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Introduction

Initially discovered in Drosophila and later found in all vertebrate model organisms, 
the Hedgehog (Hh) family of secreted proteins plays critical roles in both embryonic 
development and adult tissue homeostasis [41, 84]. Numerous human genetic 
disorders and cancer have been associated with aberrant Hh signaling activity 
[41, 63, 84].

Hh acts through a conserved pathway to influence the balance between activa-
tor and repressor forms of the Gli family of zinc finger transcription factors (GliA 
and GliR; Fig. 1.1). While Drosophila has only one Hh and one Gli protein, 
Cubitus interruptus (Ci), mammals have three Hh family members (Sonic hedge-
hog (Shh), Indian hedgehog and Desert hedgehog) and three Gli proteins (Gli1, 
Gli2 and Gli3). In mice, GliR function is mainly derived from Gli3, whereas GliA 
function is primarily contributed by Gli2. Gli1 is a transcriptional target of Hh 
signaling and acts in a positive feedback to reinforce GliA activity. The reception 
of Hh signals is mediated by a 12-span transmembrane protein Patched (Ptc) that 
binds directly to Hh, and a 7-span transmembrane protein Smoothened (Smo) that 
transduces the signal into the cytoplasm. Ptc blocks Smo activity in the absence of 
Hh, allowing the production of GliR/CiR that represses a subset of Hh target genes. 
Binding of Hh to Ptc activates Smo, which blocks GliR/CiR production and pro-
motes GliA/CiA activation. The fundamentals of Drosophila and mammalian Hh 
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signal transduction pathways are similar, though major difference can be found 
in several regulatory steps. There is accumulating evidence suggesting that Hh 
signaling can also exert Gli-independent non-transcriptional effects [94]. In this 
chapter, we review the basics of the Hh signaling pathway and highlight some of 
the recent findings in the field.

Fig. 1.1 Sending and transducing the Hh signal. In Hh-producing cells, full-length Hh is 
autocatalytically cleaved to generate an N-terminal fragment (HhN) modified by cholesterol. 
HhN is palmitoylated by Ski/Skn. Secretion of dual lipid-modified Hh is mediated by Disp. 
HSPGs facilitate Hh movement. Hh signal reception is facilitated by Ihog/Boi in Drosophila 
and Cdo/Boc/Gas1 in mammals, functioning as essential coreceptors. Dally and its mamma-
lian HSPG counterpart GPC3 inhibit Hh pathway activity, whereas Dlp and related molecules 
GPC4 and GPC6 promote Hh signaling. In the absence of Hh, Ptc blocks Smo and full-length 
Ci/Gli2/Gli3 is phosphorylated by multiple kinases and subsequently targeted to ubiquitin/
proteasome-mediated proteolysis through Slimb/bTRCP to generate a truncated repressor 
form (CiR/GliR). In Drosophila, efficient phosphorylation of Ci requires the kinesin-like pro-
tein Cos2, which acts as a molecular scaffold to bridge Ci and its kinases. Hh-binding to Ptc 
blocks its inhibition on Smo. In Drosophila, Ptc inhibition triggers Smo phosphorylation by 
PKA and CKI, leading to the cell surface accumulation and activation of Smo. Smo then 
recruits Cos2-Fu to activate Fu and dissociates Cos2-Ci-kinase complexes to inhibit Ci phos-
phorylation and processing. Furthermore, high levels of Hh stimulate CiA via Fu-mediated 
antagonism of Sufu. Hh signaling induces the expression of nuclear HIB that targets CiA for 
degradation. Fu-Cos2 is also involved in a feedback regulation of Smo phosphorylation. In 
mammalian systems, Kif 7 is the mammalian Cos2 homolog but it does not interact directly 
with mSmo. mSmo phosphorylation requires GRK2. In mammals, Fu homolog is not required 
for Hh signaling and Sufu is a key negative regulator of Hh signaling. Kif 7 and Sufu seem to 
play dual roles in positive and negative regulation of the Hh pathway. In addition to SPOP, 
which targets full length Gli2 and Gli3 for degradation, Numb is involved in Gli1 degrada-
tion. This figure is adapted from [41]
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Hh Signal Transduction

Lipid Modification and Multimerization of Hh

In Hh-producing cells, full-length Hh precursor undergoes autocleavage to release 
an N-terminal fragment (HhN) with a cholesterol moiety covalently linked to its 
C-terminus (Fig. 1.1) [70]. HhN is then palmitoylated near its N-terminus by the 
acyltransferase Skinny Hedgehog (Ski/Skn) [9]. While cholesterol modification 
increases the affinity of Hh for cell membranes and restricts its free dispersal  
[7, 49], dual lipid modifications facilitate the formation of large multimeric Hh  
complexes, allowing Hh to move over a long distance ([98] and references therein). 
HhN forms nanoscale oligomers with heparan sulfate proteoglycans (HSPGs), and 
disruption of HhN oligomerization and HSPGs interaction compromises specifi-
cally long-range signaling [86]. Dispatched (Disp), a transmembrane protein struc-
turally related to Ptc, is required for the secretion of lipidated Hh to the extracellular 
space [2, 7, 55]. A recent study suggested that Disp might also act with Ptc1 to 
mediate the transport of Shh through tissues [29].

Heparan Sulfate Proteoglycans Regulate Hh Signaling

Genetic studies in Drosophila have shown that members of the glypican subfam-
ily of HSPGs, Dally and Dally-like (Dlp), modulate the transport and reception 
of Hh signals [95]. Mutations in these genes as well as those affecting the bio-
synthesis of HSPGs impede the spread of Hh signals and reduce Hh pathway 
activity [50]. HSPGs seem to affect Hh signaling in many different ways 
(Fig. 1.1). In the absence of HSPGs, cell surface Hh diminishes, suggesting that 
HSPGs contribute to the stability of Hh. HSPGs appear to be required for Hh 
movement as a narrow strip of HSPG-deficient cells is sufficient to completely 
block Hh signaling in wild-type cells behind the mutant clone. In addition, Dlp 
is critical for Hh signaling activity and may act as an essential coreceptor [96]. 
A recent study suggested that there are two functional families of glypicans in 
Drosophila and mammals [92]: Dlp and its mammalian counterparts, including 
GPC4 and GPC6, constitute a group that acts positively and cell-autonomously 
for Hh signaling, whereas Dally and other glypicans, such as GPC3, form another 
group that inhibits Hh response. Consistent with this, GPC3 competes with Ptc 
for Hh binding in vitro and inhibits Hh signaling during mouse development [8]. 
It is important to note that HSPGs also regu late other signaling molecules, 
including Wg/Wnt and Dpp/TGF-b [95], and thus these extracellular matrix pro-
teins likely exert differential effects on multiple signaling pathways during devel-
opment and tumorigenesis.
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Modulation of Pathway Activity by Multiple Hh-Binding Proteins

In addition to Ptc, there are multiple Hh-binding proteins identified in Drosophila 
and mammals. Some of them might act as coreceptors of Hh (Fig. 1.1). Genetic 
analysis in Drosophila revealed that the Ihog family of immunoglobin/fibronectin 
repeat-containing proteins, Ihog (Interference hedgehog) and Boi (Brother of Ihog), 
are essential for Hh pathway activity [96, 105]. Mammalian homologs of Ihog/Boi, 
Cdo and Boc, are also positively involved in Shh signaling [81, 97, 102]. The Ihog/
Cdo family proteins bind Hh through fibronectin domains [81, 97], and Ihog can 
enhance Hh binding to Ptc [97], suggesting that they act as Hh coreceptors. Indeed, 
Ihog promotes surface presentation of Ptc, and both Ihog and Ptc are required for 
high-affinity Hh binding, supporting the notion that Ihog and Ptc constitute the Hh 
receptor in Drosophila [105].

Hip1 and Gas1 are two vertebrate-specific Hh-interacting proteins. Hip1 encodes 
a membrane-bound glycoprotein that acts as a negative regulator of Hh signaling 
by competing with Ptc for Hh binding [18]. Hip1 expression is induced by Hh 
signaling and restricts Hh signaling through a negative feedback mechanism 
[17, 36]. On the contrary, Gas1 encodes a GPI-anchored membrane protein that 
promotes Shh signaling [1, 58]. Since Gas1 acts cooperatively with Cdo in the posi-
tive regulation of Hh response [1], it might function as a coreceptor of Hh.

Ptc Inhibits Smo Catalytically

Being the core Hh-binding receptor, Ptc paradoxically functions as an inhibitor of 
Hh signaling and blocks pathway activation in the absence of Hh. The precise 
mechanism by which Ptc regulates Smo remains a mystery. Recent studies suggest 
that Ptc and Hh reciprocally regulate Smo subcellular localization and conformation. 
Ptc and Smo are largely segregated in Drosophila imaginal discs [22] and they do 
not form stable protein complexes [43, 79]. Cultured cell experiments suggested that 
Ptc inhibits Smo at a substochiometrical concentration [79]. Ptc is homologous to 
the resistance-nodulation-division (RND) family of prokaryotic proton-driven trans-
porter, and might function by transporting an endogenous small molecule Smo 
agonist or antagonist across membranes, as conserved residues in RND-like trans-
porters are essential for Ptc function [79]. Indeed, Ptc regulates trafficking of lipo-
proteins through endosomes [44]. Several natural and synthetic small molecules can 
inhibit or activate Hh pathway at the level of Smo [10, 11]. In cultured cells, Ptc 
induces the secretion of pro-vitamin D3, and both pro-vitamin D3 and vitamin D3 
inhibit Hh signaling at high concentrations [6]. Oxysterols, which lie downstream of 
vitamin D3 in the cholesterol biosynthetic pathway, act as positive regulators of Hh 
signaling at a level upstream of Smo [21, 25]. Whether oxysterols or related mole-
cules function as physiological Smo regulators remains to be determined. A recent 
genetic study in Drosophila suggested that the phospholipid, phosphatidylinositol-4 
phosphate (PI4P), is a target of Ptc action. In Drosophila cells, PI4P promotes Smo 
accumulation and Hh pathway activation, and Ptc restricts the production of PI4P by 
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regulating its kinase/phosphatase directly or indirectly [98]. Exactly how Ptc 
 regulates PI4P levels and whether oxysterols or lipoprotein-derived lipids are linked 
to the effects of PI4P on Smo await further investigation.

Regulation of Smo Trafficking and Conformation

In Drosophila, Ptc restricts Smo cell surface expression by promoting endocytosis 
and degradation of Smo. Hh induces opposite changes in the subcellular distribution 
of Ptc and Smo, with Smo accumulating on the cell surface and Ptc entering the 
cytoplasm [22, 39, 106]. How Hh and Ptc reciprocally regulate Smo trafficking 
is not clear, but it is mediated at least in part by Smo phosphorylation.  
Phosphorylation-deficient Smo variants fail to accumulate on the cell surface in 
response to Hh, whereas phospho-mimicking Smo variants constitutively accumu-
late on the cell surface [39, 104].

A similar reciprocal trafficking relationship is observed for mammalian Ptc1 and 
Smo but this occurs in the primary cilium, a microtubule-based cell surface protru-
sion present in most mammalian cells (Fig. 1.2). Genetic studies in mice have 
implicated primary cilia as essential cellular organelles for mammalian Hh signaling. 

Fig. 1.2 Hh signaling and primary cilia. (a) In the absence of Hh, Ptch1 localizes to the primary 
cilia and inhibits Smo from entering primary cilia. Due to high retrograde transport activities, 
little or low levels of full length Gli2 and Gli3 are detected at the ciliary tip. Gli3 and Gli2 (to a 
lesser extent) are processed to form truncated repressors, which enter the nucleus to inhibit a 
subset of Hh target genes. (b) Hh binding of Ptch1 leads to the elimination of Ptch1 from the 
primary cilia and, subsequently, the entry of Smo into primary cilia. Full length Gli2 and Gli3 are 
found at the ciliary tip probably due to high anterograde transport activities. By ill-defined pro-
cesses, Gli2 and Gli3 are converted into active forms, which promote the transcription of Hh target 
genes. (c) Deletion of primary cilia abolishes the processing as well as activation processes of Gli2 
and Gli3. In addition to regulating Smo ciliary localization, Hh also induces a conformational 
change of Smo essential for its activation. See text for details
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Mutations affecting the intraflagellar transport (IFT) machinery or other  components 
that are involved in the assembly and function of cilia affect Hh  signaling in several 
developmental contexts [30]. In the absence of Hh, Ptc localizes to cilia and pre-
vents Smo from accumulating in the cilia; binding of Hh to Ptc triggers reciprocal 
trafficking of Ptc and Smo, with Ptc moving out of and Smo accumulating in the 
cilia [20, 72]. Ciliary localization of Smo correlates with Hh pathway activation: 
both an oncogenic Smo mutation and Smo agonists, such as SAG and oxysterols, 
promoted accumulation of Smo in the cilia [20, 72], and mutation of a conserved 
ciliary localization motif in Smo prevented its ciliary accumulation and abolished 
its signaling activity [20]. How Ptc restricts Smo ciliary accumulation is not clear. 
Smo may constantly move in and out of the cilia in equilibrium by binding to 
anterograde and retrograde IFT motors and Ptc may tilt this balance. In support of 
this model, b-arrestins promote Smo ciliary localization by mediating its association 
with the anterograde IFT motor kinesin-II in response to Hh [48], and Smo is 
enriched in the cilia of cells defective in retrograde transport [46, 64]. However, 
recent studies indicated that ciliary entry of Smo does not require microtubule-
dependent cytoplasmic motors [46], and that Smo moves through a lateral transport 
pathway from the plasma membrane to the ciliary membrane [62].

Ciliary localization of Smo is not sufficient for its activation [3, 46, 73, 89], 
and Smo activation at the cilia likely may involve additional steps including con-
formational change [104]. FRET analysis demonstrated that both Drosophila and 
mammalian Smo proteins undergo a conformational change in response to Hh 
[104]. In response to Hh stimulation or Ptc inhibition, Drosophila Smo is phospho-
rylated by protein kinase A (PKA) and casein kinase I (CK1) at its C-terminal tail 
(C-tail) [4, 22, 39, 99], which triggers a conformational switch and increased prox-
imity of two Smo C-tails within a Smo dimer [104]. Mechanistically, these phos-
phorylation events activate Smo by counteracting multiple Arg clusters that 
maintain Smo in a closed inactive conformation [104]. Mammalian Smo (mSmo) 
C-tail does not harbor PKA/CK1 sites, but does contain a long stretch of basic resi-
dues that inhibits its activity; and mSmo undergoes a similar conformational 
change upon Shh stimulation [104]. mSmo is phosphorylated either directly or 
indirectly by the G protein-coupled receptor kinase GRK2, which positively regu-
lates Hh signaling [14, 59, 69], raising the possibility that GRK2 and related kinases 
may substitute for PKA and CK1 to regulate Smo conformation and trafficking in 
vertebrates.

Downstream of Smo: G Protein and Cos2/Kif 7-Ci/Gli  
Signaling Complex

G protein Ga
i
 is activated by Smo in both Drosophila and mammalian cultured cells 

[66, 71], and Ga
i
 is required for the expression of Hh target gene decapentaplegic 

(dpp) in Drosophila wing imaginal discs [66]. However, whether Ga
i
 plays a physio-

logical role in Shh signaling is not clear, as inhibition of Ga
i
 activity had minimal 

effects on Hh-dependent ventral neural tube patterning in chick embryos [53].
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Smo likely signals through both Ga
i
-dependent and -independent mechanisms. 

In Drosophila, Smo directly interacts with a multi-protein signaling complex con-
taining Ci, the kinesin-like protein Costal 2 (Cos2), and the Ser/Thr protein kinase 
Fused (Fu) [38, 54, 65, 75]. Cos2 serves as a molecular scaffold to bring Ci and Fu 
together with PKA, GSK3, and CK1, leading to efficient phosphorylation and pro-
teolytic processing of Ci [103]. Activated Smo attenuates Cos2-Ci-kinase complex 
formation, thus inhibiting Ci phosphorylation and processing [74, 103].

mSmo does not interact directly with the vertebrate Cos2 homologs Kif 7 and Kif 27 
[83]. However, recent studies demonstrated that Kif 7 is a functional homolog of Cos2. 
Kif 7 forms complexes with Gli proteins and its deletion or mutation leads to aberrant 
regulation of Hh signaling [16, 26, 51]. Cos2 can move along the microtubules and its 
motor activity appears to be required for Ci processing [28]. Similarly, Kif 7 function is 
dependent on intact IFT machinery and Hh signaling promotes ciliary localization of 
Kif 7 [26]. Furthermore, Gli3 processing is compromised in Kif 7 null embryos [16, 26, 
51]. In Drosophila, Ga

i
 is associated with Cos2 upon Hh stimulation [66]. It remains to 

be determined whether Ga
i
 or related proteins serve as a link between Smo and Kif7.

Control of Gli Protein Degradation and Processing

Ci/Gli activity is regulated by multiple mechanisms, including phosphorylation, 
proteolysis, and cytoplasmic/nuclear shuttling. In the absence of Hh, full-length Ci/
Gli protein can be proteolytically processed into a truncated repressor (Ci, Gli3 and, 
to a lesser extent, Gli2) or degraded (Gli1 and Gli2). Hh signaling blocks the pro-
duction of the truncated repressor, and stimulates nuclear translocation and activa-
tion of accumulated full-length Ci/Gli. Ci/Gli processing requires the activities of 
PKA, GSK3, and CK1 as well as the F-box protein Slimb/b-TRCP of the SCF 
ubiquitin ligase complex [42]. PKA, GSK3, and CK1 sequentially phosphorylate 
multiple sites in the C-terminal region of Ci/Gli, resulting in the recruitment of 
Slimb/b-TRCP [40, 76, 80, 87]. A processing determinant domain (PDD) located 
between the Zn-finger DNA-binding and Slimb/b-TRCP-binding domains of Ci/
Gli appears to be critical for proteasome-mediated degradation that selectively 
removes its C-terminal half. Deletion of this domain from Ci blocks the production 
of CiR [61] and renders complete degradation of Ci [77]. Gli3 is processed more 
efficiently than Gli2 into a truncated repressor form probably due to a more potent 
PDD, and Gli1 lacks a PDD and does not exhibit repressor activity [68].

In mammalian cells, Gli2 and Gli3 are localized to the tip of primary cilia in an 
Hh-dependent manner (Fig. 1.2; [13, 33, 46, 90]). Upon Hh stimulation, Gli2 shifts 
from a predominantly cytoplasmic localization to the distal tip of the cilium and 
within the nucleus [51]. While Gli3R is predominantly nuclear and not found at the 
ciliary tip [33, 90], Hh stimulation leads to its disappearance and accumulation of 
full-length Gli3 (Gli3FL) at the tip of the cilium as well as in the nucleus [103]. 
Importantly, Hh signaling also promotes degradation of full-length Ci/Gli2/Gli3 
through an ubiquitin ligase containing HIB/SPOP [13, 45, 88, 90, 100, 101], and 
this mechanism serves as a negative feedback loop to tune down Hh signaling 
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 activity in Drosophila [45, 100]. Gli1 is not a strong substrate for SPOP [13, 101] 
and its degradation involves Numb, which acts in conjunction with the E3 ubiquitin 
ligase Itch [23]. Gli3R is also degraded by the proteasome but this likely utilizes a 
different ubiquitin ligase system [90]. Control of Gli protein degradation might play 
a central role in preventing tumorigenesis [23, 35].

The exact locations for phosphorylation and proteasomal degradation/processing 
of Ci/Gli proteins are not known. As the proteasome is enriched at centrosomes that 
give rise to the basal body underneath the primary cilia [91], Gli proteins might be 
phosphorylated at primary cilia and then targeted to the centrosome-associated pro-
teasomes for proteolysis. A recent study showed that, in the presence of Shh, the 
inactive catalytic subunit of PKA is enriched in the cilium base of proliferative  
cerebellar granular neuronal precursors and that this localization of PKA is essential 
for Shh-induced proliferation [5]. These observations raise an intriguing possibility 
that the cilium base might serve as the prime site for phosphorylation and degradation/
processing of Gli proteins. In the absence of Hh, the primary cilium may act as a 
“cAMP gun” to locally activate PKA. Smo might activate Ga

i
 in the ciliary mem-

brane, which in turn represses the adenyl cyclase in the cilium, leading to a local 
drop of cAMP level and PKA activity. This model is consistent with the genetic data 
that GliA and GliR levels are affected in various mutant backgrounds with defective 
IFT and/or ciliogenesis. How Gli proteins in the cilium are linked to the transcrip-
tional activation of Hh target genes in the nucleus remains unknown. A recent study 
has highlighted the involvement of cytoplasmic microtubules in ciliary entry of Gli2, 
but not of Smo [46]. Full-length Gli proteins may need to be “activated” at the cilia 
before they translocate to the nucleus to activate Hh target genes.

Sufu: A Key Regulator of Mammalian Hh Signaling

A striking difference between Drosophila and mammalian Hh signal transduction is 
the divergent roles of Fu and Sufu [41]. In Drosophila, fu is a positive regulator 
essential for Hh signaling, whereas Sufu is a genetic suppressor of the fu mutation, 
but its loss does not elicit ectopic Hh signaling and has minimal effects on develop-
ment. However, in mice, Fu is not involved in Hh signaling [12, 60] and loss of Sufu 
has profound effects on Hh signaling with ectopic pathway activation [19, 78, 83]. 
Sufu may have assumed a major inhibitory function in the mammalian Hh pathway 
due to the existence of multiple Gli proteins. To inhibit GliA function, Sufu could 
impede Gli nuclear localization [24] or suppress Gli activity by recruiting a corepres-
sor complex [15]. Recent studies indicate that Sufu plays a major role in Gli3 pro-
cessing [13, 34, 37, 47]. Furthermore, Sufu also plays a positive role in mammalian 
Hh signaling through stabilization of Gli2, in part through counteracting the activity 
of SPOP [13, 101]. Why Fu kinase is not involved in mammalian Hh signaling? One 
possibility is that the role of Fu kinase in Drosophila Hh signaling is replaced by 
other protein kinases in mammals. Indeed, multiple protein kinases, including 
DYRK1a, DYRK2, MAP3K10, ULK3 and Cdc2l1, have been identified to influence 
Gli activity in mammalian cultured cells [27, 56, 57, 82].
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Unresolved Questions in Mammalian Hh Signaling

Numerous studies have revealed the differential utilization of GliA and GliR in 
various developmental systems during mammalian embryogenesis [41]. While 
GliA levels are central to cancer formation [35], the involvement of GliR has been 
implicated by several recent reports linking primary cilia to Hh pathway-dependent 
tumorigenesis [32, 93]. Though deletion of primary cilia blocks the ability of an 
oncogenic form of Smo (SmoM2) to induce tumorigenesis, it promotes tumorigenesis 
induced by activated Gli2, Gli2DN. Since primary cilia are essential for Gli3 
processing, these results suggest that reduction of GliR levels may accelerate 
Gli2DN-induced tumorigenesis. Sufu and Kif7 have different functional require-
ments for IFT or primary cilia [13, 26, 37]. It is possible that they function in 
separate processes downstream of Smo and deletion of primary cilia may disrupt 
Kif 7 function, leading to increased tumor incidence in the above studies. Further 
studies will be needed to decipher the distinct as well as potentially overlapping 
functions of Sufu and Kif 7 in Hh signaling during development and tumorigenesis.

Several genomic scale studies on Gli target genes revealed that though many 
target promoters contain a consensus related to the sequence TGGGTGGTC, other 
target genes may not require this consensus sequence for Gli-dependent transcrip-
tional regulation [31, 85]. Whether GliA or GliR regulates these genes through 
interactions with other transcription factors or cofactors remains to be determined. 
Furthermore, there is increasing evidence that Hh exerts its effects through 
Gli-independent non-transcriptional mechanisms [52, 67, 94]. However, the 
involvement of this Gli-independent Hh signaling in development and tumorigen-
esis has not been studied. As detailed in the rest of this book, Hh signaling plays 
major roles in a wide variety of tumors and it can act via both autocrine and paracrine 
mechanisms. Importantly, the requirement of Hh pathway activity in tumor forma-
tion and growth seems to differ largely in a context-dependent manner. Further 
understanding of Hh signal transduction mechanisms at different levels along the 
pathway will certainly be rewarding to current efforts in targeting the pathway for 
cancer therapy.
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