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Abstract Data sets originating from many different real world domains can be represented
in the form of interaction networks in a very natural, concise and meaningful
fashion. This is particularly true in the social context, especially given recent
advances in Internet technologies and Web 2.0 applications leading to a diverse
range of evolving social networks. Analysis of such networks can result in the
discovery of important patterns and potentially shed light on important proper-
ties governing the growth of such networks.

It has been shown that most of these networks exhibit strong modular nature
or community structure. An important research agenda thus is to identify com-
munities of interest and study their behavior over time. Given the importance of
this problem there has been signi cant activity within this eld particularly over
the last few years. In this article we survey the landscape and attempt to char-
acterize the principle methods for community discovery (and related variants)
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and identify current and emerging trends as well as crosscutting research issues
within this dynamic eld.

Keywords: Graph Mining, Community Discovery, Social Networks

1. Introduction
Many real world problems can be effectively modeled as complex relation-

ship networks where nodes represent entities of interest and edges mimic the
interactions or relationships among them. Fueled by technological advances
and inspired by empirical analysis, the number of such problems and the di-
versity of domains from which they arise – biological [47, 86, 98, 114, 118],
clinical [9, 30], ecological [14, 33, 68, 69, 97], engineering [1, 75, 122], lin-
guistic [46], scienti c [29, 42, 71, 99], social [72, 91, 113, 121, 124], techno-
logical [4, 34, 37, 87, 92], to name a few – is growing steadily.

It has recently been observed that while such networks arise in a host of
diverse arenas they often share important common concepts or themes. The
study of such complex relationship networks, recently referred to as network
science, can provide insight into their structures, properties and emergent be-
haviors [11, 12, 41, 77]. Of particular interest here are rigorous methods for
uncovering and understanding important network or sub-network (community)
structures and motifs at multiple topological and temporal scales as noted in
a recent government report [17]. Extracting such community structure and
leveraging them for predicting the emergent, critical, and causal nature of such
networks in a dynamic setting is of growing importance.

Extracting such structure is indeed a grand challenge. First, the topological
properties of such networks coupled with an uncertain setting [5, 102], often
limit the applicability of existing off-the-shelf techniques [9]. Second, the re-
quirements imposed by directed and dynamic 1 networks require research into
appropriate solutions. Finally, underpinning all of these challenges is the issue
of scalability. Many of the problems we consider require us to deal with prob-
lems of immense size and scale where graphs may involve millions of nodes
and billions of edges[48].

In this chapter we limit our discussion primarily to the problem of com-
munity detection within social networks (albeit a lot of what we will discuss
may apply naturally to other domains as well). We begin by discussing why

1By dynamic, here we refer to any network that changes. This includes not only time-varying networks, but
also networks that change due to external factors (e.g. networks that change due to trust issues and source
credibility issues, such as intelligence networks).



Community Discovery in Social Networks 81

community discovery in such networks is useful in Section 2. In other words
what are the actionable patterns[82] or tools one can derive from such an anal-
ysis on social networks. Sample applications abound ranging from the study
of intelligence reports to the social behavior of Zebras and Dolphins, from
the collaborative nature of physical and computer scientists, to the often cited
Karate Club social network, from well established communities in Facebook
to the role of communities in Twitter networks for emergency management.
We discuss these issues in Section 2.

In Section 3 we discuss the core methods for community discovery proposed
in the literature to date. We discuss hierarchical algorithms (agglomerative or
divisive) that are popular within the Physics community [78]. The advantages
of such algorithms lie in their intuitive simplicity but as noted elsewhere [24]
they often do not scale well to large networks. We take a close look at the re-
lated literature in graph partitioning, starting with the early work by Kernighan
and Lin, as well as more recent multi-level graph partitioning algorithms such
as Metis [51], Graclus and MLR-MCL[93]. These are highly scalable and have
been used in studies of some of the biggest graph datasets [61, 93]. Spectral
methods that target weighted cuts [96] form an important class of algorithms
that can be used for community discovery, and are shown to be qualitatively
very effective in the social network context. Recent advances in this domain
have targeted large scale networks (e.g. local spectral clustering) and these
will be discussed as well. To this mix of graph clustering and community dis-
covery algorithms one can also include Markov Clustering (MCL), a graph
clustering algorithm based on (stochastic) ow simulation [115]. MCL has
drawn limited attention from the broader network science, web science, and
data mining communities primarily because it does not scale very well even to
moderate sized graphs [24], and other limitations. However, recent advances
have suggested effective ways to redress these limitations while retaining its
advantages[93, 95]. In addition to the above recent research has suggested the
use of hybrid algorithms (e.g. Metis+MQI) and the notion of different kinds
of community structures (e.g. whiskers and viewpoint neighborhoods), and we
will discuss these in Section 3 as well.

In Section 4 we will primarily discuss relatively new domains within social
network analysis where community discovery can play an important role as
we move forward. Particular attention here will be paid to work on commu-
nity discovery in heterogeneous social networks (e.g. Flickr where links may
correspond to common tags, similar images, or similar user pro les), commu-
nity discovery in dynamic social networks (community evolution, dispersion,
merging[9]), community discovery in directed social networks (e.g. Twitter),
and community discovery that combines content and network information in a
natural manner (e.g. topic driven community discovery, social media analytics
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etc.). In Section 5, we conclude with a discussion of cross cutting research
issues that relate to the current state-of-art in this area.

2. Communities in Context
In this section we will discuss the role(s) of community discovery in social

network analysis. Speci cally we will discuss end applications and contextual
bene ts from both a scienti c as well as actionable perspective.

Social community analysis has been the focus of many studies over the past
eighty years[121]. One of the earliest studies in this context include work by
Rice on the analysis of communities of individuals based on their political bi-
ases and voting patterns[89]. A much more recent study along similar lines but
focusing on the network structure of political blogs was discussed by Adamic
and Glance[2]. Homans was the rst to show that social groups could be re-
vealed by suitably rearranging the rows and the columns of matrices describing
social ties, until they take an approximate block-diagonal form[44]. In fact this
idea still serves as the basic tool for visualizing social community structure and
more generally clustering structure[110]. Weiss and Jacobson examined work
groups within a government agency[123]. A central theme of their work was
the identi cation of bridging nodes and using such nodes to separate out com-
munity structure. In fact this work can be thought of as an early version of the
notion of betweenness centrality popularized by Newman[76]. The karate club
study by anthropologist Zachary, is a well-known graph regularly commonly
used as a benchmark to test community detection algorithms[126]. It consists
of 34 vertices, the members of a karate club in the United States, who were ob-
served during a period of three years and it includes a well known community

ssion instance and thus the subject of many studies. Another study by Bech
and Atalay analyzed the social network of loans among nancial institutions to
understand how interactions among multiple communities affect the health of
the system as a whole[15]. A large majority of these studies focused on simply
understanding the underpinning social structure and its evolution (for instance
in the karate club data the underlying cause of the ssion in the community
structure resulting from a difference of opinion between two members of the
club).

In addition to the study of human social networks zoologists and biologists
have also begun to study the social behavior of other animals and sea crea-
tures. Lusseau in a land mark study examined the behavior of 62 bottlenose
dolphins off the coast of New Zealand[65]. This study looked at the social
behavior of 62 dolphins and edges were set between animals that were seen
together more often than expected by random chance. Lusseau notes the co-
hesive and cliquish structure of the resulting graph suggesting that the social
behavior of such marine mammals is often quite marked. More recently an in-
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terdisciplinary team comprising zoologists and computer scientists have stud-
ied the social behavior of zebras[109]. Insights ranging from the identi cation
of in uential herd leaders within communities, and the evolutionary behavior
of the resulting social network of zebras have led to a signi cantly increased
understanding of how these animals communicate and socialize to survive.

Since the advent of the Internet and more recently the World Wide Web
a number of applications of community discovery have arisen. In the World
Wide Web context a common application of community discovery is in the
context of proxy caches[103]. A grouping of web clients who have similar in-
terests and are geographically near each other may enable them to be served by
a dedicated proxy server. Another example from the same domain is to identify
communities within the hyperlinked structure of the web. Such communities
may help in the detection of link farms[21, 40]. Similarly in the E-commerce
domain the grouping together of customers with similar buying pro les en-
ables more personalized recommendation engines[88]. In a completely differ-
ent arena, community discovery in mobile ad-hoc networks can enable ef cient
message routing and posting[104]. In this context it is important to distinguish
core members of the community from members on the border (analogous to
edge routers).

Recently there has been a tremendous thrust in the use of community discov-
ery techniques for analyzing online social media data[73]. The user-generated
content explosion on Web 2.0 applications such as Twitter, Facebook, review
blogs, micro-blogs and various multimedia sharing sites such as Flickr, presents
many opportunities for both facilitators and users. For facilitators, this user-
generated content is a rich source of implicit consumer feedback. For users the
ability to sense and respond interactively and to be able to leverage the wis-
dom of the crowds (or communities) can be extremely fruitful and useful. It
is becoming increasingly clear that a uni ed approach to analysis combining
content information with network analysis is necessary to make headway into
this arena.

The above examples show that community discovery in social or socio-
technical networks is at the heart of various research agendas. We are now
in a position to discuss some of the implications of this technique. At the most
fundamental level, community discovery (either in a static or evolutionary con-
text) can facilitate and aid in our understanding of a social system. Much like
the role of clustering and community discovery can be thought of as cluster-
ing on graphs, community discovery allows us to summarize the interactions
within a network concisely, enabling a richer understanding of the underly-
ing social phenomenon. Beyond this basic understanding of the network and
how it evolves[9], community discovery can also lend itself to actionable pat-
tern discovery. Identi cation of in uential nodes, or sub-communities within a
broader community can be used for viral marketing[32, 53, 59], churn predic-
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tion within telecommunication networks[90] and ratings predictions[56]. We
will conclude this section with an example of how community discovery can
be useful for organizational entities.

Von Hayek, one of the leading economists of the twentieth century, when
discussing a competitive market mechanism, articulated the important fact that
the minds of millions of people is not available to any central body or any
group of decision-makers who have to determine prices, employment, pro-
duction, and investment policies[116]. He further argued that an increase in
decentralization was an essential component to rational decision-making by
organizations in a complex society. The ideas he expounded have broad utility
beyond the context he was considering. Emergency management is an analo-
gous example of a large and complex socio-technical system, where many peo-
ple distributed in space and time may potentially harness the power of mod-
ern social information technologies to coordinate activities of many in order
to accomplish a complex task. In this context recent work by Palen and Liu
[80] makes a strong case for the value of understanding the dynamic of social
networking and speci cally community structure, in relation to managing and
mitigating the impact of disasters.

3. Core Methods
Informally, a community in a network is a group of nodes with greater ties

internally than to the rest of the network. This intuitive de nition has been for-
malized in a number of competing ways, usually by way of a quality function,
which quanti es the goodness of a given division of the network into com-
munities. Some of these quality metrics, such as Normalized Cuts [96] and
Modularity [78] are more popular than others, but none has gained universal
acceptance since no single metric is applicable in all situations. Several such
metrics are discussed in Section 3.1.

Algorithms for community discovery vary on a number of important dimen-
sions, including their approach to the problem as well as their performance
characteristics. An important dimension on which algorithms vary in their ap-
proaches is whether or not they explicitly optimize a speci c quality metric.
Spectral methods, the Kernighan-Lin algorithm and ow-based postprocess-
ing are all examples of algorithms which explicitly try to optimize a speci c
quality metric, while other algorithms, such as Markov Clustering (MCL) and
clustering via shingling do not do so. Another dimension on which algorithms
vary is in how (or even whether) they let the user control the granularity of
the division of the network into communities. Some algorithms (such as spec-
tral methods) are mainly meant for bi-partitioning the network, but this can
be used to recursively subdivide the network into as many communities as de-
sired. Other algorithms such as agglomerative clustering or MCL allow the
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user to indirectly control the granularity of the output communities through
certain parameters. Still other algorithms, such as certain algorithms optimiz-
ing the Modularity function, do not allow (or require) the user to control the
output number of communities at all. Another important characteristic dif-
ferentiating community discovery algorithms is the importance they attach to a
balanced division of the network - while metrics such as the KL objective func-
tion explicitly encourage balanced division, other metrics capture balance only
implicitly or not at all. Coming to performance characteristics, algorithms also
vary in their scalability to big networks, with multi-level clustering algorithms
such as Metis, MLR-MCL and Graclus and local clustering algorithms scaling
better than many other approaches.

3.1 Quality Functions
A variety of quality functions or measures have been proposed in the liter-

ature to capture the goodness of a division of a graph into clusters. In what
follows, A denotes the adjacency matrix of the network or graph, with A(i, j)
representing the edge weight or af nity between nodes i and j, and V denotes
the vertex or node set of the graph or network.

The normalized cut of a group of vertices S ⊂ V is de ned as[96, 67]

Ncut(S) =

∑
i∈S,j∈S̄ A(i, j)∑
i∈S degree(i)

+

∑
i∈S,j∈S̄ A(i, j)∑
j∈S̄ degree(j)

(4.1)

In words, the normalized cut of a group of nodes S is the sum of weights
of the edges that connect S to the rest of the graph, normalized by the total
edge weight of S and that of the rest of the graph S̄. Intuitively, groups with
low normalized cut make for good communities, as they are well connected
amongst themselves but are sparsely connected to the rest of the graph.

The conductance of a group of vertices S ⊂ V is closely related and is
de ned as [50]

Conductance(S) =

∑
i∈S,j∈S̄ A(i, j)

min(
∑

i∈S degree(i),
∑

i∈S̄ degree(i))
(4.2)

The normalized cut (or conductance) of a division of the graph into k clus-
ters V1, . . . , Vk is the sum of the normalized cuts (or conductances) of each of
the clusters Vi{i = 1, . . . , k} [31].

The Kernighan-Lin (KL) objective looks to minimize the edge cut (or the
sum of the inter-cluster edge weights) under the constraint that all clusters
be of the same size (making the simplifying assumption that the size of the
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network is a multiple of the number of clusters):

KLObj(V1, . . . , Vk) =
∑
i�=j

A(Vi, Vj)subject to|V1| = |V2| = . . . = |Vk|

(4.3)
Here A(Vi, Vj) denotes the sum of edge af nities between vertices in Vi and
Vj , i.e. A(Vi, Vj) =

∑
u∈Vi,v∈Vj

A(u, v)

Modularity [78] has recently become quite popular as a way to measure the
goodness of a clustering of a graph. One of the advantages of modularity is that
it is independent of the number of clusters that the graph is divided into. The
intuition behind the de nition of modularity is that the farther the subgraph
corresponding to each community is from a random subgraph (i.e. the null
model), the better or more signi cant the discovered community structure is.
The modularity Q for a division of the graph into k clusters {V1, . . . , Vk} is
given by:

Q =
k∑

c=1

[
A(Vi, Vi)

m
−
(
degree(Vi)

2m

)2
]

(4.4)

In the above, the Vis are the clusters, m is the number of edges in the graph and
degree(Vi) is the total degree of the cluster Vi. For each cluster, we take the
difference between the fraction of edges internal to that cluster and the fraction
of edges that would be expected to be inside a random cluster with the same
total degree.

Optimizing any of these objective functions is NP-hard [39, 96, 18].

3.2 The Kernighan-Lin(KL) algorithm
The KL algorithm [54] is one of the classic graph partitioning algorithms

which optimizes the KL objective function i.e. minimize the edge cut while
keeping the cluster sizes balanced (see Equation 4.3. The algorithm is iterative
in nature and starts with an initial bipartition of the graph. At each iteration,
the algorithm searches for a subset of vertices from each part of the graph such
that swapping them will lead to a reduction in the edge cut. The identi cation
of such subsets is via a greedy procedure. The gain gv of a vertex v is the
reduction in edge-cut if vertex v is moved from its current partition to the other
partition. The KL algorithm repeatedly selects from the larger partition the
vertex with the largest gain and moves it to the other partition; a vertex is
not considered for moving again if it has already been moved in the current
iteration. After a vertex has been moved, the gains for its neighboring vertices
will be updated in order to re ect the new assignment of vertices to partitions.
While each iteration in the original KL algorithm [54] had a complexity of
O(|E| log |E|), Fiduccia and Mattheyses improved it to O(|E|) per iteration
using appropriate data structures. This algorithm can be extended to multi-
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way partitions by improving each pair of partitions in the multi-way partition
in the above described way.

3.3 Agglomerative/Divisive Algorithms
Agglomerative algorithms begin with each node in the social network in its

own community, and at each step merge communities that are deemed to be
suf ciently similar, continuing until either the desired number of communi-
ties is obtained or the remaining communities are found to be too dissimilar to
merge any further. Divisive algorithms operate in reverse; they begin with the
entire network as one community, and at each step, choose a certain commu-
nity and split it into two parts. Both kinds of hierarchical clustering algorithms
often output a dendrogram which is a binary tree , where the leaves are nodes of
the network, and each internal node is a community. In the case of divisive al-
gorithms, a parent-child relationship indicates that the community represented
by the parent node was divided to obtain the communities represented by the
child nodes. In the case of agglomerative algorithms, a parent-child relation-
ship in the dendrogram indicates that the communities represented by the child
nodes were agglomerated (or merged) to obtain the community represented by
the parent node.

Girvan and Newman’s divisive algorithm: Newman and Girvan [78] pro-
posed a divisive algorithm for community discovery, using ideas of edge be-
tweenness. Edge betweenness measures are de ned in a way that edges with
high betweenness scores are more likely to be the edges that connect different
communities. That is, inter-community edges are designed to have higher edge
betweenness scores than intra-community edges do. Hence, by identifying and
discarding such edges with high betweenness scores, one can disconnect the
social network into its constituent communities.
Shortest path betweenness is one example of an edge betweenness measure:

the intuitive idea here is that since there will only be a few inter-community
edges, shortest paths between nodes that belong to different communities will
be constrained to pass through those few inter-community edges. Also enu-
merated are two other examples of edge betweenness. In the de nition of
random-walk betweenness, the choice of path connecting any two nodes is the
result of random walk instead of geodesic as in the case of shortest path. The
current- ow betweenness de nition is motivated by the circuit theory. First the
network is virtually transformed into a resistance network where each edge is
replaced by a unit resistance and two nodes are chosen as unit current source
and sink. Then the betweenness of each edge is computed as the sum of ab-
solute values of the currents owing on it with all possible selections of node
pairs.
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The general form of their algorithms is as follows:

1 Calculate betweenness score for all edges in the network using any mea-
sure.

2 Find the edge with the highest score and remove it from the network.

3 Recalculate betweenness for all remaining edges.

4 Repeat from step 2.

The above procedure is continued until a suf ciently small number of com-
munities are obtained, and a hierarchical nesting of the communities is also
obtained as a natural by-product. On the contrary to the speculation that dif-
ferent measures of edge betweenness may lead to diverged community struc-
tures, the experiment showed that the exact betweenness measure used is not
so crucial. As long as the recalculation step is executed, the results by dif-
ferent measures only differ from each other slightly. The motivation for the
recalculation step is as follows: if the edge betweenness scores are only cal-
culated once and edges are then removed by the decreasing order of scores,
these scores won’t get updated and no longer re ect the new network structure
after edge removals. Therefore, recalculation is in fact the most critical step in
the algorithm to achieve satisfactory results. The main disadvantage of this ap-
proach is the high computational cost: simply computing the betweenness for
all edges takes O(|V ||E|) time, and the entire algorithm requires O(|V |3) time.

Newman’s greedy optimization of modularity: Newman [74] proposed a
greedy agglomerative clustering algorithm for optimizing modularity. The ba-
sic idea of the algorithm is that at each stage, groups of vertices are succes-
sively merged to form larger communities such that the modularity of the re-
sulting division of the network increases after each merge. At the start, each
node in the network is in its own community, and at each step one chooses
the two communities whose merger leads to the biggest increase in the mod-
ularity. We only need to consider those communities which share at least one
edge, since merging communities which do not share any edges cannot result
in an increase in modularity - hence this step takes O(|E|) time. An additional
data structure which maintains the fraction of shared edges between each pair
of communities in the current partition is also maintained, and updating this
data structure takes worst-case O(|V |) time. There are a total of |V | − 1 it-
erations (i.e. mergers), hence the algorithm requires O(|V |2) time. Clauset
et al. [29] later improved the complexity of this algorithm by the use of ef -
cient data structures such as max-heaps, with the nal complexity coming to
O(|E|d log |V |), where d is the depth of the dendrogram describing the suc-
cessive partitions found during the execution of the algorithm.
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3.4 Spectral Algorithms
Spectral algorithms are among the classic methods for clustering and com-

munity discovery. Spectral methods generally refer to algorithms that assign
nodes to communities based on the eigenvectors of matrices, such as the ad-
jacency matrix of the network itself or other related matrices. The top k
eigenvectors de ne an embedding of the nodes of the network as points in
a k-dimensional space, and one can subsequently use classical data cluster-
ing techniques such as K-means clustering to derive the nal assignment of
nodes to clusters [117]. The main idea behind spectral clustering is that the
low-dimensional representation, induced by the top eigenvectors, exposes the
cluster structure in the original graph with greater clarity. From an alterna-
tive perspective, spectral clustering can be shown to solve real relaxations of
different weighted graph cut problems, including the normalized cut de ned
above [117, 96].

The main matrix that is used in spectral clustering applications is the Lapla-
cian matrix L. If A is the adjacency matrix of the network, and D is the diag-
onal matrix with the degrees of the nodes along the diagonal, then the unnor-
malized Laplacian L is given as L = D−A. The Laplacian (or the normalized
Laplacian) L is given by L = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2.
It can be veri ed that both L and L are symmetric and positive de nite, and
therefore have real and positive eigenvalues [27, 117]. The Laplacian has 0 as
an eigenvalue with multiplicity equal to the number of connected components
in the graph. The eigenvector corresponding to the smallest non-zero eigen-
value of L is known as the Fiedler vector [35], and usually forms the basis for
bi-partitioning the graph.

The main disadvantage of spectral algorithms lies in their computational
complexity. Most modern implementations for eigenvector computation use
iterative algorithms such as the Lanczos algorithm, where at each stage a se-
ries of matrix vector multiplications are performed to obtain successive ap-
proximations to the eigenvector currently being computed. The complexity
for computing the top eigenvector is O(kM(m)), where k is the number of
matrix-vector multiplications and M(m) is the complexity of each such multi-
plication, dependent primarily on the number of non-zeros m in the matrix. k
depends on the speci c properties of the matrix at hand - such as the spectral
gap i.e. the difference between the current eigenvalue and the next eigenvalue;
the smaller this gap, the more number of matrix-vector multiplications are re-
quired for convergence. In practice, spectral clustering is hard to scale up to
networks with more than tens of thousands of vertices without employing par-
allel algorithms.

Dhillon et al. [31] showed that the weighted cut measures such as normal-
ized cut that are often optimized using spectral clustering can also be opti-
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mized using an equivalent weighted kernel k-means algorithm. This is the
core idea behind their algorithm Graclus, which can cluster graphs at a com-
parable quality to spectral clustering without paying the same computational
cost, since k-means is much faster compared to eigenvector computation.

3.5 Multi-level Graph Partitioning
Multi-level methods provide a powerful framework for fast and high-quality

graph partitioning, and in fact have been used for solving a variety of other
problems as well [112]. The main idea here is to shrink or coarsen the input
graph successively so as to obtain a small graph, partition this small graph and
then successively project this partition back up to the original graph, re ning
the partition at each step along the way. Multi-level graph partitioning methods
include multi-level spectral clustering [13], Metis (which optimizes the KL
objective function) [51], Graclus (which optimizes normalized cuts and other
weighted cuts) [31] and MLR-MCL [93] (further discussed in Section 3.6).

The main components of a multi-level graph partitioning strategy are:

1 Coarsening. The goal here is to produce a smaller graph that is similar
to the original graph. This step may be applied repeatedly to obtain
a graph that is small enough to be partitioned quickly and with high-
quality. A popular coarsening strategy is to rst construct a matching on
the graph, where a matching is de ned as a set of edges no two of which
are incident on the same vertex. For each edge in the matching, the
vertices at the ends of the edge are collapsed together and are represented
by a single node in the coarsened graph. Coarsening can be performed
very quickly using simple randomized strategies [51].

2 Initial partitioning. In this step, a partitioning of the coarsest graph is
performed. Since the graph at this stage is small enough, one may use
strategies like spectral partitioning which are slow but are known to give
high quality partitions.

3 Uncoarsening. In this phase, the partition on the current graph is used
to initialize a partition on the ner (bigger) graph. The ner connectivity
structure of the graph revealed by the uncoarsening is used to re ne the
partition, usually by performing local search. This step is continued until
we arrive at the original input graph.

At a ner level, Metis uses a variant of the KL algorithm in its uncoarsening
phase to re ne the partition obtained from previous steps. Graclus, on the other
hand, uses weighted kernel k-means for re ning the partition.
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3.6 Markov Clustering
Stijn van Dongen’s Markov Clustering algorithm (MCL) clusters graphs via

manipulation of the stochastic matrix or transition probability matrix corre-
sponding to the graph [115]. In what follows, the transition probability be-
tween two nodes is also referred to as stochastic ow. The MCL process con-
sists of two operations on stochastic matrices, Expand and In ate. Expand(M )
is simply M ∗M , and In ate(M, r) raises each entry in the matrix M to the in-

ation parameter r ( > 1, and typically set to 2) followed by re-normalizing the
columns to sum to 1. These two operators are applied in alternation iteratively
until convergence, starting with the initial transition probability matrix.

The expand step spreads the stochastic ow out of a vertex to potentially
new vertices and also enhances the stochastic ow to those vertices which are
reachable by multiple paths. This has the effect of enhancing within-cluster
stochastic ows as there are more paths between two nodes that are in the same
cluster than between those in different clusters. The in ation step introduces a
non-linearity into the process, with the purpose of strengthening intra-cluster
stochastic ow and weakening inter-cluster stochastic ow. The process as a
whole sets up a positive feedback loop that forces all the nodes within a tightly-
linked group of nodes to stochastically ow to one “attractor” node within the
group, allowing us to identify the group.

MCL has received a lot of attention in the bioinformatics eld, with multi-
ple researchers nding it to be very effective at clustering biological interaction
networks ([20, 62]). However, MCL has two major shortcomings [93]. First,
MCL is slow, since the Expand step, which involves matrix-matrix multiplica-
tion, is very time consuming in the rst few iterations when many entries in
the stochastic ow matrix have not been pruned out. Second, MCL tends to
produce imbalanced clustering, usually by producing a large number of very
small clusters (singleton clusters or clusters with only 2 or 3 nodes), or by pro-
ducing one very big cluster, or by doing both at the same time.

Recent Variants of MCL: Recently, Regularized MCL and Multi-level Regu-
larized MCL (MLR-MCL) [93, 95] have been proposed that x the above two
weaknesses of poor scalability and imbalanced clustering. Regularized MCL
ensures that the stochastic ows of neighboring nodes are taken into account
when updating the stochastic ows of each node by replacing the Expand step
of MCL with a Regularize step, which is M := M ∗MG, where MG is the
original stochastic (transition) matrix corresponding to the graph. Other regu-
larization matrices instead of MG are also explored in [95] with the intention of
reducing the imbalance in the sizes of output clusters. Multi-level Regularized
MCL (MLR-MCL) embeds Regularized MCL in a multi-level framework, with
the algorithm working its way up the chain of coarsened graphs of the input
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graph, and projecting intermediate results from the smaller graph onto the next
bigger graph. MLR-MCL achieves state-of-the-art scalability since the initial
iterations of the algorithm, which are the most expensive in the total computa-
tion, are performed on the smallest graphs, and the matrices are sparse enough
at the biggest graphs to enable fast multiplication.

3.7 Other Approaches
Local Graph Clustering: A local algorithm is one that nds a solution con-
taining or near a given vertex (or vertices) without looking at the whole graph.
Local algorithms are interesting in the context of large graphs since their time
complexity depends on the size of the solution rather than the size of the graph
to a large extent. (Although if the clusters need to cover the whole graph, then it
is not possible to be independent of the size of the graph.) The main intuition is
that random walks simulated from inside a group of internally well-connected
nodes will not mix well enough/soon enough, as the cluster boundary acts a
bottleneck that prevents the probability from seeping out of the cluster easily.
Low-probability vertices are removed at each step to keep the complexity of
the algorithm tractable.

Spielman and Teng [101, 100] described the rst such local clustering algo-
rithm using random walks. Let pt,v be the probability distribution of the t-step
random walk starting at v. (pt,v is truncated i.e. low probability entries are set
to zero, in order to avoid exploring too much of the graph.) For each t, let π be
the permutation on the vertices of the graph that indicates the sorted order of
the degree-normalized probabilities i.e.

pt(π(i))

d(π(i))
≥ pt(π(i + 1))

d(π(i + 1))
(4.5)

The sweep sets St
1, S

t
2, . . . , S

t
n are de ned as St

j = {π(1), . . . , π(j)}. Let
ψV be the nal stationary distribution of the random walk (all random walks
within a component converge to the same stationary distribution.) The main
theoretical result exploited says that the difference between pt(St

j) and ψV (S
t
j)

is either small, or there exists a cut with low conductance among the sweep
sets. Therefore by checking the conductance of the sweep sets St

j at each time
step t, we discover clusters of low conductance.

Andersen and Lang [7] extended this work to handle seed sets (instead of
just a seed vertex). On real datasets such as web graph, IMDB graph etc. they
select a random subset of nodes belonging to a known community and show
that the local clustering approach is able to recover the original community.

Andersen et al. [6] improved upon Spielman and Teng’s algorithm by sim-
ulating random walks with restarts (i.e. Personalized PageRank), instead of
just plain random walks. The notion of sweep sets for probability distribu-
tions, obtained by sorting the degree-normalized probabilities, is the same.
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The theoretical results here involve pagerank vectors though; if there is a set of
vertices whose probability in the pagerank vector is signi cantly greater than
their probability in the general stationary distribution, then some sweep set of
the pagerank vector has low conductance. They show that they can compute
an approximate page rank vector in time depending only on the error of the ap-
proximation and the truncation threshold (and not on the graph size). Once the
approximate pagerank vector is computed, conductances of successive sweep
sets are calculated to discover a set of vertices with low conductance.

Flow-Based Post-Processing for Improving Community Detection: We will
discuss how algorithms for computing the maximum ow in ow networks can
be used to post-process or improve existing partitions of the graph. Flake et
al. [36] proposed to discover web communities by using a focused crawler
to rst obtain a coarse or approximate community and then set up a max-

ow/min-cut problem whose solution can be used to obtain the actual set of
pages that belong to the same community. Lang and Rao [57] discuss a strat-
egy for improving the conductance of any arbitrary bipartition or cut of the
graph. Given a cut of the graph (S, S̄), their algorithm nds the best improve-
ment among all cuts (S′, S̄′) such that S′ is a strict subset of S. Their main
approach is to construct a new instance of a max- ow problem, such that the
solution to this problem (which can be found in polynomial time) can be used
to nd the set S′ with the lowest conductance among all subsets of S. They
refer to their method as MQI (Max-Flow Quotient-Cut Improvement). They
use Metis+MQI to recursively bi-partition the input graph; at each step they
bi-partition using Metis rst and then improve the partition using MQI and re-
peat the process on the individual partitions. Anderson and Lang [7] nd that
MQI can improve the partitions found by local clustering as well.

Community Discovery via Shingling: Broder et al. [19] introduced the idea
of clustering web documents through the use of shingles and ngerprints (also
denoted as sketches). In short, a length-s shingle is s of all parts of the ob-
ject. For example, a length-s shingle of a graph node contains s outgoing links
of the node; a length-s shingle of a document is a contiguous subsequence of
length s of the document. Meanwhile, a sketch is a constant-size subset of all
shingles with a speci c length, with the remarkable property that the similar-
ity between sets of two objects’ sketches approximates the similarity between
the objects themselves (here the de nition of similarity being used is Jaccard
similarity, i.e. sim(A,B) = |A ∩B|/|A ∪B|. This property makes sketch an
object’s ngerprint.

Gibson et al. [40] attempt to extract dense communities from large-scale
graphs via a recursive application of shingling. In this algorithm, the rst-level
shingling is performed on each graph node using its outgoing links. That is,
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each node v is associated with a sketch of c1 shingles, each of which stands
for s1 nodes selected from all nodes that v points to. Then an inverted index
is built, containing each rst-level shingle and a list of all nodes that the shin-
gle is associated with. The second-level shingling function is then performed
on each rst-level shingle, producing second-level shingles (also called meta-
shingles) and sketches. Two rst-level shingles are considered as relevant if
they share at least one meta-shingle in common, and the interpretation is that
these two shingles are associated with some common nodes. If a new graph
is constructed in such a way that nodes stand for rst-level shingles and edges
indicate the above-de ned relation, then clusters of rst-level shingles corre-
spond to connect components in this new graph. Finally, communities can be
extracted by mapping rst-level shingles clusters back to original nodes plus
including associated common meta-shingles. This algorithm is inherently ap-
plicable to both bipartite and directed graph, and can also be extended to the
case of undirected graph. It is also very ef cient in terms of both memory us-
age and running time, thus can handle graph of billions of edges.

Alternative De nitions of Communities: At the start of this section, we in-
formally de ned a community as a subset of nodes well connected internally
and weakly connected to the rest of the graph. We now look at additional
notions of communities which are either different from this de nition or are
re nements of this idea for a particular context.

Asur and Parthasarathy [10] recently introduced the idea of viewpoint neigh-
borhoods, which are groups of nodes that are salient or in uential from the
viewpoint of a single node (or subset of nodes) in the network. Thus a view-
point neighborhood may be seen as a cluster or community of nodes that is
local to the node (or subset of nodes) that is being analyzed. The same pa-
per also proposes algorithms for extraction of viewpoint neighborhoods using
activation spread models that are general enough to incorporate different no-
tions of salience or in uence. Viewpoint analysis of graphs provides us a novel
analytic and conceptual tool for understanding large networks at a ne scale.

Leskovec et al. [60] nd that in a wide variety of real-world networks, some
of the best communities, according to the measure of conductance (see Equa-
tion 4.2) , are groups of nodes that are connected to the rest of the graph by
only one edge. They refer to such communities as whiskers (with groups of
nodes that are connected by 2 edges called 2-whiskers etc.) They postulate a
core-and-whiskers model for the structure of networks, where most networks
consist of a core part of the network surrounded by whiskers which are often
connected to the rest of the network by only one or two edges. The whiskers
of a network may either represent patterns that are useful within the context
of the domain or may be considered noise which is to be removed while pre-
processing the network.
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4. Emerging Fields and Problems
In this section we attempt to identify recent research trends within the do-

main of community discovery in social networks. Given the relatively prelimi-
nary nature of the work presented in this section our objective here is to identify
and discuss exemplar efforts rather than provide a comprehensive survey of all
results in each sub-area.

4.1 Community Discovery in Dynamic Networks
Most of the community discovery algorithms discussed in Section 3 were

designed with the implicit assumption that the underlying network is unchang-
ing. In most real social networks however, the networks themselves as well
as the communities and their members evolve over time. Some of the ques-
tions consequently raised are: How should community discovery algorithms
be modi ed to take into account the dynamic and temporally evolving nature
of social networks? How do communities get formed? How persistent and
stable are communities and their members? How do they evolve over time? In
this section, we introduce the reader to the slew of recent work that addresses
these questions.

Asur et al.[9] presented an an event-based approach for understanding the
evolution of communities and their members over time. The key ideas brought
forth by this work is a structured way to reason about how communities and
individual elements within such networks evolve over time and what are the
critical events that characterize their behavior. Events involving communities
include continue, κ-merge, κ-split, form and dissolve, and events involving
individuals include appear, disappear and join. The authors demonstrate how
behavioral indices such as stability and in uence as well as a diffusion model
can be ef ciently composed from the events detected by their framework and
can be used to effectively analyze real-life evolving networks in an incremental
fashion. Their model can also be used to predict future community behavior
(e.g. collaboration between groups). Also it can help identifying nodes with
interests (e.g. sociable or in uential users). Furthermore, semantic content can
be integrated in the model naturally.

Recently, much research effort has gone into the question of designing com-
munity discovery algorithms for dynamic networks. The simple approach of
treating treating each network snapshot as an independent network and apply-
ing a conventional community discovery algorithm may result in undesirable

uctuations of community memberships from one snapshot to the next. Con-
sider an extreme example from [25], where there exist two orthogonal splits (A
and B) on a data set. A performs slightly better on odd-numbered days, while
B is a little superior on even-numbered days. Taking the optimal split every
day results in radical change in the obtained communities from day to day,
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and therefore it may be better to sacri ce some optimality and instead adopt a
consistent split (either A or B) on all days.

Initial approaches to tackle this problem focused on constructing temporal
slices of the network and then relied on community discovery on each slice to
detect temporal changes to community structure between consecutive slices.
For example, Berger-Wolf and Saia[16] took partitions of individuals at each
time-stamp as input, trying to nd a metagroup that contains a sequence of
groups which are similar to each other. De nitions of three extreme meta-
groups (namely most persistent metagroup, most stable metagroup and largest
metagroup) were given, and the extraction algorithms were discussed. Tan-
tipathananandh et al. [111] studied the problem of identifying the “true” com-
munity af liations of the individuals in a dynamic network, given the af lia-
tions of the individuals in each timeslice. They formulate this as a combinato-
rial optimization problem and show that the problem is NP-hard. Consequently
they solve the problem using a combination of approximate greedy heuristics
and dynamic programming.

An alternative approach to dynamic analysis of networks is to take a holis-
tic view of the community discovery across time-slices, by constraining the
network division in a time-slice to not be too divergent from the network divi-
sions of the previous time-slices. Chakrabarti et al.[25] were among the rst
to work on this problem and referred to it as evolutionary clustering. The most
essential contribution of it is, instead of rst extracting communities on each
network snapshots and then nding connections among communities in differ-
ent snapshots, it considers snapshot quality (how well the clustering at certain
time Ct represents the data at t) and history cost (how different is the clustering
Ct from clustering Ct−1) as a whole. In this way, community structure and its
evolution are studied at the same time. Furthermore, it allows the compromise
between these two parts by linear combination of snapshot quality and history
cost. They also adapted agglomerative hierarchical clustering and k-means
clustering for this framework.

Sun et al.[106] present an alternative approach to clustering time-evolving
graphs using theMinimum Description Length (MDL) principle. Here, graphs
of consecutive timestamps are grouped into graph stream segments, and these
segments are divided by change-points. These change-points indeed indicate
points of drastic discontinuities in the network structure. The total cost of graph
stream encoding is then de ned as C =

∑
sC

(s), where C(s) is the encoding
cost for s-th graph stream segment. The segment encoding cost, C(s) is again
a sum of the segment length, the graph encoding cost and the partition encod-
ing cost. Unfortunately, minimizing total cost was proved NP-hard, leading
to a greedy algorithm based on alternating minimizations called GraphScope.
Basically it deals with when to start a new graph stream segment and how to



Community Discovery in Social Networks 97

nd well-formed communities among all snapshots in a single segment. One
of GraphScope’s advantages is that it doesn’t require any parameter as input.

Chi et al.[26] extended spectral clustering to a dynamic network setting.
They proposed two frameworks, named preserving cluster quality (PCQ) and
preserving cluster membership (PCM) respectively, to measure the tempo-
ral/history cost. The former metric is interested in how well the partition at
time t (Ct) performs on the data at time t − 1, while latter cares how similar
the two consecutive partitions (Ct and Ct−1) are. This framework also allows
variation in cluster numbers as well as insertion and removal of nodes.

Lin et al.[63] proposed FacetNet for dynamic community discovery through
the use of probabilistic community membership models. The advantage of
such probabilistic models is the ability to assign each individuals to multiple
communities with a weight indicating the degree of membership for each com-
munity. They used KL-divergence to measure the snapshot quality and history
cost respectively. It was proved in[64] that when certain assumptions hold,
optimization of total cost is equivalent to maximization of the log-likelihood
function L(Ut) = logP (Wt|Ut) + log P (Ut|Ut−1), where Wt is the data at
time t, and Ut the cover at t.

Kim and Han[55] revisited the cost function used in existing research and
found that temporal smoothing at the clustering level can degrade the perfor-
mance because of the need to adjust the clustering result iteratively. Their rem-
edy was to push down the cost to each pair of nodes, get a temporal-smoothed
version of pair-wise node distance and then conduct density-based clustering
on this new distance metric. To deal with the problem that the number of com-
munities change over time, greedy local clustering mapping based on mutual
information was performed. By doing so, the model can account for the ar-
bitrary creation/dissolution as well as growing/shrinking of a community over
time.

4.2 Community Discovery in Heterogeneous Networks
Most conventional algorithms assume the existence of a homogeneous net-

work where nodes and edges are of the same type. In the real world, however,
we often have to deal with heterogeneous social networks, where the nodes
are of different kinds, edges are of dissimilar types (e.g. relationships based
upon various communication methods[43]) or even both of them at the same
time[108]. Consider an IMDB network, where the entities may be of multiple
types such as movies, directors, actors and the relationships may also be of dif-
ferent types such as acted-in, directed-by, co-acted-in and so on. Such diversity
presents both an opportunity and challenge, since there may exist valuable in-
formation to be gained from recognizing the heterogeneity in the network and
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yet it is not obvious how to appropriately handle nodes and edges that belong
to different types.

Guy et al.[43] designed the SONAR API, aiming at aggregating social net-
work information from emails, instant messaging, organization charts, blogs
and so on. They experimented with different weighted combination of these
information sources and subsequently performed the task of user recommen-
dation based on the outcome network. It was reported that recommendation
based on aggregated network had a better performance than that based on any
of the input networks. However, they did not discuss how to nd the best
combination scheme.

Cai et al.[23] looked into the problem of nding the best linear combination
of different source networks. Their main idea is to rst build a target network,
with associated adjacency matrix M̃ , and regress it on the source networks Mi.

aopt = argmin
a
‖M̃ −

n∑
i=1

aiMi‖2 (4.6)

The ais are the coef cients for the corresponding source networks. However,
since we rarely know the full target network, the authors assume that the user
provides only a few example target relationships, and derive a linear program-
ming formulation that ef ciently solves the linear regression problem.

The NetClus algorithm introduced by Sun et al.[108] dealt with clustering
networks with star network schema. In the star network, each record is actually
a compound of a single target type and several attribute types. The decision
of cluster assignment is made by ranking the posterior probabilities resulting
from a generative model. This ranking-assignment process is then iterated un-
til convergence. By taking advantage of the ranking distribution for each type
of objects (e.g. conference, author and topic), importance/in uence ranking
in each type can be retrieved as well as communities themselves. Therefore
the results become more meaningful and interpretable. The usage of this al-
gorithm, however, is limited by its ability to process only networks with star
network schema. Similarly, the RankClus algorithm[107] is only designed to
deal with bi-type network, where the network’s vertex set have two types of
vertices.

Finally, we also mention that ensemble clustering [105, 8] - an approach
where the results of multiple clusterings are combined - is also a potential
solution for clustering heterogeneous networks.

4.3 Community Discovery in Directed Networks
Community discovery has generally concerned itself with undirected net-

works; however the networks from a number of important domains are essen-
tially directed, e.g. networks of web pages, research papers and Twitter users.
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Simply ignoring directionality when analyzing such networks, as has been im-
plicitly done in many studies, both ignores the additional information in the
directionality as well as can lead to false conclusions. For this reason, there
has recently been some work on community discovery for directed networks.

Many researchers have extended existing objective functions for community
discovery from undirected networks (see Section 3.1) to take into account di-
rectionality. Using the random-walks interpretation of Normalized Cuts [67],
multiple researchers have de ned a directed version of Normalized Cuts. Let
P be the transition matrix of a random walk on the directed graph, with π being
its associated stationary distribution vector (e.g. PageRank vector) satisfying
πP = π. The (directed) Normalized Cut for a group S ⊂ V is given as [127,
28, 45, 66]:

Ncutdir(S) =

∑
i∈S,j∈S̄ π(i)P (i, j)∑

i∈S π(i)
+

∑
j∈S̄,i∈S π(j)P (j, i)∑

j∈S̄ π(j)
(4.7)

The above objective function is often minimized using spectral clustering
- this time by post-processing the top eigenvectors of the directed Laplacian,
de ned as [127, 28, 45, 66] (P and Π are de ned as above):

L = I − Π1/2PΠ−1/2 +Π−1/2P ′Π1/2

2
(4.8)

Leicht and Newman[58] introduced the directed version of modularity[78]
as follows:

Q =
1

m

∑
ij

[Aij −
kini koutj

m
]δci,cj (4.9)

where kini is the in-degree of node i, and koutj the out-degree of j. To t the
new metric into spectral optimization method proposed in[77] where a large
community is bisected at each step, the de nition of modularity matrix B is
modi ed as Bij = Aij − kini koutj

m . Furthermore, the modularity function is
rewritten as

Q =
1

4m
sT (B+BT )s (4.10)

since B alone may not be symmetric. However, the algorithm may still suffer
from the resolution problem, as pointed out by Fortunato and Barthélemy[38].

Satuluri and Parthasarathy [94] argue that a clustering with low directed
normalized cut or high directed modularity is often not the most meaningful
way to cluster directed graphs. In particular, such objective functions still favor
clusters with high inter-connectivity, while inter-connectivity is not necessary
for a group of vertices to form a meaningful cluster in directed networks [94].
They argue instead for a more general framework where we rst convert the
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input directed graph into a weighted, undirected graph using a (symmetric)
similarity measure for the vertices of the directed graph. They nd that a sim-
ilarity measure that uses in-link and out-link similarity while also discounting
common links to highly connected nodes is more effective than existing ap-
proaches at discovering communities from directed networks.

4.4 Coupling Content and Relationship Information for
Community Discovery

Although relationship information of social networks has been extensively
investigated, the work of incorporating content and relationship information to
facilitate community discovery has not been thoroughly studied yet. In fact
this problem is at the heart of recent efforts to analyze social media. Relation-
ship information can be viewed as a plain graph with vertices and edges, while
content information are properties attached to these graph elements. Content
may exist in the form of text, images, or even geographical locations. With the
availability of content information, it is expected that the extracted communi-
ties are not only topologically well-connected, but also semantically coherent
and meaningful. Consider the email communication network where sender-
recipient communication can be modeled as user relationship. Then a spam-
mer account will have a large amount of connections with others and thus be
regarded as the center of a new community, which is useless in most cases.
The importance of utilizing content information can be clearly perceived from
this simple example. Although in previous studies many datasets also contain
rich contents, they are merely used to infer user relationships (e.g. establish a
link between two authors of a research paper), not to contribute to community
extraction.

Content information may be in the forms of user pro le or user-created ma-
terial, in which case they are associated with vertices. Content may also be
associated with edges in the network, as we will see in some literatures dis-
cusses below. In some cases, it’s more intuitive to use “attribute” instead of
“content”, thus they are used interchangeably in the following context. The
problem of interest is: how can communities be found, using both relationship
and content information?

First introduced are three approaches using Bayesian generative models,
aiming to incorporating textual contents. The Group-Topic model proposed
by Wang et al.[120] is an extension of the stochastic blockstructures model
[79], where both relations and their attributes are considered. Here, an entity is
related with another if they behave the same way on an event, and texts asso-
ciated with the event are this relationship’s attributes. Furthermore, each event
corresponds to one of the T latent topics. Therefore, the group membership of
an entity is no longer constant, but changes over different topics. This blueprint
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of directed probabilistic model guides the discovery of groups by topics, and
vice-versa.

Zhou et al.[128] introduce the notion of a semantic community and two cor-
responding Community-User-Topic (CUT) models. Their objective is to ex-
tract semantic communities from communication documents. In the CUT1

model, the distribution of topics is conditioned on users, who are, in turn, con-
ditioned on communities. This algorithm is similar to conventional community
discovery algorithms, in the sense that a community is still de ned as no more
than a group of users. On the contrary, the CUT2 model let communities decide
topics and topics decide users, assuming a tighter connection between commu-
nity and topic. As the experiments report, CUT2 model nds higher-quality
semantic communities, and is computationally more ef cient than CUT1.

Pathak et al.[84] presented the Community-Author-Recipient-Topic (CART)
model in a setting of email communication networks, assuming that the dis-
cussion among users within a community is relevant to these users as well as
the community. The model constrains all users involved and topics discussed
in the email conversation to belong to a single community, while same users
and topics in different conversations can be assigned to different communities.
Compared with previous models including CUT models, this model is argued
to emphasize more on how topics and relationships jointly affect community
structure. Yet, all these three methods suffer from a common disadvantage:
inference of the generative model using Gibbs sampling may converge slowly,
thus the running time may be a problem in practice, especially for large-scale
datasets.

The problem of Connected X Clusters (CXC) introduced by Moser et al.[70]
was inspired by traditional graph clustering. While the algorithm still assumes
that each cluster is compact and distinctive from neighboring ones (by using
content information), the idea of community is enforced by requiring each clus-
ter to be internally connected (by using relationship information). They also
formally derived the number of initial centroids such that each true cluster is
represented by at least one initial cluster atom (the smallest building compo-
nent in the algorithm), at certain pre-de ned con dence level. The proposed
algorithm (called JointClust) is essentially a agglomerative clustering method.
It rst determines cluster atoms based on the number of initial centroids. In
the second phase, it merges cluster atoms in a bottom-up fashion based on the
joint Silhouette coef cient, an extension of traditional Silhouette coef cient
[52]. This algorithm does not require pre-speci ed cluster number. It, how-
ever, still takes as a parameter the minimum size of each cluster.

Negoescu and Gatica-Perez[73] proposed an algorithm to identify commu-
nities of groups on Flickr, an image-sharing website. In the context of this algo-
rithm, groups refer to self-organized sets of Flickr users, and are the elements
of the nal communities that we are looking for. Therefore, a community is
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also referred to as a hypergroup. The procedure is to rst abstract each group
into a bag-of-tags model, where tags come from the group’s images and can be
regarded as contents generated by the group. Then latent Dirichlet allocation
LDA method is applied, giving distribution of latent topics over each group.
Several similarity measures can be exploited to build the similarity matrix for
groups, and the original problem is cast to a clustering problem on similarity
matrix. Although it’s not discussed in the paper, this algorithm is applicable
to nding communities of users. Again, ef ciency may be a potential concern,
which is intrinsic to all latent-topic-based approaches.

5. Crosscutting Issues and Concluding Remarks
In this article we surveyed the principal results on community discovery

within social networks. We rst examined the contexts and use-case scenarios
for community discovery within various social settings. We next took a look
at the core methods developed to extract community structure from large net-
works ranging from the traditional to the current state-of-the-art. Subsequently
we focused on recent and emerging strands of research that is gaining traction
within this community. Below we brie y highlight four cross-cutting research
themes that are likely to play a signi cant role as we move forward within this

eld. Note, that this is by no means a comprehensive list of cross-cutting issues
but highlight some of the key challenges and opportunities within the eld.

Scalable Algorithms: With the size and scale of networks and informa-
tion involved researchers are increasingly turning to scalable, parallel
and distributed algorithms for community discovery within social net-
works. At the algorithmic level multi-level algorithms relying on graph
coarsening and re nement offer potential [51, 31, 93]. Architecture con-
scious algorithms on the GPU and multi-cores offer another orthogonal
approach [22, 83] as do streaming algorithms[3]. Given the recent trend
towards cloud computing, researchers are beginning to investigate algo-
rithms for community discovery on platforms such as Hadoop [81, 48,
49].

Visualization of Communities and their Evolution: Visualizing large
complex networks and honing in on important topological character-
istics is a grand challenge since one often runs out of pixel space es-
pecially when attempting to characterize the behavior of billion node
networks. This area, particularly in the context of community discov-
ery within social networks has seen limited research thus far [119, 125,
21, 85]. Moving forward we envision multiple roles for visualization
in this context. First as a front end to display dynamic (sub-)networks
(details-on-demand) housed within the warehouse (e.g. visualizing a
trust network). Second, as a mechanism to help understand and drive
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the analysis process. Third, as a means to validate and lend transparency
to the discovery process. An important challenge here is to determine
how dynamic information is to be modeled and visualized effectively
and ef ciently.

Incorporating Domain Knowledge:It has been our observation that of-
ten we as data mining researchers tend to under-utilize available domain
information during the pattern discovery or model building process. In
fact data mining researchers often speci cally omit important domain
knowledge from the training phase as it then allows them a means to
independently con rm the utility of the proposed methods during vali-
dation and testing. While useful, such a methodology often limits scien-
ti c advances within the domain. We believe a fresh look at how domain
knowledge can be embedded in existing approaches and better testing
and validation methodologies in close conjunction with domain experts
must be designed (see for example work in the eld of Bioinformat-
ics). It is our hypothesis that domain knowledge is often too valuable
a resource to simply ignore during the discovery phase as it can be an
effective means to prune and guide the search for interesting patterns.

Ranking and Summarization: While ranking and summarizing patterns
has been the subject of much research in the data mining community the
role of such methods in this community has been much less researched.
As networks become larger and particularly with an increasing focus on
dynamic networks identifying a hierarchy of patterns from most impor-
tant to least important becomes crucial to help domain experts focus on
the key insights to be drawn from the analysis. Leveraging domain in-
formation (as noted above) will be crucial for this endeavor.

In conclusion we would like to add that the eld of community discovery
in networks (particularly social) is still fairly new with a number of open and
exciting problems ranging from the theoretical to the empirical and covering
a gamut of core research areas both within computer science and across dis-
ciplines. Given the dynamic nature of the eld and the broad interest across
multiple disciplines we expect to see many more exciting results on this topic
in the future.
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