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Introduction

The important role the Hedgehog (HH) signaling pathway plays in cancer was first 
revealed by patients diagnosed with the familial disorder known as Gorlin Syndrome, 
who harbor loss-of-function mutations in the HH receptor Patched (PTCH) [1–3]. 
Besides numerous developmental abnormalities, consistent with disruption of this 
important developmental signaling pathway, individuals afflicted with this disorder 
have an inherited predisposition to medulloblastoma, basal cell carcinoma, and rhab-
domyosarcoma [2]. Similar mutations found in sporadic cases of these same tumor 
types implicated PTCH as an important tumor suppressor in human cancer [4]. Other 
components of the HH pathway, such as the gene encoding the seven-transmembrane 
(7TM) protein Smoothened (SMO), are also found mutated in sporadic forms of 
these same malignancies [5, 6]. More recently, constitutive activation of the HH 
pathway has been implicated in other human cancers including those of the breast, 
prostate, pancreas, and lung, where HH is thought to play a role as a tumor-survival 
factor [7]. Combined, it has been estimated that approximately 25% of all human 
tumors harbor a constitutively active HH signaling pathway [8]. As such, consider-
able effort has gone into identifying novel small-molecule inhibitors of HH signaling. 
Consistent with the rate-limiting role SMO plays in HH signaling, the vast majority 
of HH inhibitors isolated from numerous small-molecule screens appear to target 
SMO [9]. A number of these compounds are currently in clinical trials as anti-cancer 
agents, targeting tumors that are dependent on HH pathway activity [10]. Thus, a 
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clear understanding of the mechanisms by which SMO communicates with down-
stream pathway components, and how such inhibitors affect these processes, will 
directly impact human health.

Hedgehog Signal Transduction

Much of what is understood about HH signaling originates from studies of this 
signaling pathway during the development of the fruit fly Drosophila melano-
gaster [11]. It is now well accepted that the major components, and how they 
communicate with each other, are highly conserved from Drosophila to man. 
Although there are significant differences in the importance of some of the signaling 
components across phyla, it is not yet clear if these variations are due to specific 
contextual differences or to evolutionary divergence. Thus, in this chapter we 
generalize about the HH signaling pathway from work derived from numerous 
animal models, mentioning specific biological contexts only where necessary to 
illustrate a particular point.

HH is produced and secreted by discrete compartments within a developing field 
of cells, where it elicits both short- and long-range effects on target cells [12]. The 
receiving cells interpret the level of HH activation through poorly defined, indirect 
interactions between the HH receptor PTCH and the signal transducer SMO. PTCH 
inhibits the activity of SMO in a manner that appears to be catalytic, whereas SMO 
is constitutively active in the absence of PTCH [13, 14]. One of the mechanisms by 
which PTCH inhibits SMO activity involves PTCH-dependent trafficking of SMO 
to lysosomes [15, 16]. In response to HH, PTCH is removed from the cell surface, 
thereby allowing SMO phosphorylation, stabilization, and accumulation at the 
plasma membrane [15, 17]. Ultimately all signaling downstream of SMO coalesces 
to regulate the stability and activity of the GLI/CI family of transcription factors 
[18]. In the absence of HH, these proteins exist as proteolyzed transcriptional repres-
sors. HH blocks this proteolytic conversion, and stabilizes full-length transcriptional 
activators. The degree of HH a cell is exposed to ultimately determines the ratio of 
GLI/CI repressor and activator forms to regulate a spectrum of transcriptional targets 
that is thought to correlate with the concentration of the initial HH signal.

While the general flow of information through the HH signaling cascade is 
known, the direct effectors of SMO, and the mechanism(s) by which it communicates 
with them are still being characterized. The first clue as to how SMO transduces 
the signal from the plasma membrane to the intracellular effectors came with the 
observations that Drosophila SMO directly associates with the kinesin-related 
protein Costal2 (COS2) [19–22], and that mammalian SMO binds the COS2 
ortholog KIF7 [23]. The functional consequence of KIF7-SMO binding in 
mammalian systems is not yet clear. However, in Drosophila, COS2 serves as a 
scaffold upon which a complex containing CI and the protein kinases Fused (FU), 
cyclic-AMP (cAMP)-dependent protein kinase A (PKA) and casein kinase 1 
(CK1) assembles [24, 25]. As such, a direct association between COS2 and SMO 
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connects the membrane signaling components with the cytoplasmic effectors. 
Subsequent to this finding, a direct association between SMO and FU that drives 
a feed-forward loop to facilitate high-level signaling was described [26]. We 
recently demonstrated that the intracellular molar concentration of SMO is signifi-
cantly lower than that of CI, COS2, or FU, suggesting that direct association 
between SMO, COS2, and FU is unlikely to facilitate all aspects of HH signaling 
[27]. It is, therefore, likely that multiple pools of intracellular effectors exist; some 
that are in direct contact with SMO, and some that are regulated through the use 
of G-proteins and/or second messengers.

Smoothened as a G-Protein-Coupled Receptor

Much of what we know about G-protein-coupled receptor (GPCR) structure and 
function has resulted from studies of the prototypical GPCR rhodopsin, the first 
GPCR to be fully sequenced and to yield high-resolution structural data [28–30]. 
Sequence analysis of rhodopsin suggested the existence of several distinct functional 
domains, including seven predicted alpha-helical transmembrane segments, an 
extracellular amino-terminal domain, three extracellular loops, a carboxyl-terminal 
domain with multiple phosphorylation sites, and three intracellular loops [29]. 
Structural analysis of rhodopsin, and more recently of the b

2
-adrenergic receptor and 

A
2A

 adenosine receptor, confirm the existence and conservation of these domains, 
underscoring their importance in GPCR function [28]. As such, proteins possessing 
these well-established functional domains in their primary amino acid sequence or 
predicted tertiary structure are classified as members of the GPCR superfamily, 
which is estimated to encompass more than 1% of all human genes [30].

SMO was originally identified as a gene necessary for proper organization of the 
early Drosophila embryo [31]. Subsequent genetic and molecular characterization 
of SMO revealed it to be a requisite component of the HH signal transduction 
cascade [32]. Primary sequence comparisons revealed that SMO and the Frizzled 
(FZ) family of GPCRs are quite similar across distinct functional domains: 37% 
similarity across the extracellular amino-terminal domains, and 52% similarity 
across the seven predicted transmembrane domains [32]. As such, SMO has been 
classified as a member of the FZ family of GPCRs. The specific contributions of 
conserved GPCR functional domains to SMO-mediated regulation of HH pathway 
activity are discussed below (Fig. 3.1).

Cysteine-rich domain (CRD).  A conserved CRD is situated in the extracellular 
amino terminus of all FZ family GPCRs [33–35]. Disulfide bonds between amino-
terminal cysteine residues and/or cysteine residues in the extracellular loops of FZ 
drive receptor conformations that are necessary for its ligand binding and ligand-
induced dimerization [34, 36]. Like FZ, SMO possesses multiple cysteines in its 
amino terminus and extracellular loops that are positionally conserved across spe-
cies (http://www.gpcr.org). In vitro studies in mammalian cell culture suggested 
that the amino-terminus of SMO, which encompasses the CRD, is not required for 
GLI activation [37]. However, genetic analyses in both Drosophila and zebrafish 
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support that conserved cysteine residues in the CRD are critical for SMO signaling 
and/or subcellular localization [38–40], suggesting that the CRD is a requisite func-
tional domain. Further studies are needed to more clearly define contributions of 
the CRD to SMO signaling.

Transmembrane domains and intracellular loops.  The topology of the 7TM regions 
dictates the activation state of a GPCR by directing the conformation of its intracel-
lular loops and cytoplasmic tail [41]. In response to ligand, the TM domains of the 
receptor shift to allow changes in conformation of the intracellular portions of the 
protein that facilitate receptor phosphorylation and/or G-protein selectivity, docking, 
and activation [41]. The importance of SMO TM sequence/structure is underscored 
by known oncogenic SMO mutations, all of which are localized to predicted TM 
segments [6, 42]. It is likely that these mutations lock SMO TM and intracellular 
domains in an activated state, which is insensitive to PTCH-mediated inhibition.

The cytoplasmic tail along with intracellular loop 3 (ic3), and to a lesser extent 
ic2, constitute the G-protein docking site on the vast majority of GPCRs [43]. 
While extensive structure/function analysis of the SMO intracellular loops has not 
been reported, chimeric studies in cultured fibroblasts reveal a critical role for ic3 
in activation of the signaling cascade [37]. These findings are supported by a loss-
of-function SMO mutation in Drosophila of a highly conserved Arg residue localized 
to the carboxyl-terminal end of loop ic3 [39]. The importance of the intracellular 

Fig.  3.1  Domains and effectors of smoothened (SMO). A schematic depicting the predicted 
topology and domains of SMO in the plasma membrane is shown. The seven predicted transmem-
brane domains of SMO are shown in black. The amino-terminal domain is shown in green and the 
cysteine-rich domain (CRD) in yellow. Three extracellular and one intracellular loops are shown 
in blue, but intracellular loops 2 and 3 – which are thought to couple to G-proteins – are shown in 
red. The carboxyl-terminal domain is shown in purple. The various known direct effectors of 
SMO are indicated below it
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loops is further supported by a study demonstrating that introduction of peptide 
analogs of either ic2 or ic3 into cultured cancer cell lines, which have an activated 
HH signaling pathway, attenuates their proliferation [44]. Further studies are 
needed to identify binding partners of SMO ic2 and ic3, and to determine whether 
these domains constitute a binding site for a partner G-protein.

Carboxyl-terminal intracellular tail.  Multiple phosphorylation sites, which have 
been shown to be critical for pathway activation, have been identified in the SMO 
carboxyl-terminal tail [45–47]. Phosphorylation of such sites in response to ligand 
is a well-characterized event in canonical GPCR signaling, which generally serves 
to recruit various adaptor proteins and signaling effectors to the activated receptor 
[48]. Accordingly, HH-stimulated phosphorylation of SMO by PKA and G-protein 
regulated kinase 2 (GRK2) triggers both adaptor protein recruitment and SMO mul-
timerization [49–51]. Mutations that prevent phosphorylation of any of these char-
acterized phosphorylation sites compromise the ability of SMO to signal [45–47].

SMO Signaling Through Heterotrimeric G-Proteins

We recently demonstrated that Gai overexpression in Drosophila triggers activation 
of HH target genes and wing patterning defects consistent with excessive HH sig-
naling [52]. These phenotypes correlated with the activation state of the expressed 
Gai transgene, as overexpression of a Gai mutant that cannot bind GTP resulted in 
no observable phenotype. Conversely, overexpression of wild-type Gai triggered 
modest gain of function phenotypes, and overexpression of a transgene encoding 
constitutively active Gai resulted in strong HH gain of function phenotypes.

Activation of heterotrimeric G-proteins of the Gai family frequently serves to 
decrease intracellular pools of cAMP through Gai-mediated inhibition of adeny-
late cyclase (AC) [53]. Accordingly, in our study, we observed a SMO- and Gai-
dependent reduction in total intracellular cAMP within 5–10 min of HH stimulation 
[52]. Modulation of cAMP appears to be critical for in vivo HH signaling, as a 
mutant allele of the cAMP phosphodiesterase DUNCE [54] enhanced the HH 
loss-of-function phenotype induced by expression of a dominant negative SMO 
mutant in the Drosophila wing [52]. The ability of cAMP to modulate HH pathway-
dependent patterning events is further supported by studies demonstrating that 
overexpression of an anthrax virulence factor, which functions as a potent bacte-
rial AC, triggers wing phenotypes similar to HH loss-of-function mutations [55]. 
Further, modulation of cAMP by Sonic HH (SHH) has also been demonstrated in 
vertebrate systems: retinal ganglion cell axons exposed to recombinant SHH 
reduce their intracellular pools of cytoplasmic cAMP [56], while frog melano-
phores exposed to SHH aggregate their melanosomes, a process favored by low 
concentrations of intracellular cAMP [57]. Taken together, these studies support 
that one mechanism by which SMO initiates HH signal transduction is to regulate 
cAMP production through the activation of Gai family heterotrimeric 
G-proteins.
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Gai as a context-specific modulator of HH signaling.  In vitro studies on vertebrate 
SMO support the ability of SMO to activate a subset of heterotrimeric G-proteins, 
with strongest effects on those of the Gai family, for which SHH-induced GTP bind-
ing has been demonstrated [57–60]. Activation of Gai in these systems fulfills the 
requirements of canonical HH pathway induction, as it can be inhibited by PTCH 
and/or small-molecule SMO inhibitors, and can be activated by SHH stimulation 
[57, 60]. SHH target gene induction in cultured fibroblasts is sensitive to pertussis 
toxin (PTX), a potent Gai inhibitor, further supporting that Gai is engaged by verte-
brate SMO in response to ligand stimulation [60].

The above studies provide support for involvement of Gai in HH signal 
transduction. However, studies performed in differing developmental or cellular 
contexts failed to identify a role for Gai in the HH pathway [37, 61–63]. RNAi 
screens in cultured Drosophila cells did not implicate Gai as a component of the 
HH signaling pathway [62, 63], while studies performed in cultured 10T1/2 cells 
failed to detect changes in intracellular cAMP following SHH stimulation [37]. The 
latter might be explained by findings that the bulk of HH signaling in vertebrate 
cells appears to occur in the primary cilium, a small sensory organelle that is 
present on most vertebrate cell types [64]. Because the volume of the primary 
cilium is negligible when compared to the body of the cell, localized changes in 
ciliary cAMP may be undetectable in whole cell lysates.

Conflicting results have also been obtained from in vivo studies examining the 
role of Gai in HH signaling. Uncoupling of SMO from Gai by expression of the 
PTX catalytic subunit in chick neural tube did not demonstrate compromised SHH-
dependent neural cell type specification, suggesting that Gai is not required for 
SHH patterning events in this developmental context [61].

Taken together, these seemingly conflicting results raise the possibility that Gai 
is required only in certain cellular or tissue contexts during development. This sugges-
tion is supported by the observation that while chick retinal ganglion axon explants 
are sensitive to SHH-mediated cAMP modulation and growth suppression, chick 
neural tube explants are not [56]. Signaling redundancy in specific tissues and/or at 
distinct developmental time points may also account for the apparent lack of Gai 
involvement in HH signaling in some in vivo systems. This possibility is supported 
by work in both Drosophila and cultured vertebrate cells, which show multiple 
activating signals and feed-forward loops originating from SMO following ligand 
stimulation [26, 65, 66]. Further studies are required to ascertain if these additional 
SMO signals are dominant, or can compensate when Gai is compromised.

A SMO-Dependent G-Protein Signaling Network

Based on a series of elegant biochemical reconstitution experiments, heterotrimeric 
G-proteins are proposed to function as ligand-gated switches [53]. Ligand stimula-
tion triggers the GPCR to serve as a guanine nucleotide exchange factor (GEF) for 
its partner heterotrimeric G-protein, allowing the GDP-bound Ga subunit to bind 
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GTP and become activated. Upon activation, Ga was originally thought to dissociate 
from its Gbg subunits and interact with its effector(s) through random collision 
along the plasma membrane. Initially the only known effector of G-proteins was 
adenylate cyclase (AC), the enzyme that converts ATP into cAMP. As such, the Ga 
subunit responsible for stimulating AC, and driving cAMP production was named 
Gas, while the Ga subunit that inhibited AC activity to lower cAMP production 
was named Gai [53]. Ga subunits were originally believed to be attenuated by their 
own intrinsic GTPase activity to return the Ga to its inactive GDP-bound form, 
thereby allowing it to reassociate with its partner Gbg subunits.

The identification of additional G-proteins, the advent of molecular biology, and 
the subsequent investigation of G-protein function in vivo culminated to show that 
more regulators of the G-protein GTPase cycle were required than initially 
predicted by the in vitro model [67, 68]. These regulators consist of non-receptor 
GEFs that promote GDP release, novel inhibitors of GDP release (GDI), regulators 
of G-protein signaling (RGS) that significantly increase the GTPase activity of the 
Ga subunit, and GRKs that function to desensitize the activated GPCR and/or 
propagate receptor signaling [69]. Numerous Ga and Gg subunits have now been 
described and demonstrated to be capable of signaling themselves, regulating their 
own spectrum of specific effectors [69].

The discovery that SMO can signal as a bona fide GPCR has the potential to 
quickly expand the number of signaling proteins regulated by SMO, to include 
those that act as part of a SMO regulated G-protein signaling network (SGN). Thus, 
we anticipate that like other GPCRs SMO might regulate a large network of signaling 
proteins, including other G-proteins, and modifiers and effectors of these 
G-proteins. We discuss below evidence for such a network of regulators, and what 
some of the novel components of this SGN might be.

G-protein modulators.  Although overexpression of activated Gai in vivo resulted in 
strong HH gain of function phenotypes, we found that attenuation of Gai function 
triggered only mild HH loss of function phenotypes [52]. These weak phenotypes 
might indicate that another Ga gene product, of which there are five in Drosophila, 
functions in a redundant manner with Gai during Drosophila development. A likely 
candidate gene for this redundant function is Gao, a member of the Gai family that 
can function redundantly with Gai in other systems [53]. Further, the mammalian 
homologue of the Drosophila Concertina a subunit, Ga12/13, has been implicated 
in SHH-mediated regulation of the small GTP-binding protein Rho [58]. Although 
our survey of three Ga gene products did not implicate Gas in HH pathway 
regulation, a genome-wide screen in cultured Drosophila cells showed that knocking 
down Gas could enhance HH signaling activity [63]. Further work is needed to 
determine if Gas might represent a feedback mechanism that resets the basal level 
of cAMP after HH induces a decrease in cellular cAMP concentration via Gai.

Another group of G-proteins we anticipate will serve as novel SMO effectors are 
the Gbg subunits of its partner heterotrimeric G-protein(s). At a minimum, these 
proteins could function as negative regulators of Gai by acting as GDIs [69]. The 
Gbg subunits might also have the capacity to regulate their own novel set of 
effectors in the HH signaling cascade and/or modulate effectors that they share with 
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their Ga subunits. One such effector, AC, is stimulated by Gbg proteins [69]. 
Therefore, like Gas, Gbg subunits activated in response to HH might be utilized to 
reverse Gai-induced decreases in intracellular cAMP.

GPCR kinases and arrestins.  As discussed above, phosphorylation of GPCRs  
on the cytoplasmic carboxyl-terminal tail is a common event following ligand 
stimulation. Phosphorylation regulates wide-ranging events including receptor 
subcellular localization, association with downstream pathway effectors, and com-
monly serves to recruit b-arrestin type adaptor proteins, which can propagate recep-
tor signaling and/or drive receptor internalization and desensitization [70, 71]. 
Phosphorylation of activated receptors is driven primarily by the GRK family of 
kinases. GRK2 regulation of SMO follows a well-established GPCR paradigm: 
GRK2 phosphorylation triggers b-arrestin recruitment, which drives SMO to 
clathrin-coated pits where it undergoes activation-dependent internalization [72]. 
Interestingly, rather than desensitizing SMO to attenuate transduction of the HH 
signal, GRK-mediated phosphorylation and subsequent b-arrestin recruitment 
appear to regulate positive steps in HH signaling. Co-expression of GRK2 with 
SMO in cultured C3H10T1/2 cells enhances SMO-dependent activation of GLI, 
while GRK knockdown in cultured HEK293 cells attenuates SMO signaling in 
response to the SMO agonist SAG [50, 73]. An in vivo requirement for GRK2 in 
HH signaling was confirmed through studies analyzing zebrafish and mice lacking 
GRK2 function. In both cases, these animals demonstrated developmental pheno-
types consistent with HH loss of function [73].

Drosophila GRK2 (dGRK2) has been demonstrated to be both a positive regulator 
of SMO signaling as well as a HH target gene, suggesting that it functions in a ligand-
induced feed-forward loop [74]. As is the case in vertebrate systems, phosphorylation 
of SMO by dGRK2 results in both b-arrestin recruitment and SMO internalization in 
HH receiving cells [49]. dGRK2 appears to function only on activated SMO that has 
transduced a signal in response to ligand, as dGRK2 overexpression in wing discs 
triggers the removal of SMO from the plasma membrane without attenuating HH 
target gene induction. dGRK2-mediated internalization of SMO is independent of 
PTCH-driven removal of SMO from the plasma membrane in cells not receiving the 
HH signal, further suggesting that dGRK2 functions solely to regulate activated SMO 
[49]. This supports that SMO plasma membrane localization is regulated in a manner 
similar to numerous other GPCRs: in the absence of ligand stimulation, SMO under-
goes a tonic endocytosis that is regulated by PTCH [75], while ligand stimulated 
SMO is internalized by the combined activity of dGRK and b-arrestin [49, 72]. As is 
the case with vertebrate SMO, assembly of the dGRK/b-arrestin complex on dSMO 
appears to be a positive regulatory event, despite it resulting in the eventual removal 
of SMO from the plasma membrane [49, 72]. Taken together, these studies highlight 
the importance of an evolutionarily conserved regulatory complex that assembles in 
response to ligand-induced GRK phosphorylation of SMO, of which b-arrestin 
appears to be paramount.

Protein kinase A.  PKA was originally identified as a cAMP stimulated protein 
kinase, consisting of two regulatory subunits and two catalytic subunits [76].  
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The regulatory subunit inhibits the activity of the catalytic subunit, and this repression 
is released when the regulatory subunit binds to cAMP. PKA phosphorylates a 
broad spectrum of substrates, resulting in many diverse biological outputs. The 
various functions of PKA are thought to be spatially distinct, with PKA binding to 
its substrates and regulators on scaffolding proteins called A kinase anchoring 
proteins (AKAPs) [77]. AKAPs cluster relevant GPCRs, G-proteins, kinases, and 
other downstream effectors to discrete localizations within a cell [69, 77]. COS2 
has been demonstrated to associate with SMO, downstream HH effectors, as well 
as with PKA and CK1 [20, 21, 24, 25]. As such, we hypothesized that COS2 might 
act as a nexus for HH signaling in a manner akin to that of AKAP proteins. We 
tested this hypothesis and noted that Gai and COS2 do associate, and that this 
association was enhanced by HH [52]. It is, therefore, likely that COS2 acts as a 
scaffolding protein to recruit SMO, Gai, and PKA, and likely, analogous to how 
AKAPs function, might also act to locally modulate the levels of cAMP.

PKA was initially shown to function as a negative regulator of HH signaling, 
phosphorylating CI in order to convert it to its repressor form [78, 79]. It was later 
identified as a positive regulator of HH signaling, through its ability to phosphorylate 
and stabilize SMO to result in SMO enriching at the plasma membrane in a highly 
active form [25, 46, 80]. Thus, PKA plays two seemingly opposite roles in HH 
signaling – in the absence of HH it acts to keep the HH pathway in its off-state and 
in the presence of HH functions to convert SMO into its active form. Consistent 
with the important role PKA plays in HH signaling, Costal1 (COS1) mutations, 
which enhance the phenotype of COS2 mutations, were recently shown to encode 
mutations in both the regulatory and catalytic subunits of PKA [81].

It has been suggested that the role PKA plays in HH signaling is cAMP 
independent [78, 79]. This hypothesis was presented to explain the observation that 
a mutant mouse PKA catalytic subunit was able to rescue a PKA null mutation in 
Drosophila. These experiments assumed that the mutant PKA catalytic subunit 
would be unable to associate with the regulatory subunit of Drosophila PKA. 
However, recent demonstrations of SMO coupling to Gai and regulating cAMP 
levels suggests that a cAMP independent role of PKA in HH signaling may not be 
correct [52, 60, 65]. Moreover, the identification of a COS1 mutation encoding a 
PKA regulatory subunit, which modulates HH signaling, is consistent with a cAMP-
dependent activation of PKA [81].

Small-Molecule Modulators of SMO

Mice engineered to lack SHH die shortly after birth and exhibit a wide range of 
developmental defects, including cyclopia [82]. A similar phenotype was 
observed in offspring of livestock that ingested the corn lily Veratrum californica. 
Two groups recognized the similarities between these phenotypes and tested the 
hypothesis that a chemical derived from this plant, cyclopamine, functioned as an 
inhibitor of HH signaling [83, 84]. Cyclopamine turned out to be a potent inhibitor 
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of HH signaling, in  vitro and in  vivo, and was subsequently shown to bind 
directly to the heptahelical bundle of SMO to functionally antagonize its signaling 
capability [85]. Consistent with SMO facilitating a rate-limiting step in HH path-
way activation, numerous small-molecule screens for novel HH inhibitors have 
identified distinct SMO antagonists [9]. Many of these SMO inhibitors act in a 
competitive manner with cyclopamine for binding to SMO, supporting that they 
bind the 7TM segments. However, some of these SMO modulators bind to SMO 
in a non-competitive manner and/or activate SMO, suggesting that SMO may 
have a number of different small-molecule binding sites, as is the case with 
numerous GPCRs [43].

One basic tenet of pharmacology is that drugs themselves do not possess intrinsic 
biological properties, but rather can only act to modify existing biological pro-
cesses [86]. Thus, the identification of small-molecule modulators of SMO 
implied the existence of endogenous SMO modulators. Furthermore, it has been 
known for a number of years that the HH receptor PTCH has significant homology 
with a family of physiological pumps in bacteria, leading to the speculation that 
PTCH functions to regulate the concentration of such an endogenous SMO modu-
lator [13, 87]. Consistent with this homology, a recent study using a mixed-cell 
culturing system provided evidence for a lipophilic molecule being pumped into 
the culture medium in a PTCH-dependent manner [88]. This molecule was identi-
fied as the oxysterol, pro-vitamin D3, which was demonstrated to bind SMO in 
manner similar to that of cyclopamine. Purified pro-vitamin D3 inhibited HH 
activity, both in vitro and in vivo, with a potency similar to that of cyclopamine 
[88]. This was one of the first identifications of an endogenous SMO modulator, 
in this case an antagonist. Two other groups subsequently identified oxysterol 
molecules that functioned as HH activators [89, 90], suggesting that, like numerous 
GPCRs, SMO activity is controlled by endogenous small-molecule ligands.

Future Directions

As the critical role(s) that HH signaling plays in tumor growth and progression 
continues to emerge, and the clinical use of SMO antagonists increases, the impact 
of on-target adverse effects is likely to become evident. For example, one SMO 
antagonist was recently demonstrated to have significant efficacy against medullo-
blastoma [91], but to induce growth defects when administered to young mice [92]. 
This study was performed to reveal potential problems that may be encountered by 
inhibiting a developmentally relevant signaling pathway in a pediatric population, 
the most common class of patients presenting with medulloblastoma [93]. Long 
bones of the limbs of animals exposed to this compound during early development 
were found to be significantly shortened, an effect likely due to specific inhibition 
of Indian HH-regulated bone growth [92]. This observation underscores the 
importance of delineating all the signaling events immediately downstream of 
SMO, as one could anticipate that various classes of small-molecule SMO inhibitors 
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might affect distinct signaling arms. Moreover, classes of SMO antagonists that 
only inhibit a distinct subset of SMO effectors, such as the SGN effectors, might be 
used clinically for specific classes of cancer patients. Ideally, such compounds 
would inhibit the effectors relevant to tumor growth while having minimal impact 
on effectors more relevant to the role HH plays in tissue homeostasis. Such drugs 
would be particularly useful to medulloblastoma patients, whose ability to take at 
least a subset of the SMO antagonist currently in clinical trials would be severely 
compromised by on-target developmental defects.
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