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Social networks are rich in various kinds of contents such as text and multimedia.
The ability to apply text mining algorithms effectively in the context of text data
is critical for a wide variety of applications. Social networks require text mining
algorithms for a wide variety of applications such as keyword search, classifica-
tion, and clustering. While search and classification are well known applications
for a wide variety of scenarios, social networks have a much richer structure both
in terms of text and links. Much of the work in the area uses either purely the text
content or purely the linkage structure. However, many recent algorithms use a
combination of linkage and content information for mining purposes. In many
cases, it turns out that the use of a combination of linkage and content informa-
tion provides much more effective results than a system which is based purely
on either of the two. This paper provides a survey of such algorithms, and the
advantages observed by using such algorithms in different scenarios. We also
present avenues for future research in this area.
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1. Introduction

Social networks are typically rich in text, because of a wide variety of meth-
ods by which users can contribute text content to the network. For example,
typical social networks such as Facebook allow the creation of various text con-
tent such as wall posts, comments, and links to blog and web pages. Emails
between different users can also be expressed as social networks, which can
be mined for a variety of applications. For example, the well known Enron
email database is often used in order to mine interesting connections between
the different characters in the underlying database. Using interesting linkages
within email and newsgroup databases in addition to the content [5, 8] often
leads to qualitatively more effective results.

Social networks are rich in text, and therefore it is useful to design text
mining tools for a wide variety of applications. While a variety of search and
mining algorithms have been developed in the literature for text applications,
social networks provide a special challenge, because the linkage structure pro-
vides guidance for mining in a variety of applications. Some examples of
applications in which such guidance is available are as follows:

Keyword Search: In the problem of keyword search, we specify a set
of keywords, which are used to determine social network nodes which
are relevant to a given query. In the problem of keyword search, we use
both the content and the linkage behavior in order to perform the search.
The broad idea is that text documents containing similar keywords are
often linked together. Therefore, it is often useful to determine closely
connected clusters of nodes in the social network which contain spe-
cific keywords. This problem is also related to the problem of expertise
search [34] in social networks, in which we wish to determine the in-
dividuals in the social network with a particular kind of expertise. The
problem is expertise search is discussed in detail in Chapter 8 of the
book.

Classification: In the problem of classification, the nodes in the social
network are associated with labels. These labeled nodes are then used
for classification purposes. A variety of algorithms are available for clas-
sification of text from content only. However, the presence of links often
provides useful hints for the purpose of classification. For example, label
propagation techniques can be combined with content-based classifica-
tion in order to provide more effective results. This chapter discusses a
number of such algorithms.

Clustering: In the problem of clustering, we would like to determine
sets of nodes which have similar content for the purposes of cluster-
ing. The linkage structure can also play a very useful role during such
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a clustering process. In many applications, linkage and content [53] can
be combined together for the purposes of classification. This results in
clustering which is of much better quality.

Linkage-based Cross Domain Learning: Social networks contain a
large amount of linked information between different kinds of objects
such as text articles, tags, posts, images, and videos. This linkage infor-
mation can be used in order to transfer knowledge across different kinds
of links. We refer to this class of methods as transfer learning.

A common characteristic of the above problems is that they are defined in
the content space, and are extensively studied by the text mining community.
However, social networks can be considered linked networks, and therefore
links can be used to enhance each of the above problems. It is important to
note that these problems are not just defined in the context of social networks,
but have also been studied more generally in the context of any linked network
such as the World Wide Web. In fact, most of the earlier research on these
problems has been performed more generally in the context of the web, which
is also an example of a content-based linked network. Thus, this chapter deals
more generally with the problem of combining text content analysis with link
analysis; it applies more generally to a variety of web domains including so-
cial networks. Some of these problems also arise in the context of the XML
domain, which can also be considered a content-based linked graph. For exam-
ple, the problem of keyword search has been studied extensively in the context
of the XML domain; however the techniques are quite useful for content and
link-based keyword search even in the social network domain. Many of the
techniques which are designed in these different domains are applicable to one
another. We have included the study of this class of methods in this book be-
cause of its significant importance to the problem of social network analysis.

The linkage information in social networks also provides interesting hints,
which can be adapted for problems such as transfer learning. In transfer learn-
ing, we attempt to use the knowledge which is learned in one domain to an-
other domain with the use of bridges (or mappings) between different do-
mains. These bridges may be in the form of similar class structure across the
domains, dictionaries which define mappings between attributes (as in cross-
lingual learning), or links in network based repositories. The links in a so-
cial network provide good bridging information which can be leveraged for
the learning process [40]. In this chapter, we will provide a key overview of
some of the techniques which are often utilized for linkage-based cross-domain
learning.

The chapter is organized as follows. The next section will discuss algo-
rithms for keyword search. In section 3, we will discuss algorithms for classi-
fication. Section 4 will discuss algorithms for clustering. Section 5 will study
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the problem of transfer-learning, as it relates to the social network domain.
Section 6 contains the conclusions and summary.

2. Keyword Search

Keyword search provides a simple but user-friendly interface for informa-
tion retrieval on the Web. It also proves to be an effective method for accessing
structured data. Since many real life data sets are structured as tables, trees
and graphs, keyword search over such data has become increasingly impor-
tant and has attracted much research interest in both the database and the IR
communities.

A social network may be considered as a massive graph, in which each node
may contain a large amount of text data. We note that many informal forms
of social networks such as blogs or paper-citation graphs also contain a large
amount of text graph. Many of these graphs do not have any privacy restrictions
in order to implement an effective search process. We would like to determine
small groups of link-connected nodes which are related to a particular set of
keywords. Even though keyword search is defined with respect to the text
inside the nodes, we note that the linkage structure also plays an important role
in determining the appropriate set of nodes. It is well known the text in linked
entities such as the web are related, when the corresponding objects are linked.
Thus, by finding groups of closely connected nodes which share keywords, it is
generally possible to determine the qualitatively effective nodes. The problem
is also related to that of expertise location [34] in social networks, in which
we would like to determine groups of closely connected individuals with a
particular kind of expertise. The problem of expertise search is discussed in
detail in Chapter 8 of this book.

Because the underlying data assumes a graph structure, keyword search be-
comes much more complex than traditional keyword search over documents.
The challenges lie in three aspects:

Query semantics: Keyword search over a set of text documents has
very clear semantics: A document satisfies a keyword query if it con-
tains every keyword in the query. In our case, the entire dataset is often
considered as a single graph, so the algorithms must work on a finer
granularity and return subgraphs as answers. We must decide what sub-
graphs are qualified as answers. The qualification of a subgraph as a
valid answer depends both upon the content in the document and the
underlying linkage structure.

Ranking strategy: For a given keyword query, it is likely that many
subgraphs will satisfy the query, based on the query semantics in use.
However, each subgraph has its own underlying graph structure, with
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subtle semantics that makes it different from other subgraphs that sat-
isfy the query. Thus, we must take the graph structure into consideration
and design ranking strategies that find most meaningful and relevant an-
swers. This is not the case for content-based keyword search in which
content-based objective functions can be defined in order to quantify the
objective function.

Query efficiency: Many real life graphs are extremely large. A major
challenge for keyword search over graph data is query efficiency, which,
to a large extent, hinges on the semantics of the query and the ranking
strategy. Clearly, the ability to perform efficient search depends upon our
ability to perform an effective traversal of the underlying graph structure.

2.1 Query Semantics and Answer Ranking

A query consists of a set of keywords Q = {k1, k2, -, kn}. We must first
define what is a qualified answer to (), and the goodness (the score) of the
answer.

For tree structures such as XML, under the most common semantics, the
goal is to find the smallest subtrees that contain the keywords. There are dif-
ferent ways to interpret the notion of smallest. Several algorithms [51, 27, 50]
are based on the SLCA (smallest lowest common ancestor) semantics, which
requires that an answer (a least common ancestor of nodes that contain all the
keywords) does not have any descendent that is also an answer. XRank [21]
adopts a different query semantics for keyword search. In XRank, answers
consist of substrees that contain at least one occurrence of all of the query
keywords, after excluding the sub-nodes that already contain all of the query
keywords. Thus, the set of answers based on the SLCA semantics is a subset
of answers qualified for XRank.

We can use similar semantics for keyword search over graphs. For this pur-
pose, the answer must first form trees (embedded in the graph). In many graph
search algorithms, including BANKS [7], the bidirectional algorithm [29], and
BLINKS [23], a response or an answer to a keyword query is a minimal rooted
tree T embedded in the graph that contains at least one node from each .S;,
where S; is the set of nodes that match the keyword k;.

Next, we must define a measure for the “goodness” of each answer. An
answer tree 1" is good if it is meaningful to the query, and the meaning of
T lies in the tree structure, or more specifically, how the keyword nodes are
connected through paths in 7". The goodness measure adopted by BANKS and
the bidirectional algorithm is as follows. An answer tree 1" is decomposed
into edges and nodes, and score of 1" is the combined score of the edges and
nodes of T'. Specifically, each edge has a pre-defined weight, and default to 1.
Given an answer tree 7', for each keyword k;, we use s(7, k;) to represent the
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sum of the edge weights on the path from the root of 7" to the leaf containing
keyword k;. Thus, the aggregated edge score is E = > ;" s(T', k;). The nodes,
on the other hand, are scored by their global importance or prestige, which is
usually based on PageRank [10] random walk. Let N denote the aggregated
score of nodes that contain keywords. The combined score of an answer tree is
given by s(T') = EN* where \ helps adjust the importance of edge and node
scores [7, 29].

Query semantics and ranking strategies used in BLINKS [23] are similar to
those of BANKS [7] and the bidirectional search [29]. But instead of using a
measure such as S(7) = EN to find top-K answers, BLINKS requires that
each of the top-K answer has a different root node, or in other words, for all
answer trees rooted at the same node, only the one with the highest score is
considered for top-K. This semantics guards against the case where a “hub”
pointing to many nodes containing query keywords becomes the root for a
huge number of answers. These answers overlap and each carries very little
additional information from the rest. Given an answer (which is the best, or
one of the best, at its root), users can always choose to further examine other
answers with this root [23].

Unlike most keyword search on graph data approaches [7, 29, 23], Objec-
tRank [6] does not return answer trees or subgraphs containing keywords in
the query, instead, for ObjectRank, an answer is simply a node that has high
authority on the keywords in the query. Hence, a node that does not even con-
tain a particular keyword in the query may still qualify as an answer as long
as enough authority on that keyword has flown into that node (Imagine a node
that represents a paper which does not contain keyword OLAP, but many im-
portant papers that contain keyword OLAP reference that paper, which makes
it an authority on the topic of OLAP). To control the flow of authority in the
graph, ObjectRank models labeled graphs: Each node u has a label \(u) and
contains a set of keywords, and each edge e from u to v has a label A(e) that
represents a relationship between u and v. For example, a node may be labeled
as a paper, or a movie, and it contains keywords that describe the paper or the
movie; a directed edge from a paper node to another paper node may have a
label cites, etc. A keyword that a node contains directly gives the node cer-
tain authority on that keyword, and the authority flows to other nodes through
edges connecting them. The amount or the rate of the outflow of authority from
keyword nodes to other nodes is determined by the types of the edges which
represent different semantic connections.

2.2 Keyword search over XML and relational data

Keyword search on XML data [19, 15, 21, 31] is a simpler problem than
on schema-free graphs. In some cases, documents in social networks are ex-
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pressed as XML documents as well. Therefore, it is interesting to explore this
particular case.

XML data is mostly tree structured, where each node only has a single in-
coming path. This property has significant impact on query semantics and
answer ranking, and it also provides great optimization opportunities in algo-
rithm design [51].

It is straightforward to find subtrees that contain all the keywords. Let L; be
the set of nodes in the XML document that contain keyword k;. If we pick one
node n; from each L;, and form a subtree from these nodes, then the subtree
will contain all the keywords. Thus, an answer to the query can be represented
by lca(ny, -+ ,ny), the lowest common ancestor of nodes ny,--- ,n, in the
tree, where n; € L;.

A keyword query may find a large number of answers, but they are not
all equal due to the differences in the way they are embedded in the nested
XML structure. Many approaches for keyword search on XML data, including
XRank [21] and XSEarch [15], present a ranking method. A ranking mech-
anism takes into consideration several factors. For instance, more specific
answers should be ranked higher than less specific answers. Both SLCA and
the semantics adopted by XRank signify this consideration. Furthermore, key-
words in an answer should appear close to each other, and closeness is inter-
preted as the the semantic distance defined over the XML embedded structure.

For relational data, SQL is the de-facto query language for accessing rela-
tional data. However, to use SQL, one must have knowledge about the schema
of the relational data. This has become a hindrance for potential users to access
tremendous amount of relational data.

Keyword search is a good alternative due to its ease of use. The challenges
of applying keyword search on relational data come from the fact that in a
relational database, information about a single entity is usually divided among
several tables. This is resulted from the normalization principle, which is the
design methodology of relational database schema.

Thus, to find entities that are relevant to a keyword query, the search al-
gorithm has to join data from multiple tables. If we represent each table as a
node, and each foreign key relationship as an edge between two nodes, then we
obtain a graph, which allows us to convert the current problem to the problem
of keyword search over graphs. However, there is the possibility of self-joins:
that is, a table may contain a foreign key that references itself. More generally,
there might be cycles in the graph, which means the size of the join is only
limited by the size of the data. To avoid this problem, the search algorithm
may adopt an upper bound to restrict the number of joins [28].

Two most well-known keyword search algorithm for relational data are DBX-
plorer [4] and DISCOVER [28]. They adopted new physical database design
(including sophisticated indexing methods) to speed up keyword search over
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relational databases. Qin et al [41], instead, introduced a method that takes full
advantage of the power of RDBMS and uses SQL to perform keyword search
on relational data.

23 Keyword search over graph data

Keyword search over large, schema-free graphs faces the challenge of how
to efficiently explore the graph structure and find subgraphs that contain all
the keywords in the query. To measure the “goodness” of an answer, most
approaches score each edge and node, and then aggregate the scores over the
subgraph as a goodness measure [7, 29, 23]. Usually, an edge is scored by the
strength of the connection, and a node is scored by its importance based on a
PageRank like mechanism.

Graph keyword search algorithms can be classified into two categories. Al-
gorithms in the first category finds matching subgraphs by exploring the graph
link by link, without using any index of the graph. Representative algorithms in
this category include BANKS [7] and the bidirectional search algorithm [29].
One drawback of these approaches is that they explore the graph blindly as
they do not have a global picture of the graph structure, nor do they know the
keyword distribution in the graph. Algorithms in the other category are index-
based [23], and the index is used to guide the graph exploration, and support
“forward-jumps” in the search.

2.3.1 Graph Exploration by Backward Search. Many keyword
search algorithms try to find trees embedded in the graph so that similar query
semantics for keyword search over XML data can be used. Thus, the problem
is how to construct an embedded tree from keyword nodes in the graph. In the
absence of any index that can provide graph connectivity information beyond a
single hop, BANKS [7] answers a keyword query by exploring the graph start-
ing from the nodes containing at least one query keyword — such nodes can be
identified easily through an inverted-list index. This approach naturally leads
to a backward search algorithm, which works as follows.

1 At any point during the backward search, let E; denote the set of nodes
that we know can reach query keyword k;; we call E; the cluster for k;.

2 Initially, F; starts out as the set of nodes O; that directly contain k;;
we call this initial set the cluster origin and its member nodes keyword
nodes.

3 In each search step, we choose an incoming edge to one of previously
visited nodes (say v), and then follow that edge backward to visit its
source node (say u); any E; containing v now expands to include u as
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well. Once a node is visited, all its incoming edges become known to
the search and available for choice by a future step.

4 We have discovered an answer root x if, for each cluster E;, either x €
E; or x has an edge to some node in F;.

BANKS uses the following two strategies for choosing what nodes to visit
next. For convenience, we define the distance from a node n to a set of nodes
N to be the shortest distance from n to any node in V.

1 Equi-distance expansion in each cluster: This strategy decides which
node to visit for expanding a keyword. Intuitively, the algorithm expands
a cluster by visiting nodes in order of increasing distance from the cluster
origin. Formally, the node u to visit next for cluster F; (by following
edge u — v backward, for some v € Ej) is the node with the shortest
distance (among all nodes not in E;) to O;.

2 Distance-balanced expansion across clusters: This strategy decides the
frontier of which keyword will be expanded. Intuitively, the algorithm
attempts to balance the distance between each cluster’s origin to its fron-
tier across all clusters. Specifically, let (u, E;) be the node-cluster pair
such that u ¢ F; and the distance from u to O; is the shortest possible.
The cluster to expand next is F;.

He et al. [23] investigated the optimality of the above two strategies introduced
by BANKS [7]. They proved the following result with regard to the first strat-
egy, equi-distance expansion of each cluster (the complete proof can be found
in [24]):

THEOREM 13.1 An optimal backward search algorithm must follow the strat-
egy of equi-distance expansion in each cluster.

However, the investigation [23] showed that the second strategy, distance-
balanced expansion across clusters, is not optimal and may lead to poor per-
formance on certain graphs. Figure 13.1 shows one such example. Suppose
that {k1} and {k2} are the two cluster origins. There are many nodes that can
reach k; through edges with a small weight (1), but only one edge into ks with
a large weight (100). With distance-balanced expansion across clusters, we
would not expand the ko cluster along this edge until we have visited all nodes
within distance 100 to k;. It would have been unnecessary to visit many of
these nodes had the algorithm chosen to expand the k5 cluster earlier.

2.3.2 Graph Exploration by Bidirectional Search. To address the
problem shown in Figure 13.1, Kacholia et al. [29] proposed a bidirectional
search algorithm, which has the option of exploring the graph by following
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100
1 >k ® 2

Figure 13.1. Distance-balanced expansion across clusters may perform poorly.

forward edges as well. The rationale is that, for example, in Figure 13.1, if
the algorithm is allowed to explore forward from node u towards ks, we can
identify u as an answer root much faster.

To control the order of expansion, the bidirectional search algorithm prior-
itizes nodes by heuristic activation factors (roughly speaking, PageRank with
decay), which intuitively estimate how likely nodes can be roots of answer
trees. In the bidirectional search algorithm, nodes matching keywords are
added to the iterator with an initial activation factor computed as:

nodePrestige(u)

Ay 5 =
|5

where 5; is the set of nodes that match keyword 7. Thus, nodes of high prestige
will have a higher priority for expansion. But if a keyword matches a large
number of nodes, the nodes will have a lower priority. The activation factor
is spread from keyword nodes to other nodes. Each node v spreads a fraction
1 of the received activation to its neighbors, and retains the remaining 1 — g
fraction.

As a result, keyword search in Figure 13.1 can be performed more effi-
ciently. The bidirectional search will start from the keyword nodes (dark solid
nodes). Since keyword node k; has a large fanout, all the nodes pointing to
k1 (including node u) will receive a small amount of activation. On the other
hand, the node pointing to ko will receive most of the activation of ko, which
then spreads to node u. Thus, node u becomes the most activated node, which
happens to be the root of the answer tree.

While this strategy is shown to perform well in multiple scenarios, it is dif-
ficult to provide any worst-case performance guarantee. The reason is that
activation factors are heuristic measures derived from general graph topology
and parts of the graph already visited. They do not accurately reflect the like-
lihood of reaching keyword nodes through an unexplored region of the graph
within a reasonable distance. In other words, without additional connectivity
information, forward expansion may be just as aimless as backward expan-
sion [23].

Yu € S (13.1)

233 Index-based Graph Exploration.  The effectiveness of forward
and backward expansions hinges on the structure of the graph and the distri-



Text Mining in Social Networks 363

bution of keywords in the graph. However, both forward and backward ex-
pansions explore the graph link by link, which means the search algorithms do
not have knowledge of either the structure of the graph nor the distribution of
keywords in the graph. If we create an index structure to store the keyword
reachability information in advance, we can avoid aimless exploration on the
graph and improve the performance of keyword search. BLINKS [23] is de-
signed based on this intuition.

BLINKS makes two contributions: First, it proposes a new, cost-balanced
strategy for controlling expansion across clusters, with a provable bound on its
worst-case performance. Second, it uses indexing to support forward jumps
in search. Indexing enables it to determine whether a node can reach a key-
word and what the shortest distance is, thereby eliminating the uncertainty and
inefficiency of step-by-step forward expansion.

Cost-balanced expansion across clusters.  Intuitively, BLINKS attempts to
balance the number of accessed nodes (i.e., the search cost) for expanding each
cluster. Formally, the cluster F; to expand next is the cluster with the smallest
cardinality.

This strategy is intended to be combined with the equi-distance strategy
for expansion within clusters: First, BLINKS chooses the smallest cluster to
expand, then it chooses the node with the shortest distance to this cluster’s
origin to expand.

To establish the optimality of an algorithm A employing these two expan-
sion strategies, let us consider an optimal “oracle” backward search algorithm
P. As shown in Theorem 13.1, P must also do equi-distance expansion within
each cluster. The additional assumption here is that P “magically” knows
the right amount of expansion for each cluster such that the total number of
nodes visited by P is minimized. Obviously, P is better than the best practical
backward search algorithm we can hope for. Although A does not have the
advantage of the oracle algorithm, BLINKS gives the following theorem (the
complete proof can be found in [24]) which shows that A is m-optimal, where
m is the number of query keywords. Since most queries in practice contain
very few keywords, the cost of A is usually within a constant factor of the
optimal algorithm.

THEOREM 13.2 The number of nodes accessed by A is no more than m times
the number of nodes accessed by P, where m is the number of query keywords.

Index-based Forward Jump. The BLINKS algorithm [23] leverages the
new search strategy (equi-distance plus cost-balanced expansions) as well as
indexing to achieve good query performance. The index structure consists of
two parts.
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Keyword-node lists Ly . BLINKS pre-computes, for each keyword,
the shortest distances from every node to the keyword (or, more pre-
cisely, to any node containing this keyword) in the data graph. For a
keyword w, L n(w) denotes the list of nodes that can reach keyword
w, and these nodes are ordered by their distances to w. In addition to
other information used for reconstructing the answer, each entry in the
list has two fields (dist, node), where dist is the shortest distance be-
tween node and a node containing w.

Node-keywordmap M. BLINKS pre-computes, for each node u,
the shortest graph distance from u to every keyword, and organize this
information in a hash table. Given a node u and a keyword w, My g (u, w)
returns the shortest distance from u to w, or oo if u cannot reach any
node that contains w. In fact, the information in My g can be derived
from L . The purpose of introducing My g is to reduce the linear time
search over Ly for the shortest distance between u and w to O(1) time
search over My .

The search algorithm can be regarded as index-assisted backward and for-
ward expansion. Given a keyword query @ = {ky, -+ , ky, }, for backward ex-
pansion, BLINKS uses a cursor to traverse each keyword-node list Ly n(k;).
By construction, the list gives the equi-distance expansion order in each cluster.
Across clusters, BLINKS picks a cursor to expand next in a round-robin man-
ner, which implements cost-balanced expansion among clusters. These two
together ensure optimal backward search. For forward expansion, BLINKS
uses the node-keyword map My in a direct fashion. Whenever BLINKS vis-
its a node, it looks up its distance to other keywords. Using this information, it
can immediately determine if the root of an answer is found.

The index Lx  and My are defined over the entire graph. Each of them
contains as many as N x K entries, where N is the number of nodes, and K
is the number of distinct keywords in the graph. In many applications, K is on
the same scale as the number of nodes, so the space complexity of the index
comes to O(N?), which is clearly infeasible for large graphs. To solve this
problem, BLINKS partitions the graph into multiple blocks, and the L xn and
My index for each block, as well as an additional index structure to assist
graph exploration across blocks.

2.34 The ObjectRank Algorithm. Instead of returning sub-graphs
that contain all the keywords, ObjectRank [6] applies authority-based ranking
to keyword search on labeled graphs, and returns nodes having high author-
ity with respect to all keywords. To certain extent, ObjectRank is similar to
BLINKS [23], whose query semantics prescribes that all top-K answer trees
have different root nodes. Still, BLINKS returns sub-graphs as answers.
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Recall that the bidirectional search algorithm [29] assigns activation factors
to nodes in the graph to guide keyword search. Activation factors originate
at nodes containing the keywords and propagate to other nodes. For each key-
word node u, its activation factor is weighted by node Prestige(u) (Eq. 13.1),
which reflects the importance or authority of node u. Kacholia et al. [29] did
not elaborate on how to derive node Prestige(u). Furthermore, since graph
edges in [29] are all the same, to spread the activation factor from a node w, it
simply divides u’s activation factor by w’s fanout.

Similar to the activation factor, in ObjectRank [6], authority originates at
nodes containing the keywords and flows to other nodes. Furthermore, nodes
and edges in the graphs are labeled, giving graph connections semantics that
controls the amount or the rate of the authority flow between two nodes.

Specifically, ObjectRank assumes a labeled graph G is associated with some
predetermined schema information. The schema information decides the rate
of authority transfer from a node labeled u, through an edge labeled e, and
to a node labeled vg. For example, authority transfers at a fixed rate from
a person to a paper through an edge labeled authoring, and at another fixed
rate from a paper to a person through an edge labeled authoring. The two
rates are potentially different, indicating that authority may flow at a different
rate backward and forward. The schema information, or the rate of authority
transfer, is determined by domain experts, or by a trial and error process.

To compute node authority with regard to every keyword, ObjectRank com-
putes the following:

Rates of authority transfer through graph edges. For every edge
e = (u — wv), ObjectRank creates a forward authority transfer edge
ef = (u — v) and a backward authority transfer edge ¢’ = (v — ).
Specifically, the authority transfer edges e/ and e’ are annotated with
rates a(ef) and a(eb):

a(eé) . s
a(ef) = { OutDeg(u,eé) if OutDeg(u’ e(;) >0

¢ (13.2)
0 if QutDeg(u, eg;) =0

where a(eé) denotes the fixed authority transfer rate given by the schema,

and OutDeg(u, eé) denotes the number of outgoing nodes from u, of
f

type e,. The authority transfer rate a(e?) is defined similarly.

Node authorities. ObjectRank can be regarded as an extension to PageR-
ank [10]. For each node v, ObjectRank assigns a global authority de-

noted by Object Rank® (v) that is independent of the keyword query.

The global Object Rank® is calculated using the random surfer model,

which is similar to PageRank. In addition, for each keyword w and each
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node v, ObjectRank integrates authority transfer rates in Eq 13.2 with
PageRank to calculate a keyword-specific ranking Object Rank® (v):

Object Rank" (v) = d x Z a(e) x Object Rank" (u) + |1S(—wc)l|
e=(u—v)or(v—u)
(13.3)

where S(w) is s the set of nodes that contain the keyword w, and d is the
damping factor that determines the portion of ObjectRank that a node
transfers to its neighbours as opposed to keeping to itself [10]. The final
ranking of a node v is the combination combination of Object Rank® (v)
and Object Rank® (v).

3. Classification Algorithms

The problem of classification has been widely studied in the text mining
literature. Some common algorithms which are often used for content-based
text classification are the Naive Bayes classifier [36], TFIDF classifier [30] and
Probabilistic Indexing classifier [20] respectively. A common tool kit used for
classification is Rainbow [37], which contains a variety of different classifiers.
Most of the classification algorithms directly use the text content in order to
relate the content in the document to the class label.

In the context of social networks, we assume that the nodes in the social net-
work are associated with labels, and each node may contain a certain amount of
text content. In the case of social networks, a number of additional challenges
arise in the context of text classification. These challenges are as follows:

Social networks contain a much larger and non-standard vocabulary, as
compared to more standard collections such as news collections. This is
because of the greater diversity in authorship both in terms of the number
and style of different authors.

The labels in social networks may often be quite sparse. In many cases,
some of the label values may be unknown. Thus, social network data is
often much more noisy than other standard text collections.

A particularly useful property of social networks is that they may contain
links which can be used in order to guide the classification process. Such
links can be very helpful in determining how the labels may be propa-
gated between the different nodes. While pure link-based classification
[44, 46, 48] is a well known technique which works effectively in a vari-
ety of scenarios, the use of content can greatly improve the effectiveness
of the classification process.

The earliest work on combining linkage and content information for clas-
sification was discussed in [13]. This technique was designed in the context
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of the web, though the general idea can be easily extended to the case of so-
cial networks. In this paper, a hypertext categorization method was proposed,
which uses the content and labels of neighboring web pages for the classifica-
tion process. When the labels of all the nearest neighbors are available, then
a Bayesian method can be adapted easily for classification purposes. Just as
the presence of a word in a document can be considered a Bayesian feature
for a text classifier, the presence of a link between the target page, and a page
(for which the label is known) can be considered a feature for the classifier.
The real challenge arises when the labels of all the nearest neighbors are not
available. In such cases, a relaxation labeling method is proposed in order to
perform the classification. Two methods have been proposed in this work:

Completely Supervised Case of Radius one Enhanced Linkage Anal-
ysis: In this case, it is assumed that all the neighboring class labels are
known. In such a case, a Bayesian approach is utilized in order to treat
the labels on the nearest neighbors as features for classification purposes.
In this case, the linkage information is the sole information which is used
for classification purposes.

When the class labels of the nearest neighbors are not known: In
this case, an iterative approach is used for combining text and linkage
based classification. Rather than using the pre-defined labels (which are
not available), we perform a first labeling of the neighboring documents
with the use of document content. These labels are then used to classify
the label of the target document, with the use of both the local text and
the class labels of the neighbors. This approach is used iteratively for
re-defining the labels of both the target document and its neighbors until
convergence is achieved.

The conclusion from the work in [13] is that a combination of text and linkage
based classification always improves the accuracy of a text classifier. Even
when none of the neighbors of the document have known classes, it seemed
to be always beneficial to add link information to the classification process.
When the class labels of all the neighbors are known, then the advantages of
using the scheme seem to be quite significant.

An additional idea in the paper is that of the use of bridges in order to further
improve the classification accuracy. The core idea in the use of a bridge is
the use of 2-hop propagation for link-based classification. The results with
the use of such an approach are somewhat mixed, as the accuracy seems to
reduce with an increasing number of hops. The work in [13] shows results
on a number of different kinds of data sets such as the Reuters database, US
patent database, and Yahoo!. We note that the Reuters database contains the
least amount of noise, and pure text classifiers can do a good job. On the other
hand, the US patent database and the Yahoo! database contain an increasing
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amount of noise which reduces the accuracy of text classifiers. An interesting
observation in [13] was that a scheme which simply absorbed the neighbor text
into the current document performed significantly worse than a scheme which
was based on pure text-based classification. This is because there are often
significant cross-boundary linkages between topics, and such linkages are able
to confuse the classifier.

A second method which has been used for text and link based classifica-
tion is the utilization of the graph regularization approach for text and link
based classification [46]. The work presents a risk minimization formulation
for learning from both text and graph structures. This is motivated by the
problem of collective inference for hypertext document categorization. More
details on the approach may be found in [46]. While much of the work in this
paper as well as the earlier work in [13] is defined in the context of web data,
this is also naturally applicable to the case of social networks which can be
considered an interlinked set of nodes containing text content.

There is also some work which deals explicitly with social-network like text
interactions. A classic example of this is a set of emails which are exchange be-
tween one or more different users. Typically, the emails in a particular “thread”
may be considered to be linked based on the structure of the thread. Alterna-
tively, the exchanges in the email between the different users correspond to
the links between the different emails. An important problem which arises in
the context of email classification is that of the classification of speech acts in
email. Some examples of speech acts in email could be request, deliver, com-
mit, and propose. One method for performing the classification is to use purely
the content of the email for classification purposes [16]. An important obser-
vation in later work is that successive email exchanges between different users
can be considered links, which can be utilized for more effective classification.
This is because the speech acts in different emails may not be independent of
one another, but may significantly influence each other. For example, an email
asking for a “request” for a meeting may be followed by one which “commits”
to a meeting.

The work in [11] proposes a method for collective classification, which tries
to model the relationships between different kinds of acts in the form of a
graphical stricture. The links in this graphical structure are leveraged in order
to improve the effectiveness of the classification process. The work in [11] pro-
poses an iterative collective classification algorithm. This algorithm us closely
related to the implementation of a Dependency Network [25]. Dependency
networks are probabilistic graphical models in which the full joint distribution
of the network is approximated with a set of conditional distributions that can
be learned independently. These probability distributions are calculated for
each node given its parent nodes. In the context of an email network, the email
messages are the nodes, and the dependencies are the threads which relate the
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different nodes. The work in [11] shows that the use of linkage analysis pro-
vides a much more effective classification analysis, because the class labels
between the different nodes are naturally connected by their corresponding
linkages.

4. Clustering Algorithms

The problem of clustering arises quite often in the context of node cluster-
ing of social networks. The problem of network clustering is closely related
to the traditional problem of graph partitioning [32], which tries to isolated
groups of nodes which are closely connected to one another. The problem of
graph partitioning is NP-hard and often does not scale very well to large net-
works. The Kerninghan-Lin algorithm [32] uses an iterative approach in which
we start off with a feasible partitioning and repeatedly interchange the nodes
between the partitions in order to improve the quality of the clustering. We
note that that this approach requires random access to the nodes and edges in
the underlying graph. This can be a considerable challenge for large-scale so-
cial networks which are stored on disk. When the social-network is stored on
disk, the random access to the disk makes the underlying algorithms quite in-
efficient. Some recent work has designed methods for link-based clustering in
massive networks [9, 12, 14, 33], though these methods are not specifically de-
signed for the case of disk-resident data. Such methods are typically designed
for problems such as community detection [39, 38] and information network
clustering [9, 33]. These methods are often more sensitive to the evolution of
the underlying network, which is quite common in social networks because
of the constant addition and deletion of users from the network. Some recent
work [2] has also been proposed for clustering graph streams, which are com-
mon representations of different kinds of edge-based activity in social network
analysis.

The work discussed above uses only the structure of the network for the
clustering process. A natural question arises, as to whether one can improve
the quality of clustering by using the text content in the nodes of the social
network. The problem of clustering has been widely studied by the text mining
community. A variety of text clustering algorithms have been proposed by the
data mining and text mining community [3, 18, 42], which use a number of
variants of traditional clustering algorithms for multi-dimensional data. Most
of these methods are variants of the k-means method in which we start off
with a set of k seeds and build the clusters iteratively around these seeds. The
seeds and cluster membership are iteratively defined with respect to each other,
until we converge to an effective solution. Some of these methods are also
applicable to the case of dynamic text data, as is the case with social networks.
In particular, the methods in [3, 47] can be used in order to cluster text data
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streams. These methods are designed on the basis of k-means methods which
can use non-iterative variants of the k-means methods for clustering streams.
Such techniques can be useful for the dynamic scenarios which can arise in the
context of social networks. However, these algorithms tend to be at the other
end of the spectrum in terms of preserving only content information and no
linkage information. Ideally, we would like to use clustering algorithms which
preserve both content and linkage information.

The work in [53] proposes a method which can perform the clustering with
the use of both content and structure information. Specifically the method
constructs a new graph which takes into account both the structure and at-
tribute information. Such a graph has two kinds of edges: structure edges
from the original graph, and attribute edges, which are based on the nature
of the attributes in the different nodes. A random walk approach is used over
this graph in order to define the underlying clusters. Each edge is associated
with a weight, which is used in order to control the probability of the random
walk across the different nodes. These weights are updated during an itera-
tive process, and the clusters and the weights are successively used in order
to refine each other. It has been shown in [53] that the weights and the clus-
ters will naturally converge, as the clustering process progresses. While the
technique is applied to multi-relational attributes, it can also used in a limited
way for text attributes, especially when a limited subset of keywords is used.
It has been shown in [53] how the method can be used in the context of blog
and bibliographic networks, when a number of relational and keyword-based
attributes are also utilized for the clustering process. It has been shown in [53]
that the combination of structural and attribute information can be used for a
more effective clustering process.

A method for leveraging both content and linkage information in the clus-
tering process has been proposed in [43]. While the work in [43] addresses the
problem of topic modeling rather than clustering, this process also provides a
generative model, which can be used for the purpose of a soft clustering of the
documents. A graphical model was proposed to describe a multi-layered gen-
erative model. At the top layer of this model, a multivariate Markov Random
Field for topic distribution random variables for each document is defined. This
is useful for modeling the dependency relationships among documents over the
network structure. At the bottom layer, the traditional topic model is used in or-
der to model the generation of text for each document. Thus, the combination
of the two layers provides a way to model the relationships of the text and the
structure with one another. Methods are proposed to decide the topic structure,
as well as the number of topics. The method essentially uses an LDA model in
order to construct a topic space, in which the clustering can be performed. This
model uses both structure and content information for the modeling process. It
has been shown in [43] that this integrated approach is much more useful than
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an approach which relies purely on the content of underlying documents. In
general, model-based clustering methods are very effective, because of being
able to model different kinds of data by introducing different model parame-
ters. Another model-based method which has specifically been proposed in the
context of social networks is discussed in [22]. The main idea in this method
is the use of a latent position cluster model, in which the probability of a tie
between two nodes depends on the distance between them in an implicit Eu-
clidean social space, and the location of these nodes in the latent social space
which is defined with the use of a mixture of cluster-based distributions. The
method in [22] is general enough to incorporate different kinds of attributes in
the clustering process. For example, one can associated linkage-behavior and
keyword-behavior with different kinds of attributes and apply this approach in
order to design an effective clustering. While the work in [22] has specifically
not been used with the use of text-based content, the techniques proposed are
quite applicable to this scenario, because of the approach used in the paper,
which can embed arbitrary data in arbitrary Euclidean social spaces. We note
that such latent-space approaches are useful not just for the problem of clus-
tering, but as a tool which can be used for representation of the network in an
Euclidean space, which is more amenable to data mining problems. A more
general piece of work on the latent-space approach may be found in [26].

A major challenge which arises in the context of social networks is that
many such networks are heterogeneous, and this makes it difficult to design
algorithms which can determine the distances between the nodes in a more
robust way. For example, bibliographic networks are classic examples of het-
erogeneous networks. Such networks contain different kinds of nodes corre-
sponding to authors, keywords, conferences or papers. In general, information
networks are a more generalized notion of social networks, which may contain
nodes which correspond not just to actors, but also to other kinds of entities
which are related to actors. Such networks are far more challenging to cluster
as compared to the vanilla social network scenario, because the different kinds
of entities may contain different objects such as text, images, and links. A
major challenge in the field is to design unified clustering methods which can
integrate different kinds of content in the clustering process.

5. Transfer Learning in Heterogeneous Networks

A closely related problem in this domain is that of transfer learning. Our
discussion in this chapter has so far focussed on how content can be used in
order to enhance the effectiveness of typical problems such as clustering or
classification in the context of social networks. In this section, we will study
how the link in an information network can be used in order to perform cross-
domain learning in traditional data mining problems such as clustering and
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classification. The primary idea in transfer learning is that data mining prob-
lems have varying levels of difficulty in different domains either because of
lack of data availability or representational issues, and it is often useful to
transfer the knowledge from one domain to another with the use of mappings.
The links in social networks can be used in order to define such mappings. A
general survey of transfer-learning methods may be found in [40].

Many social networks contain heterogeneous content, such as text, media
and images. In particular, text is a common content in such networks. For
example, many social media such as Flickr contain images which are annotated
with keywords. The problem of transfer learning is motivated by the fact that
different kinds of content may be more or less challenging for the learning
process. This is because different amounts of training data may be available to
a user in different domains. For example, it is relatively easy to obtain training
data for text content, as well as mapping the features to different classes. This
may however not be quite as true in the case of the image domain in which
there may be fewer standardized collections. Therefore, a natural approach is
to use either the links in the social network between text and images or the
implicit links in terms of annotations as a mapping for the transfer learning
process. Such links can be used as a bridge to learn the underlying mapping,
and use it for the problem of classification.

A similar observation applies to the case of cross-lingual classification prob-
lems. This is because different amounts of training data is available for the
documents in different languages. A lot of labeled text content may be avail-
able for content in the english language. On the other hand, this may not be the
case for other languages such as chinese web pages. However, there may often
be a number of links between the documents in the different languages. Such
links can be used in order to learn the mappings and use it for the classification
process.

A tremendous amount of text-to-image mapping information exists in the
form of tag information in social media sites such as Flickr. It has been shown
in [17], that such information can be effectively leveraged for transfer-learning.
The key idea is to construct a mapping between the text and the images with
the use of the tags, and then use PLSA in order to construct a latent space
which can be used for the transfer process. It has been shown in [17] that such
an approach can be used very effectively for transfer learning. A related work
[54] discusses how to create connections between images and text with the use
of tag data. It shows how such links can be used more effectively for the clas-
sification process. These techniques have also been exploited for the problem
of image clustering [52]. The work in [52] collects annotated image data from
the social web, and uses it in order to construct a text to image mapping. The
algorithm is referred to as aPLSA (Annotated Probabilistic Latent Semantic
Analysis). The key idea is to unify two different kinds of latent semantic anal-
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ysis in order to create a bridge between the text and images. The first kind of
technique performs PLSA analysis on the target images, which are converted to
an image instance-to-feature co-occurrence matrix. The second kind of PLSA
is applied to the annotated image data from social Web, which is converted
into a text-to-image feature co-occurrence matrix. In order to unify those two
separate PLSA models, these two steps are done simultaneously with common
latent variables used as a bridge linking them. It has been shown in [52] that
such a bridging approach leads to much better clustering results. Clustering is
a useful tool for web-based or social-network based image search. Such search
results are often hindered by polysemy in textual collections, in which the same
work may mean multiple things. For example, the word “jaguar” could either
refer to an animal or a car. In such cases, the results of the query are ambigu-
ous as well. A major motivation for clustering is that such ambiguities can be
more effectively resolved. In particular when textual features are associated
with images, and these are used simultaneously [35] for the clustering process,
the overall result is much more effective. Some of the available techniques in
the literature use spectral clustering on the distance matrix built from a multi-
modal feature set (containing both text and image information) in order to get a
better feature representation. The improved quality of the representation leads
to much better clustering results. Furthermore, when the number of images is
very small, traditional clustering algorithms do not work very well either. This
approach does not work too well, when only a small amount of data is available
on the association between image and text. A different work in [52] treats this
as a heterogeneous transfer learning problem by leveraging social annotation
information from sites such as Flickr. Such sites contain a lot of information in
the form of feedback from different users. The auxiliary data is used in order to
improve the quality of the underlying latent representation and the correspond-
ing clustering process in work discussed in [52]. In general, social networks
provide tremendous information about the data of different types, which can be
leveraged in order to enable an effective learning process across the different
domains. This area is still in its infancy, and it is expected that future research
will lead to further advances in such linkage-based techniques.

6. Conclusions and Summary

In this chapter, we presented a variety of content-based mining algorithms,
which combine text and links in order to design more effective methods for
a wide variety of problems such as search, clustering, and classification. In
many data domains, links encode a tremendous amount of semantic informa-
tion which can be leveraged in order to improve the effectiveness of a variety of
different algorithms. A number of challenges remain for this particular prob-
lem domain. These challenges are as follows:
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Many of the techniques are not designed to be scalable for massive data
sets. This may be a challenge, because many network data sets are in-
herently massive in nature.

The techniques need to be designed for dynamic data sets. This is es-
pecially important because the content and links in a social network are
highly dynamic. Therefore, it is important to be able to quickly re-adjust
the models in order to take into account the changing characteristics of
the underlying data.

Many of the techniques are designed for homogeneous networks in which
the nodes are of a single type. Many of the networks are inherently het-
erogeneous, in which the nodes may be of different types. For example,
social networks contain nodes corresponding to individuals, their posts,
their blogs, and the use of such other content. The ability to use such
information in the knowledge discovery process can be an advantage in
many scenarios.

A considerable research opportunity also exists in the area of transfer learning.
Transfer learning methods are dependent upon the ability to define bridges or
mappings between different domains for the learning process. The links in a
social network can be leveraged in order to define such bridges. There has
been some recent work in leveraging the text annotations in social media for
the problem of transfer learning of images. Research in this area is still in its
infancy, and considerable scope exists to improve both the effectiveness and
the efficiency of the underlying algorithms.
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