECOMMIT state.
However, it knows that they are at least in the READY state, which means that
they must have voted to commit the transaction. The coordinator can therefore
move all participants to PRECOMMIT state by sending a “prepare-to-commit”
message go ahead and globally commit the transaction by writing a commit
record in the log and sending a “global-commit” message to all the operational
participants.

3. Timeout in the COMMIT (or ABORT) state. The coordinator does not know
whether the participants have actually performed the commit (abort) com-
mand. However, they are at least in the PRECOMMIT (READY) state (since
the protocol is synchronous within one state transition) and can follow the ter-
mination protocol as described in case 2 or case 3 below. Thus the coordinator
does not need to take any special action.

Participant Timeouts.

A participant can time out in three states: INITIAL, READY, and PRECOMMIT. Let
us examine all of these cases.

446 12 Distributed DBMS Reliability

ParticipantCoordinator

No

WAIT

write commit

in log

Any no?

write

begin_commit

in log

write

prepare_to-commit

in log

write commit

in log

write

end_of_transaction

in log

write

prepare_to-commit

in log

write ready

in log

write abort

in log

write abort

in log

INITIALINITIAL

PRE-

COMMIT

COMMIT

ABORT

READY

PRE-

COMMIT

COMMIT

Ready to

commit?

Type of msg?

write abort

in logABORT

No

Yes

Abort

Prepare-to-

commit

Yes

Pre
pare

Vo
te-
ab
ort

Vote-commit

(U
n

ila
te

ra
l
a

b
o

rt
)

Global-abort

Pre
pare

-to-c
omm

it

Ack

Ready-to-commit

Global-commit

Ack

Fig. 12.16 3PC Protocol Actions

12.5 Dealing with Site Failures 447

1. Timeout in the INITIAL state. This can be handled identically to the termina-
tion protocol of 2PC.

2. Timeout in the READY state. In this state the participant has voted to commit
the transaction but does not know the global decision of the coordinator. Since
communication with the coordinator is lost, the termination protocol proceeds
by electing a new coordinator, as discussed earlier. The new coordinator then
terminates the transaction according to a termination protocol that we discuss
below.

3. Timeout in the PRECOMMIT state. In this state the participant has received
the “prepare-to-commit” message and is awaiting the final “global-commit”
message from the coordinator. This case is handled identically to case 2 above.

Let us now consider the possible termination protocols that can be adopted in
the last two cases. There are various alternatives; let us consider a centralized one
[Skeen, 1981]. We know that the new coordinator can be in one of three states: WAIT,
PRECOMMIT, COMMIT or ABORT. It sends its own state to all the operational
participants, asking them to assume that state. Any participant who has proceeded
ahead of the new coordinator (which is possible since it may have already received
and processed a message from the old coordinator) simply ignores the new coordi-
nator’s message; others make their state transitions and send back the appropriate
message. Once the new coordinator gets messages from the participants, it guides
the participants toward termination as follows:

1. If the new coordinator is in the WAIT state, it will globally abort the trans-
action. The participants can be in the INITIAL, READY, ABORT, or PRE-
COMMIT states. In the first three cases, there is no problem. However, the
participants in the PRECOMMIT state are expecting a “global-commit” mes-
sage, but they get a “global-abort” instead. Their state transition diagram does
not indicate any transition from the PRECOMMIT to the ABORT state. This
transition is necessary for the termination protocol, so it should be added to
the set of legal transitions that can occur during execution of the termination
protocol.

2. If the new coordinator is in the PRECOMMIT state, the participants can be
in the READY, PRECOMMIT or COMMIT states. No participant can be in
ABORT state. The coordinator will therefore globally commit the transaction
and send a “global-commit” message.

3. If the new coordinator is in the ABORT state, at the end of the first message
all the participants will have moved into the ABORT state as well.

The new coordinator is not keeping track of participant failures during this proc-
ess. It simply guides the operational sites toward termination. If some participants
fail in the meantime, they will have to terminate the transaction upon recovery
according to the methods discussed in the next section. Also, the new coordinator

448 12 Distributed DBMS Reliability

may fail during the process; the termination protocol therefore needs to be reentrant
in implementation.

This termination protocol is obviously non-blocking. The operational sites can
properly terminate all the ongoing transactions and continue their operations. The
proof of correctness of the algorithm is given in [Skeen, 1982b].

12.5.2.2 Recovery Protocols

There are some minor differences between the recovery protocols of 3PC and those
of 2PC. We only indicate those differences.

1. The coordinator fails while in the WAIT state. This is the case we discussed at
length in the earlier section on termination protocols. The participants have
already terminated the transaction. Therefore, upon recovery, the coordinator
has to ask around to determine the fate of the transaction.

2. The coordinator fails while in the PRECOMMIT state. Again, the termination
protocol has guided the operational participants toward termination. Since it
is now possible to move from the PRECOMMIT state to the ABORT state
during this process, the coordinator has to ask around to determine the fate of
the transaction.

3. A participant fails while in the PRECOMMIT state. It has to ask around to
determine how the other participants have terminated the transaction.

One property of the 3PC protocol becomes obvious from this discussion. When
using the 3PC protocol, we are able to terminate transactions without blocking.
However, we pay the price that fewer cases of independent recovery are possible.
This also results in more messages being exchanged during recovery.

12.6 Network Partitioning

In this section we consider how the network partitions can be handled by the atomic
commit protocols that we discussed in the preceding section. Network partitions are
due to communication line failures and may cause the loss of messages, depending
on the implementation of the communication subnet. A partitioning is called a simple
partitioning if the network is divided into only two components; otherwise, it is
called multiple partitioning.

The termination protocols for network partitioning address the termination of the
transactions that were active in each partition at the time of partitioning. If one can
develop non-blocking protocols to terminate these transactions, it is possible for the
sites in each partition to reach a termination decision (for a given transaction) which

12.6 Network Partitioning 449

is consistent with the sites in the other partitions. This would imply that the sites in
each partition can continue executing transactions despite the partitioning.

Unfortunately, it is not in general possible to find non-blocking termination
protocols in the presence of network partitions. Remember that our expectations
regarding the reliability of the communication subnet are minimal. If a message
cannot be delivered, it is simply lost. In this case it can be proven that no non-
blocking atomic commitment protocol exists that is resilient to network partitioning
[Skeen and Stonebraker, 1983]. This is quite a negative result since it also means
that if network partitioning occurs, we cannot continue normal operations in all
partitions, which limits the availability of the entire distributed database system. A
positive counter result, however, indicates that it is possible to design non-blocking
atomic commit protocols that are resilient to simple partitions. Unfortunately, if
multiple partitions occur, it is again not possible to design such protocols [Skeen and
Stonebraker, 1983].

In the remainder of this section we discuss a number of protocols that address
network partitioning in non-replicated databases. The problem is quite different in
the case of replicated databases, which we discuss in the next chapter.

In the presence of network partitioning of non-replicated databases, the major
concern is with the termination of transactions that were active at the time of par-
titioning. Any new transaction that accesses a data item that is stored in another
partition is simply blocked and has to await the repair of the network. Concurrent
accesses to the data items within one partition can be handled by the concurrency
control algorithm. The significant problem, therefore, is to ensure that the transaction
terminates properly. In short, the network partitioning problem is handled by the
commit protocol, and more specifically, by the termination and recovery protocols.

The absence of non-blocking protocols that would guarantee atomic commitment
of distributed transactions points to an important design decision. We can either
permit all the partitions to continue their normal operations and accept the fact that
database consistency may be compromised, or we guarantee the consistency of the
database by employing strategies that would permit operation in one of the partitions
while the sites in the others remain blocked. This decision problem is the premise
of a classification of partition handling strategies. We can classify the strategies as
pessimistic or optimistic [Davidson et al., 1985]. Pessimistic strategies emphasize the
consistency of the database, and would therefore not permit transactions to execute
in a partition if there is no guarantee that the consistency of the database can be
maintained. Optimistic approaches, on the other hand, emphasize the availability of
the database even if this would cause inconsistencies.

The second dimension is related to the correctness criterion. If serializability is
used as the fundamental correctness criterion, such strategies are called syntactic
since the serializability theory uses only syntactic information. However, if we
use a more abstract correctness criterion that is dependent on the semantics of the
transactions or the database, the strategies are said to be semantic.

Consistent with the correctness criterion that we have adopted in this book (serial-
izability), we consider only syntactic approaches in this section. The following two
sections outline various syntactic strategies for non-replicated databases.

450 12 Distributed DBMS Reliability

All the known termination protocols that deal with network partitioning in the
case of non-replicated databases are pessimistic. Since the pessimistic approaches
emphasize the maintenance of database consistency, the fundamental issue that
we need to address is which of the partitions can continue normal operations. We
consider two approaches.

12.6.1 Centralized Protocols

Centralized termination protocols are based on the centralized concurrency control
algorithms discussed in Chapter 11. In this case, it makes sense to permit the operation
of the partition that contains the central site, since it manages the lock tables.

Primary site techniques are centralized with respect to each data item. In this case,
more than one partition may be operational for different queries. For any given query,
only the partition that contains the primary site of the data items that are in the write
set of that transaction can execute that transaction.

Both of these are simple approaches that would work well, but they are dependent
on the concurrency control mechanism employed by the distributed database manager.
Furthermore, they expect each site to be able to differentiate network partitioning
from site failures properly. This is necessary since the participants in the execution
of the commit protocol react differently to the different types of failures.

12.6.2 Voting-based Protocols

Voting as a technique for managing concurrent data accesses has been proposed by a
number of researchers. A straightforward voting with majority was first proposed in
[Thomas, 1979] as a concurrency control method for fully replicated databases. The
fundamental idea is that a transaction is executed if a majority of the sites vote to
execute it.

The idea of majority voting has been generalized to voting with quorums. Quo-
rum-based voting can be used as a replica control method (as we discuss in the next
chapter), as well as a commit method to ensure transaction atomicity in the presence
of network partitioning. In the case of non-replicated databases, this involves the
integration of the voting principle with commit protocols. We present a specific
proposal along this line [Skeen, 1982b].

Every site in the system is assigned a vote Vi. Let us assume that the total number
of votes in the system is V , and the abort and commit quorums are Va and Vc,
respectively. Then the following rules must be obeyed in the implementation of the
commit protocol:

1. Va +Vc >V , where 0≤Va, Vc ≤V .

2. Before a transaction commits, it must obtain a commit quorum Vc.

12.6 Network Partitioning 451

3. Before a transaction aborts, it must obtain an abort quorum Va.

The first rule ensures that a transaction cannot be committed and aborted at the
same time. The next two rules indicate the votes that a transaction has to obtain
before it can terminate one way or the other.

The integration of these rules into the 3PC protocol requires a minor modification
of the third phase. For the coordinator to move from the PRECOMMIT state to the
COMMIT state, and to send the “global-commit” command, it is necessary for it
to have obtained a commit quorum from the participants. This would satisfy rule 2.
Note that we do not need to implement rule 3 explicitly. This is due to the fact that a
transaction which is in the WAIT or READY state is willing to abort the transaction.
Therefore, an abort quorum already exists.

Let us now consider the termination of transactions in the presence of failures.
When a network partitioning occurs, the sites in each partition elect a new coordi-
nator, similar to the 3PC termination protocol in the case of site failures. There is a
fundamental difference, however. It is not possible to make the transition from the
WAIT or READY state to the ABORT state in one state transition, for a number of
reasons. First, more than one coordinator is trying to terminate the transaction. We do
not want them to terminate differently or the transaction execution will not be atomic.
Therefore, we want the coordinators to obtain an abort quorum explicitly. Second,
if the newly elected coordinator fails, it is not known whether a commit or abort
quorum was reached. Thus it is necessary that participants make an explicit decision
to join either the commit or the abort quorum and not change their votes afterward.
Unfortunately, the READY (or WAIT) state does not satisfy these requirements. Thus
we introduce another state, PREABORT, between the READY and ABORT states.
The transition from the PREABORT state to the ABORT state requires an abort
quorum. The state transition diagram is given in Figure 12.17.

With this modification, the termination protocol works as follows. Once a new co-
ordinator is elected, it requests all participants to report their local states. Depending
on the responses, it terminates the transaction as follows:

1. If at least one participant is in the COMMIT state, the coordinator decides
to commit the transaction and sends a “global-commit” message to all the
participants.

2. If at least one participant is in the ABORT state, the coordinator decides to
abort the transaction and sends a “global-abort” message to all the participants.

3. If a commit quorum is reached by the votes of participants in the PRECOM-
MIT state, the coordinator decides to commit the transaction and sends a
“global-commit” message to all the participants.

4. If an abort quorum is reached by the votes of participants in the PREABORT
state, the coordinator decides to abort the transaction and sends a “global-
abort” message to all the participants.

5. If case 3 does not hold but the sum of the votes of the participants in the
PRECOMMIT and READY states are enough to form a commit quorum, the

452 12 Distributed DBMS Reliability

INITIAL

WAIT

ABORT

PRE-
COMMIT

COMMIT

Commit

Prepare

Vote-abort

Prepare-to-abort

Prepare

Vote-commit

Global-commit

Ack

Prepare-to-abort

Ready-to-abort

Prepare-to-commit

Ready-to-commit

PRE-
ABORT

Global-abort

Ack

Vote-commit

Prepare-to-commit

Ready-to-abort

Global-abort

Ready-to-commit

Global-commit

INITIAL

WAIT

ABORT

PRE-
COMMIT

COMMIT

PRE-
ABORT

Prepare

Vote-abort

Fig. 12.17 State Transitions in Quorum 3PC Protocol

coordinator moves the participants to the PRECOMMIT state by sending a
“prepare-to-commit” message. The coordinator then waits for case 3 to hold.

6. Similarly, if case 4 does not hold but the sum of the votes of the participants
in the PREABORT and READY states are enough to form an abort quorum,
the coordinator moves the participants to the PREABORT state by sending a
“prepare-to-abort” message. The coordinator then waits for case 4 to hold.

Two points are important about this quorum-based commit algorithm. First, it is
blocking; the coordinator in a partition may not be able to form either an abort or a
commit quorum if messages get lost or multiple partitionings occur. This is hardly
surprising given the theoretical bounds that we discussed previously. The second
point is that the algorithm is general enough to handle site failures as well as network
partitioning. Therefore, this modified version of 3PC can provide more resiliency to
failures.

The recovery protocol that can be used in conjunction with the above-discussed
termination protocol is very simple. When two or more partitions merge, the sites that
are part of the new larger partition simply execute the termination protocol. That is, a
coordinator is elected to collect votes from all the participants and try to terminate
the transaction.

12.7 Architectural Considerations 453

12.7 Architectural Considerations

In previous sections we have discussed the atomic commit protocols at an abstract
level. Let us now look at how these protocols can be implemented within the frame-
work of our architectural model. This discussion involves specification of the interface
between the concurrency control algorithms and the reliability protocols. In that
sense, the discussions of this chapter relate to the execution of commit abort, and
recover commands.

Unfortunately, it is quite difficult to specify precisely the execution of these
commands. The difficulty is twofold. First, a significantly more detailed model of
the architecture than the one we have presented needs to be considered for correct
implementation of these commands. Second, the overall scheme of implementation
is quite dependent on the recovery procedures that the local recovery manager
implements. For example, implementation of the 2PC protocol on top of a LRM that
employs a no-fix/no-flush recovery scheme is quite different from its implementation
on top of a LRM that employs a fix/flush recovery scheme. The alternatives are
simply too numerous. We therefore confine our architectural discussion to three
areas: implementation of the coordinator and participant concepts for the commit and
replica control protocols within the framework of the transaction manager-scheduler-
local recovery manager architecture, the coordinator’s access to the database log, and
the changes that need to be made in the local recovery manager operations.

One possible implementation of the commit protocols within our architectural
model is to perform both the coordinator and participant algorithms within the
transaction managers at each site. This provides some uniformity in executing the dis-
tributed commit operations. However, it entails unnecessary communication between
the participant transaction manager and its scheduler; this is because the scheduler
has to decide whether a transaction can be committed or aborted. Therefore, it may
be preferable to implement the coordinator as part of the transaction manager and
the participant as part of the scheduler. Of course, the replica control protocol is
implemented as part of the transaction manager as well. If the scheduler implements
a strict concurrency control algorithm (i.e., does not allow cascading aborts), it will
be ready automatically to commit the transaction when the prepare message arrives.
Proof of this claim is left as an exercise. However, even this alternative of implement-
ing the coordinator and the participant outside the data processor has problems. The
first issue is database log management. Recall from Section 12.3 that the database log
is maintained by the LRM and the buffer manager. However, implementation of the
commit protocol as described here requires the transaction manager and the sched-
uler to access the log as well. One possible solution to this problem is to maintain a
commit log (which could be called the distributed transaction log [Bernstein et al.,
1987; Lampson and Sturgis, 1976]) that is accessed by the transaction manager and is
separate from the database log that the LRM and buffer manager maintain. The other
alternative is to write the commit protocol records into the same database log. This
second alternative has a number of advantages. First, only one log is maintained; this
simplifies the algorithms that have to be implemented in order to save log records on
stable storage. More important, the recovery from failures in a distributed database

454 12 Distributed DBMS Reliability

requires the cooperation of the local recovery manager and the scheduler (i.e., the
participant). A single database log can serve as a central repository of recovery
information for both these components.

A second problem associated with implementing the coordinator within the trans-
action manager and the participant as part of the scheduler has to be with integration
with the concurrency control protocols. This implementation is based on the sched-
ulers determining whether a transaction can be committed. This is fine for distributed
concurrency control algorithms where each site is equipped with a scheduler. How-
ever, in centralized protocols such as the centralized 2PL, there is only one scheduler
in the system. In this case, the participants may be implemented as part of the data
processors (more precisely, as part of local recovery managers), requiring modifica-
tion to both the algorithms implemented by the LRM and, possibly, to the execution
of the 2PC protocol. We leave the details to exercises.

Storing the commit protocol records in the database log maintained by the LRM
and the buffer manager requires some changes to the LRM algorithms. This is the
third architectural issue we address. Unfortunately, these changes are dependent on
the type of algorithm that the LRM uses. In general, however, the LRM algorithms
have to be modified to handle separately the prepare command and global commit (or
global abort) decisions. Furthermore, upon recovery, the LRM should be modified to
read the database log and to inform the scheduler as to the state of each transaction,
in order that the recovery procedures discussed before can be followed. Let us take a
more detailed look at this function of the LRM.

The LRM first has to determine whether the failed site is the host of the coordinator
or of a participant. This information can be stored together with the begin transaction
record. The LRM then has to search for the last record written in the log record during
execution of the commit protocol. If it cannot even find a begin commit record (at the
coordinator site) or an abort or commit record (at the participant sites), the transaction
has not started to commit. In this case, the LRM can continue with its recovery
procedure as we discussed in Section 12.3.3. However, if the commit process has
started, the recovery has to be handed over to the coordinator. Therefore, the LRM
sends the last log record to the scheduler.

12.8 Conclusion

In this chapter we discussed the reliability aspects of distributed transaction manage-
ment. The studied algorithms (2PC and 3PC) guarantee the atomicity and durability
of distributed transactions even when failures occur. One of these algorithms (3PC)
can be made non-blocking, which would permit each site to continue its operation
without waiting for recovery of the failed site. An unfortunate result that we presented
relates to network partitioning. It is not possible to design protocols that guarantee
the atomicity of distributed transactions and permit each partition of the distributed
system to continue its operation under the assumptions made in this chapter with
respect to the functionality of the communication subnet. The performance of the

12.9 Bibliographic Notes 455

distributed commit protocols with respect to the overhead they add to the concurrency
control algorithms is an interesting issue. Some studies have addressed this issue
[Dwork and Skeen, 1983; Wolfson, 1987].

A final point that should be stressed is the following. We have considered only
failures that are attributable to errors. In other words, we assumed that every effort
was made to design and implement the systems (hardware and software), but that
because of various faults in the components, the design, or the operating environment,
they failed to perform properly. Such failures are called failures of omission. There
is another class of failures, called failures of commission, where the systems may
not have been designed and implemented so that they would work properly. The
difference is that in the execution of the 2PC protocol, for example, if a participant
receives a message from the coordinator, it treats this message as correct: the coordi-
nator is operational and is sending the participant a correct message to go ahead and
process. The only failure that the participant has to worry about is if the coordinator
fails or if its messages get lost. These are failures of omission. If, on the other hand,
the messages that a participant receives cannot be trusted, the participant also has to
deal with failures of commission. For example, a participant site may pretend to be
the coordinator and may send a malicious message. We have not discussed reliability
measures that are necessary to cope with these types of failures. The techniques that
address failures of commission are typically called byzantine agreement.

12.9 Bibliographic Notes

There are numerous books on the reliability of computer systems. These include
[Anderson and Lee, 1981; Anderson and Randell, 1979; Avizienis et al., 1987; Long-
bottom, 1980; Gibbons, 1976; Pradhan, 1986; Siewiorek and Swarz, 1982], and
[Shrivastava, 1985]. In addition, the survey paper [Randell et al., 1978] addresses the
same issues. Myers [1976] specifically addresses software reliability. An important
software fault tolerance technique that we have not discussed in this chapter is excep-
tion handling. This issue is treated in [Cristian, 1982, 1985], and [Cristian, 1987]. Jr
and Malek [1988] surveys the existing software tools for reliability measurement.

The fundamental principles employed in fault-tolerant systems are redundancy
in system components and modularization of the design. These two concepts are
utilized in typical systems by means of fail-stop modules (also called fail-fast [Gray,
1985]) and process pairs. A fail-stop module constantly monitors itself, and when it
detects a fault, shuts itself down automatically [Schlichting and Schneider, 1983].
Process pairs provide fault tolerance by duplicating software modules. The idea is
to eliminate single points of failure by implementing each system service as two
processes that communicate and cooperate in providing the service. One of these
processes is called the primary and the other the backup. Both the primary and the
backup are typically implemented as fail-stop modules that cooperate in providing
a service. There are a number of different ways of implementing process pairs,
depending on the mode of communication between the primary and the backup.

456 12 Distributed DBMS Reliability

The five common types are lock-step, automatic checkpointing, state checkpointing,
delta checkpointing, and persistent process pairs. With respect to our discussion of
process pairs, the lock-step process pair approach is implemented in the Stratus/32
systems ([Computers, 1982; Kim, 1984]) for hardware processes. An automatic
checkpointing process pairs approach is used in the Auras (TM) operating system for
Aurogen computers ([Borg et al., 1983; Gastonian, 1983]). State checkpointing has
been used in earlier versions of the Tandem operating systems [Bartlett, 1978, 1981],
which have later utilized the delta checkpointing approach [Borr, 1984]. A review of
different implementations appears in [Gray, 1985].

More detailed material on the functions of the local recovery manager discussed
in Section 12.3 can be found in [Verhofstadt, 1978; Härder and Reuter, 1983].
Implementation of the local recovery functions in System R is described in [Gray
et al., 1981].

Kohler [1981] presents a general discussion of the reliability issues in distributed
database systems. Hadzilacos [1988] is a formalization of the reliability concept. The
reliability aspects of System R* are given in [Traiger et al., 1982], whereas Hammer
and Shipman [1980] describe the same for the SDD-1 system.

The two-phase commit protocol is first described in [Gray, 1979]. Modifications to
it are presented in [Mohan and Lindsay, 1983]. The definition of three-phase commit
is due to Skeen [1981, 1982a]. Formal results on the existence of non-blocking
termination protocols is due to Skeen and Stonebraker [1983].

Replication and replica control protocols have been the subject of significant
research in recent years. This work is summarized very well in [Helal et al., 1997].
Replica control protocols that deal with network partitioning are surveyed in [David-
son et al., 1985]. Besides the algorithms we have described here, some notable others
are given in [Davidson, 1984; Eager and Sevcik, 1983; Herlihy, 1987; Minoura
and Wiederhold, 1982; Skeen and Wright, 1984; Wright, 1983]. These algorithms
are generally called static since the vote assignments and read/write quorums are
fixed a priori. An analysis of one such protocol (such analyses are rare) is given in
[Kumar and Segev, 1993]. Examples of dynamic replication protocols are in [Jajodia
and Mutchler, 1987; Barbara et al., 1986, 1989] among others. It is also possible
to change the way data are replicated. Such protocols are called adaptive and one
example is described in [Wolfson, 1987]. An interesting replication algorithm based
on economic models is described in [Sidell et al., 1996].

Our discussion of checkpointing has been rather short. Further treatment of the
issue can be found in [Bhargava and Lian, 1988; Dadam and Schlageter, 1980;
Schlageter and Dadam, 1980; Kuss, 1982; Ng, 1988; Ramanathan and Shin, 1988].
Byzantine agreement is surveyed in [Strong and Dolev, 1983] and is discussed in
[Babaoglu, 1987; Pease et al., 1980].

12.9 Bibliographic Notes 457

Exercises

Problem 12.1. Briefly describe the various implementations of the process pairs
concept. Comment on how process pairs may be useful in implementing a fault-
tolerant distributed DBMS.

Problem 12.2 (*). Discuss the site failure termination protocol for 2PC using a
distributed communication topology.

Problem 12.3 (*).
Design a 3PC protocol using the linear communication topology.

Problem 12.4 (*). In our presentation of the centralized 3PC termination protocol,
the first step involves sending the coordinator’s state to all participants. The partici-
pants move to new states according to the coordinator’s state. It is possible to design
the termination protocol such that the coordinator, instead of sending its own state
information to the participants, asks the participants to send their state information to
the coordinator. Modify the termination protocol to function in this manner.

Problem 12.5 (**). In Section 12.7 we claimed that a scheduler which implements a
strict concurrency control algorithm will always be ready to commit a transaction
when it receives the coordinator’s “prepare” message. Prove this claim.

Problem 12.6 (**). Assuming that the coordinator is implemented as part of the
transaction manager and the participant as part of the scheduler, give the transaction
manager, scheduler, and the local recovery manager algorithms for a non-replicated
distributed DBMS under the following assumptions.

(a) The scheduler implements a distributed (strict) two-phase locking concurrency
control algorithm.

(b) The commit protocol log records are written to a central database log by the
LRM when it is called by the scheduler.

(c) The LRM may implement any of the protocols that have been discussed in
Section 12.3.3. However, it is modified to support the distributed recovery
procedures as we discussed in Section 12.7.

Problem 12.7 (*). Write the detailed algorithms for the no-fix/no-flush local recovery
manager.

Problem 12.8 (**). Assume that

(a) The scheduler implements a centralized two-phase locking concurrency con-
trol,

(b) The LRM implements no-fix/no-flush protocol.

Give detailed algorithms for the transaction manager, scheduler, and local recovery
managers.

Chapter 13
Data Replication

As we discussed in previous chapters, distributed databases are typically replicated.
The purposes of replication are multiple:

1. System availability. As discussed in Chapter 1, distributed DBMSs may
remove single points of failure by replicating data, so that data items are
accessible from multiple sites. Consequently, even when some sites are down,
data may be accessible from other sites.

2. Performance. As we have seen previously, one of the major contributors
to response time is the communication overhead. Replication enables us to
locate the data closer to their access points, thereby localizing most of the
access that contributes to a reduction in response time.

3. Scalability. As systems grow geographically and in terms of the number of
sites (consequently, in terms of the number of access requests), replication
allows for a way to support this growth with acceptable response times.

4. Application requirements. Finally, replication may be dictated by the ap-
plications, which may wish to maintain multiple data copies as part of their
operational specifications.

Although data replication has clear benefits, it poses the considerable challenge
of keeping different copies synchronized. We will discuss this shortly, but let us first
consider the execution model in replicated databases. Each replicated data item x has
a number of copies x1,x2, . . . ,xn. We will refer to x as the logical data item and to
its copies (or replicas)1 as physical data items. If replication transparency is to be
provided, user transactions will issue read and write operations on the logical data
item x. The replica control protocol is responsible for mapping these operations to
reads and writes on the physical data items x1, . . . ,xn. Thus, the system behaves as
if there is a single copy of each data item – referred to as single system image or
one-copy equivalence. The specific implementation of the Read and Write interfaces

1 In this chapter, we use the terms “replica”, “copy”, and “physical data item” interchangeably.

459
DOI 10.1007/978-1-4419-8834-8_13, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

460 13 Data Replication

of the transaction monitor differ according to the specific replication protocol, and
we will discuss these differences in the appropriate sections.

There are a number of decisions and factors that impact the design of replication
protocols. Some of these were discussed in previous chapters, while others will be
discussed here.

• Database design. As discussed in Chapter 3, a distributed database may be
fully or partially replicated. In the case of a partially replicated database, the
number of physical data items for each logical data item may vary, and some
data items may even be non-replicated. In this case, transactions that access only
non-replicated data items are local transactions (since they can be executed
locally at one site) and their execution typically does not concern us here.
Transactions that access replicated data items have to be executed at multiple
sites and they are global transactions.

• Database consistency. When global transactions update copies of a data item at
different sites, the values of these copies may be different at a given point in time.
A replicated database is said to be in a mutually consistent state if all the replicas
of each of its data items have identical values. What differentiates different
mutual consistency criteria is how tightly synchronized replicas have to be.
Some ensure that replicas are mutually consistent when an update transaction
commits, thus, they are usually called strong consistency criteria. Others take a
more relaxed approach, and are referred to as weak consistency criteria.

• Where updates are performed. A fundamental design decision in designing
a replication protocol is where the database updates are first performed [Gray
et al., 1996]. The techniques can be characterized as centralized if they perform
updates first on a master copy, versus distributed if they allow updates over any
replica. Centralized techniques can be further identified as single master when
there is only one master database copy in the system, or primary copy where
the master copy of each data item may be different2.

• Update propagation. Once updates are performed on a replica (master or
otherwise), the next decision is how updates are propagated to the others.
The alternatives are identified as eager versus lazy [Gray et al., 1996]. Eager
techniques perform all of the updates within the context of the global transaction
that has initiated the write operations. Thus, when the transaction commits, its
updates will have been applied to all of the copies. Lazy techniques, on the
other hand, propagate the updates sometime after the initiating transaction has
committed. Eager techniques are further identified according to when they push
each write to the other replicas – some push each write operation individually,
others batch the writes and propagate them at the commit point.

2 Centralized techniques are referred to, in the literature, as single master, while distributed ones
are referred to as multi-master or update anywhere. These terms, in particular “single master”,
are confusing, since they refer to alternative architectures for implementing centralized protocols
(more on this in Section 13.2.3). Thus, we prefer the more descriptive terms “centralized” and
“distributed”.

13.1 Consistency of Replicated Databases 461

• Degree of replication transparency. Certain replication protocols require each
user application to know the master site where the transaction operations are to
be submitted. These protocols provide only limited replication transparency
to user applications. Other protocols provide full replication transparency
by involving the Transaction Manager (TM) at each site. In this case, user
applications submit transactions to their local TMs rather than the master site.

We discuss consistency issues in replicated databases in Section 13.1, and analyze
centralized versus distributed update application as well as update propagation alter-
natives in Section 13.2. This will lead us to a discussion of the specific protocols in
Section 13.3. In Section 13.4, we discuss the use of group communication primitives
in reducing the messaging overhead of replication protocols. In these sections, we
will assume that no failures occur so that we can focus on the replication protocols.
We will then introduce failures and investigate how protocols are revised to handle
failures (Section 13.5). Finally, in Section 13.6, we discuss how replication services
can be provided in multidatabase systems (i.e., outside the component DBMSs).

13.1 Consistency of Replicated Databases

There are two issues related to consistency of a replicated database. One is mutual
consistency, as discussed above, that deals with the convergence of the values of
physical data items corresponding to one logical data item. The second is transaction
consistency as we discussed in Chapter 11. Serializability, which we introduced as the
transaction consistency criterion needs to be recast in the case of replicated databases.
In addition, there are relationships between mutual consistency and transaction
consistency. In this section we first discuss mutual consistency approaches and then
focus on the redefinition of transaction consistency and its relationship to mutual
consistency.

13.1.1 Mutual Consistency

As indicated earlier, mutual consistency criteria for replicated databases can either
be strong or weak. Each is suitable for different classes of applications with different
consistency requirements.

Strong mutual consistency criteria require that all copies of a data item have the
same value at the end of the execution of an update transaction. This is achieved
by a variety of means, but the execution of 2PC at the commit point of an update
transaction is a common way to achieve strong mutual consistency.

Weak mutual consistency criteria do not require the values of replicas of a data
item to be identical when an update transaction terminates. What is required is that,
if the update activity ceases for some time, the values eventually become identical.
This is commonly referred to as eventual consistency, which refers to the fact that

462 13 Data Replication

replica values may diverge over time, but will eventually converge. It is hard to define
this concept formally or precisely, although the following definition is probably as
precise as one can hope to get [Saito and Shapiro, 2005]:

“A replicated [data item] is eventually consistent when it meets the following conditions,
assuming that all replicas start from the same initial state.

• At any moment, for each replica, there is a prefix of the [history] that is equivalent to
a prefix of the [history] of every other replica. We call this a committed prefix for the
replica.

• The committed prefix of each replica grows monotonically over time.

• All non-aborted operations in the committed prefix satisfy their preconditions.

• For every submitted operation α , either α or [its abort] will eventually be included in
the committed prefix.”

It should be noted that this definition of eventual consistency is rather strong – in
particular the requirements that history prefixes are the same at any given moment
and that the committed prefix grows monotonically. Many systems that claim to
provide eventual consistency would violate these requirements.

Epsilon serializability (ESR) [Pu and Leff, 1991; Ramamritham and Pu, 1995]
allows a query to see inconsistent data while replicas are being updated, but requires
that the replicas converge to a one-copy serializable state once the updates are
propagated to all of the copies. It bounds the error on the read values by an epsilon
(ε) value (hence the name), which is defined in terms of the number of updates
(write operations) that a query “misses”. Given a read-only transaction (query) TQ,
let TU be all the update transactions that are executing concurrently with TQ. If
RS(TQ)

⋂
WS(TU) 6= /0 (TQ is reading some copy of some data items while TU is

updating (possibly a different) copy of those data items) then there is a read-write
conflict and TQ may be reading inconsistent data. The inconsistency is bounded by
the changes performed by TU . Clearly, ESR does not sacrifice database consistency,
but only allows read-only transactions (queries) to read inconsistent data. For this
reason, it has been claimed that ESR does not weaken database consistency, but
“stretches” it [Wu et al., 1997].

Other looser bounds have also been discussed. It has even been suggested that
users should be allowed to specify freshness constraints that are suitable for particular
applications and the replication protocols should enforce these [Pacitti and Simon,
2000; Röhm et al., 2002b; Bernstein et al., 2006]. The types of freshness constraints
that can be specified are the following:

• Time-bound constraints. Users may accept divergence of physical copy values
up to a certain time: xi may reflect the value of an update at time t while x j may
reflect the value at t−∆ and this may be acceptable.

• Value-bound constraints. It may be acceptable to have values of all physical
data items within a certain range of each other. The user may consider the
database to be mutually consistent if the values do not diverge more than a
certain amount (or percentage).

13.1 Consistency of Replicated Databases 463

• Drift constraints on multiple data items. For transactions that read multiple data
items, users may be satisfied if the time drift between the update timestamps
of two data items is less than a threshold (i.e., they were updated within that
threshold) or, in the case of aggregate computation, if the aggregate computed
over a data item is within a certain range of the most recent value (i.e., even if the
individual physical copy values may be more out of sync than this range, as long
as a particular aggregate computation is within range, it may be acceptable).

An important criterion in analyzing protocols that employ criteria that allow
replicas to diverge is degree of freshness. The degree of freshness of a given replica
ri at time t is defined as the proportion of updates that have been applied at ri at time
t to the total number of updates [Pacitti et al., 1998, 1999].

13.1.2 Mutual Consistency versus Transaction Consistency

Mutual consistency, as we have defined it here, and transactional consistency as we
discussed in Chapter 11 are related, but different. Mutual consistency refers to the
replicas converging to the same value, while transaction consistency requires that
the global execution history be serializable. It is possible for a replicated DBMS
to ensure that data items are mutually consistent when a transaction commits, but
the execution history may not be globally serializable. This is demonstrated in the
following example.

Example 13.1. Consider three sites (A, B, and C) and three data items (x,y,z) that
are distributed as follows: Site A hosts x, Site B hosts x,y, Site C hosts x,y,z. We will
use site identifiers as subscripts on the data items to refer to a particular replica.

Now consider the following three transactions:

T1: x← 20 T2: Read(x) T3: Read(x)
Write(x) y← x+ y Read(y)
Commit Write(y) z← (x∗ y)/100

Commit Write(z)
Commit

Note that T1’s Write has to be executed at all three sites (since x is replicated
at all three sites), T2’s Write has to be executed at B and C, and T3’s Write has
to be executed only at C. We are assuming a transaction execution model where
transactions can read their local replicas, but have to update all of the replicas.

Assume that the following three local histories are generated at the sites:

HA = {W1(xA),C1}
HB = {W1(xB),C1,R2(xB),W2(yB),C2}
HC = {W2(yC),C2,R3(xC),R3(yC),W3(zC),C3,W1(xC),C1}

464 13 Data Replication

The serialization order in HB is T1→ T2 while in HC it is T2→ T3→ T1. Therefore,
the global history is not serializable. However, the database is mutually consistent.
Assume, for example, that initially xA = xB = xC = 10,yB = yC = 15, and zC = 7. With
the above histories, the final values will be xA = xB = xC = 20,yB = yC = 35,zC = 3.5.
All the physical copies (replicas) have indeed converged to the same value. �

Of course, it is possible for both the database to be mutually inconsistent, and the
execution history to be globally non-serializable, as demonstrated in the following
example.

Example 13.2. Consider two sites (A and B), and one data item (x) that is replicated
at both sites (xA and xB). Further consider the following two transactions:

T1: Read(x) T2: Read(x)
x← x+5 x← x∗10
Write(x) Write(x)
Commit Commit

Assume that the following two local histories are generated at the two sites (again
using the execution model of the previous example):

HA = {R1(xA),W1(xA),C1,R2(xA),W2(xA),C2}
HB = {R2(xB),W2(xB),C2,R1(xB),W1(xB),C1}

Although both of these histories are serial, they serialize T1 and T2 in reverse order;
thus the global history is not serializable. Furthermore, the mutual consistency is
violated as well. Assume that the value of x prior to the execution of these transactions
was 1. At the end of the execution of these schedules, the value of x is 60 at site A
while it is 15 at site B. Thus, in this example, the global history is non-serializable,
and the databases are mutually inconsistent. �

Given the above observation, the transaction consistency criterion given in Chapter
11 is extended in replicated databases to define one-copy serializability. One-copy
serializability (1SR) states that the effects of transactions on replicated data items
should be the same as if they had been performed one at-a-time on a single set of
data items. In other words, the histories are equivalent to some serial execution over
non-replicated data items.

Snapshot isolation that we introduced in Chapter 11 has been extended for repli-
cated databases [Lin et al., 2005] and used as an alternative transactional consistency
criterion within the context of replicated databases [Plattner and Alonso, 2004;
Daudjee and Salem, 2006]. Similarly, a weaker form of serializability, called re-
laxed concurrency (RC-) serializability has been defined that corresponds to “read
committed” isolation level (Section 10.2.3) [Bernstein et al., 2006].

13.2 Update Management Strategies 465

13.2 Update Management Strategies

As discussed earlier, the replication protocols can be classified according to when the
updates are propagated to copies (eager versus lazy) and where updates are allowed
to occur (centralized versus distributed). These two decisions are generally referred
to as update management strategies. In this section, we discuss these alternatives
before we present protocols in the next section.

13.2.1 Eager Update Propagation

The eager update propagation approaches apply the changes to all the replicas within
the context of the update transaction. Consequently, when the update transaction
commits, all the copies have the same value. Typically, eager propagation techniques
use 2PC at commit point, but, as we will see later, alternatives are possible to achieve
agreement. Furthermore, eager propagation may use synchronous propagation of
each update by applying it on all the replicas at the same time (when the Write is
issued), or deferred propagation whereby the updates are applied to one replica when
they are issued, but their application on the other replicas is batched and deferred to
the end of the transaction. Deferred propagation can be implemented by including
the updates in the “Prepare-to-Commit” message at the start of 2PC execution.

Eager techniques typically enforce strong mutual consistency criteria. Since all the
replicas are mutually consistent at the end of an update transaction, a subsequent read
can read from any copy (i.e., one can map a Read(x) to Read(xi) for any xi). However,
a Write(x) has to be applied to all xi (i.e., Write(xi),∀xi). Thus, protocols that follow
eager update propagation are known as read-one/write-all (ROWA) protocols.

The advantages of eager update propagation are threefold. First, they typically
ensure that mutual consistency is enforced using 1SR; therefore, there are no transac-
tional inconsistencies. Second, a transaction can read a local copy of the data item (if
a local copy is available) and be certain that an up-to-date value is read. Thus, there
is no need to do a remote read. Finally, the changes to replicas are done atomically;
thus recovery from failures can be governed by the protocols we have already studied
in the previous chapter.

The main disadvantage of eager update propagation is that a transaction has to
update all the copies before it can terminate. This has two consequences. First, the
response time performance of the update transaction suffers, since it typically has
to participate in a 2PC execution, and because the update speed is restricted by the
slowest machine. Second, if one of the copies is unavailable, then the transaction
cannot terminate since all the copies need to be updated. As discussed in Chapter 12,
if it is possible to differentiate between site failures and network failures, then one
can terminate the transaction as long as only one replica is unavailable (recall that
more than one site unavailability causes 2PC to be blocking), but it is generally not
possible to differentiate between these two types of failures.

466 13 Data Replication

13.2.2 Lazy Update Propagation

In lazy update propagation the replica updates are not all performed within the
context of the update transaction. In other words, the transaction does not wait until
its updates are applied to all the copies before it commits – it commits as soon as
one replica is updated. The propagation to other copies is done asynchronously from
the original transaction, by means of refresh transactions that are sent to the replica
sites some time after the update transaction commits. A refresh transaction carries
the sequence of updates of the corresponding update transaction.

Lazy propagation is used in those applications for which strong mutual consis-
tency may be unnecessary and too restrictive. These applications may be able to
tolerate some inconsistency among the replicas in return for better performance.
Examples of such applications are Domain Name Service (DNS), databases over ge-
ographically widely distributed sites, mobile databases, and personal digital assistant
databases [Saito and Shapiro, 2005]. In these cases, usually weak mutual consistency
is enforced.

The primary advantage of lazy update propagation techniques is that they gener-
ally have lower response times for update transactions, since an update transaction
can commit as soon as it has updated one copy. The disadvantages are that the replicas
are not mutually consistent and some replicas may be out-of-date, and, consequently,
a local read may read stale data and does not guarantee to return the up-to-date
value. Furthermore, under some scenarios that we will discuss later, transactions
may not see their own writes, i.e., Readi(x) of an update transaction Ti may not see
the effects of Writei(x) that was executed previously. This has been referred to as
transaction inversion. Strong one-copy serializability (strong 1SR) [Daudjee and
Salem, 2004] and strong snapshot isolation (strong SI) [Daudjee and Salem, 2006]
prevent all transaction inversions at 1SR and SI isolation levels, respectively, but
are expensive to provide. The weaker guarantees of 1SR and global SI, while being
much less expensive to provide than their stronger counterparts, do not prevent trans-
action inversions. Session-level transactional guarantees at the 1SR and SI isolation
levels have been proposed that address these shortcomings by preventing transaction
inversions within a client session but not necessarily across sessions [Daudjee and
Salem, 2004, 2006]. These session-level guarantees are less costly to provide than
their strong counterparts while preserving many of the desirable properties of the
strong counterparts.

13.2.3 Centralized Techniques

Centralized update propagation techniques require that updates are first applied at a
master copy and then propagated to other copies (which are called slaves). The site
that hosts the master copy is similarly called the master site, while the sites that host
the slave copies for that data item are called slave sites.

13.2 Update Management Strategies 467

In some techniques, there is a single master for all replicated data. We refer to
these as single master centralized techniques. In other protocols, the master copy
for each data item may be different (i.e., for data item x, the master copy may be
xi stored at site Si, while for data item y, it may be y j stored at site S j). These are
typically known as primary copy centralized techniques.

The advantages of centralized techniques are two-fold. First, application of the
updates is easy since they happen at only the master site, and they do not require
synchronization among multiple replica sites. Second, there is the assurance that
at least one site – the site that holds the master copy – has up-to-date values for
a data item. These protocols are generally suitable in data warehouses and other
applications where data processing is centralized at one or a few master sites.

The primary disadvantage is that, as in any centralized algorithm, if there is one
central site that hosts all of the masters, this site can be overloaded and can become a
bottleneck. Distributing the master site responsibility for each data item as in primary
copy techniques is one way of reducing this overhead, but it raises consistency issues,
in particular with respect to maintaining global serializability in lazy replication
techniques since the refresh transactions have to be executed at the replicas in the
same serialization order. We discuss these further in relevant sections.

13.2.4 Distributed Techniques

Distributed techniques apply the update on the local copy at the site where the
update transaction originates, and then the updates are propagated to the other replica
sites. These are called distributed techniques since different transactions can update
different copies of the same data item located at different sites. They are appropriate
for collaborative applications with distributive decision/operation centers. They can
more evenly distribute the load, and may provide the highest system availability if
coupled with lazy propagation techniques.

A serious complication that arises in these systems is that different replicas of a
data item may be updated at different sites (masters) concurrently. If distributed tech-
niques are coupled by eager propagation methods, then the distributed concurrency
control methods can adequately address the concurrent updates problem. However, if
lazy propagation methods are used, then transactions may be executed in different
orders at different sites causing non-1SR global history. Furthermore, various replicas
will get out of sync. To manage these problems, a reconciliation method is applied
involving undoing and redoing transactions in such a way that transaction execution
is the same at each site. This is not an easy issue since the reconciliation is generally
application dependent.

468 13 Data Replication

13.3 Replication Protocols

In the previous section, we discussed two dimensions along which update manage-
ment techniques can be classified. These dimensions are orthogonal; therefore four
combinations are possible: eager centralized, eager distributed, lazy centralized, and
lazy distributed. We discuss each of these alternatives in this section. For simplicity
of exposition, we assume a fully replicated database, which means that all update
transactions are global. We further assume that each site implements a 2PL-based
concurrency control technique.

13.3.1 Eager Centralized Protocols

In eager centralized replica control, a master site controls the operations on a data
item. These protocols are coupled with strong consistency techniques, so that updates
to a logical data item are applied to all of its replicas within the context of the
update transaction, which is committed using the 2PC protocol (although non-2PC
alternatives exist as we discuss shortly). Consequently, once the update transaction
completes, all replicas have the same values for the updated data items (i.e., mutually
consistent), and the resulting global history is 1SR.

The two design parameters that we discussed earlier determine the specific im-
plementation of eager centralized replica protocols: where updates are performed,
and degree of replication transparency. The first parameter, which was discussed in
Section 13.2.3, refers to whether there is a single master site for all data items (single
master), or different master sites for each, or, more likely, for a group of data items
(primary copy). The second parameter indicates whether each application knows
the location of the master copy (limited application transparency) or whether it can
rely on its local TM for determining the location of the master copy (full replication
transparency).

13.3.1.1 Single Master with Limited Replication Transparency

The simplest case is to have a single master for the entire database (i.e., for all
data items) with limited replication transparency so that user applications know the
master site. In this case, global update transactions (i.e., those that contain at least
one Write(x) operation where x is a replicated data item) are submitted directly to
the master site – more specifically, to the transaction manager (TM) at the master
site. At the master, each Read(x) operation is performed on the master copy (i.e.,
Read(x) is converted to Read(xM), where M signifies master copy) and executed
as follows: a read lock is obtained on xM , the read is performed, and the result is
returned to the user. Similarly, each Write(x) causes an update of the master copy
(i.e., executed as Write(xM)) by first obtaining a write lock and then performing the
write operation. The master TM then forwards the Write to the slave sites either

13.3 Replication Protocols 469

synchronously or in a deferred fashion (Figure 13.1). In either case, it is important
to propagate updates such that conflicting updates are executed at the slaves in the
same order they are executed at the master. This can be achieved by timestamping or
by some other ordering scheme.

Master

Site

Update Transaction

Op(x) ... Commit

Slave

Site A

Slave

Site B

Slave

Site C

�

�

�

Read-only Transaction

Read(x) ...

�

Fig. 13.1 Eager Single Master Replication Protocol Actions. (1) A Write is applied on the master
copy; (2) Write is then propagated to the other replicas; (3) Updates become permanent at commit
time; (4) Read-only transaction’s Read goes to any slave copy.

The user application may submit a read-only transaction (i.e., all operations are
Read) to any slave site. The execution of read-only transactions at the slaves can
follow the process of centralized concurrency control algorithms, such as C2PL
(Algorithms 11.1-11.3), where the centralized lock manager resides at the master
replica site. Implementations within C2PL require minimal changes to the TM at the
non-master sites, primarily to deal with the Write operations as described above, and
its consequences (e.g., in the processing of Commit command). Thus, when a slave
site receives a Read operation (from a read-only transaction), it forwards it to the
master site to obtain a read lock. The Read can then be executed at the master and
the result returned to the application, or the master can simply send a “lock granted”
message to the originating site, which can then execute the Read on the local copy.

It is possible to reduce the load on the master by performing the Read on the local
copy without obtaining a read lock from the master site. Whether synchronous or
deferred propagation is used, the local concurrency control algorithm ensures that
the local read-write conflicts are properly serialized, and since the Write operations
can only be coming from the master as part of update propagation, local write-
write conflicts won’t occur as the propagation transactions are executed in each
slave in the order dictated by the master. However, a Read may read data item
values at a slave either before an update is installed or after. The fact that a read
transaction at one slave site may read the value of one replica before an update while
another read transaction reads another replica at another slave after the same update
is inconsequential from the perspective of ensuring global 1SR histories. This is
demonstrated by the following example.

Example 13.3. Consider a data item x whose master site is at Site A with slaves at
sites B and C. Consider the following three transactions:

470 13 Data Replication

T1: Write(x) T2: Read(x) T3: Read(x)
Commit Commit Commit

Assume that T2 is sent to slave at Site B and T3 to slave at Site C. Assume that
T2 reads x at B [Read(xB)] before T1’s update is applied at B, while T3 reads x at C
[Read(xC)] after T1’s update at C. Then the histories generated at the two slaves will
be as follows:

HB = {R2(x),C2,W1(x),C1}
HC = {W1(x),C1,R3(x),C3}

The serialization order at Site B is T2 → T1, while at Site C it is T1 → T3. The
global serialization order, therefore, is T2→ T1→ T3, which is fine. Therefore the
history is 1SR. �

Consequently, if this approach is followed, read transactions may read data that
are concurrently updated at the master, but the global history will still be 1SR.

In this alternative protocol, when a slave site receives a Read(x), it obtains a local
read lock, reads from its local copy (i.e., Read(xi)) and returns the result to the user
application; this can only come from a read-only transaction. When it receives a
Write(x), if the Write is coming from the master site, then it performs it on the local
copy (i.e., Write(xi)). If it receives a Write from a user application, then it rejects it,
since this is obviously an error given that update transactions have to be submitted to
the master site.

These alternatives of a single master eager centralized protocol are simple to
implement. One important issue to address is how one recognizes a transaction as
“update” or “read-only” – it may be possible to do this by explicit declaration within
the Begin Transaction command.

13.3.1.2 Single Master with Full Replication Transparency

Single master eager centralized protocols require each user application to know the
master site, and they put significant load on the master that has to deal with (at least)
the Read operations within update transactions as well as acting as the coordinator
for these transactions during 2PC execution. These issues can be addressed, to some
extent, by involving, in the execution of the update transactions, the TM at the site
where the application runs. Thus, the update transactions are not submitted to the
master, but to the TM at the site where the application runs (since they don’t need
to know the master). This TM can act as the coordinating TM for both update and
read-only transactions. Applications can simply submit their transactions to their
local TM, providing full transparency.

There are alternatives to implementing full transparency – the coordinating TM
may only act as a “router”, forwarding each operation directly to the master site. The
master site can then execute the operations locally (as described above) and return
the results to the application. Although this alternative implementation provides full

13.3 Replication Protocols 471

transparency and has the advantage of being simple to implement, it does not address
the overloading problem at the master. An alternative implementation may be as
follows.

1. The coordinating TM sends each operation, as it gets it, to the central (master)
site. This requires no change to the C2PL-TM algorithm (Algorithm 11.1).

2. If the operation is a Read(x), then the centralized lock manager (C2PL-LM in
Algorithm 11.2) can proceed by setting a read lock on its copy of x (call it xM)
on behalf of this transaction and informs the coordinating TM that the read
lock is granted. The coordinating TM can then forward the Read(x) to any
slave site that holds a replica of x (i.e., converts it to a Read(xi)). The read
can then be carried out by the data processor (DP) at that slave.

3. If the operation is a Write(x), then the centralized lock manager (master)
proceeds as follows:

(a) It first sets a write lock on its copy of x.

(b) It then calls its local DP to perform the Write on its own copy of x
(i.e., converts the operation to Write(xM)).

(c) Finally, it informs the coordinating TM that the write lock is granted.

The coordinating TM, in this case, sends the Write(x) to all the slaves where a
copy of x exists; the DPs at these slaves apply the Write to their local copies.

The fundamental difference in this case is that the master site does not deal with
Reads or with the coordination of the updates across replicas. These are left to the
TM at the site where the user application runs.

It is straightforward to see that this algorithm guarantees that the histories are 1SR
since the serialization orders are determined at a single master (similar to centralized
concurrency control algorithms). It is also clear that the algorithm follows the ROWA
protocol, as discussed above – since all the copies are ensured to be up-to-date when
an update transaction completes, a Read can be performed on any copy.

To demonstrate how eager algorithms combine replica control and concurrency
control, we show how the Transaction Management algorithm for the coordinating
TM (Algorithm 13.1) and the Lock Management algorithm for the master site
(Algorithm 13.2). We show only the revisions to the centralized 2PL algorithms
(Algorithms 11.1 and 11.2 in Chapter 11).

Note that in the algorithm fragments that we have given, the LM simply sends back
a “Lock granted” message and not the result of the update operation. Consequently,
when the update is forwarded to the slaves by the coordinating TM, they need to
execute the update operation themselves. This is sometimes referred to as operation
transfer. The alternative is for the “Lock granted” message to include the result of the
update computation, which is then forwarded to the slaves who simply need to apply
the result and update their logs. This is referred to as state transfer. The distinction
may seem trivial if the operations are simply in the form Write(x), but recall that this

472 13 Data Replication

Algorithm 13.1: Eager Single Master Modifications to C2PL-TM

begin
...
if lock request granted then

if op.Type = W then
S← set of all sites that are slaves for the data item

else
S← any one site which has a copy of data item

DPS(op) {send operation to all sites in set S}
else

inform user about the termination of transaction
...

end

Algorithm 13.2: Eager Single Master Modifications to C2PL-LM

begin
...
switch op.Type do

case R or W {lock request; see if it can be granted}
find the lock unit lu such that op.arg⊆ lu ;
if lu is unlocked or lock mode of lu is compatible with op.Type
then

set lock on lu in appropriate mode on behalf of transaction
op.tid ;
if op.Type = W then

DPM(op) {call local DP (M for “master”) with operation}
send “Lock granted” to coordinating TM of transaction

else
put op on a queue for lu

...
end

13.3 Replication Protocols 473

Write operation is an abstraction; each update operation may require the execution
of an SQL expression, in which case the distinction is quite important.

The above implementation of the protocol relieves some of the load on the master
site and alleviates the need for user applications to know the master. However,
its implementation is more complicated than the first alternative we discussed. In
particular, now the TM at the site where transactions are submitted has to act as the
2PC coordinator and the master site becomes a participant. This requires some care
in revising the algorithms at these sites.

13.3.1.3 Primary Copy with Full Replication Transparency

Let us now relax the requirement that there is one master for all data items; each data
item can have a different master. In this case, for each replicated data item, one of the
replicas is designated as the primary copy. Consequently, there is no single master
to determine the global serialization order, so more care is required. In the case of
fully replicated databases, any replica can be primary copy for a data item, however
for partially replicated databases, limited replication transparency option only makes
sense if an update transaction accesses only data items whose primary sites are at the
same site. Otherwise, the application program cannot forward the update transactions
to one master; it will have to do it operation-by-operation, and, furthermore, it is not
clear which primary copy master would serve as the coordinator for 2PC execution.
Therefore, the reasonable alternative is the full transparency support, where the TM
at the application site acts as the coordinating TM and forwards each operation to
the primary site of the data item that it acts on. Figure 13.2 depicts the sequence of
operations in this case where we relax our previous assumption of fully replication.
Site A is the master for data item x and sites B and C hold replicas (i.e., they are
slaves); similarly data item y’s master is site C with slave sites B and D.

Master(x)

Site A

Transaction

Op(x) ... Op(y) ... Commit

Slave(x, y)

Site B

Master(y)

Slave(x)

Site C

Slave(y)

Site D

�

� �
�

�

�

Fig. 13.2 Eager Primary Copy Replication Protocol Actions. (1) Operations (Read or Write) for
each data item are routed to that data item’s master and a Write is first applied at the master; (2)
Write is then propagated to the other replicas; (3) Updates become permanent at commit time.

474 13 Data Replication

Recall that this version still applies the updates to all the replicas within transac-
tional boundaries, requiring integration with concurrency control techniques. A very
early proposal is the primary copy two-phase locking (PC2PL) algorithm proposed
for the prototype distributed version of INGRES [Stonebraker and Neuhold, 1977].
PC2PL is a straightforward extension of the single master protocol discussed above
in an attempt to counter the latter’s potential performance problems. Basically, it
implements lock managers at a number of sites and makes each lock manager respon-
sible for managing the locks for a given set of lock units for which it is the master
site. The transaction managers then send their lock and unlock requests to the lock
managers that are responsible for that specific lock unit. Thus the algorithm treats
one copy of each data item as its primary copy.

As a combined replica control/concurrency control technique, primary copy ap-
proach demands a more sophisticated directory at each site, but it also improves
the previously discussed approaches by reducing the load of the master site without
causing a large amount of communication among the transaction managers and lock
managers.

13.3.2 Eager Distributed Protocols

In eager distributed replica control, the updates can originate anywhere, and they are
first applied on the local replica, then the updates are propagated to other replicas.
If the update originates at a site where a replica of the data item does not exist, it is
forwarded to one of the replica sites, which coordinates its execution. Again, all of
these are done within the context of the update transaction, and when the transaction
commits, the user is notified and the updates are made permanent. Figure 13.3 depicts
the sequence of operations for one logical data item x with copies at sites A, B, C
and D, and where two transactions update two different copies (at sites A and D).

Site A

Transaction 1

Write(x) ... Commit

Site B Site C Site D

�

�

Transaction 2

Write(x) ... Commit

��

�

��

Fig. 13.3 Eager Distributed Replication Protocol Actions. (1) Two Write operations are applied on
two local replicas of the same data item; (2) The Write operations are independently propagated to
the other replicas; (3) Updates become permanent at commit time (shown only for Transaction 1).

13.3 Replication Protocols 475

As can be clearly seen, the critical issue is to ensure that concurrent conflicting
Writes initiated at different sites are executed in the same order at every site where
they execute together (of course, the local executions at each site also have to be
serializable). This is achieved by means of the concurrency control techniques that
are employed at each site. Consequently, read operations can be performed on any
copy, but writes are performed on all copies within transactional boundaries (e.g.,
ROWA) using a concurrency control protocol.

13.3.3 Lazy Centralized Protocols

Lazy centralized replication algorithms are similar to eager centralized replication
ones in that the updates are first applied to a master replica and then propagated
to the slaves. The important difference is that the propagation does not take place
within the update transaction, but after the transaction commits as a separate refresh
transaction. Consequently, if a slave site performs a Read(x) operation on its local
copy, it may read stale (non-fresh) data, since x may have been updated at the master,
but the update may not have yet been propagated to the slaves.

13.3.3.1 Single Master with Limited Transparency

In this case, the update transactions are submitted and executed directly at the master
site (as in the eager single master); once the update transaction commits, the refresh
transaction is sent to the slaves. The sequence of execution steps are as follows:
(1) an update transaction is first applied to the master replica, (2) the transaction is
committed at the master, and then (3) the refresh transaction is sent to the slaves
(Figure 13.4).

Master

Site

Transaction 1

Write(x) Commit

Slave

Site A

Slave

Site B

Slave

Site C

�� �

Transaction 2

Read(x)

�

Fig. 13.4 Lazy Single Master Replication Protocol Actions. (1) Update is applied on the local
replica; (2) Transaction commit makes the updates permanent at the master; (3) Update is propagated
to the other replicas in refresh transactions; (4) Transaction 2 reads from local copy.

476 13 Data Replication

When a slave (secondary) site receives a Read(x), it reads from its local copy and
returns the result to the user. Notice that, as indicated above, its own copy may not
be up-to-date if the master is being updated and the slave has not yet received and
executed the corresponding refresh transaction. A Write(x) received by a slave is
rejected (and the transaction aborted), as this should have been submitted directly to
the master site. When a slave receives a refresh transaction from the master, it applies
the updates to its local copy. When it receives a Commit or Abort (Abort can happen
for only locally submitted read-only transactions), it locally performs these actions.

The case of primary copy with limited transparency is similar, so we don’t discuss
it in detail. Instead of going to a single master site, Write(x) is submitted to the
primary copy of x; the rest is straightforward.

How can it be ensured that the refresh transactions can be applied at all of the
slaves in the same order? In this architecture, since there is a single master copy
for all data items, the ordering can be established by simply using timestamps. The
master site would attach a timestamp to each refresh transaction according to the
commit order of the actual update transaction, and the slaves would apply the refresh
transactions in timestamp order.

A similar approach may be followed in the primary copy, limited transparency
case. In this case, a site contains slave copies of a number of data items, causing
it to get refresh transactions from multiple masters. The execution of these refresh
transactions need to be ordered the same way at all of the involved slaves to ensure
that the database states eventually converge. There are a number of alternatives that
can be followed.

One alternative is to assign timestamps such that refresh transactions issued from
different masters have different timestamps (by appending the site identifier to a
monotonic counter at each site). Then the refresh transactions at each site can be
executed in their timestamp order. However, those that come out of order cause
difficulty. In traditional timestamp-based techniques discussed in Chapter 11, these
transactions would be aborted; however in lazy replication, this is not possible
since the transaction has already been committed at the primary copy site. The
only possibility is to run a compensating transaction (which, effectively, aborts the
transaction by rolling back its effects) or to perform update reconciliation that will be
discussed shortly. The issue can be addressed by a more careful study of the resulting
histories. An approach proposed by Breitbart and Korth [1997] uses a serialization
graph approach that builds a replication graph whose nodes consist of transactions
(T) and sites (S) and an edge 〈Ti,S j〉 exists in the graph if and only if Ti performs a
Write on a (replicated) physical copy that is stored at S j. When an operation (opk)
is submitted, the appropriate nodes (Tk) and edges are inserted into the replication
graph, which is checked for cycles. If there is no cycle, then the execution can
proceed. If a cycle is detected and it involves a transaction that has committed at the
master, but whose refresh transactions have not yet committed at all of the involved
slaves, then the current transaction (Tk) is aborted (to be restarted later) since its
execution would cause the history to be non-1SR. Otherwise, Tk can wait until the
other transactions in the cycle are completed (i.e., they are committed at their masters
and their refresh transactions are committed at all of the slaves). When a transaction

13.3 Replication Protocols 477

is completed in this manner, the corresponding node and all of its incident edges are
removed from the replication graph. This protocol is proven to produce 1SR histories.
An important issue is the maintenance of the replication graph. If it is maintained
by a single site, then this becomes a centralized algorithm. We leave the distributed
construction and maintenance of the replication graph as an exercise.

Another alternative is to rely on the group communication mechanism provided
by the underlying communication infrastructure (if it can provide it). We discuss this
alternative in Section 13.4.

Recall from Section 13.3.1 that, in the case of partially replicated databases, eager
primary copy with limited replication transparency approach makes sense if the
update transactions access only data items whose master sites are the same, since the
update transactions are run completely at a master. The same problem exists in the
case of lazy primary copy, limited replication approach. The issue that arises in both
cases is how to design the distributed database so that meaningful transactions can be
executed. This problem has been studied within the context of lazy protocols [Chundi
et al., 1996] and a primary site selection algorithm was proposed that, given a set of
transactions, a set of sites, and a set of data items, finds a primary site assignment to
these data items (if one exists) such that the set of transactions can be executed to
produce a 1SR global history.

13.3.3.2 Single Master or Primary Copy with Full Replication Transparency

We now turn to alternatives that provide full transparency by allowing (both read
and update) transactions to be submitted at any site and forwarding their operations
to either the single master or to the appropriate primary master site. This is tricky
and involves two problems: the first is that, unless one is careful, 1SR global history
may not be guaranteed; the second problem is that a transaction may not see its own
updates. The following two examples demonstrate these problems.

Example 13.4. Consider the single master scenario and two sites M and B where M
holds the master copies of x and y and B holds their slave copies. Now consider the
following two transactions: T1 submitted at site B, while transaction T2 submitted at
site M:

T1: Read(x) T2: Write(x)
Write(y) Write(y)
Commit Commit

One way these would be executed under full transparency is as follows. T2 would
be executed at site M since it contains the master copies of both x and y. Sometime
after it commits, refresh transactions for its Writes are sent to site B to update the
slave copies. On the other hand, T1 would read the local copy of x at site B, but its
Write(x) would be forwarded to x’s master copy, which is at site M. Some time after
Write1(x) is executed at the master site and commits there, a refresh transaction

478 13 Data Replication

would be sent back to site B to update the slave copy. The following is a possible
sequence of steps of execution (Figure 13.5):

1. Read1(x) is submitted at site B, where it is performed;

2. Write2(x) is submitted at site M, and it is executed;

3. Write2(y) is submitted at site M, and it is executed;

4. T2 submits its Commit at site M and commits there;

5. Write1(x) is submitted at site B; since the master copy of x is at site M, the
Write is forwarded to M;

6. Write1(x) is executed at site M and the confirmation is sent back to site B;

7. T1 submits Commit at site B, which forwards it to site M; it is executed there
and B is informed of the commit where T1 also commits;

8. Site M now sends refresh transaction for T2 to site B where it is executed and
commits;

9. Site M finally sends refresh transaction for T1 to site B (this is for T1’s Write
that was executed at the master), it is executed at B and commits.

The following two histories are now generated at the two sites where the super-
script r on operations indicate that they are part of a refresh transaction:

HM = {W2(xM),W2(yM),C2,W1(yM),C1}
HB = {R1(xB),C1,W r

2 (xB),W r
2 (yB),Cr

2,W
r
1 (xB),Cr

1}

The resulting global history over the logical data items x and y is non-1SR. �

Example 13.5. Again consider a single master scenario, where site M holds the
master copy of x and site D holds its slave. Consider the following simple transaction:

T3: Write(x)
Read(x)
Commit

Following the same execution model as in Example 13.4, the sequence of steps
would be as follows:

1. Write3(x) is submitted at site D, which forwards it to site M for execution;

2. The Write is executed at M and the confirmation is sent back to site D;

3. Read3(x) is submitted at site D and is executed on the local copy;

4. T3 submits commit at D, which is forwarded to M, executed there and a
notification is sent back to site D, which also commits the transaction;

5. Site M sends a refresh transaction to site D for the W3(x) operation;

6. Site D executes the refresh transaction and commits it.

13.3 Replication Protocols 479

Site B Site M

R
1
(x)

result

{R
1
(x)

W
2
(x)

OK

W
2
(x)}

W
2
(y)

OK

W
2
(y)}

W
1
(x)

W
1
(x)}

OK

OK

W
1
(x)

C
1

C
1}

OK

OK

C
1

C
2

OK

C
2}

Refresh(T
2
)

Execute & Commit

Refresh(T
2
) {

OK

OK

{W
2

R(x), W
2

R(y)}

Refresh(T
1
)

Execute & Commit

Refresh(T
1
) {

OK

OK

{W
1

R(x)}

Time

Fig. 13.5 Time sequence of executions of transactions

480 13 Data Replication

Note that, since the refresh transaction is sent to site D sometime after T3 commits
at site M, at step 3 when it reads the value of x at site D, it reads the old value and
does not see the value of its own Write that just precedes Read. �

Because of these problems, there are not too many proposals for full transparency
in lazy replication algorithms. A notable exception is that by Bernstein et al. [2006]
that considers the single master case and provides a method for validity testing
by the master site, at commit point, similar to optimistic concurrency control. The
fundamental idea is the following. Consider a transaction T that writes a data item x.
At commit time of transaction T , the master generates a timestamp for it and uses this
timestamp to set a timestamp for the master copy of x (xM) that records the timestamp
of the last transaction that updated it (last modi f ied(xM)). This is appended to
refresh transactions as well. When refresh transactions are received at slaves they
also set their copies to this same value, i.e., last modi f ied(xi)← last modi f ied(xM).
The timestamp generation for T at the master follows the following rule:

The timestamp for transaction T should be greater than all previously issued timestamps and
should be less than the last modi f ied timestamps of the data items it has accessed. If such a
timestamp cannot be generated, then T is aborted.3

This test ensures that read operations read correct values. For example, in Ex-
ample 13.4, master site M would not be able to assign an appropriate timestamp
to transaction T1 when it commits, since the last modi f ied(xM) would reflect the
update performed by T2. Therefore, T1 would be aborted.

Although this algorithm handles the first problem we discussed above, it does not
automatically handle the problem of a transaction not seeing its own writes (what
we referred to as transaction inversion earlier). To address this issue, it has been
suggested that a list be maintained of all the updates that a transaction performs and
this list is consulted when a Read is executed. However, since only the master knows
the updates, the list has to be maintained at the master and all the Reads (as well as
Writes) have to be executed at the master.

13.3.4 Lazy Distributed Protocols

Lazy distributed replication protocols are the most complex ones owing to the fact
that updates can occur on any replica and they are propagated to the other replicas
lazily (Figure 13.6).

The operation of the protocol at the site where the transaction is submitted is
straightforward: both Read and Write operations are executed on the local copy,
and the transaction commits locally. Sometime after the commit, the updates are
propagated to the other sites by means of refresh transactions.

3 The original proposal handles a wide range of freshness constraints, as we discussed earlier;
therefore, the rule is specified more generically. However, since our discussion primarily focuses on
1SR behavior, this (more strict) recasting of the rule is appropriate.

13.3 Replication Protocols 481

Site A

Transaction

Write(x) Commit

Site B Site C Site D

Transaction

Write(x) Commit

�� � ��

�

Fig. 13.6 Lazy Distributed Replication Protocol Actions. (1) Two updates are applied on two local
replicas; (2) Transaction commit makes the updates permanent; (3) The updates are independently
propagated to the other replicas.

The complications arise in processing these updates at the other sites. When
the refresh transactions arrive at a site, they need to be locally scheduled, which
is done by the local concurrency control mechanism. The proper serialization of
these refresh transactions can be achieved using the techniques discussed in previous
sections. However, multiple transactions can update different copies of the same data
item concurrently at different sites, and these updates may conflict with each other.
These changes need to be reconciled, and this complicates the ordering of refresh
transactions. Based on the results of reconciliation, the order of execution of the
refresh transactions is determined and updates are applied at each site.

The critical issue here is reconciliation. One can design a general purpose rec-
onciliation algorithm based on heuristics. For example, updates can be applied in
timestamp order (i.e., those with later timestamps will always win) or one can give
preference to updates that originate at certain sites (perhaps there are more important
sites). However, these are ad hoc methods and reconciliation is really dependent
upon application semantics. Furthermore, whatever reconciliation technique is used,
some of the updates are lost. Note that timestamp-based ordering will only work if
timestamps are based on local clocks that are synchronized. As we discussed earlier,
this is hard to achieve in large-scale distributed systems. Simple timestamp-based
approach, which concatenates a site number and local clock, gives arbitrary pref-
erence between transactions that may have no real basis in application logic. The
reason timestamps work well in concurrency control and not in this case is because
in concurrency control we are only interested in determining some order; here we
are interested in determining a particular order that is consistent with application
semantics.

482 13 Data Replication

13.4 Group Communication

As discussed in the previous section, the overhead of replication protocols can be
high – particularly in terms of message overhead. A very simple cost model for
the replication algorithms is as follows. If there are n replicas and each transaction
consists of m update operations, then each transaction issues n ∗m messages (if
multicast communication is possible, m messages would be sufficient). If the system
wishes to maintain a throughput of k transactions-per-second, this results in k ∗n∗m
messages per second (or k∗m in the case of multicasting). One can add sophistication
to this cost function by considering the execution time of each operation (perhaps
based on system load) to get a cost function in terms of time. The problem with many
of the replication protocols discussed above (in particular the distributed ones) is that
their message overhead is high.

A critical issue in efficient implementation of these protocols is to reduce the
message overhead. Solutions have been proposed that use group communication pro-
tocols [Chockler et al., 2001] together with non-traditional techniques for processing
local transactions [Stanoi et al., 1998; Kemme and Alonso, 2000a,b; Patiño-Martı́nez
et al., 2000; Jiménez-Peris et al., 2002]. These solutions introduce two modifications:
they do not employ 2PC at commit time, but rely on the underlying group commu-
nication protocols to ensure agreement, and they use deferred update propagation
rather than synchronous.

Let us first review the group communication idea. A group communication system
enables a node to multicast a message to all nodes of a group with a delivery
guarantee, i.e., the message is eventually delivered to all nodes. Furthermore, it
can provide multicast primitives with different delivery orders only one of which is
important for our discussion: total order. In total ordered multicast, all messages sent
by different nodes are delivered in the same total order at all nodes. This is important
in understanding the following discussion.

We will demonstrate the use of group communication by considering two proto-
cols. The first one is an alternative eager distributed protocol [Kemme and Alonso,
2000a], while the second one is a lazy centralized protocol [Pacitti et al., 1999].

The group communication-based eager distributed protocol due to Kemme and
Alonso [2000a] uses a local processing strategy where Write operations are carried
out on local shadow copies where the transaction is submitted and utilizes total or-
dered group communication to multicast the set of write operations of the transaction
to all the other replica sites. Total ordered communication guarantees that all sites
receive the write operations in exactly the same order, thereby ensuring identical seri-
alization order at every site. For simplicity of exposition, in the following discussion,
we assume that the database is fully replicated and that each site implements a 2PL
concurrency control algorithm.

The protocol executes a transaction Ti in four steps (local concurrency control
actions are not indicated):

I. Local processing phase. A Readi(x) operation is performed at the site where
it is submitted (this is the master site for this transaction). A Writei(x) op-

13.4 Group Communication 483

eration is also performed at the master site, but on a shadow copy (see the
previous chapter for a discussion of shadow paging).

II. Communication phase. If Ti consists only of Read operations, then it can
be committed at the master site. If it involves Write operations (i.e., if it is
an update transaction), then the TM at Ti’s master site (i.e., the site where
Ti is submitted) assembles the writes into one write message WMi

4 and
multicasts it to all the replica sites (including itself) using total ordered group
communication.

III. Lock phase. When WMi is delivered at a site S j, it requests all locks in WMi
in an atomic step. This can be done by acquiring a latch (lighter form of a
lock) on the lock table that is kept until all the locks are granted or requests
are enqueued. The following actions are performed:

1. For each Write(x) in WMi (let x j refer to the copy of x that exists at
site S j), the following are performed:

(a) If there are no other transactions that have locked x j, then the
write lock on x j is granted.

(b) Otherwise a conflict test is performed:

• If there is a local transaction Tk that has already locked
x j, but is in its local read or communication phases, then
Tk is aborted. Furthermore, if Tk is in its communication
phase, a final decision message Abort is multicast to all
the sites. At this stage, read/write conflicts are detected
and local read transactions are simply aborted. Note that
only local read operations obtain locks during the local
execution phase, since local writes are only executed on
shadow copies. Therefore, there is no need to check for
write/write conflicts at this stage.

• Otherwise, Wi(x j) lock request is put on queue for x j.

2. If Ti is a local transaction (recall that the message is also sent to the site
where Ti originates, in which case j = i), then the site can commit the
transaction, so it multicasts a Commit message. Note that the commit
message is sent as soon as the locks are requested and not after writes;
thus this is not a 2PC execution.

IV. Write phase. When a site is able to obtain the write lock, it applies the
corresponding update (for the master site, this means that the shadow copy
is made the valid version). The site where Ti is submitted can commit and
release all the locks. Other sites have to wait for the decision message and
terminate accordingly.

4 What is being sent are the updated data items (i.e., state transfer).

484 13 Data Replication

Note that in this protocol, the important thing is to ensure that the lock phases of
the concurrent transactions are executed in the same order at each site; that is what
total ordered multicasting achieves. Also note that there is no ordering requirement
on the decision messages (step III.2) and these may be delivered in any order, even
before the delivery of the corresponding WM. If this happens, then the sites that
receive the decision message before WM simply register the decision, but do not take
any action. When WM message arrives, they can execute the lock and write phases
and terminate the transaction according to the previously delivered decision message.

This protocol is significantly better, in terms of performance, than the naive one
discussed in Section 13.3.2. For each transaction, the master site sends two messages:
one when it sends the WM and the second one when it communicates the decision.
Thus, if we wish to maintain a system throughput of k transactions-per-second, the
total number of messages is 2k rather than k∗m, as is the case with the naive protocol
(assuming multicast in both cases). Furthermore, system performance is improved by
the use of deferred eager propagation since synchronization among replica sites for
all Write operations is done once at the end rather than throughout the transaction
execution.

The second example of the use of group communication that we will discuss is in
the context of lazy centralized algorithms. Recall that an important issue in this case
is to ensure that the refresh transactions are ordered the same way at all the involved
slaves so that the database states converge. If totally ordered multicasting is available,
the refresh transactions sent by different master sites would be delivered in the same
order at all the slaves. However, total order multicast has high messaging overhead
which may limit its scalability. It is possible to relax the ordering requirement of
the communication system and let the replication protocol take responsibility for
ordering the execution of refresh transactions. We will demonstrate this alternative by
means of a proposal due to Pacitti et al. [1999]. The protocol assumes FIFO ordered
multicast communication with a bounded delay for communication (call it Max), and
assumes that the clocks are loosely synchronized so that they may only be out of sync
by up to ε . It further assumes that there is an appropriate transaction management
functionality at each site. The result of the replication protocol at each slave is
to maintain a “running queue” that holds an ordered list of refresh transactions,
which is the input to the transaction manager for local execution. Thus, the protocol
ensures that the orders in the running queues at each slave site where a set of refresh
transactions run are the same.

At each slave site, a “pending queue” is maintained for each master site of this
slave (i.e., if the slave site has replicas of x and y whose master sites are Site1 and
Site2, respectively, then there are two pending queues, q1 and q2, corresponding to
master sites Site1 and Site2, respectively). When a refresh transaction RT k

i is created
at a master site Sitek, it is assigned a timestamp ts(RTi) that corresponds to the real
time value at the commit time of the corresponding update transaction Ti. When RTi
arrives at a slave, it is put on queue qk. At each message arrival the top elements
of all pending queues are scanned and the one with the lowest timestamp is chosen
as the new RT (new RT) to be handled. If the new RT has changed since the last
cycle (i.e., a new RT arrived with a lower timestamp than what was chosen in the

13.5 Replication and Failures 485

previous cycle), then the one with the lower timestamp becomes the new RT and is
considered for scheduling.

When a refresh transaction is chosen as the new RT , it is not immediately put
on the “running queue” for the transaction manager; the scheduling of a refresh
transaction takes into account the maximum delay and the possible drift in local
clocks. This is done to ensure that any refresh transaction that may be delayed has a
chance of reaching the slave. The time when an RTi is put into the “running queue” at
a slave site is delivery time = ts(new RT)+Max+ε . Since the communication sys-
tem guarantees an upper bound of Max for message delivery and since the maximum
drift in local clocks (that determine timestamps) is ε , a refresh transaction cannot be
delayed by more than the delivery time before reaching all of the intended slaves.
Thus, the protocol guarantees that a refresh transaction is scheduled for execution at
a slave when the following hold: (1) all the write operations of the corresponding
update transaction are performed at the master, (2) according to the order determined
by the timestamp of the refresh transaction (which reflects the commit order of the
update transaction), and (3) at the earliest at real time equivalent to its delivery time.
This ensures that the updates on secondary copies at the slave sites follow the same
chronological order in which their primary copies were updated and this order will be
the same at all of the involved slaves, assuming that the underlying communication
infrastructure can guarantee Max and ε . This is an example of a lazy algorithm that
ensures 1SR global history, but weak mutual consistency, allowing the replica values
to diverge by up to a predetermined time period.

13.5 Replication and Failures

Up to this point, we have focused on replication protocols in the absence of any fail-
ures. What happens to mutual consistency concerns if there are system failures? The
handling of failures differs between eager replication and lazy replication approaches.

13.5.1 Failures and Lazy Replication

Let us first consider how lazy replication techniques deal with failures. This case
is relatively easy since these protocols allow divergence between the master copies
and the replicas. Consequently, when communication failures make one or more
sites unreachable (the latter due to network partitioning), the sites that are available
can simply continue processing. Even in the case of network partitioning, one can
allow operations to proceed in multiple partitions independently and then worry
about the convergence of the database states upon repair using the conflict resolution
techniques discussed in Section 13.3.4. Before the merge, databases at multiple
partitions diverge, but they are reconciled at merge time.

486 13 Data Replication

13.5.2 Failures and Eager Replication

Let us now focus on eager replication, which is considerably more involved. As we
noted earlier, all eager techniques implement some sort of ROWA protocol, ensuring
that, when the update transaction commits, all of the replicas have the same value.
ROWA family of protocols is attractive and elegant. However, as we saw during the
discussion of commit protocols, it has one significant drawback. Even if one of the
replicas is unavailable, then the update transaction cannot be terminated. So, ROWA
fails in meeting one of the fundamental goals of replication, namely providing higher
availability.

An alternative to ROWA which attempts to address the low availability problem
is the Read-One/Write-All Available (ROWA-A) protocol. The general idea is that
the write commands are executed on all the available copies and the transaction
terminates. The copies that were unavailable at the time will have to “catch up” when
they become available.

There have been various versions of this protocol [Helal et al., 1997], two of
which will be discussed here. The first one is known as the available copies protocol
[Bernstein and Goodman, 1984; Bernstein et al., 1987]. The coordinator of an update
transaction Ti (i.e., the master where the transaction is executing) sends each Wi(x) to
all the slave sites where replicas of x reside, and waits for confirmation of execution
(or rejection). If it times out before it gets acknowledgement from all the sites, it
considers those which have not replied as unavailable and continues with the update
on the available sites. The unavailable slave sites update their databases to the latest
state when they recover. Note, however, that these sites may not even be aware of the
existence of Ti and the update to x that Ti has made if they had become unavailable
before Ti started.

There are two complications that need to be addressed. The first one is the
possibility that the sites that the coordinator thought were unavailable were in fact up
and running and may have already updated x but their acknowledgement may not
have reached the coordinator before its timer ran out. Second, some of these sites may
have been unavailable when Ti started and may have recovered since then and have
started executing transactions. Therefore, the coordinator undertakes a validation
procedure before committing Ti:

1. The coordinator checks to see if all the sites it thought were unavailable are
still unavailable. It does this by sending an inquiry message to every one
of these sites. Those that are available reply. If the coordinator gets a reply
from one of these sites, it aborts Ti since it does not know the state that the
previously unavailable site is in: it could have been that the site was available
all along and had performed the original Wi(x) but its acknowledgement
was delayed (in which case everything is fine), or it could be that it was
indeed unavailable when Ti started but became available later on and perhaps
even executed Wj(x) on behalf of another transaction Tj. In the latter case,
continuing with Ti would make the execution schedule non-serializable.

13.5 Replication and Failures 487

2. If the coordinator of T does not get any response from any of the sites that it
thought were unavailable, then it checks to make sure that all the sites that
were available when Wi(x) executed are still available. If they are, then T
can proceed to commit. Naturally, this second step can be integrated into a
commit protocol.

The second ROWA-A variant that we will discuss is the distributed ROWA-A
protocol. In this case, each site S maintains a set, VS, of sites that it believes to be
available; this is the “view” that S has of the system configuration. In particular,
when a transaction Ti is submitted, its coordinator’s view reflects all the sites that the
coordinator knows to be available (let us denote this as VC(Ti) for simplicity). A Ri(x)
is performed on any replica in VC(Ti) and a Wi(x) updates all copies in VC(Ti). The
coordinator checks its view at the end of Ti, and if the view has changed since Ti’s
start, then Ti is aborted. To modify V , a special atomic transaction is run at all sites,
ensuring that no concurrent views are generated. This can be achieved by assigning
timestamps to each V when it is generated and ensuring that a site only accepts a new
view if its version number is greater than the version number of that site’s current
view.

The ROWA-A class of protocols are more resilient to failures, including network
partitioning, than the simple ROWA protocol.

Another class of eager replication protocols are those based on voting. The
fundamental characteristics of voting were presented in the previous chapter when
we discussed network partitioning in non-replicated databases. The general ideas
hold in the replicated case. Fundamentally, each read and write operation has to
obtain a sufficient number of votes to be able to commit. These protocols can be
pessimistic or optimistic. In what follows we discuss only pessimistic protocols. An
optimistic version compensates transactions to recover if the commit decision cannot
be confirmed at completion [Davidson, 1984]. This version is suitable wherever
compensating transactions are acceptable (see Chapter 10).

The initial voting algorithm was proposed by Thomas [1979] and an early sug-
gestion to use quorum-based voting for replica control is due to Gifford [1979].
Thomas’s algorithm works on fully replicated databases and assigns an equal vote to
each site. For any operation of a transaction to execute, it must collect affirmative
votes from a majority of the sites. Gifford’s algorithm, on the other hand, works with
partially replicated databases (as well as with fully replicated ones) and assigns a
vote to each copy of a replicated data item. Each operation then has to obtain a read
quorum (Vr) or a write quorum (Vw) to read or write a data item, respectively. If a
given data item has a total of V votes, the quorums have to obey the following rules:

1. Vr +Vw >V

2. Vw >V/2

As the reader may recall from the preceding chapter, the first rule ensures that a
data item is not read and written by two transactions concurrently (avoiding the read-
write conflict). The second rule, on the other hand, ensures that two write operations

488 13 Data Replication

from two transactions cannot occur concurrently on the same data item (avoiding
write-write conflict). Thus the two rules ensure that serializability and one-copy
equivalence are maintained.

In the case of network partitioning, the quorum-based protocols work well since
they basically determine which transactions are going to terminate based on the votes
that they can obtain. The vote allocation and threshold rules given above ensure that
two transactions that are initiated in two different partitions and access the same data
cannot terminate at the same time.

The difficulty with this version of the protocol is that transactions are required
to obtain a quorum even to read data. This significantly and unnecessarily slows
down read access to the database. We describe below another quorum-based voting
protocol that overcomes this serious performance drawback [Abbadi et al., 1985].

The protocol makes certain assumptions about the underlying communication
layer and the occurrence of failures. The assumption about failures is that they are
“clean.” This means two things:

1. Failures that change the network’s topology are detected by all sites instanta-
neously.

2. Each site has a view of the network consisting of all the sites with which it
can communicate.

Based on the presence of a communication network that can ensure these two
conditions, the replica control protocol is a simple implementation of the ROWA-A
principle. When the replica control protocol attempts to read or write a data item, it
first checks if a majority of the sites are in the same partition as the site at which the
protocol is running. If so, it implements the ROWA rule within that partition: it reads
any copy of the data item and writes all copies that are in that partition.

Notice that the read or the write operation will execute in only one partition.
Therefore, this is a pessimistic protocol that guarantees one-copy serializability, but
only within that partition. When the partitioning is repaired, the database is recovered
by propagating the results of the update to the other partitions.

A fundamental question with respect to implementation of this protocol is whether
or not the failure assumptions are realistic. Unfortunately, they may not be, since
most network failures are not “clean.” There is a time delay between the occurrence
of a failure and its detection by a site. Because of this delay, it is possible for one
site to think that it is in one partition when in fact subsequent failures have placed
it in another partition. Furthermore, this delay may be different for various sites.
Thus two sites that were in the same partition but are now in different partitions may
proceed for a while under the assumption that they are still in the same partition. The
violations of these two failure assumptions have significant negative consequences
on the replica control protocol and its ability to maintain one-copy serializability.

The suggested solution is to build on top of the physical communication layer
another layer of abstraction which hides the “unclean” failure characteristics of the
physical communication layer and presents to the replica control protocol a com-
munication service that has “clean” failure properties. This new layer of abstraction

13.6 Replication Mediator Service 489

provides virtual partitions within which the replica control protocol operates. A
virtual partition is a group of sites that have agreed on a common view of who is in
that partition. Sites join and depart from virtual partitions under the control of this
new communication layer, which ensures that the clean failure assumptions hold.

The advantage of this protocol is its simplicity. It does not incur any overhead to
maintain a quorum for read accesses. Thus the reads can proceed as fast as they would
in a non-partitioned network. Furthermore, it is general enough so that the replica
control protocol does not need to differentiate between site failures and network
partitions.

Given alternative methods for achieving fault-tolerance in the case of replicated
databases, a natural question is what the relative advantages of these methods are.
There have been a number of studies that analyze these techniques, each with vary-
ing assumptions. A comprehensive study suggests that ROWA-A implementations
achieve better scalability and availability than quorum techniques [Jiménez-Peris
et al., 2003].

13.6 Replication Mediator Service

The replication protocols we have covered so far are suitable for tightly integrated
distributed database systems where we can insert the protocols into each component
DBMS. In multidatabase systems, replication support has to be supported outside the
DBMSs by mediators. In this section we discuss how to provide replication support at
the mediator level by means of an example protocol called NODO [Patiño-Martı́nez
et al., 2000].

The NODO (NOn-Disjoint conflict classes and Optimistic multicast) protocol
is a hybrid between distributed and primary copy – it permits transactions to be
submitted at any site, but it does have the notion of a primary copy for a data item. It
uses group communications and optimistic delivery to reduce latency. The optimistic
delivery technique delivers a message optimistically as soon as it is received without
guaranteeing any order among messages. The message is said to be “opt-delivered”.
When the total order of the message is established, then the message is to-delivered.
Although optimistic delivery does not guarantee any order, most of the time the order
will be the same as total ordering. This fact is exploited by NODO to overlap the total
ordering of the transaction request with the transaction execution at the master node,
thus masking the latency of total ordering. The protocol also executes transactions
optimistically (see Section 11.5), and may abort them if necessary.

In the following discussion, we will assume a fully replicated database for sim-
plicity. This allows us to ignore issues such as finding the primary copy site, how to
execute a transaction over a set of data items that have different primary copies, etc.
In the fully replicated environment, all of the sites in the system form a multicast
group.

It is assumed that the data items are grouped into disjoint sets and each set has
a primary copy. Each transaction accesses a particular set of items, and, as in all

490 13 Data Replication

primary copy techniques, it first executes at the primary copy site, and its writes are
then propagated to the slave sites. The transaction is said to be local to its primary
copy site.

Each set of data items is called a conflict class, and the protocol exploits the
knowledge of transactions’ conflict classes to increase concurrency. Two transactions
that access the same conflict class have a high probability of conflict, while two
transactions that access different conflict classes can run in parallel. A transaction
can access several conflict classes and this must be statically known before execution
(e.g., by analyzing the transaction code). Thus, conflict classes are further abstracted
into conflict class groups. Each conflict class group has a single primary copy (i.e.,
the primary copy of one of the individual conflict classes in the group) where all
transactions on that conflict class group must be executed. The same individual
conflict class can be in different conflict class groups. For instance, if Si be the
primary copy site of {Cx,Cy} and S j be the primary copy site of {Cy}, transactions
T1 on {Cx,Cy} and T2 on {Cy} are executed at Si and S j, respectively.

Each transaction is associated with a single conflict class group, and therefore, it
has a single primary copy. Each site manages a number of queues for its incoming
transactions, one per individual conflict class (not one per conflict class group). The
processing of a transaction proceeds in the following way:

1. A transaction is submitted by an application at a site.

2. That site multicasts the transaction to the multicast group (which is the entire
set of sites since we are assuming full replication).

3. When the transaction is opt-delivered at a site, it is appended to the queue of
all the individual classes included in its conflict class group.

4. At the primary copy site, when the transaction becomes the first in the queue of
all the individual conflict classes of its conflict class group, it is optimistically
executed.

5. When the transaction is to-delivered at a site, it is checked whether its op-
timistic ordering was the same as the total ordering. If the optimistic order
was wrong, the transaction is reordered in all the queues according to the
total order. The primary copy site, in addition, aborts the transaction (if it was
already executed) and re-executes it when it again gets to the head of all the
relevant queues. If the optimistic ordering was correct, the primary copy site
extracts the resulting write set of the transaction and multicasts (without total
ordering) it to the multicast group.

6. When the write set is received at the primary copy site (remember that in this
case the primary copy site is also in the multicast group, so it receives its own
transmission), it commits the transaction. When the write set is received at a
slave site and the transaction becomes the first in all the relevant queues, its
write set is applied, and then the transaction commits.

13.7 Conclusion 491

Example 13.6. Let site Si, respectively S j, be the master of the conflict class group
{Cx,Cy}, respectively {Cx} and {Cy}. Let transaction T1 be on {Cx,Cy}, T2 on {Cy}
and T3 on {Cx}. Thus, T1 is local to Si while T2 and T3 are local to S j. At Si and S j,
let transaction Ti be the i-th in the total order (i.e., the total order is T1→ T2→ T3).
Consider the following state of the queues Cx and Cy at Si and S j after the transactions
have been opt-delivered.

Si : Cx = [T1,T3];Cy = [T1,T2]

S j : Cx = [T3,T1];Cy = [T1,T2]

At Si T1 is the first in the queues Cx and Cy and thus it is executed. Similarly, at S j
T3 is at the head of Cx and thus, executed. When Si to-delivers T1, since the optimistic
ordering was correct, it extracts T1’s write set and multicasts it. Upon delivering
the write set of T1 at Si, T1 is committed. Upon delivering T1’s write set at S j, it is
realized that T1 was wrongly ordered after T3, and T1 is reordered before T3 and T3 is
aborted since its optimistic ordering was wrong. T1’s write set is then applied and
committed. At both Si and S j, T1 is removed from all the queues. Now T2 and T3 are
first of their queues at S j, their primary copy site, and both are executed in parallel.
Since they are in disjoint conflict class groups, their relative ordering is irrelevant.
Now T2 is to-delivered and since it is optimistic delivery was correct, its write set is
extracted and multicast. Upon delivery of the T2’s write set, S j commits T2, while Si
applies the write set and commits it. Finally, T3 is to-delivered and since its execution
was performed according to the total order, S j extracts T3’s write set and multicasts
it. Upon delivery of the T3’s writeset, S j commits T3. Similarly, Si applies the write
set and commits T3. The final ordering is T1→ T2→ T3 at both nodes. �

Interestingly, there are many cases where, in spite of an ordering mismatch
between opt and to-delivery, it is possible to commit transactions consistently by
using the optimistic rather than total ordering, thus minimizing the number of aborts
due to optimism failures. This fact is exploited by the REORDERING protocol
[Patiño-Martı́nez et al., 2005].

The implementation of the NODO protocol combines concurrency control with
group communication primitives and what has been traditionally done inside the
DBMS. This solution can be implemented outside a DBMS without a negligible
overhead, and thus supports DBMS autonomy Jiménez-Peris et al. [2002]. Similar
eager replication protocols have been proposed to support partial replication, where
copies can be stored at subsets of nodes [Sousa et al., 2001; Serrano et al., 2007].
Unlike full replication, partial replication increases access locality and reduces the
number of messages for propagating updates to replicas.

13.7 Conclusion

In this chapter we discussed different approaches to data replication and presented
protocols that are appropriate under different circumstances. Each of the alterna-

492 13 Data Replication

tive protocols we have discussed have their advantages and disadvantages. Eager
centralized protocols are simple to implement, they do not require update coordina-
tion across sites, and they are guaranteed to lead to one-copy serializable histories.
However, they put a significant load on the master sites, potentially causing them to
become bottlenecks. Consequently, they are harder to scale, in particular in the single
master site architecture – primary copy versions have better scalability properties
since the master responsibilities are somewhat distributed. These protocols result in
long response times (the longest among the four alternatives), since the access to
any data has to wait until the commit of any transaction that is currently updating it
(using 2PC, which is expensive). Furthermore, the local copies are used sparingly,
only for read operations. Thus, if the workload is update-intensive, eager centralized
protocols are likely to suffer from bad performance.

Eager distributed protocols also guarantee one-copy serializability and provide an
elegant symmetric solution where each site performs the same function. However,
unless there is communication system support for efficient multicasting, they result
in very high number of messages that increase network load and result in high
transaction response times. This also constrains their scalability. Furthermore, naive
implementations of these protocols will cause significant number of deadlocks since
update operations are executed at multiple sites concurrently.

Lazy centralized protocols have very short response times since transactions
execute and commit at the master, and do not need to wait for completion at the
slave sites. There is also no need to coordinate across sites during the execution of an
update transaction, thus reducing the number of messages. On the other hand, mutual
consistency (i.e., freshness of data at all copies) is not guaranteed as local copies can
be out of date. This means that it is not possible to do a local read and be assured
that the most up-to-date copy is read.

Finally, lazy multi-master protocols have the shortest response times and the
highest availability. This is because each transaction is executed locally, with no
distributed coordination. Only after they commit are the other replicas updated
through refresh transactions. However, this is also the shortcoming of these protocols
– different replicas can be updated by different transactions, requiring elaborate
reconciliation protocols and resulting in lost updates.

Replication has been studied extensively within the distributed computing commu-
nity as well as the database community. Although there are considerable similarities
in the problem definition in the two environments, there are also important differ-
ences. Perhaps the two more important differences are the following. Data replication
focuses on data, while replication of computation is equally important in distributed
computing. In particular, concerns about data replication in mobile environments
that involve disconnected operation have received considerable attention. Secondly,
database and transaction consistency is of paramount importance in data replication;
in distributed computing, consistency concerns are not as high on the list of priorities.
Consequently, considerably weaker consistency criteria have been defined.

Replication has been studied within the context of parallel database systems, in
particular within parallel database clusters. We discuss these separately in Chapter
14.

13.8 Bibliographic Notes 493

13.8 Bibliographic Notes

Replication and replica control protocols have been the subject of significant investi-
gation since early days of distributed database research. This work is summarized
very well in [Helal et al., 1997]. Replica control protocols that deal with network
partitioning are surveyed in [Davidson et al., 1985].

A landmark paper that defined a framework for various replication algorithms and
argued that eager replication is problematic (thus opening up a torrent of activity on
lazy techniques) is [Gray et al., 1996]. The characterization that we use in this chapter
is based on this framework. A more detailed characterization is given in [Wiesmann
et al., 2000]. A recent survey on optimistic (or lazy) replication techniques is [Saito
and Shapiro, 2005]. The entire topic is discussed at length in [Kemme et al., 2010]

Freshness, in particular for lazy techniques, have been a topic of some study.
Alternative techniques to ensure “better” freshness are discussed in [Pacitti et al.,
1998; Pacitti and Simon, 2000; Röhm et al., 2002a; Pape et al., 2004; Akal et al.,
2005].

There are many different versions of quorum-based protocols. Some of these
are discussed in [Triantafillou and Taylor, 1995; Paris, 1986; Tanenbaum and van
Renesse, 1988]. Besides the algorithms we have described here, some notable others
are given in [Davidson, 1984; Eager and Sevcik, 1983; Herlihy, 1987; Minoura
and Wiederhold, 1982; Skeen and Wright, 1984; Wright, 1983]. These algorithms
are generally called static since the vote assignments and read/write quorums are
fixed a priori. An analysis of one such protocol (such analyses are rare) is given in
[Kumar and Segev, 1993]. Examples of dynamic replication protocols are in [Jajodia
and Mutchler, 1987; Barbara et al., 1986, 1989] among others. It is also possible
to change the way data are replicated. Such protocols are called adaptive and one
example is described in [Wolfson, 1987].

An interesting replication algorithm based on economic models is described in
[Sidell et al., 1996].

Exercises

Problem 13.1. For each of the four replication protocols (eager centralized, eager
distributed, lazy centralized, lazy distributed), give a scenario/application where the
approach is more suitable than the other approaches. Explain why.

Problem 13.2. A company has several geographically distributed warehouses storing
and selling products. Consider the following partial database schema:

ITEM(ID, ItemName, Price, . . .)

STOCK(ID, Warehouse, Quantity, . . .)

CUSTOMER(ID, CustName, Address, CreditAmt, . . .)

CLIENT-ORDER(ID, Warehouse, Balance, . . .)

494 13 Data Replication

ORDER(ID, Warehouse, CustID, Date)

ORDER-LINE(ID, ItemID, Amount, . . .)
The database contains relations with product information (ITEM contains the gen-

eral product information, STOCK contains, for each product and for each warehouse,
the number of pieces currently on stock). Furthermore, the database stores informa-
tion about the clients/customers, e.g., general information about the clients is stored
in the CUSTOMER table. The main activities regarding the clients are the rdering of
products, the payment of bills and general information requests. There exist several
tables to register the orders of a customer. Each order is regustered in the ORDER
and ORDER-LINE tables. For each order/purchase, one entry exists in the order
table, having an ID, indicating the customer-id, the warehouse at which the order
was submitted, the date of the order, etc. A client can have several orders pending
at a warehouse. Within each order, several products can be ordered. ORDER-LINE
contains an entry for each product of the order, which may include one or more
products. CLIENT-ORDER is a summary table that lists, for each client and for each
warehouse, the sum of all existing orders.

(a) The company has a customer service group consisting of several employees
that receive customers’ orders and payments, query the data of local customers
to write bills or register paychecks, etc. Furthermore, they answer any type
of requests which the customers might have. For instance, ordering products
changes (update/insert) the CLIENT-ORDER, ORDER, ORDER-LINE, and
STOCK tables. To be flexible, each employee must be able to work with any
of the clients. The workload is estimated to be 80% queries and 20% updates.
Since the workload is query oriented, the management has decided to build
a cluster of PCs each equipped with its own database to accelerate queries
through fast local access. How would you replicate the data for this purpose?
Which replica control protocol(s) wold you use to keep the data consistent?

(b) The company’s management has to decide each fiscal quarter on their product
offerings and sales strategies. For this purpose, they must continually observe
and analyze the sales of the different products at the different warehouses as
well as observe consumer behavior. How would you replicate the data for this
purpose? Which replica control protocol(s) would you use to keep the data
consistent?

Problem 13.3 (*). An alternative to ensuring that the refresh transactions can be
applied at all of the slaves in the same order in lazy single master protocols with
limited transparency is the use of a replication graph as discussed in Section 13.3.3.
Develop a method for distributed management of the replication graph.

Problem 13.4. Consider data items x and y replicated across the sites as follows:

Site 1 Site 2 Site 3 Site 4
x x x

y y y

13.8 Bibliographic Notes 495

(a) Assign votes to each site and give the read and write quorum.
(b) Determine the possible ways that the network can partition and for each specify

in which group of sites a transaction that updates (reads and writes) x can be
terminated and what the termination condition would be.

(c) Repeat (b) for y.

Problem 13.5 (**). In the NODO protocol, we have seen that each conflict class
group has a master. However, this is not inherent to the protocol. Design a multi-
master variation of NODO in which a transaction might be executed by any replica.
What condition should be enforced to guarantee that each updated transaction is
processed only by one replica?

Problem 13.6 (**). In the NODO protocol, if the DBMS could provide additional
introspection functionality, it would be possible to execute in certain circumstances
transactions of the same conflict class in parallel. Determine which functionality
would be needed from the DBMS. Also characterize formally under which circum-
stances concurrent execution of transactions in the same conflict class could be
allowed to be executed in parallel whilst respecting 1-copy consistency. Extend the
NODO protocol with this enhancement.

Chapter 14
Parallel Database Systems

Many data-intensive applications require support for very large databases (e.g.,
hundreds of terabytes or petabytes). Examples of such applications are e-commerce,
data warehousing, and data mining. Very large databases are typically accessed
through high numbers of concurrent transactions (e.g., performing on-line orders
on an electronic store) or complex queries (e.g., decision-support queries). The
first kind of access is representative of On-Line Transaction Processing (OLTP)
applications while the second is representative of On-Line Analytical Processing
(OLAP) applications. Supporting very large databases efficiently for either OLTP or
OLAP can be addressed by combining parallel computing and distributed database
management.

As introduced in Chapter 1, a parallel computer, or multiprocessor, is a special
kind of distributed system made of a number of nodes (processors, memories and
disks) connected by a very fast network within one or more cabinets in the same room.
The main idea is to build a very powerful computer out of many small computers,
each with a very good cost/performance ratio, at a much lower cost than equivalent
mainframe computers. As discussed in Chapter 1, data distribution can be exploited
to increase performance (through parallelism) and availability (through replication).
This principle can be used to implement parallel database systems, i.e., database
systems on parallel computers [DeWitt and Gray, 1992; Valduriez, 1993]. Parallel
database systems can exploit the parallelism in data management in order to deliver
high-performance and high-availability database servers. Thus, they can support very
large databases with very high loads.

Most of the research on parallel database systems has been done in the context
of the relational model that provides a good basis for data-based parallelism. In
this chapter, we present the parallel database system approach as a solution to high-
performance and high-availability data management. We discuss the advantages and
disadvantages of the various parallel system architectures and we present the generic
implementation techniques.

Implementation of parallel database systems naturally relies on distributed
database techniques. However, the critical issues are data placement, parallel query
processing, and load balancing because the number of nodes may be much higher

497
DOI 10.1007/978-1-4419-8834-8_14, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

498 14 Parallel Database Systems

than in a distributed DBMS. Furthermore, a parallel computer typically provides
reliable, fast communication that can be exploited to efficiently implement distributed
transaction management and replication. Therefore, although the basic principles are
the same as in distributed DBMS, the techniques for parallel database systems are
fairly different.

This chapter is organized as follows. In Section 14.1, we clarify the objectives,
and discuss the functional and architectural aspects of parallel database systems. In
particular, we discuss the respective advantages and limitations of the parallel system
architectures (shared-memory, shared-disk, shared-nothing) along several important
dimensions including the perspective of both end-users, database administrators and
system developers. Then, we present the techniques for data placement in Section
14.2, query processing in Section 14.3 and load balancing in Section 14.4.

In Section 14.5, we present the use of parallel data management techniques in
database clusters, an important type of parallel database system implemented on a
cluster of PCs.

14.1 Parallel Database System Architectures

In this section we show the value of parallel systems for efficient database man-
agement. We motivate the needs for parallel database systems by reviewing the
requirements of very large information systems using current hardware technology
trends. We present the functional and architectural aspects of parallel database sys-
tems. In particular, we present and compare the main architectures: shared-memory,
shared-disk, shared-nothing and hybrid architectures.

14.1.1 Objectives

Parallel processing exploits multiprocessor computers to run application programs
by using several processors cooperatively, in order to improve performance. Its
prominent use has long been in scientific computing by improving the response
time of numerical applications [Kowalik, 1985; Sharp, 1987]. The developments in
both general-purpose parallel computers using standard microprocessors and parallel
programming techniques [Osterhaug, 1989] have enabled parallel processing to break
into the data processing field.

Parallel database systems combine database management and parallel processing
to increase performance and availability. Note that performance was also the objective
of database machines in the 70s and 80s [Hsiao, 1983]. The problem faced by
conventional database management has long been known as “I/O bottleneck” [Boral
and DeWitt, 1983], induced by high disk access time with respect to main memory
access time (typically hundreds of thousands times faster).

14.1 Parallel Database System Architectures 499

Initially, database machine designers tackled this problem through special-purpose
hardware, e.g., by introducing data filtering devices within the disk heads. However,
this approach failed because of poor cost/performance compared to the software
solution, which can easily benefit from hardware progress in silicon technology. A
notable exception to these failures was the CAFS-ISP hardware-based filtering device
[Babb, 1979] that was bundled within disk controllers for fast associative search. The
idea of pushing database functions closer to disk has received renewed interest with
the introduction of general-purpose microprocessors in disk controllers, thus leading
to intelligent disks [Keeton et al., 1998]. For instance, basic functions that require
costly sequential scan, e.g. select operations on tables with fuzzy predicates, can be
more efficiently performed at the disk level since they avoid overloading the DBMS
memory with irrelevant disk blocks. However, exploiting intelligent disks requires
adapting the DBMS, in particular, the query processor to decide whether to use the
disk functions. Since there is no standard intelligent disk technology, adapting to
different intelligent disk technologies hurts DBMS portability.

An important result, however, is in the general solution to the I/O bottleneck. We
can summarize this solution as increasing the I/O bandwidth through parallelism.
For instance, if we store a database of size D on a single disk with throughput T , the
system throughput is bounded by T . On the contrary, if we partition the database
across n disks, each with capacity D/n and throughput T ′ (hopefully equivalent to
T), we get an ideal throughput of n ∗T ′ that can be better consumed by multiple
processors (ideally n). Note that the main memory database system solution [Eich,
1989], which tries to maintain the database in main memory, is complementary rather
than alternative. In particular, the “memory access bottleneck” in main memory
systems can also be tackled using parallelism in a similar way. Therefore, parallel
database system designers have strived to develop software-oriented solutions in
order to exploit parallel computers.

A parallel database system can be loosely defined as a DBMS implemented on
a parallel computer. This definition includes many alternatives ranging from the
straightforward porting of an existing DBMS, which may require only rewriting
the operating system interface routines, to a sophisticated combination of parallel
processing and database system functions into a new hardware/software architecture.
As always, we have the traditional trade-off between portability (to several platforms)
and efficiency. The sophisticated approach is better able to fully exploit the oppor-
tunities offered by a multiprocessor at the expense of portability. Interestingly, this
gives different advantages to computer manufacturers and software vendors. It is
therefore important to characterize the main points in the space of alternative parallel
system architectures. In order to do so, we will make precise the parallel database
system solution and the necessary functions. This will be useful in comparing the
parallel database system architectures.

The objectives of parallel database systems are covered by those of distributed
DBMS (performance, availability, extensibility). Ideally, a parallel database system
should provide the following advantages.

500 14 Parallel Database Systems

1. High-performance. This can be obtained through several complementary
solutions: database-oriented operating system support, parallel data manage-
ment, query optimization, and load balancing. Having the operating system
constrained and “aware” of the specific database requirements (e.g., buffer
management) simplifies the implementation of low-level database functions
and therefore decreases their cost. For instance, the cost of a message can be
significantly reduced to a few hundred instructions by specializing the com-
munication protocol. Parallelism can increase throughput, using inter-query
parallelism, and decrease transaction response times, using intra-query paral-
lelism. However, decreasing the response time of a complex query through
large-scale parallelism may well increase its total time (by additional com-
munication) and hurt throughput as a side-effect. Therefore, it is crucial to
optimize and parallelize queries in order to minimize the overhead of par-
allelism, e.g., by constraining the degree of parallelism for the query. Load
balancing is the ability of the system to divide a given workload equally
among all processors. Depending on the parallel system architecture, it can
be achieved statically by appropriate physical database design or dynamically
at run-time.

2. High-availability. Because a parallel database system consists of many re-
dundant components, it can well increase data availability and fault-tolerance.
In a highly-parallel system with many nodes, the probability of a node failure
at any time can be relatively high. Replicating data at several nodes is useful to
support failover, a fault-tolerance technique that enables automatic redirection
of transactions from a failed node to another node that stores a copy of the
data. This provides uninterupted service to users. However, it is essential that
a node failure does not crate load imbalance, e.g., by doubling the load on the
available copy. Solutions to this problem require partitioning copies in such a
way that they can also be accessed in parallel.

3. Extensibility. In a parallel system, accommodating increasing database sizes
or increasing performance demands (e.g., throughput) should be easier. Ex-
tensibility is the ability to expand the system smoothly by adding processing
and storage power to the system. Ideally, the parallel database system should
demonstrate two extensibility advantages [DeWitt and Gray, 1992]: linear
speedup and linear scaleup see Figure 14.1. Linear speedup refers to a lin-
ear increase in performance for a constant database size while the number
of nodes (i.e., processing and storage power) are increased linearly. Linear
scaleup refers to a sustained performance for a linear increase in both database
size and number of nodes. Furthermore, extending the system should require
minimal reorganization of the existing database.

14.1 Parallel Database System Architectures 501

Nb of Nodes

P
e
rf

o
rm

a
n
c
e

Ideal

Nb of Nodes, DB size

P
e
rf

o
rm

a
n
c
e

Ideal

(a) Linear speedup (b) Linear scaleup

Fig. 14.1 Extensibility Metrics

14.1.2 Functional Architecture

Assuming a client/server architecture, the functions supported by a parallel database
system can be divided into three subsystems much like in a typical DBMS. The
differences, though, have to do with implementation of these functions, which must
now deal with parallelism, data partitioning and replication, and distributed transac-
tions. Depending on the architecture, a processor node can support all (or a subset)
of these subsystems. Figure 14.2 shows the architecture using these subsystems due
to Bergsten et al. [1991].

1. Session Manager. It plays the role of a transaction monitor, providing support
for client interactions with the server. In particular, it performs the connections
and disconnections between the client processes and the two other subsystems.
Therefore, it initiates and closes user sessions (which may contain multiple
transactions). In case of OLTP sessions, the session manager is able to trigger
the execution of pre-loaded transaction code within data manager modules.

2. transaction Manager. It receives client transactions related to query com-
pilation and execution. It can access the database directory that holds all
meta-information about data and programs. The directory itself should be
managed as a database in the server. Depending on the transaction, it activates
the various compilation phases, triggers query execution, and returns the
results as well as error codes to the client application. Because it supervises
transaction execution and commit, it may trigger the recovery procedure in
case of transaction failure. To speed up query execution, it may optimize and
parallelize the query at compile-time.

3. Data Manager. It provides all the low-level functions needed to run compiled
queries in parallel, i.e., database operator execution, parallel transaction sup-
port, cache management, etc. If the transaction manager is able to compile
dataflow control, then synchronization and communication among data man-
ager modules is possible. Otherwise, transaction control and synchronization
must be done by a transaction manager module.

502 14 Parallel Database Systems

user

task
1

session
manager

Request Mgr

task
1

Data Mgr

task
1

Database Server

connect

create

Application Servers

user

task
2

user

task
n

Request Mgr

task
2

Request Mgr

task
n

Data Mgr

task
2

Data Mgr

task
m-1

Data Mgr

task
m

...

...

...

Fig. 14.2 General Architecture of a Parallel Database System

14.1.3 Parallel DBMS Architectures

As any system, a parallel database system represents a compromise in design choices
in order to provide the aforementioned advantages with a good cost/performance. One
guiding design decision is the way the main hardware elements, i.e., processors, main
memory, and disks, are connected through some fast interconnection network. There
are three basic parallel computer architectures depending on how main memory or
disk is shared: shared-memory, shared-disk and shared-nothing. Hybrid architectures
such as NUMA or cluster try to combine the benefits of the basic architectures. In
the rest of this section, when describing parallel architectures, we focus on the four
main hardware elements: interconnect, processors (P), main memory (M) and disks.
For simplicity, we ignore other elements such as processor cache and I/O bus.

14.1.3.1 Shared-Memory

In the shared-memory approach (see Figure 14.3), any processor has access to any
memory module or disk unit through a fast interconnect (e.g., a high-speed bus or
a cross-bar switch). All the processors are under the control of a single operating
system.

14.1 Parallel Database System Architectures 503

Current mainframe designs and symmetric multiprocessors (SMP) follow this
approach. Examples of shared-memory parallel database systems include XPRS
[Hong, 1992], DBS3 [Bergsten et al., 1991], and Volcano [Graefe, 1990], as well as
portings of major commercial DBMSs on SMP. In a sense, the implementation of
DB2 on an IBM3090 with 6 processors [Cheng et al., 1984] was the first example. All
shared-memory parallel database products today can exploit inter-query parallelism
to provide high transaction throughput and intra-query parallelism to reduce response
time of decision-support queries.

Interconnect

Shared memory

• • •

• • •

P P P

Fig. 14.3 Shared-Memory Architecture

Shared-memory has two strong advantages: simplicity and load balancing. Since
meta-information (directory) and control information (e.g., lock tables) can be shared
by all processors, writing database software is not very different than for single-
processor computers. In particular, inter-query parallelism comes for free. Intra-query
parallelism requires some parallelization but remains rather simple. Load balancing
is easy to achieve since it can be achieved at run-time using the shared-memory by
allocating each new task to the least busy processor.

Shared-memory has three problems: high cost, limited extensibility and low
availability. High cost is incurred by the interconnect that requires fairly complex
hardware because of the need to link each processor to each memory module or
disk. With faster processors (even with larger caches), conflicting accesses to the
shared-memory increase rapidly and degrade performance [Thakkar and Sweiger,
1990]. Therefore, extensibility is limited to a few tens of processors, typically up
to 16 for the best cost/performance using 4-processor boards. Finally, since the
memory space is shared by all processors, a memory fault may affect most processors
thereby hurting availability. The solution is to use duplex memory with a redundant
interconnect.

14.1.3.2 Shared-Disk

In the shared-disk approach (see Figure 14.4), any processor has access to any
disk unit through the interconnect but exclusive (non-shared) access to its main
memory. Each processor-memory node is under the control of its own copy of the

504 14 Parallel Database Systems

operating system. Then, each processor can access database pages on the shared
disk and cache them into its own memory. Since different processors can access the
same page in conflicting update modes, global cache consistency is needed. This is
typically achieved using a distributed lock manager that can be implemented using
the techniques described in Chapter 11. The first parallel DBMS that used shared-disk
is Oracle with an efficient implementation of a distributed lock manager for cache
consistency. Other major DBMS vendors such as IBM, Microsoft and Sybase provide
shared-disk implementations.

Interconnect

• • •

• • •

MPMP

Fig. 14.4 Shared-Disk Architecture

Shared-disk has a number of advantages: lower cost, high extensibility, load bal-
ancing, availability, and easy migration from centralized systems. The cost of the
interconnect is significantly less than with shared-memory since standard bus technol-
ogy may be used. Given that each processor has enough main memory, interference
on the shared disk can be minimized. Thus, extensibility can be better, typically
up to a hundred processors. Since memory faults can be isolated from other nodes,
availability can be higher. Finally, migrating from a centralized system to shared-disk
is relatively straightforward since the data on disk need not be reorganized.

Shared-disk suffers from higher complexity and potential performance problems.
It requires distributed database system protocols, such as distributed locking and
two-phase commit. As we have discussed in previous chapters, these can be complex.
Furthermore, maintaining cache consistency can incur high communication overhead
among the nodes. Finally, access to the shared-disk is a potential bottleneck.

14.1.3.3 Shared-Nothing

In the shared-nothing approach (see Figure 14.5), each processor has exclusive
access to its main memory and disk unit(s). Similar to shared-disk, each processor-
memory-disk node is under the control of its own copy of the operating system.
Then, each node can be viewed as a local site (with its own database and software)
in a distributed database system. Therefore, most solutions designed for distributed
databases such as database fragmentation, distributed transaction management and
distributed query processing may be reused. Using a fast interconnect, it is possible
to accommodate large numbers of nodes. As opposed to SMP, this architecture is
often called Massively Parallel Processor (MPP).

14.1 Parallel Database System Architectures 505

Many research prototypes have adopted the shared-nothing architecture, e.g.,
BUBBA [Boral et al., 1990], EDS [Group, 1990], GAMMA [DeWitt et al., 1986],
GRACE [Fushimi et al., 1986], and PRISMA [Apers et al., 1992], because it can
scale. The first major parallel DBMS product was Teradata’s Database Computer that
could accommodate a thousand processors in its early version. Other major DBMS
vendors such as IBM, Microsoft and Sybase provide shared-nothing implementations.

Interconnect

• • • MPMP

Fig. 14.5 Shared-Nothing Architecture

As demonstrated by the existing products, shared-nothing has three main virtues:
lower cost, high extensibility, and high availability. The cost advantage is better than
that of shared-disk that requires a special interconnect for the disks. By implementing
a distributed database design that favors the smooth incremental growth of the system
by the addition of new nodes, extensibility can be better (in the thousands of nodes).
With careful partitioning of the data on multiple disks, almost linear speedup and
linear scaleup could be achieved for simple workloads. Finally, by replicating data
on multiple nodes, high availability can also be achieved.

Shared-nothing is much more complex to manage than either shared-memory or
shared-disk. Higher complexity is due to the necessary implementation of distributed
database functions assuming large numbers of nodes. In addition, load balancing is
more difficult to achieve because it relies on the effectiveness of database partitioning
for the query workloads. Unlike shared-memory and shared-disk, load balancing is
decided based on data location and not the actual load of the system. Furthermore, the
addition of new nodes in the system presumably requires reorganizing the database
to deal with the load balancing issues.

14.1.3.4 Hybrid Architectures

Various possible combinations of the three basic architectures are possible to obtain
different trade-offs between cost, performance, extensibility, availability, etc. Hy-
brid architectures try to obtain the advantages of different architectures: typically
the efficiency and simplicity of shared-memory and the extensibility and cost of
either shared disk or shared nothing. In this section, we discuss two popular hybrid
architectures: NUMA and cluster.

506 14 Parallel Database Systems

NUMA.

With shared-memory, each processor has uniform memory access (UMA), with
constant access time, since both the virtual memory and the physical memory are
shared. One major advantage is that the programming model based on shared virtual
memory is simple. With either shared-disk or shared-nothing, both virtual and shared
memory are distributed, which yields scalability to large numbers of processors. The
objective of NUMA is to provide a shared-memory programming model and all
its benefits, in a scalable architecture with distributed memory. The term NUMA
reflects the fact that an access to the (virtually) shared memory may have a different
cost depending on whether the physical memory is local or remote to the processor.
The most successful class of NUMA multiprocessors is Cache Coherent NUMA
(CC-NUMA) [Goodman and Woest, 1988; Lenoski et al., 1992]. With CC-NUMA,
the main memory is physically distributed among the nodes as with shared-nothing
or shared-disk. However, any processor has access to all other processors’ memories
(see Figure 14.6). Each node can itself be an SMP. Similar to shared-disk, different
processors can access the same data in a conflicting update mode, so global cache
consistency protocols are needed. In order to make remote memory access efficient,
the only viable solution is to have cache consistency done in hardware through a
special consistent cache interconnect [Lenoski et al., 1992]. Because shared-memory
and cache consistency are supported by hardware, remote memory access is very
efficient, only several times (typically between 2 and 3 times) the cost of local access.

Consistent cache interconnect

• • • MPMP

Fig. 14.6 Cache coherent NUMA (CC-NUMA)

Most SMP manufacturers are now offering NUMA systems that can scale up to
a hundred processors. The strong argument for NUMA is that it does not require
any rewriting of the application software. However some rewriting is still necessary
in the database engine (and the operating system) to take full advantage of access
locality [Bouganim et al., 1999].

Cluster.

A cluster is a set of independent server nodes interconnected to share resources
and form a single system. The shared resources, called clustered resources, can be
hardware such as disk or software such as data management services. The server
nodes are made of off-the-shelf components ranging from simple PC components

14.1 Parallel Database System Architectures 507

to more powerful SMP. Using many off-the-shelf components is essential to obtain
the best cost/performance ratio while exploiting continuing progress in hardware
components. In its cheapest form, the interconnect can be a local network. However,
there are now fast standard interconnects for clusters (e.g., Myrinet and Infiniband)
that provide high bandwidth (Gigabits/sec) with low latency for message traffic.

Compared to a distributed system, a cluster is geographically concentrated (at a
single site) and made of homogeneous nodes. Its architecture can be either shared-
nothing or shared-disk. Shared-nothing clusters have been widely used because they
can provide the best cost/performance ratio and scale up to very large configurations
(thousands of nodes). However, because each disk is directly connected to a computer
via a bus, adding or replacing cluster nodes requires disk and data reorganization.
Shared-disk avoids such reorganization but requires disks to be globally accessible
by the cluster nodes. There are two main technologies to share disks in a cluster:
network-attached storage (NAS) and storage-area network (SAN). A NAS is a
dedicated device to shared disks over a network (usually TCP/IP) using a distributed
file system protocol such as Network File System (NFS). NAS is well suited for low
throughput applications such as data backup and archiving from PC’s hard disks.
However, it is relatively slow and not appropriate for database management as it
quickly becomes a bottleneck with many nodes. A storage area network (SAN)
provides similar functionality but with a lower level interface. For efficiency, it uses
a block-based protocol thus making it easier to manage cache consistency (at the
block level). In fact, disks in a SAN are attached to the network instead to the bus
as happens in Directly Attached Storage (DAS), but otherwise they are handled as
sharable local disks. Existing protocols for SANs extend their local disk counterparts
to run over a network (e.g., i-SCSI extends SCSI, and ATA-over-Ethernet extends
ATA). As a result, SAN provides high data throughput and can scale up to large
numbers of nodes. Its only limitation with respect to shared-nothing is its higher cost
of ownership.

A cluster architecture has important advantages. It combines the flexibility and
performance of shared-memory at each node with the extensibility and availability
of shared-nothing or shared-disk. Furthermore, using off-the-shelf shared-memory
nodes with a standard cluster interconnect makes it a cost-effective alternative to
proprietary high-end multiprocessors such as NUMA or MPP. Finally, using SAN
eases disk management and data placement.

14.1.3.5 Discussion

Let us briefly compare the three basic architectures based on their potential advan-
tages (high-performance, high-availability, and extensibility). It is fair to say that,
for a small configuration (e.g., less than 20 processors), shared-memory can provide
the highest performance because of better load balancing. Shared-disk and shared-
nothing architectures outperform shared-memory in terms of extensibility. Some
years ago, shared-nothing was the only choice for high-end systems. However, recent
progress in disk connectivity technologies such as SAN make shared-disk a viable

508 14 Parallel Database Systems

alternative with the main advantage of simplifying data administration and DBMS
implementation. In particular, shared-disk is now the preferred architecture for OLTP
applications because it is easier to support ACID transactions and distributed con-
currency control. But for OLAP databases that are typically very large and mostly
read-only, shared-nothing is the preferred architecture. Most major DBMS vendors
now provide a shared-nothing implementation of their DBMS for OLAP, in addition
to a shared-disk version for OLTP. The only execption is Oracle that uses shared-disk
for both OLTP and OLAP.

Hybrid architectures, such as NUMA and cluster, can combine the efficiency and
simplicity of shared-memory and the extensibility and cost of either shared disk
or shared nothing. In particular, they can exploit continous progress in SMP and
use shared-memory nodes with excellent cost/performance ratio. Both NUMA and
cluster can scale up to large configurations (hundred of nodes). The main advantage
of NUMA over a cluster is the simple (shared-memory) programming model that
eases database administration and tuning. However, using standard PC nodes and
interconnects, clusters provide a better overall cost/performance ratio, and, using
shared-nothing, they can scale up to very large configurations (thousands of nodes).

14.2 Parallel Data Placement

In this section, we assume a shared-nothing architecture because it is the most general
case and its implementation techniques also apply, sometimes in a simplified form,
to other architectures. Data placement in a parallel database system exhibits similar-
ities with data fragmentation in distributed databases (see Chapter 3). An obvious
similarity is that fragmentation can be used to increase parallelism. In what follows,
we use the terms partitioning and partition instead of horizontal fragmentation and
horizontal fragment, respectively, to contrast with the alternative strategy, which
consists of clustering a relation at a single node. The term declustering is sometimes
used to mean partitioning [Livny et al., 1987]. Vertical fragmentation can also be
used to increase parallelism and load balancing much as in distributed databases.
Another similarity is that since data are much larger than programs, execution should
occur, as much as possible, where the data reside. However, there are two important
differences with the distributed database approach. First, there is no need to maximize
local processing (at each node) since users are not associated with particular nodes.
Second, load balancing is much more difficult to achieve in the presence of a large
number of nodes. The main problem is to avoid resource contention, which may
result in the entire system thrashing (e.g., one node ends up doing all the work while
the others remain idle). Since programs are executed where the data reside, data
placement is a critical performance issue.

Data placement must be done so as to maximize system performance, which can
be measured by combining the total amount of work done by the system and the
response time of individual queries. In Chapter 8, we have seen that maximizing
response time (through intra-query parallelism) results in increased total work due

14.2 Parallel Data Placement 509

to communication overhead. For the same reason, inter-query parallelism results
in increased total work. On the other hand, clustering all the data necessary to a
program minimizes communication and thus the total work done by the system in
executing that program. In terms of data placement, we have the following trade-off:
maximizing response time or inter-query parallelism leads to partitioning, whereas
minimizing the total amount of work leads to clustering. As we have seen in Chap-
ter 3, this problem is addressed in distributed databases in a rather static manner.
The database administrator is in charge of periodically examining fragment access
frequencies, and when necessary, moving and reorganizing fragments.

An alternative solution to data placement is full partitioning, whereby each relation
is horizontally fragmented across all the nodes in the system. There are three basic
strategies for data partitioning: round-robin, hash, and range partitioning (Figure
14.7).

(a) Round-Robin (b) Hashing

(c) Range

a-g h-m u-z

• • •

• • •

• • • • • •

• • •

• • •

Fig. 14.7 Different Partitioning Schemes

1. Round-robin partitioning is the simplest strategy, it ensures uniform data
distribution. With n partitions, the ith tuple in insertion order is assigned to
partition (i mod n). This strategy enables the sequential access to a relation to
be done in parallel. However, the direct access to individual tuples, based on
a predicate, requires accessing the entire relation.

2. Hash partitioning applies a hash function to some attribute that yields the
partition number. This strategy allows exact-match queries on the selection
attribute to be processed by exactly one node and all other queries to be
processed by all the nodes in parallel.

3. Range partitioning distributes tuples based on the value intervals (ranges) of
some attribute. In addition to supporting exact-match queries (as in hashing),
it is well-suited for range queries. For instance, a query with a predicate “A
between A1 and A2” may be processed by the only node(s) containing tuples

510 14 Parallel Database Systems

whose A value is in range [A1,A2]. However, range partitioning can result in
high variation in partition size.

Compared to clustering relations on a single (possibly very large) disk, full par-
titioning yields better performance [Livny et al., 1987]. Although full partitioning
has obvious performance advantages, highly parallel execution might cause a seri-
ous performance overhead for complex queries involving joins. Furthermore, full
partitioning is not appropriate for small relations that span a few disk blocks. These
drawbacks suggest that a compromise between clustering and full partitioning (i.e.,
variable partitioning), needs to be found.

A solution is to do data placement by variable partitioning [Copeland et al.,
1988]. The degree of partitioning, i.e., the number of nodes over which a relation
is fragmented, is a function of the size and access frequency of the relation. This
strategy is much more involved than either clustering or full partitioning because
changes in data distribution may result in reorganization. For example, a relation
initially placed across eight nodes may have its cardinality doubled by subsequent
insertions, in which case it should be placed across 16 nodes.

In a highly parallel system with variable partitioning, periodic reorganizations for
load balancing are essential and should be frequent unless the workload is fairly static
and experiences only a few updates. Such reorganizations should remain transparent
to compiled programs that run on the database server. In particular, programs should
not be recompiled because of reorganization. Therefore, the compiled programs
should remain independent of data location, which may change rapidly. Such in-
dependence can be achieved if the run-time system supports associative access to
distributed data. This is different from a distributed DBMS, where associative access
is achieved at compile time by the query processor using the data directory.

One solution to associative access is to have a global index mechanism replicated
on each node [Khoshafian and Valduriez, 1987]. The global index indicates the
placement of a relation onto a set of nodes. Conceptually, the global index is a
two-level index with a major clustering on the relation name and a minor clustering
on some attribute of the relation. This global index supports variable partitioning,
where each relation has a different degree of partitioning. The index structure can be
based on hashing or on a B-tree like organization [Bayer and McCreight, 1972]. In
both cases, exact match queries can be processed efficiently with a single node access.
However, with hashing, range queries are processed by accessing all the nodes that
contain data from the r queried elation. Using a B-tree index (usually much larger
than a hashed index) enables more efficient processing of range queries, where only
the nodes containing data in the specified range are accessed.

Example 14.1. Figure 14.8 provides an example of a global index and a local in-
dex for relation EMP(ENO, ENAME, DEPT, TITLE) of the engineering database
example we have been using in this book.

Suppose that we want to locate the elements in relation EMP with ENO value
“E50”. The first-level index on set name maps the name EMP onto the index on
attribute ENO for relation EMP. Then the second-level index further maps the cluster
value “E50” onto node number j. A local index within each node is also necessary

14.2 Parallel Data Placement 511

.

. . .

node 1

(E1 to E20)

node j

(E31 to E60)

node 1

(E71 to E80)

disk page24

(E31 to E40)

disk page 91

(E51 to E60)

global index on

ENO for relation EMP

local index on

ENO for relation EMP

Fig. 14.8 Example of Global and Local Indexes

to map a relation onto a set of disk pages within the node. The local index has two
levels, with a major clustering on relation name and a minor clustering on some
attribute. The minor clustering attribute for the local index is the same as that for the
global index. Thus associative routing is improved from one node to another based
on (relation name, cluster value). This local index further maps the cluster value “E5”
onto page number 91. �

Experimental results for variable partitioning of a workload consisting of a mix
of short transactions (debit-credit like) and complex ones indicate that as partition-
ing is increased, throughput continues to increase for short transactions. However,
for complex transactions involving several large joins, further partitioning reduces
throughput because of communication overhead [Copeland et al., 1988].

A serious problem in data placement is dealing with skewed data distributions that
may lead to non-uniform partitioning and hurt load balancing. Range partitioning
is more sensitive to skew than either round-robin or hash partitioning. A solution
is to treat non-uniform partitions appropriately, e.g., by further fragmenting large
partitions. The separation between logical and physical nodes is also useful since a
logical node may correspond to several physical nodes.

A final complicating factor is data replication for high availability. The simple
solution is to maintain two copies of the same data, a primary and a backup copy,
on two separate nodes. This is the mirrored disks architecture promoted by many
computer manufacturers. However, in case of a node failure, the load of the node with
the copy may double, thereby hurting load balancing. To avoid this problem, several
high-availability data replication strategies have been proposed for parallel database
systems [Hsiao and DeWitt, 1991]. An interesting solution is Teradata’s interleaved
partitioning that further partitions the backup copy on a number of nodes. Figure
14.9 illustrates the interleaved partitioning of relation R over four nodes, where each

512 14 Parallel Database Systems

primary copy of a partition, e.g., R1, is futher divided in three partitions, e.g., r11,
r12, and r13, each at a different backup node. In failure mode, the load of the primary
copy gets balanced among the backup copy nodes. But if two nodes fail, then the
relation cannot be accessed thereby hurting availability. Reconstructing the primary
copy from its separate backup copies may be costly. In normal mode, maintaining
copy consistency may also be costly.

Node

Primary copy R
1
 R

2
 R

3
 R

4

Backup copy r
1.1

 r
1.2

 r
1.3

 r
2.3

 r
2.1

 r
2.2

 r
3.2

 r
3.3

 r
3.1

1 2 3 4

Fig. 14.9 Example of Interleaved Partitioning

A better solution is Gamma’s chained partitioning [Hsiao and DeWitt, 1991],
which stores the primary and backup copy on two adjacent nodes (Figure 14.10). The
main idea is that the probability that two adjacent nodes fail is much lower than the
probability that any two nodes fail. In failure mode, the load of the failed node and
the backup nodes are balanced among all remaining nodes by using both primary
and backup copy nodes. In addition, maintaining copy consistency is cheaper. An
open issue is how to perform data placement taking into account data replication.
Similar to the fragment allocation in distributed databases, this should be considered
an optimization problem.

Node

Primary copy R
1
 R

2
 R

3
 R

4

Backup copy r
4
 r

1
 r

2
 r

3

1 2 3 4

Fig. 14.10 Example of Chained Partitioning

14.3 Parallel Query Processing

The objective of parallel query processing is to transform queries into execution plans
that can be efficiently executed in parallel. This is achieved by exploiting parallel

14.3 Parallel Query Processing 513

data placement and the various forms of parallelism offered by high-level queries.
In this section, we first introduce the various forms of query parallelism. Then we
derive basic parallel algorithms for data processing. Finally, we discuss parallel query
optimization.

14.3.1 Query Parallelism

Parallel query execution can exploit two forms of parallelism: inter- and intra-query.
Inter-query parallelism enables the parallel execution of multiple queries generated
by concurrent transactions, in order to increase the transactional throughput. Within
a query (intra-query parallelism), inter-operator and intra-operator parallelism are
used to decrease response time. Inter-operator parallelism is obtained by executing
in parallel several operators of the query tree on several processors while with intra-
operator parallelism, the same operator is executed by many processors, each one
working on a subset of the data. Note that these two forms of parallelism also exist
in distributed query processing.

14.3.1.1 Intra-operator Parallelism

Intra-operator parallelism is based on the decomposition of one operator in a set of
independent sub-operators, called operator instances. This decomposition is done
using static and/or dynamic partitioning of relations. Each operator instance will then
process one relation partition, also called a bucket. The operator decomposition fre-
quently benefits from the initial partitioning of the data (e.g., the data are partitioned
on the join attribute). To illustrate intra-operator parallelism, let us consider a simple
select-join query. The select operator can be directly decomposed into several select
operators, each on a different partition, and no redistribution is required (Figure
14.11). Note that if the relation is partitioned on the select attribute, partitioning prop-
erties can be used to eliminate some select instances. For example, in an exact-match
select, only one select instance will be executed if the relation was partitioned by
hashing (or range) on the select attribute. It is more complex to decompose the join
operator. In order to have independent joins, each bucket of the first relation R may
be joined to the entire relation S. Such a join will be very inefficient (unless S is very
small) because it will imply a broadcast of S on each participating processor. A more
efficient way is to use partitioning properties. For example, if R and S are partitioned
by hashing on the join attribute and if the join is an equijoin, then we can partition
the join into independent joins (see Algorithm 14.3 in Section 14.3.2). This is the
ideal case that cannot be always used, because it depends on the initial partitioning
of R and S. In the other cases, one or two operands may be repartitioned [Valduriez
and Gardarin, 1984]. Finally, we may notice that the partitioning function (hash,
range, round robin) is independent of the local algorithm (e.g., nested loop, hash, sort
merge) used to process the join operator (i.e., on each processor). For instance, a hash

514 14 Parallel Database Systems

join using a hash partitioning needs two hash functions. The first one, h1, is used to
partition the two base relations on the join attribute. The second one, h2, which can
be different for each processor, is used to process the join on each processor.

Sel.

S S
1

R R
1 R

2
R

3
R

n

S
2

S
3

S
n

P1Sel.1 P1Sel.2 P1Sel.3 Sel.n

PSel. Operator P1Sel.i
Instance i
of operator n = degree of parallelism

• • •

Fig. 14.11 Intra-operator Parallelism

14.3.1.2 Inter-operator Parallelism

Two forms of inter-operator parallelism can be exploited. With pipeline parallelism,
several operators with a producer-consumer link are executed in parallel. For instance,
the select operator in Figure 14.12 will be executed in parallel with the join operator.
The advantage of such execution is that the intermediate result is not materialized,
thus saving memory and disk accesses. In the example of Figure 14.12, only S may
fit in memory. Independent parallelism is achieved when there is no dependency
between the operators that are executed in parallel. For instance, the two select
operators of Figure 14.12 can be executed in parallel. This form of parallelism is
very attractive because there is no interference between the processors.

Join

Select Select

Fig. 14.12 Inter-operator Parallelism

14.3 Parallel Query Processing 515

14.3.2 Parallel Algorithms for Data Processing

Partitioned data placement is the basis for the parallel execution of database queries.
Given a partitioned data placement, an important issue is the design of parallel
algorithms for an efficient processing of database operators (i.e., relational algebra
operators) and database queries that combine multiple operators. This issue is difficult
because a good trade-off between parallelism and communication cost must be
reached since increasing parallelism involves more communication among nodes.
Parallel algorithms for relational algebra operators are the building blocks necessary
for parallel query processing.

Parallel data processing should exploit intra-operator parallelism. We concentrate
our presentation of parallel algorithms for database operators on the select and
join operators, since all other binary operators (such as union) can be handled very
much like join [Bratbergsengen, 1984]. The processing of the select operator in a
partitioned data placement context is identical to that in a fragmented distributed
database. Depending on the select predicate, the operator may be executed at a single
node (in the case of an exact match predicate) or, in the case of arbitrarily complex
predicates, at all the nodes over which the relation is partitioned. If the global index
is organized as a B-tree-like structure (see Figure 14.8), a select operator with a range
predicate may be executed only by the nodes that store relevant data.

The parallel processing of join is significantly more involved than that of select.
The distributed join algorithms designed for high-speed networks (see Chapter 8) can
be applied successfully in a partitioned database context. However, the availability of
a global index at run time provides more opportunities for efficient parallel execution.
In the following, we introduce three basic parallel join algorithms for partitioned
databases: the parallel nested loop (PNL) algorithm, the parallel associative join
(PAJ) algorithm, and the parallel hash join (PHJ) algorithm. We describe each using
a pseudo-concurrent programming language with three main constructs: parallel-
do, send, and receive. Parallel-do specifies that the following block of actions is
executed in parallel. For example,

for i from 1 to n in parallel do action A
indicates that action A is to be executed by n nodes in parallel. Send and receive are
the basic communication primitives to transfer data between nodes. Send enables
data to be sent from one node to one or more nodes. The destination nodes are
typically obtained from the global index. Receive gets the content of the data sent
to a particular node. In what follows we consider the join of two relations R and S
that are partitioned over m and n nodes, respectively. For the sake of simplicity, we
assume that the m nodes are distinct from the n nodes. A node at which a fragment
of R (respectively, S) resides is called an R-node (respectively, S-node).

The parallel nested loop algorithm [Bitton et al., 1983] is the simplest one and the
most general. It basically composes the Cartesian product of

relations R and S in parallel. Therefore, arbitrarily complex join predicates may
be supported. This algorithm has been introduced in Chapter 8 in the context of
Distributed INGRES. It is more precisely described in Algorithm 14.1, where the
join result is produced at the S-nodes. The algorithm proceeds in two phases.

516 14 Parallel Database Systems

In the first phase, each fragment of R is sent and replicated at each node containing
a fragment of S (there are n such nodes). This phase is done in parallel by m nodes
and is efficient if the communication network has a broadcast capability. In this
case each fragment of R can be broadcast to n nodes in a single transfer, thereby
incurring a total communication cost of m messages. Otherwise, (m∗n) messages
are necessary.

In the second phase, each S-node j receives relation R entirely, and locally joins
R with fragment S j. This phase is done in parallel by n nodes. The local join can
be done as in a centralized DBMS. Depending on the local join algorithm, join
processing may or may not start as soon as data are received. If a nested loop join
algorithm is used, join processing can be done in a pipelined fashion as soon as a
tuple of R arrives. If, on the other hand, a sort-merge join algorithm is used, all the
data must have been received before the join of the sorted relations begins.

To summarize, the parallel nested loop algorithm can be viewed as replacing the
operator R 1 S by ∪n

i=1(R 1 Si).

Algorithm 14.1: PNL Algorithm
Input: R1,R2, . . . ,Rm: fragments of relation R;
S1,S2, . . . ,Sn: fragments of relation S;
JP: join predicate
Output: T1,T2, . . . ,Tn: result fragments
begin

for i from 1 to m in parallel do {send R entirely to each S-node}
send Ri to each node containing a fragment of S

for j from 1 to n in parallel do {perform the join at each S-node}
R←

⋃m
i=1 Ri; {receive Ri from R-nodes; R is fully replicated at

S-nodes}
Tj← R 1JP S j

end

Example 14.2. Figure 14.13 shows the application of the parallel nested loop algo-
rithm with m = n = 2. �

The parallel associative join algorithm, shown in Algorithm 14.2, applies only
in the case of equijoin with one of the operand relations partitioned according to
the join attribute. To simplify the description of the algorithm, we assume that the
equijoin predicate is on attribute A from R, and B from S. Furthermore, relation S is
partitioned according to the hash function h applied to join attribute B, meaning that
all the tuples of S that have the same value for h(B) are placed at the same node. No
knowledge of how R is partitioned is assumed.

The application of the parallel associative join algorithm will produce the join
result at the nodes where Si exists (i.e., the S-nodes).

14.3 Parallel Query Processing 517

node 2node 1

node 3

R
1

R
2

S
2S

1

node 4

send

fragment

Fig. 14.13 Example of Parallel Nested Loop

Algorithm 14.2: PAJ Algorithm
Input: R1,R2, . . . ,Rm: fragments of relation R;
S1,S2, . . . ,Sn: fragments of relation S;
JP: join predicate
Output: T1,T2, . . . ,Tn: result fragments
begin
{we assume that JP is R.A = S.B and relation S is fragmented according to
the function h(B)}
for i from 1 to m in parallel do {send R associatively to each S-node}

Ri j← apply h(A) to Ri (j = 1, . . . ,n)

for j from 1 to n in parallel do
send Ri j to the node storing S j

for j from 1 to n in parallel do {perform the join at each S-node}
R j←

⋃m
i=1 Ri j; {receive only the useful subset of R}

Tj← R j 1JP S j

end

The algorithm proceeds in two phases. In the first phase, relation R is sent as-
sociatively to the S-nodes based on the hash function h applied to attribute A. This
guarantees that a tuple of R with hash value v is sent only to the S-node that con-
tains tuples with hash value v. The first phase is done in parallel by m nodes where
Ri’s exist. Thus, unlike the parallel nested loop join algorithm, the tuples of R get
distributed but not replicated across the S-nodes. This is reflected in the first two
Parallel-do statements of the algorithm where each node i produces m fragments of
Ri and sends each fragment Ri j to the node storing S j.

In the second phase, each S-node j receives in parallel from the different R-nodes
the relevant subset of R (i.e., R j) and joins it locally with the fragments S j. Local
join processing can be done as in the parallel nested loop join algorithm.

To summarize, the parallel associative join algorithm replaces the operator R 1 S
by ∪n

i=1(Ri 1 Si).

518 14 Parallel Database Systems

Example 14.3. Figure 14.14 shows the application of the parallel associative join
algorithm with m= n= 2. The squares that are hatched with the same pattern indicate
fragments whose tuples match the same hash function. �

node 2node 1

node 3

R
1

R
2

S
2S

1

node 4

Fig. 14.14 Example of Parallel Associative Join

The parallel hash join algorithm, shown in Algorithm 14.3, can be viewed as a
generalization of the parallel associative join algorithm. It also applies in the case
of equijoin but does not require any particular partitioning of the operand relations.
The basic idea is to partition relations R and S into the same number p of mutually
exclusive sets (fragments) R1,R2, . . . ,Rp, and S1,S2, . . . ,Sp, such that

R 1 S =
p⋃

i=1

(Ri 1 Si)

As in the parallel associative join algorithm, the partitioning of R and S can be
based on the same hash function applied to the join attribute. Each individual join
(Ri 1 Si) is done in parallel, and the join result is produced at p nodes. These p
nodes may actually be selected at run time based on the load of the system. The
main difference with the parallel associative join algorithm is that partitioning of S is
necessary and the result is produced at p nodes rather than at n S-nodes.

The algorithm can be divided into two main phases, a build phase and a probe
phase [DeWitt and Gerber, 1985]. The build phase hashes R on the join attribute,
sends it to the target p nodes that build a hash table for the incoming tuples. The
probe phase sends S associatively to the target p nodes that probe the hash table for
each incoming tuple. Thus, as soon as the hash tables have been built for R, the S
tuples can be sent and processed in pipeline by probing the hash tables.

Example 14.4. Figure 14.15 shows the application of the parallel hash join algorithm
with m = n = 2. We assumed that the result is produced at nodes 1 and 2. Therefore,
an arrow from node 1 to node 1 or node 2 to node 2 indicates a local transfer. �

As is common, each parallel join algorithm applies and dominates under different
conditions. Join processing is achieved with a degree of parallelism of either n or p.

14.3 Parallel Query Processing 519

Algorithm 14.3: PHJ Algorithm
Input: R1,R2, . . . ,Rm: fragments of relation R ;
S1,S2, . . . ,Sn: fragments of relation S ;
JP: join predicate R.A = S.B ;
h: hash function that returns an element of [1, p]
Output: T1,T2, . . . ,Tp: result fragments
begin
{Build phase}
for i from 1 to m in parallel do

Ri j← apply h(A) to Ri (j = 1, . . . , p); {hash R on A)} ;
send Ri j to node j

for j from 1 to p in parallel do
R j←

⋃m
i=1 Ri j {receive from R-nodes}

{Probe phase}
for i from 1 to n in parallel do

Si j← apply h(B) to Si (j = 1, . . . , p); {hash S on B)} ;
send Si j to node j

for j from 1 to p in parallel do {perform the join at each of the p nodes}
S j←

⋃n
i=1 Si j; {receive from S-nodes} ;

Tj← R j 1JP S j

end

node 2 node 3 node 4node 1

node 2node 1

R
1

R
2

S
1

S
2

Fig. 14.15 Example of Parallel Hash Join

Since each algorithm requires moving at least one of the operand relations, a good
indicator of their performance is total cost. To compare these algorithms, we now
give a simple analysis of cost, defined in terms of total communication cost (CCOM)
and processing cost (CPRO). The total cost of each algorithm is therefore

Cost(Alg.) =CCOM(Alg.)+CPRO(Alg.)

520 14 Parallel Database Systems

For simplicity, CCOM does not include control messages, which are necessary to
initiate and terminate local tasks. We denote by msg(#tup) the cost of transferring
a message of #tup tuples from one node to another. Processing costs (that include
total I/O and CPU cost) are based on the function CLOC(m,n) that computes the local
processing cost for joining two relations with cardinalities m and n. We assume that
the local join algorithm is the same for all three parallel join algorithms. Finally, we
assume that the amount of work done in parallel is uniformly distributed over all
nodes allocated to the operator.

Without broadcasting capability, the parallel nested loop algorithm incurs a cost
of m ∗ n messages, where a message contains a fragment of R of size card(R)/m
tuples. Thus we have

CCOM(PNL) = m∗n∗msg
(

card(R)
m

)
Each of the S-nodes must join all of R with its S fragments. Thus we have

CPRO(PNL) = n∗CLOC(card(R),card(S)/n)

The parallel associative join algorithm requires that each R-node partitions a
fragment of R into n subsets of size card(R)/(m∗n) and sends them to n S-nodes.
Thus we have

CCOM(PAJ) = m∗n∗msg
(

card(R)
m∗n

)
and

CPRO(PAJ) = n∗CLOC(card(R)/n,card(S)/n)

The parallel hash join algorithm requires that both relations R and S be partitioned
across p nodes in a way similar to the parallel associative join algorithm. Thus we
have

CCOM(PHJ) = m∗ p∗msg
(

card(R)
m∗ p

)
+n∗ p∗msg

(
card(S)

n∗ p

)
and

CPRO(PHJ) = n∗CLOC(card(R)/n,card(S)/n)

Let us first assume that p = n. In this case, the join processing cost for the PAJ and
PHJ algorithms is identical. However, it is higher for the PNL algorithm, because each
S-node must perform the join with R entirely. From the equations above, it is clear that
the PAJ algorithm incurs the least communication cost. However, the comparison of
communication cost between the PNL and PHJ algorithms depends on the values of
relation cardinality and degree of partitioning. If we choose p < n, the PHJ algorithm

14.3 Parallel Query Processing 521

incurs the least communication cost but at the expense of increased join processing
cost. For example, if p = 1, the join is processed in a purely centralized way.

In conclusion, the PAJ algorithm is most likely to dominate and should be used
when applicable. Otherwise, the choice between the PNL and PHJ algorithms requires
the estimation of their total cost with the optimal value for p. The choice of a parallel
join algorithm can be summarized by the procedure CHOOSE JA shown in Algorithm
14.4, where the profile of a relation indicates whether it is partitioned and on which
attribute.

Algorithm 14.4: CHOOSE JA
Input: pro f (R): profile of relation R ;
pro f (S): profile of relation S ;
JP: join predicate
Output: JA: join algorithm
begin

if JP is equijoin then
if one relation is partitioned according to the join attribute then

JA← PAJ
else

if Cost(PNL)<Cost(PHJ) then
JA← PNL

else
JA← PHJ

else
JA← PNL

end

14.3.3 Parallel Query Optimization

Parallel query optimization exhibits similarities with distributed query processing.
However, it focuses much more on taking advantage of both intra-operator parallelism
(using the algorithms described above) and inter-operator parallelism. As any query
optimizer (see Chapter 8), a parallel query optimizer can be seen as three components:
a search space, a cost model, and a search strategy. In this section, we describe the
techniques for these components.

522 14 Parallel Database Systems

14.3.3.1 Search Space

Execution plans are abstracted by means of operator trees, which define the order
in which the operators are executed. Operator trees are enriched with annotations,
which indicate additional execution aspects, such as the algorithm of each operator.
In a parallel DBMS, an important execution aspect to be reflected by annotations is
the fact that two subsequent operators can be executed in pipeline. In this case, the
second operator can start before the first one is completed. In other words, the second
operator starts consuming tuples as soon as the first one produces them. Pipelined
executions do not require temporary relations to be materialized, i.e., a tree node
corresponding to an operator executed in pipeline is not stored.

Some operators and some algorithms require that one operand is stored. For
example, in the parallel hash join algorithm (see Algorithm 14.3), in the build phase,
a hash table is constructed in parallel on the join attribute of the smallest relation.
In the probe phase, the largest relation is sequentially scanned and the hash table is
consulted for each of its tuples. Therefore, pipeline and stored annotations constrain
the scheduling of execution plans by splitting an operator tree into non-overlapping
sub-trees, corresponding to execution phases. Pipelined operators are executed in the
same phase, usually called pipeline chain whereas a storing indication establishes
the boundary between one phase and a subsequent phase.

Example 14.5. Figure 14.16 shows two execution trees, one with no pipeline and
one with pipeline. Pipelining a relation is indicated by an arrow with larger head.
Figure 14.16(a) shows an execution without pipeline. The temporary relation Temp1
must be completely produced and the hash table in Build2 must be built before
Probe2 can start consuming R3. The same is true for Temp2, Build3 and Probe3.
Thus, the tree is executed in four consecutive phases: (1) build R1’s hash table, (2)
probe it with R2 and build Temp1’s hash table, (3) probe it with R3 and build Temp2’s
hash table, (3) probe it with R3 and produce the result. Figure 14.16(b) shows a
pipeline execution. The tree can be executed in two phases if enough memory is
available to build the hash tables: (1) build the tables for R1 R3 and R4, (2) execute
Probe1, Probe2 and Probe3 in pipeline. �

The set of nodes where a relation is stored is called its home. The home of an
operator is the set of nodes where it is executed and it must be the home of its
operands in order for the operator to access its operand. For binary operators such as
join, this might imply repartitioning one of the operands. The optimizer might even
sometimes find that repartitioning both the operands is of interest. Operator trees
bear execution annotations to indicate repartitioning.

Figure 14.17 shows four operator trees that represent execution plans for a three-
way join. Large-head arrows indicate that the input relation is consumed in pipeline,
i.e., is not locally stored. Operator trees may be linear, i.e., at least one operand of
each join node is a base relation or bushy. It is convenient to represent pipelined
relations as the right-hand side input of an operator. Thus, right-deep trees express
full pipelining while left-deep trees express full materialization of all intermediate
results. Thus, long right-deep trees are more efficient then corresponding left-deep

14.3 Parallel Query Processing 523

R3

Probe3Build3

R4

Temp2

Temp1

Build3

R4

Temp2

Probe3

Probe2Build2

Probe1Build1

R2R1

R3

Temp1

Probe2Build2

Probe1Build1

R2

(a) no pipeline (b) pipeline of R
2
, Temp1 and Temp2

R1

Fig. 14.16 Two hash-join trees with a different scheduling.

trees but tend to consume more memory to store left-hand side relations. In a left-
deep tree such as that of Figure 14.17(a), only the last operator can consume its right
input relation in pipeline provided that the left input relation can be entirely stored in
main memory.

Parallel tree formats other than left or right-deep are also interesting. For example,
bushy trees (Figure 14.17(d)) are the only ones to allow independent parallelism
and some pipeline parallelism. Independent parallelism is useful when the relations
are partitioned on disjoint homes. Suppose that the relations in Figure 14.17(d) are
partitioned such that (R1 and R2) have the same home h1 and (R3 and R4 have the
same home h2), disjoint from h1. Then, the two joins of the base relations could be
independently executed in parallel by the set of nodes that constitutes h1 and h2.

When pipeline parallelism is beneficial, zigzag trees, which are intermediate
formats between left-deep and right-deep trees, can sometimes outperform right-deep
trees due to a better use of main memory [Ziane et al., 1993]. A reasonable heuristic
is to favor right-deep or zigzag trees when relations are partially fragmented on
disjoint homes and intermediate relations are rather large. In this case, bushy trees
will usually need more phases and take longer to execute. On the contrary, when
intermediate relations are small, pipelining is not very efficient because it is difficult
to balance the load between the pipeline stages.

14.3.3.2 Cost Model

Recall that the optimizer cost model is responsible for estimating the cost of a given
execution plan. It consists of two parts: architecture-dependent and architecture-
independent [Lanzelotte et al., 1994]. The architecture-independent part is constituted

524 14 Parallel Database Systems

R4 R4

R3

R3 R3

R4

R4

R3

R2 R2R1

R2R1

R2R1

R1

(a) Left-deep (b) Right-deep

(c) Zig-zag (d) Bushy

Fig. 14.17 Execution Plans as Operator Trees

of the cost functions for operator algorithms, e.g., nested loop for join and sequen-
tial access for select. If we ignore concurrency issues, only the cost functions for
data repartitioning and memory consumption differ and constitute the architecture-
dependent part. Indeed, repartitioning a relation’s tuples in a shared-nothing system
implies transfers of data across the interconnect, whereas it reduces to hashing in
shared-memory systems. Memory consumption in the shared-nothing case is compli-
cated by inter-operator parallelism. In shared-memory systems, all operators read
and write data through a global memory, and it is easy to test whether there is enough
space to execute them in parallel, i.e., the sum of the memory consumption of indi-
vidual operators is less than the available memory. In shared-nothing, each processor
has its own memory, and it becomes important to know which operators are executed
in parallel on the same processor. Thus, for simplicity, it can be assumed that the set
of processors (home) assigned to operators do not overlap, i.e., either the intersection
of the set of processors is empty or the sets are identical.

The total time of a plan can be computed by a formula that simply adds all CPU,
I/O and communication cost components as in distributed query optimization. The
response time is more involved as it must take pipelining into account.

The response time of plan p, scheduled in phases (each denoted by ph), is com-
puted as follows [Lanzelotte et al., 1994]:

RT (p) = ∑
ph∈p

(maxOp∈ph(respTime(Op)+ pipe delay(Op))+ store delay(ph))

14.4 Load Balancing 525

where Op denotes an operator and respTime(Op) is the response time of Op,
pipe delay(Op) is the waiting period of Op necessary for the producer to de-
liver the first result tuples (it is equal to 0 if the input relations of O are stored),
store delay(ph) is the time necessary to store the output result of phase ph (it is
equal to 0 if ph is the last phase, assuming that the result are delivered as soon as
they are produced).

To estimate the cost of an execution plan, the cost model uses database statistics
and organization information, such as relation cardinalities and partitioning, as with
distributed query optimization.

14.3.3.3 Search Strategy

The search strategy does not need to be different from either centralized or distributed
query optimization. However, the search space tends to be much larger because there
are more parameters that impact parallel execution plans, in particular, pipeline and
store annotations. Thus, randomized search strategies (see Section 8.1.2) generally
outperform deterministic strategies in parallel query optimization.

14.4 Load Balancing

Good load balancing is crucial for the performance of a parallel system. As noted in
Chapter 8 the response time of a set of parallel operators is that of the longest one.
Thus, minimizing the time of the longest one is important for minimizing response
time. Balancing the load of different transactions and queries among different nodes
is also essential to maximize throughput. Although the parallel query optimizer
incorporates decisions on how to execute a parallel execution plan, load balancing
can be hurt by several problems incurring at execution time. Solutions to these
problems can be obtained at the intra- and inter-operator levels. In this section, we
discuss these parallel execution problems and their solutions.

14.4.1 Parallel Execution Problems

The principal problems introduced by parallel query execution are initialization,
interference and skew.

Initialization.

Before the execution takes place, an initialization step is necessary. This first step
is generally sequential. It includes process (or thread) creation and initialization,

526 14 Parallel Database Systems

communication initialization, etc. The duration of this step is proportional to the
degree of parallelism and can actually dominate the execution time of simple queries,
e.g., a select query on a single relation. Thus, the degree of parallelism should be
fixed according to query complexity.

A formula can be developed to estimate the maximal speedup reachable during the
execution of an operator and to deduce the optimal number of processors [Wilshut
and Apers, 1992]. Let us consider the execution of an operator that processes N
tuples with n processors. Let c be the average processing time of each tuple and a the
initialization time per processor. In the ideal case, the response time of the operator
execution is

ResponseTime = (a∗n)+
c∗N

n

By derivation, we can obtain the optimal number of processors n0 to allocate and
the maximal achievable speedup (S0).

n0 =

√
c∗N

a
S0 =

n0

2

The optimal number of processors (n0) is independent of n and only depends on
the total processing time and initialization time. Thus, maximizing the degree of
parallelism for an operator, e.g., using all available processors, can hurt speed-up
because of the overhead of initialization.

Interferences.

A highly parallel execution can be slowed down by interference. Interference occurs
when several processors simultaneously access the same resource, hardware or
software.

A typical example of hardware interference is the contention created on the bus of
a shared-memory system. When the number of processors is increased, the number
of conflicts on the bus increases, thus limiting the extensibility of shared-memory
systems. A solution to these interferences is to duplicate shared resources. For
instance, disk access interference can be eliminated by adding several disks and
partitioning the relations.

Software interference occurs when several processors want to access shared data.
To prevent incoherence, mutual exclusion variables are used to protect shared data,
thus blocking all but one processor that accesses the shared data. This is similar to
the locking-based concurrency control algorithms (see Chapter 11).

However, shared variables may well become the bottleneck of query execution,
creating hot spots and convoy effects [Blasgen et al., 1979]. A typical example of
software interference is the access of database internal structures such as indexes
and buffers. For simplicity, the earlier versions of database systems were protected
by a unique mutual exclusion variable. Studies have shown the overhead of such

14.4 Load Balancing 527

strategy: 45% of the query execution time was consumed by interference among 16
processors.

A general solution to software interference is to partition the shared resource
into several independent resources, each protected by a different mutual exclusion
variable. Thus, two independent resources can be accessed in parallel, which reduces
the probability of interference. To further reduce interference on an independent
resource (e.g., an index structure), replication can be used. Thus, access to replicated
resources can also be parallelized.

Skew.

Load balancing problems can appear with intra-operator parallelism (variation in
partition size), namely data skew, and inter-operator parallelism (variation in the
complexity of operators).

The effects of skewed data distribution on a parallel execution can be classified
as follows [Walton et al., 1991]. Attribute value skew (AVS) is skew inherent in the
dataset (e.g., there are more citizens in Paris than in Waterloo) while tuple placement
skew (TPS) is the skew introduced when the data are initially partitioned (e.g., with
range partitioning). Selectivity skew (SS) is introduced when there is variation in the
selectivity of select predicates on each node. Redistribution skew (RS) occurs in the
redistribution step between two operators. It is similar to TPS. Finally join product
skew (JPS) occurs because the join selectivity may vary between nodes. Figure 14.18
illustrates this classification on a query over two relations R and S that are poorly
partitioned. The boxes are proportional to the size of the corresponding partitions.
Such poor partitioning stems from either the data (AVS) or the partitioning function
(TPS). Thus, the processing times of the two instances Scan1 and Scan2 are not equal.
The case of the join operator is worse. First, the number of tuples received is different
from one instance to another because of poor redistribution of the partitions of R
(RS) or variable selectivity according to the partition of R processed (SS). Finally,
the uneven size of S partitions (AVS/TPS) yields different processing times for tuples
sent by the scan operator and the result size is different from one partition to the
other due to join selectivity (JPS).

14.4.2 Intra-Operator Load Balancing

Good intra-operator load balancing depends on the degree of parallelism and the
allocation of processors for the operator. For some algorithms, e.g., the parallel hash
join algorithm, these parameters are not constrained by the placement of the data.
Thus, the home of the operator (the set of processors where it is executed) must be
carefully decided. The skew problem makes it hard for a parallel query optimizer to
make this decision statically (at compile-time) as it would require a very accurate
and detailed cost model. Therefore, the main solutions rely on adaptive or specialized

528 14 Parallel Database Systems

Join1 Join2

 Res1

Scan1 Scan2

AVS/TPS

AVS/TPS

AVS/TPS

AVS/TPS

JPS
 Res1

JPS

RS/SS RS/SS

 S
2

 R
1

 R
2

 S
1

Fig. 14.18 Data skew example

techniques that can be incorporated in a hybrid query optimizer. We describe below
these techniques in the context of parallel joins, which has received much attention.
For simplicity, we assume that each operator is given a home as decided by the query
processor (either statically or just before execution).

Adaptive techniques.

The main idea is to statically decide on an initial allocation of the processors to the
operator (using a cost model) and, at execution time, adapt to skew using load reallo-
cation. A simple approach to load reallocation is to detect the oversized partitions and
partition them again onto several processors (among the processors already allocated
to the operation) to increase parallelism [Kitsuregawa and Ogawa, 1990; Omiecinski,
1991]. This approach is generalized to allow for more dynamic adjustment of the
degree of parallelism [Biscondi et al., 1996]. It uses specific control operators in
the execution plan to detect whether the static estimates for intermediate result sizes
will differ from the run-time values. During execution, if the difference between tje
estimate and the real value is sufficiently high, the control operator performs relation
redistribution in order to prevent join product skew and redistribution skew. Adaptive
techniques are useful to improve intra-operator load balancing in all kinds of parallel
architectures. However, most of the work has been done in the context of shared-
nothing where the effects of load unbalance are more severe on performance. DBS3
[Bergsten et al., 1991; Dageville et al., 1994] has pioneered the use of an adaptive
technique based on relation partitioning (as in shared-nothing) for shared-memory.
By reducing processor interference, this technique yields excellent load balancing
for intra-operator parallelism [Bouganim et al., 1996a,b].

14.4 Load Balancing 529

Specialized techniques.

Parallel join algorithms can be specialized to deal with skew. One approach is to
use multiple join algorithms, each specialized for a different degree of skew, and
to determine, at execution time, which algorithm is best [DeWitt et al., 1992]. It
relies on two main techniques: range partitioning and sampling. Range partitioning
is used instead of hash partitioning (in the parallel hash join algorithm) to avoid
redistribution skew of the building relation. Thus, processors can get partitions of
equal numbers of tuples, corresponding to different ranges of join attribute values. To
determine the values that delineate the range values, sampling of the building relation
is used to produce a histogram of the join attribute values, i.e., the numbers of tuples
for each attribute value. Sampling is also useful to determine which algorithm to
use and which relation to use for building or probing. Using these techniques, the
parallel hash join algorithm can be adapted to deal with skew as follows:

1. Sample the building relation to determine the partitioning ranges.

2. Redistribute the building relation to the processors using the ranges. Each
processor builds a hash table containing the incoming tuples.

3. Redistribute the probing relation using the same ranges to the processors. For
each tuple received, each processor probes the hash table to perform the join.

This algorithm can be further improved to deal with high skew using additional
techniques and different processor allocation strategies [DeWitt et al., 1992]. A
similar approach is to modify the join algorithms by inserting a scheduling step that
is in charge of redistributing the load at runtime [Wolf et al., 1993].

14.4.3 Inter-Operator Load Balancing

In order to obtain good load balancing at the inter-operator level, it is necessary to
choose, for each operator, how many and which processors to assign for its execution.
This should be done taking into account pipeline parallelism, which requires inter-
operator communication. This is harder to achieve in shared-nothing for the following
reasons [Wilshut et al., 1995]. First, the degree of parallelism and the allocation of
processors to operators, when decided in the parallel optimization phase, are based
on a possibly inaccurate cost model. Second, the choice of the degree of parallelism
is subject to errors because both processors and operators are discrete entities. Finally,
the processors associated with the latest operators in a pipeline chain may remain
idle a significant time. This is called the pipeline delay problem.

The main approach in shared-nothing is to determine dynamically (just before the
execution) the degree of parallelism and the localization of the processors for each
operator. For instance, the Rate Match algorithm [Mehta and DeWitt, 1995]. uses a
cost model in order to match the rate at which tuples are produced and consumed. It
is the basis for choosing the set of processors that will be used for query execution

530 14 Parallel Database Systems

(based on available memory, CPU, and disk utilization). Many other algorithms are
possible for the choice of the number and localization of processors, for instance, by
maximizing the use of several resources, using statistics on their usage [Rahm and
Marek, 1995; Garofalakis and Ioannidis, 1996].

In shared-disk and shared-memory, there is more flexibility since all processors
have equal access to the disks. Since there is no need for physical relation partitioning,
any processor can be allocated to any operator [Lu et al., 1991; Shekita et al., 1993].
In particular, a processor can be allocated all the operators in the same pipeline
chain, thus, with no inter-operator parallelism. However, inter-operator parallelism is
useful for executing independent pipeline chains. The approach proposed by Hong
[1992] for shared-memory allows the parallel execution of independent pipeline
chains, called tasks. The main idea is to combine I/O-bound and CPU-bound tasks
to increase system resource utilization. Before execution, a task is classified as I/O-
bound or CPU-bound using cost model information as follows. Let us suppose that,
if executed sequentially, task t generates disk accesses at rate IO− rate(t), e.g., in
numbers of disk accesses per second. Let us consider a shared-memory system with
n processors and a total disk bandwidth of B (numbers of disk accesses per second).
Task t is defined as I/O-bound if IO− rate(t) > B/n and CPU-bound otherwise.
CPU-bound and I/O-bound talks can then be run in parallel at their optimal I/O-
CPU balance point. This is accomplished by dynamically adjusting the degree of
intra-operator parallelism of the tasks in order to reach maximum resource utilization.

14.4.4 Intra-Query Load Balancing

Intra-query load balancing must combine intra- and inter-operator parallelism. To
some extent, given a parallel architecture, the techniques for either intra- or inter-
operator load balancing we just presented can be combined. However, in the important
context of hybrid systems such as NUMA or cluster, the problems of load balancing
are exacerbated because they must be addressed at two levels, locally among the
processors of each shared-memory node (SM-node) and globally among all nodes.
None of the approaches for intra- and inter-operator load balancing just discussed can
be easily extended to deal with this problem. Load balancing strategies for shared-
nothing would experience even more severe problems worsening (e.g., complexity
and inaccuracy of the cost model). On the other hand, adapting dynamic solutions
developed for shared-memory systems would incur high communication overhead.

A general solution to load balancing in hybrid systems is the execution model
called Dynamic Processing (DP) [Bouganim et al., 1996c]. The fundamental idea is
that the query is decomposed into self-contained units of sequential processing, each
of which can be carried out by any processor. Intuitively, a processor can migrate
horizontally (intra-operator parallelism) and vertically (inter-operator parallelism)
along the query operators. This minimizes the communication overhead of inter-
node load balancing by maximizing intra and inter-operator load balancing within
shared-memory nodes. The input to the execution model is a parallel execution plan

14.4 Load Balancing 531

as produced by the optimizer, i.e., an operator tree with operator scheduling and
allocation of computing resources to operators. The operator scheduling constraints
express a partial order among the operators of the query: O1 < O2 indicates that
operator O1 cannot start before operator O2.

Example 14.6. Figure 14.19 shows a join tree with four relations R1, R2, R3 and
R4, and the corresponding operator tree with the pipeline chains clearly identified.
Assuming that parallel hash join is used, the operator scheduling constraints are
between the associated build and probe operators:

Build1 < Probe1
Build2 < Probe3
Build3 < Probe2

There are also scheduling heuristics between operators of different pipeline chains
that follow from the scheduling constraints :

Heuristic1: Build1 < Scan2, Build3 < Scan4, Build2 < Scan3
Heuristic2: Build2 < Scan3

Assuming three SM-nodes i, j and k with R1 stored at node i, R2 and R3 at node j
and R4 at node k, we can have the following operator homes:

home (Scan1) = i
home (Build1, Probe1, Scan2, Scan3) = j
home (Scan4) = Node C
home (Build2, Build3, Probe2, Probe3) = j and k

�

R
1

Operator Tree

Probe3

Probe2

ScanR4

ScanR3

Build3

Build1

Build2

Probe1

ScanR2
Join tree

Pipeline chain

ScanR1

R
2

R
3

R
4

Fig. 14.19 A join tree and associated operator tree

Given such an operator tree, the problem is to produce an execution on a hybrid
architecture that minimizes response time. This can be done by using a dynamic
load balancing mechanism at two levels: (i) within a SM-node, load balancing

532 14 Parallel Database Systems

is achieved via fast interprocess communication; (ii) between SM-nodes, more
expensive message-passing communication is needed. Thus, the problem is to come
up with an execution model so that the use of local load balancing is maximized
while the use of global load balancing (through message passing) is minimized.

We call activation the smallest unit of sequential processing that cannot be further
partitioned. The main property of the DP model is to allow any processor to process
any activation of its SM-node. Thus, there is no static association between threads and
operators. This yields good load balancing for both intra-operator and inter-operator
parallelism within a SM-node, and thus reduces to the minimum the need for global
load balancing, i.e., when there is no more work to do in a SM-node.

The DP execution model is based on a few concepts: activations, activation queues,
and threads.

Activations.

An activation represents a sequential unit of work. Since any activation can be
executed by any thread (by any processor), activations must be self-contained and
reference all information necessary for their execution: the code to execute and the
data to process. Two kinds of activations can be distinguished: trigger activations
and data activations. A trigger activation is used to start the execution of a leaf
operator, i.e., scan. It is represented by an (Operator,Bucket) pair that references
the scan operator and the base relation bucket to scan. A data activation describes a
tuple produced in pipeline mode. It is represented by an (Operator,Tuple,Bucket)
triple that references the operator to process. For a build operator, the data activation
specifies that the tuple must be inserted in the hash table of the bucket and for a
probe operator, that the tuple must be probed with the bucket’s hash table. Although
activations are self-contained, they can only be executed on the SM-node where the
associated data (hash tables or base relations) are.

Activation Queues.

Moving data activations along pipeline chains is done using activation queues, also
called table queues [Pirahesh et al., 1990], associated with operators. If the producer
and consumer of an activation are on the same SM-node, then the move is done
via shared-memory. Otherwise, it requires message-passing. To unify the execution
model, queues are used for trigger activations (inputs for scan operators) as well as
tuple activations (inputs for build or probe operators). All threads have unrestricted
access to all queues located on their SM-node. Managing a small number of queues
(e.g., one for each operator) may yield interference. To reduce interference, one queue
is associated with each thread working on an operator. Note that a higher number of
queues would likely trade interference for queue management overhead. To further
reduce interference without increasing the number of queues, each thread is given
priority access to a distinct set of queues, called its primary queues. Thus, a thread

14.4 Load Balancing 533

always tries to first consume activations in its primary queues. During execution,
operator scheduling constraints may imply that an operator is to be blocked until the
end of some other operators (the blocking operators). Therefore, a queue for a blocked
operator is also blocked, i.e., its activations cannot be consumed but they can still be
produced if the producing operator is not blocked. When all its blocking operators
terminate, the blocked queue becomes consumable, i.e., threads can consume its
activations. This is illustrated in Figure 14.20 with an execution snapshot for the
operator tree of Figure 14.19.

Terminated queue

Blocked queue

Active queue

T Thread

Set of primary queues

T T T TT T T

Build1

Probe1

Scan4

Probe2

Probe3

Node i Node j Node k

Build2

Build3

ScanR1

ScanR2

ScanR3

Fig. 14.20 Snapshot of an execution

Threads.

A simple strategy for obtaining good load balancing inside a SM-node is to allocate
a number of threads that is much higher than the number of processors and let the
operating system do thread scheduling. However, this strategy incurs high numbers
of system calls due to thread scheduling, interference, and convoy problems [Pira-
hesh et al., 1990; Hong, 1992]. Instead of relying on the operating system for load
balancing, it is possible to allocate only one thread per processor per query. This is
made possible by the fact that any thread can execute any operator assigned to its
SM-node. The advantage of this one-thread-per-processor allocation strategy is to
significantly reduce the overhead of interference and synchronization, provided that
a thread is never blocked.

534 14 Parallel Database Systems

Load balancing within a SM-node is obtained by allocating all activation queues
in a segment of shared-memory and by allowing all threads to consume activations
in any queue. To limit thread interference, a thread will consume as much as possible
from its set of primary queues before considering the other queues of the SM-node.
Therefore, a thread becomes idle only when there is no more activation of any
operator, which means that there is no more work to do on its SM-node that is
starving.

When a SM-node starves, we can apply load sharing with another SM-node by
acquiring some of its workload [Shatdal and Naughton, 1993]. However, acquiring
activations (through message-passing) incurs communication overhead. Furthermore,
activation acquisition is not sufficient since associated data, i.e., hash tables, must
also be acquired. Thus, we need a mechanism that can dynamically estimate the
benefit of acquiring activations and data.

Let us call “transactioner,” which acquires work, the SM-node and “provider,”
which gets off-loaded by providing work to the transactioner, the SM-node. The
problem is to select a queue to acquire activations and decide how much work to
acquire. This is a dynamic optimization problem since there is a trade-off between
the potential gain of off-loading the provider and the overhead of acquiring activa-
tions and data. This trade-off can be expressed by the following conditions: (i) the
transactioner must be able to store in memory the activations and corresponding data;
(ii) enough work must be acquired in order to amortize the overhead of acquisition;
(iii) acquiring too much work should be avoided; (iv) only probe activations can be
acquired since triggered activations require disk accesses and building activations
require building hash tables locally; (v) there is no gain in moving activations associ-
ated with blocked operators that could not be processed anyway. Finally, to respect
the decisions of the optimizer, a SM-node cannot execute activations of an operator
that it does not own, i.e., the SM-node is not in the operator home.

The amount of load balancing depends on the number of operators that are concur-
rently executed, which provides opportunities for finding some work to share in case
of idle times. Increasing the number of concurrent operators can be done by allowing
concurrent execution of several pipeline chains or by using non-blocking hash-join
algorithms, which allows the concurrent execution of all the operators of the bushy
tree [Wilshut et al., 1995]. On the other hand, executing more operators concurrently
can increase memory consumption. Static operator scheduling as provided by the
optimizer should avoid memory overflow and solve this tradeoff.

Performance evaluation of DP with a 72-processor organized as a cluster of SM-
nodes has shown that DP performs as well as a dedicated model in shared-memory
and can scale up very well [Bouganim et al., 1996c].

14.5 Database Clusters

Clusters of PC servers are another form of parallel computer that provides a cost-
effective alternative to supercomputers or tightly-coupled multiprocessors. For in-

14.5 Database Clusters 535

stance, they have been used successfully in scientific computing, web information
retrieval (e.g., Google search engine) and data warehousing. However, these appli-
cations are typically read-intensive, which makes it easier to exploit parallelism.
In order to support update-intensive applications that are typical of business data
processing, full parallel database capabilities, including transaction support, must be
provided. This can be achieved using a parallel DBMS implemented over a cluster.
In this case, all cluster nodes are homogeneous, under the full control of the parallel
DBMS.

The parallel DBMS solution may be not viable for some businesses such as
Application Service Providers (ASP). In the ASP model, customers’ applications
and databases (including data and DBMS) are hosted at the provider site and need
to be available, typically through the Internet, as efficiently as if they were local to
the customer site. A major requirement is that applications and databases remain
autonomous, i.e., remain unchanged when moved to the provider site’s cluster and
under the control of the customers. Thus, preserving autonomy is critical to avoid
the high costs and problems associated with application code modification. Using
a parallel DBMS in this case is not appropriate as it is expensive, requires heavy
migration to the parallel DBMS and hurts database autonomy.

A solution is to use a database cluster, which is a cluster of autonomous databases,
each managed by an off-the-shelf DBMS [Röhm et al., 2000, 2001]. A major dif-
ference with a parallel DBMS implemented on a cluster is the use of a “black-box”
DBMS at each node. Since the DBMS source code is not necessarily available and
cannot be changed to be “cluster-aware”, parallel data management capabilities must
be implemented via middleware. In its simplest form, a database cluster can be
viewed as a multidatabase system on a cluster. However, much research has been
devoted to take full advantage of the cluster environment (with fast, reliable com-
munication) in order to improve performance and availability by exploiting data
replication. The main results of this research are new techniques for replication, load
balancing, query processing, and fault-tolerance. In this section, we present these
techniques after introducing a database cluster architecture.

14.5.1 Database Cluster Architecture

As discussed in Section 14.1.3.4, a cluster can have a shared-disk or shared-nothing
architecture. Shared-disk requires a special interconnect that provides a shared disk
space to all nodes with provision for cache consistency. Shared-nothing can better
support database autonomy without the additional cost of a special interconnect and
can scale up to very large configurations. This explains why most of the work in
database clusters has assumed a shared-nothing architecture. However, techniques
designed for shared-nothing can be applied, perhaps in a simpler way, to shared-disk.

Figure 14.21 illustrates a database cluster with a shared-nothing architecture.
Parallel data management is done by independent DBMSs orchestrated by a mid-
dleware replicated at each node. To improve performance and availability, data can

536 14 Parallel Database Systems

be replicated at different nodes using the local DBMS. Client applications (e.g.,
at application servers) interact with the middleware in a classical way to submit
database transactions, i.e., ad-hoc queries, transactions, or calls to stored procedures.
Some nodes can be specialized as access nodes to receive transactions, in which
case they share a global directory service that captures information about users and
databases. The general processing of a transaction to a single database is as follows.
First, the transaction is authenticated and authorized using the directory. If successful,
the transaction is routed to a DBMS at some, possibly different, node to be executed.
We will see in Section 14.5.4 how this simple model can be extended to deal with
parallel query processing, using several nodes to process a single query.

As in a parallel DBMS, the database cluster middleware has several software
layers: transaction load balancer, replication manager, query processor and fault-
tolerance manager. The transaction load balancer triggers transaction execution at
the best node, using load information obtained from node probes. The “best” node
is defined as the one with lightest transaction load. The transaction load balancer
also ensures that each transaction execution obeys the ACID properties, and then
signals to the DBMS to commit or abort the transaction. The replication manager
manages access to replicated data and assures strong consistency in such a way
that transactions that update replicated data are executed in the same serial order
at each node. The query processor exploits both inter- and intra-query parallelism.
With inter-query parallelism, the query processor routes each submitted query to one
node and, after query completion, sends results to the client application. Intra-query
parallelism is more involved. As the black-box DBMSs are not cluster-aware, they
cannot interact with one another in order to process the same query. Then, it is
up to the query processor to control query execution, final result composition and
load balancing. Finally, the fault-tolerance manager provides on-line recovery and
failover.

Interconnect

DBcluster middleware

DBMS

...
DBcluster middleware

DBMS

Fig. 14.21 A Database Cluster Shared-nothing Architecture

14.5 Database Clusters 537

14.5.2 Replication

As in distributed DBMSs, replication can be used to improve performance and
availability. In a database cluster, the fast interconnect and communication system
can be exploited to support one-copy serializability while providing scalability (to
achieve performance with large numbers of nodes) and autonomy (to exploit black-
box DBMS). Unlike a distributed system, a cluster provides a stable environment with
little evolution of the topology (e.g., as a result of added nodes or communication
link failures). Thus, it is easier to support a group communication system [Chockler
et al., 2001] that manages reliable communication between groups of nodes. Group
communication primitives can be used with either eager or lazy replication techniques
as a means to attain atomic information dissemination (i.e., instead of the expensive
2PC). The NODO protocol (see Chapter 13) is a representative of eager protocol that
can be used in a database cluster. We present now another protocol for replication
that is lazy and provides support for one-copy serializability and scalability.

Preventive replication protocol.

Preventive replication is a lazy protocol for lazy distributed replication in a database
cluster [Pacitti et al., 2003; Coulon et al., 2005; Pacitti et al., 2006]. It also preserves
DBMS autonomy. Instead of using total ordered multicast, as in eager protocols
such as NODO, it uses FIFO reliable multicast that is simpler and more efficient.
The principle is the following. Each incoming transaction T to the system has a
chronological timestamp ts(T) =C, and is multicast to all other nodes where there
is a copy. At each node, a time delay is introduced before starting the execution of T .
This delay corresponds to the upper bound of the time needed to multicast a message
(a synchronous system with bounded computation and transmission time is assumed).
The critical issue is the accurate computation of the upper bounds for messages (i.e.,
delay). In a cluster system, the upper bound can be computed quite accurately. When
the delay expires, all transactions that may have committed before C are guaranteed
to be received and executed before T , following the timestamp order (i.e., total order).
Hence, this approach prevents conflicts and enforces strong consistency in database
clusters. Introducing delay times has also been exploited in several lazy centralized
replication protocols for distributed systems [Pacitti et al., 1999; Pacitti and Simon,
2000; Pacitti et al., 2006].

We present the basic refreshment algorithm for updating copies, assuming full
replication, for simplicity. The communication system is assumed to provide FIFO
multicast [Pacitti et al., 2003]. Max is the upper bound of the time needed to multicast
a message from a node i to any other node j. It is essential to have a value of Max that
is not over estimated. The computation of Max resorts to scheduling theory [Pinedo,
2001] and takes into account several parameters such as the global reliable network
itself, the characteristics of the messages to multicast and the failures to be tolerated.
Each node has a local clock. For fairness, clocks are assumed to have a drift and to be
ε-synchronized, i.e., the difference between any two correct clocks is not higher that

538 14 Parallel Database Systems

ε (known as the precision). Inconsistencies may arise whenever the serial orders of
two transactions at two nodes are not equal. Therefore, they must be executed in the
same serial order at any two nodes. Thus, global FIFO ordering is not sufficient to
guarantee the correctness of the refreshment algorithm. Each transaction is associated
with a chronological timestamp value C. The principle of the preventive refreshment
algorithm is to submit a sequence of transactions in the same chronological order
at each node. Before submitting a transaction at node i, it checks whether there is
any older transaction en route to node i. To accomplish this, the submission time of a
new transaction at node i is delayed by Max+ ε . Thus the earliest time a transaction
is submitted is C+Max+ ε (henceforth called the delivery time).

Whenever a transaction Ti is to be triggered at some node i, node i multicasts Ti
to all nodes 1,2, ...,n, including itself. Once Ti is received at some other node j (i
may be equal to j), it is placed in the pending queue in FIFO order with respect to
the triggering node i. Therefore, at each node i, there is a set of queues, q1,q2, ...,qn,
called pending queues, each of which corresponds to a node and is used by the
refreshment algorithm to perform chronological ordering with respect to the delivery
times. Figure 14.22 shows part of the components necessary to run the algorithm.
The Refresher reads transactions from the top of pending queues and performs
chronological ordering with respect to the delivery times. Once a transaction is
ordered, then the refresher writes it to the running queue in FIFO order, one after
the other. Finally the Deliverer keeps checking the top of the running queue to start
transaction execution, one after the other, in the local DBMS.

•••

•
•

•

Refresher Deliverer

•••

•••

DBMSPending queues

Runing queue

Fig. 14.22 Preventive Refreshment Architecture

Example 14.7. Let us illustrate the algorithm. Suppose we have two nodes i and
j, masters of the copy R. So at node i, there are two pending queues: qi and q j
corresponding to master nodes i and j. T1 and T2 are two transactions that update R
at nodes i and j, respectively. Let us suppose that Max = 10 and ε = 1. So, at node i,
we have the following sequence of execution:

• At time 10: T2 arrives with a timestamp ts(T2) = 5. So qi = [T2(5)],q(j) = []
and T2 is chosen by the Refresher to be the next transaction to perform at
delivery time 16(= 5+10+1), and the time is set to expire at time 16.

• At time 12: T1 arrives from node j with a timestamp ts(T1) = 3; so qi =
[T2(5)],q j = [T1(3)]. T1 is chosen by the Refresher to be the next transaction to
perform at delivery time 14(= 3+10+1), and the time is re-set to expire at
time 14.

14.5 Database Clusters 539

• At time 14: the timeout expires and the Refresher writes T1 into the running
queue. Thus, qi = [T2(5)],q(j) = []. T2 is selected to be the next transaction to
perform at delivery time 16(= 5+10+1).

• At time 16: the timeout expires. The Refresher writes T2 into the running queue.
So qi = [],q(j) = [].

Although the transactions are received in the wrong order with respect to their
timestamps (T2 then T1), they are written into the running queue in chronological
order according to their timestamps (T1 then T2). Thus, the total order is enforced
even if messages are not sent in total order. �

The original preventive replication protocol has two limitations. First, it assumes
that databases are fully replicated across all cluster nodes and thus propagates each
transaction to each cluster node. This makes the algorithm unsuitable for supporting
very large databases. Second, it has performance limitations since transactions are
performed one after the other, and must endure waiting delays before starting. Thus,
refreshment is a potential bottleneck, in particular, in the case of bursty workloads
where the arrival rates of transactions are high at times.

The first limitation can be addressed by providing support for partial replication
[Coulon et al., 2005]. With partial replication, some of the target nodes may not be
able to perform a transaction T because they do not hold all the copies necessary
to perform the read set of T . However the write set of T , which corresponds to its
refresh transaction, must be ordered using T ’s timestamp value in order to ensure
consistency. So T is scheduled as usual but not submitted for execution. Instead, the
involved target nodes wait for the reception of the corresponding write set. Then,
at origin node i, when the commitment of T is detected, the corresponding write
set is produced and node i multicasts it towards the target nodes. Upon reception of
the write set at a target node j, the content of T (still waiting) is replaced with the
content of the incoming write set and T can be executed.

The second limitation is addressed by a refreshment algorithm that (potentially)
eliminates the delay time [Pacitti et al., 2006]. In a cluster (which is typically fast and
reliable), messages are often naturally chronologically ordered [Pedone and Schiper,
1998]. Only a few messages can be received in an order that is different than the
sending order. Based on this property, the algorithm can be improved by submitting
a transaction for execution as soon as it is received, thus avoiding the delay before
submitting transactions. To guarantee strong consistency, the commit order of the
transactions is scheduled in such a way that a transaction can be committed only after
Max+ε . When a transaction T is received out-of-order, all younger transactions must
be aborted and re-submitted according to their correct timestamp order with respect
to T . Therefore, all transactions are committed in their timestamp order. To improve
response time in bursty workloads, transactions can be triggered concurrently. Using
the isolation property of the underlying DBMS, each node can guarantee that each
transaction sees a consistent database at all times. To maintain strong consistency at
all nodes, transactions are committed in the same order in which they are submitted
and written to the running queue. Thus, total order is always enforced. However,
without access to the DBMS concurrency controller (for autonomy reasons), one

540 14 Parallel Database Systems

cannot guarantee that two conflicting concurrent transactions obtain a lock in the
same order at two different nodes. Therefore, conflicting transactions are not triggered
concurrently. Detecting that two transactions are conflicting requires code analysis
as for determining conflict classes in the NODO protocol. The validation of the
preventive replication protocol using experiments with the TPC-C benchmark over a
cluster of 64 nodes running the PostgreSQL DBMS have shown excellent scale-up
and speed-up [Pacitti et al., 2006].

14.5.3 Load Balancing

In a database cluster, replication offers good load balancing opportunities. With eager
or preventive replication, query load balancing is easy to achieve. Since all copies are
mutually consistent, any node that stores a copy of the transactioned data, e.g., the
least loaded node, can be chosen at run-time by a conventional load balancing strategy.
Transaction load balancing is also easy in the case of lazy distributed replication
since all master nodes need to eventually perform the transaction. However, the total
cost of transaction execution at all nodes may be high. By relaxing consistency, lazy
replication can better reduce transaction execution cost and thus increase performance
of both queries and transactions. Thus, depending on the consistency/performance
requirements, eager and lazy replication are both useful in database clusters.

Relaxed consistency models have been proposed for controlling replica divergence
based on user requirements. User requirements on the desired consistency can be
expressed by either the programmers, e.g., within SQL statements [Guo et al., 2004]
or the database administrators, e.g., using access rules [Gançarski et al., 2002]. In
most approaches, consistency reduces to freshness: update transactions are globally
serialized over the different cluster nodes, so that whenever a query is sent to a given
node, it reads a consistent state of the database. Global consistency is achieved by
ensuring that conflicting transactions are executed at each node in the same relative
order. However, the consistent state may not be the latest one, since transactions
may be running at other nodes. The data freshness of a node reflects the difference
between the database state of the node and the state it would have if all the running
transactions had already been applied to that node. However, freshness is not easy to
define, in particular for perfectly fresh database states. Thus, the opposite concept of
staleness, is often used since it is always defined (e.g., equal to 0 for perfectly fresh
database states). The staleness of a relation copy can then be captured by the quantity
of change that has been made to the other copies, as measured by the number of
tuples updated [Pape et al., 2004].

Example 14.8. Let us illustrate how lazy distributed replication can introduce stale-
ness, and its impact on query answers. Consider the following query Q:

SELECT PNO
FROM ASG
WHERE SUM(DUR) > 200
GROUP BY PNO

14.5 Database Clusters 541

Let us assume that relation ASG is replicated at nodes i and j, both copies with a
staleness of 0 at time t0. Assume that, for the group of tuples where PNO=”P1”, we
have SUM(DUR)=180. Consider that, at t0+1, node i, respectively node j, commits a
transaction that inserts a tuple for PNO=”P1” with DUR=12, respectively DUR=18.
Thus, the staleness of both i and j is 1. Now, at t0+2, executing Q at either i or j
would not retrieve ”P1” since for the group of tuples where PNO=”P1”, we have
SUM(DUR)=192 at i and 198 at j. The reason is that the two copies, although consis-
tent, are stale. However, after reconciliation, e.g., at t0+3, we have SUM(DUR)=210
at both nodes and executing Q would retrieve ”P1”. Thus, the accuracy of Q’s answer
depends on how much stale the node’s copy is. �

With relaxed freshness, load balancing is more complex because the cost of copy
reconciliation for enforcing user-defined freshness requirements must be considered
when routing transactions and queries to cluster nodes. Röhm et al. [2002b] propose a
simple solution for freshness-aware query routing in database clusters. Using single-
master replication techniques (i.e., transactions are always routed to the master node),
queries are routed to the least loaded node that is fresh enough. If no node is fresh
enough, the query simply waits.

Gançarski et al. [2007] propose a more general solution to freshness-aware rout-
ing. It works with lazy distributed replication that yields the highest opportunities
for transaction load balancing. We summarize this solution. A transaction router
generates for each incoming transaction or query an execution plan based on user
freshness requirements obtained from the shared directory. Then, it triggers execution
at the best nodes, using run-time information on nodes’ load. When necessary, it
also triggers refresh transactions in order to make some nodes fresher for executing
subsequent transactions or queries.

The transaction router takes into account the freshness requirements of queries
at the relation level to improve load balancing. It uses cost functions that takes into
account not only the cluster load in terms of concurrent transactions and queries, but
also the estimated time to refresh replicas to the level required by incoming queries.
The transaction router uses two cost-based routing strategies, each well-suited to
different application needs. The first strategy, called cost-based only (CB), makes no
assumption about the workload and assesses the synchronization cost to respect the
staleness accepted by queries and transactions. CB simply evaluates, for each node,
the cost of refreshing the node (if necessary) to meet the freshness requirements as
well as the cost of executing the transaction itself. Then it chooses the node that
minimizes the cost. The second strategy favors update transactions to deal with OLTP
workloads. It is a variant of CB with bounded response time (BRT) that dynamically
assigns nodes for transaction processing and nodes for query processing. It uses a
parameter, T max, which represents the maximum response time users can accept for
update transactions. It dedicates as many cluster nodes as necessary to ensure that
updates are executed in less than T max, and uses the remaining nodes for processing
queries. The validation of this approach, using implementation and emulation up to
128 nodes with the TPC-C benchmark, shows that excellent scale up can be obtained
[Gançarski et al., 2007].

542 14 Parallel Database Systems

Other approaches have been proposed for load balancing in database clusters. The
approach in [Milán-Franco et al., 2004] adjusts to changes in the load submitted to
the different replicas and to the type of workload. It combines load-balancing with
feedback-driven adjustments of the number of concurrent transactions. The approach
is shown to provide high throughput, good scalability, and low response times for
changing loads and workloads with little overhead.

14.5.4 Query Processing

In a database cluster, parallel query processing can be used successfully to yield
high performance. Inter-query (or inter-transaction) parallelism is naturally obtained
as a result of load balancing and replication as discussed in the previous section.
Such parallelism is primarily useful to increase the thoughput of transaction-oriented
applications and, to some extent, to reduce the response time of transactions and
queries. For OLAP applications that typically use ad-hoc queries, which access large
quantities of data, intra-query parallelism is essential to further reduce response time.
Intra-query parallelism consists of processing the same query on different partitions
of the relations involved in the query.

There are two alternative solutions for partitioning relations in a database cluster:
physical and virtual. Physical partitioning defines relation partitions, essentially as
horizontal fragments, and allocates them to cluster nodes, possibly with replica-
tion. This ressembles fragmentation and allocation design in distributed databases
(see Chapter 3) except that the objective is to increase intra-query parallelism, not
locality of reference. Thus, depending on the query and relation sizes, the degree
of partitioning should be much finer. Physical partitioning in database clusters for
decision-support is addressed by Stöhr et al. [2000], using small grain partitions.
Under uniform data distribution, this solution is shown to yield good intra-query
parallelism and outperform inter-query parallelism. However, physical partitioning
is static and thus very sensitive to data skew conditions and the variation of query
patterns that may require periodic repartitioning.

Virtual partitioning avoids the problems of static physical partitioning using a
dynamic approach and full replication (each relation is replicated at each node). In
its simplest form, which we call simple virtual partitioning(SVP) , virtual partitions
are dynamically produced for each query and intra-query parallelism is obtained by
sending sub-queries to different virtual partitions [Akal et al., 2002]. To produce
the different subqueries, the database cluster query processor adds predicates to the
incoming query in order to restrict access to a subset of a relation, i.e., a virtual
partition. It may also do some rewriting to decompose the query into equivalent
subqueries followed by a composition query. Then, each DBMS that receives a
sub-query is forced to process a different subset of data items. Finally, the partitioned
result needs to be combined by an aggregate query.

Example 14.9. Let us illustrate SVP with the following query Q:

14.5 Database Clusters 543

SELECT PNO, AVG(DUR)
FROM ASG
WHERE SUM(DUR) > 200
GROUP BY PNO

A generic subquery on a virtual partition is obtained by adding to Q’s where clause
the predicate “and PNO >= P1 and PNO < P2”. By binding [P1, P2] to n subsequent
ranges of PNO values, we obtain n subqueries, each for a different node on a different
virtual partition of ASG. Thus, the degree of intra-query parallelism is n. Furthermore,
the “AVG(DUR)” operation must be rewriten as “SUM(DUR), COUNT(DUR)” in
the subquery. Finally, to obtain the correct result for “AVG(DUR)”, the composition
query must perform “SUM(DUR)/SUM(COUNT(DUR))” over the n partial results.

The performance of each subquery’s execution depends heavily on the access
methods available on the partitioning attribute (PNO). In this example, a clustered
index on PNO would be best. Thus, it is important for the query processor to know
the access methods available to decide, according to the query, which partitioning
attribute to use. �

SVP allows great flexibility for node allocation during query processing since
any node can be chosen for executing a subquery. However, not all kinds of queries
can benefit from SVP and be parallelized. Akal et al. [2002] propose a classification
of OLAP queries such that queries of the same class have similar parallelization
properties. This classification relies on how the largest relations, called fact tables
(e.g., Orders and LineItems) in a typical OLAP application, are accessed. The
rationale is that such the virtual partitioning of such relations yields much intra-
operator parallelism. Three main classes are identified:

1. Queries without subqueries that access a fact table.

2. Queries with a subquery that are equivalent to a query of Class 1.

3. Any other queries.

Queries of Class 2 need to be rewritten into queries of Class 1 in order for SVP to
apply, while queries of Class 3 cannot benefit from SVP.

SVP has some limitations. First, determining the best virtual partitioning attributes
and value ranges can be difficult since assuming uniform value distribution is not
realistic. Second, some DBMSs perform full table scans instead of indexed access
when retrieving tuples from large intervals of values. This reduces the benefits of
parallel disk access since one node could incidentally read an entire relation to
access a virtual partition. This makes SVP dependent on the underlying DBMS query
capabilities. Third, as a query cannot be externally modified while being executed,
load balancing is difficult to achieve and depends on the initial partitioning.

Fine-grained virtual partitioning addresses these limitations by using a large
number of sub-queries instead of one per DBMS [Lima et al., 2004a]. Working
with smaller sub-queries avoids full table scans and makes query processing less
vulnerable to DBMS idiosyncrasies. However, this approach must estimate the

544 14 Parallel Database Systems

partition sizes, using database statistics and query processing time estimates. In
practice, these estimates are hard to obtain with black-box DBMSs.

Adaptive virtual partitioning (AVP) solves this problem by dynamically tuning
partition sizes, thus without requiring these estimates [Lima et al., 2004b]. AVP runs
independently at each participating cluster node, avoiding inter-node communication
(for partition size determination). Initially, each node receives an interval of values
to work with. These intervals are determined exactly as for SVP. Then, each node
performs the following steps:

1. Start with a very small partition size beginning with the first value of the
received interval.

2. Execute a sub-query with this interval.

3. Increase the partition size and execute the corresponding sub-query while
the increase in execution time is proportionally smaller than the increase in
partition size.

4. Stop increasing. A stable size has been found.

5. If there is performance degradation, i.e., there were consecutive worse execu-
tions, decrease size and go to Step 2.

Starting with a very small partition size avoids full table scans at the very beginning
of the process. This also avoids having to know the threshold after which the DBMS
does not use clustered indices and starts performing full table scans. When partition
size increases, query execution time is monitored allowing determination of the point
after which the query processing steps that are data-size independent do not influence
too much total query execution time. For example, if doubling the partition size
yields an execution time that is twice the previous one, this means that such a point
has been found. Thus the algorithm stops increasing the size. System performance
can deteriorate due to DBMS data cache misses or overall system load increase. It
may happen that the size being used is too large and has benefited from previous
data cache hits. In this case, it may be better to shrink partition size. That is precisely
what step 6 does. It gives a chance to go back and inspect smaller partition sizes.
On the other hand, if performance deterioration was due to a casual and temporary
increase of system load or data cache misses, keeping a small partition size can lead
to poor performance. To avoid such a situation, the algorithm goes back to step 2 and
restarts increasing sizes.

AVP and other variants of virtual partitioning have several advantages: flexibility
for node allocation, high availability because of full replication, and opportunities for
dynamic load balancing. But full replication can lead to high cost in disk usage. To
support partial replication, hybrid solutions have been proposed to combine physical
and virtual partitioning. The hybrid design by Röhm et al. [2000] uses physical
partitioning for the largest and most important relations and fully replicates the
small tables. Thus, intra-query parallelism can be achieved with lesser disk space
requirements. The hybrid solution due to Furtado et al. [2005, 2006] combines AVP

14.5 Database Clusters 545

with physical partitioning. It solves the problem of disk usage while keeping the
advantages of AVP, i.e., full table scan avoidance and dynamic load balancing.

14.5.5 Fault-tolerance

In the previous sections, the focus has been on how to attain consistency, performance
and scalability when the system does not fail. In this section, we discuss what happens
in the advent of failures. There are several issues raised by failures. The first is how
to maintain consistency despite failures. Second, for outstanding transactions, there
is the issue of how to perform failover. Third, when a failed replica is reintroduced
(following recovery), or a fresh replica is introduced in the system, the current state
of the database needs to be recovered. The main concern is how to cope with failures.
To start with, failures need to be detected. In group communication based approaches,
failure detection is provided by the underlying group communication (typically based
on some kind of heartbeat mechanism). Membership changes are notified as events1.
By comparing the new membership with the previous one, it becomes possible to
learn which replicas have failed. Group communication also guarantees that all
the connected replicas share the same membership notion. For approaches that are
not based on group communication failure detection can either be delegated to the
underlying communication layer (e.g., TCP/IP), or implemented as an additional
component of the replication logic. However, some agreement protocol is needed
to ensure that all connected replicas share the same membership notion of which
replicas are operational and which ones are not. Otherwise, inconsistencies can arise.

Failures should also be detected at the client side by the client API. Clients typi-
cally connect through TCP/IP and can suspect of failed nodes via broken connections.
Upon a replica failure, the client API must discover a new replica, reestablish a new
connection to it, and, in the simplest case, retransmit the last outstanding transaction
to the just connected replica. Since retransmissions are needed, duplicate transactions
might be delivered. This requires a duplicate transaction detection and removal mech-
anism. In most cases, it is sufficient to have a unique client identifier, and a unique
transaction identifier per client. The latter is incremented for each new submitted
transaction. Thus, the cluster can track whether a client transaction has already been
processed and if so, discard it.

Once a replica failure has been detected, several actions should be taken at the
database cluster. These actions are part of the failover process, which must redirect
the transactions from a failed node to another replica node, in a way that is as
transparent as possible for the clients. Failover highly depends on whether or not
the failed replica was a master. If a non-master replica fails, no action needs to be
taken on the cluster side. Clients with outstanding transactions connect to a new
replica node and resubmit the last transactions. However, the interesting question
is which consistency definition is provided. Recall from Section 13.1 that, in a

1 Group communication literature uses the term view change to denote the event of a membership
change. Here, we will not use the term to avoid confusion with the database view concept.

546 14 Parallel Database Systems

replicated database, one-copy serializability can be violated as a result of serializing
transactions at different nodes in reverse order. Due to failover, the transactions may
also be processed in such a way that one-copy serializability is compromised.

In most replication approaches, failover is handled by aborting all ongoing transac-
tions to prevent these situations. However, this way of handling failures has an impact
on clients that must resubmit the aborted transaction. Since clients typically do not
have transactional capabilities to undo the results of a conversational interaction, this
can be very complex. The concept of highly available transactions makes failures
totally transparent to clients so they do not observe transaction abortions due to
failures [Perez-Sorrosal et al., 2006]. It has been applied to the NODO replication
protocol (see Chapter 13) as follows. The write set and the transaction response for
each update transaction are multicast to the other replicas before answering the client.
Thus, any other replica can take over at any point in a transactional interaction.

The actions to be taken in the case of a master replica failure are more involved
than for the non-master case. First, a new master should be appointed to take over
the failed master. The appointment of a new master should be agreed upon all the
replicas in the cluster. In group-based replication, thanks to the membership change
notification, it is enough to apply a deterministic function over the new membership
to assign masters (all nodes receive exactly the same list of up and connected nodes).
For instance, the NODO protocol handles failures in this way. When appointing a
new master, it is necessary to take care of consistency.

Another essential aspect of fault-tolerance is recovery after failure. High availabil-
ity has two faces. One is how to tolerate failures and continue to provide consistent
access to data despite failures. However, failures diminish the degree of redundancy
in the system, thereby degrading availability and performance. Hence, it is necessary
to reintroduce failed or fresh replicas in the system to maintain or improve availability
and performance. The main difficulty is that replicas do have state and a failed replica
may have missed updates while it was down. Thus, a recovering failed replica needs
to receive the lost updates before being able to start processing new transactions. A
solution is to stop transaction processing. Thus, a quiescent state is directly attained
that can be transferred by any of the working replicas to the recovering one. Once
the recovering replica has received all the missed updates, transaction processing can
resume and all replicas can process new transactions. However, this offline recovery
protocol hurts availability, which contradicts the initial goal of replication. Therefore,
if high availability and performance should be provided, the only option is to perform
online recovery [Kemme et al., 2001; Jiménez-Peris et al., 2002].

14.6 Conclusion

Parallel database systems strive to exploit multiprocessor architectures using software-
oriented solutions for data management. Their promises are high-performance, high-
availability, and extensibility with a good cost/performance ratio. Furthermore, paral-

14.7 Bibliographic Notes 547

lelism is the only viable solution for supporting very large databases within a single
system.

Parallel database systems can be supported by various parallel architectures
among shared-memory, shared-disk, shared-nothing and hybrid architectures. Each
architecture has advantages and limitations in terms of performance, availability, and
extensibility. For small configurations (e.g., less than 20 processors), shared-memory
can provide the highest performance because of better load balancing. Shared-disk
and shared-nothing architectures outperform shared-memory in terms of extensibility.
Some years ago, shared-nothing was the only choice for high-end systems. However,
recent progress in disk connectivity technologies such as SAN make shared-disk a
viable alternative with the main advantage of simplifying data administration. Hybrid
architectures such as NUMA and cluster can combine the efficiency and simplicity of
shared-memory and the extensibility and cost of either shared disk or shared nothing.
In particular, they can use shared-memory nodes with excellent performance/cost.
Both NUMA and cluster can scale up to large configurations (hundred of nodes). The
main advantage of NUMA over a cluster is the simple (shared-memory) programming
model that eases database design and administration. However, using standard PC
nodes and interconnects, clusters provide a better overall cost/performance ratio and,
using shared-nothing, can scale up to very large configurations (thousands of nodes).

Parallel data management techniques extend distributed database techniques in
order to obtain high-performance, high-availability, and extensibility. Essentially, the
solutions for transaction management, i.e., distributed concurrency control, reliabil-
ity, atomicity, and replication can be reused. However, the critical issues for such
architectures are data placement, parallel query execution, parallel data processing,
parallel query optimization and load balancing. The solutions to these issues are
more involved than in distributed DBMS because the number of nodes may be much
higher. Furthermore, parallel data management techniques use different assumptions
such as fast interconnect and homogeneous nodes that provide more opportunities
for optimization.

A database cluster is an important kind of parallel database system that uses black-
box DBMS at each node. Much research has been devoted to take full advantage of
the cluster stable environment in order to improve performance and availability by
exploiting data replication. The main results of this research are new techniques for
replication, load balancing, query processing, and fault-tolerance.

14.7 Bibliographic Notes

The earlier proposal of a database server or database machine is given in [Canaday
et al., 1974]. Comprehensive surveys of parallel database systems are provided in
[Graefe, 1993].

Parallel database system architectures are discussed in [Bergsten et al., 1993;
Stonebraker, 1986], and compared using a simple simulation model in [Bhide and
Stonebraker, 1988]. NUMA architectures are described in [Lenoski et al., 1992;

548 14 Parallel Database Systems

Goodman and Woest, 1988]. Their influence on query execution and performance
can be found in [Bouganim et al., 1999] and [Dageville et al., 1994]. Examples of
parallel database prototypes or products are described in [DeWitt et al., 1986; Tandem,
1987; Pirahesh et al., 1990; Graefe, 1990; Group, 1990; Bergsten et al., 1991; Hong,
1992], and [Apers et al., 1992]. Data placement in a parallel database server is treated
in [Livny et al., 1987]. Parallel optimization studies appear in [Shekita et al., 1993],
[Ziane et al., 1993], and [Lanzelotte et al., 1994].

Load balancing in parallel database systems have been extensively studied. [Wal-
ton et al., 1991] presents a taxonomy of intra-operator load balancing problems,
namely, data skew. [DeWitt et al., 1992], [Kitsuregawa and Ogawa, 1990], [Shatdal
and Naughton, 1993], [Wolf et al., 1993], [Rahm and Marek, 1995], [Mehta and
DeWitt, 1995] and [Garofalakis and Ioannidis, 1996] present several aproaches for
load balancing in shared-nothing architectures. [Omiecinski, 1991] and [Bouganim
et al., 1996b] focus on shared-memory architectures while [Bouganim et al., 1996c]
and [Bouganim et al., 1999] consider load balancing in the hybrid architecure context.

The concept of database cluster as a cluster of autonomous DBMS is defined
in [Röhm et al., 2000]. Several protocols for scalable eager replication in database
clusters using group communication are proposed in [Kemme and Alonso, 2000a,b;
Patiño-Martı́nez et al., 2000; Jiménez-Peris et al., 2002]. Their scalability has been
studied analytically in [Jiménez-Peris et al., 2003]. Partial replication is studied in
[Sousa et al., 2001]. The presentation of preventive replication in Section 14.5.2 is
based on [Pacitti et al., 2003; Coulon et al., 2005; Pacitti et al., 2006]. Most of the
content of Section 14.5.3 on freshness-aware load balancing is based on [Gançarski
et al., 2002; Pape et al., 2004; Gançarski et al., 2007]. Load balancing in database
clusters is also addressed in [Milán-Franco et al., 2004]. The content of Section 14.5.5
on fault tolerance in database clusters is based on [Kemme et al., 2001; Jiménez-
Peris et al., 2002; Perez-Sorrosal et al., 2006]. Query processing based on virtual
partitioning has been first proposed in [Akal et al., 2002]. Combining physical and
virtual partitioning is proposed in [Röhm et al., 2000]. Most of the content of Section
14.5.4 is based on the work on adaptive virtual partitioning [Lima et al., 2004a,b]
and hybrid partitioning [Furtado et al., 2005, 2006].

Exercises

Problem 14.1 (*). Consider the centralized server organization with several appli-
cation servers accessing one database server. Also assume that each application
server stores a subset of the data directory that is fully stored on the database server.
Assume also that the local data directories at different application servers are not
necessarily disjoint. What are the implications on data directory management and
query processing for the database server if the local data directories can be updated
by the application servers rather than the database server?

Problem 14.2 (**). Propose an architecture for a parallel shared-memory database
server and provide a qualitative comparison with shared-nothing architecture on the

14.7 Bibliographic Notes 549

basis of expected performance, software complexity (in particular, data placement
and query processing), extensibility, and availability.

Problem 14.3. Specify the parallel hash join algorithm for the parallel shared-
memory database server architecture proposed in Exercise 14.2.

Problem 14.4 (*). Explain the problems associated with clustering and full parti-
tioning in a shared-nothing parallel database system. Propose several solutions and
compare them.

Problem 14.5. Propose a parallel semijoin algorithm for a shared-nothing parallel
database system. How should the parallel join algorithms be extended to exploit this
semijoin algorithm?

Problem 14.6. Consider the following SQL query:

SELECT ENAME, DUR
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND RESP="Manager"
AND PNAME="Instrumentation"

Give four possible operator trees: right-deep, left-deep, zigzag and bushy. For
each one, discuss the opportunities for parallelism.

Problem 14.7. Consider a nine way join (ten relations are to be joined) calculate the
number of possible right-deep, left-deep and bushy trees, assuming that each relation
can be joined with anyone else. What do you conclude about parallel optimization?

Problem 14.8 (**). Propose a data placement strategy for a cluster architecture that
maximizes intra-node parallelism (intra-operator parallelism within a shared-memory
node).

Problem 14.9 (**). How should the DP execution model presented in Section 14.4.4
be changed to deal with inter-query parallelism?

Problem 14.10 (**). Consider a multi-user centralized database system. Describe
the main change to allow inter-query parallelism from the database system developer
and administrator’s points of view. What are the implications for the end-user in
terms of interface and performance?

Problem 14.11 (**). Same question for intra-query parallelism on a shared-memory
architecture or for a shared-nothing architecture.

Problem 14.12 (*). Consider the database cluster architecture in Figure 14.21. As-
suming that each cluster node can accept incoming transactions, make precise the
DBcluster middleware box by describing the different software layers, and their com-
ponents and relationships in terms of data and control flow. What kind of information
need be shared between the cluster nodes? how?

550 14 Parallel Database Systems

Problem 14.13 (**). Discuss the issues of fault-tolerance for the preventive replica-
tion protocol (see Section 14.5.2).

Problem 14.14 (**). Compare the preventive replication protocol with the NODO
replication protocol (see Chapter 13) in the context of a cluster system in terms
of: replication configurations supported, network requirements, consistency, perfor-
mance, fault-tolerance.

Problem 14.15 (*). Let us consider a database cluster for an online store application.
The database is concurrently accessed by short update transactions (e.g., product
orders) and long read-only decision support queries (e.g., stock analysis). Discuss
how database replication with freshness control can be useful in improving the
response time of the decision support queries. What can be the impact on transaction
load?

Problem 14.16 (**). Consider two relations R(A,B,C,D,E) and S(A,F,G,H). Assume
there is a clustered index on attribute A for each relation. Assuming a database
cluster with full replication, for each of the following queries, determine whether
Virtual Partioning can be used to obtain intra-query parallelism and, if so, write the
corresponding subquery and the final result composition query.

(a) SELECT B, COUNT(C)

FROM R

GROUP BY B

(b) SELECT C, SUM(D), AVG(E)

FROM R

WHERE B=:v1

GROUP BY C

(c) SELECT B, SUM(E)

FROM R, S

WHERE R.A=S.A

GROUP BY B

HAVING COUNT(*) > 50

(d) SELECT B, MAX(D)

FROM R, S

WHERE C = (SELECT SUM(G) FROM S WHERE S.A=R.A)

GROUP BY B
(e) SELECT B, MIN(E)

FROM R
WHERE D > (SELECT MAX(H) FROM S WHERE G >= :v1)
GROUP BY B

Chapter 15
Distributed Object Database Management

In this chapter, we relax another one of the fundamental assumptions we made in
Chapter 1 — namely that the system implements the relational data model. Relational
databases have proven to be very successful in supporting business data processing
applications. However, there are many applications for which relational systems
may not be appropriate. Examples include XML data management, computer-aided
design (CAD), office information systems (OIS), document management systems,
and multimedia information systems. For these applications, different data models
and languages are more suitable. Object database management systems (object
DBMSs) are better candidates for the development of some of these applications due
to the following characteristics [Özsu et al., 1994b]:

1. These applications require explicit storage and manipulation of more abstract
data types (e.g., images, design documents) and the ability for the users to
define their own application-specific types. Therefore, a rich type system sup-
porting user-defined abstract types is required. Relational systems deal with a
single object type, a relation, whose attributes come from simple and fixed
data type domains (e.g., numeric, character, string, date). There is no support
for explicit definition and manipulation of application-specific types.

2. The relational model structures data in a relatively simple and flat manner.
Representing structural application objects in the flat relational model results
in the loss of natural structure that may be important to the application. For
example, in engineering design applications, it may be preferable to explicitly
represent that a vehicle object contains an engine object. Similarly, in a
multimedia information system, it is important to note that a hyperdocument
object contains a particular video object and a captioned text object. This
“containment” relationship between application objects is not easy to represent
in the relational model, but is fairly straightforward in object models by means
of composite objects and complex objects, which we discuss shortly.

3. Relational systems provide a declarative and (arguably) simple language for
accessing the data – SQL. Since this is not a computationally complete lan-

551
DOI 10.1007/978-1-4419-8834-8_15, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

552 15 Distributed Object Database Management

guage, complex database applications have to be written in general program-
ming languages with embedded query statements. This causes the well-known
“impedance mismatch” [Copeland and Maier, 1984] problem, which arises
because of the differences in the type systems of the relational languages
and the programming languages with which they interact. The concepts and
types of the query language, typically set-at-a-time, do not match with those
of the programming language, which is typically record-at-a-time. This has
resulted in the development of DBMS functions, such as cursor processing,
that enable iterating over the sets of data objects retrieved by query languages.
In an object system, complex database applications may be written entirely in
a single object database programming language.

The main issue in object DBMSs is to improve application programmer produc-
tivity by overcoming the impedence mismatch problem with acceptable performance.
It can be argued that the above requirements can be met by relational DBMSs, since
one can possibly map them to relational data structures. In a strict sense this is
true; however, from a modeling perspective, it makes little sense, since it forces
programmers to map semantically richer and structurally complex objects that they
deal with in the application domain to simple structures in representation.

Another alternative is to extend relational DBMSs with “object-oriented” func-
tionality. This has been done, leading to “object-relational DBMS” [Stonebraker and
Brown, 1999; Date and Darwen, 1998]. Many (not all) of the problems in object-
relational DBMSs are similar to their counterparts in object DBMSs. Therefore, in
this chapter we focus on the issues that need to be addressed in object DBMSs.

A careful study of the advanced applications mentioned above indicates that they
are inherently distributed, and require distributed data management support. This
gives rise to distributed object DBMSs, which is the subject of this chapter.

In Section 15.1, we provide the necessary background of the fundamental object
concepts and issues in developing object models. In Section 15.2, we consider the
distribution design of object databases. Section 15.3 is devoted to the discussion
of the various distributed object DBMS architectural issues. In Section 15.4, we
present the new issues that arise in the management of objects, and in Section 15.5
the focus is on object storage considerations. Sections 15.6 and 15.7 are devoted
to fundamental DBMS functions: query processing and transaction management.
These issues take interesting twists when considered within the context of this new
technology; unfortunately, most of the existing work in these areas concentrate on
non-distributed object DBMSs. We, therefore, provide a brief overview and some
discussion of distribution issues.

We note that the focus in this chapter is on fundamental object DBMS technol-
ogy. We do not discuss related issues such as Java Data Objects (JDO), the use of
object models in XML work (in particular the DOM object interface), or Service Ori-
ented Architectures (SOA) that use object technology. These require more elaborate
treatment than we have room in this chapter.

15.1 Fundamental Object Concepts and Object Models 553

15.1 Fundamental Object Concepts and Object Models

An object DBMS is a system that uses an “object” as the fundamental modeling
and access primitive. There has been considerable discussion on the elements of an
object DBMS [Atkinson et al., 1989; Stonebraker et al., 1990] as well as significant
amount of work on defining an “object model”. Although some have questioned
whether it is feasible to define an object model, in the same sense as the relational
model [Maier, 1989], a number of object models have been proposed. There are
a number of features that are common to most model specifications, but the exact
semantics of these features are different in each model. Some standard object model
specifications have emerged as part of language standards, the most important of
which is that developed by the Object Data Management Group (ODMG) that
includes an object model (commonly referred to as the ODMG model), an Object
Definition Language (ODL), and an Object Query Language (OQL)1 [Cattell et al.,
2000]. As an alternative, there has been a proposal for extending the relational model
in SQL3 (now known as SQL:1999) [Melton, 2002]. There has also been a substantial
amount of work on the foundations of object models [Abadi and Cardelli, 1996;
Abiteboul and Beeri, 1995; Abiteboul and Kanellakis, 1998a]. In the remainder of
this section, we will review some of the design issues and alternatives in defining an
object model.

15.1.1 Object

As indicated above, all object DBMSs are built around the fundamental concept of an
object. An object represents a real entity in the system that is being modeled. Most
simply, it is represented as a tiple 〈OID, state, interface〉, in which OID is the object
identifier, the corresponding state is some representation of the current state of the
object, and the interface defines the behavior of the object. Let us consider these in
turn.

Object identifier is an invariant property of an object which permanently dis-
tinguishes it logically and physically from all other objects, regardless of its state
[Khoshafian and Copeland, 1986]. This enables referential object sharing [Khoshafian
and Valduriez, 1987], which is the basis for supporting composite and complex (i.e.,
graph) structures (see Section 15.1.3). In some models, OID equality is the only
comparison primitive; for other types of comparisons, the type definer is expected
to specify the semantics of comparison. In other models, two objects are said to be
identical if they have the same OID, and equal if they have the same state.

The state of an object is commonly defined as either an atomic value or a con-
structed value (e.g., tuple or set). Let D be the union of the system-defined domains

1 The ODMG was an industrial consortium that completed its work on object data management
standards in 2001 and disbanded. There are a number of systems now that conform to the developed
standard listed here: http://www.barryandassociates.com/odmg-compliance.html.

http://www.barryandassociates.com/odmg-compliance.html

554 15 Distributed Object Database Management

(e.g., domain of integers) and of user-defined abstract data type (ADT) domains (e.g.,
domain of companies), let I be the domain of identifiers used to name objects, and
let A be the domain of attribute names. A value is defined as follows:

1. An element of D is a value, called an atomic value.

2. [a1 : v1, . . . ,an : vn], in which ai is an element of A and vi is either a value or
an element of I, is called a tuple value. [] is known as the tuple constructor.

3. {v1, . . . ,vn}, in which vi is either a value or an element of I, is called a set
value. { } is known as the set constructor.

These models consider object identifiers as values (similar to pointers in program-
ming languages). Set and tuple are data constructors that we consider essential for
database applications. Other constructors, such as list or array, could also be added
to increase the modeling power.

Example 15.1. Consider the following objects:

(i1, 231)
(i2, S70)
(i3, {i6, i11)
(i4, {1, 3, 5})
(i5, [LF: i7, RF: i8, LR: i9, RR: i10])

Objects i1 and i2 are atomic objects and i3 and i4 are constructed objects. i3 is the
OID of an object whose state consists of a set. The same is true of i4. The difference
between the two is that the state of i4 consists of a set of values, while that of i3
consists of a set of OIDs. Thus, object i3 references other objects. By considering
object identifiers (e.g., i6) as values in the object model, arbitrarily complex objects
may be constructed. Object i5 has a tuple valued state consisting of four attributes
(or instance variables), the values of each being another object. �

Contrary to values, objects support a well-defined update operation that changes
the object state without changing the object identifier (i.e., the identity of the object),
which is immutable. This is analogous to updates in imperative programming lan-
guages in which object identifier is implemented by main memory pointers. However,
object identifier is more general than pointers in the sense that it persists following
the program termination. Another implication of object identifier is that objects may
be shared without incurring the problem of data redundancy. We will discuss this
further in Section 15.1.3.

Example 15.2. Consider the following objects:

(i1, Volvo)
(i2, [name: John, mycar: i1])
(i3, [name: Mary, mycar: i1])

15.1 Fundamental Object Concepts and Object Models 555

John and Mary share the object denoted by i1 (they both own Volvo cars). Chang-
ing the value of object i1 from “Volvo” to “Chevrolet” is automatically seen by both
objects i2 and i3. �

The above discussion captures the structural aspects of a model – the state is rep-
resented as a set of instance variables (or attributes) that are values. The behavioral
aspects of the model are captured in methods, which define the allowable operations
on these objects and are used to manipulate them. Methods represent the behavioral
side of the model because they define the legal behaviors that the object can assume.
A classical example is that of an elevator [Jones, 1979]. If the only two methods
defined on an elevator object are “up” and “down”, they together define the behavior
of the elevator object: it can go up or down, but not sideways, for example.

The interface of an object consist of its properties. These properties include
instance variables that reflect the state of the object, and the methods that define
the operations that can be performed on this object. All instance variables and all
methods of an object do not need to be visible to the “outside world”. An object’s
public interface may consist of a subset of its instance variables and methods.

Some object models take a uniform and behavioral approach. In these models, the
distinction between values and objects are eliminated and everything is an object,
providing uniformity, and there is no differentiation between intance variables and
methods – there are only methods (usually called behaviors) [Dayal, 1989; Özsu
et al., 1995a].

An important distinction emerges from the foregoing discussion between relational
model and object models. Relational databases deal with data values in a uniform
fashion. Attribute values are the atoms with which structured values (tuples and
relations) may be constructed. In a value-based data model, such as the relational
model, data are identified by values. A relation is identified by a name, and a tuple is
identified by a key, a combination of values. In object models, by contrast, data are
identified by its OID. This distinction is crucial; modeling of relationships among
data leads to data redundancy or the introduction of foreign keys in the relational
model. The automatic management of foreign keys requires the support of integrity
constraints (referential integrity).

Example 15.3. Consider Example 15.2. In the relational model, to achieve the same
purpose, one would typically set the value of attribute mycar to “Volvo”, which
would require both tuples to be updated when it changes to “Chevrolet”. To reduce
redundancy, one can still represent i1 as a tuple in another relation and reference it
from i1 and i2 using foreign keys. Recall that this is the basis of 3NF and BCNF
normalization. In this case, the elimination of redundancy requires, in the relational
model, normalization of relations. However, i1 may be a structured object whose
representation in a normalized relation may be awkward. In this case, we cannot
assign it as the value of the mycar attribute even if we accept the redundancy, since
the relational model requires attribute values to be atomic. �

556 15 Distributed Object Database Management

15.1.2 Types and Classes

The terms “type” and “class” have caused confusion as they have sometimes been
used interchangeably and sometimes to mean different things. In this chapter, we
will use the more common term “class” when we refer to the specific object model
construct and the term “type” to refer to a domain of objects (e.g., integer, string).

A class is a template for a group of objects, thus defining a common type for
these objects that conform to the template. In this case, we don’t make a distinction
between primitive system objects (i.e., values), structural (tuple or set) objects, and
user-defined objects. A class describes the type of data by providing a domain of data
with the same structure, as well as methods applicable to elements of that domain.
The abstraction capability of classes, commonly referred to as encapsulation, hides
the implementation details of the methods, which can be written in a general-purpose
programming language. As indicated earlier, some (possibly proper) subset of its
class structure and methods make up the publicly visible interface of objects that
belong to that class.

Example 15.4. In this chapter, we will use an example that demonstrates the power
of object models. We will model a car that consists of various parts (engine, bumpers,
tires) and will store other information such as make, model, serial number, etc. In
our examples, we will use an abstract syntax. ODMG ODL is considerably more
powerful than the syntax we use, but it is also more complicated, which is not
necessary to demonstrate the concepts. The type definition of Car can be as follows
using this abstract syntax:

type Car
attributes

engine : Engine
bumpers : {Bumper}
tires : [lf: Tire, rf: Tire, lr: Tire, rr: Tire]
make : Manufacturer
model : String
year : Date
serial_no : String
capacity : Integer

methods
age: Real
replaceTire(place, tire)

The class definition specifies that Car has eight attributes and two method. Four
of the attributes (model, year, serial no, capacity) are value-based, while the others
(engine, bumpers, tires and make) are object-based (i.e., have other objects as their
values). Attribute bumpers is set valued (i.e., uses the set constructor), and attribute
tires is tuple-valued where the left front (lf), right front (rf), left rear (lr) and right
rear (rr) tires are individually identified. Incidentally, we follow a notation where the
attributes are lower case and types are capitalized. Thus, engine is an attribute and
Engine is a type in the system.

15.1 Fundamental Object Concepts and Object Models 557

The method age takes the system date, and the year attribute value and calcu-
lates the date. However, since both of these arguments are internal to the object, they
are not shown in the type definition, which is the interface for the user. By contrast,
replaceTire method requires users to provide two external arguments: place
(where the tire replacement was done), and tire (which tire was replaced). �

The interface data structure of a class may be arbitrarily complex or large. For
example, Car class has an operation age, which takes today’s date and the manufac-
turing date of a car and calculates its age; it may also have more complex operations
that, for example, calculate a promotional price based on the time of year. Similarly,
a long document with a complex internal structure may be defined as a class with
operations specific to document manipulation.

A class has an extent that is the collection of all objects that conform to the class
specification. In some cases, a class extent can be materialized and maintained, but
this is not a requirement for all classes.

Classes provide two major advantages. First, the primitive types provided by the
system can easily be extended with user-defined types. Since there are no inherent
constraints on the notion of relational domain, such extensibility can be incorporated
in the context of the relational model [Osborn and Heaven, 1986]. Second, class
operations capture parts of the application programs that are more closely associated
with data. Therefore, it becomes possible to model both data and operations at the
same time. This does not imply, however, that operations are stored with the data;
they may be stored in an operation library.

We end this section with the introduction of another concept, collection, that
appears explicitly in some object models. A collection is a grouping of objects. In
this sense, a class extent is a particular type of collection – one that gathers all objects
that conform to a class. However, collections may be more general and may be based
on user-defined predicates. The results of queries, for example, are collections of
objects. Most object models do not have an explicit collection concept, but it can be
argued that they are useful [Beeri, 1990], in particular since collections provide for a
clear closure semantics of the query models and facilitate definition of user views.
We will return to the relationship between classes and collections after we introduce
subtyping and inheritance 15.1.4.

15.1.3 Composition (Aggregation)

In the examples we have discussed so far, some of the instance variables have been
value-based (i.e., their domains are simple values), such as the model and year
in Example 15.3, while others are object-based, such as the make attribute, whose
domain is the set of objects that are of type Manufacturer. In this case, the
Car type is a composite type and its instances are referred to as composite objects.
Composition is one of the most powerful features of object models. It allows sharing
of objects, commonly referred to as referential sharing, since objects “refer” to each
other by their OIDs as values of object-based attributes.

558 15 Distributed Object Database Management

Example 15.5. Let us revise Example 15.3 as follows. Assume that c1 is one instance
of Car type that is defined in Example 15.3. If the following is true:

(i2, [name: John, mycar: c1])
(i3, [name: Mary, mycar: c1])

then this indicates that John and Mary own the same car. �

A restriction on composite objects results in complex objects. The difference
between a composite and a complex object is that the former allows referential
sharing while the latter does not2. For example, Car type may have an attribute
whose domain is type Tire. It is not natural for two instances of type Car, c1 and
c2, to refer to the same set of instances of Tire, since one would not expect in
real life for tires to be used on multiple vehicles at the same time. This distinction
between composite and complex objects is not always made, but it is an important
one.

The composite object relationship between types can be represented by a compo-
sition (aggregation) graph (or composition (aggregation) hierarchy in the case of
complex objects). There is an edge from instance variable I of type T1 to type T2 if
the domain of I is T2. The composition graphs give rise to a number of issues that we
will discuss in the upcoming sections.

15.1.4 Subclassing and Inheritance

Object systems provide extensibility by allowing user-defined classes to be defined
and managed by the system. This is accomplished in two ways: by the definition
of classes using type constructors or by the definition of classes based on existing
classes through the process of subclassing3. Subclassing is based on the specialization
relationship among classes (or types that they define). A class A is a specialization
of another class B if its interface is a superset of B’s interface. Thus, a specialized
class is more defined (or more specified) than the class from which it is specialized.
A class may be a specialization of a number of classes; it is explicitly specified as a
subclass of a subset of them. Some object models require that a class is specified as
a subclass of only one class, in which case the model supports single subclassing;
others allow multiple subclassing, where a class may be specified as a subclass of
more than one class. Subclassing and specialization indicate an is-a relationship
between classes (types). In the above example, A is-a B, resulting in substitutability:
an instance of a subclass (A) can be substituted in place of an instance of any of its
superclasses (B) in any expression.

2 This distinction between composite and complex objects is not always made, and the term
“composite object” is used to refer to both. Some authors reverse the definition between composite
and complex objects. We will use the terms as defined here consistently in this chapter.
3 This is also referred to as subtyping. We use the term “subclassing” to be consistent with our use
of terminology. However, recall from Section 15.1.2 that each class defines a type; hence the term
“subtyping” is also appropriate.

15.1 Fundamental Object Concepts and Object Models 559

If multiple subclassing is supported, the class system forms a semilattice that can
be represented as a graph. In many cases, there is a single root of the class system,
which is the least specified class. However, multiple roots are possible, as in C++
[Stroustrup, 1986], resulting in a class system with multiple graphs. If only single
subclasssing is allowed, as in Smalltalk [Goldberg and Robson, 1983], the class
system is a tree. Some systems also define a most specified type, which forms the
bottom of a full lattice. In these graphs/trees, there is an edge from type (class) A to
type (class) B if A is a subtype of B.

A class structure establishes the database schema in object databases. It enables
one to model the common properties and differences among types in a concise
manner.

Declaring a class to be a subclass of another results in inheritance. If class A is a
subclass of B, then its its properties consist of the properties that it natively defines
as well as the properties that it inherits from B. Inheritance allows reuse. A subclass
may inherit either the behavior (interface) of its superclass, or its implementation, or
both. We talk of single inheritance and multiple inheritance based on the subclass
relationship between the types.

Example 15.6. Consider the Car type we defined earlier. A car can be modeled
as a special type of Vehicle. Thus, it is possible to define Car as a subtype of
Vehicle whose other subtypes may be Motorcycle, Truck, and Bus. In this
case, Vehicle would define the common properties of all of these:

type Vehicle as Object
attributes
engine : Engine
make : Manufacturer
model : String
year : Date
serial_no : String

methods
age: Real

Vehicle is defined as a subclass of Object that we assume is the root of the
class lattice with common methods such as Put or Store. Vehicle is defined with
five attributes and one method that takes the date of manufacture and today’s date
(both of which are of system-defined type Date) and returns a real value. Obviously,
Vehicle is a generalization of Car that we defined in Example 15.3. Car can now
be defined as follows:

type Car as Vehicle
attributes
bumpers : {Bumper}
tires : [LF: Tire, RF: Tire, LR: Tire, RR: Tire]
capacity : Integer

Even though Car is defined with only two attributes, its interface is the same
as the definition given in Example 15.3. This is because Car is-a Vehicle, and
therefore inherits the attributes and methods of Vehicle. �

560 15 Distributed Object Database Management

Subclassing and inheritance allows us to discuss an issue related to classes and
collections. As we defined in Section 15.1.2, each class extent is a collection of
objects that conform to that class definition. With subclassing, we need to be careful
– the class extent consists of the objects that immediately conform to its definition,
which is referred to as (shallow extent), along with the extensions of its subtypes
(deep extent). For example in Example 15.6, the extent of Vehicle class consists
of all vehicle objects (shallow extent) as well as all car objects (deep extent of
Vehicle). One consequence of this is that the objects in the extent of a class
are homogeneous with respect to subclassing and inheritance – they are all of the
superclass’s type. In contrast, a user-defined collection may be heterogeneous in that
it can contain objects of types unrelated by subclassing.

15.2 Object Distribution Design

Recall from Chapter 3 that the two important aspects of distribution design are
fragmentation and allocation. In this section we consider the analogue, in object
databases, of the distribution design problem.

Distribution design in the object world brings new complexities due to the en-
capsulation of methods together with object state. An object is defined by its state
and its methods. We can fragment the state, the method definitions, and the method
implementation. Furthermore, the objects in a class extent can also be fragmented
and placed at different sites. Each of these raise interesting problems and issues. For
example, if fragmentation is performed only on state, are the methods duplicated
with each fragment, or can one fragment methods as well? The location of objects
with respect to their class definition becomes an issue, as does the type of attributes
(instance variables). As discussed in Section 15.1.3, the domain of some attributes
may be other classes. Thus, the fragmentation of classes with respect to such an
attribute may have effects on other classes. Finally, if method definitions are frag-
mented as well, it is necessary to distinguish between simple methods and complex
methods. Simple methods are those that do not invoke other methods, while complex
ones can invoke methods of other classes.

Similar to the relational case, there are three fundamental types of fragmentation:
horizontal, vertical, and hybrid [Karlapalem et al., 1994]. In addition to these two
fundamental cases, derived horizontal partitioning , associated horizontal partition-
ing , and path partitioning have been defined [Karlapalem and Li, 1995]. Derived
horizontal partitioning has similar semantics to its counterpart in relational databases,
which we will discuss further in Section 15.2.1. Associated horizontal partitioning,
is similar to derived horizontal partitioning except that there is no “predicate clause”,
like minterm predicate, constraining the object instances. Path partitioning is dis-
cussed in Section 15.2.3. In the remainder, for simplicity, we assume a class-based
object model that does not distinguish between types and classes.

15.2 Object Distribution Design 561

15.2.1 Horizontal Class Partitioning

There are analogies between horizontal fragmentation of object databases and their re-
lational counterparts. It is possible to identify primary horizontal fragmentation in the
object database case identically to the relational case. Derived fragmentation shows
some differences, however. In object databases, derived horizontal fragmentation can
occur in a number of ways:

1. Partitioning of a class arising from the fragmentation of its subclasses. This
occurs when a more specialized class is fragmented, so the results of this
fragmentation should be reflected in the more general case. Clearly, care must
be taken here, because fragmentation according to one subclass may conflict
with those imposed by other subclasses. Because of this dependence, one
starts with the fragmentation of the most specialized class and moves up the
class lattice, reflecting its effects on the superclasses.

2. The fragmentation of a complex attribute may affect the fragmentation of its
containing class.

3. Fragmenation of a class based on a method invocation sequence from one
class to another may need to be reflected in the design. This happens in the
case of complex methods as defined above.

Let us start the discussion with the simplest case: namely, fragmentation of a class
with simple attributes and methods. In this case, primary horizontal partitioning can
be performed according to a predicate defined on attributes of the class. Partitioning
is easy: given class C for partitioning, we create classes C1, . . . ,Cn, each of which
takes the instances of C that satisfy the particular partitioning predicate. If these
predicates are mutually exclusive, then classes C1, . . . ,Cn are disjoint. In this case,
it is possible to define C1, . . . ,Cn as subclasses of C and change C’s definition to an
abstract class – one that does not have an explicit extent (i.e., no instances of its
own). Even though this significantly forces the definition of subtyping (since the
subclasses are not any more specifically defined than their superclass), it is allowed
in many systems.

A complication arises if the partitioning predicates are not mutually exclusive.
There are no clean solutions in this case. Some object models allow each object to
belong to multiple classes. If this is an option, it can be used to address the problem.
Otherwise, “overlap classes” need to be defined to hold objects that satisfy multiple
predicates.

Example 15.7. Consider the definition of the Engine class that is referred to in
Example 15.6:

Class Engine as Object
attributes

no_cylinder : Integer
capacity : Real
horsepower: Integer

562 15 Distributed Object Database Management

In this simple definition of Engine, all the attributes are simple. Consider the
partitioning predicates

p1: horsepower ≤ 150
p2: horsepower > 150

In this case, Engine can be partitioned into two classes, Engine1 and
Engine2, which inherit all of their properties from the Engine class, which
is redefined as an abstract class (i.e,. a class that cannot have any objects in its
shallow extent). The objects of Engine class are distributed to the Engine1 and
Engine2 classes based on the value of their horsepower attribute value. �

We should first note that this example points to a significant advantage of object
models – we can explicitly state that methods in Engine1 class mention only
those with horsepower less-than-or-equal-to 150. Consequently, we are able to make
distribution explicit (with state and behavior) that is not possible in the relational
model.

This primary horizontal fragmentation of classes is applied to all classes in the
system that are subject to fragmentation. At the end of this process, one obtains
fragmentation schemes for every class. However, these schemes do not reflect the
effect of derived fragmentation as a result of subclass fragmentation (as in the
example above). Thus, the next step is to produce a set of derived fragments for each
superclass using the set of predicates from the previous step. This essentially requires
propagation of fragmentation decisions made in the subclasses to the superclasses.
The output from this step is the set of primary fragments created in step two and the
set of derived fragments from step three.

The final step is to combine these two sets of fragments in a consistent way.
The final horizontal fragments of a class are composed of objects accessed by both
applications running only on a class and those running on its subclasses. Therefore,
we must determine the most appropriate primary fragment to merge with each derived
fragment of every class. Several simple heuristics could be used, such as selecting the
smallest or largest primary fragment, or the primary fragment that overlaps the most
with the derived fragment. But, although these heuristics are simple and intuitive,
they do not capture any quantitative information about the distributed object database.
Therefore, a more precise approach would be based on an affinity measure between
fragments. As a result, fragments are joined with those fragments with which they
have the highest affinity.

Let us now consider horizontal partitioning of a class with object-based instance
variables (i.e., the domain of some of its instance variables is another class), but all
the methods are simple. In this case, the composition relationship between classes
comes into effect. In a sense, the composition relationship establishes the owner-
member relationship that we discussed in Chapter 3: If class C1 has an attribute A1
whose domain is class C2, then C1 is the owner and C2 is the member. Thus, the
decomposition of C2 follows the same principles as derived horizontal partitioning,
discussed in Chapter 3.

So far, we have considered fragmentation with respect to attributes only, because
the methods were simple. Let us now consider complex methods; these require some

15.2 Object Distribution Design 563

care. For example, consider the case where all the attributes are simple, but the
methods are complex. In this case, fragmentation based on simple attributes can be
performed as described above. However, for methods, it is necessary to determine,
at compile time, the objects that are accessed by a method invocation. This can be
accomplished with static analysis. Clearly, optimal performance will result if invoked
methods are contained within the same fragment as the invoking method. Optimiza-
tion requires locating objects accessed together in the same fragment because this
maximizes local relevant access and minimizes local irrelevant accesses.

The most complex case is where a class has complex attributes and complex
methods. In this case, the subtyping relationships, aggregation relationships and
relationships of method invocations have to be considered. Thus, the fragmentation
method is the union of all of the above. One goes through the classes multiple times,
generating a number of fragments, and then uses an affinity-based method to merge
them.

15.2.2 Vertical Class Partitioning

Vertical fragmentation is considerably more complicated. Given a class C, fragment-
ing it vertically into C1, . . . ,Cm produces a number of classes, each of which contains
some of the attributes and some of the methods. Thus, each of the fragments is less
defined than the original class. Issues that must be addressed include the subtyping
relationship between the original class’ superclasses and subclasses and the fragment
classes, the relationship of the fragment classes among themselves, and the location
of the methods. If all the methods are simple, then methods can be partitioned easily.
However, when this is not the case, the location of these methods becomes a problem.

Adaptations of the affinity-based relational vertical fragmentation approaches
have been developed for object databases [Ezeife and Barker, 1995, 1998]. However,
the break-up of encapsulation during vertical fragmentation has created significant
doubts as to the suitability of vertical fragmentation in object DBMSs.

15.2.3 Path Partitioning

The composition graph presents a representation for composite objects. For many
applications, it is necessary to access the complete composite object. Path partitioning
is a concept describing the clustering of all the objects forming a composite object
into a partition. A path partition consists of grouping the objects of all the domain
classes that correspond to all the instance variables in the subtree rooted at the
composite object.

A path partition can be represented as a hierarchy of nodes forming a structural
index. Each node of the index points to the objects of the domain class of the
component object. The index thus contains the references to all the component

564 15 Distributed Object Database Management

objects of a composite object, eliminating the need to traverse the class composition
hierarchy. The instances of the structural index are a set of OIDs pointing to all
the component objects of a composite class. The structural index is an orthogonal
structure to the object database schema, in that it groups all the OIDs of component
objects of a composite object as a structured index class.

15.2.4 Class Partitioning Algorithms

The main issue in class partitioning is to improve the performance of user queries
and applications by reducing the irrelevant data access. Thus, class partitioning is
a logical database design technique that restructures the object database schema
based on the application semantics. It should be noted that class partitioning is more
complicated than relation fragmentation, and is also NP-complete. The algorithms
for class partitioning are based on affinity-based and cost-driven approaches.

15.2.4.1 Affinity-based Approach

As covered in Section 3.3.2, affinity among attributes is used to vertically fragment
relations. Similarly, affinity among instance variables and methods, and affinity
among multiple methods can be used for horizontal and vertical class partitioning.
Horizontal and vertical class partitioning algorithms have been developed that are
based on classifying instance variables and methods as being either simple or complex
[Ezeife and Barker, 1995]. A complex instance variable is an object-based instance
variable and is part of the class composition hierarchy. An alternative is a method-
induced partitioning scheme, which applies the method semantics and appropriately
generates fragments that match the methods data requirements [Karlapalem et al.,
1996a].

15.2.4.2 Cost-Driven Approach

Though the affinity-based approach provides “intuitively” appealing partitioning
schemes, it has been shown that these partitioning schemes do not always result
in the greatest reduction of disk accesses required to process a set of applications
[Florescu et al., 1997]. Therefore, a cost model for the number of disk accesses for
processing both queries [Florescu et al., 1997] and methods [Fung et al., 1996] on
an object oriented database has been developed. Further, an heuristic “hill-climbing”
approach that uses both the affinity approach (for initial solution) and the cost-driven
approach (for further refinement) has been proposed [Fung et al., 1996]. This work
also develops structural join index hierarchies for complex object retrieval, and
studies its effectiveness against pointer traversal and other approaches, such as join
index hierarchies, multi-index and access support relations (see next section). Each

15.2 Object Distribution Design 565

structural join index hierarchy is a materialization of path fragment, and facilitates
direct access to a complex object and its component objects.

15.2.5 Allocation

The data allocation problem for object databases involves allocation of both methods
and classes. The method allocation problem is tightly coupled to the class alloca-
tion problem because of encapsulation. Therefore, allocation of classes will imply
allocation of methods to their corresponding home classes. But since applications
on object-oriented databases invoke methods, the allocation of methods affects the
performance of applications. However, allocation of methods that need to access
multiple classes at different sites is a problem that has been not yet been tackled.
Four alternatives can be identified [Fang et al., 1994]:

1. Local behavior – local object. This is the most straightforward case and is
included to form the baseline case. The behavior, the object to which it is
to be applied, and the arguments are all co-located. Therefore, no special
mechanism is needed to handle this case.

2. Local behavior – remote object. This is one of the cases in which the behav-
ior and the object to which it is applied are located at different sites. There
are two ways of dealing with this case. One alternative is to move the remote
object to the site where the behavior is located. The second is to ship the be-
havior implementation to the site where the object is located. This is possible
if the receiver site can run the code.

3. Remote behavior – local object. This case is the reverse of case (2).

4. Remote function – remote argument. This case is the reverse of case (1).

Affinity-based algorithms for static allocation of class fragments that use a graph
partitioning technique have also been proposed [Bhar and Barker, 1995]. However,
these algorithms do not address method allocation and do not consider the interde-
pendency between methods and classes. The issue has been addressed by means of
an iterative solution for methods and class allocation [Bellatreche et al., 1998].

15.2.6 Replication

Replication adds a new dimension to the design problem. Individual objects,
classes of objects, or collections of objects (or all) can be units of replication. Un-
doubtedly, the decision is at least partially object-model dependent. Whether or
not type specifications are located at each site can also be considered a replication
problem.

566 15 Distributed Object Database Management

15.3 Architectural Issues

The preferred architectural model for object DBMSs has been client/server. We had
discussed the advantages of these systems in Chapter 1. The design issues related to
these systems are somewhat more complicated due to the characteristics of object
models. The major concerns are listed below.

1. Since data and procedures are encapsulated as objects, the unit of communi-
cation between the clients and the server is an issue. The unit can be a page,
an object, or a group of objects.

2. Closely related to the above issue is the design decision regarding the functions
provided by the clients and the server. This is especially important since
objects are not simply passive data, and it is necessary to consider the sites
where object methods are executed.

3. In relational client/server systems, clients simply pass queries to the server,
which executes them and returns the result tables to the client. This is referred
to as function shipping. In object client/server DBMSs, this may not be the
best approach, as the navigation of composite/complex object structures by the
application program may dictate that data be moved to the clients (called data
shipping systems). Since data are shared by many clients, the management of
client cache buffers for data consistency becomes a serious concern. Client
cache buffer management is closely related to concurrency control, since data
that are cached to clients may be shared by multiple clients, and this has to
be controlled. Most commercial object DBMSs use locking for concurrency
control, so a fundamental architectural issue is the placement of locks, and
whether or not the locks are cached to clients.

4. Since objects may be composite or complex, there may be possibilities
for prefetching component objects when an object is requested. Relational
client/server systems do not usually prefetch data from the server, but this
may be a valid alternative in the case of object DBMSs.

These considerations require revisiting some of the issues common to all DBMSs,
along with several new ones. We will consider these issues in three sections: those
directly related to architectural design (architectural alternatives, buffer management,
and cache consistency) are discussed in this section; those related to object manage-
ment (object identifier management, pointer swizzling, and object migration) are
discussed in Section 15.4; and storage management issues (object clustering and
garbage collection) are considered in Section 15.5.

15.3 Architectural Issues 567

15.3.1 Alternative Client/Server Architectures

Two main types of client/server architectures have been proposed: object servers
and page servers. The distinction is partly based on the granularity of data that are
shipped between the clients and the servers, and partly on the functionality provided
to the clients and servers.

objects

Application

Programmatic
Interface

Object
Browser

Query
Interface

Object Manager

Object

Database

Object Manager

Query Optimizer

Lock Manager

Storage Manager

Page Cache Manager

Client

Server

Network

Fig. 15.1 Object Server Architecture

The first alternative is that clients request “objects” from the server, which retrieves
them from the database and returns them to the requesting client. These systems are
called object servers (Figure 15.1). In object servers, the server undertakes most of
the DBMS services, with the client providing basically an execution environment for
the applications, as well as some level of object management functionality (which
will be discussed in Section 15.4). The object management layer is duplicated at
both the client and the server in order to allow both to perform object functions.
Object manager serves a number of functions. First and foremost, it provides a
context for method execution. The replication of the object manager in both the
server and the client enables methods to be executed at both the server and the
clients. Executing methods in the client may invoke the execution of other methods,

568 15 Distributed Object Database Management

which may not have been shipped to the server with the object. The optimization of
method executions of this type is an important research problem. Object manager also
deals with the implementation of the object identifier (logical, physical, or virtual)
and the deletion of objects (either explicit deletion or garbage collection). At the

server, it also provides support for object clustering and access methods. Finally, the
object managers at the client and the server implement an object cache (in addition
to the page cache at the server). Objects are cached at the client to improve system
performance by localizing accesses. The client goes to the server only if the needed
objects are not in its cache. The optimization of user queries and the synchronization
of user transactions are all performed in the server, with the client receiving the
resulting objects.

It is not necessary for servers in these architectures to send individual objects
to the clients; if it is appropriate, they can send groups of objects. If the clients do
not send any prefetching hints then the groups correspond to contiguous space on a
disk page [Gerlhof and Kemper, 1994]. Otherwise, the groups can contain objects
from different pages. Depending upon the group hit rate, the clients can dynamically
either increase or decrease the group size [Liskov et al., 1996]. In these systems,
one complication needs to be dealt with: clients return updated objects to clients.
These objects have to be installed onto their corresponding data pages (called the
home page). If the corresponding data page does not exist in the server buffer (such
as, for example, if the server has already flushed it out), the server must perform an
installation read to reload the home page for this object.

An alternative organization is a page server client/server architecture, in which
the unit of transfer between the servers and the clients is a physical unit of data, such
as a page or segment, rather than an object (Figure 15.2). Page server architectures
split the object processing services between the clients and the servers. In fact, the
servers do not deal with objects anymore, acting instead as “value-added” storage
managers.

Early performance studies (e.g., [DeWitt et al., 1990]) favored page server archi-
tectures over object server architectures. In fact, these results have influenced an
entire generation of research into the optimal design of page server-based object
DBMSs. However, these results were not conclusive, since they indicated that page
server architectures are better when there is a match between a data clustering pat-
tern4 and the users’ access pattern, and that object server architectures are better
when the users’ data access pattern is not the same as the clustering pattern. These
earlier studies were further limited in their consideration of only single client/single
server and multiple client/single server environments. There is clearly a need for
further study in this area before a final judgment may be reached.

Page servers simplify the DBMS code, since both the server and the client maintain
page caches, and the representation of an object is the same all the way from the
disk to the user interface. Thus, updates to the objects occur only in client caches
and these updates are reflected on disk when the page is flushed from the client to

4 Clustering is an issue we will discuss later in this chapter. Briefly, it refers to how objects are placed
on physical disk pages. Because of composite and complex objects, this becomes an important issue
in object DBMSs.

15.3 Architectural Issues 569

the server. Another advantage of page servers is their full exploitation of the client
workstation power in executing queries and applications. Thus, there is less chance of
the server becoming a bottleneck. The server performs a limited set of functions and
can therefore serve a large number of clients. It is possible to design these systems
such that the work distribution between the server and the clients can be determined
by the query optimizer. Page servers can also exploit operating systems and even
hardware functionality to deal with certain problems, such as pointer swizzling (see
Section 15.4.2), since the unit of operation is uniformly a page.

Intuitively, there should be significant performance advantages in having the
server understand the “object” concept. One is that the server can apply locking and
logging functions to the objects, enabling more clients to access the same page. Of
course, this is relevant for small objects less than a page in size.

The second advantage is the potential for savings in the amount of data transmitted
to the clients by filtering them at the server, which is possible if the server can perform
some of the operations. Note that the concern here is not the relative cost of sending
one object versus one page, but that of filtering objects at the server and sending
them versus sending all of the pages on which these objects may reside. This is
indeed what the relational client/server systems do where the server is responsible
for optimizing and executing the entire SQL query passed to it from a client. The
situation is not as straightforward in object DBMSs, however, since the applications
mix query access with object-by-object navigation. It is generally not a good idea to
perform navigation at the server, since doing so would involve continuous interaction
between the application and the server, resulting in a remote procedure call (RPC)
for each object. In fact, the earlier studies were preferential towards page servers,
since they mainly considered workloads involving heavy navigation from object to
object.

One possibility of dealing with the navigation problem is to ship the user’s
application code to the server and execute it there as well. This is what is done in
Web access, where the server simply serves as storage. Code shipping may be cheaper
than data shipping. This requires significant care, however, since the user code cannot
be considered safe and may threaten the safety and reliability of the DBMS. Some
systems (e.g., Thor [Liskov et al., 1996]) use a safe language to overcome this
problem. Furthermore, since the execution is now divided between the client and the
server, data reside in both the server and the client cache, and its consistency becomes
a concern. Nevertheless, the “function shipping” approach involving both the clients
and the servers in the execution of a query/application must be considered to deal
with mixed workloads. The distribution of execution between different machines
must also be accommodated as systems move towards peer-to-peer architectures.

Clearly, both of these architectures have important advantages and limitations.
There are systems that can shift from one architecture to the other – for example, O2
would operate as a page server, but if the conflicts on pages increase, would shift to
object shipping. Unfortunately, the existing performance studies do not establish clear
tradeoffs, even though they provide interesting insights. The issue is complicated
further by the fact that some objects, such as multimedia documents, may span
multiple pages.

570 15 Distributed Object Database Management

Lock Manager

Storage Manager

Page Cache Manager

Page & Cache Manager

Application

Programmatic
Interface

Object
Browser

Query
Interface

Object Manager

File & Index Manager

Query
Optimizer

Object

Database

pages

Network

Client

Server

Fig. 15.2 Page Server Architecture

15.3.1.1 Client Buffer Management

The clients can manage either a page buffer, an object buffer, or a dual (i.e.,
page/object) buffer. If clients have a page buffer, then entire pages are read or
written from the server every time a page fault occurs or a page is flushed. Object
buffers can read/write individual objects and allow the applications object-by-object
access.

Object buffers manage access at a finer granularity and, therefore, can achieve
higher levels of concurrency. However, they may experience buffer fragmentation, as
the buffer may not be able to accommodate an integral multiple of objects, thereby
leaving some unused space. A page buffer does not encounter this problem, but if the
data clustering on the disk does not match the application data access pattern, then
the pages contain a great deal of unaccessed objects that use up valuable client buffer
space. In these situations, buffer utilization of a page buffer will be lower than the
buffer utilization of an object buffer.

To realize the benefits of both the page and the object buffers, dual page/object
buffers have been proposed [Kemper and Kossmann, 1994; Castro et al., 1997]. In a

15.3 Architectural Issues 571

dual buffer system, the client loads pages into the page buffer. However, when the
client flushes out a page, it retains the useful objects from the page by copying the
objects into the object buffer. Therefore, the client buffer manager tries to retain well-
clustered pages and isolated objects from non-well-clustered pages. The client buffer
managers retain the pages and objects across the transaction boundaries (commonly
referred to as inter-transaction caching). If the clients use a log-based recovery
mechanism (see Chapter 12), they also manage an in-memory log buffer in addition
to the data buffer. Whereas the data buffers are managed using a variation of the least
recently used (LRU) policy, the log buffer typically uses a first-in/first-out buffer
replacement policy. As in centralized DBMS buffer management, it is important to
decide whether all client transactions at a site should share the cache, or whether each
transaction should maintain its own private cache. The recent trend is for systems to
have both shared and private buffers [Carey et al., 1994; Biliris and Panagos, 1995].

15.3.1.2 Server Buffer Management

The server buffer management issues in object client/server systems are not much
different than their relational counterparts, since the servers usually manage a page
buffer. We nevertheless discuss the issues here briefly in the interest of completeness.
The pages from the page buffer are, in turn, sent to the clients to satisfy their
data requests. A grouped object-server constructs its object groups by copying the
necessary objects from the relevant server buffer pages, and sends the object group
to the clients. In addition to the page level buffer, the servers can also maintain
a modified object buffer (MOB) [Ghemawat, 1995]. A MOB stores objects that
have been updated and returned by the clients. These updated objects have to be
installed onto their corresponding data pages, which may require installation reads
as described earlier. Finally, the modified page has to be written back to the disk. A
MOB allows the server to amortize its disk I/O costs by batching the installation read
and installation write operations.

In a client/server system, since the clients typically absorb most of the data
requests (i.e., the system has a high cache hit rate), the server buffer usually behaves
more as a staging buffer than a cache. This, in turn, has an impact on the selection of
server buffer replacement policies. Since it is desirable to minimize the duplication of
data in the client and the server buffers, the LRU with hate hints buffer replacement
policy can be used by the server [Franklin et al., 1992]. The server marks the pages
that also exist in client caches as hated. These pages are evicted first from the server
buffer, and then the standard LRU buffer replacement policy is used for the remaining
pages.

572 15 Distributed Object Database Management

15.3.2 Cache Consistency

Cache consistency is a problem in any data shipping system that moves data to the
clients. So the general framework of the issues discussed here also arise in relational
client/server systems. However, the problems arise in unique ways in object DBMSs.

The study of DBMS cache consistency is very tightly coupled with the study of
concurrency control (see Chapter 11), since cached data can be concurrently accessed
by multiple clients, and locks can also be cached along with data at the clients.
The DBMS cache consistency algorithms can be classified as avoidance-based or
detection-based [Franklin et al., 1997]. Avoidance-based algorithms prevent the
access to stale cache data5 by ensuring that clients cannot update an object if it is
being read by other clients. So they ensure that stale data never exists in client caches.
Detection-based algorithms allow access of stale cache data, because clients can
update objects that are being read by other clients. However, the detection-based
algorithms perform a validation step at commit time to satisfy data consistency
requirements.

Avoidance-based and detection-based algorithms can, in turn, be classified as
synchronous, asynchronous or deferred, depending upon when they inform the server
that a write operation is being performed. In synchronous algorithms, the client sends
a lock escalation message at the time it wants to perform a write operation, and it
blocks until the server responds. In asynchronous algorithms, the client sends a lock
escalation message at the time of its write operation, but does not block waiting
for a server response (it optimistically continues). In deferred algorithms, the client
optimistically defers informing the server about its write operation until commit time.
In deferred mode, the clients group all their lock escalation requests and send them
together to the server at commit time. Thus, communication overhead is lower in a
deferred cache consistency scheme, in comparison to synchronous and asynchronous
algorithms.

The above classification results in a design space of possible algorithms cover-
ing six alternatives. Many performance studies have been conducted to assess the
strengths and weaknesses of the various algorithms. In general, for data-caching
systems, inter-transaction caching of data and locks is accepted as a performance
enhancing optimization [Wilkinson and Neimat, 1990; Franklin and Carey, 1994],
because this reduces the number of times a client has to communicate with the server.
On the other hand, for most user workloads, invalidation of remote cache copies
during updates is preferred over propagation of updated values to the remote client
sites [Franklin and Carey, 1994]. Hybrid algorithms that dynamically perform either
invalidation or update propagation have been proposed [Franklin and Carey, 1994].
Furthermore, the ability to switch between page and object level locks is generally
considered to be better than strictly dealing with page level locks [Carey et al., 1997]
because it increases the level of concurrency.

5 An object in a client cache is considered to be stale if that object has already been updated and
committed into the database by a different client.

15.3 Architectural Issues 573

We discuss each of the alternatives in the design space and comment on their
performance characteristics.

• Avoidance-based synchronous: Callback-Read Locking (CBL) is the most
common synchronous avoidance-based cache consistency algorithm [Franklin
and Carey, 1994]. In this algorithm, the clients retain read locks across transac-
tions, but they relinquish write locks at the end of the transaction. The clients
send lock requests to the server and they block until the server responds. If
the client requests a write lock on a page that is cached at other clients, the
server issues callback messages requesting that the remote clients relinquish
their read locks on the page. Callback-Read ensures a low abort rate and gener-
ally outperforms deferred avoidance-based, synchronous detection-based, and
asynchronous detection-based algorithms.

• Avoidance-based asynchronous: Asynchronous avoidance-based cache con-
sistency algorithms (AACC) [Özsu et al., 1998] do not have the message
blocking overhead present in synchronous algorithms. Clients send lock esca-
lation messages to the server and continue application processing. Normally,
optimistic approaches such as this face high abort rates, which is reduced in
avoidance-based algorithms by immediate server actions to invalidate stale
cache objects at remote clients as soon as the system becomes aware of the
update. Thus, asynchronous algorithms experience lower deadlock abort rates
than deferred avoidance-based algorithms, which are discussed next.

• Avoidance-based deferred: Optimistic Two-Phase Locking (O2PL) family of
cache consistency are deferred avoidance-based algorithms [Franklin and Carey,
1994]. In these algorithms, the clients batch their lock escalation requests and
send them to the server at commit time. The server blocks the updating client
if other clients are reading the updated objects. As the data contention level
increases, O2PL algorithms are susceptible to higher deadlock abort rates than
CBL algorithms.

• Detection-based synchronous: Caching Two-Phase Locking (C2PL) is a syn-
chronous detection-based cache consistency algorithm [Carey et al., 1991]. In
this algorithm, clients contact the server whenever they access a page in their
cache to ensure that the page is not stale or being written to by other clients.
C2PL’s performance is generally worse than CBL and O2PL algorithms, since
it does not cache read locks across transactions.

• Detection-based asynchronous: No-Wait Locking (NWL) with Notification
is an asynchronous detection-based algorithm [Wang and Rowe, 1991]. In this
algorithm, the clients send lock escalation requests to the server, but optimisti-
cally assume that their requests will be successful. After a client transaction
commits, the server propagates the updated pages to all the other clients that
have also cached the affected pages. It has been shown that CBL outperforms
the NWL algorithm.

• Detection-based deferred: Adaptive Optimistic Concurrency Control (AOCC)
is a deferred detection-based algorithm. It has been shown that AOCC can

574 15 Distributed Object Database Management

outperform callback locking algorithms even while encountering a higher abort
rate if the client transaction state (data and logs) completely fits into the client
cache, and all application processing is strictly performed at the clients (purely
data-shipping architecture) [Adya et al., 1995]. Since AOCC uses deferred
messages, its messaging overhead is less than CBL. Furthermore, in a purely
data-shipping client/server environment, the impact of an aborting client on
the performance of other clients is quite minimal. These factors contribute to
AOCC’s superior performance.

15.4 Object Management

Object management includes tasks such as object identifier management, pointer
swizzling, object migration, deletion of objects, method execution, and some stor-
age management tasks at the server. In this section we will discuss some of these
problems; those related to storage management are discussed in the next section.

15.4.1 Object Identifier Management

As indicated in Section 15.1, object identifiers (OIDs) are system-generated and
used to uniquely identify every object (transient or persistent, system-created or
user-created) in the system. Implementing the identity of persistent objects generally
differs from implementing transient objects, since only the former must provide
global uniqueness. In particular, transient object identity can be implemented more
efficiently.

The implementation of persistent object identifier has two common solutions,
based on either physical or logical identifiers, with their respective advantages and
shortcomings. The physical identifier (POID) approach equates the OID with the
physical address of the corresponding object. The address can be a disk page address
and an offset from the base address in the page. The advantage is that the object
can be obtained directly from the OID. The drawback is that all parent objects and
indexes must be updated whenever an object is moved to a different page.

The logical identifier (LOID) approach consists of allocating a system-wide unique
OID (i.e., a surrogate) per object. LOIDs can be generated either by using a system-
wide unique counter (called pure LOID) or by concatenating a server identifier with
a counter at each server (called pseudo-LOID). Since OIDs are invariant, there is no
overhead due to object movement. This is achieved by an OID table associating each
OID with the physical object address at the expense of one table look-up per object
access. To avoid the overhead of OIDs for small objects that are not referentially
shared, both approaches can consider the object value as their identifier. Object-
oriented database systems tend to prefer the logical identifier approach, which better
supports dynamic environments.

15.4 Object Management 575

Implementing transient object identifier involves the techniques used in program-
ming languages. As for persistent object identifier, identifiers can be physical or
logical. The physical identifier can be the real or virtual address of the object, depend-
ing on whether virtual memory is provided. The physical identifier approach is the
most efficient, but requires that objects do not move. The logical identifier approach,
promoted by object-oriented programming, treats objects uniformly through an indi-
rection table local to the program execution. This table associates a logical identifier,
called an object oriented pointer (OOP) in Smalltalk, to the physical identifier of the
object. Object movement is provided at the expense of one table look-up per object
access.

The dilemma for an object manager is a trade-off between generality and efficiency.
For example, supporting object-sharing explicitly requires the implementation of
object identifiers for all objects within the object manager and maintaining the sharing
relationship. However, object identifiers for small objects can make the OID table
quite large. If object sharing is not supported at the object manager level, but left
to the higher levels of system (e.g., the compiler of the database language), more
efficiency may be gained. Object identifier management is closely related to object
storage techniques, which we will discuss in Section 15.5.

In distributed object DBMSs, it is more appropriate to use LOIDs, since operations
such as reclustering, migration, replication and fragmentation occur frequently. The
use of LOIDs raises the following distribution related issues:

• LOID Generation: LOIDs must be unique within the scope of the entire
distributed domain. It is relatively easy to ensure uniqueness if the LOIDs are
generated at a central site. However, a centralized LOID generation scheme
is not desirable because of the network latency overhead and the load on the
LOID generation site. In multi-server environments, each server site generates
LOIDs for the objects stored at that site. The uniqueness of the LOID is ensured
by incorporating the server identifier as part of the LOID. Therefore, the LOID
consists of both a server identifier part and a sequence number. The sequence
number is the logical representation of the disk location of the object and
is unique within a particular server. Sequence numbers are usually not re-
used to prevent anomalies: an object oi is deleted, and its sequence number is
subsequently assigned to a newly created object o j, but existing references to
oi now point to the new object o j, which is not intended.

• LOID Mapping Location and Data Structures: The location of the LOID-
to-POID mapping information is important. If pure LOIDs are used, and if a
client can be directly connected to multiple servers simultaneously, then the
LOID-to-POID mapping information must be present at the client. If pseudo-
LOIDs are used, the mapping information needs to be present only at the server.
The presence of the mapping information at the client is not desirable, because
this solution is not scalable (i.e.,the mapping information has to be updated at
all the clients that might access the object).
The LOID-to-POID mapping information is usually stored in hash tables or
in B+ trees. There are advantages and disadvantages to both [Eickler et al.,

576 15 Distributed Object Database Management

1995]. Hash tables provide fast access, but are not scalable as the database size
increases. B+-trees are scalable, but have logarithmic access time, and require
complex concurrency control and recovery strategies. B+-trees also support
range queries, facilitating easy access to a collection of objects.

15.4.2 Pointer Swizzling

In object systems, one can navigate from one object to another using path expres-
sions that involve attributes with object-based values. For example, if object c is of
type Car, then c.engine.manufacturer.name is a path expression6. These are basically
pointers. Usually on disk, object identifiers are used to represent these pointers.
However, in memory, it is desirable to use in-memory pointers for navigating from
one object to another. The process of converting a disk version of the pointer to an
in-memory version of a pointer is known as “pointer-swizzling”. Hardware-based
and software-based schemes are two types of pointer-swizzling mechanisms [White
and DeWitt, 1992]. In hardware-based schemes, the operating system’s page-fault
mechanism is used; when a page is brought into memory, all the pointers in it are
swizzled, and they point to reserved virtual memory frames. The data pages cor-
responding to these reserved virtual frames are only loaded into memory when an
access is made to these pages. The page access, in turn, generates an operating system
page-fault, which must be trapped and processed. In software-based schemes, an ob-
ject table is used for pointer-swizzling purposes so that a pointer is swizzled to point
to a location in the object table – that is LOIDs are used. There are eager and lazy
variations to the software-based schemes, depending upon when exactly the pointer
is swizzled. Therefore, every object access has a level of indirection associated with
it. The advantage of the hardware-based scheme is that it leads to better performance
when repeatedly traversing a particular object hierarchy, due to the absence of a
level of indirection for each object access. However, in bad clustering situations
where only a few objects per page are accessed, the high overhead of the page-fault
handling mechanism makes hardware-based schemes unattractive. Hardware-based
schemes also do not prevent client applications from accessing deleted objects on a
page. Moreover, in badly clustered situations, hardware-based schemes can exhaust
the virtual memory address space, because page frames are aggressively reserved
regardless of whether the objects in the page are actually accessed. Finally, since the
hardware-based scheme is implicitly page-oriented, it is difficult to provide object-
level concurrency control, buffer management, data transfer and recovery features.
In many cases, it is desirable to manipulate data at the object level rather than the
page level.

6 We assume that Engine class is defined with at least one attribute, manufacturer, whose
domain is the extent of class Manufacturer. Manufacturer class has an attribute called
name.

15.4 Object Management 577

15.4.3 Object Migration

One aspect of distributed systems is that objects move, from time to time, between
sites. This raises a number of issues. First is the unit of migration. It is possible to
move the object’s state without moving its methods. The application of methods to an
object requires the invocation of remote procedures. This issue was discussed above
under object distribution. Even if individual objects are units of migration [Dollimore
et al., 1994], their relocation may move them away from their type specifications and
one has to decide whether types are duplicated at every site where instances reside or
the types are accessed remotely when behaviors or methods are applied to objects.
Three alternatives can be considered for the migration of classes (types):

1. the source code is moved and recompiled at the destination,

2. the compiled version of a class is migrated just like any other object, or

3. the source code of the class definition is moved, but not its compiled opera-
tions, for which a lazy migration strategy is used.

Another issue is that the movements of the objects must be tracked so that they
can be found in their new locations. A common way of tracking objects is to leave
surrogates [Hwang, 1987; Liskov et al., 1994], or proxy objects [Dickman, 1994].
These are place-holder objects left at the previous site of the object, pointing to
its new location. Accesses to the proxy objects are directed transparently by the
system to the objects themselves at the new sites. The migration of objects can be
accomplished based on their current state [Dollimore et al., 1994]. Objects can be in
one of four states:

1. Ready: Ready objects are not currently invoked, or have not received a mes-
sage, but are ready to be invoked to receive a message.

2. Active: Active objects are currently involved in an activity in response to an
invocation or a message.

3. Waiting: Waiting objects have invoked (or have sent a message to) another
object and are waiting for a response.

4. Suspended: Suspended objects are temporarily unavailable for invocation.

Objects in active or waiting state are not allowed to migrate, since the activity
they are currently involved in would be broken. The migration involves two steps:

1. shipping the object from the source to the destination, and

2. creating a proxy at the source, replacing the original object.

Two related issues must also be addressed here. One relates to the maintenance
of the system directory. As objects move, the system directory must be updated to
reflect the new location. This may be done lazily, whenever a surrogate or proxy

578 15 Distributed Object Database Management

object redirects an invocation, rather than eagerly, at the time of the movement.
The second issue is that, in a highly dynamic environment where objects move
frequently, the surrogate or proxy chains may become quite long. It is useful for
the system to transparently compact these chains from time to time. However, the
result of compaction must be reflected in the directory, and it may not be possible to
accomplish that lazily.

Another important migration issue arises with respect to the movement of compos-
ite objects. The shipping of a composite object may involve shipping other objects
referenced by the composite object. An alternative method of dealing with this is
a method called object assembly that we will consider under query processing in
Section 15.6.3.

15.5 Distributed Object Storage

Among the many issues related to object storage, two are particularly relevant in a
distributed system: object clustering and distributed garbage collection. Composite
and complex objects provide opportunities, as we mentioned earlier, for clustering
data on disk such that the I/O cost of retrieving them is reduced. Garbage collection
is a problem that arises in object databases due to reference-based sharing. Indeed, in
many object DBMSs, the only way to delete an object is to delete all references to
it. Thus, object deletion and subsequent storage reclamation are critical and require
special care.

15.5.0.1 Object Clustering

An object model is essentially conceptual, and should provide high physical data
independence to increase programmer productivity. The mapping of this conceptual
model to a physical storage is a classical database problem. As indicated in Section
15.1, in the case of object DBMSs, two kinds of relationships exist between types:
subtyping and composition. By providing a good approximation of object access,
these relationships are essential to guide the physical clustering of persistent objects.
Object clustering refers to the grouping of objects in physical containers (i.e., disk
extents) according to common properties, such as the same value of an attribute or
sub-objects of the same object. Thus, fast access to clustered objects can be obtained.

Object clustering is difficult for two reasons. First, it is not orthogonal to object
identifier implementation (i.e, LOID vs. POID). LOIDs incur more overhead (an
indirection table), but enable vertical partitioning of classes. POIDs yield more
efficient direct object access, but require each object to contain all inherited attributes.
Second, the clustering of complex objects along the composition relationship is more
involved because of object sharing (objects with multiple parents). In this case, the

15.5 Distributed Object Storage 579

use of POIDs may incur high update overhead as component objects are deleted or
change ownership.

Given a class graph, there are three basic storage models for object clustering [Val-
duriez et al., 1986]:

1. The decomposition storage model (DSM) partitions each object class into
binary relations (OID, attribute) and therefore relies on logical OID. The
advantage of DSM is simplicity.

2. The normalized storage model (NSM) stores each class as a separate relation.
It can be used with logical or physical OID. However, only logical OID allows
the vertical partitioning of objects along the inheritance relationship [Kim
et al., 1987].

3. The direct storage model (DSM) enables multi-class clustering of complex
objects based on the composition relationship. This model generalizes the
techniques of hierarchical and network databases, and works best with physi-
cal OID [Benzaken and Delobel, 1990]. It can capture object access locality
and is therefore potentially superior when access patterns are well-known.
The major difficulty, however, is to clustering an object whose parent has been
deleted.

In a distributed system, both DSM and NSM are straightforward using horizontal
partitioning. Goblin [Kersten et al., 1994] implements DSM as a basis for a dis-
tributed object DBMS with large main memory. DSM provides flexibility, and its
performance disadvantage is compensated by the use of large main memory and
caching. Eos [Gruber and Amsaleg, 1994] implements the direct storage model in a
distributed single-level store architecture, where each object has a physical, system-
wide OID. The Eos grouping mechanism is based on the concept of most relevant
composition links and solves the problem of multiparent shared objects. When an
object moves to a different node, it gets a new OID. To avoid the indirection of
forwarders, references to the object are subsequently changed as part of the garbage
collection process without any overhead. The grouping mechanism is dynamic to
achieve load balancing and cope with the evolutions of the object graph.

15.5.0.2 Distributed Garbage Collection

An advantage of object-based systems is that objects can refer to other objects us-
ing object identifier. As programs modify objects and remove references, a persistent
object may become unreachable from the persistent roots of the system when there is
no more reference to it. Such an object is “garbage” and should be de-allocated by
the garbage collector. In relational DBMSs, there is no need for automatic garbage
collection, since object references are supported by join values. However, cascading
updates as specified by referential integrity constraints are a simple form of “manual”

580 15 Distributed Object Database Management

garbage collection. In more general operating system or programming language con-
texts, manual garbage collection is typically error-prone. Therefore, the generality of
distributed object-based systems calls for automatic distributed garbage collection.

The basic garbage collection algorithms can be categorized as reference count-
ing or tracing-based. In a reference counting system, each object has an associated
count of the references to it. Each time a program creates an additional reference that
points to an object, the object’s count is incremented. When an existing reference
to an object is destroyed, the corresponding count is decremented. The memory
occupied by an object can be reclaimed when the object’s count drops to zero and
become unreachable (at which time, the object is garbage). In reference counting, a
problem can arise where two objects only refer to each other but not referred to by
anyone else; in this case, the two objects are basically unreachable (except from each
other) but their reference count has not dropped to zero.

Tracing-based collectors are divided into mark and sweep and copy-based algo-
rithms. Mark and sweep collectors are two-phase algorithms. The first phase, called
the “mark” phase, starts from the root and marks every reachable object (for example,
by setting a bit associated to each object). This mark is also called a “color”, and the
collector is said to color the objects it reaches. The mark bit can be embedded in the
objects themselves or in color maps that record, for every memory page, the colors
of the objects stored in that page. Once all live objects are marked, the memory is
examined and unmarked objects are reclaimed. This is the “sweep” phase.

Copy-based collectors divide memory into two disjoint areas called from-space
and to-space. Programs manipulate from-space objects, while the to-space is left
empty. Instead of marking and sweeping, copying collectors copy (usually in a depth
first manner) the from-space objects reachable from the root into the to-space. Once
all live objects have been copied, the collection is over, the contents of the from-
space are discarded, and the roles of from- and to-spaces are exchanged. The copying
process copies objects linearly in the to-space, which compacts memory.

The basic implementations of mark and sweep and copy-based algorithms are
“stop-the-world”; i.e., user programs are suspended during the whole collection cycle.
For many applications, however, stop-the-world algorithms cannot be used because
of their disruptive behavior. Preserving the response time of user applications requires
the use of incremental techniques. Incremental collectors must address problems
raised by concurrency. The main difficulty with incremental garbage collection is
that, while the collector is tracing the object graph, program activity may change
other parts of the object graph. Garbage collection algorithms typically avoid the
cases where the collector may miss tracing some reachable objects, due to concurrent
changes to other parts of the object graph, and may erroneously reclaim them. On
the other hand, although not desirable, it is acceptable to miss reclaiming a garbage
and believe that it is alive.

Designing a garbage collection algorithm for object DBMSs is very complex.
These systems have several features that pose additional problems for incremental
garbage collection, beyond those typically addressed by solutions for non-persistent
systems. These problems include the ones raised by the resilience to system failures
and the semantics of transactions, and, in particular, by the rollbacks of partially

15.5 Distributed Object Storage 581

completed transactions, by traditional client-server performance optimizations (such
as client caching and flexible management of client buffers), and by the huge volume
of data to analyze in order to detect garbage objects. There have been a number
of proposals starting with [Butler, 1987]. More recent work has investigated fault-
tolerant garbage collection techniques for transactional persistent systems in central-
ized [Kolodner and Weihl, 1993; O’Toole et al., 1993] and client-server [Yong et al.,
1994; Amsaleg, 1995; Amsaleg et al., 1995] architectures.

Distributed garbage collection, however, is even harder than centralized garbage
collection. For scalability and efficiency reasons, a garbage collector for a distributed
system combines independent per-site collectors with a global inter-site collector.
Coordinating local and global collections is difficult because it requires carefully
keeping track of reference exchanges between sites. Keeping track of such exchanges
is necessary because an object may be referenced from several sites. In addition,
an object located at one site may be referenced from live objects at remote sites,
but not by any local live object. Such an object must not be reclaimed by the local
collector, since it is reachable from the root of a remote site. It is difficult to keep
track of inter-site references in a distributed environment where messages can be lost,
duplicated or delayed, or where individual sites may crash.

Distributed garbage collectors typically rely either on distributed reference count-
ing or distributed tracing. Distributed reference counting is problematic for two
reasons. First, reference counting cannot collect unreachable cycles of garbage
objects (i.e., mutually-referential garbage objects). Second, reference counting is
defeated by common message failures; that is, if messages are not delivered reliably
in their causal order, then maintaining the reference counting invariant (i.e., equality
of the count with the actual number of references) is problematic. However, several
algorithms propose distributed garbage collection solutions based on reference count-
ing [Bevan, 1987; Dickman, 1991]. Each solution makes specific assumptions about
the failure model, and is therefore incomplete. A variant of a reference counting
collection scheme, called “reference listing” [Plainfossé and Shapiro, 1995], is im-
plemented in Thor [Maheshwari and Liskov, 1994]. This algorithm tolerates server
and client failures, but does not address the problem of reclaiming distributed cycles
of garbage.

Distributed tracing usually combines independent per-site collectors with a global
inter-site collector. The main problem with distributed tracing is synchronizing the
distributed (global) garbage detection phase with independent (local) garbage recla-
mation phases. When local collectors and user programs all operate in parallel,
enforcing a global, consistent view of the object graph is impossible, especially in an
environment where messages are not received instantaneously, and where commu-
nications failures are likely. Therefore, distributed tracing-based garbage collection
relies on inconsistent information in order to decide if an object is garbage or not.
This inconsistent information makes distributed tracing collector very complex, be-
cause the collector tries to accurately track the minimal set of reachable objects to
at least eventually reclaim some objects that really are garbage. Ladin and Liskov
[1992] propose an algorithm that computes, on a central space, the global graph of
remote references. Ferreira and Shapiro [1994] present an algorithm that can reclaim

582 15 Distributed Object Database Management

cycles of garbage that span several disjoint object spaces. Finally, Fessant et al.
[1998] present a complete (i.e., both acyclic and cyclic), asynchronous, distributed
garbage collector.

15.6 Object Query Processing

Relational DBMSs have benefitted from the early definition of a precise and formal
query model and a set of universally-accepted algebraic primitives. Although object
models were not initially defined with a full complement of a query language, there
is now a declarative query facility, OQL [Cattell et al., 2000], defined as part of the
ODMG standard. In the remainder, we use OQL as the basis of our discussion. As
we did earlier with SQL, we will take liberties with the language syntax.

Although there has been significant amount of work on object query processing
and optimization, these have primarily focused on centralized systems. Almost all
object query processors and optimizers that have been proposed to date use tech-
niques developed for relational systems. Consequently, it is possible to claim that
distributed object query processing and optimization techniques require the exten-
sion of centralized object query processing and optimization with the distribution
approaches we discussed in Chapters 7 and 8. In this section, we will provide a brief
review of the object query processing and optimization issues and approaches; the
extension we refer to remains an open issue.

Although most object query processing proposals are based on their relational
counterparts, there are a number of issues that make query processing and optimiza-
tion more difficult in object DBMSs [Özsu and Blakeley, 1994]:

1. Relational query languages operate on very simple type systems consisting of
a single type: relation. The closure property of relational languages implies
that each relational operator takes one or two relations as operands and
generates a relation as a result. In contrast, object systems have richer type
systems. The results of object algebra operators are usually sets of objects
(or collections), which may be of different types. If the object languages are
closed under the algebra operators, these heterogeneous sets of objects can
be operands to other operators. This requires the development of elaborate
type inferencing schemes to determine which methods can be applied to
all the objects in such a set. Furthermore, object algebras often operate on
semantically different collection types (e.g., set, bag, list), which imposes
additional requirements on the type inferencing schemes to determine the type
of the results of operations on collections of different types.

2. Relational query optimization depends on knowledge of the physical storage
of data (access paths) that is readily available to the query optimizer. The
encapsulation of methods with the data upon which they operate in object
DBMSs raises at least two important issues. First, determining (or estimating)
the cost of executing methods is considerably more difficult than calculating

15.6 Object Query Processing 583

or estimating the cost of accessing an attribute according to an access path. In
fact, optimizers have to worry about optimizing method execution, which is
not an easy problem because methods may be written using a general-purpose
programming language and the evaluation of a particular method may involve
some heavy computation (e.g., comparing two DNA sequences). Second,
encapsulation raises issues related to the accessibility of storage information
by the query optimizer. Some systems overcome this difficulty by treating
the query optimizer as a special application that can break encapsulation
and access information directly [Cluet and Delobel, 1992]. Others propose
a mechanism whereby objects “reveal” their costs as part of their interface
[Graefe and Maier, 1988].

3. Objects can (and usually do) have complex structures whereby the state of an
object references another object. Accessing such complex objects involves
path expressions. The optimization of path expressions is a difficult and central
issue in object query languages. Furthermore, objects belong to types related
through inheritance hierarchies. Optimizing the access to objects through their
inheritance hierarchies is also a problem that distinguishes object-oriented
from relational query processing.

Object query processing and optimization has been the subject of significant re-
search activity. Unfortunately, most of this work has not been extended to distributed
object systems. Therefore, in the remainder of this chapter, we will restrict ourselves
to a summary of the important issues: object query processing architectures (Section
15.6.1), object query optimization (Section 15.6.2), and query execution strategies
(Section 15.6.3).

15.6.1 Object Query Processor Architectures

As indicated in Chapter 6, query optimization can be modeled as an optimization
problem whose solution is the choice, based on a cost function, of the “optimum”
state, which corresponds to an algebraic query, in a search space that represents
a family of equivalent algebraic queries. Query processors differ, architecturally,
according to how they model these components.

Many existing object DBMS optimizers are either implemented as part of the
object manager on top of a storage system, or as client modules in a client/server
architecture. In most cases, the above-mentioned components are “hardwired” into
the query optimizer. Given that extensibility is a major goal of object DBMSs, one
would hope to develop an extensible optimizer that accommodates different search
strategies, algebra specifications (with their different transformation rules), and cost
functions. Rule-based query optimizers [Freytag, 1987; Graefe and DeWitt, 1987]
provide some amount of extensibility by allowing the definition of new transformation
rules. However, they do not allow extensibility in other dimensions.

584 15 Distributed Object Database Management

It is possible to make the query optimizer extensible with respect to algebraic
operators, logical transformation rules, execution algorithms, implementation rules
(i.e., logical operator-to-execution algorithm mappings), cost estimation functions,
and physical property enforcement functions (e.g., presence of objects in memory).
This can be achieved by means of modularization that separates of a number of
concerns [Blakeley et al., 1993]. For example, the user query language parsing
structures can be separated from the operator graph on which the optimizer operates,
allowing the replacement of the user language (i.e., using something other than
OQL at the top) or making changes to the optimizer without modifying the parse
structures. Similarly, the algebraic operator manipulation (logical optimization, or
re-writing) can be separated from the execution algorithms, allowing exploration
with alternative methods for implementing algebraic operators. These are extensions
that may be achieved by means of well-considered modularization and structuring of
the optimizer.

An approach to providing search space extensibility is to consider it as a group
of regions where each region corresponds to an equivalent family of query expres-
sions that are reachable from each other [Mitchell et al., 1993]. The regions are
not necessarily mutually exclusive and differ in the queries they manipulate, the
control (search) strategies they use, the query transformation rules they incorporate
(e.g., one region may cover transformation rules dealing with simple select queries,
while another region may deal with transformations for nested queries), and the
optimization objectives they achieve (e.g., one region may have the objective of
minimizing a cost function, while another region may attempt to transform queries
to some desirable form).

The ultimate extensibility can be achieved by using object-oriented approach to
develop the query processor and optimizer. In this case, everything (queries, classes,
operators, operator implementations,, meta-information, etc) are all first-class objects
[Peters et al., 1993]. The search space, the search strategy and the cost function are
modeled as objects. Consequently, using object-oriented techniques, it is easy to add
new operators, new re-write rules, or new operator implementations [Özsu et al.,
1995b; Lanzelotte and Valduriez, 1991].

15.6.2 Query Processing Issues

As indicated earlier, query processing methodology in object DBMSs is similar to its
relational counterpart, but with differences in details as a result of the object model
and query model characteristics. In this section we will highlight these differences
as they apply to algebraic optimization. We will also discuss a particular problem
unique to object query models — namely, the execution of path expressions.

15.6 Object Query Processing 585

15.6.2.1 Algebraic Optimization

Search Space and Transformation Rules.

The transformation rules are very much dependent upon the specific object alge-
bra, since they are defined individually for each object algebra and for their com-
binations. The general considerations for the definition of transformation rules and
the manipulation of query expressions is quite similar to relational systems, with
one particularly important difference. Relational query expressions are defined on
flat relations, whereas object queries are defined on classes (or collections or sets of
objects) that have subclass and composition relationships among them. It is, therefore,
possible to use the semantics of these relationships in object query optimizers to
achieve some additional transformations.

Consider, for example, three object algebra operators [Straube and Özsu, 1990a]:
union (denoted ∪), intersection (denoted ∩) and parameterized select
(denoted PσF < Q1 . . .Qk >), where union and intersection have the usual
set-theoretic semantics, and select selects objects from one set P using the sets
of objects Q1 . . .Qk as parameters (in a sense, a generalized form of semijoin). The
results of these operators are sets of objects as well. It is, of course, possible to specify
the usual set-theoretic, syntactic rewrite rules for these operators as we discussed in
Chapter 7.

What is more interesting is that the relationships mentioned above allow us to
define semantic rules that depend on the object model and the query model. Consider
the following rules where Ci denotes the set of objects in the extent of class ci and
C∗j denotes the deep extent of class c j (i.e., the set of objects in the extent of c j, as
well as in the extents of all those which are subclasses of c j):

C1∩C2 = φ if c1 6= c2

C1∪C∗2 =C∗2 if c1 is a subclass of c2

(PσF〈QSet〉)∩R c⇔ (PσF〈QSet〉)∩ (RσF ′〈QSet〉)
c⇔ P∩ (RσF ′ < QSet >)

The first rule, for example, is true because the object model restricts each object
to belong to only one class. The second rule holds because the query model permits
retrieval of objects in the deep extent of the target class. Finally, the third rule relies
on type consistency rules [Straube and Özsu, 1990b] for its applicability, as well as a
condition (denoted by the c over the⇔) that F ′ is identical to F , except that each
occurrence of p is replaced by r.

Since the idea of query transformation is well-known, we will not elaborate on the
techniques. The above discussion only demonstrates the general idea and highlights
the unique aspects that must be considered in object algebras.

586 15 Distributed Object Database Management

Search Algorithm.

Enumerative algorithms based on dynamic programming with various optimizations
are typically used for search [Selinger et al., 1979; Lee et al., 1988; Graefe and
McKenna, 1993]. The combinatorial nature of enumerative search algorithms is
perhaps more important in object DBMSs than in relational ones. It has been argued
that if the number of joins in a query exceeds ten, enumerative search strategies
become infeasible [Ioannidis and Wong, 1987]. In applications such as decision
support systems, which object DBMSs are well-suited to support, it is quite common
to find queries of this complexity. Furthermore, as we will address in Section 15.6.2.2,
one method of executing path expressions is to represent them as explicit joins, and
then use the well-known join algorithms to optimize them. If this is the case, the
number of joins and other operations with join semantics in a query is quite likely to
be higher than the empirical threshold of ten.

In these cases, randomized search algorithms (that we introduced in Chapters
7 and 8) have been suggested as alternatives to restrict the region of the search
space being analyzed. Unfortunately, there has not been any study of randomized
search algorithms within the context of object DBMSs. The general strategies are
not likely to change, but the tuning of the parameters and the definition of the space
of acceptable solutions should be expected to change. Unfortunately, the distributed
versions of these algorithms are not available, and their development remains a
challenge.

Cost Function.

As we have already seen, the arguments to cost functions are based on various
information regarding the storage of the data. Typically, the optimizer considers the
number of data items (cardinality), the size of each data item, its organization (e.g.,
whether there are indexes on it or not), etc. This information is readily available
to the query optimizer in relational systems (through the system catalog), but may
not be in object DBMSs due to encapsulation. If the query optimizer is considered
“special” and allowed to look at the data structures used to implement objects, the
cost functions can be specified similar to relational systems [Blakeley et al., 1993;
Cluet and Delobel, 1992; Dogac et al., 1994; Orenstein et al., 1992]. Otherwise, an
alternative specification must be considered.

The cost function can be defined recursively based on the algebraic processing
tree. If the internal structure of objects is not visible to the query optimizer, the cost of
each node (representing an algebraic operation) has to be defined. One way to define
it is to have objects “reveal” their costs as part of their interface [Graefe and Maier,
1988]. In systems that uniformly implement everything as first-class objects, the cost
of an operator can be a method defined on an operator implemented as a function of
(a) the execution algorithm and (b) the collection over which they operate. In both
cases, more abstract cost functions for operators are specified at type definition time
from which the query optimizer can calculate the cost of the entire processing tree.

15.6 Object Query Processing 587

The definition of cost functions, especially in the approaches based on the objects
revealing their costs, must be investigated further before satisfactory conclusions can
be reached.

15.6.2.2 Path Expressions

Most object query languages allow queries whose predicates involve conditions
on object access along reference chains. These reference chains are called path
expressions [Zaniolo, 1983] (sometimes also referred to as complex predicates or
implicit joins [Kim, 1989]). The example path expresion c.engine.manufacturer.name
that we used in Section 15.4.2 retrieves the value of the name attribute of the object
that is the value of the manufacturer attribute of the object that is the value of the
engine attribute of object c, which was defined to be of type Car. It is possible
to form path expressions involving attributes as well as methods. Optimizing the
computation of path expressions is a problem that has received substantial attention
in object-query processing.

Path expressions allow a succinct, high-level notation for expressing navigation
through the object composition (aggregation) graph, which enables the formulation
of predicates on values deeply nested in the structure of an object. They provide a
uniform mechanism for the formulation of queries that involve object composition
and inherited member functions. Path expressions may be single-valued or set-valued,
and may appear in a query as part of a predicate, a target to a query (when set-valued),
or part of a projection list. A path expression is single-valued if every component
of a path expression is single-valued; if at least one component is set-valued, then
the whole path expression is set-valued. Techniques have been developed to traverse
path expressions forward and backward [Jenq et al., 1990].

The problem of optimizing path expressions spans the entire query-compilation
process. During or after parsing of a user query, but before algebraic optimization, the
query compiler must recognize which path expressions can potentially be optimized.
This is typically achieved through rewriting techniques, which transform path expres-
sions into equivalent logical algebra expressions [Cluet and Delobel, 1992]. Once
path expressions are represented in algebraic form, the query optimizer explores the
space of equivalent algebraic and execution plans, searching for one of minimal cost
[Lanzelotte and Valduriez, 1991; Blakeley et al., 1993]. Finally, the optimal execu-
tion plan may involve algorithms to efficiently compute path expressions, including
hash-join [Shapiro, 1986], complex-object assembly [Keller et al., 1991], or indexed
scan through path indexes [Maier and Stein, 1986; Valduriez, 1987; Kemper and
Moerkotte, 1990a,b].

Rewriting and Algebraic Optimization.

Consider again the path expression we used earlier: c.engine.manufacturer.name. As-
sume every car instance has a reference to an Engine object, each engine has a

588 15 Distributed Object Database Management

reference to a Manufacturer object, and each manufacturer instance has a name
field. Also, assume that Engine and Manufacturer types have a correspond-
ing type extent. The first two links of the above path may involve the retrieval of
engine and manufacturer objects from disk. The third path involves only a lookup
of a field within a manufacturer object. Therefore, only the first two links present
opportunities for query optimization in the computation of that path. An object-query
compiler needs a mechanism to distinguish these links in a path representing possible
optimizations. This is typically achieved through a rewriting phase.

One possibility is to use a type-based rewriting technique [Cluet and Delobel,
1992]. This approach “unifies” algebraic and type-based rewriting techniques, permits
factorization of common subexpressions, and supports heuristics to limit rewriting.
Type information is exploited to decompose initial complex arguments of a query into
a set of simpler operators, and to rewrite path expressions into joins. A similar attempt
to optimizing path expressions within an algebraic framework has been devised based
on joins, using an operator called implicit join [Lanzelotte and Valduriez, 1991]. Rules
are defined to transform a series of implicit join operators into an indexed scan using
a path index (see below) when it is available.

An alternative operator that has been proposed for optimizing path expressions is
materialize (Mat) [Blakeley et al., 1993], which represents the computation of each
inter-object reference (i.e., path link) explicitly. This enables a query optimizer to
express the materialization of multiple components as a group using a single Mat
operator, or individually using a Mat operator per component. Another way to think of
this operator is as a “scope definition,” because it brings elements of a path expression
into scope so that these elements can be used in later operations or in predicate
evaluation. The scoping rules are such that an object component gets into scope either
by being scanned (captured using the logical Get operator in the leaves of expressions
trees) or by being referenced (captured in the Mat operator). Components remain
in scope until a projection discards them. The materialize operator allows a query
processor to aggregate all component materializations required for the computation of
a query, regardless of whether the components are needed for predicate evaluation or
to produce the result of a query. The purpose of the materialize operator is to indicate
to the optimizer where path expressions are used and where algebraic transformations
can be applied. A number of transformation rules involving Mat are defined.

Path Indexes.

Substantial research on object query optimization has been devoted to the design of
index structures to speed up the computation of path expressions [Maier and Stein,
1986; Bertino and Kim, 1989; Valduriez, 1987; Kemper and Moerkotte, 1994].

Computation of path expressions via indexes represents just one class of query-
execution algorithms used in object-query optimization. In other words, efficient
computation of path expressions through path indexes represents only one collection
of implementation choices for algebraic operators, such as materialize and join,
used to represent inter-object references. Section 15.6.3 describes a representative

15.6 Object Query Processing 589

collection of query-execution algorithms that promise to provide a major benefit
to the efficient execution of object queries. We will defer a discussion of some
representative path index techniques to that section.

15.6.3 Query Execution

The relational DBMSs benefit from the close correspondence between the relational
algebra operations and the access primitives of the storage system. Therefore, the
generation of the execution plan for a query expression basically concerns the choice
and implementation of the most efficient algorithms for executing individual algebra
operators and their combinations. In object DBMSs, the issue is more complicated
due to the difference in the abstraction levels of behaviorally-defined objects and
their storage. Encapsulation of objects, which hides their implementation details, and
the storage of methods with objects pose a challenging design problem, which can
be stated as follows: “At what point in query processing should the query optimizer
access information regarding the storage of objects?” One alternative is to leave this
to the object manager [Straube and Özsu, 1995]. Consequently, the query-execution
plan is generated from the query expression is obtained at the end of the query-
rewrite step by mapping the query expression to a well-defined set of object-manager
interface calls. The object-manager interface consists of a set of execution algorithms.
This section reviews some of the execution algorithms that are likely to be part of
future high-performance object-query execution engines.

A query-execution engine requires three basic classes of algorithms on collections
of objects: collection scan, indexed scan, and collection matching. Collection scan
is a straightforward algorithm that sequentially accesses all objects in a collection.
We will not discuss this algorithm further due to its simplicity. Indexed scan allows
efficient access to selected objects in a collection through an index. It is possible
to use an object’s field or the values returned by some method as a key to an index.
Also, it is possible to define indexes on values deeply nested in the structure of an
object (i.e., path indexes). In this section we mention a representative sample of
path-index proposals. Set-matching algorithms take multiple collections of objects
as input and produce aggregate objects related by some criteria. Join, set intersection,
and assembly are examples of algorithms in this category.

15.6.3.1 Path Indexes

As indicated earlier, support for path expressions is a feature that distinguishes object
queries from relational ones. Many indexing techniques designed to accelerate the
computation of path expressions have been proposed [Maier and Stein, 1986; Bertino
and Kim, 1989] based on the concept of join index [Valduriez, 1987].

590 15 Distributed Object Database Management

One such path indexing technique creates an index on each class traversed by a
path [Maier and Stein, 1986; Bertino and Kim, 1989]. In addition to indexes on path
expressions, it is possible to define indexes on objects across their type inheritance.

Access support relations [Kemper and Moerkotte, 1994] are an alternative general
technique to represent and compute path expressions. An access support relation
is a data structure that stores selected path expressions. These path expressions are
chosen to be the most frequently navigated ones. Studies provide initial evidence
that the performance of queries executed using access support relations improves by
about two orders of magnitude over queries that do not use access support relations.
A system using access support relations must also consider the cost of maintaining
them in the presence of updates to the underlying base relations.

15.6.3.2 Set Matching

As indicated earlier, path expressions are traversals along the composite object com-
position relationship. We have already seen that a possible way of executing a path
expression is to transform it into a join between the source and target sets of objects.
A number of different join algorithms have been proposed, such as hybrid-hash join
or pointer-based hash join [Shekita and Carey, 1990]. The former uses the divide-and-
conquer principle to recursively partition the two operand collections into buckets
using a hash function on the join attribute. Each of these buckets may fit entirely in
memory. Each pair of buckets is then joined in memory to produce the result. The
pointer-based hash join is used when each object in one operand collection (call R)
has a pointer to an object in the other operand collection (call S). The algorithm
follows three steps, the first one being the partitioning of R in the same way as in the
hybrid hash algorithm, except that it is partitioned by OID values rather than by join
attribute. The set of objects S is not partitioned. In the second step, each partition Ri
of R is joined with S by taking Ri and building a hash table for it in memory. The table
is built by hashing each object r ∈ R on the value of its pointer to its corresponding
object in S. As a result, all R objects that reference the same page in S are grouped
together in the same hash-table entry. Third, after the hash table for Ri is built, each
of its entries is scanned. For each hash entry, the corresponding page in S is read, and
all objects in R that reference that page are joined with the corresponding objects in
S. These two algorithms are basically centralized algorithms, without any distributed
counterparts. So we will not discuss them further.

An alternative method of join execution algorithm, assembly [Keller et al., 1991],
is a generalization of the pointer-based hash-join algorithm for the case when a
multi-way join needs to be computed. Assembly has been proposed as an additional
object algebra operator. This operation efficiently assembles the fragments of objects’
states required for a particular processing step, and returns them as a complex object
in memory. It translates the disk representations of complex objects into readily
traversable memory representations.

Assembling a complex object rooted at objects of type R containing object com-
ponents of types S, U , and T , is analogous to computing a four-way join of these sets.

15.6 Object Query Processing 591

There is a difference between assembly and n-way pointer joins in that assembly
does not need the entire collection of root objects to be scanned before producing a
single result.

Instead of assembling a single complex object at a time, the assembly operator
assembles a window, of size W , of complex objects simultaneously. As soon as any
of these complex objects becomes assembled and passed up the query-execution tree,
the assembly operator retrieves another one to work on. Using a window of complex
objects increases the pool size of unresolved references and results in more options
for optimization of disk accesses. Due to the randomness with which references are
resolved, the assembly operator delivers assembled objects in random order up the
query execution tree. This behavior is correct in set-oriented query processing, but
may not be for other collection types, such as lists.

Engine

Bumper

Manufacturer

Car

Fig. 15.3 Two Assembled Complex Objects

Example 15.8. Consider the example given in Figure 15.3, which assembles a set
of Car objects. The boxes in the figure represent instances of types indicated at the
left, and the edges denote the composition relationships (e.g., there is an attribute
of every object of type Car that points to an object of type Engine). Suppose that
assembly is using a window of size 2. The assembly operator begins by filling the
window with two (since W = 2) Car object references from the set (Figure 15.4a).
The assembly operator begins by choosing among the current outstanding references,
say C1. After resolving (fetching) C1, two new unresolved references are added to
the list (Figure 15.4b). Resolving C2 results in two more references added to the list
(Figure 15.4c), and so on until the first complex object is assembled (Figure 15.4g).
At this point, the assembled object is passed up the query-execution tree, freeing
some window space. A new Car object reference, C3, is added to the list and then
resolved, bringing two new references E3, B3 (Figure 15.4h). �

The objective of the assembly algorithm is to simultaneously assemble a window
of complex objects. At each point in the algorithm, the outstanding reference that
optimizes disk accesses is chosen. There are different orders, or schedules, in which
references may be resolved, such as depth-first, breath-first, and elevator. Performance

592 15 Distributed Object Database Management

Outstanding References Partally Assembled Objects

(a) C1, C2

(b) C2, E1, B1

(c) E1, B1, E2, B2

(d) B1, E2, B2, M1

C1

C1 C2

C1

E1

C2

(e) E2, B2, M1 C1

E1

C2

B1

(h) E2, E3, B3 C2 E3

B2

(f) E2, M1 C1

E1

C2

B1 B2

(g) E2 C1

E1

C2

B1

M1

B2

Fig. 15.4 An Assembly Example

results indicate that elevator outperforms depth-first and breath-first under several
data-clustering situations [Keller et al., 1991].

A number of possibilities exist in implementing a distributed version of this
operation [Maier et al., 1994]. One strategy involves shipping all data to a central
site for processing. This is straightforward to implement, but could be inefficient in
general. A second strategy involves doing simple operations (e.g., selections, local
assembly) at remote sites, then shipping all data to a central site for final assembly.
This strategy also requires fairly simple control, since all communication occurs
through the central site. The third strategy is significantly more complicated: perform
complex operations (e.g., joins, complete assembly of remote objects) at remote sites,
then ship the results to the central site for final assembly. A distributed object DBMS
may include all or some of these strategies.

15.7 Transaction Management 593

15.7 Transaction Management

Transaction management in distributed object DBMSs have not been studied except
in relation to the cashing problem discussed earlier. However, transactions on objects
raise a number of interesting issues, and their execution in a distributed environment
can be quite challenging. This is an area that clearly requires more work. In this
section we will briefly discuss the particular problems that arise in extending the
transaction concept to object DBMSs.

Most object DBMSs maintain page level locks for concurrency control and support
the traditional flat transaction model. It has been argued that the traditional flat trans-
action model would not meet the requirements of the advanced application domains
that object data management technology would serve. Some of the considerations
are that transactions in these domains are longer in duration, requiring interactions
with the user or the application program during their execution. In the case of object
systems, transactions do not consist of simple read/write operations, necessitating, in-
stead, synchronization algorithms that deal with complex operations on abstract (and
possibly complex) objects. In some application domains, the fundamental transaction
synchronization paradigm based on competition among transactions for access to
resources must change to one of cooperation among transactions in accomplishing a
common task. This is the case, for example, in cooperative work environments.

The more important requirements for transaction management in object DBMSs
can be listed as follows [Buchmann et al., 1982; Kaiser, 1989; Martin and Pedersen,
1994]:

1. Conventional transaction managers synchronize simple Read and Write oper-
ations. However, their counterparts for object DBMSs must be able to deal
with abstract operations. It may even be possible to improve concurrency by
using semantic knowledge about the objects and their abstract operations.

2. Conventional transactions access “flat” objects (e.g., pages, tuples), whereas
transactions in object DBMSs require synchronization of access to composite
and complex objects. Synchronization of access to such objects requires
synchronization of access to the component objects.

3. Some applications supported by object DBMSs have different database access
patterns than conventional database applications, where the access is com-
petitive (e.g., two users accessing the same bank account). Instead, sharing
is more cooperative, as in the case of, for example, multiple users accessing
and working on the same design document. In this case, user accesses must
be synchronized, but users are willing to cooperate rather than compete for
access to shared objects.

4. These applications require the support of long-running activities spanning
hours, days or even weeks (e.g., when working on a design object). There-
fore, the transaction mechanism must support the sharing of partial results.
Furthermore, to avoid the failure of a partial task jeopardizing a long activity,
it is necessary to distinguish between those activities that are essential for

594 15 Distributed Object Database Management

the completion of a transaction and those that are not, and to provide for
alternative actions in case the primary activity fails.

5. It has been argued that many of these applications would benefit from active
capabilities for timely response to events and changes in the environment. This
new database paradigm requires the monitoring of events and the execution
of system-triggered activities within running transactions.

These requirements point to a need to extend the traditional transaction manage-
ment functions in order to capture application and data semantics, and to a need to
relax isolation properties. This, in turn, requires revisiting every aspect of transaction
management that we discussed in Chapters 10–12.

15.7.1 Correctness Criteria

In Chapter 11, we introduced serializability as the fundamental correctness criteria
for concurrent execution of database transactions. There are a number of different
ways in which serializability can be defined, even though we did not elaborate on
this point before. These differences are based on how a conflict is defined. We will
concentrate on three alternatives: commutativity [Weihl, 1988, 1989; Fekete et al.,
1989], invalidation [Herlihy, 1990], and recoverability [Badrinath and Ramam-
ritham, 1987].

15.7.1.1 Commutativity

Commutativity states that two operations conflict if the results of different serial
executions of these operations are not equivalent. We had briefly introduced commuta-
tivity within the context of ordered-shared locks in Chapter 11 (see Figure 11.8). The
traditional conflict definition discussed in Chapter 11 is a special case. Consider the
simple operations R(x) and W (x). If nothing is known about the abstract semantics
of the Read and Write operations or the object x upon which they operate, it has to be
accepted that a R(x) following a W (x) does not retrieve the same value as it would
prior to the W (x). Therefore, a Write operation always conflicts with other Read or
Write operations. The conflict table (or the compatibility matrix) given in Figure 11.5
for Read and Write operations is, in fact, derived from the commutativity relationship
between these two operations. This table was called the compatibility matrix in
Chapter 11, since two operations that do not conflict are said to be compatible. Since
this type of commutativity relies only on syntactic information about operations (i.e.,
that they are Read and Write), we call this syntactic commutativity [Buchmann et al.,
1982].

In Figure 11.5, Read and Write operations and Write and Write operations do
not commute. Therefore, they conflict, and serializability maintains that either all

15.7 Transaction Management 595

conflicting operations of transaction Ti precede all conflicting operations of Tk, or
vice versa.

If the semantics of the operations are taken into account, however, it may be
possible to provide a more relaxed definition of conflict. Specifically, some concur-
rent executions of Write-Write and Read-Write may be considered non-conflicting.
Semantic commutativity (e.g., [Weihl, 1988, 1989]) makes use of the semantics of
operations and their termination conditions.

Example 15.9. Consider, for example, an abstract data type set and three operations
defined on it: Insert and Delete, which correspond to a Write, and Member, which
tests for membership and corresponds to a Read. Due to the semantics of these
operations, two Insert operations on an instance of set type would commute, allowing
them to be executed concurrently. The commutativity of Insert with Member and the
commutativity of Delete with Member depends upon whether or not they reference
the same argument and their results7. �

It is also possible to define commutativity with reference to the database state. In
this case, it is usually possible to permit more operations to commute.

Example 15.10. In Example 15.7, we indicated that an Insert and a Member would
commute if they do not refer to the same argument. However, if the set already
contains the referred element, these two operations would commute even if their
arguments are the same. �

15.7.1.2 Invalidation

Invalidation [Herlihy, 1990] defines a conflict between two operations not on the
basis of whether they commute or not, but according to whether or not the execution
of one invalidates the other. An operation P invalidates another operation Q if there
are two histories H1 and H2 such that H1 •P •H2 and H1 •H2 •Q are legal, but
H1 •P •H2 •Q is not. In this context, a legal history represents a correct history
for the set object and is determined according to its semantics. Accordingly, an
invalidated-by relation is defined as consisting of all operation pairs (P,Q) such
that P invalidates Q. The invalidated-by relation establishes the conflict relation that
forms the basis of establishing serializability. Considering the Set example, an Insert
cannot be invalidated by any other operation, but a Member can be invalidated by a
Delete if their arguments are the same.

7 Depending upon the operation, the result may either be a flag that indicates whether the operation
was successful (for example, the result of Insert may be “OK”) or the value that the operation returns
(as in the case of a Read).

596 15 Distributed Object Database Management

15.7.1.3 Recoverability

Recoverability [Badrinath and Ramamritham, 1987] is another conflict relation that
has been defined to determine serializable histories8. Intuitively, an operation P is
said to be recoverable with respect to operation Q if the value returned by P is
independent of whether Q executed before P or not. The conflict relation established
on the basis of recoverability seems to be identical to that established by invalidation.
However, this observation is based on only a few examples, and there is no formal
proof of this equivalence. In fact, the absence of a formal theory to reason about
these conflict relations is a serious deficiency that must be addressed.

15.7.2 Transaction Models and Object Structures

In Chapter 10, we considered a number of transaction models ranging from flat
transactions to workflow systems. All of these alternatives access simple database
objects (sets of tuples or a physical page). In the case of object databases, however,
the database objects are not simple; they can be objects with state and properties,
they can be complex objects, or even active objects (i.e., objects that are capable of
responding to events by triggering the execution of actions when certain conditions
are satisfied). The complications added by the complexity of objects is significant, as
we highlight in subsequent sections.

15.7.3 Transactions Management in Object DBMSs

Transaction management techniques that are developed for object DBMSs need to
take into consideration the complications we discussed earlier: they need to employ
more sophisticated correctness criteria that take into account method semantics, they
need to consider the object structure, they need to be cognizant of the composition
and inheritance relationships. In addition to these structures, object DBMSs store
methods together with data. Synchronization of shared access to objects must take
into account method executions. In particular, transactions invoke methods which
may, in turn, invoke other methods. Thus, even if the transaction model is flat, the
execution of these transactions may be dynamically nested.

8 Recoverability as used in [Badrinath and Ramamritham, 1987] is different from the notion of
recoverability as we defined it in Chapter 12 and as found in [Bernstein et al., 1987] and [Hadzilacos,
1988].

15.7 Transaction Management 597

15.7.3.1 Synchronizing Access to Objects

The inherent nesting in method invocations can be used to develop algorithms based
on the well-known nested 2PL and nested timestamp ordering algorithms [Hadzilacos
and Hadzilacos, 1991]. In the process, intra-object parallelism may be exploited to
improve concurrency. In other words, attributes of an object can be modeled as data
elements in the database, whereas the methods are modeled as transactions enabling
multiple invocations of an object’s methods to be active simultaneously. This can
provide more concurrency if special intra-object synchronization protocols can be
devised that maintain the compatibility of synchronization decisions at each object.

Consequently, a method execution (modeled as a transaction) on an object consists
of local steps, which correspond to the execution of local operations together with the
results that are returned, and method steps, which are the method invocations together
with the return values. A local operation is an atomic operation (such as Read, Write,
Increment) that affects the object’s variables. A method execution defines the partial
order among these steps in the usual manner.

One of the fundamental directions of this work is to provide total freedom to
objects in how they achieve intra-object synchronization. The only requirement is
that they be “correct” executions, which, in this case, means that they should be
serializable based on commutativity. As a result of the delegation of intra-object
synchronization to individual objects, the concurrency control algorithm concentrates
on inter-object synchronization.

An alternative approach is multigranularity locking [Garza and Kim, 1988; Cart
and Ferrie, 1990]. Multigranularity locking defines a hierarchy of lockable database
granules (thus the name “granularity hierarchy”) as depicted in Figure 15.5. In
relational DBMSs, files correspond to relations and records correspond to tuples. In
object DBMSs, the correspondence is with classes and instance objects, respectively.
The advantage of this hierarchy is that it addresses the tradeoff between coarse
granularity locking and fine granularity locking. Coarse granularity locking (at the
file level and above) has low locking overhead, since a small number of locks are
set, but it significantly reduces concurrency. The reverse is true for fine granularity
locking.

The main idea behind multigranularity locking is that a transaction that locks at a
coarse granularity implicitly locks all the corresponding objects of finer granularities.
For example, explicit locking at the file level involves implicit locking of all the
records in that file. To achieve this, two more lock types in addition to shared (S)
and exclusive (X) are defined: intention (or implicit) shared (IS) and intention (or
implicit) exclusive (IX). A transaction that wants to set an S or an IS lock on an
object has to first set IS or IX locks on its ancestors (i.e., related objects of coarser
granularity). Similarly, a transaction that wants to set an X or an IX lock on an object
must set IX locks on all of its ancestors. Intention locks cannot be released on an
object if the descendants of that object are currently locked.

One additional complication arises when a transaction wants to read an object at
some granularity and modify some of its objects at a finer granularity. In this case,
both an S lock and an IX lock must be set on that object. For example, a transaction

598 15 Distributed Object Database Management

Database

Areas

Files

Records

Fig. 15.5 Multiple Granularities

may read a file and update some records in that file (similarly, a transaction in object
DBMSs may want to read the class definition and update some of the instance objects
belonging to that class). To deal with these cases, a shared intention exclusive (SIX)
lock is introduced, which is equivalent to holding an S and an IX lock on that object.
The lock compatibility matrix for multigranularity locking is shown in Figure 15.6.

A possible granularity hierarchy is shown in Figure 15.7. The lock modes that are
supported and their compatibilities are exactly those given in Figure 15.6. Instance
objects are locked only in S or X mode, while class objects can be locked in all five
modes. The interpretation of these locks on class objects is as follows:

• S mode: Class definition is locked in S mode, and all its instances are implicitly
locked in S mode. This prevents another transaction from updating the instances.

++

+

++++

++

IS

X

SIX

IX

S

SIXIXISXS

- - -

- - - -

- - -

- - - -

-

-

Fig. 15.6 Compatibility Table for Multigranularity Locking

• X mode: Class definition is locked in X mode, and all its instances are implicitly
locked in X mode. Therefore, the class definition and all instances of the class
may be read or updated.

15.7 Transaction Management 599

Database

Index Class

Instance

Fig. 15.7 Granularity Hierarchy

• IS mode: Class definition is locked in IS mode, and the instances are to be
locked in S mode as necessary.

• IX mode: Class definition is locked in IX mode, and the instances will be locked
in either S or X mode as necessary.

• SIX mode: Class definition is locked in S mode, and all the instances are
implicitly locked in S mode. Those instances that are to be updated are explicitly
locked in X mode as the transaction updates them.

15.7.3.2 Management of Class Lattice

One of the important requirements of object DBMSs is dynamic schema evolution.
Consequently, systems must deal with transactions that access schema objects (i.e.,
types, classes, etc.), as well as instance objects. The existence of schema change
operations intermixed with regular queries and transactions, as well as the (multiple)
inheritance relationship defined among classes, complicates the picture. First, a
query/transaction may not only access instances of a class, but may also access
instances of subclasses of that class (i.e., deep extent). Second, in a composite object,
the domain of an attribute is itself a class. So accessing an attribute of a class may
involve accessing the objects in the sublattice rooted at the domain class of that
attribute.

One way to deal with these two problems is, again, by using multigranularity
locking. The straightforward extension of multigranularity locking where the ac-
cessed class and all its subclasses are locked in the appropriate mode does not work
very well. This approach is inefficient when classes close to the root are accessed,
since it involves too many locks. The problem may be overcome by introducing
read-lattice (R) and write-lattice (W) lock modes, which not only lock the target
class in S or X modes, respectively, but also implicitly lock all subclasses of that
class in S and X modes, respectively. However, this solution does not work with
multiple inheritance (which is the third problem).

The problem with multiple inheritance is that a class with multiple supertypes
may be implicitly locked in incompatible modes by two transactions that place R
and W locks on different superclasses. Since the locks on the common class are
implicit, there is no way of recognizing that there is already a lock on the class. Thus,
it is necessary to check the superclasses of a class that is being locked. This can be

600 15 Distributed Object Database Management

C

E

K

G

A F

Fig. 15.8 An Example Class Lattice

handled by placing explicit locks, rather than implicit ones, on subclasses. Consider
the type lattice of Figure 15.8, which is simplified from [Garza and Kim, 1988]. If
transaction T1 sets an IR lock on class A and an R lock on C, it also sets an explicit
R lock on E. When another transaction T2 places an IW lock on F and a W lock on
G, it will attempt to place an explicit W lock on E. However, since there is already
an R lock on E, this request will be rejected.

An alternative to setting explicit locks is to set locks at a finer granularity, uses
ordered sharing, as discussed in Chapter 11 [Agrawal and El-Abbadi, 1994]. In a
sense, the algorithm is an extension of Weihl’s commutativity-based approach to
object DBMSs using a nested transaction model.

Classes are modeled as objects in the system similar to reflective systems that
represent schema objects as first-class objects. Consequently, methods can be defined
that operate on class objects: add(m) to add method m to the class, del(m) to
delete method m from the class, rep(m) to replace the implementation of method
m with another one, and use(m) to execute method m. Similarly, atomic operations
are defined for accessing attributes of a class. These are identical to the method
operations with the appropriate change in semantics to reflect attribute access. The
interesting point to note here is that the definition of the use(a) operation for attribute
a indicates that the access of a transaction to attribute a within a method execution
is through the use operation. This requires that each method explicitly list all the
attributes that it accesses. Thus, the following is the sequence of steps that are
followed by a transaction, T , in executing a method m:

1. Transaction T issues operation use(m).

2. For each attribute a that is accessed by method m, T issues operation use(a).

3. Transaction T invokes method m.

15.7 Transaction Management 601

Commutativity tables are defined for the method and attribute operations. Based
on the commutativity tables, ordered sharing lock tables for each atomic operation
are determined (see Figure 11.8). Specifically, a lock for an atomic operation p has a
shared relationship with all the locks associated with operations with which p has
a non-conflicting relationship, whereas it has an ordered shared relationship with
respect to all the locks associated with operations with which p has a conflicting
relation.

Based on these lock tables, a nested 2PL locking algorithm is used with the
following considerations:

1. Transactions observe the strict 2PL rule and hold on to their locks until
termination.

2. When a transaction aborts, it releases all of its locks.

3. The termination of a transaction awaits the termination of its children (closed
nesting semantics). When a transaction commits, its locks are inherited by its
parent.

4. Ordered commitment rule. Given two transactions Ti and Tj such that Ti
is waiting for Tj, Ti cannot commit its operations on any object until Tj
terminates (commits or aborts). Ti is said to be waiting-for Tj if:

• Ti is not the root of the nested transaction and Ti was granted a lock
in ordered shared relationship with respect to a lock held by Tj on an
object such that Tj is a descendent of the parent of Ti; or

• Ti is the root of the nested transaction and Ti holds a lock (that it has
inherited or it was granted) on an object in ordered shared relationship
with respect to a lock held by Tj or its descendants.

15.7.3.3 Management of Composition (Aggregation) Graph

Studies dealing with the composition graph are more prevalent. The requirement for
object DBMSs to model composite objects in an efficient manner has resulted in
considerable interest in this problem.

One approach is based on multigranularity locking where one can lock a composite
object and all the classes of the component objects. This is clearly unacceptable,
since it involves locking the entire composite object hierarchy, thereby restricting
performance significantly. An alternative is to lock the component object instances
within a composite object. In this case, it is necessary to chase all the references and
lock all those objects. This is quite cumbersome, since it involves locking so many
objects.

The problem is that the multigranularity locking protocol does not recognize the
composite object as one lockable unit. To overcome this problem, three new lock
modes are introduced: ISO, IXO, and SIXO, corresponding to the IS, IX, and SIX
modes, respectively. These lock modes are used for locking component classes of

602 15 Distributed Object Database Management

S

X

IS

IX

SIX

ISO

IXO

SIXO N

S X

N

IS

N

IX

N

SIX

N

ISO

Y

IXO

N

SIXO

N

+ + +

+ + + + +

+ +

+

+ + + + + +

+ +

- - - - -

- - - - - - -

- - -

- - - - -

- - - - - -

- -

----- -

-

-

-

Fig. 15.9 Compatibility Matrix for Composite Objects

a composite object. The compatibility of these modes is shown in Figure 15.9. The
protocol is then as follows: to lock a composite object, the root class is locked in
X, IS, IX, or SIX mode, and each of the component classes of the composite object
hierarchy is locked in the X, ISO, IXO, and SIXO mode, respectively.

Another approach extends multigranularity locking by replacing the single static
lock graph with a hierarchy of graphs associated with each type and query [Herrmann
et al., 1990]. There is a “general lock graph” that controls the entire process (Figure
15.10). The smallest lockable units are called basic lockable units (BLU). A number
of BLUs can make up a homogeneous lockable unit (HoLU), which consists of data
of the same type. Similarly, they can make up a heterogeneous lockable unit (HeLU),
which is composed of objects of different types. HeLUs can contain other HeLUs or
HoLUs, indicating that component objects do not all have to be atomic. Similarly,
HoLUs can consist of other HoLUs or HeLUs, as long as they are of the same type.
The separation between HoLUs and HeLUs is meant to optimize lock requests. For
example, a set of lists of integers is, from the viewpoint of lock managers, treated
as a HoLU composed of HoLUs, which, in turn, consist of BLUs. As a result, it is
possible to lock the whole set, exactly one of the lists, or even just one integer.

At type definition time, an object-specific lock graph is created that obeys the
general lock graph. As a third component, a query-specific lock graph is generated
during query (transaction) analysis. During the execution of the query (transaction),
the query-specific lock graph is used to request locks from the lock manager, which
uses the object-specific lock graph to make the decision. The lock modes used are
the standard ones (i.e., IS, IX, S, X).

15.7 Transaction Management 603

Homogeneous Lockable Unit

Basic Locable Unit

(HoLU)

(BLU)

Heterogeneous Lockable Unit

(HeLU)

Fig. 15.10 General Lock Graph

Badrinath and Ramamritham [1987] discuss an alternative to dealing with com-
posite object hierarchy based on commutativity. A number of different operations
are defined on the aggregation graph:

1. Examine the contents of a vertex (which is a class).

2. Examine an edge (composed-of relationship).

3. Insert a vertex and the associated edge.

4. Delete a vertex and the associated edge.

5. Insert an edge.

Note that some of these operations (1 and 2) correspond to existing object opera-
tors, while others (3—5) represent schema operations.

Based on these operations, an affected-set can be defined for granularity graphs
to form the basis for determining which operations can execute concurrently. The
affected-set of a granularity graph consists of the union of:

• edge-set, which is the set of pairs (e,a) where e is an edge and a is an operation
affecting e and can be one of insert, delete, examine; and

• vertex-set, which is the set of pairs (v,a), where v is a vertex and a is an
operation affecting v and can be one of insert, delete, examine, or modify.

Using the affected-set generated by two transactions Ti and Tj of an aggregation
graph, one may define whether Ti and Tj can execute concurrently or not. Commu-
tativity is used as the basis of the conflict relation. Thus, two transactions Ti and Tj
commute on object K if affected-set(Ti)∩Kaffected-set(Tj) = φ .

These protocols synchronize on the basis of objects, not operations on objects. It
may be possible to improve concurrency by developing techniques that synchronize
operation invocations rather than locking entire objects.

604 15 Distributed Object Database Management

Another semantics-based approach due to Muth et al. [1993] has the following
distinguishing characteristics:

1. Access to component objects are permitted without going through a hierarchy
of objects (i.e., no multigranularity locking).

2. The semantics of operations are taken into consideration by a priori specifica-
tion of method commutativities9.

3. Methods invoked by a transaction can themselves invoke other methods. This
results in a (dynamic) nested transaction execution, even if the transaction is
syntactically flat.

The transaction model used to support (3) is open nesting, specifically multilevel
transactions as described in Chapter 10. The restrictions imposed on the dynamic
transaction nesting are:

• All pairs (p,g) of potentially conflicting operations on the same object have
the same depth in their invocation trees; and

• For each pair (f ′,g′) of ancestors of f and g whose depth of invocation trees
are the same, f ′ and g′ operate on the same object.

With these restrictions, the algorithm is quite straightforward. A semantic lock is
associated with each method, and a commutativity table defines whether or not the
various semantic locks are compatible. Transactions acquire these semantic locks
before the invocation of methods, and they are released at the end of the execution
of a subtransaction (method), exposing their results to others. However, the parents
of committed subtransactions have a higher-level semantic lock, which restricts the
results of committed subtransactions only to those that commute with the root of the
subtransaction. This requires the definition of a semantic conflict test, which operates
on the invocation hierarchies using the commutativity tables.

An important complication arises with respect to the two conditions outlined
above. It is not reasonable to restrict the applicability of the protocol to only those
for which those conditions hold. What has been proposed to resolve the difficulty
is to give up some of the openness and convert the locks that were to be released
at the end of a subtransaction into retained locks held by the parent. A number of
conditions under which retained locks can be discarded for additional concurrency.

A very similar, but more restrictive, approach is discussed by Weikum and Hasse
[1993]. The multilevel transaction model is used, but restricted to only two levels: the
object level and the underlying page level. Therefore, the dynamic nesting that occurs
when transactions invoke methods that invoke other methods is not considered. The
similarity with the above work is that page level locks are released at the end of the
subtransaction, whereas the object level locks (which are semantically richer) are
retained until the transaction terminates.

9 The commutativity test employed in this study is state-independent. It takes into account the actual
parameters of operations, but not the states. This is in contrast to Weihl’s work [Weihl, 1988].

15.7 Transaction Management 605

In both of the above approaches [Muth et al., 1993; Weikum and Hasse, 1993],
recovery cannot be performed by page-level state-oriented protocols. Since subtrans-
actions release their locks and make their results visible, compensating transactions
must be run to “undo” actions of committed subtransactions.

15.7.4 Transactions as Objects

One important characteristic of relational data model is its lack of a clear update
semantics. The model, as it was originally defined, clearly spells out how the data in
a relational database is to be retrieved (by means of the relational algebra operators),
but does not specify what it really means to update the database. The consequence
is that the consistency definitions and the transaction management techniques are
orthogonal to the data model. It is possible – and indeed it is common – to apply the
same techniques to non-relational DBMSs, or even to non-DBMS storage systems.

The independence of the developed techniques from the data model may be
considered an advantage, since the effort can be amortized over a number of different
applications. Indeed, the existing transaction management work on object DBMSs
have exploited this independence by porting the well-known techniques over to the
new system structures. During this porting process, the peculiarities of object DBMSs,
such as class (type) lattice structures, composite objects and object groupings (class
extents) are considered, but the techniques are essentially the same.

It may be argued that in object DBMSs, it is not only desirable but indeed essential
to model update semantics within the object model. The arguments are as follows:

1. In object DBMSs, what is stored are not only data, but operations on data
(which are called methods, behaviors, operations in various object models).
Queries that access an object database refer to these operations as part of
their predicates. In other words, the execution of these queries invokes various
operations defined on the classes (types). To guarantee the safety of the query
expressions, existing query processing approaches restrict these operations
to be side-effect free, in effect disallowing them to update the database. This
is a severe restriction that should be relaxed by the incorporation of update
semantics into the query safety definitions.

2. As we discussed in Section 15.7.3, transactions in object DBMSs affect the
class (type) lattices. Thus, there is a direct relationship between dynamic
schema evolution and transaction management. Many of the techniques that
we discussed employ locking on this lattice to accommodate these changes.
However, locks (even multi-granularity locks) severely restrict concurrency. A
definition of what it means to update a database, and a definition of conflicts
based on this definition of update semantics, would allow more concurrency.
It is interesting to note again the relationship between changes to the class
(type) lattice and query processing. In the absence of a clear definition of
update semantics and its incorporation into the query processing methodology,

606 15 Distributed Object Database Management

most of the current query processors assume that the database schema (i.e.,
the class (type) lattice) is static during the execution of a query.

3. There are a few object models (e.g., OODAPLEX [Dayal, 1989] and
TIGUKAT [Özsu et al., 1995a]) that treat all system entities as objects. Follow-
ing this approach, it is only natural to model transactions as objects. However,
since transactions are basically constructs that change the state of the database,
their effects on the database must be clearly specified.
Within this context, it should also be noted that the application domains that
require the services of object DBMSs tend to have somewhat different trans-
action management requirements, both in terms of transaction models and
consistency constraints. Modeling transactions as objects enables the applica-
tion of the well-known object techniques of specialization and subtyping to
create various different types of TMSs. This gives the system extensibility.

4. Some of the requirements require rule support and active database capabilities.
Rules themselves execute as transactions, which may spawn other transactions.
It has been argued that rules should be modeled as objects [Dayal et al., 1988].
If that is the case, then certainly transactions should be modeled as objects
too.

As a result of these points, it seems reasonable to argue for an approach to
transaction management systems that is quite different from what has been done up
to this point. This is a topic of some research potential.

15.8 Conclusion

In this chapter we considered the effect of object technology on database manage-
ment and focused on the distribution aspects when possible. Research into object
technologies was widespread in the 1980’s and the first half of 1990’s. Interest in
the topic died down primarily as a result of two factors. The first was that object
DBMSs were claimed to be replacements for relational ones, rather than specialized
systems that better fit certain application requirements. The object DBMSs, however,
were not able to deliver the performance of relational systems for those applications
that really fit the relational model well. Consequently, they were easy targets for the
relational proponents, which is the second factor. The relational vendors adopted
many of the techniques developed for object DBMSs into their products and released
“object-relational DBMSs”, as noted earlier, allowing them to claim that there is no
reason for a new class of systems. The object extensions to relational DBMSs work
with varying degrees of success. They allow the attributes to be structured, allowing
non-normalized relations. They are also extensible by enabling the insertion of new
data types into the system by means of data blades, cartridges, or extenders (each
commercial system uses a different name). However, this extensibility is limited,

15.9 Bibliographic Notes 607

as it requires significant effort to write a data blade/cartridge/extender, and their
robustness is a considerable issue.

In recent years, there has been a re-emergence of object technology. This is spurred
by the recognition of the advantages of these systems in particular applications that
are gaining importance. For example, the DOM interface of XML, the Java Data
Objects (JDO) API are all object-oriented and they are crucial technologies. JDO has
been critically important in resolving the mapping problems between Java Enterprice
Edition (J2EE) and relational systems. Object-oriented middleware architectures
such as CORBA Siegel [1996] have not been as influential as they could be in
their first incarnation, but they have been demonstrated to contribute to database
interoperability [Dogac et al., 1998a], and there is continuing work in improving
them.

15.9 Bibliographic Notes

There are a number of good books on object DBMSs such as [Kemper and Moerkotte,
1994; Bertino and Martino, 1993; Cattell, 1994] and [Dogac et al., 1994]. An early
collection of readings in object DBMSs is [Zdonik and Maier, 1990]. In addition,
object DBMS concepts are discussed in [Kim and Lochovsky, 1989; Kim, 1994].
These are, unfortunately, somewhat dated. [Orfali et al., 1996] is considered the
classical book on distributed objects, but the emphasis is mostly on the distributed
object platforms (CORBA and COM), not on the fundamental DBMS functionality.
Considerable work has been done on the formalization of object models, some of
which are discussed in [Abadi and Cardelli, 1996; Maier, 1986; Chen and Warren,
1989; Kifer and Wu, 1993; Kifer et al., 1995; Abiteboul and Kanellakis, 1998b;
Guerrini et al., 1998].

Our discussion of the architectural issues is mostly based on [Özsu et al., 1994a]
but largely extended. The object distribution design issues are discussed in significant
more detail in [Ezeife and Barker, 1995], [Bellatreche et al., 2000a], and [Bellatreche
et al., 2000b]. A formal model for distributed objects is given in [Abiteboul and dos
Santos, 1995]. The query processing and optimization section is based on [Özsu
and Blakeley, 1994] and the transaction management issues are from [Özsu, 1994].
Related work on indexing techniques for query optimization have been discussed in
[Bertino et al., 1997; Kim and Lochovsky, 1989]. Several techniques for distributed
garbage collection have been classified in a survey article by Plainfossé and Shapiro
[1995]. These sources contain more detail than can be covered in one chapter. Object-
relational DBMSs are discussed in detail in [Stonebraker and Brown, 1999] and
[Date and Darwen, 1998].

608 15 Distributed Object Database Management

Exercises

Problem 15.1. Explain the mechanisms used to support encapsulation in distributed
object DBMSs. In particular:

(a) Describe how the encapsulation is hidden from the end users when both the
objects and the methods are distributed.

(b) How does a distributed object DBMS present a single global schema to end
users? How is this different from supporting fragmentation transparency in
relational database systems?

Problem 15.2. List the new data distribution problems that arise in object DBMSs,
that are not present in relational DBMSs, with respect to fragmentation, migration
and replication.

Problem 15.3 (**). Partitioning of object databases has the premise of reducing the
irrelevant data access for user applications. Develop a cost model to execute queries
on unpartitioned object databases, and horizontally or vertically partitioned object
databases. Use your cost model to illustrate the scenarios under which partitioning
does in fact reduce the irrelevant data access.

Problem 15.4. Show the relationship between clustering and partitioning. Illustrate
how clustering can deteriorate/improve the performance of queries on a partitioned
object database system.

Problem 15.5. Why do client-server object DBMSs primarily employ data shipping
architecture while relational DBMSs emply function shipping?

Problem 15.6. Discuss the strengths and weaknesses of page and object servers with
respect to data transfer, buffer management, cache consistency, and pointer swizzling
mechanims.

Problem 15.7. What is the difference between caching information at the clients and
data replication?

Problem 15.8 (*). A new class of applications that object DBMSs support are inter-
active and deal with large objects (e.g., interactive multimedia systems). Which one
of the cache consistency algorithms presented in this chapter are suitable for this
class of applications operating across wide area networks?

Problem 15.9 (**). Hardware and software pointer swizzling mechanisms have com-
plementary strengths and weaknesses. Propose a hybrid pointer swizzling mechanism
that incorporates the strengths of both.

Problem 15.10 (**). Explain how derived horizontal fragmentation can be exploited
to facilitate efficient path queries in distributed object DBMSs. Give examples.

15.9 Bibliographic Notes 609

Problem 15.11 (**). Give some heuristics that an object DBMS query optimizer
that accepts OQL queries may use to determine how to decompose a query so that
parts can be function shipped and other parts have to be executed at the originating
client by data shipping.

Problem 15.12 (**). Three alternative ways of performing distributed complex ob-
ject assembly are discussed in this chapter. Give an algorithm for the alternative
where complex operations, such as joins and complete assembly of remote objects,
are performed at remote sites and the partial results are shipped to the central site for
final assembly.

Problem 15.13 (*). Consider the airline reservation example of Chapter 10. Define a
Reservation class (type) and give the forward and backward commutativity matrixes
for it.

Chapter 16
Peer-to-Peer Data Management

In this chapter, we discuss the data management issues in the “modern” peer-to-peer
(P2P) data management systems. We intentionally use the phrase “modern” to dif-
ferentiate these from the early P2P systems that were common prior to client/server
computing. As indicated in Chapter 1, early work on distributed DBMSs had pri-
marily focused on P2P architectures where there was no differentiation between the
functionality of each site in the system. So, in one sense, P2P data management is
quite old – if one simply interprets P2P to mean that there are no identifiable “servers”
and “clients” in the system. However, the “modern” P2P systems go beyond this
simple characterization and differ from the old systems that are referred to by the
same name in a number of important ways, as mentioned in Chapter 1.

The first difference is the massive distribution in current systems. While the early
systems focused on a few (perhaps at most tens of) sites, current systems consider
thousands of sites. Furthermore, these sites are geographically very distributed, with
possible clusters forming at certain locations.

The second is the inherent heterogeneity of every aspect of the sites and their
autonomy. While this has always been a concern of distributed databases, coupled
with massive distribution, site heterogeneity and autonomy take on added significance,
disallowing some of the approaches from consideration.

The third major difference is the considerable volatility of these systems. Dis-
tributed DBMSs are well-controlled environments, where additions of new sites or
the removal of existing sites is done very carefully and rarely. In modern P2P systems,
the sites are (quite often) people’s individual machines and they join and leave the
P2P system at will, creating considerable hardship in the management of data.

In this chapter, we focus on this modern incarnation of P2P systems. In these
systems, the following requirements are typically cited [Daswani et al., 2003]:

• Autonomy. An autonomous peer should be able to join or leave the system at
any time without restriction. It should also be able to control the data it stores
and which other peers can store its data (e.g., some other trusted peers).

• Query expressiveness. The query language should allow the user to describe
the desired data at the appropriate level of detail. The simplest form of query

611
DOI 10.1007/978-1-4419-8834-8_16, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

612 16 Peer-to-Peer Data Management

is key look-up, which is only appropriate for finding files. Keyword search
with ranking of results is appropriate for searching documents, but for more
structured data, an SQL-like query language is necessary.

• Efficiency. The efficient use of the P2P system resources (bandwidth, comput-
ing power, storage) should result in lower cost, and, thus, higher throughput of
queries, i.e., a higher number of queries can be processed by the P2P system in
a given time interval.

• Quality of service. This refers to the user-perceived efficiency of the system,
such as completeness of query results, data consistency, data availability, query
response time, etc.

• Fault-tolerance. Efficiency and quality of service should be maintained despite
the failures of peers. Given the dynamic nature of peers that may leave or fail
at any time, it is important to properly exploit data replication.

• Security. The open nature of a P2P system gives rise to serious security chal-
lenges since one cannot rely on trusted servers. With respect to data man-
agement, the main security issue is access control which includes enforcing
intellectual property rights on data contents.

A number of different uses of P2P systems have been developed [Valduriez
and Pacitti, 2004]: they have been successfully used for sharing computation (e.g.,
SETI@home – http://www.setiathome.ssl.berkeley.edu), communication (e.g., ICQ –
http://www.icq.com), or data sharing (e.g., Gnutella – http://www.gnutelliums.com – and
Kazaa – http://www.kazaa.com). Our interest, naturally, is on data sharing systems.
The commercial systems (such as Gnutella, Kazaa and others) are quite limited when
viewed from the perspective of database functionality. Two important limitations
are that they provide only file level sharing with no sophisticated content-based
search/query facilities, and they are single-application systems that focus on per-
forming one task, and it is not straightforward to extend them for other applica-
tions/functions [Ooi et al., 2003b]. In this chapter, we discuss the research activities
towards providing proper database functionality over P2P infrastructures. Within this
context, data management issues that must be addressed include the following:

• Data location: peers must be able to refer to and locate data stored in other
peers.

• Query processing: given a query, the system must be able to discover the peers
that contribute relevant data and efficiently execute the query.

• Data integration: when shared data sources in the system follow different
schemas or representations, peers should still be able to access that data, ideally
using the data representation used to model their own data.

• Data consistency: if data are replicated or cached in the system, a key issue is
to maintain the consistency between these duplicates.

Figure 16.1 shows a reference architecture for a peer participating in a data
sharing P2P system. Depending on the functionality of the P2P system, one or more

http://www.setiathome.ssl.berkeley.edu
http://www.icq.com
http://www.gnutelliums.com
http://www.kazaa.com

16 Peer-to-Peer Data Management 613

Local Data

Source

Wrapper

Peer

Peer

Peer

Peer

D
a
ta

 M
a
n
a
g
e
m

e
n
t
A

P
I/

U
s
e
r

In
te

rf
a
c
e

local query

global query

answer

P
2
P

 N
e
tw

o
rk

 S
u
b
la

y
e
r

Data Management Layer

Update

Manager

Cache

Manager

Query

Manager

Remote

Data Cache
Semantic

Mappings

Fig. 16.1 Peer Reference Architecture

of the components in the reference architecture may not exist, may be combined
together, or may be implemented by specialized peers. The key aspect of the proposed
architecture is the separation of the functionality into three main components: (1) an
interface used for submitting the queries; (2) a data management layer that handles
query processing and metadata information (e.g., catalogue services); and (3) a P2P
infrastructure, which is composed of the P2P network sublayer and P2P network. In
this chapter, we focus on the P2P data management layer and P2P infrastructure.

Queries are submitted using a user interface or data management API and handled
by the data management layer. Queries may refer to data stored locally or globally in
the system. The query request is processed by a query manager module that retrieves
semantic mapping information from a repository when the system integrates hetero-
geneous data sources. This semantic mapping repository contains meta-information
that allows the query manager to identify peers in the system with data relevant to the
query and to reformulate the original query in terms that other peers can understand.
Some P2P systems may store the semantic mapping in specialized peers. In this case,
the query manager will need to contact these specialized peers or transmit the query to
them for execution. If all data sources in the system follow the same schema, neither
the semantic mapping repository nor its associated query reformulation functionality
are required.

Assuming a semantic mapping repository, the query manager invokes services
implemented by the P2P network sublayer to communicate with the peers that will be
involved in the execution of the query. The actual execution of the query is influenced
by the implementation of the P2P infrastructure. In some systems, data are sent to
the peer where the query was initiated and then combined at this peer. Other systems
provide specialized peers for query execution and coordination. In either case, result
data returned by the peers involved in the execution of the query may be cached

614 16 Peer-to-Peer Data Management

locally to speed up future executions of similar queries. The cache manager maintains
the local cache of each peer. Alternatively, caching may occur only at specialized
peers.

The query manager is also responsible for executing the local portion of a global
query when data are requested by a remote peer. A wrapper may hide data, query
language, or any other incompatibilities between the local data source and the data
management layer. When data are updated, the update manager coordinates the
execution of the update between the peers storing replicas of the data being updated.

The P2P network infrastructure, which can be implemented as either structured
or unstructured network topology, provides communication services to the data
management layer.

In the remainder of this chapter, we will address each component of this reference
architecture, starting with infrastructure issues in Section 16.1. The problems of data
mapping and the approaches to address them are the topics of Section 16.2. Query
processing is discussed in Section 16.3. Data consistency and replication issues are
discussed in Section 16.4.

16.1 Infrastructure

The infrastructure of all P2P systems is a P2P network, which is built on top of a
physical network (usually the Internet); thus it is commonly referred to as the overlay
network. The overlay network may (and usually does) have a different topology than
the physical network and all the algorithms focus on optimizing communication over
the overlay network (usually in terms of minimizing the number of “hops” that a
message needs to go through from a source node to a destination node – both in
the overlay network). The possible disconnect between the overlay network and
the physical network may be a problem in that two nodes that are neighbors in
the overlay network may, in some cases, be considerably far apart in the physical
network. Therefore, the cost of communication within the overlay network may not
reflect the actual cost of communication in the physical network. We address this
issue at the appropriate points during the infrastructure discussion.

Overlay networks can be of two general types: pure and hybrid. Pure overlay
networks (more commonly referred to as pure P2P networks) are those where there
is no differentiation between any of the network nodes – they are all equal. In hybrid
P2P networks, on the other hand, some nodes are given special tasks to perform.
Hybrid networks are commonly known as super-peer systems, since some of the
peers are responsible for “controlling” a set of other peers in their domain. The pure
networks can be further divided into structured and unstructured networks. Structured
networks tightly control the topology and message routing, whereas in unstructured
networks each node can directly communicate with its neighbors and can join the
network by attaching themselves to any node.

16.1 Infrastructure 615

16.1.1 Unstructured P2P Networks

Unstructured P2P networks refer to those with no restriction on data placement in
the overlay topology. The overlay network is created in a nondeterministic (ad hoc)
manner and the data placement is completely unrelated to the overlay topology. Each
peer knows its neighbors, but does not know the resources that they have. Figure
16.2 shows an example unstructured P2P network.

Fig. 16.2 Unstructured P2P Network

Unstructured networks are the earliest examples of P2P systems whose core func-
tionality was (and remains) file sharing. In these systems replicated copies of popular
files are shared among peers, without the need to download them from a centralized
server. Examples of these systems are Napster (http://www.napster.com), Gnutella,
Freenet [Clarke et al., 2000, 2002], Kazaa, and BitTorrent (http://www.bittorrent.com).

A fundamental issue in all P2P networks is the type of index to the resources
that each peer holds, since this determines how resources are searched. Note that
what is called “index management” in the context of P2P systems is very similar
to catalog management that we studied in Chapter 3. Indexes are stored metadata
that the system maintains. The exact content of the metadata differs in different P2P
systems. In general, it includes, at a minimum, information on the resources and
sizes.

There are two alternatives to maintaining indices: centralized, where one peer
stores the metadata for the entire P2P system, and distributed, where each peer
maintains metadata for resources that it holds. Again, the alternatives are identical to
those for directory management. Napster is an example of a system that maintains a
centralized index, while Gnutella maintains a distributed one.

http://www.napster.com
http://www.bittorrent.com

616 16 Peer-to-Peer Data Management

The type of index supported by a P2P system (centralized or distributed) impacts
how resources are searched. Note that we are not, at this point, referring to running
queries; we are merely discussing how, given a resource identifier, the underlying P2P
infrastructure can locate the relevant resource. In systems that maintain a centralized
index, the process involves consulting the central peer to find the location of the
resource, followed by directly contacting the peer where the resource is located
(Figure 16.3). Thus, the system operates similar to a client/server one up to the point
of obtaining the necessary index information (i.e., the metadata), but from that point
on, the communication is only between the two peers. Note that the central peer may
return a set of peers who hold the resource and the requesting peer may choose one
among them, or the central peer may make the choice (taking into account loads and
network conditions, perhaps) and return only a single recommended peer.

Directory

Server

(1) Resource X?

(2) Peer n?

Peer n

(3
)
R

e
q
u
e
st

 X
(4

)
X

Fig. 16.3 Search over a Centralized Index. (1) A peer asks the central index manager for resource,
(2) The response identifies the peer with the resource, (3) The peer is asked for the resource, (4) It is
transferred.

In systems that maintain a distributed index, there are a number of search alter-
natives. The most popular one is flooding, where the peer looking for a resource
sends the search request to all of its neighbors on the overlay network. If any of these
neighbors have the resource, they respond; otherwise, each of them forwards the
request to its neighbors until the resource is found or the overlay network is fully
spanned (Figure 16.4).

Naturally, flooding puts very heavy demands on network resources and is not
scalable – as the overlay network gets larger, more communication is initiated. This
has been addressed by establishing a Time-to-Live (TTL) limit that restricts the

16.1 Infrastructure 617

(1
)

R
e
s
o
u
rc

e
 X

?

(1) Resource X?

(1
) R

esource X
?

(2
)

R
e
s
o
u
rc

e
 X

?

(2) Resource X?

(2
)

R
e
s
o
u
rc

e
 X

?

(2
) R

eso
urc

e X
?

(2
)

R
e
s
o
u
rc

e
 X

?

(2) Resource X?(3) X

Fig. 16.4 Search over a Decentralized Index. (1) A peer sends the request for resource to all its
neighbors, (2) Each neighbor propagates to its neighbors if it doesn’t have the resource, (3) The
peer who has the resource responds by sending the resource.

number of hops that a request message makes before it is dropped from the network.
However, TTL also restricts the number of nodes that are reachable.

There have been other approaches to address this problem. A straightforward
method is for each peer to choose a subset of its neighbors and forward the request
only to those [Kalogeraki et al., 2002]. How this subset can be determined may vary.
For example, the concept of random walks can be used [Lv et al., 2002] where each
peer chooses a neighbor at random and propagates the request only to it. Alternatively,
each neighbor can maintain not only indices for local resources, but also for resources
that are on peers within a radius of itself and use the historical information about
their performance in routing queries [Yang and Garcia-Molina, 2002]. Still another
alternative is to use similar indices based on resources at each node to provide a list of
neighbors that are most likely to be in the direction of the peer holding the requested
resources [Crespo and Garcia-Molina, 2002]. These are referred to as routing indices
and are used more commonly in structured networks, where we discuss them in more
detail.

Another approach is to exploit gossip protocols, also known as epidemic protocols
[Kermarrec and van Steen, 2007]. Gossiping has been initially proposed to maintain
the mutual consistency of replicated data by spreading replica updates to all nodes
over the network [Demers et al., 1987]. It has since been successfully used in
P2P networks for data dissemination. Basic gossiping is simple. Each node in the
network has a complete view of the network (i.e., a list of all nodes’ addresses) and
chooses a node at random to spread the request. The main advantage of gossiping
is robustness over node failures since, with very high probability, the request is
eventually propagated to all the nodes in the network. In large P2P networks, however,

618 16 Peer-to-Peer Data Management

the basic gossiping model does not scale as maintaining the complete view of the
network at each node would generate very heavy communication traffic. A solution to
scalable gossiping is to maintain at each node only a partial view of the network, e.g.,
a list of tens of neighbour nodes [Voulgaris et al., 2003]. To gossip a request, a node
chooses, at random, a node in its partial view and sends it the request. In addition, the
nodes involved in a gossip exchange their partial views to reflect network changes
in their own views. Thus, by continuously refreshing their partial views, nodes can
self-organize into randomized overlays that scale up very well.

The final issue that we would like to discuss with respect to unstructured networks
is how peers join and leave the network. The process is different for centralized
versus distributed index approaches. In a centralized index system, a peer that wishes
to join simply notifies the central index peer and informs it of the resources that it
wishes to contribute to the P2P system. In the case of a distributed index, the joining
peer needs to know one other peer in the system to which it “attaches” itself by
notifying it and receiving information about its neighbors. At that point, the peer is
part of the system and starts building its own neighbors. Peers that leave the system
do not need to take any special action, they simply disappear. Their disappearance
will be detected in time, and the overlay network will adjust itself.

16.1.2 Structured P2P Networks

Structured P2P networks have emerged to address the scalability issues faced by
unstructured P2P networks [Ritter, 2001; Ratnasamy et al., 2001b; Stoica et al.,
2001a]. They achieve this goal by tightly controlling the overlay topology and the
placement of resources. Thus, they achieve higher scalability at the expense of lower
autonomy as each peer that joins the network allows its resources to be placed on the
network based on the particular control method that is used.

As with unstructured P2P networks, there are two fundamental issues to be
addressed: how are the resources indexed, and how are they searched. The most
popular indexing and data location mechanism that is used in structured P2P networks
is dynamic hash table (DHT). DHT-based systems provide two API’s: put(key,
data) and get(key), where key is an object identifier. The key is hashed to
generate a peer id, which stores the data corresponding to object contents (Figure
16.5). Dynamic hashing has also been successfully used to address the scalability
issues of very large distributed file structures [Devine, 1993; Litwin et al., 1993].

A straightforward approach could be to use the URI of the resource as the IP
address of the peer that would hold the resource [Harvey et al., 2003]. However, one
of the important design requirements is to provide a uniform distribution of resources
over the overlay network and URIs/IP addresses do not provide sufficient flexibility.
Consequently, consistent hashing techniques that provide uniform hashing of values
are used to evenly place the data on the overlay. Although many hash functions may
be employed for generating virtual address mappings for the resource, SHA-1 has

16.1 Infrastructure 619

h(k
1
)=p

1
h(k

2
)=p

4
h(k

3
)=p

6

p
1

p
4

p
6

value(k
1
) value(k

2
) value(k

3
)

DHT overlay

routing

Peers

Fig. 16.5 DHT-based P2P Network

become the most widely accepted base1 hash function that supports both uniformity
as well as security (by supporting data-integrity for the keys). The actual design of
the hash function may be implementation dependent and we won’t discuss that issue
any further.

Search (commonly called “lookup”) over a DHT-based structured P2P network
also involves the hash function: the key of the resource is hashed to get the id of
the peer in the overlay network that is responsible for that key. The lookup is then
initiated on the overlay network to locate the target node in question. This is referred
to as the routing protocol, and it differs between different implementations and is
closely associated with the overlay structure used. We will discuss one example
approach shortly.

While all routing protocols aim to provide efficient lookups, they also try to mini-
mize the routing information (also called routing state) that needs to be maintained in
a routing table at each peer in the overlay. This information differs between various
routing protocols and overlay structures, but it needs to provide sufficient directory-
type information to route the put and get requests to the appropriate peer on the
overlay. All routing table implementations require the use of maintenance algorithms
in order to keep the routing state up-to-date and consistent. In contrast to routers
on the Internet that also maintain routing databases, P2P systems pose a greater
challenge since they are characterized by high node volatility and undependable
network links. Since DHTs also need to support perfect recall (i.e., all the resources
that are accessible through a given key have to be found), routing state consistency
becomes a key challenge. Therefore, the maintenance of consistent routing state
in the face of concurrent lookups and during periods of high network volatility is
essential.

Many DHT-based overlays have been proposed. These can be categorized ac-
cording to their routing geometry and routing algorithm [Gummadi et al., 2003].
Routing geometry essentially defines the manner in which neighbors and routes are
arranged. The routing algorithm corresponds to the routing protocol discussed above

1 A base hash function is defined as a function that is used as a basis for the design of another hash
function.

620 16 Peer-to-Peer Data Management

and is defined as the manner in which next-hops/routes are chosen on a given routing
geometry. The more important existing DHT-based overlays can be categorized as
follows:

• Tree. In the tree approach, the leaf nodes correspond to the node identifiers
that store the keys to be searched. The height of the tree is log(n), where n
is the number of nodes in the tree. The search proceeds from the root to the
leaves by doing a longest prefix match at each of the intermediate nodes until
the target node is found. Therefore, in this case, matching can be thought of
as correcting bit values from left-to-right at each successive hop in the tree. A
popular DHT implementation that falls into this category is Tapestry [Zhao
et al., 2004], which uses surrogate routing in order to forward requests at each
node to the closest digit in the routing table. Surrogate routing is defined as
routing to the closest digit when an exact match in the longest prefix cannot be
found. In Tapestry, each unique identifier is associated with a node that is the
root of a unique spanning tree used to route messages for the given identifier.
Therefore, lookups proceed from the base of the spanning tree all the way to the
root node of the identifier. Although this is somewhat different from traditional
tree structures, Tapestry routing geometry is very closely associated to a tree
structure and we classify it as such.
In tree structures, a node in the system has 2i−1 nodes to choose from as its
neighbor from the subtree with whom it has log(n− i) prefix bits in common.
The number of potential neighbors increases exponentially as we proceed fur-
ther up in the tree. Thus, in total there are nlog(n)/2 possible routing tables per
node (note, however that, only one such routing table can be selected for a
node). Therefore, the tree geometry has good neighbor selection characteristics
that would provide it with fault tolerance. However, routing can only be done
through one neighboring node when sending to a particular destination. Conse-
quently, the tree-structured DHTs do not provide any flexibility in the selection
of routes.

• Hypercube. The hypercube routing geometry is based on d-dimensional Carte-
sian coordinate space that is partitioned into an individual set of zones such
that each node maintains a separate zone of the coordinate space. An example
of hypercube-based DHT is the Content Addressable Network (CAN) [Rat-
nasamy et al., 2001a]. The number of neighbors that a node may have in a
d-dimensional coordinate space is 2d (for the sake of discussion, we consider
d = log(n)). If we consider each coordinate to represent a set of bits, then each
node identifier can be represented as a bit string of length log(n). In this way,
the hypercube geometry is very similar to the tree since it also simply fixes
the bits at each hop to reach the destination. However, in the hypercube, since
the bits of neighboring nodes only differ in exactly one bit, each forwarding
node needs to modify only a single bit in the bit string, which can be done in
any order. Thus, if we consider the correction of the bit string, the first correc-
tion can be applied to any log(n) nodes, the next correction can be applied to
any log(n)−1 nodes, etc. Therefore, we have log(n)! possible routes between

16.1 Infrastructure 621

nodes which provides high route flexibility in the hypercube routing geometry.
However, a node in the coordinate space does not have any choice over its
neighbors’ coordinates since adjacent coordinate zones in the coordinate space
can’t change. Therefore, hypercubes have poor neighbor selection flexibility.

• Ring. The ring geometry is represented as a one-dimensional circular identifier
space where the nodes are placed at different locations on the circle. The
distance between any two nodes on the circle is the numeric identifier difference
(clockwise) around the circle. Since the circle is one-dimensional, the data
identifiers can be represented as single decimal digits (represented as binary
bit strings) that map to a node that is closest in the identifier space to the
given decimal digit. Chord [Stoica et al., 2001b] is a popular example of the
ring geometry. Specifically, in Chord, a node whose identifier is a maintains
information about log(n) other neighbors on the ring where the ith neighbor
is the node closest to a+2i−1 on the circle. Using these links (called fingers),
Chord is able to route to any other node in log(n) hops.
A careful analysis of Chord’s structure reveals that a node does not necessarily
need to maintain the node closest to a+ 2i−1 as its neighbor. In fact, it can
still maintain the log(n) lookup upper bound if any node from the range [(a+
2i−1),(a+2i)] is chosen. Therefore, in terms of route flexibility, it is able to
select between nlog(n)/2 routing tables for each node. This provides a great deal
of neighbor selection flexibility. Moreover, for routing to any node, the first hop
has log(n) neighbors that can route the search to the destination and the next
node has log(n)− 1 nodes, and so on. Therefore, there are typically log(n)!
possible routes to the destination. Consequently, ring geometry also provides
good route selection flexibility.

In addition to these most popular geometries, there have been many other DHT-
based structured overlays that have been proposed that use different topologies. Some
of these are Viceroy [Malkhi et al., 2002], Kademlia [Maymounkov and Mazières,
2002], and Pastry [Rowstron and Druschel, 2001].

DHT-based overlays are efficient in that they guarantee finding the node on
which to place or find the data in log(n) hops where n is the number of nodes in
the system. However, they have a number of problems, in particular when viewed
from the data management perspective. One of the issues with DHTs that employ
consistent hashing functions for better distribution of resources is that two peers
that are “neighbors” in the overlay network because of the proximity of their hash
values may be geographically quite apart in the actual network. Thus, communicating
with a neighbor in the overlay network may incur high transmission delays in the
actual network. There have been studies to overcome this difficulty by designing
proximity-aware or locality-aware hash functions. Another difficulty is that they do
not provide any flexibility in the placement of data – a data item has to be placed on
the node that is determined by the hash function. Thus, if there are P2P nodes that
contribute their own data, they need to be willing to have data moved to other nodes.
This is problematic from the perspective of node autonomy. The third difficulty
is in that it is hard to run range queries over DHT-based architectures since, as is

622 16 Peer-to-Peer Data Management

well-known, it is hard to run range queries over hash indices. There have been studies
to overcome this difficulty that we discuss later.

These concerns have caused the development of structured overlays that do not
use DHT for routing. In these systems, peers are mapped into the data space rather
than the hash key space. There are multiple ways to partition the data space among
multiple peers.

• Hierarchical structure. Many systems employ hierarchical overlay structures,
including trie, balanced trees, randomized balance trees (e.g., skip list [Pugh,
1989]), and others. Specifically PHT [Ramabhadran et al., 2004] and P-Grid
[Aberer, 2001; Aberer et al., 2003a] employ a binary trie structure, where peers
whose data share common prefixes cluster under common branches. Balanced
trees are also widely used due to their guaranteed routing efficiency (the ex-
pected “hop length” between arbitrary peers is proportional to the tree height).
For instance, BATON [Jagadish et al., 2005], VBI-tree [Jagadish et al., 2005],
and BATON* [Jagadish et al., 2006] employ k-way balanced tree structure to
manage peers, and data are evenly partitioned among peers at the leaf-level.
In comparison, P-Tree [Crainiceanu et al., 2004] uses a B-tree structure with
better flexibility on tree structural changes. SkipNet [Harvey et al., 2003] and
Skip Graph [Aspnes and Shah, 2003] are based on the skip list, and they link
peers according to a randomized balanced tree structure where the node order
is determined by each node’s data values.

• Space-filling curve. This architecture is usually used to linearize sort data in
multi-dimensional data space. Peers are arranged along the space-filling curve
(e.g., Hilbert curve) so that sorted traversal of peers according to data order is
possible [Schmidt and Parashar, 2004].

• Hyper-rectangle structure. In these systems, each dimension of the hyper-
rectangle corresponds to one attribute of the data according to which an or-
ganization is desired. Peers are distributed in the data space either uniformly
or based on data locality (e.g., through data intersection relationship). The
hyper-rectangle space is then partitioned by peers based on their geometric
positions in the space, and neighboring peers are interconnected to form the
overlay network [Ganesan et al., 2004].

16.1.3 Super-peer P2P Networks

Super-peer P2P systems are hybrid between pure P2P systems and the traditional
client-server architectures. They are similar to client-server architectures in that not
all peers are equal; some peers (called super-peers) act as dedicated serves for some
other peers and can perform complex functions such as indexing, query processing,
access control, and meta-data management. If there is only one super-peer in the
system, then this reduces to the client-server architecture. They are considered P2P
systems, however, since the organization of the super-peers follow P2P organization,

16.1 Infrastructure 623

and super-peers can communicate with each other in sophisticated ways. Thus, unlike
client-server systems, global information is not necessarily centralized and can be
partitioned or replicated across super-peers.

In a super-peer network, a requesting peer sends the request, which can be ex-
pressed in a high-level language, to its responsible super-peer. The super-peer can
then find the relevant peers either directly through its index or indirectly using its
neighbor super-peers. More precisely, the search for a resource proceeds as follows
(see Figure 16.6):

1. A peer, say Peer 1, asks for a resource by sending a request to its super-peer.

2. If the resource exists at one of the peers controlled by this super-peer, it
notifies Peer 1, and the two peers then communicate to retrieve the resource.
Otherwise, the super-peer sends the request to the other super-peers.

3. If the resource does not exist at one of the peers controlled by this super-peer,
the super-peer asks the other super-peers. The super-peer of the node that
contains the resource (say Peer n) responds to the requesting super-peer.

4. Peer n’s identity is sent to Peer 1, after which the two peers can communicate
directly to retrieve the resource.

Directory

Server

Directory

Server

Directory

Server

Super-peer 1

Super-peer 2

Super-peer 3

(2) R
esource X?

(2
)

R
e
s
o
u
rc

e
 X

?

(4) Peer n

Peer n

(3) Peer n

(1) Resource X?

Peer 1

Fig. 16.6 Search over a Super-peer System. (1) A peer sends the request for resource to all its
super-peer, (2) The super-peer sends the request to other super-peers if necessary, (3) The super-peer
one of whose peers has the resource responds by indicating that peer, (4) The super-peer notifies the
original peer.

624 16 Peer-to-Peer Data Management

Requirements Unstructured Structured Super-peer

Autonomy

Query expressiveness

E�ciency

QoS

Fault-tolerance

Security

Low

High

Low

Low

High

Low

Low

Low

High

High

High

Low

Moderate

High

High

High

Low

High

Fig. 16.7 Comparison of Approaches.

The main advantages of super-peer networks are efficiency and quality of service
(e.g., completeness of query results, query response time, etc.). The time needed
to find data by directly accessing indices in a super-peer is very small compared
with flooding. In addition, super-peer networks exploit and take advantage of peers’
different capabilities in terms of CPU power, bandwidth, or storage capacity as
super-peers take on a large portion of the entire network load. Access control can
also be better enforced since directory and security information can be maintained at
the super-peers. However, autonomy is restricted since peers cannot log in freely to
any super-peer. Fault-tolerance is typically lower since super-peers are single points
of failure for their sub-peers (dynamic replacement of super-peers can alleviate this
problem).

Examples of super-peer networks include Edutella [Nejdl et al., 2003] and JXTA
(http://www.jxta.org).

16.1.4 Comparison of P2P Networks

Figure 16.7 summarizes how the requirements for data management (autonomy,
query expressiveness, efficiency, quality of service, fault-tolerance, and security)
are possibly attained by the three main classes of P2P networks. This is a rough
comparison to understand the respective merits of each class. Obviously, there is room
for improvement in each class of P2P networks. For instance, fault-tolerance can be
improved in super-peer systems by relying on replication and fail-over techniques.
Query expressiveness can be improved by supporting more complex queries on top
of structured networks.

16.2 Schema Mapping in P2P Systems

We discussed the importance of, and the techniques for, designing database integra-
tion systems in Chapter 4. Similar issues arise in data sharing P2P systems.

http://www.jxta.org

16.2 Schema Mapping in P2P Systems 625

Due to specific characteristics of P2P systems, e.g., the dynamic and autonomous
nature of peers, the approaches that rely on centralized global schemas no longer
apply. The main problem is to support decentralized schema mapping so that a query
expressed on one peer’s schema can be reformulated to a query on another peer’s
schema. The approaches which are used by P2P systems for defining and creating the
mappings between peers’ schemas can be classified as follows: pairwise schema map-
ping, mapping based on machine learning techniques, common agreement mapping,
and schema mapping using information retrieval (IR) techniques.

16.2.1 Pairwise Schema Mapping

In this approach, each user defines the mapping between the local schema and the
schema of any other peer that contains data that are of interest. Relying on the
transitivity of the defined mappings, the system tries to extract mappings between
schemas that have no defined mapping.

Piazza [Tatarinov et al., 2003] follows this approach (see Figure 16.8). The data are
shared as XML documents, and each peer has a schema that defines the terminology
and the structural constraints of the peer. When a new peer (with a new schema) joins
the system for the first time, it maps its schema to the schema of some other peers
in the system. Each mapping definition begins with an XML template that matches
some path or subtree of an instance of the target schema. Elements in the template
may be annotated with query expressions that bind variables to XML nodes in the
source. Active XML [Abiteboul et al., 2002, 2008b] also relies on XML documents
for data sharing. The main innovation is that XML documents are active in the sense
that they can include Web service calls. Therefore, data and queries can be seamlessly
integrated. We discuss this further in Chapter 17.

The Local Relational Model (LRM) [Bernstein et al., 2002] is another example
that follows this approach. LRM assumes that the peers hold relational databases,
and each peer knows a set of peers with which it can exchange data and services.
This set of peers is called peer’s acquaintances. Each peer must define semantic
dependencies and translation rules between its data and the data shared by each of
its acquaintances. The defined mappings form a semantic network, which is used
for query reformulation in the P2P system. Hyperion [Kementsietsidis et al., 2003]
generalizes this approach to deal with autonomous peers that form acquaintances at
run-time, using mapping tables to define value correspondences among heterogeneous
databases. Peers perform local querying and update processing, and also propagate
queries and updates to their acquainted peers.

PGrid [Aberer et al., 2003b] also assumes the existence of pairwise mappings
between peers, initially constructed by skilled experts. Relying on the transitivity of
these mappings and using a gossip algorithm, PGrid extracts new mappings that relate
the schemas of the peers between which there is no predefined schema mapping.

626 16 Peer-to-Peer Data Management

Stanford

MSR

IBM

UW CiteSeer

UPenn

DBLP

ACM

SIGMOD

PODS

Fig. 16.8 An Example of Pairwise Schema Mapping in Piazza

16.2.2 Mapping based on Machine Learning Techniques

This approach is generally used when the shared data are defined based on ontolo-
gies and taxonomies as proposed for the semantic web. It uses machine learning
techniques to automatically extract the mappings between the shared schemas. The
extracted mappings are stored over the network, in order to be used for processing
future queries. GLUE [Doan et al., 2003b] uses this approach. Given two ontologies,
for each concept in one, GLUE finds the most similar concept in the other. It gives
well founded probabilistic definitions to several practical similarity measures, and
uses multiple learning strategies, each of which exploits a different type of informa-
tion either in the data instances or in the taxonomic structure of the ontologies. To
further improve mapping accuracy, GLUE incorporates commonsense knowledge
and domain constraints into the schema mapping process. The basic idea is to provide
classifiers for the concepts. To decide the similarity between two concepts A and B,
the data of concept B are classified using A’s classifier and vice versa. The amount
of values that can be successfully classified into A and B represent the similarity
between A and B.

16.2.3 Common Agreement Mapping

In this approach, the peers that have a common interest agree on a common schema
description for data sharing. The common schema is usually prepared and maintained
by expert users. APPA [Akbarinia et al., 2006a; Akbarinia and Martins, 2007] makes
the assumption that peers wishing to cooperate, e.g., for the duration of an experiment,

16.2 Schema Mapping in P2P Systems 627

agree on a Common Schema Description (CSD). Given a CSD, a peer schema can
be specified using views. This is similar to the LAV approach in data integration
systems, except that queries at a peer are expressed in terms of the local views, not
the CSD. Another difference between this approach and LAV is that the CSD is not a
global schema, i.e., it is common to a limited set of peers with a common interest
(see Figure 16.9). Thus, the CSD does not pose scalability challenges. When a peer
decides to share data, it needs to map its local schema to the CSD.

Example 16.1. Given two CSD relation definitions r1 and r2, an example of peer
mapping at peer p is:

p : r(A,B,D)⊆ csd : r1(A,B,C),csd : r2(C,D,E)

In this example, the relation r(A,B,D) that is shared by peer p is mapped to
relations r1(A,B,C), r2(C,D,E) both of which are involved in the CSD. In APPA,
the mappings between the CSD and each peer’s local schema are stored locally at
the peer. Given a query Q on the local schema, the peer reformulates Q to a query on
the CSD using locally stored mappings. �

AutoMed [McBrien and Poulovassilis, 2003] is another system that relies on
common agreements for schema mapping. It defines the mappings by using primitive
bidirectional transformations defined in terms of a low-level data model.

...p p p ...p p p

CSD1 CSD1

Community 1 Community 2

Fig. 16.9 Common Agreement Schema Mapping in APPA

16.2.4 Schema Mapping using IR Techniques

This approach extracts the schema mappings at query execution time using IR
techniques by exploring the schema descriptions provided by users. PeerDB [Ooi

628 16 Peer-to-Peer Data Management

et al., 2003a] follows this approach for query processing in unstructured P2P networks.
For each relation that is shared by a peer, the description of the relation and its
attributes is maintained at that peer. The descriptions are provided by users upon
creation of relations, and serve as a kind of synonymous names of relation names
and attributes. When a query is issued, a request to find out potential matches
is produced and flooded to the peers that return the corresponding metadata. By
matching keywords from the metadata of the relations, PeerDB is able to find
relations that are potentially similar to the query relations. The relations that are
found are presented to the issuer of the query who decides whether or not to proceed
with the execution of the query at the remote peer that owns the relations.

Edutella [Nejdl et al., 2003] also follows this approach for schema mapping in
super-peer networks. Resources in Edutella are described using the RDF metadata
model, and the descriptions are stored at super-peers. When a user issues a query at
a peer p, the query is sent to p’s super-peer where the stored schema descriptions
are explored and the addresses of the relevant peers are returned to the user. If the
super-peer does not find relevant peers, it sends the query to other super-peers such
that they search relevant peers by exploring their stored schema descriptions. In order
to explore stored schemas, super-peers use the RDF-QEL query language, which is
based on Datalog semantics and thus compatible with all existing query languages,
supporting query functionalities that extend the usual relational query languages.

16.3 Querying Over P2P Systems

P2P networks provide basic techniques for routing queries to relevant peers and this
is sufficient for supporting simple, exact-match queries. For instance, as noted earlier,
a DHT provides a basic mechanism to efficiently look up data based on a key value.
However, supporting more complex queries in P2P systems, particularly in DHTs, is
difficult and has been the subject of much recent research. The main types of complex
queries which are useful in P2P systems are top-k queries, join queries, and range
queries. In this section, we discuss the techniques for processing them.

16.3.1 Top-k Queries

Top-k queries have been used in many domains such as network and system monitor-
ing, information retrieval, and multimedia databases [Ilyas et al., 2008]. With a top-k
query, the user requests k most relevant answers to be returned by the system. The
degree of relevance (score) of the answers to the query is determined by a scoring
function. Top-k queries are very useful for data management in P2P systems, in
particular when the number of all the answers is very large [Akbarinia et al., 2006b].

Example 16.2. Consider a P2P system with medical doctors who want to share some
(restricted) patient data for an epidemiological study. Assume that all doctors agreed

16.3 Querying Over P2P Systems 629

on a common Patient description in relational format. Then, one doctor may want to
submit the following query to obtain the top 10 answers ranked by a scoring function
over height and weight:

SELECT *
FROM Patient P
WHERE P.disease = ‘‘diabetes’’
AND P.height < 170
AND P.weight > 160
ORDER BY scoring-function(height,weight)
STOP AFTER 10

The scoring function specifies how closely each data item matches the conditions.
For instance, in the query above, the scoring function could compute the ten most
overweight people. �

Efficient execution of top-k queries in large-scale P2P systems is difficult. In
this section, we first discuss the most efficient techniques proposed for top-k query
processing in distributed systems. Then, we present the techniques proposed for P2P
systems.

16.3.1.1 Basic Techniques

An efficient algorithm for top-k query processing in centralized and distributed
systems is the Threshold Algorithm (TA) [Nepal and Ramakrishna, 1999; Güntzer
et al., 2000; Fagin et al., 2003]. TA is applicable for queries where the scoring
function is monotonic, i.e., any increase in the value of the input does not decrease
the value of the output. Many of the popular aggregation functions such as Min, Max,
and Average are monotonic. TA has been the basis for several algorithms, and we
discuss these in this section.

Threshold Algorithm (TA).

TA assumes a model based on lists of data items sorted by their local scores [Fagin,
1999]. The model is as follows. Suppose we have m lists of n data items such that
each data item has a local score in each list and the lists are sorted according to the
local scores of their data items. Furthermore, each data item has an overall score that
is computed based on its local scores in all lists using a given scoring function. For
example, consider the database (i.e., three sorted lists) in Figure 16.10. Assuming
the scoring function computes the sum of the local scores of the same data item in all
lists, the overall score of item d1 is 30+21+14 = 65.

Then the problem of top-k query processing is to find the k data items whose
overall scores are the highest. This problem model is simple and general. Suppose we
want to find the top-k tuples in a relational table according to some scoring function
over its attributes. To answer this query, it is sufficient to have a sorted (indexed) list

630 16 Peer-to-Peer Data Management

of the values of each attribute involved in the scoring function, and return the k tuples
whose overall scores in the lists are the highest. As another example, suppose we
want to find the top-k documents whose aggregate rank is the highest with respect to
some given set of keywords. To answer this query, the solution is to have, for each
keyword, a ranked list of documents, and return the k documents whose aggregate
rank over all lists are the highest.

TA considers two modes of access to a sorted list. The first mode is sorted (or
sequential) access that accesses each data item in their order of appearance in the list.
The second mode is random access by which a given data item in the list is directly
looked up, for example, by using an index on item id.

Given the m sorted lists of n data items, TA (see Algorithm 16.1), goes down
the sorted lists in parallel, and, for each data item, retrieves its local scores in all
lists through random access and computes the overall score. It also maintains in
a set Y the k data items whose overall scores are the highest so far. The stopping
mechanism of TA uses a threshold that is computed using the last local scores seen
under sorted access in the lists. For example, consider the database in Figure 16.10. At
position 1 for all lists (i.e., when only the first data items have been seen under sorted
access) assuming that the scoring function is the sum of the scores, the threshold is
30+28+30 = 88. At position 2, it is 84. Since data items are sorted in the lists in
decreasing order of local score, the threshold decreases as one moves down the list.
This process continues until k data items are found whose overall scores are greater
than a threshold.

Example 16.3. Consider again the database (i.e., three sorted lists) shown in Figure
16.10. Assume a top-3 query Q (i.e., k = 3), and suppose the scoring function
computes the sum of the local scores of the data item in all lists. TA first looks at
the data items which are at position 1 in all lists, i.e., d1,d2, and d3. It looks up the
local scores of these data items in other lists using random access and computes their
overall scores (which are 65, 63 and 70, respectively). However, none of them has
an overall score that is as high as the threshold of position 1 (which is 88). Thus, at
position 1, TA does not stop. At this position, we have Y = {d1,d2,d3}, i.e., the k
highest scored data items seen so far. At positions 2 and 3, Y is set to {d3,d4,d5}
and {d3,d5,d8} respectively. Before position 6, none of the data items involved in Y
has an overall score higher than or equal to the threshold value. At position 6, the
threshold value is 63, which is less than the overall score of the three data items
involved in Y , i.e., Y = {d3,d5,d8}. Thus, TA stops. Note that the contents of Y
at position 6 is exactly the same as at position 3. In other words, at position 3, Y
already contains all top-k answers. In this example, TA does three additional sorted
accesses in each list that do not contribute to the final result. This is a characteristic
of TA algorithm in that it has a conservative stopping condition that causes it to stop
later than necessary – in this example, it performs 9 sorted accesses and 18 = (9∗2)
random accesses that do not contribute to the final result. �

16.3 Querying Over P2P Systems 631

Algorithm 16.1: Threshold Algorithm (TA)
Input: L1,L2, . . . ,Lm: m sorted lists of n data items ;
f : scoring function
Output: Y : list of top-k data items
begin

j← 1 ;
threshold← 1 ;
min overall score← 0 ;
while j 6= n+1 and min overall score < threshold do
{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do
{Process each data item at position j}
for each data item d at position j in Li do
{access the local scores of d in the other lists through random
access}
overall score(d)← f (scores of d in each Li)

Y ← k data items with highest score so far ;
min overall score← smallest overall score of data items in Y ;
threshold← f (local scores at position j in each Li) ;
j← j+1

end

TA-Style Algorithms.

Several TA-style algorithms, i.e., extensions of TA, have been proposed for distributed
top-k query processing. We illustrate these by means of the Three Phase Uniform
Threshold (TPUT) algorithm that executes top-k queries in three round trips [Cao
and Wang, 2004], assuming that each list is held by one node (which we call the list
holder) and that the scoring function is sum. The TPUT algorithm (see Algorithm
16.2 executed by the query originator) works as follows.

1. The query originator first gets from each list holder its k top data items. Let f
be the scoring function, d be a received data item, and si(d) be the local score
of d in list Li. Then the partial sum of d is defined as psum(d) = ∑

m
i=1 s

′
i(d)

where s′i(d) = si(d) if d has been sent to the coordinator by the holder of Li,
else s′i(d) = 0. The query originator computes the partial sums for all received
data items and identifies the items with the k highest partial sums. The partial
sum of the k−th data item (called phase-1 bottom) is denoted by λ1.

2. The query originator sends a threshold value τ = λ1/m to every list holder.
In response, each list holder sends back all its data items whose local scores
are not less than τ . The intuition is that if a data item is not reported by any
node in this phase, its score must be less than λ1, so it cannot be one of the

632 16 Peer-to-Peer Data Management

Data
Item

Local
score
s

1

d
1

d
4

d
9

d
3

d
7

d
8

d
5

d
6

d
2

d
11

...

30

28

27

26

25

23

17

14

11

10

...

List 1

1

2

3

4

5

6

7

8

9

10

...

Position Data
Item

Local
score
s

2

d
2

d
6

d
7

d
5

d
9

d
1

d
8

d
3

d
4

d
14

...

28

27

25

24

23

21

20

14

13

12

...

List 2

Data
Item

Local
score
s

3

d
3

d
5

d
8

d
4

d
2

d
6

d
13

d
1

d
9

d
7

...

30

29

28

25

24

19

15

14

12

11

...

List 3

Fig. 16.10 Example database with 3 sorted lists

top-k data items. Let Y be the set of data items received from list holders. The
query originator computes the new partial sums for the data items in Y , and
identifies the items with the k highest partial sums. The partial sum of the
k-th data item (called phase-2 bottom) is denoted by λ2. Let the upper bound
score of a data item d be defined as u(d) = ∑

m
i=1 ui(d) where ui(d) = si(d) if

d has been received, else ui(d) = τ . For each data item d ∈ D, if u(d) is less
than λ2, it is removed from Y . The data items that remain in Y are called top-k
candidates because there may be some data items in Y that have not been
obtained from all list holders. A third phase is necessary to retrieve those.

3. The query originator sends the set of top-k candidate data items to each list
holder that returns their scores. Then, it computes the overall score, extracts
the k data items with highest scores, and returns the answer to the user.

Example 16.4. Consider the first two sorted lists (List 1 and List 2) in Figure 16.10.
Assume a top-2 query Q, i.e., k = 2, where the scoring function is sum. Phase 1
produces the sets Y = {d1,d2,d4,d6} and Z = {d1,d2}. Thus we get λ1/2 = 28/2 =
14. Let us now denote each data item d in Y as (d,scoreinList1,scoreinList2).
Phase 2 produces Y = {(d1,30,21),(d2,0,28),(d3,26,14),(d4,28,0),(d5,17,24),
(d6,14,27),(d7,25,25),(d8,23,20),(d9,27,23)} and Z = {(d1,30,21),(d7,25,25)}.
Note that d9 could also have been picked instead of d7 because it has same partial
sum. Thus we get λ2/2=50. The upper bound scores of the data items in Y are
obtained as:

u(d1) = 30+21 = 51
u(d2) = 14+28 = 42
u(d3) = 26+14 = 40

16.3 Querying Over P2P Systems 633

Algorithm 16.2: Three Phase Uniform Threshold(TPUT)
Input: L1,L2, . . . ,Lm: m sorted lists of n data items, each at a different list

holder;
f : scoring function
Output: Y : list of top-k data items
begin
{Phase 1}
for i from 1 to m in parallel do

Y ← receive top-k data items from Li holder
Z← data items with the k highest partial sum in Y ;
λ1←partial sum of k-th data item in Z ;
{Phase 2}
for i from 1 to m in parallel do

send λ1/m to Li’s holder ;
Y ← all data items from Li’s holder whose local scores are not less than
λ1/m

Z← data items with the k highest partial sum in Y ;
λ2← partial sum of k-th data item in Z ;
Y ← Y −{data items in Y whose upper bound score is less than λ2} ;
{Phase 3}
for i from 1 to m in parallel do

send Y to Li holder ;
Z← data items from Li’s holder that are in both Y and Li

Y ← k data items with highest overall score in Z
end

u(d4) = 28+14 = 42
u(d5) = 17+24 = 41
u(d6) = 14+27 = 41
u(d7) = 25+25 = 50
u(d8) = 23+20 = 43
u(d9) = 27+23 = 50

After removal of the data items in Y whose upper bound score is less than λ2, we
have Y = {d1,d7,d9}. The third phase is not necessary in this case as all data items
have all their local scores. Thus the final result is Y = {d1,d7} or Y = {d1,d9}. �

When the number of lists (i.e., m) is high, the response time of TPUT is much
better than that of the basic TA algorithm [Cao and Wang, 2004].

634 16 Peer-to-Peer Data Management

Best Position Algorithm (BPA).

There are many database instances over which TA keeps scanning the lists although
it has seen all top-k answers (as in Example 16.3). Thus, it is possible to stop much
sooner. Based on this observation, best position algorithms (BPA) that execute top-k
queries much more efficiently than TA have been proposed [Akbarinia et al., 2007a].
The key idea of BPA is that the stopping mechanism takes into account special seen
positions in the lists, called the best positions. Intuitively, the best position in a list is
the highest position such that any position before it has also been seen. The stopping
condition is based on the overall score computed using the best positions in all lists.

The basic version of BPA (see Algorithm 16.3) works like TA, except that it keeps
track of all positions that are seen under sorted or random access, computes best
positions, and has a different stopping condition. For each list Li, let Pi be the set of
positions that are seen under sorted or random access in Li. Let bpi, the best position
in Li, be the highest position in Pi such that any position of Li between 1 and bpi
is also in Pi. In other words, bpi is best because we are sure that all positions of Li
between 1 and bpi have been seen under sorted or random access. Let si(bpi) be the
local score of the data item that is at position bpi in list Li. Then, BPA’s threshold is
f (s1(bp1),s2(bp2), . . . ,sm(bpm)) for some function f .

Example 16.5. To illustrate basic BPA, consider again the three sorted lists shown in
Figure 16.10 and the query Q in Example 16.3.

1. At position 1, BPA sees the data items d1,d2, and d3. For each seen data item,
it does random access and obtains its local score and position in all the lists.
Therefore, at this step, the positions that are seen in list L1 are positions 1, 4,
and 9, which are respectively the positions of d1,d3 and d2. Thus, we have
P1 = {1,4,9} and the best position in L1 is bp1 = 1 (since the next position is
4 meaning that positions 2 and 3 have not been seen). For L2 and L3 we have
P2 = {1,6,8} and P3 = {1,5,8}, so bp2 = 1 and bp3 = 1. Therefore, the best
positions overall score is λ = f (s1(1),s2(1),s3(1)) = 30+28+30 = 88. At
position 1, the set of the three highest scored data items is Y = {d1,d2,d3},
and since the overall score of these data items is less than λ , BPA cannot
stop.

2. At position 2, BPA sees d4,d5, and d6. Thus, we have P1 = {1,2,4,7,8,9},
P2 = {1,2,4,6,8,9} and P3 = {1,2,4,5,6,8}. Therefore, we have bp1 = 2,
bp2 = 2 and bp3 = 2, so λ = f (s1(2),s2(2),s3(2)) = 28+27+29 = 84. The
overall score of the data items involved in Y = {d3,d4,d5} is less than 84, so
BPA does not stop.

3. At position 3, BPA sees d7,d8, and d9. Thus, we have P1 = P2 = {1,2,3,4,5,
6,7,8,9}, and P3 = {1,2,3,4,5,6,7,8,10}. Thus, we have bp1 = 9, bp2 = 9
and bp3 = 8. The best positions overall score is λ = f (s1(9),s2(9),s3(8)) =
11+13+14 = 38. At this position, we have Y = {d3,d5,d8}. Since the score
of all data items involved in Y is higher than λ , BPA stops, i.e., exactly at the
first position where BPA has all top-k answers.

16.3 Querying Over P2P Systems 635

Algorithm 16.3: Best Position Algorithm (BPA)
Input: L1,L2, . . . ,Lm: m sorted lists of n data items ;
f : scoring function
Output: Y : list of top-k data items
begin

j← 1 ;
threshold← 1 ;
min overall score← 0 ;
for i from 1 to m in parallel do

Pi← /0
while j 6= n+1 and min overall score < threshold do
{Do sorted access in parallel to each of the m sorted lists}
for i from 1 to m in parallel do
{Process each data item at position j}
for each data item d at position j in Li do
{access the local scores of d in the other lists through random
access}
overall score(d)← f (scores of d in each Li)

Pi← Pi∪ {positions seen under sorted or random access} ;
bpi← best position in Li

Y ← k data items with highest score so far ;
min overall score← smallest overall score of data items in Y ;
threshold← f (local scores at position bpi in each Li) ;
j← j+1

end

Recall that over this database, TA stops at position 6. �

It has been proven that, for any set of sorted lists, BPA stops as early as TA, and
its execution cost is never higher than TA [Akbarinia et al., 2007a]. It has also been
shown that the execution cost of BPA can be (m−1) times lower than that of TA.
Although BPA is quite efficient, it still does redundant work. One of the redundancies
with BPA (and also TA) is that it may access some data items several times under
sorted access in different lists. For example, a data item that is accessed at a position
in a list through sorted access and thus accessed in other lists via random access,
may be accessed again in the other lists by sorted access at the next positions. An
improved algorithm, BPA2 [Akbarinia et al., 2007a], avoids this and is therefore
much more efficient than BPA. It does not transfer the seen positions from list owners
to the query originator. Thus, the query originator does not need to maintain the seen
positions and their local scores. It also accesses each position in a list at most once.
The number of accesses to the lists done by BPA2 can be about (m−1) times lower
than that of BPA.

636 16 Peer-to-Peer Data Management

16.3.1.2 Top-k Queries in Unstructured Systems

One possible approach for processing top-k queries in unstructured systems is to
route the query to all the peers, retrieve all available answers, score them using the
scoring function, and return to the user the k highest scored answers. However, this
approach is not efficient in terms of response time and communication cost.

The first efficient solution that has been proposed is that of PlanetP [Cuenca-
Acuna et al., 2003], which is an unstructured P2P system. In PlanetP, a content-
addressable publish/subscribe service replicates data across P2P communities of up
to ten thousand peers. The top-k query processing algorithm works as follows. Given
a query Q, the query originator computes a relevance ranking of peers with respect
to Q, contacts them one by one in decreasing rank order and asks them to return a set
of their top-scored data items together with their scores. To compute the relevance
of peers, a global fully replicated index is used that contains term-to-peer mappings.
This algorithm has very good performance in moderate-scale systems. However, in a
large P2P system, keeping the replicated index up-to-date may hurt scalability.

We describe another solution that was developed within the context of APPA,
which is a P2P network-independent data management system [Akbarinia et al.,
2006a]. A fully distributed framework to execute top-k queries has been proposed
that also addresses the volatility of peers during query execution, and deals with
situations where some peers leave the system before finishing query processing. Given
a top-k query Q with a specified TTL, the basic algorithm called Fully Decentralized
Top-k (FD) proceeds as follows (see Algorithm 16.4).

1. Query forward. The query originator forwards Q to the accessible peers
whose hop-distance from the query originator is less than TTL.

2. Local query execution and wait. Each peer p that receives Q executes it
locally: it accesses the local data items that match the query predicate, scores
them using a scoring function, selects the k top data items and saves them
as well as their scores locally. Then p waits to receive its neighbors’ results.
However, since some of the neighbors may leave the P2P system and never
send a score-list to p, the wait time has a limit that is computed for each peer
based on the received TTL, network parameters and peer’s local processing
parameters.

3. Merge-and-backward. In this phase, the top scores are bubbled up to the
query originator using a tree-based algorithm as follows. After its wait time
has expired, p merges its k local top scores with those received from its
neighbors and sends the result to its parent (the peer from which it received
Q) in the form of a score-list. In order to minimize network traffic, FD does
not bubble up the top data items (which could be large), only their scores and
addresses. A score-list is simply a list of k pairs (a,s) where a is the address
of the peer owning the data item and s its score.

4. Data retrieval. After receiving the score-lists from its neighbors, the query
originator forms the final score-list by merging its k local top scores with the

16.3 Querying Over P2P Systems 637

merged score-lists received from its neighbors. Then it directly retrieves the k
top data items from the peers that hold them.

Algorithm 16.4: Fully Decentralized Top-k (FD)
Input: Q: top-k query ;
f : scoring function;
T T L: time to live;
w: wait time
Output: Y : list of top-k data items
begin

At query originator peer
begin

send Q to neighbors ;
Final score list← merge local score lists received from neighbors
for each peer p in Final score list do

Y ← retrieve top-k data items in p

end
for each peer that receives Q from a peer p do

T T L← T T L−1 ;
if T T L > 0 then

send Q to neighbors
Local score list← extract top-k local scores;
Wait a time w;
Local score list← Local score list ∪ top-k received scores;
Send Local score list to p

end

The algorithm is completely distributed and does not depend on the existence
of certain peers, and this makes it possible to address the volatility of peers during
query execution. In particular, the following problems are addressed: peers becom-
ing inaccessible in the merge-and-backward phase; peers that hold top data items
becoming inaccessible in the data retrieval phase; late reception of score-lists by a
peer after its wait time has expired. The performance evaluation of FD shows that it
can achieve major performance gains in terms of communication cost and response
time [Akbarinia et al., 2006b].

16.3.1.3 Top-k Queries in DHTs

As we discussed earlier, the main functionality of a DHT is to map a set of keys
to the peers of the P2P system and lookup efficiently the peer that is responsible
for a given key. This offers efficient and scalable support for exact-match queries.

638 16 Peer-to-Peer Data Management

However, supporting top-k queries on top of DHTs is not easy. A simple solution
is to retrieve all tuples of the relations involved in the query, compute the score of
each retrieved tuple, and finally return the k tuples whose scores are the highest.
However, this solution cannot scale up to a large number of stored tuples. Another
solution is to store all tuples of each relation using the same key (e.g., relation’s
name), so that all tuples are stored at the same peer. Then, top-k query processing can
be performed at that central peer using well-known centralized algorithms. However,
the peer becomes a bottleneck and a single point of failure.

A solution has been proposed as part of APPA project that is based on TA (see
Section 16.3.1.1) and a mechanism that stores the shared data in the DHT in a fully
distributed fashion [Akbarinia et al., 2007c]. In APPA, peers can store their tuples
in the DHT using two complementary methods: tuple storage and attribute-value
storage. With tuple storage, each tuple is stored in the DHT using its identifier
(e.g., its primary key) as the storage key. This enables looking up a tuple by its
identifier similar to a primary index. Attribute value storage individually stores in the
DHT the attributes that may appear in a query’s equality predicate or in a query’s
scoring function. Thus, as in secondary indices, it allows looking up the tuples using
their attribute values. Attribute value storage has two important properties: (1) after
retrieving an attribute value from the DHT, peers can retrieve easily the corresponding
tuple of the attribute value; (2) attribute values that are relatively “close” are stored
at the same peer. To provide the first property, the key, which is used for storing the
entire tuple, is stored along with the attribute value. The second property is provided
using the concept of domain partitioning as follows. Consider an attribute a and
let Da be its domain of values. Assume that there is a total order < on Da (e.g.,
Da is numeric). Da is partitioned into n non-empty sub-domains d1,d2, . . . ,dn such
that their union is equal to Da, the intersection of any two different sub-domains
is empty, and for each v1 ∈ di and v2 ∈ d j, if i < j then we have v1 < v2. The hash
function is applied on the sub-domain of the attribute value. Thus, for the attribute
values that fall in the same sub-domain, the storage key is the same and they are
stored at the same peer. To avoid attribute storage skew (i.e., skewed distribution
of attribute values within sub-domains), domain partitioning is done in such a way
that attribute values are uniformly distributed in sub-domains. This technique uses
histogram-based information that describes the distribution of values of the attribute.

Using this storage model, the top-k query processing algorithm, called DHTop
(see Algorithm 16.5), works as follows. Let Q be a given top-k query, f be its scoring
function, and p0 be the peer at which Q is issued. For simplicity, let us assume that f
is a monotonic scoring function. Let scoring attributes be the set of attributes that
are passed to the scoring function as arguments. DHTop starts at p0 and proceeds
in two phases: first it prepares ordered lists of candidate sub-domains, and then it
continuously retrieves candidate attribute values and their tuples until it finds k top
tuples. The details of the two steps are as follows:

1. For each scoring attribute a, p0 prepares the list of sub-domains and sorts
them in descending order of their positive impact on the scoring function. For
each list, p0 removes from the list the sub-domains in which no member can

16.3 Querying Over P2P Systems 639

satisfy Q’s conditions. For instance, if there is a condition that enforces the
scoring attribute to be equal to a constant, (e.g., a = 10), then p0 removes
from the list all the sub-domains except the sub-domain to which the constant
value belongs. Let us denote by La the list prepared in this phase for a scoring
attribute a.

2. For each scoring attribute a, in parallel, p0 proceeds as follows. It sends Q
and a to the peer, say p, that is responsible for storing the values of the first
sub-domain of La, and requests it to return the values of a at p. The values are
returned to p0 in order of their positive impact on the scoring function. After
receiving each attribute value, p0 retrieves its corresponding tuple, computes
its score, and keeps it if the score is one of the k highest scores yet computed.
This process continues until k tuples are obtained whose scores are higher
than a threshold that is computed based on the attribute values retrieved so far.
If the attribute values that p returns to p0 are not sufficient for determining
the k top tuples, p0 sends Q and a to the site that is responsible for the second
sub-domain of La and so on until k top tuples are found.

Let a1,a2, . . . ,am be the scoring attributes and v1,v2, . . . ,vm be the last val-
ues retrieved respectively for each of them. The threshold is defined to be τ =
f (v1,v2, . . . ,vm). A main feature of DHTop is that after retrieving each new attribute
value, the value of the threshold decreases. Thus, after retrieving a certain num-
ber of attribute values and their tuples, the threshold becomes less than k of the
retrieved data items and the algorithm stops. It has been analytically proven that
DHTop works correctly for monotonic scoring functions and also for a large group
of non-monotonic functions.

16.3.1.4 Top-k Queries in Super-peer Systems

A typical algorithm for top-k query processing in super-peer systems is that of
Edutella [Balke et al., 2005]. In Edutella, a small percentage of nodes are super-peers
and are assumed to be highly available with very good computing capacity. The super-
peers are responsible for top-k query processing and the other peers only execute the
queries locally and score their resources. The algorithm is quite simple and works as
follows. Given a query Q, the query originator sends Q to its super-peer, which then
sends it to the other super-peers. The super-peers forward Q to the relevant peers
connected to them. Each peer that has some data items relevant to Q scores them
and sends its maximum scored data item to its super-peer. Each super-peer chooses
the overall maximum scored item from all received data items. For determining
the second best item, it only asks one peer, one that has returned the first top item,
to return its second top scored item. The super-peer selects the overall second top
item from the previously received items and the newly received item. Then, it asks
the peer which has returned the second top item and so on until all k top items are
retrieved. Finally the super-peers send their top items to the super-peer of the query
originator, to extract the overall k top items, and send them to the query originator.

640 16 Peer-to-Peer Data Management

Algorithm 16.5: DHT Top-k (DHTop)
Input: Q: top-k query;
f : scoring function;
A: set of m attributes used in f
Output: Y : list of top-k tuples
begin
{Phase 1: prepare lists of attributes’ subdomains}
for each scoring attribute a in A do

La← all sub-domains of a;
La← La− sub-domains which do not satisfy Q’s condition;
Sort La in descending order of its sub-domains

{Phase 2: continuously retrieve attribute values and their tuples until finding
k top tuples}
Done← false;
for each scoring attribute a in A in parallel do

i← 1
while (i < number of sub-domains of a) and not Done do

send Q to peer p that maintains the attribute values of sub-domain i
in La;
Z← a values (in descending order) from p that satisfy Q’s
condition, along with their corresponding data storage keys ;
for each received value v do

get the tuple of v;
Y ← k tuples with highest score so far;
threshold← f (v1,v2, . . . ,vm) such that vi is the last value
received for attribute ai in A;
min overall score← smallest overall score of tuples in Y ;
if min overall score≤ threshold then

Done← true
i← i+1

end

This algorithm minimizes communication between peers and super-peers since, after
having received the maximum scored data items from each peer connected to it, each
super-peer asks only one peer for the next top item.

16.3.2 Join Queries

The most efficient join algorithms in distributed and parallel databases are hash-based.
Thus, the fact that a DHT relies on hashing to store and locate data can be naturally
exploited to support join queries efficiently. A basic solution has been proposed in

16.3 Querying Over P2P Systems 641

the context of the PIER P2P system [Huebsch et al., 2003] that provides support
for complex queries on top of DHTs. The solution is a variation of the parallel
hash join algorithm (PHJ) (see Section 14.3.2) which we call PIERjoin. As in the
PHJ algorithm, PIERjoin assumes that the joined relations and the result relations
have a home (called namespace in PIER), which are the nodes that store horizontal
fragments of the relation. Then it makes use of the put method for distributing
tuples onto a set of peers based on their join attribute so that tuples with the same
join attribute values are stored at the same peers. To perform joins locally, PIER
implements a version of the symmetric hash join algorithm [Wilschut and Apers,
1991] that provides efficient support for pipelined parallelism. In symmetric hash join,
with two joining relations, each node that receives tuples to be joined maintains two
hash tables, one per relation. Thus, upon receiving a new tuple from either relation,
the node adds the tuple into the corresponding hash table and probes it against the
opposite hash table based on the tuples received so far. PIER also relies on the DHT
to deal with the dynamic behavior of peers (joining or leaving the network during
query execution) and thus does not give guarantees on result completeness.

For a binary join query Q (which may include select predicates), PIERjoin works
in three phases (see Algorithm 16.6): multicast, hash and probe/join.

1. Multicast phase. The query originator peer multicasts Q to all peers that
store tuples of the join relations R and S, i.e., their homes.

2. Hash phase. Each peer that receives Q scans its local relation, searching for
the tuples that satisfy the select predicate (if any). Then, it sends the selected
tuples to the home of the result relation, using put operations. The DHT key
used in the put operation is calculated using the home of the result relation
and the join attribute.

3. Probe/join phase. Each peer in the home of the result relation, upon receiving
a new tuple, inserts it in the corresponding hash table, probes the opposite
hash table to find tuples that match the join predicate (and a select predicate
if any) and constructs the result joined tuples. Recall that the “home” of a
(horizontally partitioned) relation was defined in Chapter 8 as a set of peers
where each peer has a different partition. In this case, the partitioning is
by hashing on the join attribute. The home of the result relation is also a
partitioned relation (using put operations) so it is also at multiple peers.

This basic algorithm can be improved in several ways. For instance, if one of the
relations is already hashed on the join attributes, we may use its home as result home,
using a variation of the parallel associative join algorithm (PAJ) (see Section 14.3.2),
where only one relation needs to be hashed and sent over the DHT.

To avoid multicasting the query to large numbers of peers, another approach is to
allocate a limited number of special powerful peers, called range guards, for the task
of join query processing [Triantafillou and Pitoura, 2003]. The domains of the join
attributes are divided, and each partition is dedicated to a range guard. Then, join
queries are sent only to range guards, where the query is executed.

642 16 Peer-to-Peer Data Management

Algorithm 16.6: PIERjoin
Input: Q: join query over relations R and S on attribute A;
h: hash function;
HR,HS: homes of R and S
Output: T : join result relation;
HT : home of T
begin
{Multicast phase}
At query originator peer send Q to all peers in HR and HS ;
{Hash phase}
for each peer p in HR that received Q in parallel do

for each tuple r in Rp that satisfies the select predicate do
place r using h(HT ,A)

for each peer p in HS that received Q in parallel do
for each tuple s in Sp that satisfies the select predicate do

place s using h(HT ,A)

{Probe/join phase}
for each peer p in HT in parallel do

if a new tuple i has arrived then
if i is an r tuple then

probe s tuples in Sp using h(A)
else

probe r tuples in Rp using h(A)
Tp← r 1 s

end

16.3.3 Range Queries

Recall that range queries have a WHERE clause of the form “attribute A in range
[a,b]”, with a and b being numerical values. Structured P2P systems, in particular,
DHTs are very efficient at supporting exact-match queries (of the form “A = a”) but
have difficuties with range queries. The main reason is that hashing tends to destroy
the ordering of data that is useful in finding ranges quickly.

There are two main approaches for supporting range queries in structured P2P
systems: extend a DHT with proximity or order-preserving properties, or maintain the
key ordering with a tree-based structure. The first approach has been used in several
systems. Locality sentitive hashing [Gupta et al., 2003] is an extension to DHTs that
hashes similar ranges to the same DHT node with high probability. However, this
method can only obtain approximate answers and may cause unbalanced loads in
large networks. SkipNet [Harvey et al., 2003] is a lexicographic order-preserving
DHT that allows data items with similar values to be placed on contiguous peers. It

16.3 Querying Over P2P Systems 643

uses names rather than hashed identifiers to order peers in the overlay network, and
each peer is responsible for a range of strings. This facilitates the execution of range
queries. However, the number of peers to be visited is linear in the query range.

The Prefix Hash Tree (PHT) [Ramabhadran et al., 2004] is a trie-based distributed
data structure that supports range queries over a DHT, by simply using the DHT
lookup operation. The data being indexed are binary strings of length D. Each node
has either 0 or 2 children, and a key k is stored at a leaf node whose label is a prefix
of k. Furthermore, leaf nodes are linked to their neighbors. PHT’s lookup operation
on key k must return the unique leaf node lea f (k) whose label is a prefix of k. Given
a key k of length D, there are D+1 distinct prefixes of k. Obtaining lea f (k) can be
performed by a linear scan of these potential D+1 nodes. However, since a PHT is a
binary trie, the linear scan can be improved using a binary search on prefix length.
This reduces the number of DHT lookups from (D+1) to (log D). Given two keys
a and b such as a≤ b, two algorithms for range queries are supported, using PHT’s
lookup. The first one is sequential: it searches lea f (a) and then scans sequentially
the linked list of leaf nodes until the node lea f (b) is reached. The second algorithm
is parallel: it first identifies the node which corresponds to the smallest prefix range
that completely covers the range [a,b]. To reach this node, a simple DHT lookup is
used and the query is forwarded recursively to those children that overlap with the
range [a,b].

As in all hashing schemes, the first approach suffers from data skew that can
result in peers with unbalanced ranges, which hurts load balancing. To overcome this
problem, the second approach exploits tree-based structures to maintain balanced
ranges of keys. The first attempt to build a P2P network based on a balanced tree
structure is BATON (BAlanced Tree Overlay Network) [Jagadish et al., 2005]. We
now present BATON and its support for range queries in more detail.

BATON organizes peers as a balanced binary tree (each node of the tree is main-
tained by a peer). The position of a node in BATON is determined by a (level,number)
tuple, with level starting from 0 at the root, number starting from 1 at the root and
sequentially assigned using in-order traversal. Each tree node stores links to its parent,
children, adjacent nodes and selected neighbor nodes that are nodes at the same level.
Two routing tables: a left routing table and a right routing table store links to the
selected neighbor nodes. For a node numbered i, these routing tables contain links
to nodes located at the same level with numbers that are less (left routing table) and
greater (right routing table) than i by a power of 2. The jth element in the left (right)
routing table at node i contains a link to the node numbered i−2 j−1 (respectively
i+2 j−1) at the same level in the tree. Figure 16.11 shows the routing table of node 6.

In BATON, each leaf and internal node (or peer) is assigned a range of values. For
each link this range is stored at the routing table and when its range changes, the link
is modified to record the change. The range of values managed by a peer is required
to be to the right of the range managed by its left subtree and less than the range
managed by its right subtree (see Figure 16.12). Thus, BATON builds an effective
distributed index structure. The joining and departure of peers are processed such
that the tree remains balanced by forwarding the request upward in the tree for joins

644 16 Peer-to-Peer Data Management

8 9 10

4 5 6 7

2 3

1Level 0

Level 1

Level 2

Level 3

Node Left

Child

Right

Child

Lower

Bound

Upper

Bound

0 5 10 null LB5 UB5

1 4 8 9 LB4 UB4

Left routing table

Node Left

Child

Right

Child

Lower

Bound

Upper

Bound

0 7 null null LB7 UB7

Right routing table

Node 6: level 2, number=3

parent=3, leftchild=null, rightchild=null

leftadjacent=1, rightadjacent=3

Fig. 16.11 BATON structure-tree index and routing table of node 6

and downward in the tree for leaves, thus with no more than O(log n) steps for a tree
of n nodes.

8 9 10

4 5 6 7

2 3

1

[35,40)

[15,20) [46,50)

[5,10) [27,35) [40,46) [50,55)

[0,5) [10,15) [20,27)

Q=[7,45]

Fig. 16.12 Range query processing in BATON

A range query is processed as follows (Algorithm 16.7). For a range query Q
with range [a,b] submitted by node i, it looks for a node that intersects with the
lower bound of the searched range. The peer that stores the lower bound of the range
checks locally for tuples belonging to the range and forwards the query to its right
adjacent node. In general, each node receiving the query checks for local tuples and
contacts its right adjacent node until the node containing the upper bound of the
range is reached. Partial answers obtained when an intersection is found are sent
to the node that submits the query. The first intersection is found in O(log n) steps

16.4 Replica Consistency 645

using an algorithm for exact match queries. Therefore, a range query with X nodes
covering the range is answered in O(log n+X) steps.

Algorithm 16.7: BatonRange
Input: Q: a range query in the form [a,b]
Output: T : result relation
begin
{Search for the peer storing the lower bound of the range}
At query originator peer
begin

find peer p that holds value a ;
send Q to p;

end
for each peer p that receives Q do

Tp← Range(p)∩ [a,b];
send Tp to query originator ;
if Range(RightAd jacent(p))∩ [a,b] 6= /0 then

let p be right adjacent peer of p ;
send Q to p

end

Example 16.6. Consider the query Q with range [7,45] issued at node 7 in Figure
16.12. First, BATON executes an exact match query looking for a node containing
the lower bound of the range (see dashed line in the figure). Since the lower bound is
in the range assigned to node 4, it checks locally for tuples belonging to the range
and forwards the query to its adjacent right node (node 9). Node 9 checks for local
tuples belonging to the range and forwards the query to node 2. Nodes 10, 5, 1 and
6 receive the query, they check for local tuples and contact their respective right
adjacent node until the node containing the upper bound of the range is reached. �

16.4 Replica Consistency

To increase data availability and access performance, P2P systems replicate data.
However, different P2P systems provide very different levels of replica consistency.
The earlier, simple P2P systems such as Gnutella and Kazaa deal only with static data
(e.g., music files) and replication is “passive” as it occurs naturally as peers request
and copy files from one another (basically, caching data). In more advanced P2P
systems where replicas can be updated, there is a need for proper replica management
techniques. Unfortunately, most of the work on replica consistency has been done
only in the context of DHTs. We can distinguish three approaches to deal with replica

646 16 Peer-to-Peer Data Management

consistency: basic support in DHTs, data currency in DHTs, and replica reconciliation.
In this section, we introduce the main techniques used in these approaches.

16.4.1 Basic Support in DHTs

To improve data availability, most DHTs rely on data replication by storing (key,data)
pairs at several peers by, for example, using several hash functions. If one peer is
unavailable, its data can still be retrieved from the other peers that hold a replica.
Some DHTs provide basic support for the application to deal with replica consistency.
In this section, we describe the techniques used in two popular DHTs: CAN and
Tapestry.

CAN provides two approaches for supporting replication [Ratnasamy et al.,
2001a]. The first one is to use m hash functions to map a single key onto m points in
the coordinate space, and, accordingly, replicate a single (key,data) pair at m distinct
nodes in the network. The second approach is an optimization over the basic design
of CAN that consists of a node proactively pushing out popular keys towards its
neighbors when it finds it is being overloaded by requests for these keys. In this
approach, replicated keys should have an associated TTL field to automatically undo
the effect of replication at the end of the overloaded period. In addition, the technique
assumes immutable (read-only) data.

Tapestry [Zhao et al., 2004] is an extensible P2P system that provides decentralized
object location and routing on top of a structured overlay network. It routes messages
to logical end-points (i.e., endpoints whose identifiers are not associated with physical
location), such as nodes or object replicas. This enables message delivery to mobile or
replicated endpoints in the presence of instability of the underlying infrastructure. In
addition, Tapestry takes latency into account to establish each node’s neighborhood.
The location and routing mechanisms of Tapestry work as follows. Let o be an object
identified by id(o); the insertion of o in the P2P network involves two nodes: the
server node (noted ns) that holds o and the root node (noted nr) that holds a mapping
in the form (id(o),ns) indicating that the object identified by id(o) is stored at node
ns. The root node is dynamically determined by a globally consistent deterministic
algorithm. Figure 16.13a shows that when o is inserted into ns, ns publishes id(o) at
its root node by routing a message from ns to nr containing the mapping (id(o),ns).
This mapping is stored at all nodes along the message path. During a location
query (e.g., “id(o)?” in Figure 16.13a, the message that looks for id(o) is initially
routed towards nr, but it may be stopped before reaching it once a node containing
the mapping (id(o),ns) is found. For routing a message to id(o)’s root, each node
forwards this message to its neighbor whose logical identifier is the most similar to
id(o) [Plaxton et al., 1997].

Tapestry offers the entire infrastructure needed to take advantage of replicas, as
shown in Figure 16.13b. Each node in the graph represents a peer in the P2P network
and contains the peer’s logical identifier in hexadecimal format. In this example,
two replicas O1 and O2 of object O (e.g., a book file) are inserted into distinct peers

16.4 Replica Consistency 647

n
s

n
r

(id,n
s
) (id,n

s
)

(id,n
s
)

id? n
s

id?

insert(id,O)

Obj ID

O id

(a) Object publishing

(b) Replica management

Obj ID

O
1

4378

Obj ID

O
2

4378

4228 43FE 437A

4361 4A6D

E791 4B4F 57EC

4664 4377

AA93

AA93

AA93

4378

4378

4378?

insert(4378,O
1
)

insert(4378,O
2
)

α

α

α

α

α

β β
β

β

(AA93,4378)

(4228,4378)

Fig. 16.13 Tapestry (a) Object publishing (b) Replica management.

(O1→ peer 4228 and O2→ peer AA93). The identifier of O1 is equal to that of O2
(i.e., 4378 in hexadecimal) as O1 and O2 are replicas of the same object O. When O1
is inserted into its server node (peer 4228), the mapping (4378,4228) is routed from
peer 4228 to peer 4377 (the root node for O1’s identifier). As the message approaches
the root node, the object and the node identifiers become increasingly similar. In
addition, the mapping (4378,4228) is stored at all peers along the message path. The
insertion of O2 follows the same procedure. In Figure 16.13b, if peer E791 looks
for a replica of O, the associated message routing stops at peer 4361. Therefore,
applications can replicate data across multiple server nodes and rely on Tapestry to
direct requests to nearby replicas.

648 16 Peer-to-Peer Data Management

16.4.2 Data Currency in DHTs

Although DHTs provide basic support for replication, the mutual consistency of the
replicas after updates can be compromised as a result of peers leaving the network or
concurrent updates. Let us illustrate the problem with a simple update scenario in a
typical DHT.

Example 16.7. Let us assume that the operation put(k,d0) (issued by some peer)
maps onto peers p1 and p2 both of which get to store data d0. Now consider an
update (from the same or another peer) with the operation put(k,d1) that also maps
onto peers p1 and p2. Assuming that p2 cannot be reached (e.g., because it has left
the network), only p1 gets updated to store d1. When p2 rejoins the network later on,
the replicas are not consistent: p1 holds the current state of the data associated with k
while p2 holds a stale state.

Concurrent updates also cause problems. Consider now two updates put(k,d2)
and put(k,d3) (issued by two different peers) that are sent to p1 and p2 in reverse
order, so that p1’s last state is d2 while p2’s last state is d3. Thus, a subsequent
get(k) operation will return either stale or current data depending on which peer is
looked up, and there is no way to tell whether it is current or not. �

For some applications (e.g., agenda management, bulletin boards, cooperative
auction management, reservation management, etc.) that could take advantage of a
DHT, the ability to get the current data are very important. Supporting data currency
in replicated DHTs requires the ability to return a current replica despite peers
leaving the network or concurrent updates. Of course, replica consistency is a more
general problem, as discussed in Chapter 13, but the issue is particularly difficult
and important in P2P systems, since there is considerable dynamism in the peers
joining and leaving the system. The problem can be partially addressed by using data
versioning [Knezevic et al., 2005]. Each replica has a version number that is increased
after each update. To return a current replica, all replicas need to be retrieved in order
to select the latest version. However, because of concurrent updates, it may happen
that two different replicas have the same version number, thus making it impossible
to decide which one is the current replica.

A more complete solution has been proposed that considers both data availability
and data currency [Akbarinia et al., 2007b]. To provide high data availability, data are
replicated in the DHT using a set of independent hash functions Hr, called replication
hash functions. The peer that is responsible for key k with respect to hash function h
at the current time is denoted by rsp(k,h). To be able to retrieve a current replica,
each pair (k,data) is stamped with a logical timestamp, and for each h ∈ Hr, the
pair (k,newData) is replicated at rsp(k,h) where newData = {data, timestamp},
i.e., newdata is composed of the initial data and the timestamp. Upon a request for
the data associated with a key, we can return one of the replicas that are stamped
with the latest timestamp. The number of replication hash functions, i.e., Hr, can be
different for different DHTs. For instance, if in a DHT the availability of peers is low,
a high value of Hr (e.g., 30) can be used to increase data availability.

16.4 Replica Consistency 649

This solution is the basis for a service called Update Management Service (UMS)
that deals with efficient insertion and retrieval of current replicas based on times-
tamping. Experimental validation has shown that UMS incurs very little overhead in
terms of communication cost. After retrieving a replica, UMS detects whether it is
current or not, i.e., without having to compare with the other replicas, and returns it
as output. Thus, UMS does not need to retrieve all replicas to find a current one; it
only requires the DHT’s lookup service with put and get operations.

To generate timestamps, UMS uses a distributed service called Key-based Times-
tamping Service (KTS). The main operation of KTS is gen ts(k), which, given
a key k, generates a real number as a timestamp for k. The timestamps generated
by KTS are monotonic such that if tsi and ts j are two timestamps generated for the
same key at times ti and t j, respectively, ts j > tsi if t j is later than ti. This property
allows ordering the timestamps generated for the same key according to the time at
which they have been generated. KTS has another operation denoted by last ts(k),
which, given a key k, returns the last timestamp generated for k by KTS. At anytime,
gen ts(k) generates at most one timestamp for k, and different timestamps for k
are monotonic. Thus, in the case of concurrent calls to insert a pair (k,data), i.e.,
from different peers, only the one that obtains the latest timestamp will succeed to
store its data in the DHT.

16.4.3 Replica Reconciliation

Replica reconciliation goes one step further than data currency by enforcing mutual
consistency of replicas. Since a P2P network is typically very dynamic, with peers
joining or leaving the network at will, eager replication solutions (see Chapter
13) are not appropriate; lazy replication is preferred. In this section, we describe
the reconciliation techniques used in OceanStore, P-Grid and APPA to provide a
spectrum of proposed solutions.

16.4.3.1 OceanStore

OceanStore [Kubiatowicz et al., 2000] is a data management system designed to
provide continuous access to persistent information. It relies on Tapestry and assumes
an infrastructure composed of untrusted powerful servers that are connected by
high-speed links. For security reasons, data are protected through redundancy and
cryptographic techniques. To improve performance, data are allowed to be cached
anywhere, anytime.

OceanStore allows concurrent updates on replicated objects; it relies on recon-
ciliation to assure data consistency. Figure 16.14 illustrates update management
in OceanStore. In this example, R is a replicated object whereas Ri and ri denote,
respectively, a primary and a secondary copy of R. Nodes n1 and n2 are concurrently
updating R. Such updates are managed as follows. Nodes that hold primary copies of

650 16 Peer-to-Peer Data Management

Fig. 16.14 OceanStore reconciliation. (a) Nodes n1 and n2 send updates to the master group of R
and to several random secondary replicas. (b) The master group of R orders updates while secondary
replicas propagate them epidemically. (c) After the master group agreement, the result of updates is
multicast to secondary replicas.

R, called the master group of R, are responsible for ordering updates. So, n1 and n2
perform tentative updates on their local secondary replicas and send these updates
to the master group of R as well as to other random secondary replicas (see Figure
16.14a). The tentative updates are ordered by the master group based on timestamps
assigned by n1 and n2; at the same time, these updates are epidemically propagated
among secondary replicas (Figure 16.14b). Once the master group obtains an agree-

r5

r9 r10

r6 r7 r7 r8

r13r11

r13 r14

r5 r6

r10r9

r5 r6 r7 r8

r12r11r10

r13 r14

r9

r8

r11 r12

r13

n1

n1 n2

n2 n1 n2

r14

(a) (b)

(c)

R1 R1 R2

R4R3

R1 R2

R4R3

R2

R4R3

16.4 Replica Consistency 651

ment, the result of updates is multicast to secondary replicas (Figure 16.14c), which
contain both tentative2 and committed data.

Replica management adjusts the number and location of replicas in order to
service requests more efficiently. By monitoring the system load, OceanStore detects
when a replica is overwhelmed and creates additional replicas on nearby nodes to
alleviate load. Conversely, these additional replicas are eliminated when they are no
longer needed.

16.4.3.2 P-Grid

P-Grid [Aberer et al., 2003a] is a structured P2P network based on a binary trie
structure. A decentralized and self-organizing process builds P-Grid’s routing infras-
tructure which is adapted to a given distribution of data keys stored by peers. This
process addresses uniform load distribution of data storage and uniform replication
of data to support availability.

To address updates of replicated objects, P-Grid employs gossiping, without strong
consistency guarantees. P-Grid assumes that quasi-consistency of replicas (instead of
full consistency which is too hard to provide in a dynamic environment) is enough.

The update propagation scheme has a push phase and a pull phase. When a peer
p receives a new update to a replicated object R, it pushes the update to a subset
of peers that hold replicas of R, which, in turn, propagate it to other peers holding
replicas of R, and so on. Peers that have been disconnected and get connected again,
peers that do not receive updates for a long time, or peers that receive a pull request
but are not sure whether they have the latest update, enter the pull phase to reconcile.
In this phase, multiple peers are contacted and the most up-to-date among them is
chosen to provide the object content.

16.4.3.3 APPA

APPA provides a general lazy distributed replication solution that assures eventual
consistency of replicas [Martins et al., 2006a; Martins and Pacitti, 2006; Martins
et al., 2008]. It uses the action-constraint framework [Kermarrec et al., 2001] to
capture the application semantics and resolve update conflicts.

The application semantics is described by means of constraints between update
actions. An action is defined by the application programmer and represents an
application-specific operation (e.g., a write operation on a file or document, or a
database transaction). A constraint is the formal representation of an application
invariant. For instance, the predSucc(a1, a2) constraint establishes causal ordering
between actions (i.e., action a2 executes only after a1 has succeeded); the mutual-
lyExclusive(a1, a2) constraint states that either a1 or a2 can be executed. The aim of
reconciliation is to take a set of actions with the associated constraints and produce

2 Tentative data are data that the primary replicas have not yet committed.

652 16 Peer-to-Peer Data Management

a schedule, i.e., a list of ordered actions that do not violate constraints. In order to
reduce the schedule production complexity, the set of actions to be ordered is divided
into subsets called clusters. A cluster is a subset of actions related by constraints
that can be ordered independently of other clusters. Therefore, the global schedule is
composed by the concatenation of clusters’ ordered actions.

Data managed by the APPA reconciliation algorithm are stored in data structures
called reconciliation objects. Each reconciliation object has a unique identifier in
order to enable its storage and retrieval in the DHT. Data replication proceeds as
follows. First, nodes execute local actions to update a replica of an object while
respecting user-defined constraints. Then, these actions (with the associated con-
straints) are stored in the DHT based on the object’s identifier. Finally, reconciler
nodes retrieve actions and constraints from the DHT and produce the global schedule,
by reconciling conflicting actions based on the application semantics. This schedule
is locally executed at every node, thereby assuring eventual consistency.

Any connected node can try to start reconciliation by inviting other available
nodes to engage with it. Only one reconciliation can run at-a-time. The reconciliation
of update actions is performed in 6 distributed steps as follows. Nodes at step 2 start
reconciliation. The outputs produced at each step become the input to the next one.

• Step 1 - node allocation: a subset of connected replica nodes is selected to
proceed as reconcilers based on communication costs.

• Step 2 - action grouping: reconcilers take actions from the action logs and
put actions that try to update common objects into the same group since these
actions are potentially in conflict. Groups of actions that try to update object R
are stored in the action log R reconciliation object (LR).

• Step 3 - cluster creation: reconcilers take action groups from the action logs
and split them into clusters of semantically dependent conflicting actions (two
actions a1 and a2 are semantically independent if the application judges it safe
to execute them together, in any order, even if they update a common object;
otherwise, a1 and a2 are semantically dependent. Clusters produced in this step
are stored in the cluster set reconciliation object.

• Step 4 - clusters extension: user-defined constraints are not taken into account
in cluster creation. Thus, in this step, reconcilers extend clusters by adding to
them new conflicting actions, according to user-defined constraints.

• Step 5 - cluster integration: cluster extensions lead to cluster overlapping (an
overlap occurs when the intersection of two clusters results in a non-null set
of actions). In this step, reconcilers bring together overlapping clusters. At
this point, clusters become mutually-independent, i.e., there are no constraints
involving actions of distinct clusters.

• Step 6 - cluster ordering: in this step, reconcilers take each cluster from the
cluster set and order the cluster’s actions. The ordered actions associated with
each cluster are stored in the schedule reconciliation object. The concatenation
of all clusters’ ordered actions makes up the global schedule that is executed by
all replica nodes.

16.6 Bibliographic Notes 653

At every step, the reconciliation algorithm takes advantage of data parallelism,
i.e., several nodes per-form simultaneously independent activities on a distinct subset
of actions (e.g., ordering of different clusters).

16.5 Conclusion

By distributing data storage and processing across autonomous peers in the network,
“modern” P2P systems can scale without the need for powerful servers. Advanced
P2P applications such as scientific cooperation must deal with semantically rich data
(e.g., XML documents, relational tables, etc.). Supporting such applications requires
significant revisiting of distributed database techniques (schema management, access
control, query processing, transaction management, consistency management, relia-
bility and replication). When considering data management, the main requirements of
a P2P system are autonomy, query expressiveness, efficiency, quality of service, and
fault-tolerance. Depending on the P2P network architecture (unstructured, structured
DHT, or hybrid super-peer), these requirements can be achieved to varying degrees.
Unstructured networks have better fault-tolerance but can be quite inefficient because
they rely on flooding for query routing. Hybrid systems have better potential to
satisfy high-level data management requirements. However, DHT systems are best
for key-based search and could be combined with super-peer networks for more
complex searching.

Most of the work on sharing semantically rich data in P2P systems has focused on
schema management and query processing. However, there has been very little work
on update management, replication, transactions and access control. Much more
work is needed to revisit distributed database techniques for large-scale P2P systems.
The main issues that have to be dealt with include schema management, complex
query processing, transaction support and replication, and privacy. Furthermore, it is
unlikely that all kinds of data management applications are suited for P2P systems.
Typical applications that can take advantage of P2P systems are probably light-weight
and involve some sort of cooperation. Characterizing carefully these applications is
important and will be useful to produce performance benchmarks.

16.6 Bibliographic Notes

Data management in “modern” P2P systems, those characterized by massive distri-
bution, inherent heterogeneity, and high volatility, has become an important research
topic. The topic is fully covered in a recent book [Vu et al., 2009]. A shorter survey
can be found in [Ulusoy, 2007]. Discussions on the requirements, architectures,
and issues faced by P2P data management systems are provided in [Bernstein et al.,
2002; Daswani et al., 2003; Valduriez and Pacitti, 2004]. A number of P2P data
management systems are presented in [Aberer, 2003].

654 16 Peer-to-Peer Data Management

An extensive survey of query processing in P2P systems is provided in [Akbarinia
et al., 2007d] and has been the basis for writing Sections 16.2 and 16.3. A good
discussion of the issues of schema mapping in P2P systems can be found in [Tatarinov
et al., 2003]. An important kind of query in P2P systems is top-k queries. A survey
of top-k query processing techniques in relational database systems is provided in
[Ilyas et al., 2008]. An efficient algorithm for top-k query processing is the Threshold
Algorithm (TA) which was proposed independently by several researchers [Nepal
and Ramakrishna, 1999; Güntzer et al., 2000; Fagin et al., 2003]. TA has been the
basis for several algorithms in P2P systems, in particular in DHTs [Akbarinia et al.,
2007c]. A more efficient algorithm than TA is the Best Position Algorithm [Akbarinia
et al., 2007a]. A survey of ranking algorithms in databases (not necessarily in P2P
systems) is given in [Ilyas et al., 2008].

The survey of replication in P2P systems by Martins et al. [2006b] has been the
basis for Section 16.4. A complete solution to data currency in replicated DHTs, i.e.,
providing the ability to find the most current replica, is given in [Akbarinia et al.,
2007b]. Reconciliation of replicated data are addressed in OceanStore [Kubiatowicz
et al., 2000], P-Grid [Aberer et al., 2003a] and APPA [Martins et al., 2006a; Martins
and Pacitti, 2006].

P2P techniques have recently received attention to help scaling up data manage-
ment in the context of Grid Computing. This triggered open problems and new issues
which are discussed in [Pacitti et al., 2007a].

Exercises

Problem 16.1. What is the fundamental difference between P2P and client-server
architectures? Is a P2P system with a centralized index equivalent to a client-server
system? List the main advantages and drawbacks of P2P file sharing systems from
different points of view:

• end-users;

• file owners;

• network administrators.

Problem 16.2 (**). A P2P overlay network is built as a layer on top of a physical
network, typically the Internet. Thus, they have different topologies and two nodes
that are neighbors in the P2P network may be far apart in the physical network. What
are the advantages and drawbacks of this layering? What is the impact of this layering
on the design of the three main types of P2P networks (unstructured, structured and
superpeer)?

Problem 16.3 (*). Consider the unstructured P2P network in Figure 16.4 and the
bottom-left peer that sends a request for resource. Illustrate and discuss the two
following search strategies in terms of result completeness:

16.6 Bibliographic Notes 655

• flooding with TTL=3;

• gossiping with each peer has a partial view of at most 3 neighbours.

Problem 16.4 (*). Consider Figure 16.7, focusing on structured networks. Refine
the comparison using the scale 1-5 (instead of low - moderate - high) by considering
the three main types of DHTs: tree, hypercube and ring.

Problem 16.5 (**). The objective is to design a P2P social network application, on
top of a DHT. The application should provide basic functions of social networks:
register a new user with her profile; invite or retrieve friends; create lists of friends;
post a message to friends; read friends’ messages; post a comment on a message.
Assume a generic DHT with put and get operations, where each user is a peer in the
DHT.

Problem 16.6 (**). Propose a P2P architecture of the social network application,
with the (key, data) pairs for the different entities which need be distributed. Describe
how the following operations: create or remove a user; create or remove a friendship;
read messages from a list of friends. Discuss the advantages and drawbacks of the
design.

Problem 16.7 (**). Same question, but with the additional requirement that private
data (e.g., user profile) must be stored at the user peer.

Problem 16.8. Discuss the commonalities and differences of schema mapping in
multidatabase systems and P2P systems. In particular, compare the local-as-view
approach presented in Chapter 4 with the pairwise schema mapping approach in
Section 16.2.1.

Problem 16.9 (*). The FD algorithm for top-k query processing in unstructured P2P
networks (see Algorithm 16.4) relies on flooding. Propose a variation of FD where,
instead of flooding, random walk or gossiping is used. What are the advantages and
drawbacks?

Problem 16.10 (*). Apply the TPUT algorithm (Algorithm 16.2) to the three lists
of the database in Figure 16.10 witk k=3. For each step of the algorithm, show the
intermediate results.

Problem 16.11 (*). Same question applied to Algorithm DHTop (see Algorithm
16.5.

Problem 16.12 (*). Algorithm 16.6 assumes that the input relations to be joined are
placed arbitrarily in the DHT. Assuming that one of the relations is already hashed
on the join attributes, propose an improvement of Algorithm 16.6.

Problem 16.13 (*). To improve data availability in DHTs, a common solution is to
replicate (k,data) pairs at several peers using several hash functions. This produces
the problem illustrated in Example 16.7. An alternative solution is to use a non-
replicated DHT (with a single hash function) and have the nodes replicating (k, data)
pairs at some of their neighbors. What is the effect on the scenario in Example 16.7?
What are the advantages and drawbacks of this approach, in terms of availability and
load balancing?

Chapter 17
Web Data Management

The World Wide Web (“WWW” or “web” for short) has become a major repository of
data and documents. Although measurements differ and change, the web has grown
at a phenomenal rate. According to two studies in 1998, there were 200 million
[Bharat and Broder, 1998] to upwards of 320 million [Lawrence and Giles, 1998]
static web pages. A 1999 study reported the size of the web as 800 million pages
[Lawrence and Giles, 1999]. By 2005, the number of pages were reported to be 11.5
billion [Gulli and Signorini, 2005]. Today it is estimated that the web contains over
25 billion pages1 and growing. These are numbers for the “static” web pages, i.e.,
those whose content do not change unless the page owners make explicit changes.
The size of the web is much larger when “dynamic” web pages (i.e., pages whose
content changes based on the context of user requests) are considered. A 2005 study
reported the size to be over 53 billion pages [Hirate et al., 2006]. Additionally,
it was estimated that, as of 2001, over 500 billion documents existed in the deep
web (which we define below) [Bergman, 2001]. Besides its size, the web is very
dynamic and changes rapidly. Thus, for all practical purposes, the web represents a
very large, dynamic and distributed data store and there are the obvious distributed
data management issues in accessing web data.

The web, in its present form, can be viewed as two distinct yet related components.
The first of these components is what is known as the publicly indexable web (PIW)
[Lawrence and Giles, 1998]. This is composed of all static (and cross-linked) web
pages that exist on web servers. The other component, which is known as the hidden
web [Florescu et al., 1998] (or the deep web [Raghavan and Garcia-Molina, 2001]),
is composed of a huge number of databases that encapsulate the data, hiding it from
the outside world. The data in the hidden web are usually retrieved by means of
search interfaces where the user enters a query that is passed to the database server,
and the results are returned to the user as a dynamically generated web page.

The difference between the two is basically in the way they are handled for
searching and/or querying. Searching the PIW depends mainly on crawling its
pages using the link structure between them, indexing the crawled pages, and then

1 See http://www.worldwidewebsize.com/

657
DOI 10.1007/978-1-4419-8834-8_17, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

http://www.worldwidewebsize.com

658 17 Web Data Management

searching the indexed data (as we discuss at length in Section 17.2). It is not possible
to apply this approach to the hidden web directly since it is not possible to crawl
and index those data (the techniques for searching the hidden web are discussed in
Section 17.3.4).

Research on web data management has followed different threads. Most of the
earlier work focused on keyword search and search engines. The subsequent work
in the database community focused on declarative querying of web data. There is
an emerging trend that combines search/browse mode of access with declarative
querying, but this work has not yet reached its full potential. Along another front,
XML has emerged as an important data format for representing data on the web.
Thus, XML data management, and more recently distributed XML data management,
have been topics of interest. The result of these different threads of development is
that there is little in the way of a unifying architecture or framework for discussing
web data management, and the different lines of research have to be considered
somewhat separately. Furthermore, the full coverage of all the web-related topics
requires far deeper and far more extensive treatment than is possible within a chapter.
Therefore, we focus on issues that are directly related to data management.

We start by discussing how web data can be modelled as a graph. Both the structure
of this graph and its management are important. This is discussed in Section 17.1.
Web search is discussed in Section 17.2 and web querying is covered in Section 17.3.
These are fundamental topics in web data management. We then discuss distributed
XML data management (Section 17.4). Although the web pages were originally
encoded using HTML, the use of XML and the prevalence of XML-encoded data are
increasing, particularly in the data repositories available on the web. Therefore, the
distributed management of XML data is increasingly important.

17.1 Web Graph Management

The web consists of “pages” that are connected by hyperlinks, and this structure
can be modelled as a directed graph that reflects the hyperlink structure. In this
graph, commonly referred to as the web graph, static HTML web pages are the
nodes and the links between them are represented as directed edges [Kumar et al.,
2000; Raghavan and Garcia-Molina, 2003; Kleinberg et al., 1999]. Studying the web
graph is obviously of interest to theoretical computer scientists, because it exhibits
a number of interesting characteristics, but it is also important for studying data
management issues since the graph structure is exploited in web search [Kleinberg
et al., 1999; Brin and Page, 1998; Kleinberg, 1999], categorization and classification
of web content [Chakrabarti et al., 1998], and other web-related tasks. The important
characteristics of the web graph are the following [Bonato, 2008]:

(a) It is quite volatile. We already discussed the speed with which the graph is
growing. In addition, a significant proportion of the web pages experience
frequent updates.

17.1 Web Graph Management 659

(b) It is sparse. A graph is considered sparse if its average degree is less than
the number of vertices. This means that the each node of the graph has a
limited number of neighbors, even if the nodes are in general connected. The
sparseness of the web graph implies an interesting graph structure that we
discuss shortly.

(c) It is “self-organizing.” The web contains a number of communities, each
of which consist of a set of pages that focus on a particular topic. These
communities get organized on their own without any “centralized control,”
and give rise to the particular subgraphs in the web graph.

(d) It is a “small-world network.” This property is related to sparseness – each
node in the graph may not have many neighbors (i.e., its degree may be
small), but many nodes are connected through intermediaries. Small-world
networks were first identified in social sciences where it was noted that many
people who are strangers to each other are connected by intermediaries. This
holds true in web graphs as well in terms of the connectedness of the graph.

(e) It is a power law network. The in- and out-degree distributions of the web
graph follow power law distributions. This means that the probability that a
node has in- (out-) degree i is proportional to 1/iα for some α > 1.The value
of α is about 2.1 for in-degree and about 7.2 for out-degree [Broder et al.,
2000].

This brings us to a discussion of the structure of the web graph, which has
a “bowtie” shape (Figure 17.1) [Broder et al., 2000]. It has a strongly connected
component (the knot in the middle) in which there is a path between each pair of
pages. The strongly connected component (SCC) accounts for about 28% of the
web pages. A further 21% of the pages constitute the “IN” component from which
there are paths to pages in SCC, but to which no paths exist from pages in SCC.
Symmetrically, “OUT” component has pages to which paths exists from pages in
SCC but not vice versa, and these also constitute 21% of the pages. What is referred
to as “tendrils” consist of pages that cannot be reached from SCC and from which
SCC pages cannot be reached either. These constitute about 22% of the web pages.
These are pages that have not yet been “discovered” and have not yet been connected
to the better known parts of the web. Finally, there are disconnected components that
have no links to/from anything except their own small communities. This makes up
about 8% of the web. This structure is interesting in that it determines the results
that one gets from web searches and from querying the web. Furthermore, this graph
structure is different than many other graphs that are normally studied, requiring
special algorithms and techniques for its management.

A particularly relevant issue that needs to be addressed is the management of
the very large, dynamic, and volatile web graph. In the remainder, we discuss two
methods that have been proposed to deal with this issue. The first one compresses
the web graph for more efficient storage and manipulation, while the second one
suggests a special representation for the web graph.

660 17 Web Data Management

Disconnected components

Tendrils

Tubes

SCC
IN OUT

Fig. 17.1 The Structure of the web as a Bowtie (Based on [Kumar et al., 2000].)

17.1.1 Compressing Web Graphs

Compressing a large graph is well-studied, and a number of techniques have been
proposed. However, the web graph structure is different from the graphs that are
addressed by these techniques, which makes it difficult (if not impossible) to apply
the well-known graph compression algorithms to web graphs. Thus, new approaches
are needed.

A specific proposal for compressing the web graph takes advantage of the fact that
we can attempt to find nodes that share several common out-edges, corresponding
to the case where one node might have copied links from another node [Adler and
Mitzenmacher, 2001]. The main idea behind this technique is that when a new node
is added to the graph, it takes an existing page and copies some of the links from
that page to itself. For example, a new page v might examine the out-edges from a
page w and link to a subset of the pages that w links to. This intuition is based on the
idea that the creator of a new page decides what pages to link to based on an existing
page or pages that the page creator already likes [Kumar et al., 1999]. In this case,
node w is called the reference for node v.

Given that the in-degree and out-degree of the web graph follow a Zipfian distri-
bution, there is a large variance in the degrees. Thus, a Huffman-based compression
scheme can be used. There are alternative compression methods in this class, but a
simple one that demonstrates the idea is as follows.

Once the node from which links were copied has been identified, the difference
between the out-edges of the two nodes can be identified. If node w is labelled as a
reference of node v, a 0/1 bit vector can be generated that denotes which out-edges
of w are also out-edges of node v. Other out-edges of v can be separately identified

17.1 Web Graph Management 661

using another bit vector. Then, the cost of compressing node v using node w as a
reference can be expressed as follows:

Cost(v,w) = out deg(w)+ dlogne∗ (|N(v)−N(w)|+1)

where N(v) and N(w) represent the set of out-edges for nodes v and w, respectively,
and n is the number of nodes in the graph. The first term identifies the cost of
representing the out-edges of the reference node w, dlogne is the number of bits
required to identify a node in a web graph with n nodes, and (|N(v)−N(w)|+ 1)
represents the difference between the out-edges of the two nodes.

Given a description of a graph in this compressed format, let us consider how it
could be determined where a link from node v encoded using node w as a reference
actually points. If the corresponding link from node w is encoded using another node
u as a reference, then it needs to be determined where the corresponding link from
node u points. Eventually, a link is reached that is encoded without using a reference
node (in order to satisfy this requirement, no cycles among references are allowed)
at which point the search stops.

17.1.2 Storing Web Graphs as S-Nodes

An alternative to compressing the web graph is to develop special storage structures
that allow efficient storage and querying. S-Nodes [Raghavan and Garcia-Molina,
2003] is one such structure that provides a two-level representation of the web
graph. In this scheme, the web graph is represented by a set of smaller directed
sub-graphs. Each of these smaller sub-graphs encodes the interconnections within
a small subset of pages. A top-level directed graph, consisting of supernodes and
superedges contains links to these smaller sub-graphs.

Given a web graph WG, the S-Node representation can be constructed as follows.
Let P = N1,N2, ...,Nn be a partition on the vertex set of WG. The following types of
directed graphs can be defined (Figure 17.2):

Supernode graph: A supernode graph contains n vertices, one for each partition
in P. In Figure 17.2, there is a supernode for each of the partitions N1, N2 and N3.
Supernodes are linked using superedges. A superedge Ei j is created from Ni to N j
if there is at least one page in Ni that points to some page in N j.

Intranode graph: Each partition Ni is associated with an intranode graph
IntraNodei that represents all the interconnections between the pages that be-
long to Ni. For example, in Figure 17.2, IntraNode1 represents the hyperlinks
between pages P1 and P2.

Positive superedge graph: A positive superedge graph SEdgePosi, j is a directed
bipartite graph representing all links from Ni to N j. In Figure 17.2, SEdgePos1,2

662 17 Web Data Management

P1

P2

P3

P4

P5

Web graph

Partition P = {N1, N2, N3}

 N1 = {P1, P2}

 N2 = {P3}

 N3 = {P4, P5}

[

N3

N2

N1

E1,2 E3,2

E1,3

E3,1

Supernode graph

P1

P2

P1

P2

P3

IntraNode1 IntraNode3

IntraNode2

P1

P2

P3

P4 P3

P2 P5

P5 P1

SEdgePos1,2

SEdgePos3,2

SEdgePos1,3

SEdgePos3,1

P5

P1

P3

P4

SEdgeNeg3,2

SEdgeNeg1,3

SEdgeNeg3,1

P2 P5

P4 P1

P5 P2

SEdgeNeg1,2

Fig. 17.2 Partitioning the web graph (Based on [Raghavan and Garcia-Molina, 2003].)

contains two edges that represent the two links from P1 and P2 to P3. There is an
SEdgePosi, j if there exists a corresponding superedge Ei, j.

Negative superedge graph: A negative superedge graph SEdgeNegi, j is a directed
bipartite graph that represents all links between Ni and N j that do not exist in the
actual web graph. Similar to SEdgePos, an SEdgeNegi, j exists if and only if there
exists a corresponding superedge Ei, j.

Given a partition P on the vertex set of WG, an S-Node representation SNode
(WG,P) can be constructed by using the supernode graph that points to the intranode
graph and a set of positive and negative supernode graphs. The decision as to whether
to use the positive or the negative supernode graph depends on which representation
has the lower number of edges. Figure 17.3 shows the specific representation of an
S-Node for the example given in Figure 17.2.

S-node representation exploits empirically observed properties of web graphs to
guide the grouping of pages into super-nodes and uses compressed encodings for the
lower level directed graphs. This compression allows the reduction of the number of
bits needed to encode a hyperlink from 15 to 5 [Raghavan and Garcia-Molina, 2003],
which in turn allows large web graphs to be loaded into main memory for processing.
Furthermore, since the web graph is represented in terms of smaller directed graphs,
it is possible to naturally isolate and locally explore portions of the web graph that
are relevant to a particular query.

17.2 Web Search 663

N3

E1,2 E3,2

E1,3

E3,1

N1

N2

IntraNode3

IntraNode1 IntraNode2

SEdgeNeg3,2SEdgeNeg1,2

SEdgePos3,1 SEdgePos1,3

Fig. 17.3 S-node representation (Based on [Raghavan and Garcia-Molina, 2003].)

17.2 Web Search

Web search involves finding “all” the web pages that are relevant (i.e., have content
related) to keyword(s) that a user specifies. Naturally, it is not possible to find all the
pages, or even to know if one has retrieved all the pages; thus the search is performed
on a database of web pages that have been collected and indexed. Since there are
usually multiple pages that are relevant to a query, these pages are presented to the
user in ranked order of relevance as determined by the search engine.

The abstract architecture of a generic search engine is shown in Figure17.4 [Arasu
et al., 2001]. We discuss the components of this architecture in some detail.

In every search engine the crawler plays one of the most crucial roles. A crawler is
a program used by a search engine to scan the web on its behalf and collect data about
web pages. A crawler is given a starting set of pages – more accurately, it is given
a set of Uniform Resource Locators (URLs) that identify these pages. The crawler
retrieves and parses the page corresponding to that URL, extracts any URLs in it, and
adds these URLs to a queue. In the next cycle, the crawler extracts a URL from the
queue (based on some order) and retrieves the corresponding page. This process is
repeated until the crawler stops. A control module is responsible for deciding which
URLs should be visited next. The retrieved pages are stored in a page repository.
Section 17.2.1 examines crawling operations in more detail.

The indexer module is responsible for constructing indexes on the pages that have
been downloaded by the crawler. While many different indexes can be built, the two
most common ones are text indexes and link indexes. In order to construct a text
index, the indexer module constructs a large “lookup table” that can provide all the
URLs that point to the pages where a given word occurs. A link index describes the
link structure of the web and provides information on the in-link and out-link state

664 17 Web Data Management

Crawler(s)

WWW

Crawl Control

Indexer

Module

Collection

Analysis

Module

Text
Structure

Utility

Query

Engine
Ranking

Client

Usage feedback

Queries Results

Page Repository

Indexes:
Structure

Fig. 17.4 Search Engine Architecture (Based on [?]

of pages. Section 17.2.2 explains current indexing technology and concentrates on
ways indexes can be efficiently stored.

The ranking module is responsible for sorting the large number of results so that
those that are considered to be most relevant to the user’s search are presented first.
The problem of ranking has drawn increased interest in order to go beyond traditional
information retrieval (IR) techniques to address the special characteristics of the
web — web queries are usually small and they are executed over a vast amount of
data. Section 17.2.3 introduces algorithms for ranking and describes approaches that
exploit the link structure of the web to obtain improved ranking results.

17.2.1 Web Crawling

As indicated above, a crawler scans the web on behalf of a search engine to extract
information about the visited web pages. Given the size of the web, the changing
nature of web pages, and the limited computing and storage capabilities of crawlers,
it is impossible to crawl the entire web. Thus, a crawler must be designed to visit
“most important” pages before others. The issue, then, is to visit the pages in some
ranked order of importance.

There are a number of issues that need to be addressed in designing a crawler [Cho
et al., 1998]. Since the primary goal is to access more important pages before others,

17.2 Web Search 665

there needs to be some way of determining the importance of a page. This can be
done by means of a measure that reflects the importance of a given page. These
measures can be static, such that the importance of a page is determined independent
of retrieval queries that will run against it, or dynamic in that they take the queries into
consideration. Examples of static measures are those that determine the importance of
a page P with respect to the number of pages that point to P (referred to as backlink),
or those that additionally take into account the importance of the backlink pages as is
done in the popular PageRank metric [Page et al., 1998] that is used by Google and
others. A possible dynamic measure may be one that calculates the importance of a
page P with respect its textual similarity to the query that is being evaluated using
some of the well-known information retrieval similarity measures.

Let us briefly discuss the PageRank measure. The PageRank of a page Pi (denoted
r(Pi)) is simply the normalized sum of the PageRank of all Pi’s backlink pages
(denoted as BPi):

r(Pi) = ∑
Pj∈BPi

r(Pj)

|Pj|

This formula calculates the rank of a page based on the backlinks, but normalizes
the contribution of each backlinking page Pj using the number of links that Pj has
to other pages. The idea here is that it is more important to be pointed at by pages
conservatively link to other pages than by those who link to others indiscriminately.

A second issue is how the crawler chooses the next page to visit once it has
crawled a particular page. As noted earlier, the crawler maintains a queue in which it
stores the URLs for the pages that it discovers as it analyzes each page. Thus, the
issue is one of ordering the URLs in this queue. A number of strategies are possible.
One possibility is to visit the URLs in the order in which they were discovered; this is
referred to as the breadth-first approach [Cho et al., 1998; Najork and Wiener, 2001].
Another alternative is to use random ordering whereby the crawler chooses a URL
randomly from among those that are in its queue of unvisited pages. Other alternatives
are to use metrics that combine ordering with importance ranking discussed above,
such as backlink counts or PageRank.

Let us discuss how PageRank can be used for this purpose. A slight revision is
required to the PageRank formula given above. We are now modelling a random
surfer: when landed on a page P, a random surfer is likely to choose one of the URLs
on this page as the next one to visit with some (equal) probability d or will jump to a
random page with probability 1−d. Then the above formula for PageRank is revised
as follows [Langville and Meyer, 2006]:

r(Pi) = (1−d)+d ∑
Pj∈BPi

r(Pj)

|Pj|

The ordering of the URLs according to this formula allows the importance of a
page to be incorporated into the order in which the corresponding page is visited. In

666 17 Web Data Management

some formulations, the first term is normalized with respect to the total number of
pages in the web.

In addition to the fundamental design issues discussed above, there are a number
of additional concerns that need to be addressed for efficient implementation of
crawlers. We discuss these briefly.

Since many web pages change over time, crawling is a continuous activity and
pages need to be re-visited. Instead of restarting from scratch each time, it is prefer-
able to selectively re-visit web pages and update the gathered information. Crawlers
that follow this approach are called incremental crawlers. They ensure that the in-
formation in their repositories are as fresh as possible. Incremental crawlers can
determine the pages that they re-visit based on the change frequency of the pages
or by sampling a number of pages. Change frequency-based approaches use an
estimate of the change frequency of a page to determine how frequently it should be
re-visited [Cho and Garcia-Molina, 2000]. One might intuitively assume that pages
with high change frequency should be visited more often, but this is not always true –
any information extracted from a page that changes frequently is likely to become
obsolete quickly, and it may be better to increase revisit interval to that page. It is
also possible to develop an adaptive incremental crawler such that the crawling in
one cycle is affected by the information collected in the previous cycle [Edwards
et al., 2001]. Sampling-based approaches [Cho and Ntoulas, 2002] focus on web
sites rather than individual web pages. A small number of pages from a web site
are sampled to estimate how much change has happened at the site. Based on this
sampling estimate, the crawler determines how frequently it should visit that site.

Some search engines specialize in searching pages belonging to a particular
topic. These engines use crawlers optimized for the target topic, and are referred
to as focused crawlers. A focused crawler ranks pages based on their relevance
to the target topic, and uses them to determine which pages it should visit next.
Classification techniques that are widely used in information retrieval are used
in evaluating relevance. They use learning techniques to identify the topic of a
given page. Learning techniques are beyond our scope, but a number of them have
been developed for this purpose, such as naı̈ve Bayes classifier [Mitchell, 1997;
Chakrabarti et al., 2002], and its extensions [Passerini et al., 2001; Altingövde and
Ulusoy, 2004], reinforcement learning [McCallum et al., 1999; Kaelbling et al.,
1996], and others.

To achieve reasonable scale-up, crawling can be parallelized by running parallel
crawlers. Any design for parallel crawlers must use schemes to minimize the over-
head of parallelization. For instance, two crawlers running in parallel may download
the same set of pages. Clearly, such overlap needs to be prevented through coordina-
tion of the crawlers’ actions. One method of coordination uses a central coordinator
to dynamically assign each crawler a set of pages to download. Another coordina-
tion scheme is to logically partition the web. Each crawler knows its partition, and
there is no need for central coordination. This scheme is referred to as the static
assignment [Cho and Garcia-Molina, 2002].

17.2 Web Search 667

17.2.2 Indexing

In order to efficiently search the crawled pages and the gathered information, a
number of indexes are built as shown in Figure 17.4. The two more important indexes
are the structure (or link) index and a text (or content) index. We discuss these in this
section.

17.2.2.1 Structure Index

The structure index is based on the graph model that we discussed in Section 17.1,
with the graph representing the structure of the crawled portion of the web. The
efficient storage and retrieval of these pages is important and two techniques to
address these issues were discussed in Section 17.1. The structure index can be used
to obtain important information about the linkage of web pages such as information
regarding the neighborhood of a page and the siblings of a page.

17.2.2.2 Text Index

The most important and mostly used index is the text index. Indexes to support text-
based retrieval can be implemented using any of the access methods traditionally used
to search over text document collections. Examples include suffix arrays [Manber
and Myers, 1990], inverted files or inverted indexes [Hersh, 2001], and signature
files [Faloutsos and Christodoulakis, 1984]. Although a full treatment of all of these
indexes is beyond our scope, we will discuss how inverted indexes are used in this
context since these are the most popular type of text indexes.

An inverted index is a collection of inverted lists, where each list is associated with
a particular word. In general, an inverted list for a given word is a list of document
identifiers in which the particular word occurs [Lim et al., 2003]. If needed, the
location of the word in a particular page can also be saved as part of the inverted list.
This information is usually needed in proximity queries and query result ranking [Brin
and Page, 1998]. Search algorithms also often make use of additional information
about the occurrence of terms in a web page. For example, terms occurring in bold
face (within 〈B〉 tags), in section headings (within 〈H1〉 or 〈H2〉 tags), or as anchor
text might be weighted differently in the ranking algorithms [Arasu et al., 2001].

In addition to the inverted list, many text indexes also keep a lexicon, which is a
list of all terms that occur in the index. The lexicon can also contain some term-level
statistics that can be used by ranking algorithms [Salton, 1989].

Constructing and maintaining an inverted index has three major difficulties that
need to be addressed [Arasu et al., 2001]:

1. In general, building an inverted index involves processing each page, reading
all words and storing the location of each word. In the end, the inverted files
are written to disk. This process, while trivial for small and static collections,

668 17 Web Data Management

becomes hard to manage when dealing with a vast and non-static collection
like the web.

2. The rapid change of the web poses the second challenge for maintaining
the “freshness” of the index. Although we argued in the previous section
that incremental crawlers should be deployed to ensure freshness, it has also
been argued that periodic index rebuilding is still necessary because most
incremental update techniques do not perform well when dealing with the
large changes often observed between successive crawls [Melnik et al., 2001].

3. Storage formats of inverted indexes must be carefully designed. There is
a tradeoff between a performance gain through a compressed index that
allows portions of the index to be cached in memory, and the overhead of
decompression at query time. Achieving the right balance becomes a major
concern when dealing with web-scale collections.

Addressing these challenges and developing a highly scalable text index can be
achieved by distributing the index by either building a local inverted index at each
machine where the search engine runs or building a global inverted index that is
then shared [Ribeiro-Neto and Barbosa, 1998]. We don’t discuss these further, as the
issues are similar to the distributed data and directory management issues we have
already covered in previous chapters.

17.2.3 Ranking and Link Analysis

A typical search engine returns a large number of web pages that are expected to
be relevant to a user query. However, these pages are likely to be different in terms
of their quality and relevance. The user is not expected to browse through this large
collection to find a high quality page. Clearly, there is a need for algorithms to rank
these pages thus higher quality web pages appear as part of the top results.

Link-based algorithms can be used to rank a collection of pages. To repeat what
we discussed earlier, the intuition is that if a page Pj contains a link to page Pi, then
it is likely that the authors of page Pj think that page Pi is of good quality. Thus, a
page that has a large number of incoming links is expected to have good quality, and
hence the number of incoming links to a page can be used as a ranking criteria. This
intuition is the basis of ranking algorithms, but, of course, the each specific algorithm
implements this intuition in a different and sophisticated way. We already discussed
the PageRank algorithm earlier. We will discuss an alternative algorithm called HITS
to highlight different ways of approaching the issue [Kleinberg, 1999].

HITS is also a link-based algorithm. It is based on identifying “authorities” and
“hubs”. A good authority page receives a high rank. Hubs and authorities have a
mutually reinforcing relationship: a good authority is a page that is linked to by many
good hubs, and a good hub is a document that links to many authorities. Thus, a page
pointed to by many hubs (a good authority page) is likely to be of high quality.

17.2 Web Search 669

Let us start with a web graph, G = (V,E), where V is the set of pages and E is
the set of links among them. Each page Pi in V has a pair of non-negative weights
(aPi ,hPi) that represent the authoritative and hub values of Pi respectively.

The authoritative and hub values are updated as follows. If a page Pi is pointed
to by many good hubs, then aPi is increased to reflect all pages Pj that link to it (the
notation Pj→ Pi means that page Pj has a link to page Pi):

aPi = ∑
{Pj |Pj→Pi}

hPj

hPi = ∑
{Pj |Pj→Pi}

aPj

Thus, the authoritative value (hub value) of page Pi, is the sum of the hub values
(authority values) of all the backlink pages to Pi.

17.2.4 Evaluation of Keyword Search

Keyword-based search engines are the most popular tools to search information on
the web. They are simple, and one can specify fuzzy queries that may not have an
exact answer, but may only be answered approximately by finding facts that are
“similar” to the keywords. However, there are obvious limitations as to how much one
can do by simple keyword search. The obvious limitation is that keyword search is not
sufficiently powerful to express complex queries. This can be (partially) addressed
by employing iterative queries where previous queries by the same user can be used
as the context for the subsequent queries. A second limitation is that keyword search
does not offer support for a global view of information on the web the way that
database querying exploits database schema information. It can, of course, be argued
that a schema is meaningless for web data, but the lack of an overall view of the data
is an issue nevertheless. A third problem is that it is difficult to capture user’s intent
by simple keyword search – errors in the choice of keywords may result in retrieving
many irrelevant answers.

Category search addresses one of the problems of using keyword search, namely
the lack of a global view of the web. Category search is also known as web directory,
catalogs, yellow pages, and subject directories. There are a number of public web
directories available: dmoz (http://dmoz.org/), LookSmart (http://www.looksmart.com/),
and Yahoo (http://www.yahoo.com/). The web directory is a hierarchical taxonomy that
classifies human knowledge [Baeza-Yates and Ribeiro-Neto, 1999]. Although, the
taxonomy is typically displayed as a tree, it is actually a directed acyclic graph since
some categories are cross referenced,.

If a category is identified as the target, then the web directory is a useful tool.
However, not all web pages can be classified, so the user can use the directory
for searching. Moreover, natural language processing cannot be 100% effective for

http://dmoz.org
http://www.looksmart.com
http://www.yahoo.com

670 17 Web Data Management

categorizing web pages. We need to depend on human resource for judging the
submitted pages, which may not be efficient or scalable. Finally, some pages change
over time, so keeping the directory up-to-date involves significant overhead.

There have also been some attempts to involve multiple search engines in an-
swering a query to improve recall and precision. A metasearcher is a web server
that takes a given query from the user and sends it to multiple heterogeneous search
engines. The metasearcher then collects the answers and returns a unified result
to the user. It has the ability to sort the result by different attributes such as host,
keyword, date, and popularity. Examples include Copernic (http://www.copernic.com/),
Dogpile (http://www.dogpile.com/), MetaCrawler (http://www.metacrawler.com/), and
Mamma (http://www.mamma.com/). Different metasearchers have different ways to
unify results and translate the user query to the specific query languages of each
search engines. The user can access a metasearcher through client software or a
web page. Each search engine covers a smaller percentage of the web. The goal of a
metasearcher is to cover more web pages than a single search engine by combining
different search engines together.

17.3 Web Querying

Declarative querying and efficient execution of queries has been a major focus of
database technology. It would be beneficial if the database techniques can be applied
to the web. In this way, accessing the web can be treated, to a certain extent, similar
to accessing a large database.

There are difficulties in carrying over traditional database querying concepts to
web data. Perhaps the most important difficulty is that database querying assumes
the existence of a strict schema. As noted above, it is hard to argue that there is a
schema for web data similar to databases2. At best, the web data are semistructured
– data may have some structure, but this may not be as rigid, regular, or complete
as that of databases, so that different instances of the data may be similar but not
identical (there may be missing or additional attributes or differences in structure).
There are, obviously, inherent difficulties in querying schema-less data.

A second issue is that the web is more than the semistructured data (and docu-
ments). The links that exist between web data entities (e.g., pages) are important and
need to be considered. Similar to search that we discussed in the previous section,
links may need to be followed and exploited in executing web queries. This requires
links to be treated as first-class objects.

A third major difficulty is that there is no commonly accepted language, similar
to SQL, for querying web data. As we noted in the previous section, keyword search
has a very simple language, but this is not sufficient for richer querying of web data.
Some consensus on the basic constructs of such a language has emerged (e.g., path
expressions), but there is no standard language. However, a standardized language

2 We are focusing on the “open” web here; deep web data may have a schema, but it is usually not
accessible to users.

http://www.copernic.com
http://www.dogpile.com
http://www.metacrawler.com
http://www.mamma.com

17.3 Web Querying 671

for XML has emerged (XQuery), and as XML becomes more prevalent on the web,
this language is likely to become dominant and more widely used. We discuss XML
data and its management in Section 17.4.

A number of different approaches to web querying have been developed, and we
discuss them in this section.

17.3.1 Semistructured Data Approach

One way to approach querying the web data is to treat it as a collection of semistruc-
tured data. Then, models and languages that have been developed for this purpose
can be used to query the data. Semistructured data models and languages were not
originally developed to deal with web data; rather they addressed the requirements
of growing data collections that did not have as strict a schema as their relational
counterparts. However, since these characteristics are also common to web data, later
studies explored their applicability in this domain. We demonstrate this approach
using a particular model (OEM) and a language (Lorel), but other approaches such
as UnQL [Buneman et al., 1996] are similar.

OEM (Object Exchange Model) [Papakonstantinou et al., 1995] is a self-
describing semistructured data model. Self-describing means that each object speci-
fies the schema that it follows.

An OEM object is defined as a four-tuple 〈label, type, value, oid〉,
where label is a character string describing what the object represents, type
specifies the type of the object’s value, value is obvious, and oid is the object
identifier that distinguishes it from other objects. The type of an object can be
atomic, in which case the object is called an atomic object, or complex, in which
case the object is called a complex object. An atomic object contains a primitive
value such as an integer, a real, or a string, while a complex object contains a set of
other objects, which can themselves be atomic or complex. The value of a complex
object is a set of oids. One would immediately recognize the similarity between
OEM object definition and the object models that we discussed in Chapter 15.

Example 17.1. Let us consider a bibliographic database that consists of a number of
documents. A snapshot of an OEM representation of such a database is given in Fig-
ure 17.5. Each line shows one OEM object and the indentation is provided to simplify
the display of the object structure. For example, the second line <doc, complex,
&o3, &o6, &o7, &o20, &o21, &o2> defines an object whose label is doc,
type is complex, oid is &o2, and whose value consists of objects whose oids are
&o3, &o6, &o7, &o20, and &o21.

This database contains three documents (&o2, &o22, &034); the first and
third are books and the second is an article. There are commonalities among the two
books (and even the article), but there are differences as well. For example, the first
book (&o2) has the price information that the second one (&o34) does not have,
while the second one has ISBN and publisher information that the first does not have.
The object-oriented structure of the database is obvious – complex objects consist of

672 17 Web Data Management

<bib, complex, {&o2, &o22, &034}, &o1>
<doc, complex, {&o3, &o6, &o7, &o20, &o22}, &o2>

<authors, complex, {&o4, &o5}, &o3>
<author, string, "M. Tamer Ozsu", &o4>
<author, string, "Patrick Valduriez", &o5>

<title, string, "Principles of Distributed ...", &o6>
<chapters, complex, {&o8, &o11, &o14, &o17}, &o7>

<chapter, complex, {&o9, &o10}, &o8>
<heading, string, "...", &o9>
<body, string, "...", &o10>
...

<chapter, complex, {&o18, &o19}, &17>
<heading, string, "...", &o18>
<body, string, "...", &o19>

<what, string, "Book", &o20>
<price, float, 98.50, &o21>

<doc, complex, {&o23, &o25, &o26, &o27, &o28}, &o22>
<authors, complex, {&o24, &o4}, &o23>

<author, string, "Yingying Tao", &o24>
<title, string, "Mining data streams ...", &o25>
<venue, string, "CIKM", &o26>
<year, integer, 2009, &o27>
<sections, complex, {&o29, &o30, &o31, &o32, &o33}, &28>

<section, string, "...", &o29>
...

<section, string, "...", &o33>
<doc, complex, {&o16,&o17,&o7,&o18,&o19,&o20,&o21},&o34>

<author, string, "Anthony Bonato", &o35>
<title, string, "A Course on the Web Graph", &o36>
<what, string, "Book", &o20>
<ISBN, string, "TK5105.888.B667", &o37>
<chapters, complex, {&o39, &o42, &o45}, &o38>

<chapter, complex, {&o40, &o41}, &o39>
<heading, string, "...", &o40>
<body, string, "...", &o41>

<chapter, complex, {&o43, &o44}, &o42>
<heading, string, "...", &o43>
<body, string, "...", &o44>

<chapter, complex, {&o46, &o47}, &45>
<heading, string, "...", &o46>
<body, string, "...", &o47>

<publisher, string, "AMS", &o48>

Fig. 17.5 An Example OEM Specification

subobjects (books consist of chapters in addition to other information), and objects
may be shared (e.g., &o4 is shared by both &o3 and &o23). �

As noted earlier, OEM data are self-describing, where each object identifies itself
through its type and its label. It is easy to see that the OEM data can be represented as
a node-labelled graph where the nodes correspond to each OEM object and the edges
correspond to the subobject relationship. The label of a node is the oid and the label

17.3 Web Querying 673

of the object corresponding to that node. However, it is quite common in literature
to model the data as an edge-labelled graph: if object o j is a subobject of object oi,
then o j’s label is assigned to the edge connecting oi to o j, and the oids are omitted as
node labels. In Example 17.2, we use a node and edge-labelled representation that
shows oids as node labels and assigns edge labels as described above.

Example 17.2. Figure 17.6 depicts the node and edge-labelled graph representation
of the example OEM database given in Example 17.1. Normally, each leaf node also
contains the value of that object. To simplify exposition of the idea, we do not show
the values. �

Fig. 17.6 The corresponding OEM graph for the OEM database of Example 17.1

The semistructured approach fits reasonably well for modelling web data that can
be represented as a graph. Furthermore, it accepts that data may have some structure,
but this may not be as rigid, regular, or complete as that of traditional databases. The
users do not need to be aware of the complete structure when they query the data.
Therefore, expressing a query should not require full knowledge of the structure.
These graph representations of data at each data source are generated by wrappers
that we discussed in Chapter 9.

Let us now focus on the languages that have been developed to query semistruc-
tured data. As noted above, we will focus our discussion by considering a particular
language, Lorel [Papakonstantinou et al., 1995; Abiteboul et al., 1997], but other
languages are similar in their basic approaches.

Lorel has changed over its development cycle, and the final version [Abiteboul
et al., 1997] is defined as an extension of OQL discussed in Chapter 15. Thus, it has
the familiar SELECT-FROM-WHERE structure, but path expressions can exist in the
SELECT, FROM and WHERE clauses.

&o20&o3 &o6 &o21 &o23 &o25 &o35&o26 &o27 &o36 &o37 &o38

&o4 &o5 &o24

&o2 &o22 &o34

&o1

doc doc doc

authors authors
title title titlewhat venue

what

price year

rohtuarohtua

author

authorauthor

ISBN

bib

&o48

publisher

&o7

chapters
chapters

&o8 &o17...

chapter chapter

&o28

sections

&o29 &o33...

section section

&o39 &o45...

chapter chapter

&o9 &o10

heading body

&o18 &o19

heading body

&o40 &o41

heading body

&o46 &o47

heading body

674 17 Web Data Management

The fundamental construct in forming Lorel queries is, therefore, a path ex-
pression. We discussed path expressions as they appear in object database systems
in Section 15.6.2.2, but we give the definition here as it applies to Lore. In its
simplest form, a path expression in Lorel is a sequence of labels starting with an
object name or a variable denoting an object. For example bib.doc.title is
a path expression whose interpretation is to start at bib and follow the edge la-
belled doc and then follow the edge labelled title. Note that there are three paths in
Figure 17.6 that would satisfy this expression: (i) &o1.doc:&o2.title:&o6,
(ii) &o1.doc:&o22.title:&o25, and (iii) &o1.doc:&o34.title:&o36.
Each of these are called a data path. In Lorel, path expressions can be more complex
regular expressions such that what follows the object name or variable is not only
a label, but more general expressions that can be constructed using conjunction,
disjunction (|), iteration (? to mean 0 or 1 occurrences, + to mean 1 or more, and ∗
to mean 0 or more), and wildcards (#).

Example 17.3. The following are examples of acceptable path expressions in Lorel:

(a) bib.doc(.authors)?.author : start from bib, follow doc edge
and the author edge with an optional authors edge in between.

(b) bib.doc.#.author : start from bib, follow doc edge, then an arbitrary
number of edges with unspecified labels (using the wildcard #), and follow
the author edge.

(c) bib.doc.%price : start from bib, follow doc edge, then an edge whose
label has the string “price” preceded by some characters.

�

Example 17.4. The following are example Lorel queries that use some of the path
expressions given in Example 17.3:

(a) Find the titles of documents written by Patrick Valduriez.

SELECT D.title
FROM bib.doc D
WHERE bib.doc(.authors)?.author = "Patrick Valduriez"

In this query, the FROM clause restricts the scope to documents (doc), and
the SELECT clause specifies the nodes reachable from documents by follow-
ing the title label. We could have specified the WHERE predicate as

D(.authors)?.author = "Patrick Valduriez".

(b) Find the authors of all books whose price is under $100.

SELECT D(.authors)?.author
FROM bib.doc D
WHERE D.what = "Books"
AND D.price < 100

�

17.3 Web Querying 675

As can be observed, semistructured data approach to modelling and querying web
data is simple and flexible. It also provides a natural way to deal with containment
structure of web objects, thereby supporting, to some extent, the link structure of
web pages. However, there are also deficiencies of this approach. The data model
is too simple – it does not include a record structure (each node is a simple entity)
nor does it support ordering as there is no imposed ordering among the nodes of an
OEM graph. Furthermore, the support for links is also relatively rudimentary, since
the model or the languages do not differentiate between different types of links. The
links may show either subpart relationships among objects or connections between
different entities that correspond to nodes. These cannot be separately modelled, nor
can they be easily queried.

Finally, the graph structure can get quite complicated, making it difficult to query.
Although Lorel provides a number of features (such as wildcards) to make querying
easier, the examples above indicate that a user still needs to know the general structure
of the semistructured data. The OEM graphs for large databases can become quite
complicated, and it is hard for users to form the path expressions. The issue, then, is
how to “summarize” the graph so that there might be a reasonably small schema-like
description that might aid querying. For this purpose, a construct called a DataGuide
[Goldman and Widom, 1997] has been proposed. A DataGuide is a graph where
each path in the corresponding OEM graph occurs only once. It is dynamic in that as
the OEM graph changes, the corresponding DataGuide is updated. Thus, it provides
concise and accurate structural summaries of semistructured databases and can be
used as a light-weight schema, which is useful for browsing the database structure,
formulating queries, storing statistical information, and enabling query optimization.

Example 17.5. The DataGuide corresponding to the OEM graph in Example 17.2 is
given in Figure 17.7. �

Fig. 17.7 The DataGuide corresponding to the OEM graph of Example 17.2

authors title what venueprice year author ISBN publisher sale price

bib

doc

author

676 17 Web Data Management

17.3.2 Web Query Language Approach

The approaches in this category are aimed to directly address the characteristics of
web data, particularly focusing on handling links properly. Their starting point is to
overcome the shortcomings of keyword search by providing proper abstractions for
capturing the content structure of documents (as in semistructured data approaches)
as well as the external links. They combine the content-based queries (e.g., keyword
expressions) and structure-based queries (e.g., path expressions).

A number of languages have been proposed specifically to deal with web data, and
these can be categorized as first-generation and second generation [Florescu et al.,
1998]. The first generation languages model the web as interconnected collection
of atomic objects. Consequently, these languages can express queries that search
the link structure among web objects and their textual content, but they cannot
express queries that exploit the document structure of these web objects. The second
generation languages model the web as a linked collection of structured objects,
allowing them to express queries that exploit the document structure similar to
semistructured languages. First generation approaches include WebSQL [Mendelzon
et al., 1997], W3QL [Konopnicki and Shmueli, 1995], and WebLog [Lakshmanan
et al., 1996], while second generation approaches include WebOQL [Arocena and
Mendelzon, 1998], and StruQL [Fernandez et al., 1997]. We will demonstrate the
general ideas by considering one first generation language (WebSQL) and one second
generation language (WebOQL).

WebSQL is one of the early query languages that combines searching and brows-
ing. It directly addresses web data as captured by web documents (usually in HTML
format) that have some content and may include links to other pages or other objects
(e.g., PDF files or images). It treats links as first-class objects, and identifies a number
of different types of links that we will discuss shortly. As before, the structure can be
represented as a graph, but WebSQL captures the information about web objects in
two virtual relations:

DOCUMENT(URL, TITLE, TEXT, TYPE, LENGTH, MODIF)

ANCHOR(BASE, HREF, LABEL)

DOCUMENT relation holds information about each web document where URL
identifies the web object and is the primary key of the relation, TITLE is the title of
the web page, TEXT is its text content of the web page, TYPE is the type of the web
object (HTML document, image, etc), LENGTH is self-explanatory, and MODIF
is the last modification date of the object. Except URL, all other attributes can have
null values. ANCHOR relation captures the information about links where BASE
is the URL of the HTML document that contains the link, HREF is the URL of the
document that is referenced, and LABEL is the label of the link as defined earlier.

WebSQL defines a query language that consists of SQL plus path expressions.
The path expressions are more powerful than their counterparts in Lorel; in particular,
they identify different types of links:

17.3 Web Querying 677

(a) interior link that exists within the same document (#>)

(b) local link that is between documents on the same server (->)

(c) global link that refers to a document on another server (=>)

(d) null path (=)

These link types form the alphabet of the path expressions. Using them, and
the usual constructors of regular expressions, different paths can be specified as in
Example 17.6.

Example 17.6. The following are examples of possible path expressions that can be
specified in WebSQL [Mendelzon et al., 1997].

(a) -> | =>: a path of length one, either local or global

(b) ->*: local path of any length

(c) =>->*: as above, but in other servers

(d) (-> |=>)*: the reachable portion of the web

�

In addition to path expressions that can appear in queries, WebSQL allows scoping
within the FROM clause in the following way:

FROM Relation SUCH THAT domain-condition

where domain-condition can be either a path expression, or can specify a text
search using MENTIONS, or can specify that an attribute (in the SELECT clause) is
equal to a web object. Of course, following each relation specification, there could
be a variable ranging over the relation – this is standard SQL. The following example
queries (taken from [Mendelzon et al., 1997] with minor modifications) demonstrate
the features of WebSQL.

Example 17.7. Following are some examples of WebSQL:

(a) The first example we consider simply searches for all documents about
“hypertext” and demonstrates the use of MENTIONS to scope the query.

SELECT D.URL, D.TITLE
FROM DOCUMENT D

SUCH THAT D MENTIONS "hypertext"
WHERE D.TYPE = "text/html"

(b) The second example demonstrates two scoping methods as well as a search
for links. The query is to find all links to aplets from documents about “Java”.

SELECT A.LABEL, A.HREF
FROM DOCUMENT D

SUCH THAT D MENTIONS "Java",
ANCHOR A
SUCH THAT BASE = X

WHERE A.LABEL = "applet"

678 17 Web Data Management

(c) The third example demonstrates the use of different link types. It searches
for documents that have the string “database” in their title that are reachable
from the ACM Digital Library home page through paths of length two or
less containing only local links.

SELECT D.URL, D.TITLE
FROM DOCUMENT D

SUCH THAT "http://www.acm.org/dl"=|->|->-> D
WHERE D.TITLE CONTAINS "database"

(d) The final example demonstrates the combination of content and structure
specifications in a query. It finds all documents mentioning “Computer
Science” and all documents that are linked to them through paths of length
two or less containing only local links.

SELECT D1.URL, D1.TITLE, D2.URL, D2.TITLE
FROM DOCUMENT D1

SUCH THAT D1 MENTIONS "Computer Science",
DOCUMENT D2
SUCH THAT D1=|->|->-> D2

�

Careful readers will have recognized that while WebSQL can query web data
based on the links and the textual content of web documents, it cannot query the
documents based on their structure. This is the consequence of its data model that
treats the web as a collection of atomic objects.

As noted earlier, second generation languages, such as WebOQL, address this
shortcoming by modelling the web as a graph of structured objects. In a way, they
combine some features of semistructured data approaches with those of first genera-
tion web query models.

WebOQL’s main data structure is a hypertree, which is an ordered edge-labelled
tree with two types of edges: internal and external. An internal edge represents the
internal structure of a web document, while an external edge represents a reference
(i.e., hyperlink) among objects. Each edge is labelled with a record that consists of
a number of attributes (fields). An external edge has to have a URL attribute in its
record and cannot have descendants (i.e., they are the leaves of the hypertree).

Example 17.8. Let us revisit Example 17.1 and assume that instead of modelling
the documents in a bibliography, it models the collection of documents about data
management over the web. A possible (partial) hypertree for this example is given in
Figure 17.8. Note that we have made one revision to facilitate some of the queries to
be discussed later: we added an abstract to each document.

In Figure 17.8, the documents are first grouped along a number of topics as
indicated in the records attached to the edges from the root. In this representation, the
internal links are shown as solid edges and external links as dashed edges. Recall that
in OEM (Figure 17.6), the edges represent both attributes (e.g., author) and document
structure (e.g., chapter). In the WebOQL model, the attributes are captured in the
records that are associated with each edge, while the (internal) edges represent the
document structure. �

http://www.acm.org/dl"=|->|->-

17.3 Web Querying 679

Fig. 17.8 The hypertree example

Using this model, WebOQL defines a number of operators over trees:

Prime: returns the first subtree of its argument (denoted ’).
Peek: extracts a field from the record that labels the first outgoing edges of its

document. This is the straightforward “dot notation” that we have seen multiple
times before. For example, if x points to the root of the subtree reached from
the “Groups = Distributed DB” edge, x.authors would retrieve “M. Tamer Ozsu,
Patrick Valduriez”.

Hang: builds an edge-labeled tree with a record formed with the arguments (de-
noted as []).

Example 17.9.
Let us assume that the tree depicted in Figure 17.9(a) is retrieved as a result of a
query (call it Q1). Then the expression [“Label: “Papers by Ozsu” / Q1] results in
the tree depicted in Figure 17.9(b). �

Concatenate: combines two trees (denoted +).

Example 17.10. Again, assuming that the tree depicted in Figure 17.9(a) is re-
trieved as a result of query Q1, Q1+Q2 produces tree in Figure 17.9(c). �

Head: returns the first simple tree of a tree (denoted &). A simple tree of a tree t are
the trees composed of one edge followed by a (possibly null) tree that originates
from t’s root.

Tail: returns all but the first simple tree of a tree (denoted !).

In addition to these, WebOQL introduces a string pattern matching operator
(denoted ∼) whose left argument is a string and right argument is a string pattern.

[Group: Distributed DB]

record 1

record 1:
[authors: M. Tamer Ozsu, Patrick Valduriez,
 title: Principles of Distributed ...,
 what: Book,
 price: 98.50]

...
...

...

[label: heading
text: ...]

[label: body,
 URL: http://...]

record 2 :
[authors: Lingling Yan, M. Tamer Ozsu,
 title: Mining data streams...,
 venue: CIKM,
 year: 2009]

record 3 :
[author: Anthony Bonato,
 title: A Course on the Web Graph,
 what: Book,
 ISBN: TK5105.888.B667
 publisher: AMS]

...

[Group: Data streams]
[Group: Web]

record 2

...

record 3

[label: chapters]

[label: chapter#1] [label: chapter#4]

[label: sections]

[label: section#1
 URL: http://...]

[label: section#5
 URL: http://...]

[label: abstract,
 URL: http://...] [label: abstract,

 URL: http://...]

680 17 Web Data Management

Fig. 17.9 Examples of Hang and Concatenate Operators

Since the only data type supported by the language is string, this is an important
operator.

WebOQL is a functional language, so complex queries can be composed by
combining these operators. In addition, it allows these operators to be embedded in
the usual SQL (or OQL) style queries as demonstrated by the following example.

Example 17.11. Let dbDocuments denote the documents in the database shown in
Figure 17.8. Then the following query finds the titles and abstracts of all documents
authored by “Ozsu” producing the result depicted in Figure 17.9(a).

SELECT [y.title, y’.URL]
FROM x IN dbDocuments, y IN x’
WHERE y.authors ∼ "Ozsu"

The semantics of this query is as follows. The variable x ranges over the simple
trees of dbDocuments, and, for a given x value, y iterates over the simple trees
of the single subtree of x. It peeks into the record of the edge and if the authors
value matches “Ozsu” (using the string matching operator ∼), then it constructs a
tree whose label is the title attribute of the record that y points to and the URL
attribute value of the subtree. �

The web query languages discussed in this section adopt a more powerful data
model than the semistructured approaches. The model can capture both the document
structure and the connectedness of web documents. The languages can then exploit
these different edge semantics. Furthermore, as we have seen from the WebOQL
examples, the queries can construct new structures as a result. However, formation
of these queries still requires some knowledge about the graph structure.

[title: Principles of Distributed ...,
 abstract: http://...] [title: Mining data streams ...,

 abstract: http://...]

(a)

[title: Principles of Distributed ...,
 abstract: http://...] [title: Mining data streams ...,

 abstract : http://...]

(b)

[label: Papers by Ozsu]

[title: Principles of Distributed ...,
 abstract: http://...]

[title: Mining data streams ...,
 abstract: http://...]

[title: Principles of Distributed ...,
 abstract: http://...]

[title: Mining data streams ...,
 abstract: http://...]

(c)

17.3 Web Querying 681

17.3.3 Question Answering

In this section, we discuss an interesting and unusual (from a database perspective)
approach to querying web data: question answering (QA) systems. These systems
accept natural language questions that are then analyzed to determine the specific
query that is being posed. They, then, conduct a search to find the appropriate answer.

Question answering systems have grown within the context of IR systems where
the objective is to determine the answer to posed queries within a well-defined corpus
of documents. These are usually referred to as closed domain systems. They extend
the capabilities of keyword search queries in two fundamental ways. First, they allow
users to specify complex queries in natural language that may be difficult to specify
as simple keyword search requests. In the context of web querying, they also enable
asking questions without a full knowledge of the data organization. Sophisticated
natural language processing (NLP) techniques are then applied to these queries to
understand the specific query. Second, they search the corpus of documents and
return explicit answers rather than links to documents that may be relevant to the
query. This does not mean that they return exact answers as traditional DBMSs do,
but they may return a (ranked) list of explicit responses to the query, rather than a set
of web pages. For example, a keyword search for “President of USA” using a search
engine would return the (partial) result in Figure 17.10. The user is expected to find
the answer within the pages whose URLs and short descriptions (called snippets) are
included on this page (and several more). On the other hand, a similar search using a
natural language question “Who is the president of USA?” might return a ranked list
of presidents’ names (the exact type of answer differs among different systems).

Question answering systems have been extended to operate on the web. In these
systems, the web is used as the corpus (hence they are called open domain sys-
tems). The web data sources are accessed using wrappers that are developed for
them to obtain answers to questions. A number of question answering systems
have been developed with different objectives and functionalities, such as Mul-
der [Kwok et al., 2001], WebQA [Lam and Özsu, 2002], Start [Katz and Lin, 2002],
and Tritus [Agichtein et al., 2004]. There are also commercial systems with varying
capabilities (e.g., Wolfram Alpha http://www.wolframalpha.com/).

We describe the general functionality of these systems using the reference archi-
tecture given in Figure 17.11. Preprocessing, which is not employed in all systems,
is an offline process to extract and enhance the rules that are used by the systems. In
many cases, these are analyses of documents extracted from the web or returned as
answers to previously asked questions in order to determine the most effective query
structures into which a user question can be transformed. These transformation rules
are stored in order to use them at run-time while answering the user questions. For ex-
ample, Tritus employs a learning-based approach that uses a collection of frequently
asked questions and their correct answers as a training data set. In a three-stage
process, it attempts to guess the structure of the answer by analyzing the question and
searching for the answer in the collection. In the first stage, the question is analyzed
to extract the question phrase (e.g., in the question “What is a hard disk?”, “What
is a” is question phrase). This is used to classify the question. In the second phase,

http://www.wolframalpha.com

682 17 Web Data Management

Fig. 17.10 Keyword Search Example

it analyzes the question-answer pairs in the training data and generates candidate
transforms for each question phrase (e.g., for the question phrase “What is a” , it
generates “refers to”, “stands for”, etc). In the third stage, each candidate transform is
applied to the questions in the training data set, and the resulting transformed queries
are sent to different search engines. The similarities of the returned answers with the
actual answers in the training data are calculated, and, based on these, a ranking is
done for candidate transforms. The ranked transformation rules are stored for later
use during run-time execution of questions.

The natural language question that is posed by a user first goes through the
question analysis process. The objective is to understand the question issued by the
user. Most of the systems try to guess the type of the answer in order to categorize
the question, which is used in translating the question into queries and also in

http://www.whitehouse.gov/about/presidents
http://www.whitehouse.gov
http://www.whitehouse.gov
http://www.enchantedlearning.com/history/us/pres/list.shtml
http://www.presidentsusa.net
http://www.presidentsrock.com
http://www.ipl.org/div/potus
http://www.usa.gov
http://www.google.com/search?client=safari&rls=en&q=President+of+USA&ie=UTF-8&oe=UTF-8

17.3 Web Querying 683

Fig. 17.11 General architecture of QA Systems

answer extraction. If preprocessing has been done, the transformation rules that
have been generated are used to assist the process. Although the general goals are
the same, the approaches used by different systems vary considerably depending
on the sophistication of the NLP techniques employed by the systems (this phase
is usually all about NLP). For example, question analysis in Mulder incorporates
three phases: question parsing, question classification, and query generation. Query
parsing generates a parse tree that is used in query generation and in answer extraction.
Question classification, as its name implies, categorizes the question in one of three
classes: nominal is for nouns, numerical is for numbers, and temporal is for dates.
This type of categorization is done in most of the QA systems because it eases the
answer extraction. Finally, query generation phase uses the previously generated
parse tree to construct one or more queries that can be executed to obtain the answers
to the question. Mulder uses four different methods in this phase.

• Verb conversion: Auxiliary and main verb is replaced by the conjugated verb
(e.g., “When did Nixon visit China?” is converted to “Nixon visited China”).

• Query expansion: Adjective in the question phrase is replaced by its attribute
noun (e.g., “How tall is Mt. Everest?” is converted to “The height of Everest
is”).

• Noun phrase formation: Some noun phrases are quoted in order to give them
together to the search engine in the next stage.

• Transformation: Structure of the question is transformed into the structure of
the expected answer type (“Who was the first American in space?” is converted
to “The first American in space was”).

Preprocessing

Question
AnalysisRules

Candidate
Selection

Answer
Extraction

WWW

Rules

Documents

Queries
Queries

Rules

Documents

Response

Documents

Question

Queries

684 17 Web Data Management

Mulder is an example of a system that uses a sophisticated NLP approach to
question analysis. At the other end of the spectrum is WebQA, which follows a
lightweight approach in question parsing. It converts the user question into WebQAL,
which is its internal language. The structure of WebQAL is

Category [-output Output-Option] -keywords Keyword-List

The user question is put in one of seven categories (Name, Place, Time, Quantity,
Abbreviation, Weather, and Other). It generates a keyword list after stopword elimina-
tion and verb-to-noun conversion. Finally, it further refines the category information
and determines the “output option”, which is specific to each category. For example,
given the question “Which country has the most population in the world?”, WebQA
would generate the WebQAL expression

Place -output country -keywords most population world

Once the question is analyzed and one or more queries are generated, the next
step is to generate candidate answers. The queries that were generated at question
analysis stage are used at this step to perform keyword search for relevant documents.
Many of the systems simply use the general purpose search engines in this step,
while others also consider additional data sources that are available on the web.
For example, CIA’s World Factbook (https://www.cia.gov/library/publications/the-world-
factbook/) is a very popular source for reliable factual data about countries. Similarly,
weather information may be obtained very reliably from a number of weather data
sources such as the Weather Network (http://www.theweathernetwork.com/) or Weather
Underground (http://www.wunderground.com/). These additional data sources may
provide better answers in some cases and different systems take advantage of these
to differing degrees (e.g., WebQA uses the data sources extensively in addition to
search engines). Since different queries can be better answered by different data
sources (and, sometimes, even by different search engines), an important aspect of
this processing stage is the choice of the appropriate search engine(s)/data source(s)
to consult for a given query. The naive alternative of submitting the queries to all
search engines and data sources is not a wise decision, since these operations are
quite costly over the web. Usually, the category information is used to assist the
choice of the appropriate sources, along with a ranked listing of sources and engines
for different categories. For each search engine and data source, wrappers need to
be written to convert the query into the format of that data source/search engine and
convert the returned result documents into a common format for further analysis.

In response to queries, search engines return links to the documents together with
short snippets, while other data sources return results in a variety of formats. The
returned results are normalized into what we will call “records”. The direct answers
need to be extracted from these records, which is the function of the answer extraction
phase. Various text processing techniques can be used to match the keywords to
(possibly parts of) the returned records. Subsequently, these results need to be
ranked using various information retrieval techniques (e.g., word frequencies, inverse
document frequency). In this process, the category information that is generated

https://www.cia.gov/library/publications/the-world-factbook
https://www.cia.gov/library/publications/the-world-factbook
http://www.theweathernetwork.com
http://www.wunderground.com

17.3 Web Querying 685

during question analysis is used. Different systems employ different notions of the
appropriate answer. Some return a ranked list of direct answers (e.g., if the question
is “Who invented the telephone”, they would return “Alexander Graham Bell” or
“Graham Bell” or “Bell”, or all of them in ranked order3), while others return a ranked
order of the portion of the records that contain the keywords in the query (i.e., a
summary of the relevant portion of the document).

Question answering systems are very different than the other web querying ap-
proaches we have discussed in previous sections. They are more flexible in what they
offer users in terms of querying without any knowledge of the organization of web
data. On the other hand, they are constrained by idiosynchrocies of natural language,
and the difficulties of natural language processing.

17.3.4 Searching and Querying the Hidden Web

Currently, most general-purpose search engines only operate on the PIW while
considerable amount of the valuable data are kept in hidden databases, either as
relational data, as embedded documents, or in many other forms. The current trend
in web searching is to find ways to search the hidden web as well as the PIW, for two
main reasons. First is the size – the size of the hidden web (in terms of generated
HTML pages) is considerably larger than the PIW, therefore the probability of finding
answers to users’ queries is much higher if the hidden web can also be searched. The
second is in data quality – the data stored in the hidden web are usually of much
higher quality than those found on public web pages since they are properly curated.
If they can be accessed, the quality of answers can be improved.

However, searching the hidden web faces many challenges, the most important of
which are the following:

1. Ordinary crawlers cannot be used to search the hidden web, since there are
neither HTML pages, nor hyperlinks to crawl.

2. Usually, the data in hidden databases can be only accessed through a search
interface or a special interface, requiring access to this interface.

3. In most (if not all) cases, the underlying structure of the database is unknown,
and the data providers are usually reluctant to provide any information about
their data that might help in the search process (possibly due to the overhead
of collecting this information and maintaining it). One has to work through
the interfaces provided by these data sources.

In the remainder of this section, we describe a number of research efforts that
address these issues.

3 The inventor of the telephone is a subject of controversy, with multiple claims to the invention.
We’ll go with Bell in this example since he was the first one to patent the device.

686 17 Web Data Management

17.3.4.1 Crawling the Hidden Web

One approach to address the issue of searching the hidden web is to try crawling
in a manner similar to that of the PIW. As already mentioned, the only way to deal
with hidden web databases is through their search interfaces. A hidden web crawler
should be able to perform two tasks: (a) submit queries to the search interface of the
database, and (b) analyze the returned result pages and extract relevant information
from them.

Querying the Search Interface.

One approach is to analyze the search interface of the database, and build an internal
representation for it [Raghavan and Garcia-Molina, 2001]. This internal represen-
tation specifies the fields used in the interface, their types (e.g. text boxes, lists,
checkboxes, etc.), their domains (e.g. specific values as in lists, or just free text
strings as in text boxes), and also the labels associated with these fields. Extracting
these labels requires an exhaustive analysis of the HTML structure of the page.

Next, this representation is matched with the system’s task-specific database. The
matching is based on the labels of the fields. When a label is matched, the field is
then populated with the available values for this field. The process is repeated for all
possible values of all fields in the search form, and the form is submitted with every
combination of values and the results are retrieved.

Another approach is to use agent technology [Lage et al., 2002]. In this case,
hidden web agents are developed that interact with the search forms and retrieve the
result pages. This involves three steps: (a) finding the forms, (b) learning to fill the
forms, and (c) identifying and fetching the target (result) pages.

The first step is accomplished by starting from a URL (an entry point), traversing
links, and using some heuristics to identify HTML pages that contain forms, exclud-
ing those that contain password fields (e.g. login, registration, purchase pages). The
form filling task depends on identifying labels and associating them with form fields.
This is achieved using some heuristics about the location of the label relative to the
field (on the left or above it). Given the identified labels, the agent determines the
application domain that the form belongs to, and fills the fields with values from that
domain in accordance with the labels (the values are stored in a repository accessible
to the agent).

Analyzing the Result Pages.

Once the form is submitted, the returned page has to be analyzed, for example to
see if it is a data page or a search-refining page. This can be achieved by matching
values in this page with values in the agent’s repository [Lage et al., 2002]. Once
a data page is found, it is traversed, as well as all pages that it links to (especially

17.3 Web Querying 687

pages that have more results), until no more pages can be found that belong to the
same domain.

However, the returned pages usually contain a lot of irrelevant data, in addition
to the actual results, since most of the result pages follow some template that has
a considerable amount of text used only for presentation purposes. A method to
identify web page templates is to analyze the textual contents and the adjacent tag
structures of a document in order to extract query-related data [Hedley et al., 2004b].
A web page is represented as a sequence of text segments, where a text segment is a
piece of tag encapsulated between two tags. The mechanism to detect templates is as
follows:

1. Text segments of documents are analyzed based on textual contents and their
adjacent tag segments.

2. An initial template is identified by examining the first two sample documents.

3. The template is then generated if matched text segments along with their
adjacent tag segments are found from both documents.

4. Subsequent retrieved documents are compared with the generated template.
Text segments that are not found in the template are extracted for each docu-
ment to be further processed.

5. When no matches are found from the existing template, document contents
are extracted for the generation of future templates.

17.3.4.2 Metasearching

Metasearching is another approach for querying the hidden web. Given a user’s query,
a metasearcher performs the following tasks [Ipeirotis and Gravano, 2002]:

1. Database selection: selecting the databases(s) that are most relevant to the
user’s query. This requires collecting some information about each database.
This information is known as a content summary, which is statistical informa-
tion, usually including the document frequencies of the words that appear in
the database.

2. Query translation: translating the query to a suitable form for each database
(e.g. by filling certain fields in the database’s search interface).

3. Result merging: collecting the results from the various databases, merging
them (and most probably, ordering them), and returning them to the user.

We discuss the important phases of metasearching in more detail below.

688 17 Web Data Management

Content Summary Extraction.

The first step in metasearching is to compute content summaries. In most of the
cases, the data providers are not willing to go through the trouble of providing this
information. Therefore, the metasearcher itself extracts this information.

A possible approach is to extract a document sample set from a given database D

et al., 1999; Callan and Connell, 2001]. The technique works as follows:

1. Start with an empty content summary where SampleDF(w) = 0 for each
word w, and a general (i.e., not specific to D), comprehensive word dictionary.

2. Pick a word and send it as a query to database D.

3. Retrieve the top-k documents from among the returned documents.

4. If the number of retrieved documents exceeds a prespecified threshold, stop.
Otherwise continue the sampling process by returning to Step 2.

There are two main versions of this algorithm that differ in how Step 2 is executed.
One of the algorithms picks a random word from the dictionary. The second algorithm
selects the next query from among the words that have been already discovered
during sampling. The first constructs better profiles, but is more expensive [Callan
and Connell, 2001].

An alternative is to use a focused probing technique that can actually classify the
databases into a hierarchical categorization [Ipeirotis and Gravano, 2002]. The idea
is to preclassify a set of training documents into some categories, and then extract
different terms from these documents and use them as query probes for the database.
The single-word probes are used to determine the actual document frequencies
of these words, while only sample document frequencies are computed for other
words that appear in longer probes. These are used to estimate the actual document
frequencies for these words.

Yet another approach is to start by randomly selecting a term from the search
interface itself, assuming that, most probably, this term will be related to the contents
of the database [Hedley et al., 2004a]. The database is queried for this term, and
the top-k documents are retrieved. A subsequent term is then randomly selected
from terms extracted from the retrieved documents. The process is repeated until
a pre-defined number of documents are retrieved, and then statistics are calculated
based on the retrieved documents.

Database Categorization.

A good approach that can help the database selection process is to categorize the
databases into several categories (for example as Yahoo directory). Categorization
facilitates locating a database given a user’s query, and makes most of the returned
results relevant to the query.

and compute the frequency of each observed word w in the sample, SampleDF(w) [Callan

17.4 Distributed XML Processing 689

If the focused probing technique is used for generating content summaries, then
the same algorithm can probe each database with queries from some category and
count the number of matches [Ipeirotis and Gravano, 2002]. If the number of matches
exceeds a certain threshold, the database is said to belong to this category.

Database Selection.

Database selection is a crucial task in the metasearching process, since it has a
critical impact on the efficiency and effectiveness of query processing over multiple
databases. A database selection algorithm attempts to find the best set of databases,
based on information about the database contents, on which a given query should
be executed. Usually this information includes the number of different documents
that contain each word (known as the document frequency), as well as some other
simple related statistics, such as the number of documents stored in the database.
Given these summaries, a database selection algorithm estimates how relevant each
database is for a given query (e.g., in terms of the number of matches that each
database is expected to produce for the query).

GlOSS [Gravano et al., 1999] is a simple database selection algorithm that assumes
that query words are independently distributed over database documents to estimate
the number of documents that match a given query. GlOSS is an example of a large
family of database selection algorithms that rely on content summaries. Furthermore,
database selection algorithms expect such content summaries to be accurate and up
to date.

The focused probing algorithm discussed above [Ipeirotis and Gravano, 2002] ex-
ploits the database categorization and content summaries for database selection. This
algorithm consists of two basic steps: (1) propagate the database content summaries
to the categories of the hierarchical classification scheme, and (2) use the content
summaries of categories and databases to perform database selection hierarchically
by zooming in on the most relevant portions of the topic hierarchy. This results in
more relevant answers to the user’s query since they only come from databases that
belong to the same category as the query itself.

Once the relevant databases are selected, each database is queried, and the returned
results are merged and sent back to the user.

17.4 Distributed XML Processing

The predominant encoding for web documents has been HTML (which stands
for HyperText Markup Language). A web document encoded in HTML consists
of HTML elements (e.g., paragraph, heading) that are encapsulated by tags (e.g.,
< p > paragraph < /p >). Increasingly, XML (which stands for Extensive Markup
Language) [Bray et al., 2009] has emerged as the preferred encoding. Proposed as a
simple syntax with flexibility, human-readability, and machine-readability in mind,

690 17 Web Data Management

XML has been adopted as a standard representation language for data on the Web.
Hundreds of XML schemata (e.g., XHTML [XHTML, 2002], DocBook [Walsh,
2006], and MPEG-7 [Martı́nez, 2004]) are defined to encode data into XML for-
mat for specific application domains. Implementing database functionalities over
collections of XML documents greatly extends the power to manipulate these data.

In addition to be a data representation language, XML also plays an important
role in data exchange between Web-based applications such as Web services. Web
services are Web-based autonomous applications that use XML as a lingua franca
to communicate. A Web service provider describes services using the Web Service
Description Language (WSDL) [Christensen et al., 2001], registers services using
the Universal Description, Discovery, and the Integration (UDDI) protocol [OASIS
UDDI, 2002], and exchanges data with the service requesters using the Simple Object
Access Protocol (SOAP) [Gudgin et al., 2007] (a typical workflow can be found in
Figure 17.12). All these techniques (WSDL, UDDI, and SOAP) use XML to encode
data. Database techniques are also beneficial in this scenario. For example, an XML
database can be installed on a UDDI server to store all registered service descriptions.
A high-level declarative XML query language, such as XPath [Berglund et al., 2007]
or XQuery [Boag et al., 2007] (we will discuss these shortly), can be used to match
specific patterns described by a service discovery request.

Fig. 17.12 A typical Web Service workflow suggested by the W3C Web Services Architecture
(Based on [Booth et al., 2004].)

XML is also used to encode (or annotate) non-Web semistructured or unstructured
data. Annotating unstructured data with semantic tags to facilitate queries has been
studied in the text community for a long time (e.g., the OED project [Gonnet and
Tompa, 1987]). In this scenario, the primary objective is not to share data with others

4. Input semantics
 & WSD

Requester
human

Request entity

4. Input semantics
 & WSD

Provider
human

Provider entity

Requester
Agent

Provider
Agent

3. Semantics agreement

5. Request & provide services

Discovery
Service

2. Service discovery 1. Service registration

17.4 Distributed XML Processing 691

(although one can still do so), but to take advantage of the declarative query languages
developed for XML to query the structure that is discovered through the annotation.

As noted above, XML is frequently used to exchange data among a wide variety
of systems. Therefore, applications often access data from multiple, independently
managed XML data collections. Consequently, a considerable amount of distributed
XML processing work has focused on the use of XML in data integration scenarios.
The major issues in this conext are similar to those that we have discussed in Chapters
4 and 9.

As the volume of XML data increases along with the workloads that operate
on these data, efficient management of these collections become a serious concern.
Similar to relational systems, centralized solutions are generally infeasible and
distributed solutions are required. The issues here are analogous to the design of
tightly-integrated distributed DBMSs that we have discussed in this book. However,
the peculiarities of the XML data model and its query languages introduce important
differences that we focus on in this section.

We start with a quick overview of XML and the two languages that have been
defined for it: XPath and XQuery, particularly focusing on XPath since that has
received more attention for its optimization (and since it is an important subset of
XQuery). Then we summarize techniques for processing XML queries in a centralized
setting as a prelude to the main part of the discussion, which focuses on fragmenting
XML data, localizing XML queries by pruning unnecessary fragments, and, finally,
their optimization. We should note that our objective is not to provide a complete
overview of XML – the topic is much broader than can be covered in a section or a
chapter, and there are very good sources, as we note at the end of this chapter, that
treat the topic extensively.

17.4.1 Overview of XML

XML tags (also called markups) divide data into pieces called elements, with the
objective to provide more semantics to the data. Elements can be nested but they
cannot be overlapped. Nesting of elements represents hierarchical relationships
between them. As an example, Figure 17.13 is the XML representation, with slight
revisions, of the bibliography data that we had given earlier.

An XML document can be represented as a tree that contains a root element,
which has zero or more nested subelements (or child elements), which can recursively
contain subelements. For each element, there are zero or more attributes with atomic
values assigned to them. An element also contains an optional value. Due to the
textual representation of the tree, a total order, called document order, is defined on
all elements corresponding to the order in which the first character of the elements
occurs in the document.

For instance, the root element in Figure 17.5 is bib, which has three child el-
ements: two book and one article. The first book element has an attribute
year with atomic value “1999”, and also contains subelements (e.g., the title el-

692 17 Web Data Management

<bib>
<book year = "1999">

<author> M. Tamer Ozsu </author>
<author> Patrick Valduriez </author>
<title> Principles of Distributed ... </title>
<chapters>

<chapter>
<heading> ... </heading>
<body> ... </body>

</chapter>
...

<chapter>
<heading> ... </heading>
<body> ... </body>

</chapter>
</chapters>
<price currency= "USD"> 98.50 </price>

</book>
<article year = "2009">

<author> M. Tamer Ozsu </author>
<author> Yingying Tao </author>
<title> Mining data streams ... </title>
<venue> "CIKM" </venue>
<sections>

<section> ... </section>
...
<section> ... </section>

</sections>
</article>
<book>

<author> Anthony Bonato </author>
<title> A Course on the Web Graph </title>
<ISBN> TK5105.888.B667 </ISBN>
<chapters>

<chapter>
<heading> ... </heading>
<body> ... </body>

</chapter>
<chapter>

<heading> ... </heading>
<body> ... </body>

</chapter>
<chapter>

<heading> ... </heading>
<body> ... </body>

</chapter>
</chapters>
<publisher> AMS </publisher>

</book>
</bib>

Fig. 17.13 An Example XML Document

17.4 Distributed XML Processing 693

ement). An element can contain a value (e.g., “Principles of Distributed
Database Systems” for the element title).

Standard XML document definition is a bit more complicated: it can contain
ID-IDREFs, which define references between elements in the same document or
in another document. In that case, the document representation becomes a graph.
However, it is quite common to use the simpler tree representation, and we’ll assume
the same in this section and we define it more precisely below4.

An XML document is modelled as an ordered, node-labeled tree T = (V,E),
where each node v ∈V corresponds to an element or attribute and is characterized
by:

• a unique identifier denoted by ID(v);

• a unique kind property, denoted as kind(v), assigned from the set {element,
attribute, text};
• a label, denoted by label(v), assigned from some alphabet Σ;

• a content, denoted by content(v), which is empty for non-leaf nodes and is a
strong for leaf nodes.

A directed edge e = (u,v) is included in E if and only if:

• kind(u) = kind(v) = element, and v is a subelement of u; or

• kind(u) = element∧ kind(v) = attribute, and v is an attribute of u.

Now that an XML document tree is properly defined, we can define an instance of
XML data model as an ordered collection (sequence) of XML document tree nodes or
atomic values. A schema may or may not be defined for an XML document, since it
is a self-describing format. If a schema is defined for a collection of XML documents,
then each document in this collection conforms to that schema; however, the schema
allows for variations in each document, since not all elements or attributes may exist
in each document. XML schemas can be defined either using the Document Type
Definition (DTD) or XMLSchema [Gao et al., 2009]. In this section, we will use a
simpler schema definition that exploits the graph structure of XML documents as
defined above [Kling et al., 2010].

An XML schema graph is defined as a 5-tuple 〈Σ,Ψ, s,m,ρ〉 where Σ is an
alphabet of XML document node types, ρ is the root node type, Ψ⊆ Σ×Σ is a set of
edges between node types, s : Ψ→{ONCE, OPT,MULT} and m : Σ→{string}.
The semantics of this definition are as follows: An edge ψ = (σ1,σ2) ∈Ψ denotes
that an item of type σ1 may contain an item of type σ2. s(ψ) denotes the cardinality
of the containment represented by this edge: If s(ψ) = ONCE, then an item of type
σ1 must contain exactly one item of σ2. If s(ψ) = OPT, then an item of type σ1 may
or may not contain an item of type σ2. If s(ψ) = MULT, then an item of type σ1
may contain multiple items of type σ2. m(σ) denotes the domain of the text content
of an item of type σ , represented as the set of all strings that may occur inside such
an item.
4 In addition, we omit the comment nodes, namespace nodes, and PI nodes from the XQuery Data
Model.

694 17 Web Data Management

Example 17.12. In the remainder of this chapter, we will use a slightly reorganized
version of the XML example given in Figure 17.13. This is because that particular
XML database consists of a single document, which is not suitable for demonstrating
some of the distribution issues. The database definition can be modified by deleting
the surrounding <bib> </bib> tags so that each book is one separate document
in the database. However, we will make more changes to have an example that
will better assist in the discussion of distribution issues. In this organization, the
database will consist of multiple books, but organized by authors (i.e., the root of
each document is an <author> element). This is given in Figure 17.14. �

Example 17.13. Let us revisit our bibliographic database and make a revision that
the entries inside it are organized by authors rather than by publications and the only
publications in the collection are books. In this case a (simplified) DTD definition is
given below:

<?xml version="1.0"?>
<!DOCTYPE author [
<!ELEMENT author (name, pubs, agent?)
<!ELEMENT pubs (book*)
<!ELEMENT book (title,chapter*)
<!ELEMENT chapter (reference?)
<!ELEMENT reference (chapter)
<!ELEMENT agent (name)
<!ELEMENT name (first, last)
<!ELEMENT first (CDATA)
<!ELEMENT last (CDATA)
<!ATTLIST book year CDATA #REQUIRED>
<!ATTLIST book price CDATA #REQUIRED>
<!ATTLIST author age CDATA #REQUIRED>
]

Instead of describing this DTD definition, we give its schema graph in Figure 17.15
using the notation introduced above, and this version clearly shows the semantics.
Note that CDATA means that the content of the element is text. �

Using the definition of XML data model and instances of this data model, it is now
possible to define the query languages. Expressions in XML query languages take
an instance of XML data as input and produce an instance of XML data as output.
XPath [Berglund et al., 2007] and XQuery [Boag et al., 2007] are two important query
languages proposed by the World Wide Web Consortium (W3C). Path expressions,
that we introduced earlier, are present in both query languages and are arguably the
most natural way to query the hierarchical XML data. XQuery defines for more
powerful constructs in the form of FLWOR expressions and we will briefly touch
upon them when appropriate.

Although we have earlier defined path expressions, they take a particular form in
the XPath context, so we will define them more carefully. A path expression consists
of a list of steps, each of which consists of an axis, a name test, and zero or more
qualifiers. The last step in the list is called a return step. There are in total thirteen

17.4 Distributed XML Processing 695

<author>
<name>

<first>M. Tamer </first>
<last>Ozsu</last>
<age>50</age>

</name>
<agent>

<name>
<first> John </first>
<last> Doe </last>

</name>
</agent>
<pubs>

<book year = "1999", price = "$98.50">
<title> Principles of Distributed ... </title>
<chapter> ... </chapter>
...
<chapter> ... </chapter>

</book>
</pubs>

</author>
<author>

<name>
<first>Patrick </first>
<last>Valduriez</last>
<age>40</age

</name>
<pubs>

<book year = "1999", price = "$98.50">
<title> Principles of Distributed ... </title>
<chapter> ... </chapter>
...
<chapter> ... </chapter>

</book>
<book year = "1992", price = "$50.00">

<chapter> ... </chapter>
...
<chapter> ... </chapter>

</book>
</pubs>

</author>
<author>

<name>
<first> Anthony </first>
<last> Bonato </last>
<age>30</age>

</name>
<pubs>

<book year = "2008", price = "$75.00"
<title> A Course on the Web Graph </title>
<chapter> ... </chapter>
...
<chapter> ... </chapter>

</book>
</pubs>

</author>

Fig. 17.14 A Different XML Document Example

<title> Data Management and Parallel Processing </title>

696 17 Web Data Management

author

name

first last

chapter

pubs

book

agent age

reference

#CDATA

ONCE ONCE

ONCEOPT

ONCE

ONCE ONCE MULT

ONCE

MULT

OPT

#CDATA#CDATA

year

price

title

ONCE

ONCE

ONCE

ONCE

#CDATA

#CDATA

#CDATA

price

#CDATA

Fig. 17.15 Example XML Schema Graph for Fragmentation

axes, which are listed in Figure 17.16 together with their abbreviations if any. A name
test filters nodes by their element or attribute names. Qualifiers are filters testing more
complex conditions. The brackets-enclosed expression (which is usually called a
branching predicate) can be another path expression or a comparison between a path
expression and an atomic value (which is a string). The syntax of path expression is
as follows:

Path ::= Step (“/”Step)∗

Step ::= axis“ :: ”NameTest (Qualifier)∗

NameTest ::= ElementName | AttributeName | “∗ ”
Qualifier ::= ‘‘[”Expr“]”

Expr ::= Path (Comp Atomic)?
Comp ::= “ = ”|“ > ”|“ < ”|“ >= ”|“ <= ”|“! = ”

Atomic ::= “′”String“′”

While the path expression defined here is a fragment of the one defined in
XQuery [Boag et al., 2007] (by omitting features related to comments, namespaces,
PIs, IDs, and IDREFs, as noted earlier), this definition still covers a significant subset
and can express complex queries. As an example, the path expression

/author[.//last = "Valduriez"]//book[price < 100]

finds all books written by Valduriez with the book price less than 100.
As seen from the above definition, path expressions have three types of constraints:

the tag name constraints, the structural relationship constraints, and the value
constraints. The tag name, structural relationship, and value constraints correspond
to the name tests, axes, and value comparisons in the path expression, respectively. A

17.4 Distributed XML Processing 697

Axes Abbreviations
child /
descendant
descendant-or-self //
parent
attribute /@
self .
ancestor
ancestor-or-self
following-sibling
following
preceding-sibling
preceding
namespace

Fig. 17.16 Thirteen axes and their abbreviations

path expression can be modeled as a tree, called a query tree pattern (QTP) G(V,E)
as follows (where V and E are sets of vertices and edges, respectively):

• each step is mapped to an edge in E;

• a special root node is defined as the parent of the tree node corresponding to
the first step;

• if one step si immediately follows another step s j, then the node corresponding
to si is a child of the node corresponding to s j;

• if step si is the first step in the branching predicate of step s j, then the node
corresponding to si is a child of the node corresponding to s j;

• if two nodes represent a parent-child relationship, then the edge in E between
them is labeled with the axis between their corresponding steps;

• the node corresponding to the return step is marked as the return node;

• if a branching predicate has a value comparison, then the node corresponding
to the last step of the branching predicate is associated with an atomic value
and a comparison operator.

For example, the QTP of the path expression

/author[last = "Valduriez"]//book[price < 100]

is shown in Figure 17.17. In this figure, the node root is the root node and the return
node (book) is identified by two concentric ellipses.

While path expression is an important language component in XQuery, it is only
one component of the XQuery language. A major language construct in XQuery is
FLWOR expression, which consists of “for”, “let”, “where”, “order by” and “return”
clauses. Each clause can reference path expressions or other FLWOR expressions
recursively. A FLWOR expression iteration over a list of XML nodes, to bind a list

698 17 Web Data Management

//

/

content=”Valduriez”

author

book

price

content<100

last

//

Fig. 17.17 A QTP of expression /author[.//last = "Valduriez"]//book[price
< 100]

of nodes to a variable, to filter a list of nodes based on predicates, to sort the results,
and to construct a complex result structure.

In essence, FLWOR is similar to the select-from-where-orderby statement found
in SQL, except that the latter operates on a set or bag of tuples while the former
manipulates a list of XML document tree nodes. Due to this similarity, FLWOR
expressions may be rewritten into SQL statements leveraging existing SQL engines
[Liu et al., 2008]. Another approach is to evaluate XQuery using a native evalua-
tion engine [Fernández et al., 2003; Brantner et al., 2005]. We will discuss these
approaches in the next section.

Example 17.14. The following FLWOR expression returns a list of books with its
title and price ordered by their authors names (assuming the database, i.e., the XML
document collection, is called “bib”).

let $col := collection("bib")
for $author in $col/author

order by $author/name
for $b in $author/pubs/book

let $title := $b/title
let $price := $b/price
return $title, $price

�

17.4 Distributed XML Processing 699

17.4.2 XML Query Processing Techniques

In this section we summarize some of the XML query processing techniques. Again,
our objective is not to give an exhaustive coverage of the topic, since that would
require an entire book in itself, but only to highlight the major issues.

There are three basic approaches to storing XML documents in a DBMS [Zhang
and Özsu, 2010]: (1) the large object (LOB) approach that stores the original XML
documents as-is in a LOB column (e.g., [Krishnaprasad et al., 2005; Pal et al.,
2005]), (2) the extended relational approach that shreds XML documents into object-
relational (OR) tables and columns (e.g., [Zhang et al., 2001; Boncz et al., 2006]), and
(3) the native approach that uses a tree-structured data model, and introduces opera-
tors that are optimized for tree navigation, insertion, deletion and update (e.g., [Fiebig
et al., 2002; Nicola and der Linden, 2005; Zhang et al., 2004]). Each approach has
its own advantages and disadvantages.

The LOB approach is very similar to storing the XML documents in a file system,
in that there is minimum transformation from the original format to the storage
format. It is the simplest one to implement and support. It provides byte-level fidelity
(e.g., it preserves extra white spaces that may be ignored by the OR and the native
formats) that could be needed for some digital signature schemes. The LOB approach
is also efficient for inserting (extracting) the whole documents to (from) the database.
However it is slow in processing queries due to unavoidable XML parsing at query
execution time.

In the extended relational approach, XML documents are converted to object-
relational tables, which are stored in relational databases or in object repositories.
This approach can be further divided into two categories based on whether or not
the XML-to-relational mapping relies on XML Schema. The OR storage format,
if designed and mapped correctly, could perform very well in query processing,
thanks to many years of research and development in object-relational database
systems. However, insertion, fragment extraction, structural update, and document
reconstruction require considerable processing in this approach. For schema-based
OR storage, applications need to have a well-structured, rigid XML schema whose
relational mapping is tuned by a database administrator in order to take advantage of
this storage model. Loosely structured schemas could lead to unmanageable number
of tables and joins. Also, applications requiring schema flexibility and schema
evolution are limited by those offered by relational tables and columns. The result is
that applications encounter a large gap: if they cannot map well to an object-relational
way of life due to tradeoffs mentioned above, they suffer a big drop in performance
or capabilities.

Native XML storage approach stores XML documents using special data structures
and formats that are designed for XML data. There is not, and should not be, a single
native format for storing XML documents. Native XML storage techniques treat XML
document trees as first class citizens and develop special purpose storage schemes
without relying on the existence of an underlying database system. Since it is designed
specifically for XML data model, native XML storage usually provides well-balanced
tradeoffs among many criteria. Some storage formats may be designed to focus on

700 17 Web Data Management

one set of criteria, while other formats may emphasize another set. For example, some
storage schemes are more amenable to fast navigation, and some schemes perform
better in fragment extraction and document reconstruction. Therefore, based on their
own requirements, different applications adopt different storage schemes to trade
off one set of features over another. As an example, Natix [Kanne and Moerkotte,
2000] partitions large XML document trees into small subtrees each of which can
fit into a disk page. Inserting a node usually only affects the subtree in which the
node is inserted. However, native storage systems may not be efficient in answering
certain types of queries (e.g., /author//book//chapter) since they require
at least one scan of the whole tree. The extended relational storage, on the other
hand, may be more efficient for this query due to the special properties of the node
encodings. Therefore, a storage system that balances the evaluation and update costs
still remains a challenge.

Processing of path queries can also be classified into two categories: join-based
approach [Zhang et al., 2001; Al-Khalifa et al., 2002; Bruno et al., 2002; Gottlob et al.,
2005; Grust et al., 2003] and navigational approach [Barton et al., 2003; Josifovski
et al., 2005; Koch, 2003; Brantner et al., 2005]. Storage systems and query processing
techniques are closely related in that the join-based processing techniques are usually
based on extended relational storage systems and the navigational approach is based
on native storage systems. All techniques in the join-based approach are based on
the same idea: each location step in the expression is associated with an input list of
elements whose names match with the name test of the step. Two lists of adjacent
location steps are joined based on their structural relationships. The differences
between different techniques are in their join algorithms, which take into account the
special properties of the relational encoding of XML document trees.

The navigational processing techniques, built on top of the native storage systems,
match the QTP by traversing the XML document tree. Some navigational techniques
(e.g., [Brantner et al., 2005]) are query-driven in that each location step in the path
expressions is translated into an algebraic operator which performs the navigation.
A data-driven navigational approach (e.g., [Barton et al., 2003; Josifovski et al.,
2005; Koch, 2003]) builds an automaton for a path expression and executes the
automaton by navigating the XML document tree. Techniques in the data-driven
approach guarantee worst case I/O complexity: depending on the expressiveness of
the query that can be handled, some techniques (e.g., [Barton et al., 2003; Josifovski
et al., 2005]) require only one scan of the data, and the others (e.g., [Koch, 2003])
require two scans.

Both the join-based and navigational approaches have advantages and disadvan-
tages. The join-based approach, while efficient in evaluating expressions having
descendent-axes, may not be as efficient as the navigational approach in answering
expressions only having child-axes. A specific example is /*/*, where all children
of the root are returned. As mentioned earlier, each name test (*) is associated with
an input list, both of which contain all nodes in the XML document (since all element
names match with a wildcard). Therefore, the I/O cost of the join-based approach is
2n, where n is the number of elements. This cost is much higher than the cost of the
navigational operator, which only traverses the root and its children. On the other

17.4 Distributed XML Processing 701

hand, the navigational approach may not be as efficient as the join-based approach
for a query such as /author//book//chapter, since the join-based approach
only needs to read those elements whose names are book or chapter and join
the two lists, but the navigational approach needs to traverse all elements in the
tree. Therefore, a technique that combines the best of both approaches would be
preferable.

As in relational databases, query processing is significantly aided by the existence
of indexes. XML indexing approaches can be categorized into three groups. Some of
the indexing techniques are proposed to expedite the execution of existing join-based
or navigational approaches (e.g., XB-tree [Bruno et al., 2002] and XR-tree Jiang et al.
[2003] for the holistic twig joins). Since these are special-purpose indexes that are
designed for a particular baseline operator, their application is quite limited. Another
line of research focuses on string-based indexes (e.g., [Wang et al., 2003b; Zezula
et al., 2003; Rao and Moon, 2004; Wang and Meng, 2005]). The basic idea is to
convert the XML document trees as well as the QTPs into strings and reduce the
tree pattern matching problem to string pattern matching. Still other XML indexing
techniques focus on the structural similarity of XML document tree nodes and group
them accordingly [Milo and Suciu, 1999; Goldman and Widom, 1997; Kaushik et al.,
2002]. Although different indexes may be based on different notions of similarity,
they are all based on the same idea: similar tree nodes are clustered into equivalence
classes (or index nodes), which are connected to form a tree or graph. FIX [Zhang
et al., 2006b] follows a different approach and indexes the numerical features of
subtrees in the data. Features are used as the index keys to a mature index such as
B+-tree. For each incoming query, the features of the query tree are extracted and
used as search keys to retrieve the candidate results.

Finally, as we noted a number of times in earlier chapters, a cost-based optimizer
is crucial to choosing the “best” query plan. The accuracy of cost estimation is
usually dependent on the cardinality estimation. Cardinality estimation techniques
for path expressions first summarize an XML document tree (corresponding to a
document) into a small synopsis that contains structural information and statistics.
The synopsis is usually stored in the database catalog and is used as the basis for
estimating cardinality. Depending on how much information is reserved, different
synopses cover different types of queries. DataGuide, that we introduced earlier, is
on example. Recall that it records all distinct paths from a data set and compresses
them into a compact graph. Path tree [Aboulnaga et al., 2001] is another example
that follows the same approach (i.e., capturing all distinct paths) and is specifically
designed for XML document trees. Path trees can be further compressed if the
resulting synopsis is too large. Markov tables [Aboulnaga et al., 2001], on the
other hand, do not capture the full paths but sub-paths under a certain length limit.
Selectivity of longer paths are calculated using fragments of sub-paths similar to the
Markov process. These synopsis structures only support simple linear path queries
that may or may not contain descendent-axes. Structural similarity-based synopsis
techniques (XSketch [Polyzotis and Garofalakis, 2002] and TreeSketch [Polyzotis
et al., 2004]) are proposed to support branching path queries (i.e., those that contain
branching predicates as defined earlier). These techniques are very similar to the

702 17 Web Data Management

structural similarity-based indexing techniques: clustering structurally similar nodes
into equivalence classes. An extra step is needed for the synopsis: summarize the
similarity graph under some memory budget. A common problem of these heuristics
is that the synopsis construction (expansion or summarization) time is still prohibitive
for structure-rich data. XSEED [Zhang et al., 2006a] also follows the structural
similarity approach and constructs a synopsis by first compressing an XML document
to a small kernel, and then adds more information to the synopsis to improve accuracy.
The amount of additional information is controlled by the memory availability.

Let us now consider XQuery FLWOR expression and introduce possible tech-
niques for its evaluation. As mentioned in the previous subsection, one way to execute
FLWOR expressions is to translate them into SQL statements, which can then be eval-
uated using existing SQL engines. One barrier however is that FLWOR expression
works on the XML data model (list of XML nodes) but SQL takes relations as input.
The translation has to introduce new operators or functions to convert data between
these two data models. One major syntactic construct of this conversion is through
the XMLTable function found in SQL/XML [Eisenberg et al., 2008]. XMLTable
takes an XML input data source, an XQuery expression to generate rows, and outputs
a list of rows with columns specified by the function as well.

Example 17.15. As an example, the following XMLTable function

XMLTable(’/author/name’
passing collection(’bib’)
columns
first varchar2(200) PATH ’/name/first’,
last varchar2(200) PATH ’/name/last’)

takes the input document bib.xml from the “passing” clause and applies the
path expression /bib/book to the input document. For each matching book, there
will be one row generated. For each row there are two columns specified by the
“columns” clause with its column name and type. A path expression is also given
to each column to be used to evaluate its value. The semantics of this XMLTable
function is the same as the FLWOR expression:

for $a in collection(’bib’)/author/name
return {$a/first, $a/last}

�

In fact, almost all FLWOR expressions can be translated to SQL with the help of
the XMLTable function. Therefore, the XMLTable function maps XQuery results to
relational tables. The result of XMLTable can then be treated as a virtual table and
any other SQL construct can be composed on top of that.

Another approach to evaluating XQuery statements is to implement a native
XQuery engine that interprets XQuery statements on top of XML data. One example
is Galax [Fernández et al., 2003] that first takes an XQuery expression and normalizes
it into XQuery core [Draper et al., 2007], which is a covering subset of XQuery. The
XQuery core expression is then statically type-checked against the XMLSchema
associated with the input data. When the input XML data are parsed and the instance

17.4 Distributed XML Processing 703

of XML data model (DOM) is generated, the XQuery core expression is dynamically
evaluated on the instance of the data model.

Natix [Brantner et al., 2005] is another native approach, but one that defines a set
of algebraic operators to which XPath or XQuery queries can be translated. Similar
to the relational system, optimization rules can be applied to the operator tree to
rewrite it into a more efficient plan. Moreover, Natix defines a native XML storage
format based on tree partitioning. Large XML document trees can be partitioned into
smaller ones, each of which can fit into a disk page. This native storage format is
more scalable than main memory-based DOM representation, and it allows more
efficient tree navigation and potentially more efficient path expression evaluation.

In addition to pure relational and pure native XQuery evaluation techniques, there
are others that follow a hybrid approach. For example, MonetDB/XQuery [Boncz
et al., 2006] stores XML data as a relational table based on the nodes’ pre- and
post-order position when traversing the tree. XQuery statements are translated into
physical relational operators that are designed for efficient evaluation. One particular
example is the staircase join operator designed for efficient evaluation of path expres-
sions. In this way, it relies on the SQL engine for most of the relational operations,
and expedites XML-specific tree navigations by special purpose operators. In fact,
many commercial database vendors also implement special operators in their rela-
tional SQL engine to speed up path expression evaluation (e.g., Oracle [Zhang et al.,
2009a]). Therefore, while many XQuery engines leverage SQL engines for their abil-
ity to efficiently evaluate SQL-like functionalities, many XML specific optimizations
and implementations now also penetrate into SQL engine implementations.

17.4.3 Fragmenting XML Data

If we follow the distribution methodology that we introduced earlier in the book, the
first step is fragmentation and distribution of data to various sites. In this context, a
relevant question is what it means to fragment XML data, and whether we can define
horizontal and vertical fragmentation analogous to relational systems. As we will
see, this is possible.

Let us first take a detour and consider an interesting case that we refer to as ad
hoc fragmentation. In this case, there is no explicit, schema-based fragmentation
specification; XML data are fragmented by arbitrarily cutting edges in XML doc-
ument graphs. One example that follows this approach is Active XML [Abiteboul
et al., 2008a], which represents cross-fragment edges as calls to remote functions.
When such a function call is activated, the data corresponding to the remote fragment
are retrieved and made available for local processing. An active XML document,
therefore, consists of a static part, which is the XML data, and a dynamic part that
includes the function call to web services. When this document is accessed and the
service call is invoked, the returned data (i.e., a data fragment) is inserted in place of
the call. Although originally designed for easy service integration by allowing calls
to various web services, active XML inherently exploits the distribution of data. One

704 17 Web Data Management

way to view this approach is that data fragments are shipped from the source sites to
where the XML document is located. When the required data are gathered at this site,
and the query is executed on the resulting document.

Example 17.16. Consider the following active XML document where a function call
(getPubs) is embedded into a static XML document:

<author>
<name>

<first> J. </first>
<last> Doe </last>

</name>
...
<call fun="getPubs(’J. Doe’)" />

</author>

The resulting document, following the invocation of the function call, would be as
follows:

<author>
<name>

<first> J. </first>
<last> Doe </last>

</name>
...
<pubs>

<book> ... </book>
...

</pubs>
</author>

�

Ad hoc fragmentation works well when the data are already distributed. However,
extending it the case where an XML data graph is partitioned arbitrarily is problem-
atic, since it may not be possible to specify the fragmentation predicate clearly. This
would decrease the opportunities for distributed query optimization. Remember that
distributed optimization in the relational context heavily depends upon the existence
of a precise definition of the fragmentation predicate.

The alternative that addresses this issue is structure-based fragmentation, which
is based on the concept of fragmenting an XML data collection based on some
properties of the schema. This is analogous to what we have discussed in the relational
setting. The first issue that arises is what types of fragmentations we can define.
Similar to relational systems, we can distinguish between horizontal fragmentation
where subsets of the data are selected, and vertical fragmentation where fragments
are identified based on “projections” over the schema. The specific definitions of
these differ among various works; we will follow one line of research to illustrate the
concepts [Kling et al., 2010].

A horizontal fragmentation can be defined by a set of fragmentation predicates,
such that each fragment consists of the document trees that match the corresponding
predicate. For a horizontal fragmentation to be meaningful, the data should consist

17.4 Distributed XML Processing 705

of multiple document trees; otherwise it makes no sense to have fragments such
that each fragment follows the same schema, which is a requirement of horizontal
fragmentation. These document trees can either be entire XML documents or they can
be the result of a previous vertical fragmentation step. Let D = {d1,d2, . . . ,dn} be a
collection of document trees such that each di ∈D follows to the same schema. Then
we can define a set of horizontal fragmentation predicates P = {p0, p1, . . . , pl−1}
such that ∀d ∈ D : ∃ unique pi ∈ P where pi(d). If this holds, then F = {{d ∈ D |
pi(d)} | pi ∈ P} is a set of horizontal fragments corresponding to collection D and
predicates P.

author

reference

book

pubs

chapterval=”John” val=”Adams”

val=50

author

reference

book

author

chapter val=”Michael” val=”Smith”val=”William” val=”Shakespeare”

(a) fH
1 (b) fH

2

(c) fH
3

name

first last age

name

first last

author

reference

book

pubs

chapter

agentname

lastfirst

val=”Jane” val=”Doe”

name

first last

val=”Jones”val=”Diane”

author

reference

book

pubs

chapter

agentname

lastfirst name

first last

val=”Green”val=”Tom”

...

...

...

...

...

......

Fig. 17.18 Horizontally Fragmented XML Database

Example 17.17. Consider a bibliographic database that conforms to the schema given
in Example 17.13 (and Figure 17.15). A possible horizontal fragmentation of this
database based on the first letter of authors’ last names is given in Figure 17.18. In
this case, we are assuming that there are only four authors in the database whose
names are “John Adams”, “Jane Doe”, “Michael Smith”, and “William Shakespeare”.

706 17 Web Data Management

Note that we do not show all of the attributes of elements; in particular, the age
attribute of authors, and the price attribute of books are not always shown.

If we assume that, in the example schema, m(last) is the set of strings that start
with upper-case letters of the English alphabet, then the fragmentation predicates
are straightforward. Note that the fragmentation predicates can be represented as
trees referred to as fragmentation tree patterns (FTPs) [Kling et al., 2010] shown in
Figure 17.19 where the edges are labelled with the corresponding XPath axis. �

Fig. 17.19 Example Fragmentation Tree Patterns

Definition of vertical fragmentation is more interesting. A vertical fragmentation
is defined by fragmenting the schema graph of the collection into disjoint subgraphs.
Formally, given a schema as defined earlier, we can define a vertical fragmentation
function φ : Σ→ FΣ where FΣ is a partitioning of Σ (recall that Σ is the set of
node types). The fragment that has the root element is called the root fragment; the
concepts of parent fragment and child fragment can be defined in a straightforward
manner.

Example 17.18. Figure 17.20 shows a fragmented schema graph that corresponds to
the schema that we have been considering. The item types have been fragmented
into four disjoint subgraphs. Fragment f 1

V consists of the item types author and
agent, fragment f 2

V consists of the item types name, first and last along with
their text content, fragment f 3

V consists of pubs and book and fragment f 4
V includes

the item types chapter and reference.
The vertical fragment instances of our example database are given in Figure 17.21,

where f 1
V is the root fragment. Again, we do not show all the nodes and we have

omitted “val=” from the value nodes to fit the figure (these are done in Figure 17.22
as well). �

As depicted in Figure 17.21, there are document edges that cross fragment bound-
aries. To facilitate these connections, special nodes are introduced in the fragments:
for an edge from fragment fi to f j, a proxy node is introduced in the originating
fragment fi (denoted Pi→ j

k where k is the ID of the proxy node) and a root proxy
node is introduced in the target fragment f j (denoted RPi→ j

k). Since Pi→ j
k and RPi→ j

k

author

name

last

startswith(’A’)

/

/

author

name

last

startswith(’S’)

/

/

author

name

last

startswith(’Z’)

/

/

... ...

17.4 Distributed XML Processing 707

author

agent age

OPT ONCE

name

first last

#PCDATA #PCDATA

ONCE ONCE

pubs

book

MULT

price

ONCE

chapter

reference

ONCEOPT

ONCE

ONCE

ONCE

MULT

(a) fV
1

(b) fV
2 (c) fV

3 (d) fV
4

Fig. 17.20 Example Vertical Fragmentation of Schema

share the same ID (k) and reference the same fragments (i→ j), they correspond to
each other and together represent a single cross-fragment edge in the collection.

Example 17.19. Figure 17.22 depicts the same fragmentation shown in Figure 17.21
with the proxy nodes inserted. �

Vertical fragments generally consist of multiple unconnected pieces of XML data
if the database consists of multiple documents. In this case, each piece comes from
one document, and can be referred to as a document snippet. In Figure 17.21 (and
in Figure 17.22), fragment f 1

V contains four snippets, each of which consists of the
author and agent nodes of one of the documents in the database.

Based on the above definitions, fragmentation algorithms can be developed. This
area is still not fully developed, therefore we will provide a general discussion rather
than giving detailed algorithms.

The horizontal fragmentation algorithm for relational systems that we introduced
in Chapter 3 can be used for XML databases as well with the appropriate revisions.
Recall that the relational fragmentation algorithm is based on minterm predicates,
which are conjunctions of simple predicates on individual attributes. Thus, the issue
is how to transform the predicates found in QTPs (i.e., trees that correspond to
queries) into simple predicates. There may be multiple ways of doing this. Kling et al.
[2010] discuss one approach where the mapping is straightforward if the QTP does
not contain descendent (//) axes; if they do, then these are “unrolled” into equivalent
paths comprised entirely of child axes using schema information.

In the case of vertical fragmentation, the problem is somewhat more complicated.
One way to formalize the problem is to use a cost model to estimate the response

708 17 Web Data Management

author author author author

agent
age

agent

John Adams

name

first last

Jane Doe Michael Smith

name

first last

name

first last

book

pubs

book

price

pubs

book

pubs

book

pubs

reference

chapter

reference

chapter

reference

chapter

reference

chapter

(a) fV
1

(b) fV
2

(c) fV
3

(d) fV
4

name

...

name

lastfirst

ShakespeareWilliam

name

...

price priceprice

...

...

... ...

...

...

Fig. 17.21 Example Vertical Fragmentation Instances

time of the local query plans corresponding to each fragment. Since these local query
plans are evaluated independently of each other in parallel, we can model the overall
cost of a query as the maximum local plan cost. In theory, we can then enumerate
all possible ways of partitioning the schema. Unfortunately, the large number of
partitions to consider makes this approach infeasible for all but the smallest schemas.
For a schema with n node types there are Bn partitions to consider where Bn is the
nth Bell number, which is exponential in n (this is similar to the relational case). It
is, however, possible to use a greedy strategy and still obtain a good fragmentation
schema: Starting with a fragmentation schema in which each node type is placed in
its own fragment, one can repeatedly merge the fragment corresponding to the most

17.4 Distributed XML Processing 709

author author author

agent

John Adams

name

first last

Jane Doe Michael Smith William Shakespeare

name

first last

name

first last

name

first last

(a) fV
1

(b) fV
2

P_4

author

agent

P_4

reference

chapter

reference

chapter

reference

chapter

reference

chapter

(d) fV
4

book book book book

pubs pubs pubs pubs

(c) fV
3

P
1
1 → 2

RP
1
1 → 2

P
2
1 → 3

RP
2
1 → 3

P
2.1

1 → 3

RP
2.1

1 → 3

P
3
1 → 2

RP
3
1 → 2 RP

4
1 → 2

P
4
1 → 2 P

5
1 → 3

RP
5
1 → 3

P
5.1

1 → 3

RP
5.1

1 → 3

P
6
1 → 2

RP
6
1 → 2

P
7
1 → 3

RP
7
1 → 3

P
7.1

1 → 3

RP
7.1

1 → 3

P
8
1 → 2

RP
8
1 → 2 RP

9
1 → 2

P
9
1 → 2 P

10
1 → 3

RP
10

1 → 3

P
10.1

1 → 3

RP
10.1

1 → 3

...

............

Fig. 17.22 Fragmentation with Proxy Nodes and Numbering

expensive local plan with one of its ancestor fragments until the maximum local plan
cost can no longer be reduced.

710 17 Web Data Management

17.4.4 Optimizing Distributed XML Processing

Research into processing and optimization strategies for distributed execution of
XML queries are in their infancy. Although there is active research on a number
of fronts and some general methods and principles are emerging, we are far from
a full understanding of the issues. In this section we will summarize two areas of
research: different distributed execution models focusing on data shipping versus
query shipping, and localization and pruning in the case of query shipping systems.

17.4.4.1 Data Shipping versus Query Shipping

Data shipping and query shipping approaches were discussed in Chapter 8 within the
context of relational systems. The same choice for distributed query execution exists
in the case of XML data management.

One way to execute XML queries over distributed data is to analyze each query
to determine the data that it needs, ship those data from their sources to where the
query is issued (or to a particular site) and execute the query at that site. This is what
is referred to as data shipping. XQuery has built-in functionality for data shipping
through the fn:doc(URI) function that retrieves the document identified by the URI to
the query site and executes the query over the retrieved data. While data shipping is
simple to implement and may be useful in certain situations, it only provides inter-
query parallelism and cannot exploit intra-query parallel execution opportunities.
Furthermore, it relies on the expectation that there is sufficient storage space at each
query site to hold the data that are received. Finally, it may require large amounts of
data to be moved, posing serious overhead.

The alternative is to execute the query where the data reside. This is called query
shipping (or function shipping). As discussed in Chapter 8, the general approach
to query shipping is to decompose the XML query into a set of subqueries and to
execute each of these subqueries at the sites where the data reside. Coupled with
localization and pruning that we discuss in the next section, this approach provides
intra-query parallelism and executes queries where data are located.

Although query shipping is preferable due to its better parallelization properties,
it is not easy in the context of XML systems. The fundamental difficulty comes
from the fact that, in the most general case, this approach requires shipping both the
function and its parameters to a remote site. It is possible that some of the parameters
may refer to data at the originating site, requiring the “packaging” of these parameter
values and shipping them to a remote site (i.e., call-by-value semantics). If the
parameter and return values are atomic, then this is not a problem, but they may
be more complex, involving element nodes. This issue also arises in the context of
distributed object database systems and we alluded to them in Chapter 15. In the
case of XML systems, the serialization of the subtree rooted at the parameter node is
packaged and shipped. This raises a number of challenges in XML systems [Zhang
et al., 2009b]:

17.4 Distributed XML Processing 711

1. In XPath expressions, there may be some axes that are not downward from the
parameter node. For example, parent, preceding-sibling (as well as other) axes
require accessing data that may not be available in the subtree of the parameter
node. A similar problem occurs when certain built-in XQuery functions are
executed. For example, root(), id(), idref() functions return nodes that are not
descendents of the parameter node, and therefore cannot be executed on the
serialization of the subtree rooted at the parameter node.

2. In XML, as in object databases, there is the notion of “identity”; in case
of XML, node identity. If two identical nodes are passed as parameters or
returned as results, the call-by-value represents them as two different copies,
leading to difficulties in node identity comparisons.

3. As noted earlier, in XML there is the notion of document order of nodes and
queries are expected to obey this order both in their execution and in their
results. The serialization of parameter subtrees in call-by-value organizes
nodes with respect to each parameter. Although it is easy to maintain the
document order within the serialization of the subtree of each parameter, the
relative order of nodes that occur in serializations of different parameters may
be different than their order in the original document.

4. There are difficulties with the interaction between different subqueries that
access the same document on a given peer. The results of these subqueries
would contain nodes from the same document, but ordered differently in the
global result.

These problems are still being worked on and general solutions do not yet exist.
We describe three quite different approaches to query shipping as indicative of some
of the current work.

A proposal to achieve query shipping is to use the theory of partial function
evaluation [Buneman et al., 2006; Cong et al., 2007]. Given a function f (x,y), partial
evaluation would compute f on one of the inputs (say x) and generate a partial answer,
which would be another function f ′ that is only dependent on the second input y.
The way partial evaluation is used to address the issue is to consider the query as a
function and the data fragments as its inputs. Then the query can be decomposed
into multiple sub-queries, each operating on one fragment. The results of these
sub-queries (i.e., functions) are then combined by taking into account the structural
relationships between fragments. The overall process, considering an XPath query Q,
proceeds as follows:

1. The coordinating site where Q is submitted determines the sites that hold a
fragment of the database. Each fragment site and the coordinating site evaluate
the query in parallel. At the end of this stage, for some data nodes, the value
of each query qualifier is known, while for other nodes, the value of some
qualifiers is a Boolean formula whose value is not yet fully determined.

2. In the second phase, the selection part of Q is (partially) evaluated. At the end
of this stage, two things are determined for each node n of each fragment: (i)

712 17 Web Data Management

whether n is part of Q’s answer, or (ii) whether or not n is a candidate to be
part of Q’s answer.

3. In the final phase, the candidate nodes are checked again to determine which
ones are indeed part of the answer to Q and any node that is in Q’s answer is
sent to the coordinating node.

This approach does not decompose the query in the sense that we defined the
term. It executes the query over remote fragments, making three passes over each of
the fragments. Since it considers only XPath queries, it does not confront the issues
related to XQuery that we discussed above.

An alternative that explicitly decomposes the query has been proposed within
the context of XRPC project [Zhang and Boncz, 2007; Zhang et al., 2009b]. XRPC
extends XQuery by adding remote procedure call functionality through a newly
introduced statement execute at {Expr} {FunApp(ParamList)} where Expr is the (explicit
or computed) URI of the peer where FunApp() is to be applied.

The target of XRPC is large-scale heterogeneous P2P systems, thus interoper-
ability and efficiency are main design issues. To enable communication between
heterogeneous XQuery systems, XRPC also defines an open network protocol called
SOAP XRPC that specifies how XDM data types [XDM, 2007] are serialized in
XRPC request/response messages. SOAP XRPC protocol encompasses several fea-
tures to improve efficiency (primarily reducing network latency), by minimizing
the number of messages exchanged and the size of message. An important feature
of SOAP XRPC is Bulk RPC that allows handling of multiple calls to the same
function (with different parameters) in a single network interaction. RPC (remote
procedure call) is a distributed system functionality that facilitates function calls
across different sites. Bulk RPC is exploited when a query contains a function call
nested in an XQuery for-loop, which, in a naive implementation, would lead to as
many RPC network interactions as loop iterations.

The problems with the call-by-value semantics that were discussed above are ad-
dressed by a more advanced (but still call-by-copy-based) function parameter passing
semantics that is referred to as call-by-projection [Zhang et al., 2009b]. Call-by-
projection adopts a runtime projection technique to minimize message sizes, which in
turn reduces network latency. Basically, it works as follows. A node parameter is first
analyzed to see how it is used by the remote function, i.e., a set of used paths and a set
of returned paths of the node parameter are computed. Then, only those descendants
of the node parameter, which are actually used by the remote function, are serialized
into the request message. At the same time, nodes outside the subtree of the node
parameter are added to the request message, if they are needed by the remote function.
For instance, if the remote function applies a parent step on the node parameter, the
parent node is serialized as well. The same analysis is applied on the function result,
so that the remote peer can remove/add nodes into/from the response messages as
needed. Thus, the call-by-projection semantics not only preserves node identities and
structural properties of XML node parameters (which enables XQuery expressions
that access nodes outside the subtrees of remote nodes), but also minimizes message
sizes.

17.4 Distributed XML Processing 713

Example 17.20. Figure 17.23 shows the impact of the call-by-projection semantics
on message sizes and contents.

Fig. 17.23 The call-by-projection parameter passing semantics in XPRC

In the upper part of Figure 17.23, node 1 performs an XRPC call to fcn1() on node
2, whose results is the node 〈x〉 with a large subtree. With call-by-projection, the
query is first analyzed (assuming the call to fcn1() is part of a more complex query) to
see how the result of fcn1() is used further in the query. Suppose that only the id and
tpe attributes of 〈x〉 are used. This information is included in the request message
(shown as “used:.,./@id,./@tpe” in the first request message in the figure).
On node 2, before serializing the response message, used paths are applied on the
result of fcn1() to compute the projection of 〈x〉, which only contains 〈x id="..."
tpe="..."/〉. Finally, the projected node 〈x〉 is serialized, resulting in a much
smaller response message (compared to serializing the whole node 〈x〉).

In the lower part of Figure 17.23, node 1 performs an XRPC call to fcn2()
on node 3, whose result is the node 〈y〉 with a large subtree. From the second
request message, it can be seen that the query containing this call accesses the
parent::b node of 〈y〉 (shown as “used:.,./parent::b”), and returns
the attributed node parent::b/@id and the 〈z〉 child nodes of 〈y〉 (shown as
“returned:./parent::b/@id, ./z”). Such a call would not be correctly
handled using call-by-value, due to the parent step, �

The final query shipping approach that we describe focuses on decomposing
queries over horizontally and vertically fragmented XML databases as described
above [Kling et al., 2010]. This work only addresses XPath queries, and therefore
does not deal with the complications introduced by full XQuery decomposition that
we discussed above. We describe it only for the case of vertical fragmentation since

node 1

execute at
(”node 2”) {fcn1()}

execute at
(”node 3”) {fcn2()}

request
(call by projection)

method=”fcn1”
used:., ,/@id, ./@tpe

request
(call by projection)

method=”fcn2”
used:.., ./parent::b

returned: ./parent::b/@id,
./z

x

aexecute
query

node 2

y

bexecute
query

node 3

response
(call-by-projection)

response
(call-by-projection)

x
runtime

xml
projection

runtime
xml

projection zy

b

z

714 17 Web Data Management

that is more interesting (handling horizontal fragmentation is easier). It starts with the
QTP representation of the global query (let us call this GQTP) and directly follows
the schema graph to get a set of subqueries (i.e., local QTPs – LQTPs), each of
which consists of pattern nodes that match items in the same fragment. A child edge
from a GQTP node a that corresponds to a document node in fragment fi to a node
b that corresponds to a document node in fragment f j is replaced by (i) and edge
a→ Pi→ j

k , and (ii) an edge RPi→ j
k → b . The proxy/root proxy nodes have the same

ID, so they establish the connection between a and b. These nodes are marked as
extraction points because they are needed to join the results of local QTPs to generate
the final result. As with the document fragments, the QTPs form a tree connected
by proxy/root proxy nodes. Thus, the usual notions of root/parent/child QTP can be
easily defined

Example 17.21. Consider the following XPath query to find references to the books
published by “William Shakespeare”:

/author[name[.//first = ’William’ and
last = ’Shakespeare’]]//book//reference

This query can be represented by the global QTP of Figure 17.24.

Fig. 17.24 Example QTP

The decomposition of this query based on the vertical fragmentation given in
Example 17.18 should result in author node being in one subquery (QTP-1), the
subtree rooted at name being in a second subquery (QTP-2), book being in a third
subquery (QTP-3), and reference in the fourth subquery (QTP-4) as shown in
Figure 17.25. �

In this approach, each of the QTPs potentially corresponds to a local query plan
that can be executed at one site. The issues that we discuss in the next section address
concerns related to the optimization of distributed execution of these local plans.

In addition to pure data shipping and pure query shipping approaches discussed
above, it is possible to have a hybrid execution model. Active XML that we discussed
earlier is an example. It packages each function with the data that it operates on
and when the function is encountered in an Active XML document, it is executed
remotely where the data reside. However, the result of the function execution is
returned to the original active XML site (i.e., data shipping) for further processing.

author

name book

first last reference

.=’William’ .=’Shakespeare’

17.4 Distributed XML Processing 715

author

P
1
1 → 2

RP
1
1 → 2

P
2
1 → 3

P
3
3 → 4

RP
3
3 → 4RP

2
1 → 3

name

book

first last

val=”William” val=”Shakespeare”

/ /

//// //

//

//

reference

//

(a) QTP-1

(b) QTP-3 (d) QTP-4

(b) QTP-2

Fig. 17.25 Subqueries after Decomposition

17.4.4.2 Localization and Pruning

As we discussed in Chapter 3, the main objective of localization and pruning is to
eliminate unnecessary work by ensuring that the decomposed queries are executed
only over the fragments that have data to contribute to the result. Recall that lo-
calization was performed by replacing each reference to a global relation with a
localization program that shows how the global relation can be reconstructed from its
fragments. This produces the initial (naı̈ve) query plan. Then, algebraic equivalence
rules are used to re-arrange the query plan in order to perform as many operators
as possible over each fragment. The localization program is different, of course, for
different types of fragmentation. We will follow the same approach here, except that
there are further complications in XML databases that are due to the complexity of
the XML data model and the XQuery language. As indicated earlier, the general
case of distributed execution of XQuery with full power of XML data model is not
yet fully solved. To demonstrate localization and pruning more concretely, we will
consider a restricted query model and a particular approach proposed by Kling et al.
[2010].

In this particular approach, a number of assumptions are made. First, the query
plans are represented as QTPs rather than operator trees. Second, queries can have
multiple extraction points (i.e., query results are comprised of tuples that consist of
multiple nodes), which come from thee same document. Finally, as in XPath, the
structural constraints in the queries do not refer to nodes in multiple documents.

716 17 Web Data Management

Although this is a restricted query model, it is general enough to represent a large
class of XPath queries.

Let us first consider a horizontally fragmented XML database. Based on the
horizontal fragmentation definition given above, and the query model as specified,
the localization program would be the union of fragments – the same as in the
relational case. More precisely, given a horizontal fragmentation FH of database D
(i.e., FH = f1, . . . , fn),

D =
⋃

fi∈FH

fi

More interestingly, however, is the definition of the result of a query over a
fragmented database, i.e., an initial (or naı̈ve distributed plan). If q is a plan that
evaluates the query on an unfragmented database D and FH is as defined above, then
a naı̈ve plan q(FH) can be defined as

q(FH) := sort(
⊙
fi∈FH

q(fi))

where � denotes concatenation of results and qi is the subquery that executes on
fragment fi. It may be necessary to sort the results received from the individual
fragments in order to return them in a stable global order as required by the query
model.

This naı̈ve plan will access every fragment, which is what pruning attempts to
avoid. In this case, since the queries and fragmentation predicates are both represented
in the same format (QTP and multiple FTPs, respectively), pruning can be performed
by simultaneously traversing these trees and checking for contradictory constraints.
If a contradiction is found between the QTP and a FTPi, there cannot be any result for
the query in the fragment corresponding to FTPi, and the fragment can be eliminated
from the distributed plan. This can be achieved by using one of a number of XML
tree pattern evaluation algorithms, which we will not get into in this chapter.

Example 17.22. Consider the query given in Example 17.21 and its QTP representa-
tion depicted in Figure 17.24.

Assuming the horizontal fragmentation given in Example 17.17, it is clear that
this query only needs to run on the fragment that has authors whose last names start
with “S” and all other fragments can be eliminated. �

In the case of vertical fragmentation, the localization program is (roughly) the
equijoin of the subqueries on fragments where the join predicate is defined on the
IDs of the proxy/remote proxy pair. More precisely, given P = {p1, . . . , pn} as a set
of local query plans corresponding to a query q, and FV as a vertical fragmentation
of a document D (i.e., FV = { f1, . . . , fn}) such that fi denotes the vertical fragments
corresponding to pi, the naı̈ve plan can be defined recursively as follows. If P′ ⊆ P,
then GP′ is a vertical execution plan for P′ if and only if

1. P′ = {pi} and G′P = pi, or

17.4 Distributed XML Processing 717

2. P′ = P′a ∪P′b,Pa ∩Pb = /0; pi ∈ Pa, p j ∈ Pb, pi = parent(p j);GP′a and GP′b
are

vertical execution plans for P′a and P′b, respectively; and GP′ =GP′a ./Pi→ j
∗ =RPi→ j

∗
GP′b

.

If GP is a vertical execution plan for P (the entire set of local query plans), then
Gq = GP is a vertical execution plan for p.

A vertical execution plan must contain all the local plans corresponding to the
query. As shown in the recursive definition above, an execution plan for a single
local plan is simply the local plan itself (condition 1). For a set of multiple local
plans P′, it is assumed that P′a and P′b are two non-overlapping subsets of P′ such
that P′a∪P′b = P′. Of course, it is necessary that P′a contains the parent local plan pi
for some local plan p j in P′b. An execution plan for P′ is then defined by combining
execution plans for P′a and P′b using a join whose predicate compares the IDs of proxy
nodes in the two fragments (condition 2). This is referred to as the cross-fragment
join [Kling et al., 2010].

Example 17.23. Let pa, pb, pc and pd represent local plans that evaluate the QTPs
shown in Figures 17.25(a), (b), (c) and (d), respectively. The initial vertical plan is
given in Figure 17.26 where QTP i:P j refers to the proxy node P j in QTP i. �

pa(fV
1) pb(fV

2) pc(fV
3) pd(fV

4)

P
*
1 → 3.id = RP

*
1 → 3.id

P
*
3 → 4.id = RP

*
3 → 4.idP

*
1 → 2.id = RP

*
1 → 2.id

Fig. 17.26 Initial Vertical Plan

If the global QTP does not reach a certain fragment, then the localized plan
derived from the local QTPs will not access this fragment. Therefore, the localization
technique eliminates some vertical fragments even without further pruning. The
partial function execution approach that we introduced earlier works similarly and
avoids accessing fragments that are not necessary. However, as demonstrated by
Example 17.23, intermediate fragments have to be accessed even if no constraints are
evaluated on them. In our example, we have to evaluate QTP 3, and, therefore access
fragment f 3

V (although there is no predicate in the query that refers to any node in that
fragment) in order to determine, for example, the root proxy node RP1→4

3 instance in
fragment f 4

V that is a descendent of a particular proxy node P1→4
∗ instance in f 1

V .
A way to prune unnecessary fragments from consideration is to store information

in the proxy/root proxy nodes that allow identification of all ancestor proxy nodes

718 17 Web Data Management

for any given root proxy node [Kling et al., 2010]. A simple way of storing this
information is by using a Dewey numbering scheme to generate the IDs for each
proxy pair. Then it is possible to determine, for any a root proxy node in f 4

V , which
proxy node in f 1

V is its ancestor. This, in turn, would allow answering the query
without accessing f 3

V or evaluating local QTP 3. The benefits of this are twofold:
it reduces load on the intermediate fragments (since they are not accessed) and it
avoids the cost of computing intermediate results and joining them together.

The numbering scheme works as follows:

1. If a document snippet is in the root fragment, then the proxy nodes in this
fragment, and the corresponding root proxy nodes in other fragments are
assigned simple numeric IDs.

2. If a document snippet is rooted at a root proxy node, then the ID of each of
its proxy nodes is prefixed by the ID of the root proxy node of this document
snippet, followed by a numeric identifier that is unique within this snippet.

Example 17.24. Consider the vertical fragmentation given in Figure 17.21. With
the introduction of proxy/root proxy pairs and the appropriate numbering as given
above, the resulting fragmentation is given in Figure 17.22. The proxy nodes in root
fragment f 1

V are simply numbered. Fragments f 2
V , f 3

V and f 4
V consist of document

snippets that are rooted at a root proxy. However, of these, only fragment f 3
V contains

proxy nodes, requiring appropriate numbering. �

If all proxy/remote proxy pairs are numbered according to this scheme, a root
proxy node in a fragment is the descendant of a proxy node at another fragment
precisely when the ID of the proxy node is a prefix of the ID of the root proxy
node. When evaluating query patterns, this information can be exploited by removing
local QTPs from the distributed query plan if they contain no value or structural
constraints and no extraction point nodes other than those corresponding to proxies.
These local QTPs are only needed to determine whether a root proxy node in some
other fragment is a descendant of a proxy node in a third fragment, which can now
be inferred from the IDs.

Example 17.25. The initial query plan in Figure 17.26 is now pruned to the plan in
Figure 17.27. �

17.5 Conclusion

The web has become a major repository of data and documents, making it an im-
portant topic to study. As noted earlier, there is no unifying framework for many
of the topics that fall under web data management. In this chapter, we focused on
three major topics, namely, web search, web querying, and distributed XML data
management. Even in these areas, many open problems remain.

17.6 Bibliographic Notes 719

pa(fV
1) pb(fV

2)

pd(fV
4)P

*
1 → 2.id = RP

*
1 → 2.id

P
*
1 → 3.id = RP

*
1 → 3.id

Fig. 17.27 Skipping Vertical Fragments

There are a number of other issues that could be covered. These include service-
oriented computing, web data integration, web standards, and others. While some
of these have settled, others are still active areas of research. Since it is not possible
to cover all of these in detail, we have chosen to focus on the issues related to data
management.

17.6 Bibliographic Notes

There are a number of good sources on web topics, each focusing on a different topic.
A web data warehousing perspective is given in [Bhowmick et al., 2004]. [Bonato,
2008] primarily focuses on the modelling of the web as a graph and how this
graph can be exploited. Early work on the web query languages and approaches are
discussed in [Abiteboul et al., 1999]. There are many books on XML, but a good
starting point is [Katz et al., 2004].

A very good overview of web search issues is [Arasu et al., 2001], which we also
follow in Section 17.2. In construction of Sections 17.4.1 and 17.4.2, we adopted
material from Chapter 2 of [Zhang, 2006]. The discussion of distributed XML
follows [Kling et al., 2010] and uses material from Chapter 2 of [Zhang, 2010].

Exercises

Problem 17.1 (**). Consider the graph in Figure 17.28. A node Pi is said to be a
reference for for node Pj iff there exists an edge from Pj to Pi (Pj → Pi) and there
exist a node Pk such that Pi→ Pk and Pj→ Pk.

(a) Indicate the reference nodes for each node in the graph.
(b) Find the cost of compressing each node using the formula given in [Adler and

Mitzenmacher, 2001] for each of its reference nodes.

720 17 Web Data Management

P
1

P
2

P
3

P
4

P
5

P
6

Fig. 17.28 Figure for Problem 17.1

(c) Assuming that (i) for each node we only choose one reference node, and
(ii) there must not be cyclic references in the final result, find the optimal
set of references that maximizes compression. (Hint: note that this can be
systematically done by creating a root node r, and letting all the nodes in the
graph point to r, and then finding the minimum spanning tree starting from
r(cost(Px,r) = dlog ne∗out deg(Px)).)

Problem 17.2. How does web search differ from web querying?

Problem 17.3 (**). Consider the generic search engine architecture in Figure 17.4.
Propose an architecture for a web site with a shared-nothing cluster that implements
all the components in this figure as well as web servers in an environment that will
support very large sets of web documents and very large indexes, and very high
numbers of web users. Define how web pages in the page directory and indexes
should be partitioned and replicated. Discuss the main advantages of your architecture
with respect to scalability, fault-tolerance and performance.

Problem 17.4 (**). Consider your solution in Problem 17.3. Now consider a key-
word search query from a web client to the web search engine. Propose a parallel
execution strategy for the query that ranks the result web pages, with a summary of
each web page.

Problem 17.5 (*). To increase locality of access and performance in different ge-
ographical regions, propose an extension of the web site architecture in Problem
17.4 with multiple sites, with web pages being replicated at all sites. Define how
web pages are replicated. Define also how a user query is routed to a web site. Dis-
cuss the advantages of your architecture with respect to scalability, availability and
performance.

Problem 17.6 (*). Consider your solution in Problem 17.5. Now consider a keyword
search query from a web client to the web search engine. Propose a parallel execution
strategy for the query that ranks the result web pages, with a summary of each web
page.

Problem 17.7 (**). Given an XML document modeled as tree, write an algorithm
that matches simple XPath expression that only contains child axes and no branch
predicates, For example, /A/B/C should return all C elements who are children of
some B elements who are in turn the children of the root element A. Note that A may
contain child element other than B, and such is true for B as well.

17.6 Bibliographic Notes 721

Problem 17.8 (**). Consider two web data sources that we model as relations
EMP1(Name, City, Phone) and EMP2(Firstname, Lastname, City). After schema
integration, assume the view EMP(Firstname, Name, City, Phone) defined over EMP1
and EMP2, where each attribute in EMP comes from an attribute of EMP1 or EMP2,
with EMP2.Lastname being renamed as Name. Discuss the limitations of such inte-
gration. Now consider that the two web data sources are XML. Give a corresponding
definition of the XML schemas of EMP1 and EMP2. Propose an XML schema that
integrates EMP1 and EMP2, and avoids the problems identified with EMP.

Problem 17.9. Consider the QTP and the set of FTPs shown in Figure 17.29 and the
vertical fragmentation schema in Figure 17.20. Determine the fragment(s) that can
be excluded from the distributed query plan for this QTP.

author author

age book

val < 30

age

val < 20

///

author

age

20 ≤ val < 50

author

age

val ≥ 50

QTP FTP Fragment 1 FTP Fragment 2 FTP Fragment 3

Fig. 17.29 Figure for Problem 17.9

Problem 17.10 (**). Consider the QTP and the FTP shown in Figure 17.30. Can we
exclude the fragment defined by this FTP from a query plan for the QTP? Explain
your answer

Problem 17.11 (*). Localize the QTP shown in Figure 17.31 for distributed evalua-
tion based on the vertical fragmentation schema shown in Figure 17.20.

Problem 17.12 (**). When evaluating the query from Problem 17.11, can any of
the fragments be skipped using the method based on the Dewey decimal system?
Explain your answer.

722 17 Web Data Management

author

price

book

val > 100

//

/

author

price

book

val < 100

//

/

QTP FTP

Fig. 17.30 Figure for Problem 17.10

author

name book

last reference price

.=’Shakespeare’ val > 100

//

/// /

/

Fig. 17.31 Figure for Problem 17.11

In this chapter we discuss two topics that are of growing importance in database
management. The topics are data stream management (Section 18.1) and cloud data
management (Section 18.2). Both of these topics have been topics of considerable
interest in the community in recent years. They are still evolving, but there is a
possibility that they may have considerable commercial impact. Our objective in this
chapter is to give a snapshot of where the field is with respect to these systems at this
point, and discuss potential research directions.

18.1 Data Stream Management

The database systems that we have discussed until now consist of a set of unordered
objects that are relatively static, with insertions, updates and deletions occurring less
frequently than queries. They are sometimes called snapshot databases since they
show a snapshot of the values of data objects at a given point in time. Queries over
these systems are executed when posed and the answer reflects the current state of the
database. In these systems, typically, the data are persistent and queries are transient.

However, the past few years have witnessed an emergence of applications that do
not fit this data model and querying paradigm. These applications include, among
others, sensor networks, network traffic analysis, financial tickers, on-line auctions,
and applications that analyze transaction logs (such as web usage logs and telephone
call records). In these applications, data are generated in real time, taking the form of
an unbounded sequence (stream) of values. These are referred to as the data stream
applications. In this section, we discuss systems that support these applications; these
systems are referred to as data stream management systems (DSMS).

A fundamental assumption of the data stream model is that new data are generated
continually and in fixed order, although the arrival rates may vary across applications
from millions of items per second (e.g., Internet traffic monitoring) down to several
items per hour (e.g., temperature and humidity readings from a weather monitoring
station). The ordering of streaming data may be implicit (by arrival time at the

723
DOI 10.1007/978-1-4419-8834-8_18, © Springer Science+Business Media, LLC 2011

Chapter 18
Current Issues: Streaming Data and Cloud
Computing

M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

724 18 Current Issues

processing site) or explicit (by generation time, as indicated by a timestamp appended
to each data item by the source). As a result of these assumptions, DSMSs face the
following novel requirements.

1. Much of the computation performed by a DSMS is push-based, or data-driven.
Newly arrived stream items are continually (or periodically) pushed into the
system for processing. On the other hand, a DBMS employs a mostly pull-
based, or query-driven computation model, where processing is initiated when
a query is posed.

2. As a consequence of the above, DSMS queries are persistent (also referred to
as continuous, long-running, or standing queries) in that they are issued once,
but remain active in the system for a possibly long period of time. This means
that a stream of updated results must be produced as time goes on. In contrast,
a DBMS deals with one-time queries (issued once and then “forgotten”),
whose results are computed over the current state of the database.

3. The system conditions may not be stable during the lifetime of a persistent
query. For example, the stream arrival rates may fluctuate and the query
workload may change.

4. A data stream is assumed to have unbounded, or at least unknown, length.
From the system’s point of view, it is infeasible to store an entire stream in a
DSMS. From the user’s point of view, recently arrived data are likely to be
more accurate or useful.

5. New data models, query semantics and query languages are needed for DSMSs
in order to reflect the facts that streams are ordered and queries are persistent.

The applications that generate streams of data also have similarities in the type of
operations that they perform. We list below a set of fundamental continuous query
operations over streaming data.

• Selection: All streaming applications require support for complex filtering.

• Nested aggregation: Complex aggregates, including nested aggregates (e.g.,
comparing a minimum with a running average) are needed to compute trends
in the data.

• Multiplexing and demultiplexing: Physical streams may need to be decom-
posed into a series of logical streams and conversely, logical streams may
need to be fused into one physical stream (similar to group-by and union,
respectively).

• Frequent item queries: These are also known as top-k or threshold queries,
depending on the cut-off condition.

• Stream mining: Operations such as pattern matching, similarity searching, and
forecasting are needed for on-line mining of streaming data.

• Joins: Support should be included for multi-stream joins and joins of streams
with static meta-data.

18.1 Data Stream Management 725

• Windowed queries: All of the above query types may be constrained to return
results inside a window (e.g., the last 24 hours or the last one hundred packets).

Proposed data stream systems resemble the abstract architecture shown in Fig-
ure 18.1. An input monitor regulates the input rates, perhaps by dropping items if the
system is unable to keep up. Data are typically stored in three partitions: temporary
working storage (e.g., for window queries that will be discussed shortly), summary
storage for stream synopses, and static storage for meta-data (e.g., physical location
of each source). Long-running queries are registered in the query repository and
placed into groups for shared processing, though one-time queries over the current
state of the stream may also be posed. The query processor communicates with the
input monitor and may re-optimize the query plans in response to changing input
rates. Results are streamed to the users or temporarily buffered. Users may then refine
their queries based on the latest results.

Working

Storage

Summary

Storage

Static

Storage

Query

Repository

Query

Processor
Output

Buffer

Input

Monitor

Streaming

inputs Updates to

static data

User

queries

Streaming

outputs

Fig. 18.1 Abstract reference architecture for a data stream management system.

18.1.1 Stream Data Models

A data stream is an append-only sequence of timestamped items that arrive in some
order [Guha and McGregor, 2006]. While this is the commonly accepted definition,
there are more relaxed versions; for example, revision tuples, which are understood
to replace previously reported (presumably erroneous) data [Ryvkina et al., 2006],
may be considered so that the sequence is not append-only. In publish/subscribe
systems, where data are produced by some sources and consumed by those who
subscribe to those data feeds, a data stream may be thought of as a sequence of
events that are being reported continually [Wu et al., 2006]. Since items may arrive in
bursts, a stream may instead be modeled as a sequence of sets (or bags) of elements
[Tucker et al., 2003], with each set storing elements that have arrived during the same

726 18 Current Issues

unit of time (no order is specified among tuplesthat have arrived at the same time).
In relation-based stream models (e.g., STREAM [Arasu et al., 2006]), individual
items take the form of relational tuples such that all tuples arriving on the same
stream have the same schema. In object-based models (e.g., COUGAR [Bonnet et al.,
2001] and Tribeca [Sullivan and Heybey, 1998]), sources and item types may be
instantiations of (hierarchical) data types with associated methods. Stream items may
contain explicit source-assigned timestamps or implicit timestamps assigned by the
DSMS upon arrival. In either case, the timestamp attribute may or may not be part of
the stream schema, and therefore may or may not be visible to users. Stream items
may arrive out of order (if explicit timestamps are used) and/or in pre-processed
form. For instance, rather than propagating the header of each IP packet, one value
(or several partially pre-aggregated values) may be produced to summarize the length
of a connection between two IP addresses and the number of bytes transmitted. This
gives rise to the following list of possible models [Gilbert et al., 2001]:

1. Unordered cash register: Individual items from various domains arrive in
no particular order and without any pre-processing. This is the most general
model.

2. Ordered cash register: Individual items from various domains are not pre-
processed but arrive in some known order, e.g., timestamp order.

3. Unordered aggregate: Individual items from the same domain are pre-
processed and only one item per domain arrives in no particular order, e.g.,
one packet per TCP connection.

4. Ordered aggregate: Individual items from the same domain are pre-processed
and one item per domain arrives in some known order, e.g., one packet per
TCP connection in increasing order of the connection end-times.

As discussed earlier, unbounded streams cannot be stored locally in a DSMS,
and only a recent excerpt of a stream is usually of interest at any given time. In
general, this may be accomplished using a time-decay model [Cohen and Kaplan,
2004; Cohen and Strauss, 2003; Douglis et al., 2004], also referred to as an amnesic
[Palpanas et al., 2004] or fading [Aggarwal et al., 2004] model. Time-decay models
discount each item in the stream by a scaling factor that is non-decreasing with time.
Exponential and polynomial decay are two examples, as are window models where
items within the window are given full consideration and items outside the window
are ignored. Windows may be classified according the the following criteria.

1. Direction of movement of the endpoints: Two fixed endpoints define a fixed
window, two sliding endpoints (either forward or backward, replacing old
items as new items arrive) define a window!sliding, and one fixed endpoint
and one moving endpoint (forward or backward) define a window!landmark.
There are a total of nine possibilities as each of the two endpoints could be
fixed, moving forward, or moving backward.

18.1 Data Stream Management 727

2. Definition of window size: Logical, or time-based windows are defined in
terms of a time interval, whereas physical, (also known as count-based or
tuple-based) windows are defined in terms of the number of tuples. Moreover,
partitioned windows may be defined by splitting a sliding window into groups
and defining a separate count-based window on each group [Arasu et al.,
2006]. The most general type is a predicate window, in which an arbitrary
predicate specifies the contents of the window; e.g., all the packets from
TCP connections that are currently open [Ghanem et al., 2006]. A predicate
window is analogous to a materialized view.

3. Windows within windows: In the elastic window model, the maximum window
size is given, but queries may need to run over any smaller window within the
boundaries of the maximum window [Zhu and Shasha, 2003]. In the n-of-N
window model, the maximum window size is N tuples or time units, but any
smaller window of size n and with one endpoint in common with the larger
window is also of interest [Lin et al., 2004].

4. Window update interval: Eager updating advances the window upon arrival
of each new tuple or expiration of an old tuple, but batch processing (lazy
updating) induces a jumping window. Note that a count-based window may
be updated periodically and a time-based window may be updated after some
number of new tuples have arrived; these are referred to as mixed jumping
windows [Ma et al., 2005]. If the update interval is larger than the window
size, then the result is a series of non-overlapping tumbling windows [Abadi
et al., 2003].

As a consequence of the unbounded nature of data streams, DSMS data models
may include some notion of change or drift in the underlying distribution that is
assumed to generate the attribute values of stream items [Kifer et al., 2004; Dasu
et al., 2006; Zhu and Ravishankar, 2004]. We will come back to this issue when
we discuss data stream mining in Section 18.1.8. Additionally, it has been observed
that in many practical scenarios, the stream arrival rates and distributions of values
tend to be bursty or skewed [Kleinberg, 2002; Korn et al., 2006; Leland et al., 1994;
Paxson and Floyd, 1995; Zhu and Shasha, 2003].

18.1.2 Stream Query Languages

Earlier we indicated that stream queries are usually persistent. So, one issue to
discuss is what the semantics of these queries are, i.e., how do they generate answers.
Persistent queries may be monotonic or non-monotonic. A monotonic query is one
whose results can be updated incrementally. In other words, if Q(t) is the answer to a
query at time t, given two executions of the query at ti and t j, Q(ti)⊆ Q(t j) for all
t j > ti. For monotonic queries, one can define the following:

728 18 Current Issues

Q(t) =
t⋃

ti=1

(Q(ti)−Q(ti−1))∪Q(0)

That is, it is sufficient to re-evaluate the query over newly arrived items and
append qualifying tuples to the result [Arasu et al., 2006]. Consequently, the answer
of a monotonic persistent query is a continuous, append-only stream of results.
Optionally, the output may be updated periodically by appending a batch of new
results. It has been proven that a query is monotonic if and only if it is non-blocking,
which means that it does not need to wait until the end-of-output marker before
producing results [Law et al., 2004].

Non-monotonic queries may produce results that cease to be valid as new data
are added and existing data changed (or deleted). Consequently, they may need to be
re-computed from scratch during every re-evaluation, giving rise to the following
semantics:

Q(t) =
t⋃

ti=0

Q(ti)

Let us now consider classes of languages that have been proposed for DSMSs.
Three querying paradigms can be identified: declarative, object-based, and proce-
dural. Declarative languages have SQL-like syntax, but stream-specific semantics,
as described above. Similarly, object-based languages resemble SQL in syntax,
but employ DSMS-specific constructs and semantics, and may include support for
streaming abstract data types (ADTs) and associated methods. Finally, procedural
languages construct queries by defining data flow through various operators.

18.1.2.1 Declarative Languages

The languages in this class include CQL [Arasu et al., 2006; Arasu and Widom,
2004a], GSQL [Cranor et al., 2003], and StreaQuel [Chandrasekaran et al., 2003].
We discuss each of them briefly.

The Continuous Query Language (CQL) is used in the STREAM DSMS and
includes three types of operators: relation-to-relation (corresponding to standard
relational algebraic operators), stream-to-relation (sliding windows), and relation-to-
stream. Conceptually, unbounded streams are converted to relations by way of sliding
windows, the query is computed over the current state of the sliding windows as if it
were a traditional SQL query, and the output is converted back to a stream. There are
three relation-to-stream operators—Istream, Dstream, and Rstream—which
specify the nature of the output. The Istream operator returns a stream of all those
tuples which exist in a relation at the current time, but did not exist at the current
time minus one. Thus, Istream suggests incremental evaluation of monotonic
queries. Dstream returns a stream of tuples that existed in the given relation in the
previous time unit, but not at the current time. Conceptually, Dstream is analogous
to generating negative tuples for non-monotonic queries. Finally, the Rstream

18.1 Data Stream Management 729

operator streams the contents of the entire output relation at the current time and
corresponds to generating the complete answer of a non-monotonic query. The
Rstream operator may also be used in periodic query evaluation to produce an
output stream consisting of a sequence of relations, each corresponding to the answer
at a different point in time.

Example 18.1. Computing a join of two time-based windows of size one minute each,
can be performed by the following query:

SELECT Rstream(*)
FROM S1 [RANGE 1 min], S2 [RANGE 1 min]
WHERE S1.a = S2.a

The RANGE keyword following the name of the input stream specifies a time-
based sliding window on that stream, whereas the ROWS keyword may be used to
define count-based sliding windows. �

GSQL is used in Gigascope, a stream database for network monitoring and analy-
sis. The input and output of each operator is a stream for reasons of composability.
Each stream is required to have an ordering attribute, such as timestamp or packet
sequence number. GSQL includes a subset of the operators found in SQL, namely
selection, aggregation with group-by, and join of two streams, whose predicate must
include ordering attributes that form a join window. The stream merge operator,
not found in standard SQL, is included and works as an order-preserving union of
ordered streams. This operator is useful in network traffic analysis, where flows from
multiple links need to be merged for analysis. Only landmark windows are supported
directly, but sliding windows may be simulated via user-defined functions.

StreaQuel is used in the TelegraphCQ system and is noteworthy for its windowing
capabilities. Each query, expressed in SQL syntax and constructed from SQL’s set of
relational operators, is followed by a for-loop construct with a variable t that iterates
over time. The loop contains a WindowIs statement that specifies the type and size
of the window. Let S be a stream and let ST be the start time of a query. To specify a
sliding window over S with size five that should run for fifty time units, the following
for-loop may be appended to the query.

for(t=ST; t<ST+50; t++)
WindowIs(S, t-4, t)

Changing to a landmark window can be done by replacing t-4 with some constant
in the WindowIs statement. Changing the for-loop increment condition to t=t+5
would cause the query to re-execute every five time units. The output of a StreaQuel
query consists of a time sequence of sets, each set corresponding to the answer set of
the query at that time.

18.1.2.2 Object-Based Languages

One approach to object-oriented stream modeling is to classify stream contents
according to a type hierarchy. This method is used in the Tribeca network monitoring

730 18 Current Issues

system, which implements Internet protocol layers as hierarchical data types [Sullivan
and Heybey, 1998]. The query language used in Tribeca has SQL-like syntax, but
accepts a single stream as input, and returns one or more output streams. Supported
operators are limited to projection, selection, aggregation over the entire input stream
or over a sliding window, multiplex and demultiplex (corresponding to union and
group-by respectively, except that different sets of operators may be applied on each
of the demultiplexed sub-streams), as well as a join of the input stream with a fixed
window.

Another object-based possibility is to model the sources as ADTs, as in the
COUGAR system for managing sensor data [Bonnet et al., 2001]. Each type of sensor
is modeled by an ADT, whose interface consists of the supported signal processing
methods. The proposed query language has SQL-like syntax and also includes a
$every() clause that indicates the query re-execution frequency. However, few
details on the language are available in the published literature and therefore it is not
included in Figure 18.2.

Example 18.2. A simple query that runs every sixty seconds and returns temperature
readings from all sensors on the third floor of a building may be specified as follows:

SELECT R.s.getTemperature()
FROM R
WHERE R.floor = 3 AND $every(60)

�

18.1.2.3 Procedural Languages

An alternative to declarative query languages is to let the user specify how the data
should flow through the system. In the Aurora DSMS [Abadi et al., 2003], users
construct query plans via a graphical interface by arranging boxes, corresponding
to query operators, and joining them with directed arcs to specify data flow, though
the system may later re-arrange, add, or remove operators in the optimization phase.
SQuAl is the boxes-and-arrows query language used in Aurora, which accepts streams
as inputs and returns streams as output (however, static data sets may be incorporated
into query plans via connection points [Abadi et al., 2003]). There are a total of
seven operators in the SQuAl algebra, four of them order-sensitive. The three order-
insensitive operators are projection, union, and map, the last applying an arbitrary
function to each of the tuples in the stream or a window thereof. The other four
operators require an order specification, which includes the ordered field and a slack
parameter. The latter defines the maximum disorder in the stream, e.g., a slack of 2
means that each tuple in the stream is either in sorted order, or at most two positions
or two time units away from being in sorted order. The four order-sensitive operators
are buffered sort (which takes an almost-sorted stream and the slack parameter, and
outputs the stream in sorted order), windowed aggregates (in which the user can
specify how often to advance the window and re-evaluate the aggregate), binary band
join (which joins tuples whose timestamps are at most t units apart), and resample

18.1 Data Stream Management 731

(which generates missing stream values by interpolation, e.g., given tuples with
timestamps 1 and 3, a new tuple with timestamp 2 can be generated with an attribute
value that is an average of the other two tuples’ values. Other resampling functions
are also possible, e.g., the maximum, minimum, or weighted average of the two
neighbouring data values.

18.1.2.4 Summary of DSMS Query Languages

A summary of the proposed DSMS query languages is provided in Figure 18.2
with respect to the allowed inputs and outputs (streams and/or relations), novel
operators, supported window types (fixed, landmark or sliding), and supported query
re-execution frequency (continuous and/or periodic). With the exception of SQuAl,
the surface syntax of DSMS query languages is similar to SQL, but their semantics
are considerably different. CQL allows the widest range of semantics with its relation-
to-stream operators; note that CQL uses the semantics of SQL during its relation-to-
relation phase and incorporates streaming semantics in the stream-to-relation and
relation-to-stream components. On the other hand, GSQL, SQuAL, and Tribeca
only allow streaming output, whereas StreaQuel continually (or periodically) outputs
the entire answer set. In terms of expressive power, CQL closely mirrors SQL as
CQL’s core set of operators is identical to that of SQL. Additionally, StreaQuel
can express a wider range of windows than CQL. GSQL, SQuAl, and Tribeca,
which operate in the stream-in-stream-out mode, may be thought of as restrictions of
SQL as they focus on incremental, non-blocking computation. In particular, GSQL
and Tribeca are application-specific (network monitoring) and have been designed
for very fast implementation [Cranor et al., 2003]. However, although SQuAl and
GSQL are stream-in/stream-out languages, and, as a result, may have lost some
expressive power as compared to SQL, they may regain this power via user-defined
functions. Moreover, SQuAl is noteworthy for its attention to issues related to real-
time processing such as buffering, out-of-order arrivals and timeouts.

Language/ Allowed Allowed Novel Supported Execution
system inputs outputs operators windows frequency
CQL/ streams and streams and relation-to-stream, sliding continuous

STREAM relations relations stream-to-relation or periodic
GSQL/ streams streams order-preserving landmark periodic

Gigascope union
SQuAl/ streams and streams resample, map, fixed, landmark, continuous
Aurora relations buffered sort sliding or periodic

StreaQuel/ streams and sequences of WindowIs fixed, landmark, continuous
TelegraphCQ relations relations sliding or periodic

Tribeca single streams multiplex, fixed, landmark, continuous
stream demultiplex sliding

Fig. 18.2 Summary of proposed data stream languages

732 18 Current Issues

18.1.3 Streaming Operators and their Implementation

While the streaming languages discussed above may resemble standard SQL, their im-
plementation, processing, and optimization present novel challenges. In this section,
we highlight the differences between streaming operators and traditional relational
operators, including non-blocking behavior, approximations, and sliding windows.
Note that simple relational operators such as projection and selection (that do not
keep state information) may be used in streaming queries without any modifications.

Some relational operators are blocking. For instance, prior to returning the next
tuple, the Nested Loops Join (NLJ) may potentially scan the entire inner relation
and compare each tuple therein with the current outer tuple. Some operators have
non-blocking counterparts, such as joins [Haas and Hellerstein, 1999a; Urhan and
Franklin, 2000; Viglas et al., 2003; Wilschut and Apers, 1991] and simple aggregates
[Hellerstein et al., 1997; Wang et al., 2003c]. For example, a pipelined symmetric
hash join [Wilschut and Apers, 1991] builds hash tables on-the-fly for each of the
participating relations. Hash tables are stored in main memory and when a tuple from
one of the relations arrives, it is inserted into its table and the other tables are probed
for matches. It is also possible to incrementally output the average of all the items
seen so far by maintaining the cumulative sum and item count. When a new item
arrives, the item count is incremented, the new item’s value is added to the sum, and
an updated average is computed by dividing the sum by the count. There remains the
issue of memory constraints if an operator requires too much working memory, so a
windowing scheme may be needed to bound the memory requirements. Hashing has
also been used in developing join execution strategies over DHT-based P2P systems
[Palma et al., 2009].

Another way to unblock query operators is to exploit constraints over the input
streams. Schema-level constraints include synchronization among timestamps in
multiple streams, clustering (duplicates arrive contiguously), and ordering [Babu
et al., 2004b]. If two streams have nearly synchronized timestamps, an equi-join on
the timestamp can be performed in limited memory: a scrambling bound B may be
set such that if a tuple with timestamp τ arrives, then no tuple with timestamp greater
than τ−B may arrive later [Motwani et al., 2003].

Constraints at the data level may take the form of control packets inserted into
a stream, called punctuations [Tucker et al., 2003]. Punctuations are constraints
(encoded as data items) that specify conditions for all future items. For instance,
a punctuation may arrive asserting that all the items henceforth shall have the A
attribute value larger than 10. This punctuation could be used to partially unblock a
group-by query on A since all the groups where A≤ 10 are guaranteed not to change
for the remainder of the stream’s lifetime, or until another punctuation arrives and
specifies otherwise. Punctuations may also be used to synchronize multiple streams
in that a source may send a punctuation asserting that it will not produce any tuples
with timestamp smaller than τ [Arasu et al., 2006].

As discussed above, unblocking a query operator may be accomplished by re-
implementing it in an incremental form, restricting it to operate over a window (more
on this shortly), and exploiting stream constraints. However, there may be cases

18.1 Data Stream Management 733

where an incremental version of an operator does not exist or is inefficient to evaluate,
where even a sliding window is too large to fit in main memory, or where no suitable
stream constraints are present. In these cases, compact stream summaries may be
stored and approximate queries may be posed over the summaries. This implies a
trade-off between accuracy and the amount of memory used to store the summaries.
An additional restriction is that the processing time per item should be kept small,
especially if the inputs arrive at a fast rate.

Counting methods, used mainly to compute quantiles and frequent item sets,
typically store frequency counts of selected item types (perhaps chosen by sampling)
along with error bounds on their true frequencies. Hashing may also be used to
summarize a stream, especially when searching for frequent items—each item type
may be hashed to n buckets by n distinct hash functions and may be considered a
potentially frequent flow if all of its hash buckets are large. Sampling is a well known
data reduction technique and may be used to compute various queries to within a
known error bound. However, some queries (e.g., finding the maximum element in a
stream) may not be reliably computed by sampling.

Sketches were initially proposed by Alon et al. [1996] and have since then been
used in various approximate algorithms. Let f (i) be the number of occurrences of
value i in a stream. A sketch of a data stream is created by taking the inner product
of f with a vector of random values chosen from some distribution with a known
expectation. Moreover, wavelet transforms (that reduce the underlying signal to a
small set of coefficients) have been proposed to approximate aggregates over infinite
streams.

We end this section with a discussion of window operators. Sliding window oper-
ators process two types of events: arrivals of new tuples and expirations of old tuples;
the orthogonal problem of determining when tuples expire will be discussed in the
next section. The actions taken upon arrival and expiration vary across operators
[Hammad et al., 2003b; Vossough and Getta, 2002]. A new tuple may generate new
results (e.g., join) or remove previously generated results (e.g., negation). Further-
more, an expired tuple may cause a removal of one or more tuples from the result
(e.g., aggregation) or an addition of new tuples to the result (e.g., duplicate elimina-
tion and negation). Moreover, operators that must explicitly react to expired tuples
(by producing new results or invalidating existing results) perform state purging
eagerly (e.g., duplicate elimination, aggregation, and negation), whereas others may
do so eagerly or lazily (e.g., join).

In a sliding window join, newly arrived tuples on one of the inputs probe the state
of the other input, as in a join of unbounded streams. Additionally, expired tuples are
removed from the state [Golab and Özsu, 2003b; Hammad et al., 2003a, 2005; Kang
et al., 2003; Wang et al., 2004]. Expiration can be done periodically (lazily), so long
as old tuples can be identified and skipped during processing.

Aggregation over a sliding window updates its result when new tuples arrive and
when old tuples expire. In many cases, the entire window needs to be stored in order
to account for expired tuples, although selected tuples may sometimes be removed
early if their expiration is guaranteed not to influence the result. For example, when
computing MAX, tuples with value v need not be stored if there is another tuple in the

734 18 Current Issues

window with value greater than v and a younger timestamp. Additionally, in order to
enable incremental computation, the aggregation operator stores the current answer
(for distributive and algebraic aggregates) or frequency counters of the distinct values
present in the window (for holistic aggregates). For instance, computing COUNT
requires storing the current count, incrementing it when a new tuple arrives, and
decrementing it when a tuple expires. In this case, in contrast to the join operator,
expirations must be dealt with immediately so that an up-to-date aggregate value can
be returned right away.

Duplicate elimination over a sliding window may also produce new output when
an input tuple expires. This occurs if a tuple with value v was produced on the output
stream and later expires from its window, yet there are other tuples with value v still
present in the window [Hammad et al., 2003b]. Alternatively, as is the case in the
STREAM system, duplicate elimination may produce a single result tuple with a
particular value v and retain it on the output stream so long as there is at least one
tuple with value v present in the window. In both cases, expirations must be handled
eagerly so that the correct result is maintained at all times.

Finally, negation of two sliding windows, W1−W2, may produce negative tuples
(e.g., arrival of a W2-tuple with value v causes the deletion of a previously reported
result with value v), but may also produce new results upon expiration of tuples
from W2 (e.g., if a tuple with value v expires from W2, then a W1-tuple with value v
may need to be appended to the output stream [Hammad et al., 2003b]). There are
methods for implementing duplicate-preserving negation, but those are beyond our
scope in this chapter.

18.1.4 Query Processing

Let us now discuss the issues related to processing queries in DSMSs. The overall pro-
cess is similar to relational systems: declarative queries are translated into execution
plans that map logical operators specified in the query into physical implementations.
For now, let us assume that the inputs and operator state fit in main memory; we will
discuss disk-based processing later.

18.1.4.1 Queuing and Scheduling

DBMS operators are pull-based, whereas DSMS operators consume data pushed into
the plan by the sources.

Queues allow sources to push data into the query plan and operators to retrieve
data as needed [Abadi et al., 2003; Adamic and Huberman, 2000; Arasu et al., 2006;
Madden and Franklin, 2002; Madden et al., 2002a]. A simple scheduling strategy
allocates a time slice to each operator, during which the operator extracts tuples from
its input queue(s), processes them in timestamp order, and deposits output tuples
into the next operator’s input queue. The time slice may be fixed or dynamically

18.1 Data Stream Management 735

calculated based upon the size of an operator’s input queue and/or processing speed.
A possible improvement could be to schedule one or more tuples to be processed by
multiple operators at once. In general, there are several possibly conflicting criteria
involved in choosing a scheduling strategy, among them queue sizes in the presence
of bursty stream arrival patterns [Babcock et al., 2004], average or maximum latency
of output tuples [Carney et al., 2003; Jiang and Chakravarthy, 2004; Ou et al., 2005],
and average or maximum delay in reporting the answer relative to the arrival of new
data [Sharaf et al., 2005].

18.1.4.2 Determining When Tuples Expire

In addition to dequeuing and processing new tuples, sliding window operators must
remove old tuples from their state buffers and possibly update their answers, as
discussed in Section 18.1.3. Expiration from an individual time-based window is
simple: a tuple expires if its timestamp falls out of the range of the window. That is,
when a new tuple with timestamp ts arrives, it receives another timestamp, call it exp,
that denotes its expiration time as ts plus the window length. In effect, every tuple in
the window may be associated with a lifetime interval of length equal to the window
size [Krämer and Seeger, 2005]. Now, if this tuple joins with a tuple from another
window, whose insertion and expiration timestamps are ts′ and exp′, respectively,
then the expiration timestamp of the result tuple is set to min(exp,exp′). That is, a
composite result tuple expires if at least one of its constituent tuples expires from its
windows. This means that various join results may have different lifetime lengths
and furthermore, the lifetime of a join result may have a lifetime that is shorter than
the window size [Cammert et al., 2006]. Moreover, as discussed above, the negation
operator may force some result tuples to expire earlier than their exp timestamps by
generating negative tuples. Finally, if a stream is not bounded by a sliding window,
then the expiration time of each tuple is infinity [Krämer and Seeger, 2005].

In a count-based window, the number of tuples remains constant over time.
Therefore, expiration can be implemented by overwriting the oldest tuple with a
newly arrived tuple. However, if an operator stores state corresponding to the output
of a count-based window join, then the number of tuples in the state may change,
depending upon the join attribute values of new tuples. In this case, expirations must
be signaled explicitly using negative tuples.

18.1.4.3 Continuous Query Processing over Sliding Windows

There are two techniques for sliding window query processing and state mainte-
nance: the negative tuple approach and the direct approach. In the negative tuple
approach [Arasu et al., 2006; Hammad et al., 2003b, 2004], each window referenced
in the query is assigned an operator that explicitly generates a negative tuple for
every expiration, in addition to pushing newly arrived tuples into the query plan.
Thus, each window must be materialized so that the appropriate negative tuples

736 18 Current Issues

are produced. This approach generalizes the purpose of negative tuples, which are
now used to signal all expirations explicitly, rather than only being produced by the
negation operator if a result tuple expires because it no longer satisfies the negation
condition. Negative tuples propagate through the query plan and are processed by
operators in a similar way as regular tuples, but they also cause operators to remove
corresponding “real” tuples from their state. The negative tuple approach can be
implemented efficiently using hash tables as operator state so that expired tuples can
be looked up quickly in response to negative tuples. Conceptually, this is similar to a
DBMS indexing a table or materialized view on the primary key in order to speed up
insertions and deletions. However, the downside is that twice as many tuples must be
processed by the query because every tuple eventually expires from its window and
generates a corresponding negative tuple. Furthermore, additional operators must be
present in the plan to generate negative tuples as the window slides forward.

Direct approach [Hammad et al., 2003b, 2004] handles negation-free queries over
time-based windows. These queries have the property that the expiration times of
base tuples and intermediate results can be determined via their exp timestamps,
as explained in Section 18.1.4.2. Hence, operators can access their state directly
and find expired tuples without the need for negative tuples. The direct approach
does not incur the overhead of negative tuples and does not have to store the base
windows referenced in the query. However, it may be slower than the negative tuple
approach for queries over multiple windows [Hammad et al., 2003b]. This is because
straightforward implementations of state buffers may require a sequential scan during
insertions or deletions. For example, if the state buffer is sorted by tuple arrival time,
then insertions are simple, but deletions require a sequential scan of the buffer. On the
other hand, sorting the buffer by expiration time simplifies deletions, but insertions
may require a sequential scan to ensure that the new tuple is ordered correctly, unless
the insertion order is the same as the expiration order.

18.1.4.4 Periodic Query Processing Over Sliding Windows

Query Processing over Windows Stored in Memory.

For reasons of efficiency (reduced expiration and query processing costs) and user
preference (users may find it easier to deal with periodic output rather than a con-
tinuous output stream [Arasu and Widom, 2004b; Chandrasekaran and Franklin,
2003]), sliding windows may be advanced and queries re-evaluated periodically with
a specified frequency [Abadi et al., 2003; Chandrasekaran et al., 2003; Golab et al.,
2004; Liu et al., 1999]. As illustrated in Figure 18.3, a periodically-sliding window
can be modeled as a circular array of sub-windows, each spanning an equal time
interval for time-based windows (e.g., a ten-minute window that slides every minute)
or an equal number of tuples for tuple-based windows (e.g., a 100-tuple window that
slides every ten tuples).

Rather than storing the entire window and re-computing an aggregate after every
new tuple arrives or an old tuple expires, a synopsis can be stored that pre-aggregates

18.1 Data Stream Management 737

Fig. 18.3 Sliding window implemented as a circular array of pointers to sub-windows

each sub-window and reports updated answers whenever the window slides forward
by one sub-window. Thus a “window update” occurs when the oldest sub-window is
replaced with newly arrived data (accumulated in a buffer), thereby sliding the win-
dow forward by one sub-window. Depending on the type of operator one deals with, it
would be necessary to use different types of synopsis (e.g., a running synopsis [Arasu
and Widom, 2004b] for subtractable aggregates [Cohen, 2006] such as SUM and
COUNT or an interval synopsis for distributive aggregates that are not subtractable,
such as MIN and MAX). An aggregate f is subtractable if, for two multi-sets X and
Y such that X ⊇ Y , f (X −Y) = f (X)− f (Y).Details are beyond our scope in this
chapter.

A disadvantage of periodic query evaluation is that results may be stale. One
way to stream new results after each new item arrives is to bound the error caused
by delayed expiration of tuples in the oldest sub-window. It has been shown [Datar
et al., 2002] that restricting the sizes of the sub-windows (in terms of the number
of tuples) to powers of two and imposing a limit on the number of sub-windows
of each size yields a space-optimal algorithm (called exponential histogram, or
EH) that approximates simple aggregates to within ε using logarithmic space (with
respect to the sliding window size). Variations of the EH algorithm have been used to
approximately compute the sum [Datar et al., 2002; Gibbons and Tirthapura, 2002],
variance and k-medians clustering [Babcock et al., 2003], windowed histograms
[Qiao et al., 2003], and order statistics [Lin et al., 2004; Xu et al., 2004]. Extensions
of the EH algorithm to time-based windows have also been proposed [Cohen and
Strauss, 2003].

18.1.4.5 Query Processing over Windows Stored on Disk.

In traditional database applications that use secondary storage, performance may
be improved if appropriate indices are built. Consider maintaining an index over
a periodically-sliding window stored on disk, e.g., in a data warehousing scenario
where new data arrive periodically and decision support queries are executed (off-

Sub-windows

Location of pointer to oldest sub-window

Temporary buffer
containing newest
results

Circular
array

738 18 Current Issues

line) over the latest portion of the data. In order to reduce the index maintenance
costs, it is desirable to avoid bringing the entire window into memory during every
update. This can be done by partitioning the data so as to localize updates (i.e.,
insertions of newly arrived data and deletion of tuples that have expired from the
window) to a small number of disk pages. For example, if an index over a sliding
window is partitioned chronologically [Folkert et al., 2005; Shivakumar and Garcı́a-
Molina, 1997], then only the youngest partition incurs insertions, while only the
oldest partition needs to be checked for expirations (the remaining partitions “in
the middle” are not accessed).The disadvantage of chronological clustering is that
records with the same search key may be scattered across a very large number of
disk pages, causing index probes to incur prohibitively many disk I/Os.

One way to reduce index access costs is to store a reduced (summarized) version
of the data that fits on fewer disk pages [Chandrasekaran and Franklin, 2004], but this
does not necessarily improve index update times. In order to balance the access and
update times, a wave index has been proposed that chronologically divides a sliding
window into n equal partitions, each of which is separately indexed and clustered by
search key for efficient data retrieval [Shivakumar and Garcı́a-Molina, 1997]. The
window can be partitioned either by insertion time or by expiration time; these are
equivalent from the perspective of wave indexes.

18.1.5 DSMS Query Optimization

It is usually the case that a query may be executed in a number of different ways. A
DBMS query optimizer is responsible for enumerating (some or all of) the possible
query execution strategies and choosing an efficient one using a cost model and/or a
set of transformation rules. A DSMS query optimizer has the same responsibility, but
it must use an appropriate cost model and rewrite rules. Additionally, DSMS query
optimization involves adaptivity, load shedding, and resource sharing among similar
queries running in parallel, as summarized below.

18.1.5.1 Cost Metrics and Statistics

Traditional DBMSs use selectivity information and available indices to choose
efficient query plans (e.g., those which require the fewest disk accesses). However,
this cost metric does not apply to (possibly approximate) persistent queries, where
processing cost per-unit-time is more appropriate [Kang et al., 2003]. Alternatively,
if the stream arrival rates and output rates of query operators are known, then it may
be possible to optimize for the highest output rate or to find a plan that takes the least
time to output a given number of tuples [Tao et al., 2005; Urhan and Franklin, 2001;
Viglas and Naughton, 2002]. Finally, quality-of-service metrics such as response
time may also be used in DSMS query optimization [Abadi et al., 2003; Berthold
et al., 2005; Schmidt et al., 2004, 2005].

18.1 Data Stream Management 739

18.1.5.2 Query Rewriting and Adaptive Query Optimization

Some of the DSMS query languages discussed in Section 18.1.2 introduce rewritings
for new operators, e.g., selections and time-based sliding windows commute, but
not selections and count-based windows [Arasu et al., 2006]. Other rewritings are
similar to those used in relational databases, e.g., re-ordering a sequence of binary
joins in order to minimize a particular cost metric. There has been some work in
join ordering for data streams in the context of the rate-based model [Viglas and
Naughton, 2002; Viglas et al., 2003]. Furthermore, adaptive re-ordering of pipelined
stream filters [Babu et al., 2004a] and adaptive materialization of intermediate join
results [Babu et al., 2005] have been investigated.

The notion of adaptivity is important in query rewriting; operators may need to be
re-ordered on-the-fly in response to changes in system conditions. In particular, the
cost of a query plan may change for three reasons: change in the processing time of
an operator, change in the selectivity of a predicate, and change in the arrival rate
of a stream [Adamic and Huberman, 2000]. Initial efforts on adaptive query plans
include mid-query re-optimization [Kabra and DeWitt, 1998] and query scrambling,
where the objective was to pre-empt any operators that become blocked and schedule
other operators instead [Amsaleg et al., 1996b; Urhan et al., 1998b]. To further
increase adaptivity, instead of maintaining a rigid tree-structured query plan, the
Eddy approach [Adamic and Huberman, 2000] performs scheduling of each tuple
separately by routing it through the operators that make up the query plan. In effect,
the query plan is dynamically re-ordered to match current system conditions. This is
accomplished by tuple routing policies that attempt to discover which operators are
fast and selective, and those operators are scheduled first. A recent extension adds
queue length as the third factor for tuple routing strategies in the presence of multiple
distributed Eddies [Tian and DeWitt, 2003a]. There is, however, an important trade-
off between the resulting adaptivity and the overhead required to route each tuple
separately. More details on adaptive query processing may be found in [Babu and
Bizarro, 2005; Babu and Widom, 2004; Gounaris et al., 2002a].

Adaptivity involves on-line reordering of a query plan and may therefore require
that the internal state stored by some operators be migrated over to the new query
plan consisting of a different arrangement of operators [Deshpande and Hellerstein,
2004; Zhu et al., 2004]. We do not discuss this issue further in this chapter.

18.1.6 Load Shedding and Approximation

The stream arrival rates may be so high that not all tuples can be processed, regardless
of the (static or run-time) optimization techniques used. In this case, two types of
load shedding may be applied—random or semantic—with the latter making use
of stream properties or quality-of-service parameters to drop tuples believed to be
less significant than others [Tatbul et al., 2003]. For an example of semantic load
shedding, consider performing an approximate sliding window join with the objective

740 18 Current Issues

of attaining the maximum result size. The idea is that tuples that are about to expire or
tuples that are not expected to produce many join results should be dropped (in case
of memory limitations [Das et al., 2005; Li et al., 2006; Xie et al., 2005]), or inserted
into the join state but ignored during the probing step (in case of CPU limitations
[Ayad et al., 2006; Gedik et al., 2005; Han et al., 2006]). Note that other objectives
are possible, such as obtaining a random sample of the join result [Srivastava and
Widom, 2004].

In general, it is desirable to shed load in such a way as to minimize the drop in
accuracy. This problem becomes more difficult when multiple queries with many
operators are involved, as it must be decided where in the query plan the tuples
should be dropped. Clearly, dropping tuples early in the plan is effective because all
of the subsequent operators enjoy reduced load. However, this strategy may adversely
affect the accuracy of many queries if parts of the plan are shared. On the other hand,
load shedding later in the plan, after the shared sub-plans have been evaluated and
the only remaining operators are specific to individual queries, may have little or no
effect in reducing the overall system load.

One issue that arises in the context of load shedding and query plan generation
is whether an optimal plan chosen without load shedding is still optimal if load
shedding is used. It has been shown that this is indeed the case for sliding window
aggregates, but not for queries involving sliding window joins [Ayad and Naughton,
2004].

Note that instead of dropping tuples during periods of high load, it is also possible
to put them aside (e.g., spill to disk) and process them when the load has subsided
[Liu et al., 2006; Reiss and Hellerstein, 2005]. Finally, note that in the case of
periodic re-execution of persistent queries, increasing the re-execution interval may
be thought of as a form of load shedding [Babcock et al., 2002; Cammert et al., 2006;
Wu et al., 2005].

18.1.7 Multi-Query Optimization

As seen in Section 18.1.4.4, memory usage may be reduced by sharing internal
data structures that store operator state [Denny and Franklin, 2005; Dobra et al.,
2004; Zhang et al., 2005]. Additionally, in the context of complex queries containing
stateful operators such as joins, computation may be shared by building a common
query plan [Chen et al., 2000]. For example, queries belonging to the same group
may share a plan, which produces the union of the results needed by the individual
queries. A final selection is then applied to the shared result set and new answers are
routed to the appropriate queries. An interesting trade-off appears between doing
similar work multiple times and doing too much unnecessary work; techniques that
balance this trade-off are presented in [Chen et al., 2002; Krishnamurthy et al., 2004;
Wang et al., 2006]. For example, suppose that the workload includes several queries
referencing a join of the same windows, but having a different selection predicate. If
a shared query plan performs the join first and then routes the output to appropriate

18.1 Data Stream Management 741

queries, then too much work is being done because some of the joined tuples may not
satisfy any selection predicate (unnecessary tuples are being generated). On the other
hand, if each query performs its selection first and then joins the surviving tuples,
then the join operator cannot be shared and the same tuples will be probed many
times.

For selection queries, a possible multi-query optimization is to index the query
predicates and store auxiliary information in each tuple that identifies which queries
it satisfies [Chandrasekaran and Franklin, 2003; Demers et al., 2006; Hanson et al.,
1999; Krishnamurthy et al., 2006; Lim et al., 2006; Madden et al., 2002a; Wu et al.,
2004]. When a new tuple arrives for processing, its attribute values are extracted and
matched against the query index to see which queries are satisfied by this tuple. Data
and queries may be thought of as duals, in some cases reducing query processing to
a multi-way join of the query predicate index and the data tables [Chandrasekaran
and Franklin, 2003; Lim et al., 2006].

18.1.8 Stream Mining

In addition to querying as discussed in the previous sections, mining of stream data
has been studied for a number of applications. Data mining involves the use of data
analysis tools to discover previously unknown relationships and patterns in large data
sets. The characteristics of data streams discussed above impose new challenges in
performing mining tasks; many of the well-known techniques cannot be used. The
major issues are the following:

• Unbounded data set. Traditional data mining algorithms are based on the
assumption that they can access the full data set. However, this is not possible
in data streams, where only a portion of the old data is available and much of
the old data are discarded. Hence, data mining techniques that require multiple
scan over the entire data set cannot be used.

• “Messy” data. Data are never entirely clean, but in traditional data mining
applications, they can be cleaned before the application is run. In many stream
applications, due to the high arrival rates of data streams, this is not always
possible. Given that in many cases the data that are read from sensors and
other sources of stream data are already quite noisy, the problem is even more
serious.

• Real-time processing. Data mining over traditional data is typically a batch
process. Although there are obvious efficiency concerns in analyzing these
data, they are not as severe as those on data streams. Since data arrival is
continuous and potentially at high rate, the mining algorithms have to have
real-time performance.

• Data evolution. As noted earlier traditional data sets can be assumed to be
static, i.e., the data is a sample from a static distribution. However, this is
not true for many real-world data streams, since they are generated over long

742 18 Current Issues

periods of time during which the underlying phenomena can change resulting
in significant changes in the distribution of the data values. This means that
some mining results that were previously generated may no longer be valid.
Therefore, a data stream mining technique must have the ability to detect
changes in the stream, and to automatically modify its mining strategy for
different distributions.

In the remainder, we will summarize some stream mining techniques. We divide
the discussion into two groups: general processing techniques, and specific data
mining tasks and their algorithms [Gaber et al., 2005]. Data processing techniques
are general approaches to process the stream data before specific tasks can be applied.
These consist of the following:

Sampling. As discussed earlier, data stream sampling is the process of choosing a
suitable representative subset from the stream of interest. In addition to the major
use of stream sampling to reduce the potentially infinite size of the stream to a
bounded set of samples, it can be utilized to clean “messy” data and to preserve
representative sets for the historical distributions. However, since some data
elements of the stream are not looked at, in general, it is impossible to guarantee
that the results produced by the mining application using the samples will be
identical to the results returned on the complete stream up to the most recent
time. Therefore, one of the most critical tasks for stream sampling techniques is to
provide guarantees about how much the results obtained using the samples differ
from the non-sampling based results.

Load shedding. The arrival speed of elements in data streams are usually unstable,
and many data stream sources are prone to dramatic spikes in load. Therefore,
stream mining applications must cope with the effects of system overload. Maxi-
mizing the mining benefits under resource constraints is a challenging task. Load
shedding techniques as discussed earlier are helpful.

for summarizing the streams and were introduced earlier in this chapter. A synop-

that might be useful for tuning the stream mining processes and further analyz-
ing the streams. It is especially useful for stream mining applications that are
expecting various streams as input, or an input stream with frequent distribution
changes. When the stream changes, some re-computation, either from scratch
or incrementally, has to be done. An efficient synopsis maintenance process can
generate summary of the stream shortly after the change, and the stream mining
application can re-adjust its settings or switch to another mining technique based
on these precious information.

Change detection. When the distribution of the stream changes, previous mining
results may no longer be valid under the new distribution, and the mining technique
must be adjusted to maintain good performance for the new distribution. Hence, it
is critical for the distribution changes in a stream to be detected in real-time so
that the stream mining application can react promptly.

sis does not represent all characteristics of a stream, but rather some “key features”

Synopsis maintenance processes create synopses or “sketches”Synopsis maintenance.

18.1 Data Stream Management 743

There are basically two different tracks oftechniques for detecting changes. One
track is to look at the natureof the dataset and determine if that set has evolved
[Kifer et al., 2004; Aggarwal, 2003, 2005], and the othertrack is to detect if
an existing data model is no longer suitablefor recent data, which implies the
concept drifting [Hulten et al., 2001; Wang et al., 2003a; Fan, 2004; Gama et al.,
2005]belong to the second track.

Now we take a look at some of the popular stream mining tasks and how they
can be accomplished in this environment. We focus on clustering, classification,
frequency counting and association rule mining, and time series analysis.

Clustering. Clustering groups together data with similar behavior. It can be thought
of as partitioning or segmenting elements into groups (clusters) that may or may
not be disjoint. In many cases, the answer to a clustering problem is not unique,
i.e., many answers can be found, and interpreting the practical meaning of each
cluster may be difficult.
Aggarwal et al. [2003] have proposed a framework for clustering data streams
that uses an online component to store summarized information about the streams,
and an offline component that performs clustering on the summarized data. This
framework has been extended in HPStream in a way that can find projected
clusters for high dimensional data streams [Aggarwal et al., 2004] .
The existing clustering algorithms can be categorized into decision tree based
ones (e.g., [Domingos and Hulten, 2000; Gama et al., 2005; Hulten et al., 2001;
Tao and Özsu, 2009]) and k-mean (or k-median) based approaches (e.g., [Babcock
et al., 2002; Charikar et al., 1997, 2003; Guha et al., 2003; Ordonez, 2003]).

Classification. Classification maps data into predefined groups (classes). Its differ-
ence from clustering is that, in classification, the number of groups is predeter-
mined and fixed. Similar to clustering, classification techniques can also adopt the
decision tree model (e.g., [Ding et al., 2002; Ganti et al., 2002]). Two decision tree
classifiers — Interval Classifier [Agrawal et al., 1992] and SPRINT [Shafer et al.,
1996] — can mine databases that do not fit in main memory, and are thus are
suitable for data streams. The VFDT [Domingos and Hulten, 2000] and CVFDT
[Hulten et al., 2001] systems originally designed for stream clustering can also be
adopted for classification tasks.

Frequency counting and association rule mining. The problem of frequency count-
ing, and mining association rules (frequent itemsets) has long been recognized as
an important issue. However, although mining frequent itemsets has been widely
studied in data mining and a number of efficient algoirthms exist, extending these
to data streams is challenging, especially for streams with non-static distributions
[Jiang and Gruenwald, 2006].
Mining frequent itemsets is a continuous process that runs throughout a stream’s
life span. Since the total number of itemsets is exponential, making it impractical
to keep count of each itemset in order to incrementally adjust the frequent itemsets
as new data items arrive. Usually only the itemsets that are already known to
be frequent are recorded and monitored, and counters of infrequent itemsets are
discarded [Chakrabarti et al., 2002; Cormode and Muthukrishnan, 2003; Demaine

744 18 Current Issues

et al., 2002; Halatchev and Gruenwald, 2005] . However, since data streams can
change over time, an itemset that was once infrequent may become frequent
if the distribution changes. Such (new) frequent itemsets are difficult to detect,
since mining data streams is a one-pass procedure and history information is not
retrievable.

Time series analysis. In general, a time series is a set of attribute values over a
period of time. Usually a time series consists of only numeric values, either
continuous or discrete. Consequently, it is possible to model data streams that
contain only numeric values as time series. This allows one to use analysis
techniques that have been developed on time series for some types of stream data.
Mining tasks over time series can be briefly classified into two types: pattern
detection and trend analysis. A typical mining task for pattern detection is the
following: given a sample pattern or a base time series with a certain pattern,
find all the time series that contain this pattern. The tasks for trend prediction are
detecting trends in time series and predicting the upcoming trends.

18.2 Cloud Data Management

Cloud computing is the latest trend in distributed computing and has been the
subject of much hype. The vision encompasses on demand, reliable services provided
over the Internet (typically represented as a cloud) with easy access to virtually
infinite computing, storage and networking resources. Through very simple web
interfaces and at small incremental cost, users can outsource complex tasks, such
as data storage, system administration, or application deployment, to very large
data centers operated by cloud providers. Thus, the complexity of managing the
software/hardware infrastructure gets shifted from the users’ organization to the
cloud provider.

Cloud computing is a natural evolution, and combination, of different computing
models proposed for supporting applications over the web: service oriented archi-
tectures (SOA) for high-level communication of applications through web services,
utility computing for packaging computing and storage resources as services, cluster
and virtualization technologies to manage lots of computing and storage resources,
autonomous computing to enable self-management of complex infrastructure, and
grid computing to deal with distributed resources over the network. However, what
makes cloud computing unique is its ability to provide various levels of functionality
such as infrastructure, platform, and application as services that can be combined to
best fit the users’ requirements [Cusumano, 2010]. From a technical point of view,
the grand challenge is to support in a cost-effective way, the very large scale of the
infrastructure that has to manage lots of users and resources with high quality of
service.

Cloud computing has been developed by web industry giants, such as Amazon,
Google, Microsoft and Yahoo, to create a new, huge market. Virtually all computer
industry players are interested in cloud computing. Cloud providers have developed

18.2 Cloud Data Management 745

new, proprietary technologies (e.g., Google File System), typically with specific,
simple applications in mind. There are already open source implementations (e.g.,
Hadoop Distributed File System) with much contribution from the research commu-
nity. As the need to support more complex applications increases, the interest of the
research community is steadily growing. In particular, data management in cloud
computing is becoming a major research direction which we think can capitalize on
distributed and parallel database techniques.

The rest of this section is organized as follows. First, we give a general taxonomy
of the different kinds of clouds, and a discussion of the advantages and potential
disadvantages. Second, we give an overview of grid computing, with which cloud
computing is sometimes confused, and point out the main differences. Third, we
present the main cloud architectures and associated functions. Fourth, we present
the current solutions for data management in the cloud, in particular, data storage,
database management and parallel data processing. Finally, we discuss open issues
in cloud data management.

18.2.1 Taxonomy of Clouds

In this section, we first give a definition of cloud computing, with the main categories
of cloud services. Then, we discuss the main data-intensive applications that are
suitable for the cloud and the main issues, in particular, security.

Agreeing on a precise definition of cloud computing is difficult as there are many
different perspectives (business, market, technical, research, etc.). However, a good
working definition is that a “cloud provides on demand resources and services over
the Internet, usually at the scale and with the reliability of a data center” [Grossman
and Gu, 2009]. This definition captures well the main objective (providing on-demand
resources and services over the Internet) and the main requirements for supporting
them (at the scale and with the reliability of a data center).

Since the resources are accessed through services, everything gets delivered as a
service. Thus, as in the services industry, this enables cloud providers to propose a
pay-as-you-go pricing model, whereby users only pay for the resources they consume.
However, implementing a pricing model is complex as users should be charged based
on the level of service actually delivered, e.g., in terms of service availability or
performance. To govern the use of services by customers and support pricing, cloud
providers use the concept of Service Level Agreement (SLA), which is critical in the
services industry (e.g., in telecoms), but in a rather simple way. The SLA (between the
cloud provider and any customer) typically specifies the responsabilities, guarantees
and service commitment. For instance, the service commitment might state that the
service uptime during a billing cycle (e.g., a month) should be at least 99%, and if
the commitment is not met, the customer should get a service credit.

Cloud services can be divided in three broad categories: Infrastructure-as-a-
Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).

746 18 Current Issues

• Infrastructure-as-a-Service (IaaS). IaaS is the delivery of a computing infras-
tructure (i.e., computing, networking and storage resources) as a service. It enables
customers to scale up (add more resources) or scale down (release resources) as
needed (and only pay for the resources consumed). This important capability is
called elasticity and is typically achieved through server virtualization, a tech-
nology that enables multiple applications to run on the same physical server as
virtual machines, i.e., as if they would run on distinct physical servers. Customers
can then requisition computing instances as virtual machines and add and attach
storage as needed. An example of popular IaaS is Amazon web Services.

• Software-as-a-Service (SaaS). SaaS is the delivery of application software as
a service. It generalizes the earlier Application Service Provider (ASP) model
whereby the hosted application is fully owned, operated and maintained by the
ASP. With SaaS, the cloud provider allows the customer to use hosted applications
(as with ASP) but also provides tools to integrate other applications, from different
vendors or even developed by the customer (using the cloud platform). Hosted
applications can range from simple ones such as email and calendar to complex
applications such as customer relationship management (CRM), data analysis or
even social networks. An example of popular SaaS is Safesforce CRM system.

• Platform-as-a-Service (PaaS). PaaS is the delivery of a computing platform
with development tools and APIs as a service. It enables developers to create
and deploy custom applications directly on the cloud infrastructure, in virtual
machines, and integrate them with applications provided as SaaS. An example of
popular PaaS is Google Apps.

By using a combination of IaaS, SaaS and PaaS, customers could move all or part
of their information technology (IT) services to the cloud, with the following main
benefits:

• Cost. The cost for the customer can be greatly reduced since the IT infrastruc-
ture does not need to be owned and managed; billing is only based only on
resource consumption. For the cloud provider, using a consolidated infrastruc-
ture and sharing costs for multiple customers reduces the cost of ownership and
operation.

• Ease of access and use. The cloud hides the complexity of the IT infrastructure
and makes location and distribution transparent. Thus, customers can have
access to IT services anytime, and from anywhere with an Internet connection.

• Quality of Service (QoS). The operation of the IT infrastructure by a special-
ized provider that has extensive experience in running very large infrastructures
(including its own infrastructure) increases QoS.

• Elasticity. The ability to scale resources out, up and down dynamically to
accommodate changing conditions is a major advantage. In particular, it makes
it easy for customers to deal with sudden increases in loads by simply creating
more virtual machines.

However, not all corporate applications are good candidates for being “cloudified”
[Abadi, 2009]. To simplify, we can classify corporate applications between the two

18.2 Cloud Data Management 747

main classes of data-intensive applications which we already discussed: OLTP and
OLAP. Let us recall their main characteristics. OLTP deals with operational databases
of average sizes (up to a few terabytes), that are write-intensive, and require complete
ACID transactional properties, strong data protection and response time guarantees.
On the other hand, OLAP deals with historical databases of very large sizes (up to
petabytes), that are read-intensive, and thus can accept relaxed ACID properties. Fur-
thermore, since OLAP data are typically extracted from operational OLTP databases,
sensitive data can be simply hidden for analysis (e.g., using anonymization) so that
data protection is not as crucial as in OLTP.

OLAP is more suitable than OLTP for cloud primarily because of two cloud
characteristics (see the detailed discussion in [Abadi, 2009]): elasticity and security.
To support elasticity in a cost-effective way, the best solution, which most cloud
providers adopt, is a shared-nothing cluster architecture. Recall from Section 14.1
that shared-nothing provides high-scalability but requires careful data partitioning.
Since OLAP databases are very large and mostly read-only, data partitioning and
parallel query processing are effective. However, it is much harder to support OLTP
on shared-nothing because of ACID guarantees, which require complex concurrency
control. For these reasons and because OLTP databases are not so large, shared-disk
is the preferred architecture for OLTP. The second reason that OLTP is not so suitable
for cloud is that the corporate data get stored at an untrusted host (the provider site).
Storing corporate data at an untrusted third-party, even with a carefully negotiated
SLA with a reliable provider, creates resistance from some customers because of
security issues. However, this resistance is much reduced for historical data, and with
anonymized sensitive data.

There are currently two main solutions to address the security issue in clouds:
internal cloud and virtual private cloud. The mainstream cloud approach is generally
called public cloud, because the cloud is available to anyone on the Internet. An
internal cloud (or private cloud) is the use of cloud technologies for managing a
company’s data center, but in a private network behind a firewall. This brings much
tighter security and many of the advantages of cloud computing. However, the cost
advantage tends to be much reduced because the infrastructure is not shared with
other customers. Nonetheless, an attractive compromise is the hybrid cloud which
connects the internal cloud (e.g., for OLTP) with one or more public clouds (e.g.,
for OLAP). As an alternative to internal clouds, cloud providers such as Amazon
and Google have proposed virtual private clouds with the promise of a similar level
of security as an internal cloud, but within a public cloud. A virtual private cloud
provides a Virtual Private Network (VPN) with security services to the customers.
Virtual private clouds can also be used to develop hybrid clouds, with tighter security
integration with the internal cloud.

One earlier criticism of cloud computing is that customers get locked in proprietary
clouds. It is true that most clouds are proprietary and there are no standards for
cloud interoperability. But this is changing with open source cloud software such
as Hadoop, an Apache project implementing Google’s major cloud services such as
Google File System and MapReduce, and Eucalyptus, an open source cloud software
infrastructure, which are attracting much interest from research and industry.

748 18 Current Issues

18.2.2 Grid Computing

Like cloud computing, grid computing enables access to very large compute and
storage resources over the web. It has been the subject of much research and develop-
ment over the last decade. Cloud computing is somewhat more recent and there are
similarities but also differences between the two computing models. In this section,
we discuss the main aspects of grid computing and end with a comparison with cloud
computing.

Grid computing has been initially developed for the scientific community as a
generalization of cluster computing, typically to solve very large problems (that
require a lot of computing power and/or access to large amounts of data) using
many computers over the web. Grid computing has also gained some interest in
enterprise information systems. For instance, IBM and Oracle (since Oracle 10g
with g standing for grid) have been promoting grid computing with tools and services
for both scientific and enterprise applications.

Grid computing enables the virtualization of distributed, heterogeneous resources
using web services [Atkinson et al., 2005]. These resources can be data sources (files,
databases, web sites, etc.), computing resources (multiprocessors, supercomputers,
clusters) and application resources (scientific applications, information management
services, etc.). Unlike the web, which is client-server oriented, the grid is demand-
oriented: users send requests to the grid which allocates them to the most appropriate
resources to handle them. A grid is also an organized, secured environment managed
and controlled by administrators. An important unit of control in a grid is the Virtual
Organization (VO), i.e., a group of individuals, organizations or companies that share
the same resources, with common rules and access rights. A grid can have one or
more VOs, and may have different size, duration and goal.

Compared with cluster computing, which only deals with parallelism, the grid
is characterized with high heterogeneity, large-scale distribution and large-scale
parallelism. Thus, it can offer advanced services on top of very large amounts of
distributed data.

Depending on the contributed resources and the targeted applications, many
different kinds of grids and architectures are possible. The earlier computational grids
typically aggregate very powerful sites (supercomputers, clusters) to provide high-
performance computing for scientific applications (e.g., physics, astronomy). Data
grids aggregate heterogeneous data sources (like a distributed database) and provide
additional services for data discovery, delivery and use to scientific applications.
More recently, enterprise grids [Jiménez-Peris et al., 2007] have been proposed to
aggregate information system resources, such as web servers, application servers and
database servers, in the enterprise.

Figure 18.4 illustrates a typical grid scenario, inspired by the Grid5000 platform
in France, with two computing sites (clusters 1 and 2) and one storage site (cluster
3) accessible to authorized users. Each site has one cluster with service nodes and
either compute or storage nodes. Service nodes provide common services for users
(access, resource reservation, deployment) and administrators (infrastructure services)
and are available at each site, through the replication of directories and catalogs.

18.2 Cloud Data Management 749

Compute nodes provide the main computing power while storage nodes provide
storage capacity (i.e., lots of disks). The basic communication between grid sites
(e.g., to deploy an application or a system image) is through web services (WS) calls
(to be discussed shortly). But for distributing computation between compute nodes at
two different sites, communication is typically through the standard Message Passing
Interface (MPI).

A typical scenario for solving a large scientific problem P is the following. P is
initially decomposed (by a scientist programmer User 1) into two subproblems P1
and P2, each being solved through a parallel program to be run at one computing site.
If P1 and P2 are independent then there is no need for communication between the
computing sites. If there are computing dependencies, e.g., P2 consumes results of P1,
communication between P1 and P2 must be specified and implemented through MPI.
The data produced by P1 and P2 could then be sent to the storage site, typically using
WS calls. To run P on the grid, a user must first reserve the computing resources
(e.g., a needed number of cluster nodes at site 1 and 2) and storage resources (at
site 3), deploy the jobs corresponding to the programs, and then start their parallel
executions at site 1 and 2, which will produce data and send them to site 3. The
resource allocation and the scheduling of job executions at the clusters are done by
the grid middleware in a way that guarantees fair access to the reserved resources.
More complex scenarios can also involve the distributed execution of workflows. On
the other hand, User 2 can simply reserve storage capacity and use it for saving her
local data (using the store interface).

service

nodes

compute

nodes

Cluster 1

service

nodes

compute

nodes

Cluster 2

service

nodes

compute

nodes

Cluster 3

WS calls

MPI calls WS calls

reserve

deploy

run

clean

User 1 User 2

store

clean

reserve

store

WS calls

Fig. 18.4 A Grid Scenario

750 18 Current Issues

A common need of different kinds of grids is interoperability of heterogeneous
resources. To address this need, the Globus Alliance, which represents the grid
community, has defined the Open Grid Services Architecture (OGSA) as a standard
SOA and a framework to create grid solutions using WS standards. OGSA provides
three main layers to build grid applications: (1) resources layer, (2) web services layer,
and (3) high-level grid services layer. The first layer provides an abstraction of the
physical resources (servers, storage, network) that are managed by logical resources
such as database systems, file systems, or workflow managers, all encapsulated
by WS. The second layer extends WS, which are typically stateless, to deal with
stateful grid services, i.e., those that can retain data between multiple invocations.
This capability is useful for instance to access a resources state, e.g., the load of a
server, through WS. Stateful grid services can be created and destroyed (using a grid
service factory), and have an internal state which can be observed or even changed
after notifications from other grid services. The third layer provides high-level grid-
specific services such as resource provisioning, data management, security, workflow,
and monitoring to ease the development and management of grid applications.

The adoption of WS in enterprise information systems has made OGSA appealing
and several offerings for enterprise grids are based on the Globus platform (e.g.,
Oracle 11g). Web service standards are useful for grid data management: XML for
data exchange, XMLSchema for schema description, Simple Object Access Protocol
(SOAP) for remote procedure calls, UDDI for directory access, Web Service Defini-
tion Language (WSDL) for data source description, WS-Transaction for distributed
transactions, Business Process Execution Language (BPEL) for workflow control,
etc.

The main solutions for grid data management, in the context of computational
grids, are file-based [Pacitti et al., 2007b]. A basic solution, used in Globus, is to
combine global directory services to locate files and a secure file transfer protocol.
Although simple, this solution does not provide distribution transparency as it requires
the application to explicitly transfer files. Another solution is to use a distributed file
system for the grid that can provide location-independent file access and transparent
replication [Zhang and Honeyman, 2008].

Recent solutions have recognized the need for high-level data access and extended
the distributed database architecture whereby clients send database requests to a grid
multidatabase server that forwards them transparently to the appropriate database
servers. These solutions rely on some form of global directory management, where
directories can be distributed and replicated. In particular, users are able to use a high-
level query language (SQL) to describe the desired data as with OGSA-DAI (OGSA
Database Access and Integration), an OGSA standard for accessing and integrating
distributed data [Antonioletti et al., 2005]. OGSA-DAI is a popular multidatabase
system that provides uniform access to heterogeneous data sources (e.g., relational
databases, XML databases or files) via WS within grids. Its architecture is similar to
the mediator/wrapper architecture described in Chapters 1and 9 with the wrappers
implemented by WS. The OGSA-DAI mediator includes a distributed query processor
which automatically transforms a multidatabase query into a distributed QEP that
specifies the WS calls to get the required data from each database wrapper.

18.2 Cloud Data Management 751

We end this section with a discussion of the advantages and disadvantages of grid
computing. The main advantages come from the distributed architecture when it uses
clusters at each site, as it provides scalability, performance (through parallelism)
and availability (through replication). It is also a cost-effective alternative to a huge
supercomputer to solve larger, more complex problems in a shorter time. Another ad-
vantage is that existing resources are better used and shared with other organizations.
The main disadvantages also come from the highly distributed architecture, which
is complex for both administrators and developers. In particular, sharing resources
across administrative domains is a political challenge for participating organizations
as it is hard to assess their cost/benefits.

Compared with cloud computing, there are important differences in terms of
objectives and architecture. Grid computing fosters collaboration among participating
organizations to leverage existing resources whereas cloud computing provides a
rather fixed (distributed) infrastructure to all kinds of users (and customers). Thus,
SLA and pay-per-use are essential in cloud computing. The grid architecture is
potentially much more distributed than the cloud architecture that typically consists
of a few sites in different geographical regions, but each site being a very huge
data center. Therefore, the scalability issue at a site (in terms of numbers of users
or numbers of server nodes) is much harder in cloud computing. Finally, a major
difference is that there are no standards such as OGSA for cloud interoperability.

18.2.3 Cloud architectures

Unlike in grid computing, there is no standard cloud architecture and there will
probably never be one, since different cloud providers will provide different cloud
services (IaaS, PaaS, SaaS) in different ways (public, private, virtual private, ...)
depending on their business models. Thus, in this section, we discuss the main cloud
architectures in order to identify the underlying technologies and functions. This is
useful to be able to focus on data management (in the next section).

Figure 18.5 illustrates a typical cloud scenario, inspired by that of a popular
IaaS/PaaS provider. This scenario is also useful for comparison with the typical grid
scenario in Figure 18.4. We assume one cloud provider with two sites, each with the
same capabilities and cluster architecture. Thus, any user can access any site to get
the needed service as if there were only one site, so the cloud appears “centralized”.
This is one major difference with grid as distribution can be completely hidden.
However, distribution happens under the cover, e.g., to replicate data automatically
from one site to the other in order to resist to site failure. Then, to solve the large
scientific problem P, User 1 now does not need to decompose it into two subproblems,
but she does need to provide a parallel version of P to be run at Site 1. This is done
by creating a virtual machine (VM) (sometimes called computing instance) with
executable application code and data, then starting as many VMs as needed for
the parallel execution and finally terminating. User 1 is then charged only for the
resources (VMs) consumed. The allocation of VMs to physical machines at Site 1 is

752 18 Current Issues

done by the cloud middleware in a way that optimizes global resource consumption
while satisfying the SLA. On the other hand, similar to the grid scenario, User 2 can
also reserve storage capacity and use it for saving her local data.

service

nodes

compute

nodes

Cluster 1

service

nodes

compute

nodes

Cluster 2

create VMs

start VMs

terminate

pay

User 1 User 2

reserve

store

pay

storage

nodes

storage

nodes

WS calls

Fig. 18.5 A Cloud Scenario

We can distinguish the cloud architectures between infrastructure (IaaS) and
software/platform (SaaS/PaaS). All architectures can be supported by a network of
shared-nothing clusters. For IaaS, the preferred architectural model derives from the
need to provide computing instances on demand. To support computing instances
on demand, as in the scenario in Figure 18.5, the main solution is to rely on server
virtualization, which enables VMs to be provisioned and decommissioned as needed.
Server virtualization can be well supported by a shared-nothing cluster architecture.
For SaaS/PaaS, many different architectural models can be used depending on the
targeted services and applications. For instance, to support enterprise applications, a
typical architecture is n-tier with web servers, application servers, database servers
and storage servers, all organized in a cluster architecture. Server virtualization can
also be used in such architecture. For data storage virtualization, SAN can be used to
provide shared-disk access to service or compute nodes. As for grids, communication
between applications and services is typically done through WS or message passing.

The main functions provided by clouds are similar to those found in grids: security,
directory management, resource management (provisioning, allocation, monitor-
ing) and data management (storage, file management, database management, data

18.2 Cloud Data Management 753

replication). In addition, clouds provide support for pricing, accounting and SLA
management.

18.2.4 Data management in the cloud

For managing data, cloud providers could rely on relational DBMS technology, all of
which have distributed and parallel versions. However, relational DBMSs have been
lately criticized for their “one size fits all” approach [Stonebraker, 2010]. Although
they have been able to integrate support for all kinds of data (e.g., multimedia objects,
XML documents) and new functions, this has resulted in a loss of performance, sim-
plicity and flexibility for applications with specific, tight performance requirements.
Therefore, it has been argued that more specialized DBMS engines are needed. For
instance, column-oriented DBMSs [Abadi et al., 2008], which store column data
together rather than rows in traditional row-oriented relational DBMSs, have been
shown to perform more than an order of magnitude better on OLAP workloads.
Similarly, as discussed in Section 18.1, DSMSs are specifically architected to deal
efficiently with data streams which traditional DBMS cannot even support.

The “one size does not fit all” argument generally applies to cloud data man-
agement as well. However, internal clouds or virtual private clouds for enterprise
information systems, in particular for OLTP, may use traditional relational DBMS
technology. On the other hand, for OLAP workloads and web-based applications
on the cloud, relational DBMS provide both too much (e.g., ACID transactions,
complex query language, lots of tuning parameters), and too little (e.g., specific
optimizations for OLAP, flexible programming model, flexible schema, scalability)
[Ramakrishnan, 2009]. Some important characteristics of cloud data have been con-
sidered for designing data management solutions. Cloud data can be very large (e.g.,
text-based or scientific applications), unstructured or semi-structured, and typically
append-only (with rare updates). And cloud users and application developers may be
in high numbers, but not DBMS experts. Therefore, current cloud data management
solutions have traded consistency for scalability, simplicity and flexibility.

In this section, we illustrate cloud data management with representative solu-
tions for distributed file management, distributed database management and parallel
database programming.

18.2.4.1 Distributed File Management

The Google File System (GFS) [Ghemawat et al., 2003] is a popular distributed
file system developed by Google for its internal use. It is used by many Google
applications and systems, such as Bigtable and MapReduce, which we discuss next.
There are also open source implementations of GFS, such as Hadoop Distributed
File System (HDFS), a popular Java product.

754 18 Current Issues

Similar to other distributed file systems, GFS aims at providing performance,
scalability, fault-tolerance and availability. However, the targeted systems, shared-
nothing clusters, are challenging as they are made of many (e.g., thousands of) servers
built from inexpensive hardware. Thus, the probability that any server fails at a given
time is high, which makes fault-tolerance difficult. GFS addresses this problem. It
is also optimized for Google data-intensive applications, such as search engine or
data analysis. These applications have the following characteristics. First, their files
are very large, typically several gigabytes, containing many objects such as web
documents. Second, workloads consist mainly of read and append operations, while
random updates are rare. Read operations consist of large reads of bulk data (e.g., 1
MB) and small random reads (e.g., a few KBs). The append operations are also large
and there may be many concurrent clients that append the same file. Third, because
workloads consist mainly of large read and append operations, high throughput is
more important than low latency.

GFS organizes files as a tree of directories and identifies them by pathnames. It
provides a file system interface with traditional file operations (create, open, read,
write, close, and delete file) and two additional operations: snapshot and record
append. Snapshot allows creating a copy of a file or of a directory tree. Record
append allows appending data (the record) to a file by concurrent clients in an
efficient way. A record is appended atomically, i.e., as a continuous byte string,
at a byte location determined by GFS. This avoids the need for distributed lock
management that would be necessary with the traditional write operation (which
could be used to append data).

The architecture of GFS is illustrated in Figure 18.6. Files are divided into fixed-
size partitions, called chunks, of large size, i.e., 64 MB. The cluster nodes consist of
GFS clients that provide the GFS interface to applications, chunk servers that store
chunks and a single GFS master that maintains file metadata such as namespace,
access control information, and chunk placement information. Each chunk has a
unique id assigned by the master at creation time and, for reliability reasons, is
replicated on at least three chunk servers (in Linux files). To access chunk data,
a client must first ask the master for the chunk locations, needed to answer the
application file access. Then, using the information returned by the master, the client
can request the chunk data to one of the replicas.

This architecture using single master is simple. And since the master is mostly used
for locating chunks and does not hold chunk data, it is not a bottleneck. Furthermore,
there is no data caching at either clients or chunk servers, since it would not benefit
large reads. Another simplification is a relaxed consistency model for concurrent
writes and record appends. Thus, the applications must deal with relaxed consistency
using techniques such as checkpointing and writing self-validating records. Finally,
to keep the system highly available in the face of frequent node failures, GFS relies
on fast recovery and replication strategies.

18.2 Cloud Data Management 755

Application

GFS client

Master

Chunk server Chunk server

Get chunk location

Get chunk data

Fig. 18.6 GFS Architecture

18.2.4.2 Distributed Database Management

We can distinguish between two kinds of solutions: online distributed database
services and distributed database systems for cloud applications. Online distributed
database services such as Amazon SimpleDB and Google Base enable any web
user to add and manipulate structured data in a database in a very simple way,
without having to define a schema. For instance, SimpleDB provides basic database
functionality including scan, filter, join and aggregate operators, caching, replication
and transactions, but no complex operators (e.g., union), no query optimizer and no
fault-tolerance. Data are structured as (attribute name, value) pairs, all automatically
indexed so there is no need for administration. Google Base is a simpler online
database service (as a Beta version at the time of this writing) which enables a user to
add and retrieve structured data through predefined forms, with predefined attributes
(e.g., ingredient for a recipe), thus avoiding the need for schema definition. Data
in Google Base can then be searched through other tools, such as the web search
engine.

Distributed database systems for cloud applications emphasize scalability, fault-
tolerance and availability, sometimes at the expense of consistency or ease of devel-
opment. We illustrate this approach with two popular solutions: Google Bigtable and
Yahoo! PNUTS.

Bigtable.

Bigtable is a database storage system for a shared-nothing cluster [Chang et al.,
2008]. It uses GFS for storing structured data in distributed files, which provides

756 18 Current Issues

fault-tolerance and availability. It also uses a form of dynamic data partitioning for
scalability. And like GFS, it is used by popular Google applications, such as Google
Earth, Google Analytics and Orkut. There are also open source implementations of
Bigtable, such as Hadoop Hbase, which runs on HDFS.

Bigtable supports a simple data model that resembles the relational model, with
multi-valued, timestamped attributes. We briefly describe this model as it is the
basis for Bigtable implementation that combines aspects of row-store and column-
store DBMS. We use the terminology of the original proposal [Chang et al., 2008],
in particular, the basic terms “row” and “column” (instead of tuple and attribute).
However, for consistency with the concepts we have used so far, we present the
Bigtable data model as a slightly extended relational model1. Each row in a table
(or Bigtable) is uniquely identified by a row key, which is an arbitrary string (of
up to 64KB in the original system). Thus, a row key is like a mono-attribute key
in a relation. A more original concept is that of a column family which is a set of
columns (of the same type), each identified by a column key. A column family is
a unit of access control and compression. The syntax for naming column keys is
family:qualifier. The column family name is like a relation attribute name.
The qualifier is like a relation attribute value, but used as a name as part of the
column key to represent a single data item. This allows the equivalent of multi-valued
attributes within a relation, but with the capability of naming attribute values. In
addition, the data identified by a column key within a row can have multiple versions,
each identified by a timestamp (a 64 bit integer).

Figure 18.7 shows an example a row in a Bigtable, as a relational style repre-
sentation of the example [Chang et al., 2008]. The row key is a reverse URL. The
Contents:column family has only one column key that represents the web page con-
tents, with two versions (at timestamps t1 and t5). The Language:family has also only
one column key that represents the web page language, with one version. The Anchor:
column family has two column keys, i.e., Anchor:inria.fr and Anchor:uwaterloo.ca,
which represent two anchors. The anchor source site name (e.g., inria.fr) is used as
qualifier and the link text as value.

Bigtable provides a basic API for defining and manipulating tables, within a
programming language such as C++. The API offers various operators to write and
update values, and to iterate over subsets of data, produced by a scan operator. There
are various ways to restrict the rows, columns and timestamps produced by a scan,
as in a relational select operator. However, there are no complex operators such as
join or union, which need to be programmed using the scan operator. Transactional
atomicity is supported for single row updates only.

To store a table in GFS, Bigtable uses range partitioning on the row key. Each
table is divided into partitions called tablets, each corresponding to a row range.
Partitioning is dynamic, starting with one tablet (the entire table range) that is
subsequently split into multiple tablets as the table grows. To locate the (user) tablets
in GFS, Bigtable uses a metadata table, which is itself partitioned in metadata tablets,
with a single root tablet stored at a master server, similar to GFSs master. In addition

1 In the original proposal, a Bigtable is defined as a multidimensional map, indexed by a row key, a
column key and a timestamp, each cell of the map being a single value (a string).

18.2 Cloud Data Management 757

“com.google.www” “<html> ... </html>” t
1

“google.com” t
2

“google.com” t
4

“Google” t
3

“english” t
1

“<html> ... </html>” t
5

inria.fr

uwaterloo.ca

Row key Contents: Anchor: Language:

Fig. 18.7 Example of a Bigtable Row

to exploiting GFS for scalability and availability, Bigtable uses various techniques to
optimize data access and minimize the number of disk accesses, such as compression
of column families, grouping of column families with high locality of access and
aggressive caching of metadata information by clients.

PNUTS.

PNUTS is a parallel and distributed database system for Yahoo!’s cloud applications
[Cooper et al., 2008]. It is designed to serve web applications, which typically do not
need complex queries, but require good response time, scalability and high availability
and can tolerate relaxed consistency guarantees for replicated data. PNUTS is used
internally at Yahoo! for various applications such as user database, social networks,
content metadata management and shopping listings management.

PNUTS supports the basic relational data model, with tables of flat records.
However, arbitrary structures are allowed within attributes of Binary Long Object
(Blob) type. Schemas are flexible as new attributes can be added at any time even
though the table is being queried or updated, and records need not have values for all
attributes. PNUTS provides a simple query language with selection and projection
on a single relation. Updates and deletes must specify the primary key.

PNUTS provides a replica consistency model that is between strong consistency
and eventual consistency (see Chapter 13 for detailed definitions). This model is
motivated by the fact that web applications typically manipulate only one record
at a time, but different records may be used under different geographic locations.
Thus, PNUTS proposes per-record timeline consistency, which guarantees that all
replicas of a given record apply all updates to the record in the same order. Using this
consistency model, PNUTS supports several API operations with different guarantees.
For instance, Read-any returns a possibly stale version of the record; Read-latest
returns the latest copy of the record; Write performs a single atomic write operation.

758 18 Current Issues

Database tables are horizontally partitioned into tablets, through either range
partitioning or hashing, which are distributed across many servers in a cluster (at a
site). Furthermore, sites in different geographical regions maintain a complete copy
of the system and of each table. An original aspect is the use of a publish/subscribe
mechanism, with guaranteed delivery, for both reliability and replication. This avoids
the need to keep a traditional database log as the publish/subscribe mechanism is
used to replay lost updates.

18.2.4.3 Parallel Data Processing

We illustrate parallel data processing in the cloud with MapReduce, a popular pro-
gramming framework for processing and generating large datasets [Dean and Ghe-
mawat, 2004]. MapReduce was initially developed by Google as a proprietary product
to process large amounts of unstructured or semi-structured data, such as web docu-
ments and logs of web page requests, on large shared-nothing clusters of commodity
nodes and produce various kinds of data such as inverted indices or URL access
frequencies. Different implementations of MapReduce are now available such as
Amazon MapReduce (as a cloud service) or Hadoop MapReduce (as open source
software).

MapReduce enables programmers to express in a simple, functional style their
computations on large data sets and hides the details of parallel data processing, load
balancing and fault-tolerance. The programming model includes only two operations,
map and reduce, which we can find in many functional programming languages such
as Lisp and ML. The Map operation is applied to each record in the input data set to
compute one or more intermediate (key,value) pairs. The Reduce operation is applied
to all the values that share the same unique key in order to compute a combined
result. Since they work on independent inputs, Map and Reduce can be automatically
processed in parallel, on different data partitions using many cluster nodes.

Figure 18.8 gives an overview of MapReduce execution in a cluster. There is one
master node (not shown in the figure) in the cluster that assigns Map and Reduce tasks
to cluster nodes, i.e., Map and Reduce nodes. The input data set is first automatically
split into a number of partitions, each being processed by a different Map node that
applies the Map operation to each input record to compute intermediate (key,value)
pairs. The intermediate result is divided into n partitions, using a partitioning function
applied to the key (e.g., hash(key) mod n). Map nodes periodically write to disk their
intermediate data into n regions by applying the partitioning function and indicate
the region locations to the master. Reduce nodes are assigned by the master to
work on one or more partitions. Each Reduce node first reads the partitions from the
corresponding regions on the Map nodes, disks, and groups the values by intermediate
key, using sorting. Then, for each unique key and group of values, it calls the user
Reduce operation to compute a final result that is written in the output data set.

As in the original description of MapReduce [Dean and Ghemawat, 2004], the
favorite examples deal with sets of documents, e.g., counting the occurrences of each
word in each document, or matching a given pattern in each document. However,

18.2 Cloud Data Management 759

Map (k
1
,v)

(k
2
,v)

Map (k
1
,v)

(k
2
,v)

Map (k
2
,v)

(k
2
,v)

Map (k
1
,v)

...

Group

by k

Group

by k

(k
1
,(v,v,v)) Reduce

(k
1
,(v,v,v,v)) Reduce

Input data set Output data set

Fig. 18.8 Overview of MapReduce Execution

MapReduce can also be used to process relational data, as in the following example
of a Group By select query on a single relation.

Example 18.3. Let us consider relation EMP(ENAME, TITLE, CITY) and the fol-
lowing SQL query that returns for each city, the number of employees whose name
is “Smith”.

SELECT CITY, COUNT(*)
FROM EMP
WHERE ENAME LIKE "%Smith"
GROUP BY CITY

Processing this query with MapReduce can be done with the following Map and
Reduce functions (which we give in pseudo code).

Map (Input (TID,emp), Output: (CITY,1))
if emp.ENAME like “%Smith” return (CITY,1)

Reduce (Input (CITY,list(1)), Output: (CITY,SUM(list(1)))
return (CITY,SUM(1*))

Map is applied in parallel to every tuple in EMP. It takes one pair (TID,emp),
where the key is the EMP tuple identifier (TID) and the value the EMP tuple, and,
if applicable, returns one pair (CITY,1). Note that the parsing of the tuple format to
extract attributes needs to be done by the Map function. Then all (CITY,1) pairs with
the same CITY are grouped together and a pair (CITY,list(1)) is created for each
CITY. Reduce is then applied in parallel to compute the count for each CITY and
produce the result of the query. �

Fault-tolerance is important as there may be many nodes executing Map and
Reduce operations. Input and output data are stored in GFS that already provides
high fault-tolerance. Furthermore, all intermediate data are written to disk that helps
checkpointing Map operations, and thus provides tolerance to soft failures. However,
if one Map node or Reduce node fails during execution (hard failure), the task can

760 18 Current Issues

be scheduled by the master onto other nodes. It may also be necessary to re-execute
completed Map tasks, since the input data on the failed node disk is inaccessible.
Overall, fault-tolerance is fine-grained and well suited for large jobs.

MapReduce has been extensively used both within Google and outside, with the
Hadoop open source implementation, for many various applications including text
processing, machine learning, and graph processing on very large data sets. The often
cited advantages of MapReduce are its ability to express various (even complicated)
Map and Reduce functions, and its extreme scalability and fault-tolerance. However,
the comparison of MapReduce with parallel DBMSs in terms of performance has
been the subject of debate between their respective proponents [Stonebraker et al.,
2010; Dean and Ghemawat, 2010]. A performance comparison of Hadoop MapRe-
duce and two parallel DBMSs – one row-store and one column-store DBMS – using
a benchmark of three queries (a grep query, an aggregation query with a group by
clause on a web log, and a complex join of two tables with aggregation and filtering)
shows that, once the data has been loaded, the DBMSs are significantly faster, but
loading data is very time consuming for the DBMSs [Pavlo et al., 2009]. The study
also suggests that MapReduce is less efficient than DBMSs, because it performs
repetitive format parsing and does not exploit pipelining and indices. It has been
argued that a differentiation needs to be made between the MapReduce model and its
implementations, which could be well improved, e.g., by exploiting indices [Dean
and Ghemawat, 2010]. Another observation is that MapReduce and parallel DBMSs
are complementary as MapReduce could be used to extract-transform-load data in a
DBMS for more complex OLAP [Stonebraker et al., 2010].

18.3 Conclusion

In this chapter, we discussed two topics that are currently receiving considerable
attention – data stream management, and cloud data management. Both of these have
the potential to make considerable impact on distributed data management, but they
are still not fully matured and require more research.

Data stream management addresses the requirements of a class of applications
that produce data continuously. These systems require a shift in emphasis from
traditional DBMSs in that they deal with data that is transient and queries that are
(generally) persistent. Thus, they require new solutions and approaches. We discussed
the main tenets of data stream management systems (DSMSs) in this chapter. The
main challenge in data stream management is that data are produced continually, so it
is not possible to store them for processing, as is typically done in traditional DBMSs.
This requires unblocking operations, and online algorithms that sometimes have to
deal with high data rates. The abstract models, language issues, and windowed query
processing of streams are relatively well understood. However, there are a number of
interesting research directions including the following:

• Scaling with data rates. Some data streams are relatively slow, while others
have very high data rates. It is not clear if the strategies that have been developed

18.3 Conclusion 761

for processing queries work on the wide range of stream rates. It is probably
the case that special processing techniques need to be developed for different
classes of streams based on their data rates.

• Distributed stream processing. Although there has been some amount of
work in considering processing streams in a distributed fashion, most of the
existing works consider a single processing site. Distribution, as is usually the
case, poses new challenges but also new opportunities that are worth exploring.

• Stream data warehouses. Stream data warehouses combine the challenges of
standard data warehouses and data streams. This is an area that has recently
started to receive attention (e.g., [Golab et al., 2009; Polyzotis et al., 2008]), but
there are still many problems that require attention, including update scheduling
strategies for optimizing various objectives, and monitoring data consistency
and quality as new data arrive [Golab and Özsu, 2010].

• Uncertain data streams. In many applications that generate streaming data,
there may be uncertainty in the data values. For example, sensors may be faulty
and generate data that are not accurate, certain observations may be uncertain,
etc. The processing of queries over uncertain data streams poses significant
challenges that are still open.

One of the main challenges of cloud data management is to provide ease of
programming, consistency, scalability and elasticity at the same time, over cloud data.
Current solutions have been quite successful but developed with specific, relatively
simple applications in mind. In particular, they have sacrificed consistency and
ease of programming for the sake of scalability. This has resulted in a pervasive
approach relying on data partitioning and forcing applications to access data partitions
individually, with a loss of consistency guarantees across data partitions. As the need
to support tighter consistency requirements, e.g., for updating multiple tuples in one
or more tables, increases, cloud application developers will be faced with a very
difficult problem: providing isolation and atomicity across data partitions through
careful engineering. We believe that new solutions are needed that capitalize on the
principles of distributed and parallel database systems to raise the level of consistency
and abstraction, while retaining the scalability and simplicity advantages of current
solutions. Parallel database management techniques such as pipelining, indices and
optimization should also be useful to improve the performance of MapReduce-like
systems and support more complex data analysis applications. In the context of
large-scale shared-nothing clusters, where node failures become the norm rather than
the exception, another important problem remains to deal with the trade-off between
query performance and fault-tolerance. P2P techniques that do not require centralized
query execution control by a master node could also be useful there. Some promising
research directions for cloud data management include the following:

• Declarative programming languages. Programming large-scale, distributed
data management software such as MapReduce remains very hard. One promis-
ing solution proposed in the BOOM project [Alvaro et al., 2010] is to adopt
a data centric declarative programming language, based on the Overlog data

762 18 Current Issues

language, in order to improve ease of development and program correctness
without sacrificing performance.

• Autonomic data management. Self-management of the data by the cloud
will be critical to support large numbers of users with no database expertise.
Modern database systems already provide good self-administration, self-tuning
and self-repairing capabilities which ease application deployment and evolu-
tion. However, extending these capabilities to the scale of a cloud is hard. In
particular, one problem is the automatic management of replication (defini-
tion, allocation, refreshment) to deal with load variations [Doherty and Hurley,
2007].

• Data security and privacy. Data security and access control in a cloud typ-
ically rely on user authentication and secured communication protocols to
exchange encrypted data. However, the semi-open nature of a cloud makes
security and privacy a major challenge since users may not trust the providers
servers. Thus, the ability to perform relational-like operators directly on en-
crypted data at the cloud is important [Abadi, 2009]. In some applications, it is
important that data privacy be preserved, using high-level mechanisms such as
those of Hyppocratic databases [Agrawal et al., 2002].

• Green data management. One major problem for large-scale clouds is the
energy cost. Harizopoulos et al. [2009] argue that data management techniques
will be key in optimizing for energy efficiency. However, current data manage-
ment techniques for the cloud have focused on scalability and performance, and
must be significantly revisited to account for energy costs in query optimization,
data structures and algorithms.

Finally there are problems in the intersection of data stream processing and cloud
computing. Given the steady increase in data stream volumes, the need to process
massive data flows in a scalable way is becoming important. Thus, the potential
scalability advantage of a cloud can be exploited for data stream management as
in Streamcloud [Gulisano et al., 2010]. This requires new strategies to parallelize
continuous queries. And deadling with various trade-offs.

18.4 Bibliographic Notes

Data streams have received a lot of attention in recent years, so the literature on the
topic is extensive. Good early overviews are given in [Babcock et al., 2002; Golab
and Özsu, 2003a]. A more recent edited volume [Aggarwal, 2007] includes a number
of articles on various aspects of these systems. An volume [Golab and Özsu, 2010]
gives a full treatment of many of the issues that are discussed here. Mining data
streams is reviewed in [Gaber et al., 2005] and issues in mining data streams with
underlying distribution changes is discussed in [Hulten et al., 2001].

18.4 Bibliographic Notes 763

Our discussion of data stream systems follows [Golab and Özsu, 2003a], Chapter
2 of [Golab, 2006] and [Golab and Özsu, 2010]. The discussion on mining data
streams borrows from Chapter 2 of [Tao, 2010].

Cloud computing has recently gained a lot of attention from the professional
press as a new platform for enterprise and personal computing (see [Cusumano,
2010] for a good discussion of the trend). However, the research literature on cloud
computing in general, and cloud data management in particular, is rather small, but
as the number of international conferences and workshops grow, this should change
quickly to become a major research domain. Our cloud taxonomy in Section 18.2.1
is based on our compilation of many professional articles and white papers. The
discussion on grid computing in Section 18.2.2 is based on [Atkinson et al., 2005;
Pacitti et al., 2007b]. The section on data management in the cloud (Section 18.2.4)
has been inspired by several keynotes on the topic, e.g., [Ramakrishnan, 2009]. The
technical details can be found in the research papers on GFS [Ghemawat et al., 2003],
Bigtable [Chang et al., 2008], PNUTS [Cooper et al., 2008] and MapReduce [Dean
and Ghemawat, 2004]. The discussion of MapReduce versus parallel DBMS can be
found in [Stonebraker et al., 2010; Dean and Ghemawat, 2010].

References

Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., and Zdonik, S. (2003). Aurora: A new model and architec-
ture for data stream management. VLDB J., 12(2):120–139. 727, 730, 734, 736,
738

Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities.
Q. Bull. IEEE TC on Data Eng., 32(1):3–12. 746, 747, 762

Abadi, D. J., Madden, S., and Hachem, N. (2008). Column-stores vs. row-stores:
how different are they really? In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 967–980. 753

Abadi, M. and Cardelli, L. (1996). A Theory of Objects. Springer. 553, 607
Abbadi, A. E., Skeen, D., and Cristian, F. (1985). An efficient, fault–tolerant protocol

for replicated data management. In Proc. ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems, pages 215–229. 488

Aberer, K. (2001). P-grid: A self-organizing access structure for p2p information
systems. In Proc. Int. Conf. on Cooperative Information Systems, pages 179–194.
622

Aberer, K. (2003). Guest editor’s introduction. ACM SIGMOD Rec., 32(3):21–22.
653

Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva,
M., and Schmidt, R. (2003a). P-grid: a self-organizing structured p2p system.
ACM SIGMOD Rec., 32(3):29–33. 622, 651, 654

Aberer, K., Cudré-Mauroux, P., and Hauswirth, M. (2003b). Start making sense:
The chatty web approach for global semantic agreements. J. Web Semantics,
1(1):89–114. 625

Abiteboul, S. and Beeri, C. (1995). The power of languages for the manipulation of
complex values. VLDB J., 4(4):727–794. 553

Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., and Weber, R. (2002). Active
XML: Peer-to-peer data and web services integration. In Proc. 28th Int. Conf. on
Very Large Data Bases, pages 1087–1090. 625

Abiteboul, S., Benjelloun, O., and Milo, T. (2008a). The active XML project: an
overview. VLDB J., 17(5):1019–1040. 703

765
DOI 10.1007/978-1-4419-8834-8, © Springer Science+Business Media, LLC 2011
M.T. Özsu and P. Valduriez, Principles of Distributed Database Systems: Third Edition,

766 References

Abiteboul, S., Buneman, P., and Suciu, D. (1999). Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann. 719

Abiteboul, S. and dos Santos, C. S. (1995). IQL(2): A model with ubiquitous objects.
In Proc. 5th Int. Workshop on Database Programming Languages, page 10. 607

Abiteboul, S. and Kanellakis, P. C. (1998a). Object identity as a query language
primitive. J. ACM, 45(5):798–842. 553

Abiteboul, S. and Kanellakis, P. C. (1998b). Object identity as a query language
primitive. J. ACM, 45(5):798–842. 607

Abiteboul, S., Manolescu, I., Polyzotis, N., Preda, N., and Sun, C. (2008b). XML
processing in DHT networks. In Proc. 24th Int. Conf. on Data Engineering, pages
606–615. 625

Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. (1997). The Lorel
query language for semistructured data. Int. J. Digit. Libr., 1(1):68–88. 673

Aboulnaga, A., Alameldeen, A. R., and Naughton, J. F. (2001). Estimating the
selectivity of XML path expressions for internet scale applications. In Proc. 27th
Int. Conf. on Very Large Data Bases, pages 591–600. 701

Abramson, N. (1973). The ALOHA system. In Abramson, N. and Kuo, F. F., editors,
Computer Communication Networks. Prentice-Hall. 64

Adali, S., Candan, K. S., Papakonstantinou, Y., and Subrahmanian, V. S. (1996a).
Query caching and optimization in distributed mediator systems. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 137–148. 160

Adali, S., Candan, K. S., Papakonstantinou, Y., and Subrahmanian, V. S. (1996b).
Query caching and optimization in distributed mediator systems. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 137–148. 309

Adamic, L. and Huberman, B. (2000). The nature of markets in the world wide web.
Quart. J. Electron. Comm., 1:5–12. 734, 739

Adiba, M. (1981). Derived relations: A unified mechanism for views, snapshots and
distributed data. In Proc. 7th Int. Conf. on Very Data Bases, pages 293–305. 176,
177, 201

Adiba, M. and Lindsay, B. (1980). Database snapshots. In Proc. 6th Int. Conf. on
Very Data Bases, pages 86–91. 176, 201

Adler, M. and Mitzenmacher, M. (2001). Towards compressing web graphs. In Proc.
Data Compression Conf., pages 203–212. 660, 719

Adya, A., Gruber, R., Liskov, B., and Maheshwari, U. (1995). Efficient optimistic
concurrency control using loosely synchronized clocks. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 23–34. 574

Aggarwal, C. (2003). A framework for diagnosing changes in evolving data streams.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 575–586. 743

Aggarwal, C. (2005). On change diagnosis in evolving data streams. IEEE Trans.
Knowl. and Data Eng., 17(5). 743

Aggarwal, C., Han, J., Wang, J., and Yu, P. S. (2003). A framework for clustering
evolving data streams. In Proc. 29th Int. Conf. on Very Large Data Bases, pages
81–92. 743

References 767

Aggarwal, C., Han, J., Wang, J., and Yu, P. S. (2004). A framework for projected
clustering of high dimensional data streams. In Proc. 30th Int. Conf. on Very Large
Data Bases, pages 852–863. 726, 743

Aggarwal, C. C., editor (2007). Data Streams: Models and Algorithms. Springer.
762

Agichtein, E., Lawrence, S., and Gravano, L. (2004). Learning to find answers to
questions on the web. ACM Trans. Internet Tech., 4(3):129—162. 681

Agrawal, D., Bruno, J. L., El-Abbadi, A., and Krishnasawamy, V. (1994). Relative
serializability: An approach for relaxing the atomicity of transactions. In Proc.
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 139–149.
395

Agrawal, D. and El-Abbadi, A. (1990). Locks with constrained sharing. In Proc.
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 85–93.
371, 372

Agrawal, D. and El-Abbadi, A. (1994). A nonrestrictive concurrency control protocol
for object-oriented databases. Distrib. Parall. Databases, 2(1):7–31. 600

Agrawal, R., Carey, M., and Livney, M. (1987). Concurrency control performance
modeling: Alternatives and implications. ACM Trans. Database Syst., 12(4):609–
654. 401

Agrawal, R. and DeWitt, D. J. (1985). Integrated concurrency control and recovery
mechanisms. ACM Trans. Database Syst., 10(4):529–564. 420

Agrawal, R., Evfimievski, A. V., and Srikant, R. (2003). Information sharing across
private databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 86–97. 187

Agrawal, R., Ghosh, S. P., Imielinski, T., Iyer, B. R., and Swami, A. N. (1992). An
interval classifier for database mining applications. In Proc. 18th Int. Conf. on
Very Large Data Bases, pages 560–573. 743

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2002). Hippocratic databases. In
Proc. 28th Int. Conf. on Very Large Data Bases, pages 143–154. 762

Akal, F., Böhm, K., and Schek, H.-J. (2002). Olap query evaluation in a database
cluster: A performance study on intra-query parallelism. In Proc. 6th East Euro-
pean Conf. Advances in Databases and Information Systems, pages 218–231. 542,
543, 548

Akal, F., Türker, C., Schek, H.-J., Breitbart, Y., Grabs, T., and Veen, L. (2005). Fine-
grained replication and scheduling with freshness and correctness guarantees. In
Proc. 31st Int. Conf. on Very Large Data Bases, pages 565–576. 493

Akbarinia, R. and Martins, V. (2007). Data management in the appa system. J. Grid
Comp., 5(3):303–317. 626

Akbarinia, R., Martins, V., Pacitti, E., and Valduriez, P. (2006a). Design and imple-
mentation of atlas p2p architecture. In Baldoni, R., Cortese, G., and Davide, F.,
editors, Global Data Management, pages 98–123. IOS Press. 626, 636

Akbarinia, R., Pacitti, E., and Valduriez, P. (2006b). Reducing network traffic in
unstructured p2p systems using top-k queries. Distrib. Parall. Databases, 19(2-
3):67–86. 628, 637

768 References

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007a). Best position algorithms for
top-k queries. In Proc. 33rd Int. Conf. on Very Large Data Bases, pages 495–506.
634, 635, 654

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007b). Data currency in replicated dhts.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 211–222. 648,
654

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007c). Processing top-k queries in
distributed hash tables. In Proc. 13th Int. Euro-Par Conf., pages 489–502. 638,
654

Akbarinia, R., Pacitti, E., and Valduriez, P. (2007d). Query processing in P2P systems.
Technical Report 6112, INRIA, Rennes, France. 654

Al-Khalifa, S., Jagadish, H. V., Patel, J. M., Wu, Y., Koudas, N., and Srivastava, D.
(2002). Structural joins: A primitive for efficient XML query pattern matching. In
Proc. 18th Int. Conf. on Data Engineering, pages 141–152. 700

Alon, N., Matias, Y., and Szegedy, M. (1996). The space complexity of approximating
the frequency moments. In Proc. 28th Annual ACM Symp. on Theory of Computing,
pages 20–29. 733

Alsberg, P. A. and Day, J. D. (1976). A principle for resilient sharing of distributed
resources. In Proc. 2nd Int. Conf. on Software Engineering, pages 562–570. 373

Altingövde, I. S. and Ulusoy, Ö. (2004). Exploiting interclass rules for focused
crawling. IEEE Intelligent Systems, 19(6):66–73. 666

Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J. M., and Sears, R.
(2010). Boom analytics: exploring data-centric, declarative programming for the
cloud. In Proc. 5th ACM SIGOPS/EuroSys European Conf. on Computer Systems,
pages 223–236. 761

Amsaleg, L. (1995). Conception et réalisation d’un glaneur de cellules adapté aux
SGBDO client-serveur. Ph.D. thesis, Université Paris 6 Pierre et Marie Curie,
Paris, France. 581

Amsaleg, L., Franklin, M., and Gruber, O. (1995). Efficient incremental garbage
collection for client-server object database systems. In Proc. 21th Int. Conf. on
Very Large Data Bases, pages 42–53. 581

Amsaleg, L., Franklin, M. J., Tomasic, A., and Urhan, T. (1996a). Scrambling query
plans to cope with unexpected delays. In Proc. 4th Int. Conf. on Parallel and
Distributed Information Systems, pages 208–219. 320, 322, 331

Amsaleg, L., Franklin, M. J., Tomasic, A., and Urhan, T. (1996b). Scrambling query
plans to cope with unexpected delays. In Proc. 4th Int. Conf. on Parallel and
Distributed Information Systems, pages 208–219. 739

Anderson, T. and Lee, P. A. (1981). Fault Tolerance: Principles and Practice.
Prentice-Hall. 455

Anderson, T. and Lee, P. A. (1985). Software fault tolerance terminology proposals.
In Shrivastava [1985], pages 6–13. 406

Anderson, T. and Randell, B. (1979). Computing Systems Reliability. Cambridge
University Press. 455

ANSI (1992). Database Language SQL, ansi x3.135-1992 edition. 348

References 769

ANSI/SPARC (1975). Interim report: ANSI/X3/SPARC study group on data base
management systems. ACM FDT Bull, 7(2):1–140. 22

Antonioletti, M. et al. (2005). The design and implementation of grid database
services in OGSA-DAI. Concurrency — Practice & Experience, 17(2-4):357–376.
750

Apers, P., van den Berg, C., Flokstra, J., Grefen, P., Kersten, M., and Wilschut, A.
(1992). Prisma/db: a parallel main-memory relational dbms. IEEE Trans. Knowl.
and Data Eng., 4:541–554. 505, 548

Apers, P. M. G. (1981). Redundant allocation of relations in a communication
network. In Proc. 5th Berkeley Workshop on Distributed Data Management and
Computer Networks, pages 245–258. 125

Apers, P. M. G., Hevner, A. R., and Yao, S. B. (1983). Optimization algorithms for
distributed queries. IEEE Trans. Softw. Eng., 9(1):57–68. 212

Arasu, A., Babu, S., and Widom, J. (2006). The CQL continuous query language:
Semantic foundations and query execution. VLDB J., 15(2):121–142. 726, 727,
728, 732, 734, 735, 739

Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., and Raghavan, S. (2001). Search-
ing the web. ACM Trans. Internet Tech., 1(1):2–43. 663, 667, 719

Arasu, A. and Widom, J. (2004a). A denotational semantics for continuous queries
over streams and relations. ACM SIGMOD Rec., 33(3):6–11. 728

Arasu, A. and Widom, J. (2004b). Resource sharing in continuous sliding-window
aggregates. In Proc. 30th Int. Conf. on Very Large Data Bases, pages 336–347.
736, 737

Arocena, G. and Mendelzon, A. (1998). Weboql: Restructuring documents, databases
and webs. In Proc. 14th Int. Conf. on Data Engineering, pages 24–33. 676

Arpaci-Dusseau, R. H., Anderson, E., Treuhaft, N., Culler, D. E., Hellerstein, J. M.,
Patterson, D., and Yelick, K. (1999). Cluster i/o with river: making the fast case
common. In Proc. Workshop on I/O in Parallel and Distributed Systems, pages
10–22. 326

Aspnes, J. and Shah, G. (2003). Skip graphs. In Proc. 14th Annual ACM-SIAM Symp.
on Discrete Algorithms, pages 384–393. 622

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N.,
Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P. R., Mehl, J. W., Putzolu,
G. R., Traiger, I. L., Wade, B. W., and Watson, V. (1976). System r: A relational
database management system. ACM Trans. Database Syst., 1(2):97–137. 190,
261, 419

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., and Zdonik, S.
(1989). The object-oriented database system manifesto. In Proc. 1st Int. Conf. on
Deductive and Object-Oriented Databases, pages 40–57. 553

Atkinson, M. P. et al. (2005). Web service grids: an evolutionary approach. Con-
currency and Computation — Practice & Experience, 17(2-4):377–389. 748,
763

Avizienis, A., Kopetz, H., and (eds.), J. C. L. (1987). The Evolution of Fault-Tolerant
Computing. Springer. 455

770 References

Avnur, R. and Hellerstein, J. M. (2000). Eddies: Continuously adaptive query
processing. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
261–272. 321, 331

Ayad, A. and Naughton, J. (2004). Static optimization of conjunctive queries with
sliding windows over unbounded streaming information sources. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 419–430. 740

Ayad, A., Naughton, J., Wright, S., and Srivastava, U. (2006). Approximate streaming
window joins under CPU limitations. In Proc. 22nd Int. Conf. on Data Engineering,
page 142. 740

Babaoglu, Ö. (1987). On the reliability of consensus-based fault-tolerant distributed
computing systems. ACM Trans. Comp. Syst., 5(3):394–416. 456

Babb, E. (1979). Implementing a relational database by means of specialized hard-
ware. ACM Trans. Database Syst., 4(1):1–29. 499

Babcock, B., Babu, S., Datar, M., Motwani, R., and Thomas, D. (2004). Operator
scheduling in data stream systems. VLDB J., 13(4):333–353. 735

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J. (2002). Models
and issues in data stream systems. In Proc. ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems, pages 1–16. 740, 743, 762

Babcock, B., Datar, M., Motwani, R., and O’Callaghan, L. (2003). Maintaining
variance and k-medians over data stream windows. In Proc. ACM SIGACT-
SIGMOD Symp. on Principles of Database Systems, pages 234–243. 737

Babu, S. and Bizarro, P. (2005). Adaptive query processing in the looking glass. In
Proc. 2nd Biennial Conf. on Innovative Data Systems Research, pages 238–249.
739

Babu, S., Motwani, R., Munagala, K., Nishizawa, I., and Widom, J. (2004a). Adap-
tive ordering of pipelined stream filters. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 407–418. 739

Babu, S., Munagala, K., Widom, J., and Motwani, R. (2005). Adaptive caching for
continuous queries. In Proc. 21st Int. Conf. on Data Engineering, pages 118–129.
739

Babu, S., Srivastava, U., and Widom, J. (2004b). Exploiting k-constraints to reduce
memory overhead in continuous queries over data streams. ACM Trans. Database
Syst., 29(3):545–580. 732

Babu, S. and Widom, J. (2004). StreaMon: an adaptive engine for stream query
processing. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
931–932. 739

Badrinath, B. R. and Ramamritham, K. (1987). Semantics-based concurrency control:
Beyond commutativity. In Proc. 3th Int. Conf. on Data Engineering, pages 04–311.
594, 596, 602

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addi-
son Wesley, New York, USA. 669

Balke, W.-T., Nejdl, W., Siberski, W., and Thaden, U. (2005). Progressive dis-
tributed top-k retrieval in peer-to-peer networks. In Proc. 21st Int. Conf. on Data
Engineering, pages 174–185. 639

References 771

Ball, M. O. and Hardie, F. (1967). Effects and detection of intermittent failures in
digital systems. Technical Report Internal Report 67-825-2137, IBM. Cited in
[Siewiorek and Swarz, 1982]. 410

Balter, R., Berard, P., and Decitre, P. (1982). Why control of concurrency level in
distributed systems is more important than deadlock management. In Proc. ACM
SIGACT-SIGOPS 1st Symp. on the Principles of Distributed Computing, pages
183–193. 361

Bancilhon, F. and Spyratos, N. (1981). Update semantics of relational views. ACM
Trans. Database Syst., 6(4):557–575. 175, 201

Barbara, D., Garcia-Molina, H., and Spauster, A. (1986). Policies for dynamic vote
reassignment. In Proc. 6th Int. Conf. on Distributed Computing Systems, pages
37–44. 456, 493

Barbara, D., Molina, H. G., and Spauster, A. (1989). Increasing availability under
mutual exclusion constraints with dynamic voting reassignment. ACM Trans.
Comp. Syst., 7(4):394–426. 456, 493

Bartlett, J. (1978). A nonstop operating system. In Proc. 11th Hawaii Int. Conf. on
System Sciences, pages 103–117. 456

Bartlett, J. (1981). A nonstop kernel. In Proc. 8th ACM Symp. on Operating System
Principles, pages 22–29. 456

Barton, C., Charles, P., Goyal, D., Raghavachari, M., Fontoura, M., and Josifovski, V.
(2003). Streaming XPath processing with forward and backward axes. In Proc.
19th Int. Conf. on Data Engineering, pages 455–466. 700

Batini, C. and Lenzirini, M. (1984). A methodology for data schema integration in
entity-relationship model. IEEE Trans. Softw. Eng., SE-10(6):650–654. 147

Batini, C., Lenzirini, M., and Navathe, S. B. (1986). A comparative analysis of
methodologies for database schema integration. ACM Comput. Surv., 18(4):323–
364. 140, 147, 160

Bayer, R. and McCreight, E. (1972). Organization and maintenance of large ordered
indexes. Acta Informatica, 1:173–189. 510

Beeri, C. (1990). A formal approach to object-oriented databases. Data & Knowledge
Eng, 5:353–382. 557

Beeri, C., Bernstein, P. A., and Goodman, N. (1989). A model for concurrency in
nested transaction systems. J. ACM, 36(2):230–269. 401

Beeri, C., Schek, H.-J., and Weikum, G. (1988). Multi-level transaction management,
theoretical art or practical need? In Advances in Database Technology, Proc. 1st
Int. Conf. on Extending Database Technology, pages 134–154. 397

Bell, D. and Grimson, J. (1992). Distributed Database Systems. Addison Wesley.
Reading. 38

Bell, D. and Lapuda, L. (1976). Secure computer systems: Unified exposition and
Multics interpretation. Technical Report MTR-2997 Rev.1, MITRE Corp, Bedford,
MA. 183, 201

Bellatreche, L., Karlapalem, K., and Li, Q. (1998). Complex methods and class
allocation in distributed object oriented database systems. Technical Report
HKUST98-yy, Department of Computer Science, Hong Kong University of Sci-
ence and Technologyty of Science and Technology. 565

772 References

Bellatreche, L., Karlapalem, K., and Li, Q. (2000a). Algorithms and support for hori-
zontal class partitioning in object-oriented databases. Distrib. Parall. Databases,
8(2):155 – 179. 607

Bellatreche, L., Karlapalem, K., and Li, Q. (2000b). A framework for class parti-
tioning in object oriented databases. Distrib. Parall. Databases, 8(2):333 – 366.
607

Benzaken, V. and Delobel, C. (1990). Enhancing performance in a persistent object
store: Clustering strategies in o2. In Implementing Persistent Object Bases: Prin-
ciples and Practice. Proc. 4th Int. Workshop on Persistent Object Systems, pages
403–412. 579

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., and O’Neil, P. (1995).
A critique of ansi sql isolation levels. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 1–10. 348, 349, 367

Bergamaschi, S., Castano, S., Vincini, M., and Beneventano, D. (2001). Semantic
integration of heterogeneous information sources. Data & Knowl. Eng., 36:215–
249. 134, 160

Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J., and
Siméon, J., editors. XML Path language (XPath) 2.0 (2007). Available from:
http://www.w3.org/TR/xpath20/ [Last retrieved: December 2009]. 690,
694

Bergman, M. K. (2001). The deep web: Surfacing hidden value. J. Electronic
Publishing, 7(1). 657

Bergsten, B., Couprie, M., and Valduriez, P. (1991). Prototyping dbs3, a shared-
memory parallel database system. In Proc. Int. Conf. on Parallel and Distributed
Information Systems, pages 226–234. 501, 503, 528, 548

Bergsten, B., Couprie, M., and Valduriez, P. (1993). Overview of parallel architec-
tures for databases. The Comp. J., 36(8):734–739. 547

Berlin, J. and Motro, A. (2001). Autoplex: Automated discovery of content for
virtual databases. In Proc. Int. Conf. on Cooperative Information Systems, pages
108–122. 145

Bernstein, P. and Blaustein, B. (1982). Fast methods for testing quantified relational
calculus assertions. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 39–50. 192, 199, 202

Bernstein, P., Blaustein, B., and Clarke, E. M. (1980a). Fast maintenance of semantic
integrity assertions using redundant aggregate data. In Proc. 6th Int. Conf. on Very
Data Bases, pages 126–136. 192, 202

Bernstein, P. and Melnik, S. (2007). Model management: 2.0: Manipulating richer
mappings. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
1–12. 135, 159, 160

Bernstein, P., Shipman, P., and Rothnie, J. B. (1980b). Concurrency control in a
system for distributed databases (sdd-1). ACM Trans. Database Syst., 5(1):18–51.
383, 395

Bernstein, P. A. and Chiu, D. M. (1981). Using semi-joins to solve relational queries.
J. ACM, 28(1):25–40. 269, 292

http://www.w3.org/TR/xpath20/

References 773

Bernstein, P. A., Fekete, A., Guo, H., Ramakrishnan, R., and Tamma, P. (2006).
Relexed concurrency serializability for middle-tier caching and replication. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 599–610. 462,
464, 480

Bernstein, P. A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
and Zaihrayeu, I. (2002). Data management for peer-to-peer computing : A vision.
In Proc. 5th Int. Workshop on the World Wide Web and Databases, pages 89–94.
625, 653

Bernstein, P. A. and Goodman, N. (1981). Concurrency control in distributed database
systems. ACM Comput. Surv., 13(2):185–222. 39, 367, 369, 401

Bernstein, P. A. and Goodman, N. (1984). An algorithm for concurrency control
and recovery in replicated distributed databases. ACM Trans. Database Syst.,
9(4):596–615. 486

Bernstein, P. A., Goodman, N., Wong, E., Reeve, C. L., and Jr, J. B. R. (1981). Query
processing in a system for distributed databases (sdd-1). ACM Trans. Database
Syst., 6(4):602–625. 215, 281, 283, 293

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987). Concurrency Control and
Recovery in Database Systems. Addison Wesley. 39, 341, 385, 391, 401, 413, 421,
423, 424, 425, 429, 453, 486, 596

Bernstein, P. A. and Newcomer, E. (1997). Principles of Transaction Processing for
the Systems Professional. Morgan Kaufmann. 358

Berthold, H., Schmidt, S., Lehner, W., and Hamann, C.-J. (2005). Integrated resource
management for data stream systems. In Proc. 2005 ACM Symp. on Applied
Computing, pages 555–562. 738

Bertino, E., Chin, O. B., Sacks-Davis, R., Tan, K.-L., Zobel, J., Shidlovsky, B., and
Andronico, D. (1997). Indexing Techniques for Advanced Database Systems.
Kluwer Academic Publishers. 607

Bertino, E. and Kim, W. (1989). Indexing techniques for queries on nested objects.
IEEE Trans. Knowl. and Data Eng., 1(2):196–214. 588, 589, 590

Bertino, E. and Martino, L. (1993). Object-Oriented Database Systems. Addison
Wesley. 607

Bevan, D. I. (1987). Distributed garbage collection using reference counting. In
de Bakker, J., Nijman, L., and Treleaven, P., editors, Parallel Architectures and
Languages Europe, Lecture Notes in Computer Science, pages 117–187. Springer.
581

Bhar, S. and Barker, K. (1995). Static allocation in distributed objectbase systems:
A graphical approach. In Proc. 6th Int. Conf. on Information Systems and Data
Management, pages 92–114. 565

Bharat, K. and Broder, A. (1998). A technique for measuring the relative size and
overlap of public web search engines. Comp. Networks and ISDN Syst., 30:379 –
388. (Proc. 7th Int. World Wide Web Conf.). 657

Bhargava, B., editor (1987). Concurrency Control and Reliability in Distributed
Systems. Van Nostrand Reinhold. 358

774 References

Bhargava, B. and Lian, S.-R. (1988). Independent checkpointing and concurrent
rollback for recovery in distributed systems: An optimistic approach. In Proc. 7th
Symp. on Reliable Distributed Systems, pages 3–12. 456

Bhide, A. (1988). An analysis of three transaction processing architectures. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 339–350. 401

Bhide, A. and Stonebraker, M. (1988). A performance comparison of two architec-
tures for fast transaction processing. In Proc. 4th Int. Conf. on Data Engineering,
pages 536–545. 547

Bhowmick, S. S., Madria, S. K., and Ng, W. K. (2004). Web Data Management.
Springer. 719

Biliris, A. and Panagos, E. (1995). A high performance configurable storage manager.
In Proc. 11th Int. Conf. on Data Engineering, pages 35–43. 571

Biscondi, N., Brunie, L., Flory, A., and Kosch, H. (1996). Encapsulation of intra-
operation parallelism in a parallel match operator. In Proc. ACPC Conf., volume
1127 of Lecture Notes in Computer Science, pages 124–135. 528

Bitton, D., Boral, H., DeWitt, D. J., and Wilkinson, W. K. (1983). Parallel algorithms
for the execution of relational database operations. ACM Trans. Database Syst.,
8(3):324–353. 515

Blakeley, J., McKenna, W., and Graefe, G. (1993). Experiences building the open
oodb query optimizer. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 287–296. 584, 586, 587, 588

Blakeley, J. A., Larson, P.-A., and Tompa, F. W. (1986). Efficiently updating materi-
alized views. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
61–71. 177

Blasgen, M., Gray, J., Mitoma, M., and Price, T. (1979). The convoy phenomenon.
Operating Systems Rev., 13(2):20–25. 526

Blaustein, B. (1981). Enforcing Database Assertions: Techniques and Applications.
Ph.D. thesis, Harvard University, Cambridge, Mass. 192, 202

Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J., and Siméon, J.,
editors. XQuery 1.0: An XML query language (2007). Available from: http:
//www.w3.org/TR/xquery [Last retrieved: December 2009]. 690, 694, 696

Bonato, A. (2008). A Course on the Web Graph. American Mathematical Society.
658, 719

Boncz, P. A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., and Teubner,
J. (2006). MonetDB/XQuery: a fast XQuery processor powered by a relational
engine. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 479–490.
699, 703

Bonnet, P., Gehrke, J., and Seshadri, P. (2001). Towards sensor database systems. In
Proc. 2nd Int. Conf. on Mobile Data Management, pages 3–14. 726, 730

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and
Orchard, D., editors. Web services architecture (2004). Available from: http:
//www.w3.org/TR/ws-arch/ [Last retrieved: December 2009]. 690

Boral, H., Alexander, W., Clay, L., Copeland, G., Danforth, S., Franklin, M., Hart, B.,
Smith, M., and Valduriez, P. (1990). Prototyping bubba, a highly parallel database
system. IEEE Trans. Knowl. and Data Eng., 2(1):4–24. 505

http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

References 775

Boral, H. and DeWitt, D. (1983). Database machines: An idea whose time has
passed? a critique of the future of database machines. In Proc. 3rd Int. Workshop
on Database Machines, pages 166–187. 498

Borg, A., Baumbach, J., and Glazer, S. (1983). A message system supporting fault
tolerance. In Proc. 9th ACM Symp. on Operating System Principles, pages 90–99,
Bretton Woods, N.H. 456

Borr, A. (1984). Robustness to crash in a distributed database: A non shared-memory
multiprocessor approach. In Proc. 10th Int. Conf. on Very Large Data Bases, pages
445–453. 456

Borr, A. (1988). High performance sql through low-level system integration. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 342–349. 377

Bouganim, L., Dageville, B., and Florescu, D. (1996a). Skew handling in the dbs3
parallel database system. In Proc. International Conference on ACPC. 528

Bouganim, L., Dageville, B., and Valduriez, P. (1996b). Adaptative parallel query
execution in dbs3. In Advances in Database Technology, Proc. 5th Int. Conf. on
Extending Database Technology, pages 481–484. Springer. 528, 548

Bouganim, L., Florescu, D., and Valduriez, P. (1996c). Dynamic load balancing in
hierarchical parallel database systems. In Proc. 22th Int. Conf. on Very Large Data
Bases, pages 436–447. 530, 534, 548

Bouganim, L., Florescu, D., and Valduriez, P. (1999). Multi-join query execution
with skew in numa multiprocessors. Distrib. Parall. Databases, 7(1). in press.
506, 548

Brantner, M., Helmer, S., Kanne, C.-C., and Moerkotte, G. (2005). Full-fledged
algebraic XPath processing in natix. In Proc. 21st Int. Conf. on Data Engineering,
pages 705–716. 698, 700, 703

Bratbergsengen, K. (1984). Hashing methods and relational algebra operations. In
Proc. 10th Int. Conf. on Very Large Data Bases, pages 323–333. 211, 515

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F., editors.
Extensible markup language (XML) 1.0 (Fifth edition) (2008). Available from:
http://www.w3.org/TR/2008/REC-xml-20081126/ [Last retrieved:
December 2009]. 689

Breitbart, Y. and Korth, H. F. (1997). Replication and consistency: Being lazy helps
sometimes. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems, pages 173–184. 476

Breitbart, Y., Olson, P. L., and Thompson, G. R. (1986). Database integration in
a distributed heterogeneous database system. In Proc. 2nd Int. Conf. on Data
Engineering, pages 301–310. 160

Bright, M. W., Hurson, A. R., and Pakzad, S. H. (1994). Automated resolution of
semantic heterogeneity in multidatabases. ACM Trans. Database Syst., 19(2):212–
253. 160

Brill, D., Templeton, M., and Yu, C. (1984). Distributed query processing strategies
in mermaid: A front-end to data management systems. In Proc. 1st Int. Conf. on
Data Engineering, pages 211–218. 331

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search
engine. Comp. Netw., 30(1-7):107 – 117. 658, 667

http://www.w3.org/TR/2008/REC-xml-20081126/

776 References

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., and Wiener, J. (2000). Graph structure in the web. Comp. Netw.,
33:309–320. 659

Bruno, N. and Chaudhuri, S. (2002). Exploiting statistics on query expressions for
optimization. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
263–274. 256

Bruno, N., Koudas, N., and Srivastava, D. (2002). Holistic twig joins: Optimal XML
pattern matching. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 310–322. 700, 701

Bucci, G. and Golinelli, S. (1977). A distributed strategy for resource allocation in
information networks. In Proc. Int. Computing Symp, pages 345–356. 125

Buchmann, A., Özsu, M., Hornick, M., Georgakopoulos, D., and Manola, F. A.
(1982). A transaction model for active distributed object systems. In [Elmagarmid,
1982]. 354, 355, 359, 593, 594

Buneman, P., Cong, G., Fan, W., and Kementsietsidis, A. (2006). Using partial
evaluation in distributed query evaluation. In Proc. 32nd Int. Conf. on Very Large
Data Bases, pages 211–222. 711

Buneman, P., Davidson, S., Hillebrand, G. G., and Suciu, D. (1996). A query language
and optimization techniques for unstructured data. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 505–516. 671

Butler, M. (1987). Storage reclamation in object oriented database systems. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 410–425. 581

Calı̀, A. and Calvanese, D. (2002). Optimized querying of integrated data over the
web. In Engineering Information Systems in the Internet Context, pages 285–301.
303

Callan, J. P. and Connell, M. E. (2001). Query-based sampling of text databases.
ACM Trans. Information Syst., 19(2):97–130. 688

Callan, J. P., Connell, M. E., and Du, A. (1999). Automatic discovery of language
models for text databases. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 479–490. 688

Cammert, M., Krämer, J., Seeger, B., and S.Vaupel (2006). An approach to adaptive
memory management in data stream systems. In Proc. 22nd Int. Conf. on Data
Engineering, page 137. 735, 740

Canaday, R. H., Harrisson, R. D., Ivie, E. L., Rydery, J. L., and Wehr, L. A. (1974). A
back-end computer for data base management. Commun. ACM, 17(10):575–582.
30, 547

Cao, P. and Wang, Z. (2004). Query processing issues in image (multimedia)
databases. In ACM Symp. on Principles of Distributed Computing (PODC),
pages 206–215. 631, 633

Carey, M., Franklin, M., and Zaharioudakis, M. (1997). Adaptive, fine-grained shar-
ing in a client-server oodbms: A callback-based approach. ACM Trans. Database
Syst., 22(4):570–627. 572

Carey, M. and Lu, H. (1986). Load balancing in a locally distributed database system.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 108–119. 287,
288, 293

References 777

Carey, M. and Stonebraker, M. (1984). The performance of concurrency control
algorithms for database management systems. In Proc. 10th Int. Conf. on Very
Large Data Bases, pages 107–118. 401

Carey, M. J., DeWitt, D. J., Franklin, M. J., Hall, N. E., McAuliffe, M. L., Naughton,
J. F., Schuh, D. T., Solomon, M. H., Tan, C. K., Tsatalos, O. G., White, S. J., and
Zwilling, M. J. (1994). Shoring up persistent applications. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 383–394. 571

Carey, M. J., Franklin, M., Livny, M., and Shekita, E. (1991). Data caching trade-
offs in client-server dbms architectures. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 357–366. 573

Carey, M. J. and Livny, M. (1988). Distributed concurrency control performance: A
study of algorithms, distribution and replication. In Proc. 14th Int. Conf. on Very
Large Data Bases, pages 13–25. 400, 401

Carey, M. J. and Livny, M. (1991). Conflict detection tradeoffs for replicated data.
ACM Trans. Database Syst., 16(4):703–746. 401

Carney, D., Cetintemel, U., Rasin, A., Zdonik, S., Cherniack, M., and Stonebraker,
M. (2003). Operator scheduling in a data stream manager. In Proc. 29th Int. Conf.
on Very Large Data Bases, pages 838–849. 735

Cart, M. and Ferrie, J. (1990). Integrating concurrency control into an object-oriented
database system. In Advances in Database Technology, Proc. 2nd Int. Conf. on
Extending Database Technology, pages 363–377. Springer. 597

Casey, R. G. (1972). Allocation of copies of a file in an information network. In
Proc. Spring Joint Computer Conf, pages 617–625. 115

Castano, S. and Antonellis, V. D. (1999). A schema analysis and reconciliation tool
environment for heterogeneous databases. In Proc. Int. Conf. on Database Eng.
and Applications, pages 53–62. 134

Castano, S., Fugini, M. G., Martella, G., and Samarati, P. (1995). Database Security.
Addison Wesley. 180, 201

Castro, M., Adya, A., Liskov, B., and Myers, A. (1997). Hac: Hybrid adaptive
caching for distributed storage systems. In Proc. ACM Symp. on Operating System
Principles, pages 102–115. 570

Cattell, R. G., Barry, D. K., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow,
O., Stanienda, T., and Velez, F. (2000). The Object Database Standard: ODMG-3.0.
Morgan Kaufmann. 553, 582

Cattell, R. G. G. (1994). Object Data Management. Addison Wesley, 2 edition. 607
Cellary, W., Gelenbe, E., and Morzy, T. (1988). Concurrency Control in Distributed

Database Systems. North-Holland. 358, 401
Ceri, S., Gottlob, G., and Pelagatti, G. (1986). Taxonomy and formal properties of

distributed joins. Inf. Syst., 11(1):25–40. 232, 234, 242
Ceri, S., Martella, G., and Pelagatti, G. (1982a). Optimal file allocation in a computer

network: A solution method based on the knapsack problem. Comp. Netw., 6:345–
357. 121

Ceri, S. and Navathe, S. B. (1983). A methodology for the distribution design of
databases. Digest of Papers - COMPCON, pages 426–431. 125

778 References

Ceri, S., Navathe, S. B., and Wiederhold, G. (1983). Distribution design of logical
database schemes. IEEE Trans. Softw. Eng., SE-9(4):487–503. 81, 82, 121

Ceri, S., Negri, M., and Pelagatti, G. (1982b). Horizontal data partitioning in database
design. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 128–136.
84, 87

Ceri, S. and Owicki, S. (1982). On the use of optimistic methods for concurrency
control in distributed databases. In Proc. 6th Berkeley Workshop on Distributed
Data Management and Computer Networks, pages 117–130. 385

Ceri, S. and Pelagatti, G. (1982). A solution method for the non-additive resource
allocation problem in distributed system design. Inf. Proc. Letters, 15(4):174–178.
125

Ceri, S. and Pelagatti, G. (1983). Correctness of query execution strategies in
distributed databases. ACM Trans. Database Syst., 8(4):577–607. 38, 232, 242,
292

Ceri, S. and Pelagatti, G. (1984). Distributed Databases: Principles and Systems.
McGraw-Hill. 84, 220

Ceri, S. and Pernici, B. (1985). Dataid–d: Methodology for distributed database
design. In Albano, V. d. A. and di Leva, A., editors, Computer-Aided Database
Design, pages 157–183. North-Holland. 121

Ceri, S., Pernici, B., and Wiederhold, G. (1987). Distributed database design method-
ologies. Proc. IEEE, 75(5):533–546. 38, 73, 125

Ceri, S. and Widom, J. (1993). Managing semantic heterogeneity with production
rules and persistent queues. In Proc. 19th Int. Conf. on Very Large Data Bases,
pages 108–119. 160

Chakrabarti, K., Keogh, E., Mehrotra, S., and Pazzani, M. (2002). Locally adaptive
dimensionality reduction for indexing large time series databases. ACM Trans.
Database Syst., 27. 666, 743

Chakrabarti, S., Dom, B., and Indyk, P. (1998). Enhanced hypertext classification
using hyperlinks. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 307 – 318. 658

Chamberlin, D., Gray, J., and Traiger, I. (1975). Views, authorization and locking in
a relational database system. In Proc. National Computer Conf, pages 425–430.
172, 201

Chamberlin, D. D., Astrahan, M. M., King, W. F., Lorie, R. A., Mehl, J. W., Price,
T. G., Schkolnick, M., Selinger, P. G., Slutz, D. R., Wade, B. W., and Yost, R. A.
(1981). Support for repetitive transactions and ad hoc queries in System R. ACM
Trans. Database Syst., 6(1):70–94. 265

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., and Shah, M.
(2003). TelegraphCQ: Continuous dataflow processing for an uncertain world. In
Proc. 1st Biennial Conf. on Innovative Data Systems Research, pages 269–280.
728, 736

Chandrasekaran, S. and Franklin, M. J. (2003). PSoup: a system for streaming
queries over streaming data. VLDB J., 12(2):140–156. 736, 741

References 779

Chandrasekaran, S. and Franklin, M. J. (2004). Remembrance of streams past:
overload-sensitive management of archived streams. In Proc. 30th Int. Conf. on
Very Large Data Bases, pages 348–359. 738

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed storage
system for structured data. ACM Trans. Comp. Syst., 26(2). 755, 756, 763

Chang, S. K. and Cheng, W. H. (1980). A methodology for structured database
decomposition. IEEE Trans. Softw. Eng., SE-6(2):205–218. 123

Chang, S. K. and Liu, A. C. (1982). File allocation in a distributed database. Int. J.
Comput. Inf. Sci, 11(5):325–340. 121, 123

Charikar, M., Chen, K., and Motwani, R. (1997). Incremental clustering and dynamic
information retrieval. In Proc. 29th Annual ACM Symp. on Theory of Computing.
743

Charikar, M., O’Callaghan, L., and Panigrahy, R. (2003). Better streaming algorithms
for clustering problems. In Proc. 35th Annual ACM Symp. on Theory of Computing.
743

Chaudhuri, S. (1998). An overview of query optimization in relational systems. In
Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages
34–43. 292

Chaudhuri, S., Ganjam, K., Ganti, V., and Motwani, R. (2003). Robust and efficient
fuzzy match for online data cleaning. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 313–324. 158

Chen, J., DeWitt, D., and Naughton, J. (2002). Design and evaluation of alternative
selection placement strategies in optimizing continuous queries. In Proc. 18th Int.
Conf. on Data Engineering, pages 345–357. 740

Chen, J., DeWitt, D. J., Tian, F., and Wang, Y. (2000). NiagaraCQ: A scalable
continuous query system for internet databases. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 379–390. 6, 740

Chen, P. P. S. (1976). The entity-relationship model: Towards a unified view of data.
ACM Trans. Database Syst., 1(1):9–36. 81, 136

Chen, S., Deng, Y., Attie, P., and Sun, W. (1996). Optimal deadlock detection in
distributed systems based on locally constructed wait-for graphs. In Proc. IEEE
Int. Conf. Dist. Comp. Sys, pages 613–619. 401

Chen, W. and Warren, D. S. (1989). C-logic of complex objects. In Proc. 8th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages
369–378. 607

Cheng, J. M. et al. (1984). Ibm database 2 performance : Design, implementation
and tuning. IBM Systems J., 23(2):189–210. 503

Chiu, D. M. and Ho, Y. C. (1980). A methodology for interpreting tree queries into
optimal semi-join expressions. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 169–178. 271, 272, 292

Cho, J. and Garcia-Molina, H. (2000). The evolution of the web and implications for
an incremental crawler. In Proc. 26th Int. Conf. on Very Large Data Bases. 666

Cho, J. and Garcia-Molina, H. (2002). Parallel crawlers. In Proc. 11th Int. World
Wide Web Conf. 666

780 References

Cho, J., Garcia-Molina, H., and Page, L. (1998). Efficient crawling through URL
ordering. Comp. Netw., 30(161–172). Proceedings of WWW Conference. 664,
665

Cho, J. and Ntoulas, A. (2002). Effective change detection using sampling. In Proc.
28th Int. Conf. on Very Large Data Bases. 666

Chockler, G., Keidar, I., and Vitenberg, R. (2001). Group communication spec-
ifications: a comprehensive study. ACM Comput. Surv., 33(4):427–469. 482,
537

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., editors. Web
services description language (WSDL) 1.1 (2001). Available from: http://
www.w3.org/TR/wsdl [Last retrieved: December 2009]. 690

Chu, W. W. (1969). Optimal file allocation in a multiple computer system. IEEE
Trans. Comput., C-18(10):885–889. 125

Chu, W. W. (1973). Optimal file allocation in a computer network. In Abramson,
N. and Kuo, F. F., editors, Computer Communication Networks, pages 82–94.
Prentice-Hall. 125

Chu, W. W. (1976). Performance of file directory systems for data bases in star and
distributed networks. In Proc. National Computer Conf, pages 577–587. 38

Chu, W. W. and Nahouraii, E. E. (1975). File directory design considerations for
distributed databases. In Proc. 1st Int. Conf. on Very Data Bases, pages 543–545.
38

Chundi, P., Rosenkrantz, D. J., and Ravi, S. S. (1996). Deferred updates and data
placement in distributed databases. In Proc. ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems, pages 469–476. 477

Civelek, F. N., Dogac, A., and Spaccapietra, S. (1988). An expert system approach
to view definition and integration. In Proc. 7th Int’l. Conf. on Entity-Relationship
Approach, pages 229–249. 202

Clarke, I., Miller, S. G., Hong, T. W., Sandberg, O., and Wiley, B. (2002). Protecting
free expression online with Freenet. IEEE Internet Comput., 6(1):40–49. 615

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2000). Freenet: A distributed
anonymous information storage and retrieval system. In Proc. Workshop on Design
Issues in Anonymity and Unobservability, pages 46–66. 615

Cluet, S. and Delobel, C. (1992). A general framework for the optimization of
object-oriented queries. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 383–392. 583, 586, 587, 588

Codd, E. (1995). Twelve rules for on-line analytical processing. Computerworld.
132

Codd, E. F. (1970). A relational model for large shared data banks. Commun. ACM,
13(6):377–387. 45, 56

Codd, E. F. (1972). Relational completeness of data base sublanguages. In Rustin,
R., editor, Relational Databases, pages 65–98. Prentice-Hall, Englewood Cliffs,
N.J. 45

Codd, E. F. (1974). Recent investigations in relational data base systems. Proceedings
of IFIP Congress, Information Processing 74, pages 1017–1021. 44

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

References 781

Codd, E. F. (1979). Extending the database relational model to capture more meaning.
ACM Trans. Database Syst., 4(4):397–434. 43

Cohen, E. and Kaplan, H. (2004). Spatially-decaying aggregation over a network:
Model and algorithms. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 707–718. 726

Cohen, E. and Strauss, M. (2003). Maintaining time-decaying stream aggregates. In
Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages
223–233. 726, 737

Cohen, S. (2006). User-defined aggregate functions: bridging theory and practice. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 49–60. 737

Cole, R. L. and Graefe, G. (1994). Optimization of dynamic query evaluation plans.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 150–160. 265,
266, 292

Colouris, G., Dollimore, J., and Kindberg, T. (2001). Distributed Systems: Concepts
and Design. Addison Wesley, 3 edition. 2

Comer, D. E. (2009). Computer Networks and Internets. Prentice-Hall, 5 edition. 70
Computers, S. (1982). Stratus/32 System Overview. Stratus, Natick, Mass. 456
Cong, G., Fan, W., and Kementsietsidis, A. (2007). Distributed query evaluation

with performance guarantees. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 509–520. 711

Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.-A., Puz, N., Weaver, D., and Yerneni, R. (2008). PNUTS: Yahoo!’s
hosted data serving platform. Proc. VLDB, 1(2):1277–1288. 757, 763

Copeland, G., Alexander, W., Boughter, E., and Keller, T. (1988). Data placement in
bubba. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 99–108.
510, 511

Copeland, G. and Maier, D. (1984). Making smalltalk a database system. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 316–325. 552

Cormode, G. and Muthukrishnan, S. (2003). What’s hot and what’s not: Tracking
most frequent items dynamically. In Proc. ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems, pages 296–306. 743

Coulon, C., Pacitti, E., and Valduriez, P. (2005). Consistency management for partial
replication in a high performance database cluster. In Proc. IEEE Int. Conf. on
Parallel and Distributed Systems, pages 809–815. 537, 539, 548

Crainiceanu, A., Linga, P., Gehrke, J., and Shanmugasundaram, J. (2004). Querying
peer-to-peer networks using p-trees. In Proc. 7th Int. Workshop on the World Wide
Web and Databases, pages 25–30. 622

Cranor, C., Johnson, T., Spatscheck, O., and Shkapenyuk, V. (2003). Gigascope:
High performance network monitoring with an SQL interface. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 647–651. 728, 731

Crespo, A. and Garcia-Molina, H. (2002). Routing indices for peer-to-peer systems.
In Proc. 22nd Int. Conf. on Distributed Computing Systems, pages 23–33. 617

Cristian, F. (1982). Exception handling and software fault tolerance. IEEE Trans.
Comput., C-31(6):531–540. 455

782 References

Cristian, F. (1985). A rigorous approach to fault–tolerant programming. IEEE Trans.
Softw. Eng., SE-11(1):23–31. 455

Cristian, F. (1987). Exception handling. Technical Report RJ 5724, IBM Almaden
Research Laboratory, San Jose, Calif. 455

Cuenca-Acuna, F., Peery, C., Martin, R., and Nguyen, T. (2003). Planetp: using gos-
siping to build content addressable peer-to-peer information sharing communities.
In IEEE Int. Symp. on High Performance Distributed Computing, pages 236–249.
636

Cusumano, M. A. (2010). Cloud computing and SaaS as new computing platforms.
Commun. ACM, 53(4):27–29. 744, 763

Dadam, P. and Schlageter, G. (1980). Recovery in distributed databases based on non-
synchronized local checkpoints. In Information Processing ’80, pages 457–462.
456

Dageville, B., Casadessus, P., and Borla-Salamet, P. (1994). The impact of the
ksr1 allcache architecture on the behavior of the dbs3 parallel dbms. In Proc.
International Conf. on Parallel Architectures and Language. 528, 548

Dahlin, M., Wang, R., Anderson, T., and Patterson, D. (1994). Cooperative caching:
Using remote client memory to improve file system performance. In Proc. 1st
USENIX Symp. on Operating System Design and Implementation, pages 267–280.
210

Das, A., Gehrke, J., and Riedewald, M. (2005). Semantic approximation of data
stream joins. IEEE Trans. Knowl. and Data Eng., 17(1):44–59. 740

Dasu, T., Krishnan, S., Venkatasubramanian, S., and Yi, K. (2006). An information-
theoretic approach to detecting changes in multi-dimensional data streams. In
Proc. 38th Symp. on the Interface of Stats, Comp. Sci., and Applications. 727

Daswani, N., Garcia-Molina, H., and Yang, B. (2003). Open problems in data-sharing
peer-to-peer systems. In Proc. 9th Int. Conf. on Database Theory, pages 1–15.
611, 653

Datar, M., Gionis, A., Indyk, P., and Motwani, R. (2002). Maintaining stream
statistics over sliding windows. In Proc. 13th Annual ACM-SIAM Symp. on
Discrete Algorithms, pages 635–644. 737

Date, C. and Darwen, H. (1998). Foundation for Object/Relational Databases – The
Third Manifesto. Addison Wesley. 552, 607

Date, C. J. (1987). A Guide to the SQL Standard. Addison Wesley. 56
Date, C. J. (2004). An Introduction to Database Systems. Pearson, 8th edition. 70
Daudjee, K. and Salem, K. (2004). Lazy database replication with ordering guaran-

tees. In Proc. 20th Int. Conf. on Data Engineering, pages 424–435. 466
Daudjee, K. and Salem, K. (2006). Lazy database replication with snapshot isolation.

In Proc. 32nd Int. Conf. on Very Large Data Bases, pages 715–726. 464, 466
Davenport, R. A. (1981). Design of distributed data base systems. Comp. J., 24(1):31–

41. 73
Davidson, S. B. (1984). Optimism and consistency in partitioned distributed database

systems. ACM Trans. Database Syst., 9(3):456–481. 456, 487, 493
Davidson, S. B., Garcia-Molina, H., and Skeen, D. (1985). Consistency in partitioned

networks. ACM Comput. Surv., 17(3):341–370. 449, 456, 493

References 783

Dawson, J. L. (1980). A user demand model for distributed database design. In
Digest of Papers – COMPCON, pages 211–216. 125

Dayal, U. (1989). Queries and views in an object-oriented data model. In Proc. 2nd
Int. Workshop on Database Programming Languages, pages 80–102. 555, 606

Dayal, U. and Bernstein, P. (1978). On the updatability of relational views. In Proc.
4th Int. Conf. on Very Data Bases, pages 368–377. 175, 201

Dayal, U., Buchmann, A., and McCarthy, D. (1988). Rules are objects too: A
knowledge model for an active object-oriented database system. In Advances in
Object-Oriented Database Systems. Proc. of the 2nd Int. Workshop on Object-
Oriented Database Systems, pages 129–143. 606

Dayal, U. and Hwang, H. (1984). View definition and generalization for database
integration in multibase: A system for heterogeneous distributed database. IEEE
Trans. Softw. Eng., SE-10(6):628–644. 147, 160, 331

Dayal, U., M.Hsu, and Ladin, R. (1991). A transactional model for long-running
activities. In Proc. 17th Int. Conf. on Very Large Data Bases, pages 113–122. 354,
355

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified data processing on
large clusters. In Proc. 6th USENIX Symp. on Operating System Design and
Implementation, pages 137–150. 758, 763

Dean, J. and Ghemawat, S. (2010). MapReduce: a flexible data processing tool.
Commun. ACM, 53(1):72–77. 760, 763

Demaine, E., Lopez-Ortiz, A., and Munro, J. I. (2002). Frequency estimation of
internet packet streams with limited space. In Proc. 10th Annual European Symp.
on Algorithms, pages 348–360. 743

Demers, A., Gehrke, J., Hong, M., Riedewald, M., and White, W. (2006). Towards
expressive publish/subscribe systems. In Advances in Database Technology, Proc.
10th Int. Conf. on Extending Database Technology, pages 627–644. 741

Demers, A. J., Greene, D. H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H. E., Swinehart, D. C., and Terry, D. B. (1987). Epidemic algorithms for replicated
database maintenance. In Proc. ACM SIGACT-SIGOPS 6th Symp. on the Principles
of Distributed Computing, pages 1–12. 617

Denning, P. J. (1968). he working set model for program behavior. Commun. ACM,
11(5):323–333. 415

Denning, P. J. (1980). Working sets: Past and present. IEEE Trans. Softw. Eng.,
SE-6(1):64–84. 415

Denny, M. and Franklin, M. (2005). Predicate result range caching for continuous
queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
646–657. 740

Deshpande, A. and Hellerstein, J. (2004). Lifting the burden of history from adaptive
query processing. In Proc. 30th Int. Conf. on Very Large Data Bases, pages
948–959. 739

Devine, R. (1993). Design and implementation of DDH: A distributed dynamic
hashing algorithm. In Proc. 4th Int. Conf. on Foundations of Data Organization
and Algorithms, pages 101–114. 618

784 References

DeWitt, D., Naughton, J., Schneider, D., and Seshadri, S. (1992). Practical skew
handling in parallel joins. In Proc. 22th Int. Conf. on Very Large Data Bases,
pages 27–40. 529, 548

DeWitt, D. J., Futtersack, P., Maier, D., and Velez, F. (1990). A study of three
alternative workstation-server architectures for object-oriented database systems.
In Proc. 16th Int. Conf. on Very Large Data Bases, pages 107–12. 568

DeWitt, D. J. and Gerber, R. (1985). Multi processor hash-based join algorithms. In
Proc. 11th Int. Conf. on Very Large Data Bases, pages 151–164. 518

DeWitt, D. J., Gerber, R. H., Graek, G., Heytens, M. L., Kumar, K. B., and Muralikr-
ishna, M. (1986). Gamma: A high performance dataflow database machine. In
Proc. 12th Int. Conf. on Very Large Data Bases, pages 228–237. 505, 548

DeWitt, D. J. and Gray, J. (1992). Parallel database systems: The future of high
performance database systems. Commun. ACM, 35(6):85–98. 497, 500

Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y., and Domingos, P. (2004). iMAP:
Discovering complex mappings between database schemas. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, pages 383–394. 147

Dickman, P. (1991). Distributed Object Management in a Non-Small Graph of
Autonomous Networks With Few Failures. Ph.D. thesis, University of Cambridge,
England. 581

Dickman, P. (1994). The bellerophon project: A scalable object-support architecture
suitable for a large oodbms? In Özsu et al. [1994a], pages 287–299. 577

Diffie, W. and Hellman, M. E. (1976). New directions in cryptography. IEEE Trans.
Information Theory, IT–22(6):644–654. 180

Ding, Q., Ding, Q., and Perrizo, W. (2002). Decision tree classification of spatial data
streams using peano count trees. In Proc. 2002 ACM Symp. on Applied Computing,
pages 413–417. 743

Do, H. H. and Rahm, E. (2002). COMA - A system for flexible combination of
schema matching approaches. In Proc. 28th Int. Conf. on Very Large Data Bases,
pages 610–621. 134, 142, 144, 160

Doan, A., Domingos, P., and Halevy, A. Y. (2001). Reconciling schemas of disparate
data sources: A machine-learning approach. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 509–520. 145, 147

Doan, A., Domingos, P., and Halevy, A. Y. (2003a). Learning to match the schemas
of data sources: A multistrategy approach. Machine Learning, 50(3):279–301.
145, 146, 147

Doan, A., Halevy, A., and Ives, Z. (2010). Principles of Data Integration. (in
preparation). 159, 160

Doan, A. and Halevy, A. Y. (2005). Semantic integration research in the database
community: A brief survey. AI Magazine, 26(1):83–94. 160

Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A. Y. (2003b).
Learning to match ontologies on the semantic web. VLDB J., 12(4):303–319. 626

Dobra, A., Garofalakis, M., Gehrke, J., and Rastogi, R. (2004). Sketch-based multi-
query processing over data streams. In Advances in Database Technology, Proc.
9th Int. Conf. on Extending Database Technology, pages 551–568. 740

References 785

Dogac, A., Dengi, C., and Özsu, M. T. (1998a). Distributed object computing
platforms. Commun. ACM, 41(9):95–103. 607

Dogac, A., Kalinichenko, L., Özsu, M. T., and Sheth, A., editors (1998b). Advances
in Workflow Systems and Interoperability. Springer. 354, 359

Dogac, A., Özsu, M., Biliris, A., and Sellis, T., editors (1994). Advances in Object-
Oriented Database Systems. Springer. 586, 607, 814

Doherty, C. and Hurley, N. (2007). Autonomic distributed data management with up-
date accesses. In Proc. 1st Int. Conf. on Autonomic computing and communication
systems, pages 1–8. 762

D’Oliviera, C. R. (1977). An analysis of computer decentralization. Technical Memo
TM-90, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Mass. 7

Dollimore, J., Nascimento, C., and Xu, W. (1994). Fine-grained object migration. In
Özsu et al. [1994a], pages 182–186. 577

Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In Proc. 6th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 71–80.
743

Douglis, F., Palmer, J., Richards, E., Tao, D., Hetzlaff, W., Tracey, J., and Lin, J.
(2004). Position: short object lifetimes require a delete-optimized storage system.
In Proc. 11th ACM SIGOPS European Workshop. 726

Dowdy, L. W. and Foster, D. V. (1982). Comparative models of the file assignment
problem. ACM Comput. Surv., 14(2):287–313. 38, 114, 125

Draper, D., Fankhauser, P., Fernández, M., Malhotra, A., Rose, K., Rys, M., Siméon,
J., and Wadler, P., editors. Xquery 1.0 and XPath 2.0 formal semantics (2007).
Available from: http://www.w3.org/TR/xquery-semantics/ [Last
retrieved: January 2010]. 702

Du, W. and Elmagarmid, A. (1989). Quasi-serializability: A correctness criterion for
global concurrency control in interbase. In Proc. 15th Int. Conf. on Very Large
Data Bases, pages 347–355. 26

Du, W., Krishnamurthy, R., and Shan, M. (1992). Query optimization in a heteroge-
neous dbms. In Proc. 18th Int. Conf. on Very Large Data Bases, pages 277–291.
307, 308, 331

Du, W., Shan, M., and Dayal, U. (1995). Reducing multidatabase query response
time by tree balancing. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 293–303. 287, 290, 293, 315, 331

Duschka, O. M. and Genesereth, M. R. (1997). Answering recursive queries using
views. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
pages 109–116. 160, 305, 331

Dwork, C. and Skeen, D. (1983). The inherent cost of nonblocking commitment. In
Proc. ACM SIGACT-SIGOPS 2nd Symp. on the Principles of Distributed Comput-
ing, pages 1–11. 455

Eager, D. L. and Sevcik, K. C. (1983). Achieving robustness in distributed database
systems. ACM Trans. Database Syst., 8(3):354–381. 456, 493

http://www.w3.org/TR/xquery-semantics/

786 References

Edwards, J., McCurley, K., and Tomlin, J. (2001). An adaptive model for optimizing
performance of an incremental web crawler. In Proc. 10th Int. World Wide Web
Conf. 666

Effelsberg, W. and Härder, T. (1984). Principles of database buffer management.
ACM Trans. Database Syst., 9(4):560–595. 415

Eich, M. H. (1989). Main memory database research directions. In Int. Workshop on
Database Machines, pages 251–268. 499

Eickler, A., Gerlhof, C., and Kossmann, D. (1995). A performance evaluation of oid
mapping techniques. In Proc. 21th Int. Conf. on Very Large Data Bases, pages
18–29. 575

Eisenberg et al., 2008 (2008). Information technology – database languages – SQL –
Part 14: XML-related specifications (SQL/XML). 702

Eisner, M. J. and Severance, D. G. (1976). Mathematical techniques for efficient
record segmentation in large shared databases. J. ACM, 23(4):619–635. 98

Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M. (1990). A multidatabase
transaction model for interbase. In Proc. 16th Int. Conf. on Very Large Data Bases,
pages 507–518. 354

Elmagarmid, A., Rusinkiewicz, M., and Sheth, A., editors (1999). Management of
Heterogeneous and Autonomous Database Systems. Morgan Kaufmann. 160

Elmagarmid, A. K. (1986). A survey of distributed deadlock detection algorithms.
ACM SIGMOD Rec., 15(3):37–45. 39, 401

Elmagarmid, A. K., editor (1992). Transaction Models for Advanced Database
Applications. Morgan Kaufmann. 359

Elmagarmid, A. K., Soundararajan, N., and Liu, M. T. (1988). A distributed deadlock
detection and resolution algorithm and its correctness proof. IEEE Trans. Softw.
Eng., 14(10):1443–1452. 401

Elmasri, R., Larson, J., and Navathe, S. B. (1987). Integration algorithms for database
and logical database design. Technical report, Honeywell Corporate Research
Center, Golden Valley, Minn. 149

Elmasri, R. and Navathe, S. B. (2011). Fundamentals of Database Systems. Pearson,
6 edition. 70

Embley, D. W., Jackman, D., and Xu, L. (2001). Multifaceted exploitation of metadata
for attribute match discovery in information integration. In Proc. Workshop on
Information Integration on the Web, pages 110–117. 146

Embley, D. W., Jackman, D., and Xu, L. (2002). Attribute match discovery in
information integration: exploiting multiple facets of metadata. Journal of the
Brazilian Computing Society, 8(2):32–43. 146

Epstein, R. and Stonebraker, M. (1980). Analysis of distributed data base processing
strategies. In Proc. 5th Int. Conf. on Very Data Bases, pages 92–101. 293

Epstein, R., Stonebraker, M., and Wong, E. (1978). Query processing in a distributed
relational database system. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 169–180. 209, 254, 274, 276, 292

Eswaran, K. P. (1974). Placement of records in a file and file allocation in a computer
network. In Information Processing ’74, pages 304–307. 115, 125

References 787

Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L. (1976). The notions of
consistency and predicate locks in a database system. Commun. ACM, 19(11):624–
633. 341, 370

Evrendilek, C., Dogac, A., Nural, S., and Ozcan, F. (1997). Multidatabase query
optimization. Distrib. Parall. Databases, 5(1):77–114. 287, 293, 316

Ezeife, C. I. and Barker, K. (1995). A comprehensive approach to horizontal class
fragmentation in a distributed object based system. Distrib. Parall. Databases,
3(3):247–272. 563, 564, 607

Ezeife, C. I. and Barker, K. (1998). Distributed object based design: Vertical frag-
mentation of classes. Distrib. Parall. Databases, 6(4):327–360. 563

Fagin, R. (1977). Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst., 2(3):262–278. 44

Fagin, R. (1979). Normal forms and relational database operators. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 153–160. 44

Fagin, R. (1999). Combining fuzzy information from multiple systems. Journal of
Computer and System Sciences, 58(1):83–99. 629

Fagin, R. (2002). Combining fuzzy information: an overview. ACM SIGMOD Rec.,
31(2):109–118. 147

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. (2005). Data exchange: semantics
and query answering. TCS, 336(1):89–124. 159

Fagin, R., Lotem, J., and Naor, M. (2003). Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66(4):614–656. 629, 654

Fagin, R. and Vardi, M. Y. (1984). The theory of data dependencies: A survey.
Research Report RJ 4321 (47149), IBM Research Laboratory, San Jose, Calif. 189

Faloutsos, C. and Christodoulakis, S. (1984). Signature files: an access method for
documents and its analytical performance evaluation. ACM Trans. Information
Syst., 2(4):267–288. 667

Fan, W. (2004). Systematic data selection to mine concept-drifting data streams. In
Proc. 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
pages 128–137. 743

Fang, D., Hammer, J., and McLeod, D. (1994). An approach to behavior sharing in
federated database systems. In Özsu et al. [1994a], pages 334–346. 565

Farrag, A. (1986). Concurrency and Consistency in Database Systems. Ph.D. thesis,
Department of Computing Science, University of Alberta, Edmonton, Canada.
359

Farrag, A. A. and Özsu, M. T. (1985). A general concurrency control for database
systems. In Proc. National Computer Conf, pages 567–573. 400

Farrag, A. A. and Özsu, M. T. (1987). Towards a general concurrency control
algorithm for database systems. IEEE Trans. Softw. Eng., 13(10):1073–1079. 400

Farrag, A. A. and Özsu, M. T. (1989). Using semantic knowledge of transactions to
increase concurrency. ACM Trans. Database Syst., 14(4):503–525. 395, 401

Fekete, A., Lynch, N., Merritt, M., and Weihl, W. (1987a). Nested transactions and
read/write locking. Technical Memo MIT/LCS/TM–324, Massachusetts Institute
of Technology, Cambridge, Mass. 401

788 References

Fekete, A., Lynch, N., Merritt, M., and Weihl, W. (1987b). Nested transactions,
conflict-based locking, and dynamic atomicity. Technical Memo MIT/LCS/TM–
340, Massachusetts Institute of Technology, Cambridge, Mass. 401

Fekete, A., Lynch, N., Merritt, M., and Weihl, W. (1989). Commutativity-based lock-
ing for nested transactions. Technical Memo MIT/LCS/TM-370b, Massachusetts
Institute of Technology, Cambridge, Mass. 401, 594

Fernandez, E. B., Summers, R. C., and Wood, C. (1981). Database Security and
Integrity. Addison Wesley. 180

Fernandez, M., Florescu, D., and Levy, A. (1997). A query language for a web-site
management system. ACM SIGMOD Rec., 26(3):4–11. 676

Fernández, M. F., Siméon, J., Choi, B., Marian, A., and Sur, G. (2003). Implementing
XQuery 1.0: The Galax experience. In Proc. 29th Int. Conf. on Very Large Data
Bases, pages 1077–1080. 698, 702

Ferreira, P. and Shapiro, M. (1994). Garbage collection and dsm consistency. In
Proc. of the First Symposium on Operating Systems Design and Implementation,
pages 229–241. 581

Fessant, F. L., Piumarta, I., and Shapiro, M. (1998). An implementation of complete,
asynchronous, distributed garbage collection. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 152–161. 582

Fiebig, T., Helmer, S., Kanne, C.-C., Moerkotte, G., Neumann, J., Schiele, R., and
Westmann, T. (2002). Anatomy of a native XML base management system. VLDB
J., 11(4):292–314. 699

Fisher, M. K. and Hochbaum, D. S. (1980). Database location in computer networks.
J. ACM, 27(4):718–735. 121

Fisher, P. S., Hollist, P., and Slonim, J. (1980). A design methodology for distributed
data bases. In Digest of Papers – COMPCON, pages 199–202. 125

Florentin, J. J. (1974). Consistency auditing of databases. Comp. J., 17(1):52–58.
188, 202

Florescu, D., Koller, D., and Levy, A. (1997). Using probabilistic information in data
integration. In Proc. 23th Int. Conf. on Very Large Data Bases, pages 216–225.
564

Florescu, D., Levy, A., and Mendelzon, A. (1998). Database techniques for the
World-Wide Web: a survey. ACM SIGMOD Rec., 27(3):59–74. 657, 676

Folkert, N., Gupta, A., Witkowski, A., Subramanian, S., Bellamkonda, S., Shankar,
S., Bozkaya, T., and Sheng, L. (2005). Optimizing refresh of a set of materialized
views. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 1043–1054. 738

Foster, D. V. and Browne, J. C. (1976). File assignment in memory hierarchies.
In Gelenbe, I. E., editor, Modelling and Performance Evaluation of Computer
Systems, pages 119–127. North-Holland. 125

Franklin, M., Livny, M., and Carey, M. (1997). Transactional client-server cache
consistency: Alternatives and performance. ACM Trans. Database Syst., 22(3):315–
367. 572

Franklin, M. J., Carey, M., and Livny, M. (1992). Global memory management in
client-server dbms architectures. In Proc. 18th Int. Conf. on Very Large Data
Bases, pages 596–609. 210, 571

References 789

Franklin, M. J. and Carey, M. J. (1994). Client-server caching revisited. In Özsu
et al. [1994a], pages 57–78. 572, 573

Franklin, M. J., Jonsson, B. T., and Kossmann, D. (1996). Performance tradeoffs for
client-server query processing. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 149–160. 214

Freeley, M., Morgan, W., and Pighin, F. (1995). Implementing global memory
management in a workstation cluster. In Proc. 15th ACM Symp. on Operating Syst.
Principles, pages 201–212. 210

Freytag, J. C. (1987). A rule-based view of query optimization. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 173–180. 583

Freytag, J. C., Maier, D., and Vossen, G. (1994). Query Processing for Advanced
Database Systems. Morgan Kaufmann. 220

Friedman, M., Levy, A. Y., and Millstein, T. D. (1999). Navigational plans for
data integration. In Proc. 16th National Conf on Artificial Intelligence and 11th
Innovative Applications of Artificial Intelligence Conf., pages 67–73. 133

Fung, C. W., Karlaplem, K., and Li, Q. (1996). An analytical approach towards
evaluating method induced vertical partitioning algorithms. Technical Report
HKUST96-33, Department of Computer Science, Hong Kong University of Sci-
ence and Technology. 564

Furtado, C., Lima, A., Pacitti, E., Valduriez, P., and Mattoso, M. (2005). Physical
and virtual partitioning in olap database clusters. In Proc. Int. Symp. Computer
Architecture and High Performance Computing, pages 143–150. 544, 548

Furtado, C., Lima, A., Pacitti, E., Valduriez, P., and Mattoso, M. (2006). Adaptive
hybrid partitioning for olap query processing in a database cluster. Int. J. High
Perf. Comput. and Networking. To appear. 544, 548

Fushimi, S., Kitsuregawa, M., and Tanaka, H. (1986). An overview of the system
software of a parallel relational database machine grace. In Proc. 12th Int. Conf.
on Very Large Data Bases, pages 209–219. 505

Gaber, M., Zaslavsky, A., and Krishnaswamy, S. (2005). Mining data streams: A
review. ACM SIGMOD Rec., 34(2):18–26. 742, 762

Galhardas, H., Florescu, D., Shasha, D., Simon, E., and Saita, C.-A. (2001). Declara-
tive data cleaning: Language, model, and algorithms. In Proc. 27th Int. Conf. on
Very Large Data Bases, pages 371–380. 158

Gallaire, H., Minker, J., and Nicolas, J.-M. (1984). Logic and databases: A deductive
approach. ACM Comput. Surv., 16(2):153–186. 47

Gama, J., Medas, P., and Rodrigues, P. (2005). Learning decision trees from dynamic
data streams. In Proc. 2005 ACM Symp. on Applied Computing, pages 573–577.
743

Gançarski, S., Naacke, H., Pacitti, E., and Valduriez, P. (2002). Parallel processing
with autonomous databases in a cluster system. In Proc. Int. Conf. on Cooperative
Information Systems, pages 410–428. 540, 548

Gançarski, S., Naacke, H., Pacitti, E., and Valduriez, P. (2007). The leganet system:
Freshness-aware transaction routing in a database cluster. Inf. Syst., 32(7):320–343.
541, 548

790 References

Ganesan, P., Yang, B., and Garcia-Molina, H. (2004). One torus to rule them all:
Multidimensional queries in p2p systems. In Proc. 7th Int. Workshop on the World
Wide Web and Databases, pages 19–24. 622

Ganti, Gehrke, and Ramakrishnan (2002). Mining data streams under block evolution.
SIGKDD Explorations, pages 1–10. 743

Gao, S., Sperberg-McQueen, C. M., and Thompson, H. S., editors. W3C XML
schema definition language (XSD) 1.1 part 1: Structures (2009). Available
from: http://www.w3.org/TR/xmlschema11-1/ [Last retrieved: Jan-
uary 2010]. 693

Garcia-Molina, H. (1979). Performance of Update Algorithms for Replicated Data in
a Distributed Database. Ph.D. thesis, Department of Computer Science, Stanford
University, Stanford, Calif. 390, 401

Garcia-Molina, H. (1982). Elections in distributed computing systems. IEEE Trans.
Comput., C-31(1):48–59. 440

Garcia-Molina, H. (1983). Using semantic knowledge for transaction processing in a
distributed database. ACM Trans. Database Syst., 8(2):186–213. 352, 395, 401

Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and Salem, K. (1990). Coor-
dinating multi-transaction activities. Technical Report CS-TR-247-90, Department
of Computer Science, Princeton University. 352, 353, 397

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ull-
man, J. D., Vassalos, V., and Widom, J. (1997). The TSIMMIS approach to
mediation: Data models and languages. J. Intell. Information Syst., 8(2):117–132.
160

Garcia-Molina, H. and Salem, K. (1987). Sagas. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 249–259. 351, 352, 397

Garcia-Molina, H., Ullman, J. D., and Widom, J. (2002). Database Systems – The
Complete Book. Prentice-Hall. 70

Garcia-Molina, H. and Wiederhold, G. (1982). Read–only transactions in a distributed
database. ACM Trans. Database Syst., 7(2):209–234. 401

Garofalakis, M. N. and Ioannidis, Y. E. (1996). Multi-dimensional resource schedul-
ing for parallel queries. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 365–376. 530, 548

Garza, J. F. and Kim, W. (1988). Transaction management in an object-oriented
database system. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 37–45. 597, 600

Gastonian, R. (1983). The auragen system 4000. Q. Bull. IEEE TC on Data Eng.,
6(2). 456

Gavish, B. and Pirkul, H. (1986). Computer and database location in distributed
computer systems. IEEE Trans. Comput., C-35(7):583–590. 125

GE (1976). MADMAN User Manual. General Electric Company, Schenectady, N.Y.
390

Gedik, B., Wu, K.-L., Yu, P. S., and Liu, L. (2005). Adaptive load shedding for win-
dowed stream joins. In Proc. 14th ACM Int. Conf. on Information and Knowledge
Management, pages 171–178. 740

http://www.w3.org/TR/xmlschema11-1/

References 791

Gelenbe, E. and Gardy, D. (1982). The size of projections of relations satisfying a
functional dependency. In Proc. 8th Int. Conf. on Very Data Bases, pages 325–333.
254

Gelenbe, E. and Sevcik, K. (1978). Analysis of update synchronization for multiple
copy databases. In Proc. 3rd Berkeley Workskop on Distributed Data Management
and Computer Networks, pages 69–88. 401

Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An overview of work-
flow management: From process modeling to workflow automation infrastructure.
Distrib. Parall. Databases, 3:119–153. 354, 359

Gerlhof, C. and Kemper, A. (1994). A multi-threaded architecture for prefetching
in object bases. In Jarke, M., Jr., J. A. B., and Jeffery, K. G., editors, Advances
in Database Technology, Proc. 4th Int. Conf. on Extending Database Technology,
volume 779 of Lecture Notes in Computer Science, pages 351–364. Springer. 568

Ghanem, T., Aref, W., and Elmagarmid, A. (2006). Exploiting predicate-window
semantics over data streams. ACM SIGMOD Rec., 35(1):3–8. 727

Ghemawat, S. (1995). The Modified Object Buffer: A Storage Management Technique
for Object-Oriented Databases. Ph.D dissertation, Massachusetts Institute of
Technology, Cambridge, Mass. 571

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The Google file system. In
Proc. 19th ACM Symp. on Operating System Principles, pages 29–43. 753, 763

Gibbons, P. and Tirthapura, S. (2002). Distributed streams algorithms for sliding
windows. In Proc. 14th ACM Symp. on Parallel Algorithms and Architectures,
pages 63–72. 737

Gibbons, T. (1976). Integrity and Recovery in Computer Systems. NCC Publications.
455

Gifford, D. K. (1979). Weighted voting for replicated data. In Proc. 7th ACM Symp.
on Operating System Principles, pages 50–159. 487

Gilbert, A. C., Kotidis, Y., Muthukrishnan, S., and Strauss, M. J. (2001). Surfing
wavelets on streams: One-pass summaries for approximate aggregate queries. In
Proc. 27th Int. Conf. on Very Large Data Bases, pages 79–88. 726

Gligor, V. and Popescu-Zeletin, R. (1986). Transaction management in distributed
heterogeneous database management systems. Inf. Syst., 11(4):287–297. 25

Gligor, V. D. and Luckenbaugh, G. L. (1984). Interconnecting heterogeneous
database management systems. Comp., 17(1):33–43. 40

Golab, L. (2006). Sliding Window Query Processing over Data Streams. PhD thesis,
University of Waterloo. 763

Golab, L., Garg, S., and Özsu, M. T. (2004). On indexing sliding windows over
on-line data streams. In Advances in Database Technology, Proc. 9th Int. Conf. on
Extending Database Technology, pages 712–729. 736

Golab, L., Johnson, T., Seidel, J. S., and Shkapenyuk, V. (2009). Stream warehousing
with DataDepot. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 847–854. 761

Golab, L. and Özsu, M. T. (2003a). Issues in data stream management. ACM
SIGMOD Rec., 32(2):5–14. 762, 763

792 References

Golab, L. and Özsu, M. T. (2003b). Processing sliding window multi-joins in
continuous queries over data streams. In Proc. 29th Int. Conf. on Very Large Data
Bases, pages 500–511. 733

Golab, L. and Özsu, M. T. (2010). Data Stream Systems. Morgan & Claypool. 761,
762, 763

Goldberg, A. and Robson, D. (1983). SmallTalk-80: The Language and Its Imple-
mentation. Addison Wesley. 559

Goldman, K. J. (1987). Data replication in nested transaction systems. Technical
Report MIT/LCS/TR-390, Massachusetts Institute of Technology, Cambridge,
Mass. 401

Goldman, R. and Widom, J. (1997). Dataguides : Enabling query formulation and
optimization in semistructured databases. In Proc. 23th Int. Conf. on Very Large
Data Bases, pages 436–445. 675, 701

Gonnet, G. H. and Tompa, F. W. (1987). Mind your grammar: A new approach to
modelling text. In Proc. 13th Int. Conf. on Very Large Data Bases, pages 339–346.
690

Goodman, J. R. and Woest, P. J. (1988). The wisconsin multicube: A new large-
scale cache-coherent multiprocessor. Technical Report TR766, University of
Wisconsin-Madison. 506, 548

Goodman, N., Suri, R., and Tay, Y. C. (1983). A simple analytic model for perfor-
mance of exclusive locking in database systems. In Proc. 2nd ACM SIGACT–
SIGMOD Symp. on Principles of Database Systems, pages 203–215. 401

Gottlob, G., Koch, C., and Pichler, R. (2005). Efficient algorithms for processing
XPath queries. ACM Trans. Database Syst., 30(2):444–491. 700

Gounaris, A., Paton, N., Fernandes, A., and Sakellariou, R. (2002a). Adaptive query
processing: A survey. In Proc. British National Conf. on Databases, pages 11–25.
739

Gounaris, A., Paton, N. W., Fernandes, A. A. A., and Sakellariou, R. (2002b). Adap-
tive query processing: A survey. In Proc. British National Conf. on Databases,
pages 11–25. 320, 321, 331

Graefe, G. (1990). Encapsulation of parallelism in the volcano query processing
systems. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
102–111. 503, 548

Graefe, G. (1993). Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73–170. 220, 292, 547

Graefe, G. (1994). Volcano - an extensible and parallel query evaluation system.
IEEE Trans. Knowl. and Data Eng., 6(1):120–135. 267

Graefe, G. and DeWitt, D. (1987). The exodus optimizer generator. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 160–172. 583

Graefe, G. and Maier, D. (1988). Query optimization in object-oriented database
systems: The REVELATION project. Technical Report CS/E 88-025, Oregon
Graduate Center. 583, 586

Graefe, G. and McKenna, W. (1993). The volcano optimizer generator. In Proc. 9th
Int. Conf. on Data Engineering, pages 209–218. 320, 321, 586

References 793

Grant, J. (1984). Constraint preserving and lossless database transformations. Inf.
Syst., 9(2):139–146. 79

Grapa, E. and Belford, G. G. (1977). Some theorems to aid in solving the file
allocation problem. Commun. ACM, 20(11):878–882. 125

Gravano, L., Garcia-Molina, H., and Tomasic, A. (1999). Gloss: Text-source discov-
ery over the internet. ACM Trans. Database Syst., 24(2):229–264. 689

Gray, J. (1981). The transaction concept: Virtues and limitations. In Proc. 7th Int.
Conf. on Very Data Bases, pages 144–154. 337

Gray, J. (1985). Why do computers stop and what can be done about it. Technical
Report 85-7, Tandem Computers, Cupertino, Calif. 455, 456

Gray, J. (1987). Why do computers stop and what can be done about it. In CIPS
(Canadian Information Processing Society) Edmonton ’87 Conf. Tutorial Notes,
Edmonton, Canada. 350, 410

Gray, J. (1989). Transparency in its place – the case against transparent access to
geographically distributed data. Technical Report TR89.1, Tandem Computers
Inc, Cupertino, Calif. 11

Gray, J., Helland, P., O’Neil, P. E., and Shasha, D. (1996). The dangers of replication
and a solution. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
173–182. 460, 493

Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and Techniques.
Morgan Kaufmann. 358, 396, 401

Gray, J. N. (1979). Notes on data base operating systems. In Bayer, R., Graham,
R. M., and Seegmüller, G., editors, Operating Systems: An Advanced Course,
pages 393–481. Springer. 39, 359, 419, 425, 426, 431, 456

Gray, J. N., Lorie, R. A., Putzolu, G. R., and Traiger, I. L. (1976). Granularity of
locks and degrees of consistency in a shared data base. In Nijssen, G. M., editor,
Modelling in Data Base Management Systems, pages 365–394. North-Holland.
345

Gray, J. N., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F.,
and Traiger, I. (1981). The recovery manager of the system r database manager.
ACM Comput. Surv., 13(2):223–242. 411, 419, 426, 456

Grefen, P. and Widom, J. (1997). Protocols for integrity constraint checking in
federated databases. Distrib. Parall. Databases, 5(4):327–355. 200, 202

Griffiths, P. P. and Wade, B. W. (1976). An authorization mechanism for a relational
database system. ACM Trans. Database Syst., 1(3):242–255. 182, 201

Grossman, R. L. and Gu, Y. (2009). On the varieties of clouds for data intensive
computing. Q. Bull. IEEE TC on Data Eng., 32(1):44–50. 745

Group, E. D. S. E. D. (1990). Eds-collaborating for a high-performance parallel
relational database. In Proc. ESPRIT Conf, pages 274–295. 505, 548

Gruber, O. and Amsaleg, L. (1994). Object grouping in eos. In Özsu et al. [1994a],
pages 117–131. 579

Grust, T., van Keulen, M., and Teubner, J. (2003). Staircase join: Teach a relational
dbms to watch its (axis) steps. In Proc. 29th Int. Conf. on Very Large Data Bases,
pages 524–525. 700

794 References

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar,
A., and Lafon, Y., editors. Simple object protocol (SOAP) version 1.2 (2007).
Available from: http://www.w3.org/TR/soap12 [Last retrieved: Decem-
ber 2009]. 690

Guerrini, G., Bertino, E., and Bal, R. (1998). A formal definition of the chimera
object-oriented data model. J. Intell. Information Syst., 11(1):5–40. 607

Guha, S. and McGregor, A. (2006). Approximate quantiles and the order of the
stream. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
pages 273–279. 725

Guha, S., Meyerson, A., Mishra, N., and Motwani, R. (2003). Clustering data streams:
Theory and practice. IEEE Trans. Knowl. and Data Eng., 15(3):515–528. 743

Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., and Valduriez, P. (2010).
StreamCloud: A large scale data streaming system. In Proc. 30th Int. Conf.
on Distributed Computing Systems. 762

Gulli, A. and Signorini, A. (2005). The indexable web is more than 11.5 billion
pages. In Proc. 14th Int. World Wide Web Conf., pages 902 – 903. 657

Gummadi, P. K., Gummadi, R., Gribble, S. D., Ratnasamy, S., Shenker, S., and Stoica,
I. (2003). The impact of DHT routing geometry on resilience and proximity. In
Proc. ACM Int. Conf. on Data Communication, pages 381–394. 619

Güntzer, U., Kießling, W., and Balke, W.-T. (2000). Optimizing multi-feature queries
for image databases. In Proc. 26th Int. Conf. on Very Large Data Bases, pages
419–428. 629, 654

Guo, H., Larson, P.-A., Ramakrishnan, R., and Goldstein, J. (2004). Relaxed currency
and consistency: How to say “good enough” in sql. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 815–826. 540

Gupta, A., Agrawal, D., and Abbadi, A. E. (2003). Approximate range selection
queries in peer-to-peer systems. In Proc. 1st Biennial Conf. on Innovative Data
Systems Research, pages 141–151. 642

Gupta, A., Jagadish, H., and Mumick, I. S. (1996). Data integration using self-
maintainable views. In Advances in Database Technology, Proc. 5th Int. Conf. on
Extending Database Technology, pages 140–144. 179, 180

Gupta, A. and Mumick, I. S. (1999a). Maintenance of materialized views: Problems,
techniques, and applications. In Gupta and Mumick [1999c], chapter 11, pages
145–156. 178, 201

Gupta, A. and Mumick, I. S., editors (1999b). Materialized Views: Techniques,
Implementations, and Applications. M.I.T. Press. 132

Gupta, A. and Mumick, I. S., editors (1999c). Materialized Views: Techniques,
Implementations, and Applications. M.I.T. Press. 176, 201, 794

Gupta, A., Mumick, I. S., and Subrahmanian, V. S. (1993). Maintaining views
incrementally. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
157–166. 179, 201

Haas, L. (2007). Beauty and the beast: The theory and practice of information
integration. In Proc. 11th Int. Conf. on Database Theory, pages 28–43. 160

http://www.w3.org/TR/soap12

References 795

Haas, L., Kossmann, D., Wimmers, E., and Yang, J. (1997a). Optimizing queries
across diverse data sources. In Proc. 23th Int. Conf. on Very Large Data Bases,
pages 276–285. 317, 331

Haas, L. M., Kossmann, D., Wimmers, E. L., and Yang, J. (1997b). Optimizing
queries across diverse data sources. In Proc. 23th Int. Conf. on Very Large Data
Bases, pages 276–285. 160

Haas, P. and Hellerstein, J. (1999a). Ripple joins for online aggregation. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 287–298. 732

Haas, P. J. and Hellerstein, J. M. (1999b). Ripple joins for online aggregation. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 287–298. 322,
325, 331

Haderle, C. M. D., Lindsay, B., Pirahesh, H., and Schwarz, P. (1992). Aries: A trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst., 17(1):94–162. 401, 418

Hadzilacos, T. and Hadzilacos, V. (1991). Transaction synchroniation in object bases.
J. Comp. and System Sci., 43(1):2–24. 597

Hadzilacos, V. (1988). A theory of reliability in database systems. J. ACM, 35(1):121–
145. 429, 456, 596

Haessig, K. and Jenny, C. J. (1980). An algorithm for allocating computational objects
in distributed computing systems. Research Report RZ 1016, IBM Research
Laboratory, Zurich. 125

Halatchev, M. and Gruenwald, L. (2005). Estimating missing values in related sensor
data streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
83–94. 744

Halevy, A., Rajaraman, A., and Ordille, J. (2006). Data integration: The teenage
years. In Proc. 32nd Int. Conf. on Very Large Data Bases, pages 9–16. 160

Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB J., 10(4):270–
294. 301, 304, 331

Halevy, A. Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosenthal,
A., and Sikka, V. (2005). Enterprise information integration: Successes, challenges
and controversies. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 778–787. 131

Halevy, A. Y., Etzioni, O., Doan, A., Ives, Z. G., Madhavan, J., McDowell, L., and
Tatarinov, I. (2003). Crossing the structure chasm. In Proc. 1st Biennial Conf. on
Innovative Data Systems Research. 159

Halici, U. and Dogac, A. (1989). Concurrency control in distributed databases
through time intervals and short-term locks. IEEE Trans. Softw. Eng., 15(8):994–
995. 401

Hammad, M., Aref, W., and Elmagarmid, A. (2003a). Stream window join: Tracking
moving objects in sensor-network databases. In Proc. 15th Int. Conf. on Scientific
and Statistical Database Management, pages 75–84. 733

Hammad, M., Aref, W., and Elmagarmid, A. (2005). Optimizing in-order execution
of continuous queries over streamed sensor data. In Proc. 17th Int. Conf. on
Scientific and Statistical Database Management, pages 143–146. 733

796 References

Hammad, M., Aref, W., Franklin, M., Mokbel, M., and Elmagarmid, A. (2003b).
Efficient execution of sliding window queries over data streams. Technical Report
CSD TR 03-035, Purdue University. 733, 734, 735, 736

Hammad, M., Mokbel, M., Ali, M., Aref, W., Catlin, A., Elmagarmid, A., Eltabakh,
M., Elfeky, M., Ghanem, T., Gwadera, R., Ilyas, I., Marzouk, M., and Xiong, X.
(2004). Nile: a query processing engine for data streams. In Proc. 20th Int. Conf.
on Data Engineering, page 851. 735, 736

Hammer, M. and Niamir, B. (1979). A heuristic approach to attribute partitioning. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 93–101. 99, 125

Hammer, M. and Shipman, D. W. (1980). Reliability mechanisms for sdd-1: A
system for distributed databases. ACM Trans. Database Syst., 5(4):431–466. 440,
456

Han, D., Xiao, C., Zhou, R., Wang, G., Huo, H., and Hui, X. (2006). Load shedding
for window joins over streams. In Proc. 7th Int. Conf. on Web-Age Information
Management:, pages 472–483. 740

Hanson, E., Carnes, C., Huang, L., Konyala, M., and Noronha, L. (1999). Scalable
trigger processing. In Proc. 15th Int. Conf. on Data Engineering, pages 266–275.
741

Härder, T. and Reuter, A. (1983). Principles of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287–317. 39, 411, 413, 420, 421, 423, 424, 456

Harizopoulos, S., Shah, M. A., Meza, J., and Ranganathan, P. (2009). Energy
efficiency: The new holy grail of data management systems research. In Proc. 4th
Biennial Conf. on Innovative Data Systems Research. 762

Harvey, N. J. A., Jones, M. B., Saroiu, S., Theimer, M., and Wolman, A. (2003).
SkipNet: A scalable overlay network with practical locality properties. In Proc.
4th USENIX Symp. on Internet Tech. and Systems. 618, 622, 642

He, B., Chang, K. C.-C., and Han, J. (2004). Mining complex matchings across web
query interfaces. In Proc. ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pages 3–10. 149

He, Q. and Ling, T. W. (2006). An ontology-based approach to the integration of
entity-relationship schemas. Data & Knowl. Eng., 58(3):299–326. 134

Hedley, Y. L., Younas, M., James, A., and Sanderson, M. (2004a). A two-phase
sampling technique for information extraction from hidden web databases. In
WIDM04, pages 1–8. 688

Hedley, Y.-L., Younas, M., James, A. E., and Sanderson, M. (2004b). Query-related
data extraction of hidden web documents. In Proc. 30th Annual Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval, pages 558–559. 687

Heimbigner, D. and McLeod, D. (1985). A federated architecture for information
management. ACM Trans. Information Syst., 3(3):253–278. 36

Helal, A. A., Heddaya, A. A., and Bhargava, B. B. (1997). Replication Techniques in
Distributed Systems. Kluwer Academic Publishers. 456, 486, 493

Hellerstein, J. M., Franklin, M. J., Chandrasekaran, S., Deshpande, A., Hildrum,
K., Madden, S., Raman, V., and Shah, M. A. (2000). Adaptive query processing:
Technology in evolution. Q. Bull. IEEE TC on Data Eng., 23(2):7–18. 320, 331

References 797

Hellerstein, J. M., Haas, P., and Wang, H. (1997). Online aggregation. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 171–182. 732

Hellerstein, J. M. and Stonebraker, M. (1993). Predicate migration: Optimizing
queries with expensive predicates. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 267–276. 323

Herlihy, M. (1987). Concurrency versus availability: Atomicity mechanisms for
replicated data. ACM Trans. Comp. Syst., 5(3):249–274. 456, 493

Herlihy, M. (1990). Apologizing versus asking permission: Optimistic concurrency
control for abstract data types. ACM Trans. Database Syst., 15(1):96–124. 594,
595

Herman, D. and Verjus, J. P. (1979). An algorithm for maintaining the consistency of
multiple copies. In Proc. 1st Int. Conf. on Distributed Computing Systems, pages
625–631. 382

Hernández, M. A. and Stolfo, S. J. (1998). Real-world data is dirty: Data cleansing
and the merge/purge problem. Proc. ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, 2(1):9–37. 158

Herrmann, U., Dadam, P., Küspert, K., Roman, E. A., and Schlageter, G. (1990).
A lock technique for disjoint and non-disjoint complex objects. In Advances in
Database Technology, Proc. 2nd Int. Conf. on Extending Database Technology,
pages 219–237. Springer. 602

Hersh, W. (2001). Managing gigabytes - compressing and indexing documents and
images (second edition). Inf. Ret., 4(1):79–80. 667

Hevner, A. R. and Schneider, G. M. (1980). An integrated design system for dis-
tributed database networks. In Digest of Papers - COMPCON, pages 459–465.
125

Hevner, A. R. and Yao, S. B. (1979). Query processing in distributed database
systems. IEEE Trans. Softw. Eng., 5(3):177–182. 255

Hirate, Y., Kato, S., and Yamana, H. (2006). Web structure in 2005. In Proc. 4th Int.
Workshop on Algorithms and Models for the Web-Graph, pages 36 – 46. 657

Hoffer, H. A. and Severance, D. G. (1975). The use of cluster analysis in physical
data base design. In Proc. 1st Int. Conf. on Very Data Bases, pages 69–86. 99,
102, 105, 125

Hoffer, J. A. (1975). A Clustering Approach to the Generation of Subfiles for
the Design of a Computer Data Base. Ph.D. thesis, Department of Operations
Research, Cornell University, Ithaca, N.Y. 125

Hoffman, J. L. (1977). Model Methods for Computer Security and Privacy. Prentice-
Hall. 181, 201

Hofri, M. (1994). On timeout for global deadlock detection in decentralized database
systems. Inf. Proc. Letters, 51(6):295–302. 401

Hong, W. (1992). Exploiting inter-operation parallelism in xprs. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 19–28. 503, 530, 533, 548

Hsiao, D., editor (1983). Advanced Database Machine Architectures. Prentice-Hall.
498

798 References

Hsiao, H. I. and DeWitt, D. (1991). A performance study of three high-availability
data replication strategies. In Proc. Int. Conf. on Parallel and Distributed Informa-
tion Systems, pages 18–28. 511, 512

Hsu, M., editor (1993). IEEE Quart. Bull. Data Eng., Special Issue on Workflow and
Extended Transaction Systems, volume 16. IEEE Computer Society. 354

Huebsch, R., Hellerstein, J., Lanham, N., Loo, B. T., Shenker, S., and Stoica, I.
(2003). Querying the internet with pier. In Proc. 29th Int. Conf. on Very Large
Data Bases, pages 321–332. 641

Hull, R. (1997). Managing semantic heterogeneity in databases: A theoretical
perspective. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems, pages 51–61. 160

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data
streams. In Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 97–106. 743, 762

Hunt, H. B. and Rosenkrantz, D. J. (1979). The complexity of testing predicate locks.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 127–133. 233

Hwang, D. J. (1987). Constructing a highly-available location service for a distributed
environment. Technical Report MIT/LCS/TR-410, Massachusetts Institute of
Technology, Cambridge, Mass. 577

Ibaraki, T. and Kameda, T. (1984). On the optimal nesting order for computing
n-relation joins. ACM Trans. Database Syst., 9(3):482–502. 207, 220, 245

Ilyas, I. F., Beskales, G., and Soliman, M. A. (2008). A survey of top-k query
processing techniques in relational database systems. ACM Comput. Surv., 40(4):1–
58. 628, 654

Inmon, W. (1992). Building the Data Warehouse. John Wiley & Sons. 131
Ioannidis, Y. (1996). Query optimization. In Tucker, A., editor, The Computer

Science and Engineering Handbook, pages 1038–1054. CRC Press. 292
Ioannidis, Y. and Wong, E. (1987). Query optimization by simulated annealing. In

Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 9–22. 212, 249,
586

Ipeirotis, P. G. and Gravano, L. (2002). Distributed search over the hidden web:
Hierarchical database sampling and selection. In Proc. 28th Int. Conf. on Very
Large Data Bases, pages 394–405. 687, 688, 689

Irani, K. B. and Khabbaz, N. G. (1982). A methodology for the design of communi-
cation networks and the distribution of data in distributed computer systems. IEEE
Trans. Comput., C-31(5):419–434. 125

Isloor, S. S. and Marsland, T. A. (1980). The deadlock problem: An overview. Comp.,
13(9):58–78. 39, 401

Jagadish, H. V., Ooi, B. C., Tan, K.-L., Vu, Q. H., and Zhang, R. (2006). Speeding
up search in peer-to-peer networks with a multi-way tree structure. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 1–12. 622

Jagadish, H. V., Ooi, B. C., and Vu, Q. H. (2005). BATON: A balanced tree structure
for peer-to-peer networks. In Proc. 31st Int. Conf. on Very Large Data Bases,
pages 661–672. 622, 643

References 799

Jajodia, S., Atluri, V., Keefe, T. F., McCollum, C. D., and Mukkamala, R. (2001).
Multilevel security transaction processing. J. Computer Security, 9(3):165–195.
187, 202

Jajodia, S. and Mutchler, D. (1987). Dynamic voting. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 227–238. 456, 493

Jajodia, S. and Sandhu, R. S. (1991). Towards a multilevel secure relational data
model. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 50–59.
181, 202

Jarke, M. and Koch, J. (1984). Query optimization in database systems. ACM
Comput. Surv., 16(2):111–152. 211, 220, 241

Jarke, M., Lenzerini, M., Vassiliou, Y., and Vassiliadis, P. (2003). Fundamentals of
Data Warehouses. Springer, 2 edition. 131

Jenq, B., Woelk, D., Kom, W., and Lee, W. L. (1990). Query processing in distributed
orion. In Advances in Database Technology, Proc. 2nd Int. Conf. on Extending
Database Technology, pages 169–187. Springer. 587

Jhingran, A. D., Mattos, N., and Pirahesh, H. (2002). Information integration: A
research agenda. IBM Systems J., 41(4):555–562. 131

Jiang, H., Lu, H., 0011, W. W., and Ooi, B. C. (2003). Xr-tree: Indexing XML data
for efficient structural joins. In Proc. 19th Int. Conf. on Data Engineering, pages
253–263. 701

Jiang, N. and Gruenwald, L. (2006). Research issues in data stream association rule
mining. ACM SIGMOD Rec., 35(1):14–19. 743

Jiang, Q. and Chakravarthy, S. (2004). Scheduling strategies for processing contin-
uous queries over streams. In Proc. British National Conf. on Databases, pages
16–30. 735

Jiménez-Peris, R., Patiño-Martı́nez, M., and Alonso, G. (2002). Non-intrusive,
parallel recovery of replicated data. In Proc. 21st Symp. on Reliable Distributed
Systems, pages 150–159. 546, 548

Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G., and Kemme, B. (2003). Are
quorums an alternative for data replication? ACM Trans. Database Syst., 28(3):257–
294. 489, 548

Jiménez-Peris, R., Patiño-Martı́nez, M., and Kemme, B. (2007). Enterprise grids:
Challenges ahead. J. Grid Comp., 5(3):283–294. 748

Jiménez-Peris, R., Patiño-Martı́nez, M., Kemme, B., and Alonso, G. (2002). Improv-
ing the scalability of fault-tolerant database clusters. In Proc. 22nd Int. Conf. on
Distributed Computing Systems, pages 477–484. 482, 491, 548

Jones, A. K. (1979). The object model: A conceptual tool for structuring software.
In Bayer, R., Graham, R. M., and Seegmüller, G., editors, Operating Systems: An
Advanced Course, pages 7–1. Springer. 555

Josifovski, V., Fontoura, M., and Barta, A. (2005). Querying XML streams. VLDB
J., 14(2):197–210. 700

Jr, A. M. J. and Malek, M. (1988). Survey of software tools for evaluating reliability,
availability and serviceability. ACM Comput. Surv., 20(4):227–269. 455

800 References

Kabra, N. and DeWitt, D. J. (1998). Efficient mid-query re-optimization of sub-
optimal query execution plans. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 106–117. 739

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning:
A survey. J. Artificial Intel. Res., 4:237–285. 666

Kaiser, G. (1989). Transactions for concurrent object-oriented programming systems.
In Proc. ACM SIGPLAN Workshop on Object-Based Concurrent Programming,
pages 136–138. 593

Kalogeraki, V., Gunopulos, D., and Zeinalipour-Yazti, D. (2002). A local search
mechanism for peer-to-peer networks. In Proc. 11th Int. Conf. on Information and
Knowledge Management, pages 300–307. 617

Kambayashi, Y., Yoshikawa, M., and Yajima, S. (1982). Query processing for
distributed databases using generalized semi–joins. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 151–160. 272, 292

Kang, J., Naughton, J., and Viglas, S. (2003). Evaluating window joins over un-
bounded streams. In Proc. 19th Int. Conf. on Data Engineering, pages 341–352.
733, 738

Kanne, C.-C. and Moerkotte, G. (2000). Efficient storage of XML data. In Proc.
16th Int. Conf. on Data Engineering, page 198. 700

Kapitskaia, O., Tomasic, A., and Valduriez, P. (1997). Dealing with discrepancies in
wrapper functionality. Research Report RR-3138, INRIA. 319

Karlapalem, K. and Li, Q. (1995). Partitioning schemes for object oriented databases.
In Proc. 5th Int. Workshop on Research Issues on Data Eng., pages 42–49. 560

Karlapalem, K., Li, Q., and Vieweg, S. (1996a). Method induced partitioning schemes
for object-oriented databases. In Proc. 16th Int. Conf. on Distributed Computing
Systems, pages 377–384. 564

Karlapalem, K. and Navathe, S. B. (1994). Materialization of redesigned distributed
relational databases. Technical Report HKUST-CS94-14, Hong Kong University
of Science and Technology, Department of Computer Science. 124

Karlapalem, K., Navathe, S. B., and Ammar, M. (1996b). Optimal redesign policies
to support dynamic processing of applications on a distributed relational database
system. Inf. Syst., 21(4):353–367. 124

Karlapalem, K., Navathe, S. B., and Morsi, M. A. (1994). Issues in distribution
design of object-oriented databases. In Özsu et al. [1994a], pages 148–164. 560

Kashyap, V. and Sheth, A. P. (1996). Semantic and schematic similarities between
database objects: A context-based approach. VLDB J., 5(4):276–304. 140, 160

Katz, B. and Lin, J. (2002). Annotating the world wide web using natural language.
In Proc. 2nd Workshop on NLP and XML, pages 1–8. 681

Katz, H., Chamberlin, D., Draper, D., Fernández, M., Kay, M., Robie, J., Rys, M.,
Simeon, J., Tivy, J., and Wadler, P. (2004). XQuery from the Experts: A Guide to
the W3C XML Query Language. Addison Wesley. 719

Kaushik, R., Bohannon, P., Naughton, J. F., and Korth, H. F. (2002). Covering
indexing for branching path queries. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 133–144. 701

References 801

Kazerouni, L. and Karlapalem, K. (1997). Stepwise redesign of distributed relational
databases. Technical Report HKUST-CS97-12, Hong Kong University of Science
and Technology, Department of Computer Science. 124

Keeton, K., Patterson, D., and Hellerstein, J. M. (1998). A case for intelligent disks
(idisks). ACM SIGMOD Rec., 27(3):42–52. 499

Keller, A. M. (1982). Update to relational databases through views involving joins.
In Proc. 2nd Int. Conf. on Databases: Improving Usability and Responsiveness,
pages 363–384. 175, 201

Keller, T., Graefe, G., and Maier, D. (1991). Efficient assembly of complex objects.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 148–157. 587,
590, 592

Kementsietsidis, A., Arenas, M., and Miller, R. J. (2003). Managing data mappings
in the hyperion project. In Proc. 19th Int. Conf. on Data Engineering, pages
732–734. 625

Kemme, B. and Alonso, G. (2000a). Don’t be lazy, be consistent: Postgres-R, a new
way to implement database replication. In Proc. 26th Int. Conf. on Very Large
Data Bases, pages 134–143. 482, 548

Kemme, B. and Alonso, G. (2000b). A New Approach to Developing and Im-
plementing Eager Database Replication Protocols. ACM Trans. Database Syst.,
25(3):333–379. 482, 548

Kemme, B., Bartoli, A., and O.Babaoglu (2001). Online reconfiguration in replicated
databases based on group communication. In Proc. Int. Conf. on Dependable
Systems and Networks, pages 117–130. 546, 548

Kemme, B., Peris, R. J., and Patino-Martinez, M. (2010). Database Replication.
Morgan & Claypool. 493

Kemper, A. and Kossmann, D. (1994). Dual-buffering strategies in object bases. In
Proc. 20th Int. Conf. on Very Large Data Bases, pages 427–438. 570

Kemper, A. and Moerkotte, G. (1990a). Access support in object bases. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 364–374. 587

Kemper, A. and Moerkotte, G. (1990b). Advanced query processing in object bases
using access support relations. In Proc. 16th Int. Conf. on Very Large Data Bases,
pages 290–301. 587

Kemper, A. and Moerkotte, G. (1994). Physical object management. In Kim [1994],
pages 175–202. 588, 590, 607

Kermarrec, A.-M., Rowstron, A., Shapiro, M., and Druschel, P. (2001). The icecube
approach to the reconciliation of diverging replicas. In ACM Symp. on Principles
of Distributed Computing (PODC), pages 210–218. 651

Kermarrec, A.-M. and van Steen, M. (2007). Gossiping in distributed systems.
Operating Systems Rev., 41(5):2–7. 617

Kerschberg, L., Ting, P. D., and Yao, S. B. (1982). Query optimization in star
computer networks. ACM Trans. Database Syst., 7(4):678–711. 214

Kersten, M. L., Plomp, S., and van den Berg, C. A. (1994). Object storage manage-
ment in goblin. In Özsu et al. [1994a], pages 100–116. 579

Khoshafian, S. and Copeland, G. (1986). Object identity. In Proc. Int. Conf. on
OOPSLA, pages 406–416. 553

802 References

Khoshafian, S. and Valduriez, P. (1987). Sharing persistence and object-orientation:
A database perspective. In Int. Workshop on Database Programming Languages,
pages 181–205. 251, 292, 510, 553

Kifer, D., Ben-David, S., and Gehrke, J. (2004). Detecting change in data streams.
In Proc. 30th Int. Conf. on Very Large Data Bases, pages 180–191. 727, 743

Kifer, M., Bernstein, A., and Lewis, P. M. (2006). Database Systems – An Application-
Oriented Approach. Pearson, 2 edition. 70

Kifer, M., Lausen, G., and Wu, J. (1995). Logical foundations of object-oriented and
frame-based languages. J. ACM, 42(4):741–843. 607

Kifer, M. and Wu, J. (1993). A logic programming with complex objects. J. Comp.
and System Sci., 47(1):77–120. 607

Kim, W. (1984). Highly available systems for database applications. ACM Comput.
Surv., 16(1):71–98. 456

Kim, W. (1989). A model of queries for object-oriented databases. In Proc. 15th Int.
Conf. on Very Large Data Bases, pages 423–432. 587

Kim, W., editor (1994). Modern Database Management – Object-Oriented and
Multidatabase Technologies. Addison-Wesley/ACM Press. 607, 801

Kim, W., Banerjee, J., Chou, H., Garza, J., and Woelk, D. (1987). Composite objects
support in an object-oriented database system. In Proc. Int. Conf. on OOPSLA,
pages 118–125. 579

Kim, W. and Lochovsky, F., editors (1989). Object-Oriented Concepts, Databases,
and Applications. Addison Wesley. 607

Kim, W., Reiner, D. S., and Batory, D. S., editors (1985). Query Processing in
Database Systems. Springer. 220, 807

Kim, W. and Seo, J. (1991). Classifying schematic and data heterogeneity in multi-
database systems. Comp., 24(12):12–18. 160

Kitsuregawa, M. and Ogawa, Y. (1990). Bucket spreading parallel hash: A new,
robust, parallel hash join method for data skew in the super database computer. In
Proc. 16th Int. Conf. on Very Large Data Bases, pages 210–221. 528, 548

Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In Proc. 8th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 91–101.
727

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632. 658, 668

Kleinberg, J. M., Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).
The Web as a graph: measurements, models, and methods. In Proc. 5th Annual
Int. Conf. Computing and Combinatorics, pages 1–17. 658

Kling, P., Özsu, M. T., and Daudjee, K. (2010). Distributed XML query processing:
Fragmentation, localization and pruning. Technical Report TR-CS-2010-02, Uni-
versity of Waterloo, Cheriton School of Computer Science. 693, 704, 706, 707,
713, 715, 717, 718, 719

Knapp, E. (1987). Deadlock detection in distributed databases. ACM Comput. Surv.,
19(4):303–328. 39, 401

References 803

Knezevic, P., Wombacher, A., and Risse, T. (2005). Enabling high data availability
in a dht. In Int. Workshop on Grid and P2P Computing Impacts on Large Scale
Heterogeneous Distributed Database Systems (GLOBE), pages 363–367. 648

Koch, C. (2001). Data Integration against Multiple Evolving Autonomous Schemata.
Ph.D. thesis, Technical University of Vienna. 133, 134

Koch, C. (2003). Efficient processing of expressive node-selecting queries on XML
data in secondary storage: A tree automata-based approach. In Proc. 29th Int.
Conf. on Very Large Data Bases, pages 249–260. 700

Kohler, W. H. (1981). A survey of techniques for synchronization and recovery in
decentralized computer systems. ACM Comput. Surv., 13(2):149–183. 456

Kollias, J. G. and Hatzopoulos, M. (1981). Criteria to aid in solving the problem of
allocating copies of a file in a computer network. Comp. J., 24(1):29–30. 125

Kolodner, E. and Weihl, W. (1993). Atomic incremental garbage collection and
recovery for large stable heap. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 177–185. 581

Konopnicki, D. and Shmueli, O. (1995). W3QS: A query system for the World Wide
Web. In Proc. 21th Int. Conf. on Very Large Data Bases, pages 54–65. 676

Koon, T. M. and Özsu, M. T. (1986). Performance comparison of resilient concur-
rency control algorithms for distributed databases. In Proc. 2nd Int. Conf. on Data
Engineering, pages 565–573. 401

Korn, F., Muthukrishnan, S., and Wu, Y. (2006). Modeling skew in data streams. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 181–192. 727

Korth, H., Levy, E., and Silberschatz, A. (1990). Compensating transactions: A new
recovery paradigm. In Proc. 16th Int. Conf. on Very Large Data Bases, pages
95–106. 352

Kossmann, D. (2000). The state of the art in distributed query processing. ACM
Comput. Surv., 32(4):422–469. 212, 220, 292, 331

Kowalik, J., editor (1985). Parallel MIMD Computation : the HEP Supercomputer
and its applications. M.I.T. Press. 498

Krämer, J. and Seeger, B. (2005). A temporal foundation for continuous queries over
data streams. In Proc. 11th Int. Conf. on Management of Data (COMAD), pages
70–82. 735

Krishnamurthy, R., Boral, H., and Zaniolo, C. (1986). Optimization of non-recursive
queries. In Proc. 11th Int. Conf. on Very Large Data Bases, pages 128–137. 292

Krishnamurthy, R., Litwin, W., and Kent, W. (1991). Language features for interop-
erability of databases with schematic discrepancies. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 40–49. 160

Krishnamurthy, S., Franklin, M., Hellerstein, J., and Jacobson, G. (2004). The case
for precision sharing. In Proc. 30th Int. Conf. on Very Large Data Bases, pages
972–986. 740

Krishnamurthy, S., Wu, C., and Franklin, M. (2006). On-the-fly sharing for streamed
aggregation. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
623–634. 741

804 References

Krishnaprasad, M., Liu, Z. H., Manikutty, A., Warner, J. W., and Arora, V. (2005).
Towards an industrial strength SQL/XML infrastructure. In Proc. 21st Int. Conf.
on Data Engineering, pages 991–1000. 699

Kshemkalyani, A. and Singhal, M. (1994). On characterization and correctness of
distributed deadlocks. J. Parall. and Distrib. Comput., 22(1):44–59. 401

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi,
R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. (2000).
Oceanstore: an architecture for global-scale persistent storage. In ACM Int. Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 190–201. 649, 654

Kumar, A. and Segev, A. (1993). Cost and availability tradeoffs in replicated data
concurrency control. ACM Trans. Database Syst., 18(1):102–131. 456, 493

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and Upfal,
E. (2000). The Web as a graph. In Proc. 19th ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, pages 1–10. Available from: http:
//doi.acm.org/10.1145/335168.335170. 658, 660

Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999). Extracting
large-scale knowledge bases from the web. In Proc. 25th Int. Conf. on Very Large
Data Bases, pages 639–650. 660

Kumar, V., editor (1996). Performance of Concurrency Control Mechanisms in
Centralized Database Systems. Prentice-Hall. 358, 401

Kung, H. T. and Papadimitriou, C. H. (1979). An optimality theory of concurrency
control for databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 116–125. 350

Kung, H. T. and Robinson, J. T. (1981). On optimistic methods for concurrency
control. ACM Trans. Database Syst., 6(2):213–226. 385, 387

Kurose, J. F. and Ross, K. W. (2010). Computer Networking - A Top-Down Approach
Featuring the Internet. Addison Wesley, 4 edition. 70

Kuss, H. (1982). On totally ordering checkpoint in distributed data bases. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 174–174. 456

Kwok, C. C. T., Etzioni, O., and Weld, D. S. (2001). Scaling question answering to
the web. In Proc. 10th Int. World Wide Web Conf., pages 150–161. 681

LaChimia, J. (1984). Query decomposition in a distributed database system using
satellite communications. In Proc. 3rd Seminar on Distributed Data Sharing
Systems, pages 105–118. 214

Lacroix, M. and Pirotte, A. (1977). Domain-oriented relational languages. In Proc.
3rd Int. Conf. on Very Data Bases, pages 370–378. 57

Ladin, R. and Liskov, B. (1992). Garbage collection of a distributed heap. In Proc.
12th Int. Conf. on Distributed Computing Systems, pages 708–715. 581

Lage, J. P., da Silva, A. S., Golgher, P. B., and Laender, A. H. F. (2002). Collect-
ing hidden weeb pages for data extraction. In Proc. 4th Int. Workshop on Web
Information and Data Management, pages 69–75. 686

Lakshmanan, L. V. S., Sadri, F., and Subramanian, I. N. (1996). A declarative
language for querying and restructuring the Web. In Proc. 6th Int. Workshop on
Research Issues on Data Eng., pages 12–21. 676

http://doi.acm.org/10.1145/335168.335170
http://doi.acm.org/10.1145/335168.335170

References 805

Lam, K. and Yu, C. T. (1980). An approximation algorithm for a file allocation
problem in a hierarchical distributed system. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 125–132. 115

Lam, S. S. and Özsu, M. T. (2002). Querying web data – the WebQA approach. In
Proc. 3rd Int. Conf. on Web Information Systems Eng., pages 139–148. 681

Lampson, B. and Sturgis, H. (1976). Crash recovery in distributed data storage
system. Technical report, Xerox Palo Alto Research Center, Palo Alto, Calif. 413,
453

Landers, T. and Rosenberg, R. L. (1982). An overview of multibase. In Schneider,
H.-J., editor, Distributed Data Bases, pages 153–184. North-Holland, Amsterdam.
331

Langville, A. N. and Meyer, C. D. (2006). Google’s PageRank and Beyond. Princeton
University Press. 665

Lanzelotte, R. and Valduriez, P. (1991). Extending the search strategy in a query
optimizer. In Proc. 17th Int. Conf. on Very Large Data Bases, pages 363–373. 584,
587, 588

Lanzelotte, R., Valduriez, P., and Zaı̈t, M. (1993). On the effectiveness of optimization
search strategies for parallel execution spaces. In Proc. 19th Int. Conf. on Very
Large Data Bases, pages 493–504. 249

Lanzelotte, R., Valduriez, P., Zaı̈t, M., and Ziane, M. (1994). Industrial-strength
parallel query optimization: issues and lessons. Inf. Syst., 19(4):311–330. 523,
524, 548

Law, Y.-N., Wang, H., and Zaniolo, C. (2004). Query languages and data models for
database sequences and data streams. In Proc. 30th Int. Conf. on Very Large Data
Bases, pages 492–503. 728

Lawrence, S. and Giles, C. L. (1998). Searching the world wide web. Science, 280:98
– 100. 657

Lawrence, S. and Giles, C. L. (1999). Accessibility of information on the web.
Nature, 400(107 – 109). 657

Lee, M., Freytag, J. C., and Lohman, G. (1988). Implementing an interpreter for
functional rules in a query optimizer. In Proc. 14th Int. Conf. on Very Large Data
Bases, pages 218–229. 586

Lee, S. and Kim, J. (1995). An efficient distributed deadlock detection algorithm. In
Proc. 15th Int. Conf. on Distributed Computing Systems, pages 169–178. 401

Leland, W., Taqqu, M., Willinger, M., and Wilson, D. (1994). On the self-similar
nature of ethernet traffic. IEEE/ACM Trans. Networking, 2(1):1–15. 727

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W. D., Gupta, A., Henessy, J.,
Horowitz, M., and Lam, M. S. (1992). The stanford dash multiprocessor. Comp.,
25(3):63–79. 506, 547

Lenzerini, M. (2002). Data integration: a theoretical perspective. In Proc. ACM
SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 233–246. 133

Leon-Garcia, A. and Widjaja, I. (2004). Communication Networks - Fundamental
Concepts and Key Architectures. McGraw-Hill, 2 edition. 70

Leung, J. Y. and Lai, E. K. (1979). On minimum cost recovery from system deadlock.
IEEE Trans. Comput., 28(9):671–677. 391

806 References

Levin, K. D. and Morgan, H. L. (1975). Optimizing distributed data bases: A
framework for research. In Proc. National Computer Conf, pages 473–478. 38,
71, 125

Levy, A. Y., Mendelzon, A. O., Sagiv, Y., and Srivastava, D. (1995). Answering
queries using views. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of
Database Systems, pages 95–104. 304, 331

Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996a). Querying heterogeneous
information sources using source descriptions. In Proc. 22th Int. Conf. on Very
Large Data Bases, pages 251–262. 160

Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996b). Querying heterogeneous
information sources using source descriptions. In Proc. 22th Int. Conf. on Very
Large Data Bases, pages 251–262. 305, 331

Levy, A. Y., Rajaraman, A., and Ordille, J. J. (1996c). The world wide web as
a collection of views: Query processing in the information manifold. In Proc.
Workshop on Materialized Views: Techniques and Applications, pages 43–55. 160

Li, F., Chang, C., Kollios, G., and Bestavros, A. (2006). Characterizing and exploiting
reference locality in data stream applications. In Proc. 22nd Int. Conf. on Data
Engineering, page 81. 740

Li, V. O. K. (1987). Performance models of timestamp-ordering concurrency control
algorithms in distributed databases. IEEE Trans. Comput., C-36(9):1041–1051.
401

Li, W.-S. and Clifton, C. (2000). Semint: A tool for identifying attribute correspon-
dences in heterogeneous databases using neural networks. Data & Knowl. Eng.,
33(1):49–84. 145

Li, W.-S., Clifton, C., and Liu, S.-Y. (2000). Database integration using neural
networks: Implementation and experiences. Knowl. and Information Syst., 2(1):73–
96. 145

Liang, D. and Tripathi, S. K. (1996). Performance analysis of long-lived transaction
processing systems with rollbacks and aborts. IEEE Trans. Knowl. and Data Eng.,
8(5):802–815. 401

Lim, H.-S., Lee, J.-G., Lee, M.-J., Whang, K.-Y., and Song, I.-Y. (2006). Continuous
query processing in data streams using duality of data and queries. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 313–324. 741

Lim, L., Wang, M., Padmanabhan, S., Vitter, J. S., and Agarwal, R. (2003). Dynamic
maintenance of web indexes using landmarks. In Proc. 12th Int. World Wide Web
Conf., pages 102–111. 667

Lima, A., Mattoso, M., and Valduriez, P. (2004a). Olap query processing in a database
cluster. In Proc. 10th Int. Euro-Par Conf., pages 355–362. 543, 548

Lima, A. A. B., Mattoso, M., and Valduriez, P. (2004b). Adaptive virtual partitioning
for olap query processing in a database cluster. In Proc. Brazilian Symposium on
Databases, pages 92–105. 544, 548

Lin, W. K. (1981). Performance evaluation of two concurrency control mechanisms in
a distributed database system. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 84–92. 401

References 807

Lin, W. K. and Nolte, J. (1982). Performance of two phase locking. In Proc. 6th
Berkeley Workshop on Distributed Data Management and Computer Networks,
pages 131–160. 401

Lin, W. K. and Nolte, J. (1983). Basic timestamp, multiple version timestamp, and
two-phase locking. In Proc. 9th Int. Conf. on Very Data Bases, pages 109–119.
401

Lin, X., Lu, H., Xu, J., and Yu, J. X. (2004). Continuously maintaining quantile
summaries of the most recent N elements over a data stream. In Proc. 20th Int.
Conf. on Data Engineering, pages 362–373. 727, 737

Lin, Y., Kemme, B., Patiño-Martínez, M., and Jiménez-Peris, R.
(2005). Middleware based data replication providing snapshot isolation. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 419–430. 464

Lindsay, B. (1979). Notes on distributed databases. Technical Report RJ 2517, IBM
San Jose Research Laboratory, San Jose, Calif. 426

Liskov, B., Adya, A., Castro, M., Day, M., Ghemawat, S., Gruber, R., Maheshwari,
U., Myers, A., and Shrira, L. (1996). Safe and efficient sharing of persistent objects
in thor. In ACM SIGMOD Int. Conf. on Management of Data, pages 318–329.
568, 569

Liskov, B., Day, M., and Shirira, L. (1994). Distributed object management in thor.
In Özsu et al. [1994a], pages 79–91. 577

Litwin, W. (1988). From database systems to multidatabase systems: Why and how.
In Proc. British National Conference on Databases, pages 161–188, Cambridge.
Cambridge University Press. 40

Litwin, W., Neimat, M.-A., and Schneider, D. A. (1993). LH* – linear hashing for
distributed files. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
327–336. 618

Liu, B., Zhu, Y., and Rundensteiner, E. (2006). Run-time operator state spilling for
memory intensive long running queries. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 347–358. 740

Liu, L., Pu, C., Barga, R., and Zhou, T. (1996). Differential evaluation of continual
queries. In Proc. IEEE Int. Conf. Dist. Comp. Syst, pages 458–465. 6

Liu, L., Pu, C., and Tang, W. (1999). Continual queries for internet-scale event-driven
information delivery. IEEE Trans. Knowl. and Data Eng., 11(4):610–628. 736

Liu, Z. H., Chandrasekar, S., Baby, T., and Chang, H. J. (2008). Towards a physical
XML independent XQuery/sql/xml engine. Proc. VLDB, 1(2):1356–1367. 698

Livny, M., Khoshafian, S., and Boral, H. (1987). Multi-disk management. In Proc.
ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems,
pages 69–77. 508, 510, 548

Lohman, G. and Mackert, L. F. (1986). R* optimizer validation and performance
evaluation for distributed queries. In Proc. 11th Int. Conf. on Very Large Data
Bases, pages 149–159. 281, 293

Lohman, G., Mohan, C., Haas, L., Daniels, D., Lindsay, B., Selinger, P., and Wilms,
P. (1985). Query processing in r*. In Kim et al. [1985], pages 31–47. 250, 277

Longbottom, R. (1980). Computer System Reliability. John Wiley & Sons. 410, 455

808 References

Lu, H. and Carey, M. J. (1985). Some experimental results on distributed join
algorithms in a local network. In Proc. 10th Int. Conf. on Very Large Data Bases,
pages 292–304. 273

Lu, H., Ooi, B., and Goh, C. (1992). On global multidatabase query optimization.
ACM SIGMOD Rec., 21(4):6–11. 307, 331

Lu, H., Ooi, B., and Goh, C. (1993). Multidatabase query optimization: Issues and
solutions. In Proc. 3rd Int. Workshop on Res. Issues in Data Eng, pages 137–143.
298, 331

Lu, H., Shan, M.-C., and Tan, K.-L. (1991). Optimization of multi-way join queries
for parallel execution. In Proc. 17th Int. Conf. on Very Large Data Bases, pages
549–560. 530

Lunt, T. F., Denning, D. E., Schell, R. R., Heckman, M., and Shockley, W. R. (1990).
The SeaView security model. IEEE Trans. Softw. Eng., 16(6):593–607. 184

Lunt, T. F. and Fernández, E. B. (1990). Database security. ACM SIGMOD Rec.,
19(4):90–97. 181, 201, 202

Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. (2002). Search and replica-
tion in unstructured peer-to-peer networks. In Proc. 16th Annual Int. Conf. on
Supercmputing, pages 84–95. 617

Lynch, N. (1983a). Concurrency control for resilient nested transactions. In Proc.
2nd ACM SIGACT–SIGMOD Symp. on Principles of Database Systems, pages
166–181. 401

Lynch, N. (1983b). Multilevel atomicity: A new correctness criterion for database
concurrency control. ACM Trans. Database Syst., 8(4):484–502. 395, 401

Lynch, N. and Merritt, M. (1986). Introduction to the theory of nested transac-
tions. Technical Report MIT/LCS/TR-367, Massachusetts Institute of Technology,
Cambridge, Mass. 401

Lynch, N., Merritt, M., Weihl, W. E., and Fekete, A. (1993). Atomic Transactions in
Concurrent Distributed Systems. Morgan Kaufmann. 359, 401

Ma, L., Viglas, S., Li, M., and Li, Q. (2005). Stream operators for querying data
streams. In Proc. 6th Int. Conf. on Web-Age Information Management:, pages
404–415. 727

Mackert, L. F. and Lohman, G. (1986). R* optimizer validation and performance
evaluation for local queries. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 84–95. 264, 281, 291

Madden, S. and Franklin, M. J. (2002). Fjording the stream: An architecture for
queries over streaming sensor data. In Proc. 18th Int. Conf. on Data Engineering,
pages 555–566. 734

Madden, S., Shah, M., Hellerstein, J., and Raman, V. (2002a). Continuously adap-
tive continuous queries over streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 49–60. 734, 741

Madden, S., Shah, M. A., Hellerstein, J. M., and Raman, V. (2002b). Continuously
adaptive continuous queries over streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 49–60. 320

References 809

Madhavan, J., Bernstein, P. A., and Rahm, E. (2001). Generic schema matching with
cupid. In Proc. 27th Int. Conf. on Very Large Data Bases, pages 49–58. 134, 144,
160

Maheshwari, U. and Liskov, B. (1994). Fault-tolerant distributed garbage collection
in a client-server object-oriented database. In Proc. 3rd Int. Conf. on Parallel and
Distributed Information Systems, pages 239–248. 581

Mahmoud, . A. and Riordon, J. S. (1976). Optimal allocation of resources in
distributed information networks. ACM Trans. Database Syst., 1(1):66–78. 125

Maier, D. (1986). A logic for objects. Technical Report CS/E-86-012, Oregon
Graduate Center. 607

Maier, D. (1989). Why isn’t there an object-oriented data model? Technical Report
CS/E 89-002, Oregon Graduate Center, Portland, Oregon. 553

Maier, D., Graefe, G., Shapiro, L., Daniels, S., Keller, T., and Vance, B. (1994).
Issues in distributed object assembly. In Özsu et al. [1994a], pages 165–181. 592

Maier, D. and Stein, J. (1986). Indexing in an object-oriented dbms. In Proc. Int.
Workshop on Object-Oriented Database Systems, pages 171–182. 587, 588, 589,
590

Makki, K. and Pissinou, N. (1995). Detection and resolution algorithm for deadlocks
in distributed database systems. In Proc. ACM Int. Conf. on Information and
Knowledge Management, pages 411–416. 401

Malkhi, D., Noar, M., and Ratajczak, D. (2002). Viceroy: A scalable and dynamic
emulation of the butterfly. In Proc. ACM SIGACT-SIGOPS 21st Symp. on the
Principles of Distributed Computing, pages 183–192. 621

Manber, U. and Myers, G. (1990). Suffix arrays: a new method for on-line string
searches. In Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, pages
319–327. 667

Manolescu, I., Florescu, D., and Kossmann, D. (2001). Answering XML queries on
heterogeneous data sources. In Proc. 27th Int. Conf. on Very Large Data Bases,
pages 241–250. 160

Martin, B. and Pedersen, C. H. (1994). Long-lived concurrent activities. In Özsu
et al. [1994a], pages 188–211. 593

Martı́nez, J. M., editor. MPEG-7 overview (2004). Available from: http://www.
chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm [Last
retrieved: December 2009]. 690

Martins, V., Akbarinia, R., Pacitti, E., and Valduriez, P. (2006a). Reconciliation in
the appa p2p system. In IEEE Int. Conf. on Parallel and Distributed Systems
(ICPADS), pages 401–410. 651, 654

Martins, V. and Pacitti, E. (2006). Dynamic and distributed reconciliation in p2p-dht
networks. In uropean Conf. on Parallel Computing (Euro-Par), pages 337–349.
651, 654

Martins, V., Pacitti, E., Dick, M. E., and Jimenez-Peris, R. (2008). Scalable and
topology-aware reconciliation on p2p networks. Distrib. Parall. Databases, 24(1–
3):1–43. 651

Martins, V., Pacitti, E., and Valduriez, P. (2006b). Survey of data replication in p2p
systems. Technical Report 6083, INRIA, Rennes, France. 654

http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm

810 References

Maymounkov, P. and Mazières, D. (2002). Kademlia: A peer-to-peer information
system based on the XOR metric. In Proc. 1st Int. Workshop Peer-to-Peer Systems,
Lecture Notes in Computer Science 2429, pages 53–65. 621

McBrien, P. and Poulovassilis, A. (2003). Defining peer-to-peer data integration
using both as view rules. In Proc. 1st Int. Workshop on Databases, Information
Systems and Peer-to-Peer Computing, pages 91–107. 627

McCallum, A., Nigam, K., Rennie, J., and Seymore, K. (1999). A machine learning
approach to building domain-specific search engines. In Proc. 16th Int. Joint Conf.
on AI. 666

McCann, R., AlShebli, B., Le, Q., Nguyen, H., Vu, L., and Doan, A. (2005). Mapping
maintenance for data integration systems. In Proc. 31st Int. Conf. on Very Large
Data Bases, pages 1018–1029. 156

McConnel, S. and Siewiorek, D. P. (1982). Evaluation criteria. In Siewiorek and
Swarz [1982], pages 201–302. 409

McCormick, W. T., Schweitzer, P. J., and White, T. W. (1972). Problem decomposi-
tion and data reorganization by a clustering technique. Oper. Res., 20(5):993–1009.
102

Medina-Mora, R., Wong, H., and Flores, P. (1993). Action workflow as the enterprise
integration technology. Q. Bull. IEEE TC on Data Eng., 16(2):49–52. 354

Mehta, M. and DeWitt, D. (1995). Managing intra-operator parallelism in parallel
database systems. In Proc. 21th Int. Conf. on Very Large Data Bases. 529, 548

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In Proc. 18th
Int. Conf. on Data Engineering, pages 117–128. 134, 145, 148, 160

Melnik, S., Raghavan, S., Yang, B., and Garcia-Molina, H. (2001). Building a
distributed full-text index for the web. In Proc. 10th Int. World Wide Web Conf.,
pages 396–406. Available from: citeseer.ist.psu.edu/article/
melnik01building.html. 668

Melton, J. (2002). Advanced SQL: 1999 - Understanding Object-Relational and
Other Advanced Features. Morgan Kaufmann. 553

Melton, J., Michels, J.-E., Josifovski, V., Kulkarni, K., Schwartz, P., and Zeidenstein,
K. (2001). Sql and management of external data. ACM SIGMOD Rec., 30(1):70–77.
314, 328

Menasce, D. A. and Muntz, R. R. (1979). Locking and deadlock detection in
distributed databases. IEEE Trans. Softw. Eng., SE-5(3):195–202. 392

Menasce, D. A. and Nakanishi, T. (1982a). Optimistic versus pessimistic concurrency
control mechanisms in database management systems. Inf. Syst., 7(1):13–27. 401

Menasce, D. A. and Nakanishi, T. (1982b). Performance evaluation of a two-phase
commit based protocol for ddbs. In Proc. First ACM SIGACT–SIGMOD Symp. on
Principles of Database Systems, pages 247–255. 401

Mendelzon, A. O., Mihaila, G. A., and Milo, T. (1997). Querying the World Wide
Web. Int. J. Digit. Libr., 1(1):54–67. 676, 677

Meng, W., Yu, C., Kim, W., Wang, G., Phan, T., and Dao, S. (1993). Construction of
relational front-end for object-oriented database systems. In Proc. 9th Int. Conf.
on Data Engineering, pages 476–483. 331

citeseer.ist.psu.edu/article/melnik01building.html
citeseer.ist.psu.edu/article/melnik01building.html

References 811

Merrett, T. H. and Rallis, N. (1985). An analytic evaluation of concurrency control
algorithms. In Proc. CIPS (Canadian Information Processing Society) Congress

’85, pages 435–439. 401
Milán-Franco, J. M., Jiménez-Peris, R., Patiño-Martı́nez, M., and Kemme, B. (2004).

Adaptive middleware for data replication. In Proc. ACM/IFIP/USENIX Int. Mid-
dleware Conf., pages 175–194. 542, 548

Miller, G. A. (1995). WordNet: A lexical database for English. Commun. ACM,
38(11):39–45. 142

Miller, R. J., Haas, L. M., and Hernández, M. A. (2000). Schema mapping as query
discovery. In Proc. 26th Int. Conf. on Very Large Data Bases, pages 77–88. 150

Miller, R. J., Hernández, M. A., Haas, L. M., Yan, L., Ho, C. T. H., Fagin, R., and
Popa, L. (2001). The Clio project: Managing heterogeneity. ACM SIGMOD Rec.,
31(1):78–83. 152

Milo, T. and Suciu, D. (1999). Index structures for path expressions. In Proc. 7th Int.
Conf. on Database Theory, pages 277–295. 701

Milo, T. and Zohar, S. (1998). Using schema matching to simplify heterogeneous
data translation. In Proc. 24th Int. Conf. on Very Large Data Bases, pages 122–133.
134, 160

Minoura, T. and Wiederhold, G. (1982). Resilient extended true-copy token scheme
for a distributed database system. IEEE Trans. Softw. Eng., SE-8(3):173–189. 456,
493

Mitchell, G., Dayal, U., and Zdonik, S. (1993). Control of an extensible query
optimizer: A planning-based approach. In Proc. 19th Int. Conf. on Very Large
Data Bases, pages 517–528. 584

Mitchell, T. (1997). Machine Learning. McGraw-Hill. 666
Mohan, C. (1979). Data base design in the distributed environment. Working Paper

WP-7902, Department of Computer Sciences, University of Texas at Austin. 125
Mohan, C. and Lindsay, B. (1983). Efficient commit protocols for the tree of

processes model of distributed transactions. In Proc. ACM SIGACT-SIGOPS 2nd
Symp. on the Principles of Distributed Computing, pages 76–88. 434, 456

Mohan, C., Lindsay, B., and Obermarck, R. (1986). Transaction management in
the r* distributed database management system. ACM Trans. Database Syst.,
11(4):378–396. 377, 393, 434

Mohan, C. and Yeh, R. T. (1978). Distributed Data Base Systems: A Framework for
Data Base Design. In Distributed Data Bases, Infotech State-of-the-Art Report.
Infotech. 39

Morgan, H. L. and Levin, K. D. (1977). Optimal program and data location in
computer networks. Commun. ACM, 20(5):315–322. 125

Moss, E. (1985). Nested Transactions. M.I.T. Press. 351, 352, 396, 401
Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,

Olston, C., Rosenstein, J., and Varma, R. (2003). Query processing, approximation,
and resource management in a data stream management system. In Proc. 1st
Biennial Conf. on Innovative Data Systems Research, pages 245–256. 732

812 References

Muro, S., Ibaraki, T., Miyajima, H., and Hasegawa, T. (1983). File redundancy issues
in distributed database systems. In Proc. 9th Int. Conf. on Very Data Bases, pages
275–277. 124

Muro, S., Ibaraki, T., Miyajima, H., and Hasegawa, T. (1985). Evaluation of file redun-
dancy in distributed database systems. IEEE Trans. Softw. Eng., SE-11(2):199–205.
124

Muth, P., Rakow, T., Weikum, G., Brössler, P., and Hasse, C. (1993). Semantic
concurrency control in object-oriented database systems. In Proc. 9th Int. Conf.
on Data Engineering, pages 233–242. 604, 605

Myers, G. J. (1976). Software Reliability: Principles and Practices. John Wiley &
Sons. 455

Naacke, H., Tomasic, A., and Valduriez, P. (1999). Validating mediator cost models
with DISCO. Networking and Information Systems Journal, 2(5):639–663. 307,
310, 331

Najork, M. and Wiener, J. L. (2001). Breadth-first crawling yields high-quality pages.
In Proc. 10th Int. World Wide Web Conf., pages 114–118. 665

Naumann, F., Ho, C.-T., Tian, X., Haas, L. M., and Megiddo, N. (2002). Attribute
classification using feature analysis. In Proc. 18th Int. Conf. on Data Engineering,
page 271. 146

Navathe, S. B., Ceri, S., Wiederhold, G., and Dou, J. (1984). Vertical partitioning of
algorithms for database design. ACM Trans. Database Syst., 9(4):680–710. 98,
99, 102, 109, 125

NBS (1977). Data encryption standard. Technical Report 46, U. S. Department
of Commerce/National Bureau of Standards, Federal Information Processing
Standards Publication. 180

Nejdl, W., Siberski, W., and Sintek, M. (2003). Design issues and challenges for rdf-
and schema-based peer-to-peer systems. ACM SIGMOD Rec., 32(3):41–46. 624,
628

Nepal, S. and Ramakrishna, M. (1999). Query processing issues in image (multime-
dia) databases. In Proc. 15th Int. Conf. on Data Engineering, pages 22–29. 629,
654

Newton, G. (1979). Deadlock prevention, detection and resolution: An annotated
bibliography. Operating Systems Rev., 13(2):33–44. 401

Ng, P. (1988). A commit protocol for checkpointing transactions. In Proc. 7th. Symp.
on Reliable Distributed Systems, pages 22–31. 456

Niamir, B. (1978). Attribute partitioning in a self–adaptive relational database system.
Technical Report 192, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass. 98, 125

Nicola, M. and der Linden, B. V. (2005). Native XML support in db2 universal
database. In Proc. 31st Int. Conf. on Very Large Data Bases, pages 1164–1174.
699

Nicolas, J. M. (1982). Logic for improving integrity checking in relational data bases.
Acta Informatica, 18:227–253. 192, 202

References 813

Nodine, M. and Zdonik, S. (1990). Cooperative transaction hierarchies: A transaction
model to support design applications. In Proc. 16th Int. Conf. on Very Large Data
Bases, pages 83–94. 354

OASIS UDDI. Universal description discovery & integration (UDDI) (2002). Avail-
able from: http://uddi.xml.org/ [Last retrieved: December 2009]. 690

Obermarck, R. (1982). Deadlock detection for all resource classes. ACM Trans.
Database Syst., 7(2):187–208. 39, 393, 401

Omiecinski, E. (1991). Performance analysis of a load balancing hash-join algorithm
for a shared-memory multiprocessor. In Proc. 17th Int. Conf. on Very Large Data
Bases, pages 375–385. 528, 548

Ooi, B., Shu, Y., and Tan, K.-L. (2003a). Relational data sharing in peer-based data
management systems. ACM SIGMOD Rec., 32(3):59–64. 627

Ooi, B. C., Shu, Y., and Tan, K.-L. (2003b). Db-enabled peers for managing dis-
tributed data. In Proc. 5th Asian-Pacific Web Conference, pages 10–21. 612

Ordonez, C. (2003). Clustering binary data streams with k-means. In Proc. ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.
743

Orenstein, J., Haradvala, S., Margulies, B., and Sakahara, D. (1992). Query pro-
cessing in the objectstore database system. In ACM SIGMOD Int. Conf. on
Management of Data, pages 403–412. 586

Orfali, R., Harkey, D., and Edwards, J. (1996). The Essential Distributed Objects
Survival Guide. John Wiley & Sons. 607

Osborn, S. L. and Heaven, T. E. (1986). The design of a relational database system
with abstract data types for domains. ACM Trans. Database Syst., 11(3):357–373.
557

Osterhaug, A. (1989). Guide to Parallel Programming on Sequent Computer Systems.
Prentice-Hall. 498

O’Toole, J., Nettles, S., and Gifford, D. (1993). Concurrent compacting garbage col-
lection of a persistent heap. In Proc. 14th ACM Symp. Operating Syst. Principles,
pages 161–174. 581

Ou, Z., Yu, G., Yu, Y., Wu, S., Yang, X., and Deng, Q. (2005). Tick scheduling: A
deadline based optimal task scheduling approach for real-time data stream systems.
In Proc. 6th Int. Conf. on Web-Age Information Management:, pages 725–730.
735

Ouksel, A. M. and Sheth, A. P. (1999). Semantic interoperability in global infor-
mation systems: A brief introduction to the research area and the special section.
ACM SIGMOD Rec., 28(1):5–12. 160

Özsoyoglu, Z. M. and Zhou, N. (1987). Distributed query processing in broadcasting
local area networks. In Proc. 20th Hawaii Int. Conf. on System Sciences, pages
419–429. 214, 215

Özsu, M. and Barker, K. (1990). Architectural classification and transaction exe-
cution models of multidatabase systems. In Proc. Int. Conf. on Computing and
Information, pages 275–279. 40

http://uddi.xml.org/

814 References

Özsu, M., Dayal, U., and Valduriez, P., editors (1994a). Distributed Object Manage-
ment. Morgan Kaufmann, San Mateo, Calif. 607, 784, 785, 787, 789, 793, 800,
801, 807, 809, 814

Özsu, M., Peters, R., Szafron, D., Irani, B., Munoz, A., and Lipka, A. (1995a).
Tigukat: A uniform behavioral objectbase management system. VLDB J., 4:445–
492. 555, 606

Özsu, M. T. (1985a). Modeling and analysis of distributed concurrency control
algorithms using an extended petri net formalism. IEEE Trans. Softw. Eng.,
SE-11(10):1225–1240. 401

Özsu, M. T. (1985b). Performance comparison of distributed vs centralized locking
algorithms in distributed database systems. In Proc. 5th Int. Conf. on Distributed
Computing Systems, pages 254–261. 401

Özsu, M. T. (1994). Transaction models and transaction management in OODBMSs.
In Dogac et al. [1994], pages 275–279. 359, 607

Özsu, M. T. and Blakeley, J. (1994). Query processing in object-oriented database
systems. In Kim, W., editor, Modern Database Management – Object-Oriented
and Multidatabase Technologies, pages 146–174. Addison-Wesley/ACM Press.
582, 607

Özsu, M. T., Dayal, U., and Valduriez, P. (1994b). An introduction to distributed
object management. In Özsu et al. [1994a], pages 1–24. 551

Özsu, M. T., Munoz, A., and Szafron, D. (1995b). An extensible query optimizer
for an objectbase management system. In Proc. 4th Int. Conf. on Information and
Knowledge Management, pages 188–196. 584

Özsu, M. T. and Valduriez, P. (1991). Distributed database systems: Where are we
now? Comp., 24(8):68–78. 38

Özsu, M. T. and Valduriez, P. (1994). Distributed data management: Unsolved
problems and new issues. In Casavant, T. and Singhal, M., editors, Readings in
Distributed Computing Systems, pages 512–544. IEEE/CS Press. 38

Özsu, M. T. and Valduriez, P. (1997). Distributed and parallel database systems.
In Tucker, A., editor, Handbook of Computer Science and Engineering, pages
1093–1111. CRC Press. 38

Özsu, M. T., Voruganti, K., and Unrau, R. (1998). An asynchronous avoidance-based
cache consistency algorithm for client caching dbmss. In Proc. 24th Int. Conf. on
Very Large Data Bases, pages 440–451. 573

Pacitti, E., Coulon, C., Valduriez, P., and Özsu, M. T. (2006). Preventive replication
in a database cluster. Distrib. Parall. Databases, 18(3):223–251. 537, 539, 540,
548

Pacitti, E., Minet, P., and Simon, E. (1999). Fast algorithms for maintaining replica
consistency in lazy master replicated databases. In Proc. 25th Int. Conf. on Very
Large Data Bases, pages 126–137. 463, 482, 484, 537

Pacitti, E., Özsu, M. T., and Coulon, C. (2003). Preventive multi-master replication
in a cluster of autonomous databases. In Proc. 9th Int. Euro-Par Conf., pages
318–327. 537, 548

Pacitti, E. and Simon, E. (2000). Update propagation strategies to improve freshness
in lazy master replicated databases. VLDB J., 8(3-4):305–318. 462, 493, 537

References 815

Pacitti, E., Simon, E., and de Melo, R. (1998). Improving data freshness in lazy
master schemes. In Proc. 18th Int. Conf. on Distributed Computing Systems, pages
164–171. 463, 493

Pacitti, E., Valduriez, P., and Mattoso, M. (2007a). Grid data management: open
problems and new issues. Journal of Grid Computing, 5(3):273–281. 654

Pacitti, E., Valduriez, P., and Mattoso, M. (2007b). Grid data management: Open
problems and new issues. J. Grid Comp., 5(3):273–281. 750, 763

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford University. 665

Page, T. W. and Popek, G. J. (1985). Distributed data management in local area
networks. In Proc. ACM SIGACT–SIGMOD Symp. on Principles of Database
Systems, pages 135–142. 210, 250

Pal, S., Cseri, I., Seeliger, O., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras,
A., Berg, B., Churin, D., and Kogan, E. (2005). Xquery implementation in a
relational database system. In Proc. 31st Int. Conf. on Very Large Data Bases,
pages 1175–1186. 699

Palma, W., Akbarinia, R., Pacitti, E., and Valduriez, P. (2009). Dhtjoin: processing
continuous join queries using dht networks. Distrib. Parall. Databases, 26(2–
3):291–317. 732

Palopoli, L., Saccà, D., Terracina, G., and Ursino, D. (1999). A unified graph-based
framework for deriving nominal interscheme properties, type conflicts and object
cluster similarities. In Proc. Int. Conf. on Cooperative Information Systems, pages
34–45. 134, 142, 160

Palopoli, L., Saccà, D., Terracina, G., and Ursino, D. (2003a). Uniform techniques
for deriving similarities of objects and subschemes in heterogeneous databases.
IEEE Trans. Knowl. and Data Eng., 15(2):271–294. 145, 160

Palopoli, L., Saccà, D., and Ursino, D. (1998). Semi-automatic semantic discovery
of properties from database schemas. In Proc. Int. Conf. on Database Eng. and
Applications, pages 244–253. 134, 145, 160

Palopoli, L., Terracina, G., and Ursino, D. (2003b). Experiences using DIKE, a
system for supporting cooperative information system and data warehouse design.
Inf. Syst., 28:835–865. 134, 160

Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., and Truppel, W. (2004). Online
amnesic approximation of streaming time series. In Proc. 20th Int. Conf. on Data
Engineering, pages 338–349. 726

Pandey, S., Ramamritham, K., and Chakrabarti, S. (2003). Monitoring the dynamic
web to respond to continuous queries. In Proc. 12th Int. World Wide Web Conf. 6

Papadimitriou, C. H. (1979). Serializability of concurrent database updates. J. ACM,
26(4):631–653. 350

Papadimitriou, C. H. (1986). The Theory of Concurrency Control. Computer Science
Press. 401

Papakonstantinou, Y., Garcia-Molina, H., and Widom, J. (1995). Object exchange
across heterogeneous information sources. In Proc. 11th Int. Conf. on Data
Engineering, pages 251–260. 671, 673

816 References

Pape, C. L., Gançarski, S., and Valduriez, P. (2004). Refresco: Improving query
performance through freshness control in a database cluster. In Proc. Confederated
Int. Conf. DOA, CoopIS and ODBASE, Lecture Notes in Computer Science 3290,
pages 174–193. 493, 540, 548

Paris, J. F. (1986). Voting with witnesses: A consistency scheme for replicated files.
In Proc. 6th Int. Conf. on Distributed Computing Systems, pages 606–612. 493

Park, Y., Scheuermann, P., and Tang, H. (1995). A distributed deadlock detection
and resolution algorithm based on a hybrid wait-for graph and probe generation
scheme. In Proc. ACM Int. Conf. Information and Knowledge Management, pages
378–86. 401

Passerini, A., Frasconi, P., and Soda, G. (2001). Evaluation methods for focused
crawling. In Proc. 7th Congress of the Italian Association for Artificial Intelligence,
pages 33–39. 666

Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., and Alonso, G. (2005).
MIDDLE-R: Consistent database replication at the middleware level. ACM Trans.
Comp. Syst., 23(4):375–423. 491

Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., and Alonso, G. (2000). Scalable
replication in database clusters. In Proc. 14th Int. Symp. on Distributed Computing,
pages 315–329. 482, 489, 548

Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden, S., and
Stonebraker, M. (2009). A comparison of approaches to large-scale data analysis.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 165–178. 760

Paxson, V. and Floyd, S. (1995). Wide-area traffic: The failure of poisson modeling.
IEEE/ACM Trans. Networking, 3(3):226–244. 727

Pease, M., Shostak, R., and Lamport, L. (1980). Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234. 456

Pedone, F. and Schiper, A. (1998). Optimistic atomic broadcast. In Proc. 12th Int.
Symp. on Distributed Computing, pages 318–332. 539

Perez-Sorrosal, F., Vuckovic, J., Patiño-Martı́nez, M., and Jiménez-Peris, R. (2006).
Highly available long running transactions and activities for J2EE. In Proc. 26th
Int. Conf. on Distributed Computing Systems, page 2. 546, 548

Peters, R. J., Lipka, A., Özsu, M. T., and Szafron, D. (1993). An extensible query
model and its languages for a uniform behavioral object management system. In
Proc. 2nd International Conference on Information and Knowledge Management,
pages 403–412. 584

Piatetsky-Shapiro, G. and Connell, C. (1984). Accurate estimation of the number of
tuples satisfying a condition. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 256–276. 252

Pinedo, M. (2001). Scheduing: Theory, Algorithms and Systems. Integre Technical
Publishing, 2 edition. 537

Pirahesh, H., Mohan, C., Cheng, J. M., Liu, T. S., and Selinger, P. G. (1990). Par-
allelism in rdbms : Architectural issues and design. In Proc. 2nd Int. Symp. on
Databases in Distributed and Parallel Systems, pages 4–29. 532, 533, 548

Plainfossé, D. and Shapiro, M. (1995). A survey of distributed garbage collection
techniques. In Proc. Int. Workshop on Memory Management, pages 211–249. 581

References 817

Plattner, C. and Alonso, G. (2004). Ganymed: Scalable replication for transactional
web applications. In Proc. ACM/IFIP/USENIX Int. Middleware Conf., pages
155–174. 464

Plaxton, C., Rajaraman, R., and Richa, A. (1997). Accessing nearby copies of repli-
cated objects in a distributed environment. In ACM Symp. on Parallel Algorithms
and Architectures (SPAA), pages 311–320. 646

Polyzotis, N. and Garofalakis, M. N. (2002). Statistical synopses for graph-structured
XML databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
358–369. 701

Polyzotis, N., Garofalakis, M. N., and Ioannidis, Y. E. (2004). Approximate XML
query answers. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
263–274. 701

Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., and Frantzell, N.-E.
(2008). Meshing streaming updates with persistent data in an active data warehouse.
IEEE Trans. Knowl. and Data Eng., 20(7):976–991. 761

Poosala, V., Ioannidis, Y., Haas, P., and Shekita, E. (1996). Improved histograms for
selectivity estimation of range predicates. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 294–305. 256

Popa, L., Velegrakis, Y., Miller, R. J., Hernandez, M. A., and Fagin, R. (2002).
Translating web data. In Proc. 28th Int. Conf. on Very Large Data Bases. 155

Porto, F., Laber, E. S., and Valduriez, P. (2003). Cherry picking: A semantic query
processing strategy for the evaluation of expensive predicates. In Proc. Brazilian
Symposium on Databases, pages 356–370. 320, 326, 331

Potier, D. and LeBlanc, P. (1980). Analysis of locking policies in database manage-
ment systems. Commun. ACM, 23(10):584–593. 401

Pottinger, R. and Levy, A. Y. (2000). A scalable algorithm for answering queries
using views. In Proc. 26th Int. Conf. on Very Large Data Bases, pages 484–495.
305, 331

Pradhan, D. K., editor (1986). Fault-Tolerant Computing: Theory and Techniques,
volume 2. Prentice-Hall. 455

Pu, C. (1988). Superdatabases for composition of heterogeneous databases. In Proc.
4th Int. Conf. on Data Engineering, pages 548–555. 147, 352

Pu, C. and Leff, A. (1991). Replica control in distributed systems: An asynchronous
approach. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
377–386. 462

Pugh, W. (1989). Skip lists: A probabilistic alternative to balanced trees. In Proc.
Workshop on Algorithms and Data Structures, pages 437–449. 622

Qiao, L., Agrawal, D., and Abbadi, A. E. (2003). Supporting sliding window queries
for continuous data streams. In Proc. 15th Int. Conf. on Scientific and Statistical
Database Management, pages 85–94. 737

Raghavan, S. and Garcia-Molina, H. (2001). Crawling the hidden web. In Proc. 27th
Int. Conf. on Very Large Data Bases, pages 129–138. 657, 686

Raghavan, S. and Garcia-Molina, H. (2003). Representing web graphs. In Proc. 19th
Int. Conf. on Data Engineering, pages 405–416. 658, 661, 662, 663

818 References

Rahal, A., Zhu, Q., and Larson, P.-Å. (2004). Evolutionary techniques for updating
query cost models in a dynamic multidatabase environment. VLDB J., 13(2):162–
176. 307, 313, 331

Rahimi, S. (1987). Reference architecture for distributed database management
systems. In Proc. 3th Int. Conf. on Data Engineering. Tutorial Notes. 40

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema
matching. VLDB J., 10(4):334–350. 138, 139, 143, 146, 160

Rahm, E. and Do, H. H. (2000). Data cleaning: Problems and current approaches. Q.
Bull. IEEE TC on Data Eng., 23(4):3–13. 157

Rahm, E. and Marek, R. (1995). Dynamic multi-resource load balancing in parallel
database systems. In Proc. 21th Int. Conf. on Very Large Data Bases, pages
395–406. 530, 548

Ramabhadran, S., Ratnasamy, S., Hellerstein, J. M., and Shenker, S. (2004). Brief
announcement: prefix hash tree. In Proc. ACM SIGACT-SIGOPS 23rd Symp. on
the Principles of Distributed Computing, page 368. 622, 643

Ramakrishnan, R. (2009). Data management in the cloud. In Proc. 25th Int. Conf.
on Data Engineering, page 5. 753, 763

Ramakrishnan, R. and Gehrke, J. (2003). Database Management Systems. McGraw-
Hill, 3 edition. 70, 189, 201

Ramamoorthy, C. V. and Wah, B. W. (1983). The isomorphism of simple file
allocation. IEEE Trans. Comput., C-23(3):221–231. 121

Ramamritham, K. and Pu, C. (1995). A formal characterization of epsilon serializ-
ability. IEEE Trans. Knowl. and Data Eng., 7(6):997–1007. 401, 462

Raman, V., Deshpande, A., and Hellerstein, J. M. (2003). Using state modules for
adaptive query processing. In Proc. 19th Int. Conf. on Data Engineering, pages
353–365. 331

Raman, V. and Hellerstein, J. M. (2001). Potter’s wheel: An interactive data cleaning
system. In Proc. 27th Int. Conf. on Very Large Data Bases, pages 381–390. 158

Ramanathan, P. and Shin, K. G. (1988). Checkpointing and rollback recovery in
a distributed system using common time base. In Proc. 7th Symp. on Reliable
Distributed Systems, pages 13–21. 456

Randell, B., Lee, P. A., and Treleaven, P. C. (1978). Reliability issues in computing
system design. ACM Comput. Surv., 10(2):123–165. 406, 455

Rao, P. and Moon, B. (2004). Prix: Indexing and querying XML using prüfer
sequences. In Proc. 20th Int. Conf. on Data Engineering, pages 288–300. 701

Ratnasamy, S., Francis, P., Handley, M., and Karp, R. (2001a). A scalable content-
addressable network. In Proc. ACM Int. Conf. on Data Communication, pages
161–172. 620, 646

Ratnasamy, S., Francis, P., Handley, M., Karp, R. M., and Shenker, S. (2001b). A
scalable content-addressable network. In Proc. ACM Int. Conf. on Data Communi-
cation, pages 161–172. 618

Ray, I., Mancini, L. V., Jajodia, S., and Bertino, E. (2000). Asep: A secure and
flexible commit protocol for mls distributed database systems. IEEE Trans. Knowl.
and Data Eng., 12(6):880–899. 187, 202

References 819

Reiss, F. and Hellerstein, J. (2005). Data triage: an adaptive architecture for load
shedding in telegraphCQ. In Proc. 21st Int. Conf. on Data Engineering, pages
155–156. 740

Ribeiro-Neto, B. A. and Barbosa, R. A. (1998). Query performance for tightly
coupled distributed digital libraries. In Proc. 3rd ACM Int. Conf. on Digital
Libraries, pages 182–190. 668

Ritter, J. Why Gnutella can’t scale, no, really (2001). Available from: http:
//www.darkridge.com/˜jpr5/doc/gnutella.html [Last retrieved:
December 2009]. 618

Rivera-Vega, P., Varadarajan, R., and Navathe, S. B. (1990). Scheduling data redistri-
bution in distributed databases. In Proc. Int. Conf. on Data Eng, pages 166–173.
124

Rivest, R. L., Shamir, A., and Adelman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126. 180

Rjaibi, W. (2004). An introduction to multilevel secure relational database man-
agement systems. In Proc. Conf. of the IBM Centre for Advanced Studies on
Collaborative Research, pages 232–241. 187, 202

Röhm, U., Böhm, K., and Schek, H.-J. (2000). Olap query routing and physical
design in a database cluster. In Advances in Database Technology, Proc. 7th Int.
Conf. on Extending Database Technology, pages 254–268. 535, 544, 548

Röhm, U., Böhm, K., and Schek, H.-J. (2001). Cache-aware query routing in a
cluster of databases. In Proc. 17th Int. Conf. on Data Engineering, pages 641–650.
535

Röhm, U., Böhm, K., Schek, H.-J., and Schuldt, H. (2002a). Fas - a freshness-
sensitive coordination cocoon for a cluster of olap components. In Proc. 28th Int.
Conf. on Very Large Data Bases, pages 754–765. 493

Röhm, U., Böhm, K., Schek, H.-J., and Schuldt, H. (2002b). FAS - A freshness-
sensitive coordination middleware for a cluster of olap components. In Proc. 28th
Int. Conf. on Very Large Data Bases, pages 754–765. 462, 541

Roitman, H. and Gal, A. (2006). Ontobuilder: Fully automatic extraction and con-
solidation of ontologies from web sources using sequence semantics. In EDBT
Workshops, volume 4254 of LNCS, pages 573–576. 152

Rosenkrantz, D. J. and Hunt, H. B. (1980). Processing conjunctive predicates and
queries. In Proc. 6th Int. Conf. on Very Data Bases, pages 64–72. 224, 241

Rosenkrantz, D. J., Stearns, R. E., and Lewis, P. M. (1978). System level concurrency
control for distributed database systems. ACM Trans. Database Syst., 3(2):178–
198. 390

Roth, J. P., Bouricius, W. G., Carter, E. C., and Schneider, P. R. (1967). Phase ii of an
architectural study for a self-repairing computer. Report SAMSO-TR-67-106, U.
S. Air Force Space and Missile Division, El Segundo, Calif. Cited in [Siewiorek
and Swarz, 1982]. 410

Roth, M. and Schwartz, P. (1997). Don’t scrap it, wrap it! a wrapper architecture
for legacy data sources. In Proc. 23th Int. Conf. on Very Large Data Bases, pages
266–275. 327

http://www.darkridge.com/~jpr5/doc/gnutella.html
http://www.darkridge.com/~jpr5/doc/gnutella.html

820 References

Roth, M. T., Ozcan, F., and Haas, L. M. (1999). Cost models do matter: Providing
cost information for diverse data sources in a federated system. In Proc. 25th Int.
Conf. on Very Large Data Bases, pages 599–610. 307, 310, 331

Rothermel, K. and Mohan, C. (1989). Aries/nt: A recovery method based on write-
ahead logging for nested transactions. In Proc. 15th Int. Conf. on Very Large Data
Bases, pages 337–346. 401

Rothnie, J. B. and Goodman, N. (1977). A survey of research and development in
distributed database management. In Proc. 3rd Int. Conf. on Very Data Bases,
pages 48–62. 116

Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proc. IFIP/ACM Int.
Conf. on Distributed Systems Platforms, pages 329–350. 621

Ryvkina, E., Maskey, A., Adams, I., Sandler, B., Fuchs, C., Cherniack, M., and
Zdonik, S. (2006). Revision processing in a stream processing engine: A high-
level design. In Proc. 22nd Int. Conf. on Data Engineering, page 141. 725

Sacca, D. and Wiederhold, G. (1985). Database partitioning in a cluster of processors.
ACM Trans. Database Syst., 10(1):29–56. 99, 115, 125

Sacco, M. S. and Yao, S. B. (1982). Query optimization in distributed data base
systems. In Yovits, M., editor, Advances in Computers, volume 21, pages 225–273.
Academic Press. 39, 209, 211, 220

Saito, Y. and Shapiro, M. (2005). Optimistic replication. ACM Comput. Surv.,
37(1):42–81. 462, 466, 493

Salton, G. (1989). Automatic Text Processing – The Transformation, Analysis, and
Retrieval of Information by Computer. Addison–Wesley. 667

Schlageter, G. and Dadam, P. (1980). Reconstruction of consistent global states in
distributed databases. In Delobel, C. and Litwin, W., editors, Distributed Data
Bases, pages 191–200. North-Holland. 456

Schlichting, R. D. and Schneider, F. B. (1983). Fail–stop processors: An approach to
designing fault–tolerant computing systems. ACM Trans. Comp. Syst., 1(3):222–
238. 455

Schmidt, C. and Parashar, M. (2004). Enabling flexible queries with guarantees in
p2p systems. IEEE Internet Computing, 8(3):19–26. 622

Schmidt, S., Berthold, H., and Legler, T. (2004). QStream: Deterministic querying of
data streams. In Proc. 30th Int. Conf. on Very Large Data Bases, pages 1365–1368.
738

Schmidt, S., Legler, T., Schar, S., and Lehner, W. (2005). Robust real-time query
processing with QStream. In Proc. 31st Int. Conf. on Very Large Data Bases,
pages 1299–1301. 738

Schreiber, F. (1977). A framework for distributed database systems. In Proc. Int.
Computing Symposium, pages 475–482. 39

Selinger, P. G. and Adiba, M. (1980). Access path selection in distributed data base
management systems. In Proc. First Int. Conf. on Data Bases, pages 204–215.
250, 254, 277, 292, 293

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G.
(1979). Access path selection in a relational database management system. In

References 821

Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 23–34. 212, 253,
261, 292, 586

Serrano, D., Patiño-Martı́nez, M., Jiménez-Peris, R., and Kemme, B. (2007). Boost-
ing database replication scalability through partial replication and 1-copy-snapshot-
isolation. In Proc. 13th IEEE Pacific Rim Int. Symp. on Dependable Computing,
pages 290–297. 491

Sevcik, K. C. (1983). Comparison of concurrency control methods using analytic
models. In Information Processing ’83, pages 847–858. 401

Severence, D. G. and Lohman, G. M. (1976). Differential files: Their application to
the maintenance of large databases. ACM Trans. Database Syst., 1(3):256–261.
419

Shafer, J. C., Agrawal, R., and Mehta, M. (1996). Sprint: A scalable parallel classifier
for data mining. In Proc. 22th Int. Conf. on Very Large Data Bases, pages 544–555.
743

Shah, M. A., Hellerstein, J. M., Chandrasekaran, S., and Franklin, M. J. (2003). Flux:
An adaptive partitioning operator for continuous query systems. In Proc. 19th Int.
Conf. on Data Engineering, pages 25–36. 320, 321, 322, 331

Shapiro, L. (1986). oin processing in database systems with large main memories.
ACM Trans. Database Syst., 11(3):239–264. 587

Sharaf, M., Labrinidis, A., Chrysanthis, P., and Pruhs, K. (2005). Freshness-aware
scheduling of continuous queries in the dynamic web. In Proc. 8th Int. Workshop
on the World Wide Web and Databases, pages 73–78. 735

Sharp, J. (1987). An Introduction to Distributed and Parallel Processing. Blackwell
Scientific Publications. 498

Shasha, D. and Wang, T.-L. (1991). Optimizing equijoin queries in distributed
databases where relations are hash partitioned. ACM Trans. Database Syst.,
16(2):279–308. 292

Shatdal, A. and Naughton, J. F. (1993). Using shared virtual memory for parallel
join processing. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
119–128. 534, 548

Shekita, E. J. and Carey, M. J. (1990). A performance evaluation of pointer-based
joins. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 300–311.
590

Shekita, E. J., Young, H. C., and Tan, K. L. (1993). Multi-join optimization for
symmetric multiprocessor. In Proc. 19th Int. Conf. on Very Large Data Bases,
pages 479–492. 530, 548

Sheth, A. and Larson, J. (1990). Federated databases: Architectures and integration.
ACM Comput. Surv., 22(3):183–236. 40, 135, 160, 298

Sheth, A., Larson, J., Cornellio, A., and Navathe, S. B. (1988a). A tool for integrating
conceptual schemas and user views. In Proc. 4th Int. Conf. on Data Engineering,
pages 176–183. 147, 202

Sheth, A., Larson, J., and Watkins, E. (1988b). Tailor, a tool for updating views. In
Advances in Database Technology, Proc. 1st Int. Conf. on Extending Database
Technology, pages 190–213. Springer. 202

822 References

Sheth, A. P. and Kashyap, V. (1992). So far (schematically) yet so near (semantically).
In Proc. IFIP WG 2.6 Database Semantics Conf. on Interoperable Database
Systems, pages 283–312. 141

Shivakumar, N. and Garcı́a-Molina, H. (1997). Wave-indices: indexing evolving
databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
381–392. 738

Shrivastava, S. K., editor (1985). Reliable Computer Systems. Springer. 455, 768
Sidell, J., Aoki, P. M., Sah, A., Staelin, C., Stonebraker, M., and Yu, A. (1996). Data

replication in mariposa. In Proc. 12th Int. Conf. on Data Eng, pages 485–494.
456, 493

Siegel, J., editor (1996). CORBA Fundamentals and Programming. John Wiley &
Sons. 607

Siewiorek, D. P. and Swarz, R. S., editors (1982). The Theory and Practice of
Reliable System Design. Digital Press. 407, 409, 455, 810

Silberschatz, A., Korth, H., and Sudarshan, S. (2002). Database System Concepts.
McGraw-Hill, 4 edition. 70

Simon, E. and Valduriez, P. (1984). Design and implementation of an extendible
integrity subsystem. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 9–17. 193, 202

Simon, E. and Valduriez, P. (1986). Integrity control in distributed database systems.
In Proc. 19th Hawaii Int. Conf. on System Sciences, pages 622–632. 192, 202

Simon, E. and Valduriez, P. (1987). Design and analysis of a relational integrity
subsystem. Technical Report DB-015-87, Microelectronics and Computer Corpo-
ration, Austin, Tex. 189, 192, 202

Singhal, M. (1989). Deadlock detection in distributed systems. Comp., 22(11):37–48.
401

Sinha, M. K., Nanadikar, P. D., and Mehndiratta, S. L. (1985). Timestamp based
certification schemes for transactions in distributed database systems. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 402–411. 385

Skarra, A. (1989). oncurrency control for cooperating transactions in an object-
oriented database. In Proc. ACM SIGPLAN Workshop on Object-Based Concurrent
Programming, pages 145–147. 401

Skarra, A., Zdonik, S., and Reiss, S. (1986). An object server for an object-oriented
database system. In Proc. of the 1st Int. Workshop on Object-Oriented Database
Systems, pages 196–204. 401

Skeen, D. (1981). Nonblocking commit protocols. In ACM SIGMOD Int. Conf. on
Management of Data, pages 133–142. 440, 443, 447, 456

Skeen, D. (1982a). Crash Recovery in a Distributed Database Management Sys-
tem. Ph.D. thesis, Department of Electrical Engineering and Computer Science,
University of California at Berkeley, Berkeley, Calif. 456

Skeen, D. (1982b). A quorum-based commit protocol. In Proc. 6th Berkeley
Workshop on Distributed Data Management and Computer Networks, pages 69–
80. 448, 450

Skeen, D. and Stonebraker, M. (1983). A formal model of crash recovery in a
distributed system. IEEE Trans. Softw. Eng., SE-9(3):219–228. 437, 443, 449, 456

References 823

Skeen, D. and Wright, D. (1984). Increasing availability in partitioned networks.
In Proc. 3rd ACM SIGACT–SIGMOD Symp. on Principles of Database Systems,
pages 290–299. 456, 493

Smith, J. M. and Chang, P. Y. (1975). Optimizing the performance of a relational
algebra database interface. Commun. ACM, 18(10):568–579. 228, 241

Somani, A., Choy, D., and Kleewein, J. C. (2002). Bringing together content and data
management systems: Challenges and opportunities. IBM Systems J., 41(4):686–
696. 159

Sousa, A., Oliveira, R., Moura, F., and Pedone, F. (2001). Partial replication in
the database state machine. In Proc. IEEE Int. Symp. Network Computing and
Applications, pages 298–309. 491, 548

Srivastava, U. and Widom, J. (2004). Memory-limited execution of windowed stream
joins. In Proc. 30th Int. Conf. on Very Large Data Bases, pages 324–335. 740

Stallings, W. (2011). Data and Computer Communications. Prentice-Hall, 9 edition.
70

Stanoi, I., Agrawal, D., and El-Abbadi, A. (1998). Using broadcast primitives in
replicated databases. In Proc. 8th Int. Conf. on Distributed Computing Systems,
pages 148–155. 482

Stearns, R. E., II, P. M. L., and Rosenkrantz, D. J. (1976). Concurrency controls
for database systems. In Proc. 17th Symp. on Foundations of Computer Science,
pages 19–32. 350

Stöhr, T., Märtens, H., and Rahm, E. (2000). Multi-dimensional database allocation
for parallel data warehouses. In Proc. 26th Int. Conf. on Very Large Data Bases,
pages 273–284. 542

Stoica, I., Morris, R., Karger, D. R., Kaashoek, M. F., and Balakrishnan, H. (2001a).
Chord: A scalable peer-to-peer lookup service for internet applications. In Proc.
ACM Int. Conf. on Data Communication, pages 149–160. 618

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F., and
Balakrishnan, H. (2001b). Chord: A scalable peer-to-peer lookup protocol for
internet applications. In Proc. ACM Int. Conf. on Data Communication, pages
149–160. 621

Stonebraker, M. (1975). Implementation of integrity constraints and views by query
modification. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
65–78. 172, 173, 186, 191, 192, 201, 202

Stonebraker, M. (1981). Operating system support for database management. Com-
mun. ACM, 24(7):412–418. 39, 415

Stonebraker, M. (1986). The case for shared nothing. Q. Bull. IEEE TC on Data
Eng., 9(1):4–9. 547

Stonebraker, M. (2010). SQL databases v. NoSQL databases. Commun. ACM,
53(4):10–11. 753

Stonebraker, M., Abadi, D. J., DeWitt, D. J., Madden, S., Paulson, E., Pavlo, A., and
Rasin, A. (2010). MapReduce and parallel DBMSs: friends or foes? Commun.
ACM, 53(1):64–71. 760, 763

Stonebraker, M. and Brown, P. (1999). Object-Relational DBMSs. Morgan Kaufmann,
2nd edition. 552, 607

824 References

Stonebraker, M., Kreps, P., Wong, W., and Held, G. (1976). The design and imple-
mentation of ingres. ACM Trans. Database Syst., 1(3):198–222. 56, 258

Stonebraker, M. and Neuhold, E. (1977). A distributed database version of ingres. In
Proc. 2nd Berkeley Workshop on Distributed Data Management and Computer
Networks, pages 9–36. 474

Stonebraker, M., Rowe, L., Lindsay, B., Gray, J., Carey, M., Brodie, M., Bernstein,
P., and Beech, D. (1990). Third-generation data base system manifesto. ACM
SIGMOD Rec., 19(3):31–44. 553

Straube, D. and Özsu, M. T. (1990a). Queries and query processing in object-oriented
database systems. ACM Trans. Information Syst., 8(4):387–430. 585

Straube, D. and Özsu, M. T. (1990b). Type consistency of queries in an object-
oriented database. In Proc. Joint ACM OOPSLA/ECOOP ’90 Conference on
Object-Oriented Programming: Systems, Languages and Applications, pages 224–
233. 585

Straube, D. D. and Özsu, M. T. (1995). Query optimization and execution plan
generation in object-oriented database systems. IEEE Trans. Knowl. and Data
Eng., 7(2):210–227. 589

Strong, H. R. and Dolev, D. (1983). Byzantine agreement. In Digest of Papers —
COMPCON, pages 77–81, San Francisco, Calif. 456

Stroustrup, B. (1986). The C++ Programming Language. Addison Wesley. 559
Sullivan, M. and Heybey, A. (1998). Tribeca: A system for managing large databases

of network traffic. In Proc. USENIX 1998 Annual Technical Conf. 726, 730
Swami, A. (1989). Optimization of large join queries: combining heuristics and

combinatorial techniques. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 367–376. 212, 249

Tandem (1987). Nonstop sql – a distributed high-performance, high-availability
implementation of sql. In Proc. Int. Workshop on High Performance Transaction
Systems, pages 60–104. 377, 548

Tandem (1988). A benchmark of nonstop sql on the debit credit transaction. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 337–341. 377

Tanenbaum, A. (1995). Distributed Operating Systems. Prentice-Hall. 180
Tanenbaum, A. S. (2003). Computer Networks. Prentice-Hall, 4th edition. 60, 70
Tanenbaum, A. S. and van Renesse, R. (1988). Voting with ghosts. In Proc. 8th Int.

Conf. on Distributed Computing Systems, pages 456–461. 493
Tanenbaum, A. S. and van Steen, M. (2002). Distributed Systems: Principles and

Paradigms. Prentice-Hall. 2
Tao, Y. (2010). Mining Time-Changing Data Streams. PhD thesis, University of

Waterloo. 763
Tao, Y. and Özsu, M. T. (2009). Efficient decision tree construction for mining

time-varying data streams. In Proc. Conf. of the IBM Centre for Advanced Studies
on Collaborative Research. 743

Tao, Y., Yiu, M. L., Papadias, D., Hadjieleftheriou, M., and Mamoulis, N. (2005).
RPJ: Producing fast join results on streams through rate-based optimization. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 371–382. 738

References 825

Tatarinov, I., Ives, Z. G., Madhavan, J., Halevy, A. Y., Suciu, D., Dalvi, N. N.,
Dong, X., Kadiyska, Y., Miklau, G., and Mork, P. (2003). The piazza peer data
management project. ACM SIGMOD Rec., 32(3):47–52. 625, 654

Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M., and Stonebraker, M. (2003).
Load shedding in a data stream manager. In Proc. 29th Int. Conf. on Very Large
Data Bases, pages 309–320. 739

Terry, D., Goldberg, D., Nichols, D., and Oki, B. (1992). Continuous queries over
append-only databases. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 321–330. 6

Thakkar, S. S. and Sweiger, M. (1990). Performance of an oltp application on
symmetry multiprocessor system. In Proc. 17th Int. Symposium on Computer
Architecture, pages 228–238. 503

Thiran, P., Hainaut, J.-L., Houben, G.-J., and Benslimane, D. (2006). Wrapper-
based evolution of legacy information systems. ACM Trans. Softw. Eng. and
Methodology, 15(4):329–359. 329, 331

Thomas, R. H. (1979). A majority consensus approach to concurrency control for
multiple copy databases. ACM Trans. Database Syst., 4(2):180–209. 385, 450,
487

Thomasian, A. (1993). Two-phase locking and its thrashing behavior. ACM Trans.
Database Syst., 18(4):579–625. 401

Thomasian, A. (1996). Database Concurrency Control: Methods, Performance, and
Analysis. Kluwer Academic Publishers. 358, 398, 399, 401

Thomasian, A. (1998). Distributed optimistic concurrency control methods for
high performance transaction processing. IEEE Trans. Knowl. and Data Eng.,
10(1):173–189. 401

Thuraisingham, B. (2001). Secure distributed database systems. Information Security
Technical Report, 6(2). 187, 202

Tian, F. and DeWitt, D. (2003a). Tuple routing strategies for distributed Eddies. In
Proc. 29th Int. Conf. on Very Large Data Bases, pages 333–344. 739

Tian, F. and DeWitt, D. J. (2003b). Tuple routing strategies for distributed eddies. In
Proc. 29th Int. Conf. on Very Large Data Bases, pages 333–344. 322, 326, 331

Tomasic, A., Amouroux, R., Bonnet, P., Kapitskaia, O., Naacke, H., and Raschid, L.
(1997). The distributed information search component (DISCO) and the world-wide
web – prototype demonstration. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 546–548. 319, 329

Tomasic, A., Raschid, L., and Valduriez, P. (1996). Scaling heterogeneous databases
and the design of disco. In Proc. 16th Int. Conf. on Distributed Computing Systems,
pages 449–457. 319, 331

Tomasic, A., Raschid, L., and Valduriez, P. (1998). Scaling access to distributed
heterogeneous data sources with Disco. In IEEE Trans. Knowl. and Data Eng. in
press. 319, 331

Traiger, I. L., Gray, J., Galtieri, C. A., and Lindsay, B. G. (1982). Transactions and
recovery in distributed database systems. ACM Trans. Database Syst., 7(3):323–
342. 456

826 References

Triantafillou, P. and Pitoura, T. (2003). Towards a unifying framework for complex
query processing over structured peer-to-peer data networks. In Int. Workshop
on Databases, Information Systems and Peer-to-Peer Computing, pages 169–183.
641

Triantafillou, P. and Taylor, D. J. (1995). The location-based paradigm for replication:
Achieving efficiency and availability in distributed systems. IEEE Trans. Softw.
Eng., 21(1):1–18. 493

Tsichritzis, D. and Klug, A. (1978). The ansi/x3/sparc dbms framework report of the
study group on database management systems. Inf. Syst., 1:173–191. 22

Tsuchiya, M., Mariani, M. P., and Brom, J. D. (1986). Distributed database manage-
ment model and validation. IEEE Trans. Softw. Eng., SE-12(4):511–520. 401

Tucker, P., Maier, D., Sheard, T., and Faragas, L. (2003). Exploiting punctua-
tion semantics in continuous data streams. IEEE Trans. Knowl. and Data Eng.,
15(3):555–568. 725, 732

Ullman, J. (1997). Information integration using logical views. In Proc. 6th Int. Conf.
on Database Theory, volume 1186 of Lecture Notes in Computer Science, pages
19–40. Springer. 303, 331

Ullman, J. D. (1982). Principles of Database Systems. Computer Science Press, 2nd
edition. 224, 228, 231, 241, 272

Ullman, J. D. (1988). Principles of Database and Knowledge Base Systems, volume 1.
Computer Science Press. 300, 301, 337

Ulusoy, Ö. (2007). Research issues in peer-to-peer data management. In Proc. 22nd
Int. Symp. on Computer and Information Science, pages 1–8. 653

Urhan, T. and Franklin, M. J. (2000). XJoin: A reactively-scheduled pipelined join
operator. Q. Bull. IEEE TC on Data Eng., 23(2):27–33. 732

Urhan, T. and Franklin, M. J. (2001). Dynamic pipeline scheduling for improving
interactive query performance. In Proc. 27th Int. Conf. on Very Large Data Bases,
pages 501–510. 738

Urhan, T., Franklin, M. J., and Amsaleg, L. (1998a). Cost based query scrambling
for initial delays. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 130–141. 322, 331

Urhan, T., Franklin, M. J., and Amsaleg, L. (1998b). Cost-based query scrambling
for initial delays. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 130–141. 739

Valduriez, P. (1982). Semi-join algorithms for distributed database machines. In
Schneider, J.-J., editor, Distributed Data Bases. North-Holland. pages 23–37. 270,
273, 291, 292

Valduriez, P. (1987). Join indices. ACM Trans. Database Syst., 12(2):218–246. 587,
588, 589

Valduriez, P. (1993). Parallel database systems: Open problems and new issues.
Distrib. Parall. Databases, 1:137–16. 497

Valduriez, P. and Boral, H. (1986). Evaluation of recursive queries using join indices.
In Proc. First Int. Conf. on Expert Database Systems, pages 197–208. 219

References 827

Valduriez, P. and Gardarin, G. (1984). Join and semi-join algorithms for a multi
processor database machine. ACM Trans. Database Syst., 9(1):133–161. 291, 292,
513

Valduriez, P., Khoshafian, S., and Copeland, G. (1986). Implementation techniques
of complex objects. In Proc. 11th Int. Conf. on Very Large Data Bases, pages
101–109. 579

Valduriez, P. and Pacitti, E. (2004). Data management in large-scale p2p systems.
In Proc. 6th Int. Conf. High Performance Comp. for Computational Sci., pages
104–118. 612, 653

Varadarajan, R., Rivera-Vega, P., and Navathe, S. B. (1989). Data redistribution
scheduling in fully connected networks. In Proc. 27th Annual Allerton Conf. on
Communication, Control, and Computing. 124

Velegrakis, Y., Miller, R. J., and Popa, L. (2004). Preserving mapping consistency
under schema changes. VLDB J., 13(3):274–293. 156, 157

Verhofstadt, J. S. (1978). Recovery techniques for database systems. ACM Comput.
Surv., 10(2):168–195. 39, 419, 456

Vermeer, M. (1997). Semantic Interoperability for Legacy Databases. Ph.D. thesis,
Department of Computer Science, University of Twente, Enschede, Netherlands.
140

Vidal, M.-E., Raschid, L., and Gruser, J.-R. (1998). A meta-wrapper for scaling up
to multiple autonomous distributed information sources. In Proc. Int. Conf. on
Cooperative Information Systems, pages 148–157. 314

Viglas, S. and Naughton, J. (2002). Rate-based query optimization for streaming
information sources. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 37–48. 738, 739

Viglas, S., Naughton, J., and Burger, J. (2003). Maximizing the output rate of multi-
join queries over streaming information sources. In Proc. 29th Int. Conf. on Very
Large Data Bases, pages 285–296. 732, 739

Vossough, E. and Getta, J. R. (2002). Processing of continuous queries over unlimited
data streams. In Proc. 13th Int. Conf. Database and Expert Systems Appl., pages
799–809. 733

Voulgaris, S., Jelasity, M., and van Steen, M. (2003). A robust and scalable peer-
to-peer gossiping protocol. In Agents and Peer-to-Peer Computing, Second Int.
Workshop, (AP2PC), pages 47–58. 618

Vu, Q. H., Lupu, M., and Ooi, B. C. (2009). Peer-to-Peer Computing: Principles and
Applications. Springer. 653

Wah, B. W. and Lien, Y. N. (1985). Design of distributed databases on local computer
systems. IEEE Trans. Softw. Eng., SE-11(7):609–619. 214, 215

Walsh, N., editor. The DocBook schema (2006). Available from: http://www.
oasis-open.org/docbook/specs/wd-docbook-docbook-5.0b3.
html [Last retrieved: December 2009]. 690

Walton, C., Dale, A., and Jenevin, R. (1991). A taxonomy and performance model
of data skew effects in parallel joins. In Proc. 17th Int. Conf. on Very Large Data
Bases, pages 537–548. 527, 548

http://www.oasis-open.org/docbook/specs/wd-docbook-docbook-5.0b3.html
http://www.oasis-open.org/docbook/specs/wd-docbook-docbook-5.0b3.html
http://www.oasis-open.org/docbook/specs/wd-docbook-docbook-5.0b3.html

828 References

Wang, H., Fan, W., Yu, P., and Han, J. (2003a). Mining concept-drifting data streams
using ensemble classifiers. In Proc. 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 226–235. 743

Wang, H. and Meng, X. (2005). On the sequencing of tree structures for XML
indexing. In Proc. 21st Int. Conf. on Data Engineering, pages 372–383. 701

Wang, H., Park, S., Fan, W., and Yu, P. S. (2003b). ViST: A dynamic index method
for querying XML data by tree structures. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 110–121. 701

Wang, H., Zaniolo, C., and Luo, R. (2003c). Atlas: A small but complete SQL
extension for data mining and data streams. In Proc. 29th Int. Conf. on Very Large
Data Bases, pages 1113–1116. 732

Wang, S., Rundensteiner, E., Ganguly, S., and Bhatnagar, S. (2006). State-slice: New
paradigm of multi-query optimization of window-based stream queries. In Proc.
32nd Int. Conf. on Very Large Data Bases. 740

Wang, W., Li, J., Zhang, D., and Guo, L. (2004). Processing sliding window join
aggregate in continuous queries over data streams. In Proc. 8th East European
Conf. Advances in Databases and Information Systems, pages 348–363. 733

Wang, Y. and Rowe, L. (1991). Cache consistency and concurrency control in a
client/server dbms architecture. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 367–376. 573

Weihl, W. (1988). Commutativity-based concurrency control for abstract data types.
IEEE Trans. Comput., C-37(12):1488–1505. 594, 595, 604

Weihl, W. (1989). Local atomicity properties: Modular concurrency control for
abstract data types. ACM Trans. Prog. Lang. and Syst., 11(2):249–28. 594, 595

Weikum, G. (1986). Pros and cons of operating system transactions for data base
systems. In Proc. AFIPS Fall Joint Computer Conf., pages 1219–1225. 397

Weikum, G. (1991). Principles and realization strategies of multilevel transaction
management. ACM Trans. Database Syst., 16(1):132–180. 397, 398

Weikum, G. and Hasse, C. (1993). Multi-level transaction management for complex
objects: Implementation, performance, parallelism. VLDB J., 2(4):407–454. 397,
604, 605

Weikum, G. and Schek, H. J. (1984). Architectural issues of transaction management
in layered systems. In Proc. 10th Int. Conf. on Very Large Data Bases, pages
454–465. 397

Weikum, G. and Vossen, G. (2001). Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control. Morgan Kaufmann. 358

White, S. and DeWitt, D. (1992). Quickstore: A high performance mapped object
store. In Proc. 18th Int. Conf. on Very Large Data Bases, pages 419–431. 576

Wiederhold, G. (1982). Database Design. McGraw-Hill, 2nd edition. 83
Wiederhold, G. (1992). Mediators in the architecture of future information systems.

Comp., 25(3):38–49. 37, 331
Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., and Alonso, G. (2000). Database

replication techniques: A three parameter classification. In Proc. 19th Symp. on
Reliable Distributed Systems, pages 206–215. 493

References 829

Wilkinson, K. and Neimat, M. (1990). Maintaining consistency of client-cached data.
In Proc. 16th Int. Conf. on Very Large Data Bases, pages 122–133. 572

Williams, R., Daniels, D., Haas, L., Lapis, G., Lindsay, B., Ng, P., Obermarck, R.,
Selinger, P., Walker, A., Wilms, P., and Yost, R. (1982). R*: An overview of the
architecture. In Proc. 2nd Int. Conf. on Databases, pages 1–28. 175, 214, 215

Wilms, P. F. and Lindsay, B. G. (1981). A database authorization mechanism
supporting individual and group authorization. Research Report RJ 3137, IBM
Almaden Research Laboratory, San Jose, Calif. 186, 187, 201

Wilschut, A. and Apers, P. (1991). Dataflow query execution in a parallel main-
memory environment. In Proc. 1st Int. Conf. on Parallel and Distributed Informa-
tion Systems, pages 68–77. 322, 325, 641, 732

Wilshut, A. N. and Apers, P. (1992). Parallelism in a main-memory system: The
performance of prisma/db. In Proc. 22th Int. Conf. on Very Large Data Bases,
pages 23–27. 526

Wilshut, A. N., Flokstra, J., and Apers, P. (1995). Parallel evaluation of multi-
join queries. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
115–126. 529, 534

Wilson, B. and Navathe, S. B. (1986). An analytical framework for the redesign of
distributed databases. In Proc. 6th Advanced Database Symposium, pages 77–83.
124

Wolf, J. L., Dias, D., Yu, S., and Turek, J. (1993). Algorithms for parallelizing
relational database joins in the presence of data skew. Research Report RC19236
(83710), IBM Watson Research Center, Yorktown Heights, NY. 529, 548

Wolfson, O. (1987). The overhead of locking (and commit) protocols in distributed
databases. ACM Trans. Database Syst., 12(3):453–471. 455, 456, 493

Wong, E. (1977). Retrieving dispersed data from sdd-1. In Proc. 2nd Berkeley
Workshop on Distributed Data Management and Computer Networks, pages 217–
235. 281, 293

Wong, E. and Youssefi, K. (1976). Decomposition: A strategy for query processing.
ACM Trans. Database Syst., 1(3):223–241. 258, 275, 292

Wright, D. D. (1983). Managing distributed databases in partitioned networks.
Technical Report TR83-572, Department of Computer Science, Cornell University,
Ithaca, N.Y. 456, 493

Wu, E., Diao, Y., and Rizvi, S. (2006). High-performance complex event processing
over streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
407–418. 725

Wu, K.-L., Chen, S.-K., and Yu, P. (2004). Interval query indexing for efficient
stream processing. In Proc. 13th ACM Int. Conf. on Information and Knowledge
Management, pages 88–97. 741

Wu, K.-L., Yu, P. S., and Pu, C. (1997). Divergence control algorithms for epsilon
serializability. IEEE Trans. Knowl. and Data Eng., 9(2):262–274. 401, 462

Wu, S., Yu, G., Yu, Y., Ou, Z., Yang, X., and Gu, Y. (2005). A deadline-sensitive
approach for real-time processing of sliding windows. In Proc. 6th Int. Conf. on
Web-Age Information Management:, pages 566–577. 740

830 References

Fernández, M., Malhotra, A., Marsh, J., Nagy, M., and Walsh, N., editors. XQuery
1.0 and XPath 2.0 data model (XDM) (2007). Available from: http://www.
w3.org/TR/2007/REC-xpath-datamodel-20070123 [Last retrieved:
February 2010]. 712

XHTML. XHTML 1.0 The extensible HyperText markup language (2nd edition)
(2002). Available from: http://www.w3.org/TR/xhtml1/ [Last retrieved:
December 2009]. 690

Xie, J., Yang, J., and Chen, Y. (2005). On joining and caching stochastic streams. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 359–370. 740

Xu, J., Lin, X., and Zhou, X. (2004). Space efficient quantile summary for constrained
sliding windows on a data stream. In Proc. 5th Int. Conf. on Web-Age Information
Management:, pages 34–44. 737

Yan, L. L. (1997). Towards efficient and scalable mediation: The aurora approach.
In Proc. IBM CASCON Conference, pages 15–29. 134

Yan, L.-L., Miller, R. J., Haas, L. M., and Fagin, R. (2001). Data-driven understanding
and refinement of schema mappings. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 485–496. 152

Yan, L.-L. and Özsu, M. T. (1999). Conflict tolerant queries in aurora. In Proc. Int.
Conf. on Cooperative Information Systems, pages 279–290. 158

Yan, L. L., Özsu, M. T., and Liu, L. (1997). Accessing heterogeneous data through
homogenization and integration mediators. In Proc. Int. Conf. on Cooperative
Information Systems, pages 130–139. 134

Yang, B. and Garcia-Molina, H. (2002). Improving search in peer-to-peer networks.
In Proc. 22nd Int. Conf. on Distributed Computing Systems, pages 5–14. 617

Yang, X., Lee, M.-L., and Ling, T. W. (2003). Resolving structural conflicts in the
integration of XML schemas: A semantic approach. In Proc. 22nd Int. Conf. on
Conceptual Modeling, pages 520–533. 134

Yao, S. B., Navathe, S. B., and Weldon, J.-L. (1982a). An Integrated Approach to
Database Design, pages 1–30. Lecture Notes in Computer Science 132. Springer.
73

Yao, S. B., Waddle, V., and Housel, B. (1982b). View modeling and integration using
the functional data model. IEEE Trans. Softw. Eng., SE-8(6):544–554. 149

Yeung, C. and Hung, S. (1995). A new deadlock detection algorithm for distributed
real-time database systems. In Proc. 14th Symp. on Reliable Distributed Systems,
pages 146–153. 401

Yong, V., Naughton, J., and Yu, J. (1994). Storage reclamation and reorganization in
client-server persistent object stores. In Proc. 10th Int. Conf. on Data Engineering,
pages 120–133. 581

Yormark, B. (1977). The ansi/sparc/dbms architecture. In Jardine, D. A., editor,
ANSI/SPARC DBMS Model, pages 1–21. North-Holland. 22

Yoshida, M., Mizumachi, K., Wakino, A., Oyake, I., and Matsushita, Y. (1985). Time
and cost evaluation schemes of multiple copies of data in distributed database
systems. IEEE Trans. Softw. Eng., SE-11(9):954–958. 124

Yu, C. and Meng, W. (1998). Principles of Query Processing for Advanced Database
Applictions. Morgan Kaufmann. 331

http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123
http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123
http://www.w3.org/TR/xhtml1/

References 831

Yu, C. T. and Chang, C. C. (1984). Distributed query processing. ACM Comput.
Surv., 16(4):399–433. 220

Yu, P. S., Cornell, D., Dias, D. M., and Thomasian, A. (1989). Performance com-
parison of the io shipping and database call shipping schemes in multi-system
partitioned database systems. Perf. Eval., 10:15–33. 401

Zaniolo, C. (1983). The database language gem. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 207–218. 587

Zdonik, S. and Maier, D., editors (1990). Readings in Object-Oriented Database
Systems. Morgan Kaufmann. 607

Zezula, P., Amato, G., Debole, F., and Rabitti, F. (2003). Tree signatures for XML
querying and navigation. In Database and XML Technologies, 1st Int. XML
Database Symp., pages 149–163. 701

Zhang, C., Naughton, J. F., DeWitt, D. J., Luo, Q., and Lohman, G. M. (2001). On
supporting containment queries in relational database management systems. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 425–436. 699,
700

Zhang, J. and Honeyman, P. (2008). A replicated file system for grid computing.
Concurrency and Computation: Practice and Experience, 20(9):1113–1130. 750

Zhang, N. (2006). Query Processing and Optimization in Native XML Databases.
PhD thesis, University of Waterloo. 719

Zhang, N., Agarwal, N., Chandrasekar, S., Idicula, S., Medi, V., Petride, S., and
Sthanikam, B. (2009a). Binary XML storage and query processing in oracle 11g.
PVLDB, 2(2):1354–1365. 703

Zhang, N., Kacholia, V., and Özsu, M. T. (2004). A succinct physical storage scheme
for efficient evaluation of path queries in XML. In Proc. 20th Int. Conf. on Data
Engineering, pages 54–65. 699

Zhang, N. and Özsu, M. T. (2010). XML native storage and query processing. In
Li, C. and Ling, T.-W., editors, Advanced Applications and Structures in XML
Processing: Label Streams, Semantics Utilization and Data Query Technologies.
IGI Global. 699

Zhang, N., Özsu, M. T., Aboulnaga, A., and Ilyas, I. F. (2006a). XSEED: accurate
and fast cardinality estimation for XPath queries. In Proc. 22nd Int. Conf. on Data
Engineering, page 61. 702

Zhang, N., Özsu, M. T., Ilyas, I. F., and Aboulnaga, A. (2006b). Fix: Feature-based
indexing technique for XML documents. In Proc. 32nd Int. Conf. on Very Large
Data Bases, pages 259–270. 701

Zhang, R., Koudas, N., Ooi, B. C., and Srivastava, D. (2005). Multiple aggregations
over data streams. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 299–310. 740

Zhang, Y. (2010). XRPC: Efficient Distributed Query Processing on Heterogeneous
XQuery Engines. PhD thesis, Universiteit van Amsterdam. 719

Zhang, Y. and Boncz, P. A. (2007). Xrpc: Interoperable and efficient distributed
XQuery. In Proc. 33rd Int. Conf. on Very Large Data Bases, pages 99–110. 712

Zhang, Y., Tang, N., and Boncz, P. A. (2009b). Efficient distribution of full-fledged
XQuery. In Proc. 25th Int. Conf. on Data Engineering, pages 565–576. 710, 712

832 References

Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A. D., and Kubiatowicz, J. (2004).
Tapestry: A resilient global-scale overlay for service deployment. IEEE J. Selected
Areas in Comm., 22(1):41–53. 620, 646

Zhu, Q. (1995). Estimating Local Cost Parameters for Global Query Optimiza-
tion in a Multidatabase System. Ph.D. thesis, Department of Computer Science,
University of Waterloo, Waterloo, Canada. 313

Zhu, Q. and Larson, P.-Å. (1994). A query sampling method of estimating local
cost parameters in a multidatabase system. In Proc. 10th Int. Conf. on Data
Engineering, pages 144–153. 307, 308, 331

Zhu, Q. and Larson, P. A. (1996a). Developing regression cost models for multi-
database systems. In Proc. 4th Int. Conf. on Parallel and Distributed Information
Systems, pages 220–231. 307, 309, 331

Zhu, Q. and Larson, P. A. (1996b). Global query processing and optimization in
the cords multidatabase system. In Proc. Int. Conf. on Parallel and Distributed
Computing Systems, pages 640–647. 308

Zhu, Q. and Larson, P. A. (1998). Solving local cost estimation problem for global
query optimization in multidatabase systems. Distrib. Parall. Databases, 6(4):373–
420. 307, 308, 331

Zhu, Q. and Larson, P.-Å. (2000). Classifying local queries for global query optimiza-
tion in multidatabase systems. Int. J. Cooperative Information Syst., 9(3):315–355.
309

Zhu, Q., Motheramgari, S., and Sun, Y. (2003). Cost estimation for queries experienc-
ing multiple contention states in dynamic multidatabase environments. Knowledge
and Information Systems, 5(1):26–49. 307, 314, 331

Zhu, Q., Sun, Y., and Motheramgari, S. (2000). Developing cost models with
qualitative variables for dynamic multidatabase environments. In Proc. 16th Int.
Conf. on Data Engineering, pages 413–424. 307, 313, 331

Zhu, S. and Ravishankar, C. (2004). A scalable approach to approximating aggregate
queries over intermittent streams. In Proc. 16th Int. Conf. on Scientific and
Statistical Database Management, pages 85–94. 727

Zhu, Y., Rundensteiner, E., and Heineman, G. (2004). Dynamic plan migration
for continuous queries over data streams. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 431–442. 739

Zhu, Y. and Shasha, D. (2003). Efficient elastic burst detection in data streams. In
Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
pages 336–345. 727

Ziane, M., Zaı̈t, M., and Borla-Salamet, P. (1993). Parallel query processing with
zigzag trees. VLDB J., 2(3):277–301. 523, 548

Zloof, M. M. (1977). Query-by-example: A data base language. IBM Systems J.,
16(4):324–343. 57

Zobel, D. D. (1983). The deadlock problem: A classifying bibliography. Operating
Systems Rev., 17(2):6–15. 401

Index

θ -join, 46, 50
nary integration, 148
1SR, see one-copy serializability
2PC, see two-phase commit
2PL, see two-phase locking
3PC, see three-phase commit

abort, 339, 411
abort list, 422
abstract data type, 551, 554
access control, 180
access frequency, 85
access path, 35
access path selector, 35
access pattern, 19
access support relation, 564, 590
ACID properties, 344, 396, 747
action model, 350
activation queue, 532
Active XML, 703
activity, 354, 355
adaptive query processing, 320
adaptive reaction, 322
adaptive virtual partitioning, 544
ADT, see abstract data type
affix, 142
after image, 418
aggregate assertion, 199
aggregate constraint, 195
aggregation graph, see composition, graph
algebraic query, 205, 221, 222, 227
allocation, 75, 79–82, 89, 95, 96, 113–119, 121,

123–125, 128, 560
anomaly serializability, 349
ANSI/SPARC architecture, 22, 32
APPA, 626, 627, 636, 638, 649, 651, 652, 654
application server, 30

apprentice site, 278
archive, 426
ARIES, 418
ARTEMIS, 160
associated horizontal fragmentation, 560
atomic commitment, 428
atomic operation, 342
atomicity, 344, 405, 427
attribute, 42
attribute affinity matrix, 101, 102, 106
attribute affinity measure, 100, 101
attribute usage value, 100
AURORA data integration system, 134
Aurora DSMS, 730
authorization matrix, 182
autonomy, 25

communication, 26, 298
design, 26, 298
execution, 26, 298

Autoplex, 145
availability, 18, 405, 406, 408
AVP, see adaptive virtual partitioning

B-tree index, 510, 515
backend computer, see also database machine,

30
backlink, 665
bandwidth, 15, 65
base relation, 172
BATON, 622, 643, 645
BATON*, 622
before image, 418
behavioral conflict, 140
behavioral constraint, 188
Bell number, 98
Best Position algorithm, 634
Bigtable, 753, 755

833

834 Index

binary integration, 147
BitTorrent, 615
bond energy algorithm, 102
bottom-up design, 73, 131, 133
Boyce-Codd normal form, 555
BPA, see Best Position algorithm
BPEL, see Business Process Execution

Language
broadcast network, 63
bucket algorithm, 305
bushy query tree, 248
bushy querytree, 523
Business Process Execution Language, 750

cache consistency, 572
adaptive optimistic algorithm, 573
asynchronous avoidance-based, 573
avoidance-based algorithm, 572
caching 2PL, 573
callback-read locking, 573
detection-based algorithm, 572
no-wait locking, 573
optimistic 2PL, 573

cache manager, 35
calculus query, 205, 221, 222
CAN, 646
candidate key, 42
candidate set cover, 152
canonical data model, 134
carrier sense medium access with collision

detection, 62, 70
Cartesian product, 46, 49
cascading abort, 347, 371
catalog, 122
cell, 64
cellular network, 64
centralized query optimization, 257
chained partitioning, 512
chained query, 272
checkpointing, 425

action-consistent, 426
automatic, 456
delta, 456
fuzzy, 426
state, 456
transaction-consistent, 426

Chord, 621
circuit switching, 65
class, 556, 565, 577, 579

graph, 579
partitioning, 564

cleaning operator, 158
client/server DBMS, 4, 11, 21, 27–30, 35, 567

object server, 567, 568

page server, 568
cloud computing, 723, 744, 745
cloud data management, 723, 744
cluster, 502, 505, 506, 508, 530
clustered affinity matrix, 102, 103, 106, 108,

110, 126
clustering, 102, 508
collection, 557
COMA, 142, 144
commit, 339
commit list, 422
committable state, 444
communication cost, 210, 245
communication links, 65
communication time, 250
commutativity, 594, 600, 603

semantic, 595
syntactic, 594

complexity of relational algebra operators, 210
composite matching, 146
composition, 578, 579

graph, 587, 601
link, 579

computer network, 1
conceptual design, 73
conceptual view, 22
concurrency control, 20, 116, 358

optimistic, see optimistic concurrency control
pessimistic, see pessimistic concurrency

control
concurrency level, 361
conflict, 362

read-write, 362
write-read, 362
write-write, 362

conflict equivalence, 365
conjunctive normal form, 222
conjunctive query, 301
connection graph, 224
consistency, 345, 361

degree 0, 346
degree 1, 345
degree 2, 345
degree 3, 345, 366
strong, 460
weak, 460

constraint-based matching, 143
containment edge, 145
contingency task, 356
continual query, see continuous query
continuous query, 6, 724
Continuous Query Language, 728, 731
coordinator timeout, 437
cost function, 250

Index 835

cost model, 246, 249, 523
COUGAR, 726, 730
CPU cost, 210
CQL, see Continuous Query Language
crash recovery, 345
crawler, 663–665

focused, 666
incremental, 666
parallel, 666

crawling, 686
cross-fragment join, 717
CSMA/CD, see carrier sense medium access

with collision detection
CUPID, 144
cursor stability, 347
cyclic query, 271

DAS, see directly attached storage
data blade, 606
data cartridge, 606
data cleaning, 157

instance-level, 157
schema-level, 157

data dictionary, 122
data directory, 122
data distribution, 17, 19
data encryption, 180
data extender, 606
data independence, 1, 8, 23, 578

logical, 9, 23
physical, 9, 23

data integration, 133
data integration system, 20, 35
data localization, 206, 215–217, 221, 231
data manager, 501
data processor, 33
data protection, 180
data security, 180
data shipping, 566, 710
data skew, 527
data stream, 723, 725
data stream management, 723
data stream management systems, 723
data transfer rate, 65
data translation, 155
data warehouse, 131, 132, 149, 157
database allocation problem, 116
database buffer manager, 35, 413
database cluster, 534
database computer, see also database machine,

30
database consistency, 18, 187, 335
database integration, 20, 35, 131, 136

logical, 131, 132

physical, 131
database log, 416
database machine, 30
database profiles, 283
database recovery, 349
database server, 30
database statistics, 213, 252
database system, 1
DataGuide, 675, 701
DATAID-D, 125
Datalog, 300, 301, 628
deadlock, 18, 361, 387

avoidance, 18, 390
centralized detection, 392
detection, 18
detection and resolution, 391
distributed detection, 393
global, 388
hierarchical detection, 392
prevention, 18, 389, 391

deadlock management, 20, 387
decision tree, 146
declustering, 508
decomposition, 258
decomposition storage model, 579
deep extent, 560, 599
deep web, 657
deletion anomaly, 44
demand paging, 415
dependency conflict, 140
derived fragmentation, 96
derived horizontal fragmentation, 81, 85, 92–95,

97, 98, 127, 237, 560
detachment, 258, 275
deterministic search strategy, 248
DHT, see dynamic hash table
differential file, 419
differential relation, 177
DIKE, 145, 160
DIPE, 160
direct storage model, 579
directly attached storage, 507
directory management, 14
dirty read, 348
disjointness, 79
disjunctive normal form, 222
distributed computing, 2
distributed computing system, 2
distributed concurrency control, 14, 18, 361
distributed cost model, 249
distributed database, 3
distributed database design, 17, 19
distributed database management system, 3
distributed database reliability, 18

836 Index

distributed database system, 1
distributed deadlock management, 18
distributed directory, 171
distributed directory management, 17, 19
distributed execution monitor, 33
Distributed INGRES, 292
distributed INGRES, 392, 474
distributed join, 33
distributed object DBMS, 552
distributed processing, 2
distributed query, 176, 205
distributed query execution, 216, 219
distributed query execution plan, 219
distributed query processing, 17, 205
distributed query processor, 212
distributed recovery protocols, 14
distributed relation, 221
distributed reliability, 14
distributed reliability protocol, 427
distributed static query optimization, 277
distributed transaction log, 453
distributed transaction manager, 33
distribution design, 74
division operator, 46, 54
DocBook, 690
Document Type Definition, 693
domain, 42
domain constraint, 190
domain relational calculus, 55, 57
domain variable, 57
DSM, see direct storage model
DSMS, see data stream management system
DTD, see Document Type Definition
durability, 349, 396, 405, 427
dynamic buffer allocation, 415
dynamic distributed query optimization, 274
dynamic hash table, 618, 637

replica consistency, 646
dynamic programming, 248, 261
dynamic query optimization, 213, 257
dynamic schema evolution, 605

E-R model, 136, 161
EAI, see Enterprise Application Integration
Eddy, 321, 323, 325, 326, 331, 739
edit distance, 142
Edutella, 624, 628
EII, see Enterprise Information Integration
elasticity, 746
element-level matching, 139, 143
elimination of redundancy, 222, 226
Enterprise Application Integration, 131
Enterprise Information Integration, 131
entity analysis, 73

entity-relationship data model, 136
epidemic protocol, 617
equi-join, 50
erroneous state, 406
error, 406
error latency, 409
Ethernet, 62
ETL, see extract-transform-load
exhaustive search, 212, 213
export schema, 36
external, 262
external view, 22
extract-transform-load, 131

fail-fast module, 455
fail-stop module, 455
failover, 500
failure, 18, 406

communication, 412
hardware, 411
media, 412, 426
performance, 413
site, 411, 436
software, 411
system, 411

failure atomicity, 13
failures of commission, 455
failures of omission, 455
fault, 406

hard, 407
intermittent, 407
permanent, 407
soft, 407
transient, 407

federated database, 20, 36
fetch-as-needed, 279
file allocation problem, 116
fix/flush, 424, 453
fix/no-fix decision, 420
fix/no-flush, 423
flush/no-flush decision, 420
FLWOR expression, 697, 702
force/no-force decision, 420
forcing a log, 418
foreign key constraint, 190
fragment, 17, 75–81, 85–95, 97–100, 108–120,

123–125, 128
fragment query, 11
fragment tree pattern, 716
fragment-and-replicate, 276
fragmentation, 8, 17, 19, 75–82, 85–87, 89,

93–98, 101, 102, 110, 113, 117, 123–126,
128, 508, 560

horizontal, see horizontal fragmentation

Index 837

vertical, see vertical fragmentation
vertical class, 578, 579

fragmentation predicate, 85
fragmentation scheme, 98
fragmentation tree patterns, 706
Freenet, 615
FTP, see fragmentation tree patterns
full partitioning, 509
full reducer, 271
fully decentralized top-k, 636
fully duplicated database, see fully replicated

database
fully replicated database, 17, 80
function shipping, 566, 569
functional analysis, 73
functional dependency, 44
functional dependency constraint, 190
fuzzy read, 348

Galax, 702
garbage collection, 568, 579, 580

automatic, 579
copy-based, 580
distributed, 578–580
mark and sweep, 580
reference counting, 580
tracing-based, 580

Garlic, 317
GAV, see global-as-view
GCS, see global conceptual schema
general constraint, 189
GFS, see Google File System
Gigascope, 729
GLAV, see global-local-as-view
global affinity measure, 103
global commit rule, 429
global conceptual schema, 32, 73, 74, 131–135,

137, 147–151, 153–155, 159, 161, 217
global directory/dictionary, 122
global history, 366
global index, 510
global query, 11
global query optimization, 216, 218
global query optimizer and decomposer, 33
global relation, 221
global schema, 627
global undo, 422
global wait-for graph, 388, 391, 392
global-as-view, 133, 154, 160, 300–302
global-local-as-view, 133, 155, 301
Globus, 750
Gnutella, 612, 615, 645
Google File System, 753
gossip protocol, 617

grid computing, 748
Grosh’s law, 15
Grouping, 99
GSQL, 728, 729, 731

Hadoop, 747
Hadoop Distributed File System, 753
hashed index, 510
hazard function, 408
HDFS, see Hadoop Distributed File System
heterogeneity, 27
heterogeneous cost model, 307
hidden web, 657, 685
hill-climbing algorithm, 281
histogram, 256
history, 362, 364

complete, 362, 363
global, see global history
incomplete, 364
serial, see serial history
serializable, see serializable history

HITS algorithm, 668
holistic twig join, 701
homonyms, 141
horizontal fragmentation, 11, 76, 78, 79, 81, 85,

98, 110, 112, 113, 117, 123, 125, 127,
508, 560

HTML, 689
hybrid algorithm, 368
hybrid cloud, 747
Hybrid distributed query optimization, 286
hybrid fragmentation, 77, 112, 113, 128, 238,

560
hybrid matching, 146
hybrid P2P network, 614
hybrid query optimization, 213, 265
hypernym, 141

I/O cost, 210
IaaS, see infrastructure-as-a-service
ICQ, 612
idempotency rules, 226
IEEE 802 Standard, 70
iMAP, 147
impedance mismath, 552
in-place updating, 416
inclusion dependency, 188
independent parallelism, 514
independent recovery protocol, 428, 436
individual constraint, 194, 195, 197
information integration, 133
infrastructure-as-a-service, 746
INGRES, 172, 292
inheritance, 558, 559, 579

838 Index

inner join, 50
insertion anomaly, 44
installation read, 568
instance matching, 139
instance variable, 554, 555
instance-based matching, 138, 139, 141
integration, 2
integrity constraint, 335
inter-operator load balancing, 529
inter-operator parallelism, 514, 521
inter-query parallelism, 15
inter-transaction caching, 571
internal cloud, 747
internal relation, 262
internal view, 22
Internet, 59
Internet layer protocol, 67
interoperability, 131
interschema rules, 142
intersection operator, 46, 50
intra-operator load balancing, 527
intra-operator parallelism, 513, 515, 521
intra-query load balancing, 530
intra-query parallelism, 15
intranet, 60
intranode graph, 661
intraquery concurrency, 76
intraschema rules, 142
invalidation, 594, 595
inverse rule algorithm, 305
isolation, 346, 361, 396
iterative improvement, 212

join graph, 82, 94, 97, 126, 224
partitioned, 95
simple, 94

join graph,simple, 94, 95
join index, 589
join ordering, 218, 267

distributed queries, 267
join predicate, 50
join selectivity factor, 252
join trees, 246
JXTA, 624

Kademlia, 621
Kazaa, 612, 615, 645
key, 42

candidate, see candidate key
primary, see primary key

key conflict, 140

LAN, see local area network
landmark window, 726

latency, 15
latent failure, 409
LAV, 133, see local-as-view
LCS, see local conceptual schama
learning-based matching, 145
least recently used algorithm, 415
left-deep tree, 522
legacy system, 131
Lewenstein metric, 142
linear join tree, 248
linguistic matching, 141
link analysis, 668
LIS, see local internal schema
load balancing, 525
local area network, 61
local conceptual schama, 132
local conceptual schema, 32, 131–133, 135,

137, 147, 149, 150, 154, 155, 157, 159
local directory/dictionary, 122
local export schema, 134
local external schema, 134
local history, 366
local internal schema, 32
local processing cost, 245
local query, 219
local query optimizer, 35
local recovery manager, 35, 356
local reliability protocol, 413
local wait-for graph, 388, 392
local-as-view, 133, 160, 300, 301, 304, 627
localization, 231, 715
localization program, 217, 231, 715
localized query, 232
lock, 368

logical, 368
manager, 369
mode, 369, 372
point, 370
unit, 368

lock-step, 456
locking, 18, 361, 400
locking algorithm, 368, 369
locking granularity, 368
log buffer, 418
logical link control layer, 70
Lorel, 673
lossless decomposition, 79
lost update, 347, 362
LSD, 145, 147

MADMAN, 390
MAN, see metropolitan area network
mapping creation, 149, 150
mapping maintenance, 149, 155

Index 839

MapReduce, 753, 758
master site, 274, 278
materialization program, 218
materialized view, 172, 176, 199
materialized view maintenance, 132
Maveric, 156
maximally-contained query, 304
MDBS, see multidatabase system
mean time between failure, 409
mean time to detect, 409
mean time to fail, 409
mean time to repair, 409
mediated schema, 131, 135, 149
mediator, 299
mediator/wrapper architecture, 297, 299
medium access control layer, 70
merge-join, 262
metadata, 122
metasearch, 670, 687, 689
metropolitan area network, 61
middleware, 12
MinCon algorithm, 305, 306
minterm fragment, 86, 90
minterm predicate, 83–92, 97, 98, 560
minterm selectivity, 84
mixed fragmentation, 112
MOB, see modified object buffer
MonetDB/XQuery, 703
monitoring parameter, 321
monotonic query, 727
MPEG-7, 690
MTBF, see mean time between failure
MTTD, see mean time to detect
MTTF, see mean time to fail
MTTR, see mean time to repair
Mulder, 681
multi-point network, 63
multicast, 64
multidatabase, 133, 135, 308, 316
multidatabase query optimization, 307
multidatabase query processing, 297
multidatabase system, 20, 21, 131, 161, 297,

298
multigranularity locking, 597, 599, 601, 604
multiple client/multiple server system, 29
multiple client/single server system, 29
multiple inheritance, 599
multivalued dependency, 44
mutual consistency, 18
mutually consistent state, 336

n-gram, 142
n-way partitioning, 110
naming, 14

Napster, 615
NAS, see network-attached storage
natural join, 46, 51
negative superedge graph, 662
negative tuple, 735
nested fragmentation, 112
nested loop join, 262, 732
network layer protocol , 67
network partitioning, 18, 412, 448

multiple, 448
simple, 448

network protocol, 65
network-attached storage, 507
neural network, 145
no-fix/flush, 423
no-fix/no-flush, 421, 453
no-force/no-steal, 424
no-steal/force, 424
no-undo/no-redo, 424
NODO protocol, 489, 491, 495, 537, 540, 546,

550
non-committable state, 444
non-null attribute constraint, 189
non-replicated database, 17, 80
non-uniform memory architecture, 502,

505–508, 530, 547
cache coherent, 506

NonStop SQL, 377
normal form, 44

Boyce-Codd, 44
fifth, 44
first, 44
fourth, 44
second, 44
third, 44

normalization, 43, 222, 555
normalized storage model, 579
NSM, see normalized storage model
NUMA, see non-uniform memory architecture
NWL, see no-wait locking cache consistency

object, 553
aggregation, 557
aggregation graph, 558
aggregation hierarchy, 558
atomic value, 554
complex, 551, 558, 578, 593
composite, 551, 557, 578, 590, 605
composition, 557
composition graph, 558
composition hierarchy, 558
identifier, see object identifier
interface, 555
manager, 567, 568

840 Index

method, 555, 560, 567, 568, 577
model, 553
physical clustering, 578
query, 582
set value, 554
state, 560, 577
storage, 578
tuple value, 554
value, 554

object algebra, 585
object assembly, 578, 590
object buffer, 571

modified, 571
object clustering, 568, 578, 579
Object Data Management Group, 553
object DBMS, 551, 553
Object Definition Language, 553
Object Exchange Model, 671
object identifier, 553, 568, 574, 578, 579

logical, 568, 574, 578
physical, 568, 574, 578
pure logical, 574
virtual, 568

object migration, 574, 577
Object Query Language, 553
OceanStore, 649
ODL, see Object Definition Language
ODMG, see Object Data Management Group
ODMG model, 553
OEM, see Object Exchange Model
OGSA, see Open Grid Services Architecture
OGSA Database Access and Integration, 750
OGSA-DAI, see OGSA Database Access and

Integration
OID, see object identifier
OLAP, see On-Line Analytical Processing, see

On-Line Analytical Processing
OLTP, see On-Line Transaction Processing, see

On-Line Transaction Processing
On-Line Analytical Processing, 132, 497, 747
On-Line Transaction Processing, 132, 497, 747
one-copy equivalence, 336
one-copy serializability, 464
online recovery, 546
ontology, 141
Open Grid Services Architecture, 750
operation, 341
operation conflict, 342
operational logging, 418
operator tree, 227, 246, 522
optimal ordering, 245
optimal strategy, 245
optimistic concurrency control, 18, 361, 367,

384

optimizer, 245
OQL, see Object Query Language
ordered shared locking, 372, 395
ordered sharing, 600
out-of-place updating, 416
outer join, 46, 50, 51
overlay network, 614, 621

pure, see pure P2P network

P-Grid, 622, 649, 651, 654
P2P, see peer-to-peer
P2P DBMS, see peer-to-peer DBMS
PaaS, see platform-as-a-service
packet, 65
packet switching, 66
page buffer, 570
PageRank, 665
PAJ, see parallel associative join
parallel architecture, 498
parallel associative join, 515, 516, 520, 641
parallel database system, 4
parallel hash join, 515, 518, 520, 641
parallel nested loop join, 515, 520
parallel query optimization, 521
partial redo, 422
partial undo, 422
partially duplicated database, see partially

replicated database
partially replicated database, 17, 80
participant timeout, 438
partition, 508
partitioned database, 17, 80
partitioning, 108, 508
Pastry, 621
path expression, 576, 583, 587, 589
path index, 588
path partitioning, 560, 563
peer-to-peer, 611
peer-to-peer computing, 20
peer-to-peer data management, 611
peer-to-peer DBMS, 21, 28, 30
peer-to-peer system, 27, 30, 35
peer-to-peer systems, 139
PeerDB, 627
Pegasus, 308, 309
pessimistic concurrency control, 18, 361, 367
phantom, 341, 348
PHJ, see parallel hash join
PHORIZONTAL, 89
PHT, 622, see prefix hash tree
physical data description, 8
physical layer, 70
PIER, 641
PIERjoin, 641

Index 841

pipeline parallelism, 514
pipelined symmetric hash join, 732
PIW, see publicly indexable web
PlanetP, 636
planning function, 317
platform-as-a-service, 746
PNL, see parallel nested loop join
PNUTS, 757
POID, see physical object identifier
point-to-point network, 63
pointer swizzling, 574, 576
positive superedge graph, 661
posttest, 191
precondition constraint, 189
predefined constraint, 189
predicate calculus, 47
prefix hash tree, 643
pretest, 191, 193
preventive replication protocol, 537
primary copy two-phase locking, 474
primary horizontal fragmentation, 81, 85, 87,

89, 92, 97, 126, 232
primary key, 42
prime attribute, 42
private cloud, 747
process pair, 455

persistent, 456
projection operator, 46, 48
projection-join dependency, 44
protocol, 67
proxy, 577
proxy node, 706
pruning, 715
public cloud, 747
publicly indexable web, 657, 685
publish/subscribe system, 725
punctuation, 732
pure P2P network, 614
push-based system, 5, 6

QBE, see Query-by-eExample, see
Query-by-Example

QTP, see query tree pattern
QUEL, 56
query analysis, 223
query decomposition, 216, 221, 222
query evaluation strategy, 19
query execution, 301, 327
query execution plan, 245, 246
query graph, 224
query modification, 173
query normalization, 222
query optimization, 206, 245

rule-based, 583

query processing, 205
query processor, 19, 205
query rewrite, 222

using views, 304
query rewriting, 227, 299
query scrambling, 739
query shipping, see also function shipping, 710
query translation, 301, 327
query tree pattern, 697, 715–717
Query-by-Example, 23, 57
question answering system, 681
quorum, 450
quorum-based voting protocol, 488

R*, 293
randomized search algorithm, 586
randomized search strategy, 249
randomized strategy, 212
range partitioning, 756
range query on P2P systems, 642
ranking, 664, 665, 668
read lock, 369
read quorum, 487
read-one/write-all available protocol, 486–489

distributed, 487
read-one/write-all protocol, 465, 486–488
reconstruction, 79
reconstruction program, 218
recoverability, 594, 596
recovery, 13, 18, 336
recovery protocol, 428, 440
redo/no-undo, 424
reducer, 268, 269
reduction technique, 232
reference architecture, 21
referential edge, 145
referential integrity, 97
referential sharing, 557
relation, 41

cardinality, 42
degree, 42
fragment, 221
instance, 42
schema, see schema

relational algebra, 45
relational calculus, 45, 55
relational database, 41
relative consistency, 395
relevant simple predicate, 87
reliability, 12, 18, 20, 405, 406, 408
remote procedure call, 11
repetition anomaly, 43
replicated database, 17, 336
replication, 8, 10, 14, 19, 20, 565

842 Index

resiliency, 336
response time, 210, 250, 251

optimization, 209
right-deep tree, 522
ring network, 63
ripple join, 322, 325
rollback, 339
root proxy node, 706
routing, 64
ROWA, see read-one/write-all protocol
ROWA-A, see read-one/write-all available

protocol
run-time support processor, 35

S-Nodes, 661
SaaS, see software-as-a-service
saga, 351, 397, 401
SAN, see storage area network
schedule, see history
scheduler, 356
schema, 8, 42

heterogeneity, 140
adaptation, 156
definition, 8
generation, 133
heterogeneity, 138
integration, 135, 147
integration, nary, 147
integration, binary, 147
mapping, 135, 137, 149
matching, 135, 137
translation, 133, 169

schema-based matching, 138, 139, 141
schema-level matching, 143
SDD-1, 293, 395
search engine, 658, 663
search space, 246, 522
search strategy, 246, 248, 525
security constraint, 171
security control, 171
selection operator, 46, 47
selection predicate, 47
selection selectivity, 253
selectivity factor, 253
semantic data control, 171
semantic data controller, 33
semantic heterogeneity, 140
semantic integrity constraint, 171, 187
semantic integrity control, 171, 187
semantic relative atomicity, 395
semantic translation, 155
semantic web, 626
semiautonomous systems, 26
semijoin operator, 46, 53

semijoin program, 271
semijoin selectivity, 255
semijoin-based distributed query optimization

algorithm, 281
SEMINT, 145
semistructured data, 670, 671
serial history, 365, 366
serializability, 349, 362, 364, 394, 594

conflict-based, 366
graph testing, 399
multilevel, 398
one-copy, see one-copy serializability

serializable history, 366
server virtualization, 746
service level agreement, 745, 751, 753
service oriented architecture, 744, 750
session manager, 501
set difference operator, 46, 48
set-oriented constraint, 194, 196, 197
SETI@home, 612
shadow page, 419
shadowing, 419
shallow extent, 560
shared-disk, 503
shared-memory, 502
shared-nothing, 504
ship-whole, 279
similarity flooding, 160
similarity value, 137, 138
Simple Object Access Protocol, 750
simple predicate, 83, 84, 86–91, 98, 222

completeness, 86
minimality, 86

simple virtual partitioning, 542
simplification, 193
simulated annealing, 212
sketch, 733
Skip Graph, 622
SkipNet, 622
SLA, see service level agreement
sliding window, 726

operator, 733
snapshot database, 723
snapshot isolation, 349
SOA, see service oriented architecture
SOAP, 690, see Simple Object Access Protocol
software-as-a-service, 746
sort merge join, 516
soundex code, 143
source schema, 135
specialization, 558
Splitting, 99
SQL, 56
SQL/XML, 702

Index 843

SQuAL, 731
SQuAl, 730, 731
stable database, 414
stable log, 418
stable storage, 413
star network, 63
Start, 681
state logging, 418
static optimization, 218
static query optimization, 213, 261
steal/force, 423
steal/no-steal decision, 420
storage area network, 507
STREAM, 728
stream mining, 741
StreaQuel, 728, 729, 731
strict history, 347
structural conflict, 140
structural constraint, 188
structural similarity, 144
structure index, 667
structure-based matching, 144
structure-level matching, 139
structured P2P network, 614, 618
StruQL, 676
subclassing, 558

multiple, 558
single, 558

substitutability, 558
substitution, 258
subtype, 558
subtyping, 558, 578
super-peer P2P networks, 622
super-peer system, 614
superkey, 42
supernode graph, 661
surrogate, 577
SVP, see simple virtual partitioning
switching, 64
symmetric hash join, 322, 325
synonyms, 141
synopsis, 742
System R, 172, 292, 419
System R*, 377, 393

TA, see Threshold algorithm, 629
table queue, 532
Tapestry, 620, 646
target schema, 135
TCP/IP, 66, 67, 69
TelegraphCQ, 729
termination protocol, 428, 437

non-blocking, 428, 436
text index, 667

third normal form, 555
Three Phase Uniform Threshold algorithm, 631
three-phase commit, 443

recovery, 448
termination, 445

three-phase commit protocol
centralized, 445
distributed, 445
linear, 445

Threshold algorithm, 629
TID, see tuple, identifier
tight integration, 26
time-decay model, 726
timestamp, 377–379, 382, 383, 385, 386, 394

read, 378
write, 378

timestamp ordering, 361, 368, 377, 378, 382,
400

basic, 368, 378
conservative, 368, 381–383
multiversion, 368, 383
nested, 597

timestamping, 18
top-down design, 73
top-k query, 628
total cost optimization, 209
total isolation, 26
total time, 250
TPUT, see Three Phase Uniform Threshold

algorithm
transaction, 13, 23, 335, 568, 593

abort, see abort
atomicity, see atomicity
base set, 341
batch, 350
closed, 351
closed nested, 352, 396
compensating, 352
consistency, see consistency
conversational, 350
distributed, 13
durability, see durability
failure, see transaction failure
flat, 351, 394, 593, 596
formal definition, 342
global undo, see global undo
isolation, see isolation
long-life, 350
model, 593
multilevel, 397
nested, 352, 396, 600
online, 350
open nested, 351, 352
partial undo, see partial undo

844 Index

properties, 344
read set, 340
read-before-write, 350
recovery, see transaction recovery
redo, see transaction redo
restricted, 350
restricted two-step, 350
short-life, 350
split, 352
two-step, 350
types, 349
undo, see transaction undo
workflow, see workflow
write set, 340

transaction consistency, 335
transaction failure, 411
transaction management, 10, 20
transaction manager, 356, 501
transaction recovery, 344
transaction redo, 417, 419
transaction undo, 417, 419, 422
transformation rule, 228, 585
transition constraint, 190
transitive closure, 46
transparency, 3, 7, 12, 30, 32

concurrency, 13
distribution, 9
fragmentation, 11
language, 12
location, 9
naming, 10
network, 9, 10
replication, 10

transport layer protocol, 67
tree query, 271
TreeSketch, 701
Tribeca, 726, 729–731
Tritus, 681
tuple, 41

identifier, 99
variable, 56

tuple relational calculus, 55, 56
tuple substitution, 259
two-phase commit, 14, 428, 456

centralized, 431
distributed, 432
linear, 431
nested, 431
presumed abort, 434
presumed commit, 436

two-phase locking, 370
centralized, 373
distributed, 374
nested, 597

primary copy, see primary copy two-phase
locking

primary site, 373
strict, 371, 379

type, 551, 556
abstract, 551
composite, 557
conflict, 140
lattice, 605
system, 551

UDDI, 690
UMA, see uniform memory access
undo/no-redo, 423
unfolding, 303
unicast network, 63
uniform memory access, 506
unilateral abort, 429
union operator, 46, 48
unique key constraint, 190
unstructured P2P network, 614, 615
update anomaly, 44
usage pattern, 19
user interface handler, 33
user processor, 33

variable partitioning, 510
VBI-tree, 622
vertical fragmentation, 11, 76, 81, 98–100, 102,

111, 112, 123, 125, 127, 235, 560
Viceroy, 621
view, 23, 171, 172, 297, 301, 303, 557

definition, 173, 300
design, 73, 74
integration, 73
management, 171, 172
materialization, 172

virtual private cloud, 747
virtual relation, 23, 172
volatile database, 414
voting-based protocol, 450

W3QL, 676
WAIT-DIE algorithm, 390
wait-for graph, 388
WAL, see write-ahead logging
WAN, see wide area network
web, see World Wide Web

crawling, 664
data management, 657
graph, 658
querying, 670
search, 663

web service, 744

Index 845

call, 749
Web Service Definition Language, 750
WebLog, 676
WebOQL, 676, 678
WebQA, 681
WebSQL, 676, 678
wide area network, 61
window, 725, 727

count-based, 727, 729, 735
elastic, 727
fixed, 726
jumping, 727
landmark, 729
n-of-N, 727
partitioned, 727
predicate, 727
query, 725
sliding, 728
time-based, 727, 729, 735
tumbling, 727
tuple-based, 727

wireless broadband network, 64
wireless LAN, see wireless local area network
wireless local area network, 64
wireless network, 64
workflow, 351, 354, 596

human-oriented, 354
system-oriented, 354
transactional, 354

working-set algorithm, 415
World Wide Web, 20, 21, 657
WOUND-WAIT algorithm, 391
wrapper, 149, 297, 299
wrapper schema, 301
write lock, 369
write quorum, 487
write-ahead logging, 419
WS call, see web service, call
WSDL, 690, see Web Service Definition

Language
WWW, see World Wide Web

XB-tree, 701
XHTML, 690
XML, 134, 658, 689

data fragmentation, 703
document tree, 693
query processing, 699

XMLSchema, 693
XMLTable function, 702
XPath, 690, 694
XQuery, 690, 694, 697, 703
XR-tree, 701
XRPC, 712
XSEED, 702
XSketch, 701

zigzag tree, 523

	Principles of Distributed Database Systems
	Preface
	Contents
	Chapter 1:Introduction
	Chapter 2:Background
	Chapter 3:Distributed Database Design
	Chapter 4:Database Integration
	Chapter 5:Data and Access Control
	Chapter 6:Overview of Query Processing
	Chapter 7:Query Decomposition and Data Localization
	Chapter 8:Optimization of Distributed Queries
	Chapter 9:Multidatabase Query Processing
	Chapter 10:Introduction to Transaction Management
	Chapter 11:Distributed Concurrency Control
	Chapter 12:Distributed DBMS Reliability
	Chapter 13:Data Replication
	Chapter 14:Parallel Database Systems
	Chapter 15:Distributed Object Database Management
	Chapter 16:Peer-to-Peer Data Management
	Chapter 17:Web Data Management
	Chapter 18:Current Issues: Streaming Data and CloudComputing
	References
	Index

