
Chapter 8
Sensing Human Walking: Algorithms
and Techniques for Extracting
and Modeling Locomotion

Franck Multon

Abstract This chapter reports the most popular methods used to evaluate the main
properties of human walking. We will mainly focus on: global parameters (such as
step length, frequency, gait asymmetry and regularity), kinematic parameters (such
as joint angles depending on time), dynamic values (such as the ground reaction
force and the joint torques) and muscle activity (such as muscle tension). A large set
of sensors have been introduced in order to analyze human walking in biomechanics
and other connected domains such as robotics, human motion sciences, computer
animation… Among all these sensors, we will focus on: mono-point sensors (such
as accelerometers), multi-point sensors (such as flock of sensors, opto-electronic
systems and video analysis), and dynamic sensors (such as force plates or elec-
tromyographic sensors). For the most popular systems, we will describe the most
popular methods and algorithms used to compute the parameters described above.
All along the chapter we will explain how these algorithms could provide original
methods for helping people to design natural navigation in VR.

8.1 Introduction

Measurement of human motion has a long history since J.E. Marey and E. Muybridge
have proposed chronophotography to record animals in motion [20]. Motion was then
expressed as a sequence of poses which is still widely used to describe human motion
nowadays. Numerous sensors have been introduced to capture human motion and
especially human walking. In this chapter we propose a summary of the most studied
parameters in human walking and direct/indirect methods to obtain them.

Human walking is one of the most commonly used motion in everyday life and it
has been studied from a long time. However it is still a very active field of research
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in many scientific domains, including biomechanics, neurosciences, robotics and
computer animation. One of the key points is to extract the most relevant parameters
of human walking according to the specific requirements of a given application. In
this section, we propose a summary of the most popular parameters and give some
methods to retrieve them with various sensors.

Nowadays, there are many possible devices to measure human motion and, con-
sequently, human walking. Most of them are generic but some devices have been
specifically designed for human walking. In virtual reality, capturing the intentions
of the user is necessary in order to navigate properly in the simulated environment or
to animate an avatar. While motion capture devices were very expensive and difficult
to use in the past, it is now possible to use cheap and easy-to-use systems such as
the Wii-mote (product of Nintendo) or the Kinect (product of Microsoft) devices.
Whatever the system, the key issue is to design algorithms to extract the relevant
parameters of the user’s gait that enable the system to react realistically.

The first part of this chapter is dedicated to global parameters such as walking
speed, step length, frequency and global walking trajectory. The second part of the
chapter focuses on kinematic and dynamic parameters such as joint angles, torques
and muscle activity. We then conclude and give a summary of the studied parameters
and their potential use in walking in VR.

8.2 Sensing and Interpreting Global Gait Parameters

Human being can be represented by more or less complex models. The simplest one
consists in considering human being as a point which corresponds to his center of
mass. Analyzing human walking with such a model consists in dealing with global
gait parameters such as trajectory, velocity, step length, and frequency. It provides
us with relevant information about the global performance of gait. As described in
Chap. 3 those parameters enable us to associate the real-time performance of the user
with multisensory feedbacks, such as adapting the movement of the virtual camera
according to velocity when navigating in virtual environments [35]. In this section,
we describe how these parameters are defined and measured.

8.2.1 Step Length and Frequency

When dealing with human walking, one can focus on global parameters such as
step length SL and frequency SF. These two parameters are in relation with walking
speed V:

V = SL ∗ SF

As the model is restricted to the user’s center of mass, walking speed can be approx-
imated by integrating the signal delivered by an accelerometer placed on the pelvis

http://dx.doi.org/10.1007/978-1-4419-8432-6_3
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(assuming that the center of mass is close to the Pelvis). It’s thus possible to deduce
the instantaneous velocity and to drive a virtual camera in the virtual world in navi-
gation tasks [35]. However this approach has two main limitations. Firstly it assumes
that acceleration is noise-free which is not true with common accelerometers. As a
consequence velocity computed this way may become false after a moment. Secondly
the initial velocity is required when computing V (t):

V (t) =
(

n∑
i=0

a(ti ) ∗ Δt

)
+ V(0)

where Δt is the sample time, V (0) is the initial velocity, n is the number of samples (tn
corresponds to t) and a stands for accelerations provided by the accelerometer. Any
error in estimating V (0) could thus lead to an error in V (t). One has to notice here
that users generally have a limited space to move whereas the virtual environment
could be very large. To solve this problem, one of the most famous solutions consists
in using an instrumented treadmill. In that case, forward speed could be delivered by
the treadmill while the other components could be given by the accelerometer.

An alternative consists in detecting footstrikes in the signal delivered by the
accelerometer and to deduce step frequency SF. If we assume that the step length is
constant and relative to the user’s size, it is thus possible to deduce speed. The result-
ing speed is less noisy than integrating acceleration and is not subject to deviations
in time. However it does not provide accurate speed as the step length is not actually
measured.
Other systems such as the GAITRite (see http://www.gaitrite.com) have been intro-
duced to measure the step length and frequency when walking along limited dis-
tances. It consists of a cable which is attached to the user’s ankles and which length
is measured at a predetermined sampling frequency. It is widely used in medicine
because of its simplicity (especially no calibration is required). In addition to SL and
SF, the system returns the instantaneous distance between a fixed reference frame
and the two ankles. It is thus possible to analyse the longitudinal trajectory of the
ankles within the gait cycle. However, it is limited to straight line walking in a limited
space (generally a few meters).

Recording step length and step width is more difficult in curved walks. As
described in Chap. 3 these parameters are still difficult to define in a strict manner.

8.2.2 Curvature and Non-linear Walking

Retrieving the curvature of non-linear walking is still a complex problem. Indeed,
the instantaneous global orientation of the body is difficult to define. As explained
in Chap. 3 some authors focuses on the footprints, the orientation of the pelvis, the
torso or the head. It leads to different results for determining the global trajectory
of non-linear walking. Hence, positioning a unique sensor on the body to accurately
analyze the instantaneous orientation of the body in curved walking is still debated.

http://www.gaitrite.com
http://dx.doi.org/10.1007/978-1-4419-8432-6_3
http://dx.doi.org/10.1007/978-1-4419-8432-6_3
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The most popular approach consists in tracking the orientation of the pelvis. Hence
placing a sensor on the pelvis, such as inertial, magnetic or gyroscope sensors (or
a combination of these sensors), could provide a good compromise. Indeed, some
authors have shown that the pelvis orientation can provide an early prediction of the
running orientation of a rugby player even in deceptive motions where the subject
tries to provide fake information to an opponent [4]. The pelvis’ trajectory is thus
strongly linked to the actual orientation of the user while other body parts may also
perform other tasks while walking.

In the same way, detecting a change in walking direction is very difficult. Indeed,
the trajectory of the center of mass and of a point placed on the pelvis could be
viewed as a series of arcs of circles, even for straight-line walking. Some authors
[24] have proposed to model the natural sinusoidal trajectory of the center of mass as
a sequence of arcs of circles (see Fig. 8.1). This model assumes that the body could
be viewed as an inverted pendulum which basis is the contact foot.

The authors defined a statistical relation between speed and curvature for straight-
line walking. Thus turning could be determined when a new point in the speed-
curvature space does not fit this relation.

This is a very important issue in immersive environments as we need to detect a
subtle change in direction when the subject is walking in order to react in a proper
manner when he wishes to change the walking direction. In some works in virtual
reality, it leads to exaggerating some indices such as the head inclination in Walk-
In-Place interfaces [34].

As shown by many authors [28] the head is viewed as a stable inertial platform
which acceleration profile is unchanged even for various gait styles [11] and for
uneven terrains [21]. To stabilize this inertial platform, the orientation of the head
changes in direction 200 ms before the remaining of the body turns. In case of natural
walking, the coordination between head and pelvis could enable us to early determine
the orientation of the next step. However, in VR, this could be a problem if the screen
is static and placed in front of the user. As the user will orient his head in the direction
of the screen this natural behavior disappears. Because of constraints due to the visual

Fig. 8.1 The trajectory of the center of mass is modeled as a sequence of arcs of circles which
parameters are the radius of gyration Ri and the velocity (represented here by the angle θi =
(Vi ∗ duration)/Ri (where Vi is the average speed within the ith arc). Adapted from [24]
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feedbacks and other interaction devices, it seems to be difficult to address this problem
without introducing metaphors.

An alternative might be using a force plate under the feet which can bring relevant
information of the user’s gait. In biomechanics, force plates are used to measure the
ground reaction force (GRF) below the feet, the moment of this force around the
main ground axes and the location of the instantaneous center of pressure (COP).
The ground reaction force is used to compute the acceleration of the center of mass
if no other force than gravity and GRF occur. For the global mechanical system
(restricted to its center of mass):

W + GRF = mq̈

where W stands for the body weight, m is the mass and q is the center of mass
position. If we can estimate q and its derivative at some times (especially the initial
value but it is sometimes possible to get these values for each foot-strikes event) it
is thus possible to integrate the signal:

q(t) = 1

m

∫ ∫ t

t0
W + GRF(τ )dτ 2

where t0 states for the beginning of the studied sequence. Practically, the initial
center of mass velocity q̇(t0) and position q(t0) are required to compute q(t). As a
consequence these two values should be either measured or imposed at the beginning
of the motion (such as starting straight with a null velocity). With a simple Euler
integration scheme, this equation becomes:

q̇(n) = q̇(0) +
n∑

i=1

(
1

m
(W + GRF(i))�t

)

q(n) = q(0) +
n∑

i=1

q̇(i)�t

where �t stands for the sampling frequency.
A force plate is generally calibrated at the beginning of the sequence so that

the value is set to zero when nothing is placed over it. However, if the user jumps
over the forceplate or goes out and in several times, the initial calibration could be
inappropriate. From the numerical point of view, we obtain:

q̇(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̇(0) +
ts−1∑
i=1

1
m (W0 + GRF (i)) × �t i f t < ts

q̇(0) +
ts−1∑
i=1

1
m (W0 + GRF (i)) × �t +

n∑
i=ts

1
m

(
Wts + GRF(i)

) × �t
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where W0 is the initial body weight measured prior to an important strike, ts is
the frame number when the strike occurs, and Wts is the body weight after foot
trike. It is thus possible to deduce oscillations of the center of mass. It could be
used in Walk-In-Place interfaces based on GRF measurements (such as using a
Nintendo Wii Balance Board). Information about other axes provides interesting
information for navigation, such as the velocity in the forward direction or lateral
displacements involved in rotations. However, they are more difficult to use in virtual
reality as they require the subject to move in all the directions which generally
leads to going outside the measurement area in a very near future (generally the
next step).

One has to notice here that the two feet must be placed over the forceplate surface
to enable correct estimation of the above displacements. It is also possible to use
footscan devices (from RSscan company http://www.rsscan.com) to measure the
pressure below the feet. It consists in introducing a sole in the shoe which enables the
user to move freely in the real environment. This type of device delivers the pressure
in space and time which enables us to compute the resulting vertical component of
GRF. The other components cannot be accurately deduced but the location of the
center of pressure (COP) may help to guess how this force is oriented in the other
main directions.

COP can also be deduced with a forceplate if this latter provides 3D GRF and the
corresponding global momentum M over the ground. M and GRF are linked by:

{
Mx = GRFz × yCOP − GRFy × z0
My = −GRFz × xCOP + GRFx × z0

where xCOP and yCOP stand for the local coordinates of the COP in the forceplate
reference frame, and z0 stands for the vertical coordinate of the forceplate surface.
It becomes: {

xCOP = − (My−GRFx ×z0)

GRFz

yCOP = (Mx +GRFy×z0)

GRFz

In quasi-static condition, it is possible to assume that the average value of COP
is the projection of the center of mass on the ground. Hence if COP moves the
pose of the user has changed, for example to lean in a given direction. This type
of information has been used in biomechanics to determine if a subject was turning
while walking [24, 34]. It can thus be used to indicate a main direction so that the
user could be viewed as a kind of joystick. It is used in some Nintendo Wii games
based on the Balance Board device (one has to notice that this device is not a force
plate as it does not provide the system with 3D GRF and Momentums ; it provides the
vertical component of the GRF and the location of the COP). The Joyman interface
[19, 26] is an extension of the idea of using the user’s body as a joystick.

http://www.rsscan.com
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8.2.3 Gait Asymmetry and Regularity

As stated above, walking is a quasi-cyclic and almost symmetrical motion. Measuring
gait asymmetry and loss of regularity is widely used for diagnosis [17], especially in
double-tasks protocols with cognitive loads (such as counting down while walking).
There are two main methods to measure symmetry. The simplest one consists in
computing a ratio between left and right values [30]:

[
(R − L)

0.5
× (R + L)

]
× 100

where R and L are respectively measurements performed on the right and the left
respectively (such as step length or step frequency). The other approach consists in
computing auto-correlation of the studied signal [2]. This signal is generally twice
the frequency of the stride. Hence auto-correlation of this signal between one step
and the following will provide information on asymmetry. Auto-correlation between
several strides will provide information on regularity.

As described above irregularity and asymmetry mainly occur when the user
has to perform a cognitive activity while walking. In immersive systems based on
metaphors, the cognitive load of the user may be different compared to natural walk-
ing. Regularity and symmetry may then be affected even if it has not been demon-
strated in VR yet.

8.3 Joint Angles, Torques and Muscle Activity

In the previous section human body was modelled as a point (his center of mass). We
have seen that it could provide relevant information about the main gait pattern, such
as speed, step length and frequency. In VR this type of information could be used to
globally adapt the motion of the virtual camera or to capture basic gait parameters
to drive the simulation. However more accurate information could be required in
order to drive an avatar or capture more accurate information about the user’s gait.
To this end, it is necessary to have multi-point measurements and to capture more
complex parameters, such as joint angles and position, but also to compute dynamic
parameters such as joint torques or muscle activation patterns.

8.3.1 Measuring Joint Displacements

The most popular method to get joint position depending on time is to track visual
markers placed over standardized anatomical landmarks. The International Society
of Biomechanics (ISB) has standardized this markers’ placement in order to enable
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people to compare their results to previously published ones [39, 40]. The key idea is
to place markers on accurate anatomical position where skin markers do not signifi-
cantly slide over the bones. The problem is then to retrieve the location of the internal
joints according to the external position of the markers. In this chapter we describe
the methods commonly used to process motion capture data in order to compute joint
centers and angles.

Let us consider that the position of all the markers mi is known (assuming that there
is no missing information due to occlusions) as shown in Fig. 8.2. There are mostly
three approaches to deduce the joint centers according to this marker placement. The
first approach consists in applying regressions that express joint centers as a linear
function of external markers’ positions [12, 29]. For example, the right shoulder joint
rShoJC could be expressed as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rShoJCx = RSHOx

rShoJCy = RSHOy + 0.43 cos(
11π

180
)||CLAV − C7||

rShoJCz = RSHOz − 0.43 cos(
11π

180
)||CLAV − C7||

where RSHO, CLAV and C7 are markers depicted in Fig. 8.2.
The main advantage of this type of method is simplicity. However this approach

is not very accurate as it is based on average values while anthropometric data in
humans can vary very significantly from one user to another.

The other approach, named functional approach, consists in searching for the joint
centers that would generate the observable displacements [5, 7, 9]. For example, the
right hip joint (rHip) is assumed to be a ball and socket. Its joint center should be the
center of a sphere that covers the various positions of a point of the femur expressed
in the pelvis reference frame. For example, any position of RKNE should satisfy the
following constraint in the pelvis reference frame:

(
RKNEx − rHipx

)2 + (
RKNEy − rHipy

)2 + (
RKNEz − rHipz

)2 − l2 = 0

where l is the distance between the hip joint center and RKNE (length of the femur).
Thus recovering the joint center consists in solving an optimization problem:

argminrHip,l

[(
RKNEx (i) − rHipx

)2 + (
RKNEy(i) − rHipy

)2

+ (
RKNEz(i) − rHipz

)2 − l2
]2

Of course, to find a good solution, RKNE should have large displacements in all the
possible directions, in order to cover most of the sphere’s surface. As a consequence,
this method is generally applied to “range of motion” protocols where the user is
moving each joint in all directions and with large displacements. However if the hip
joint is actually not a ball and socket joint, the result could be inaccurate. Because of
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Fig. 8.2 Common marker placement used in Biomechanics [39, 40] to retrieve joint centers and
to use anthropometric tables

skin displacements artefacts, this method will also provide the system with virtual
bones that could change in length at each frame.

Another approach consists in generalizing the above idea to the whole skeleton.
Let us consider that there exists a model of the skeleton based on rigid bodies and
perfect joints (such as ball and socket and pivot joints). Knowing the external markers
m∗

i in each local reference frame, the distance between m∗
i and mi depends on the size

of the body segments and the angles θ = {θ1 . . . n} (where n is the number of degrees
of freedom of the model). If there are enough markers on the body compared to the
number of unknowns (i.e. number of degrees of freedom and of body segments), the
problem can again be rewritten as a global optimization problem [15]:

argminθ,l
1

2

(
m − m∗)T (

m − m∗) wi th m∗ = f (θ, l)
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where l is the vector containing the lengths of all the body segments, m is the number
of markers and f is the kinematic function that computes the estimation of a marker
placement according to the angles and the lengths of each body segment. As a result,
joint angles are known together with the length of each body segment. Again the
hypothesis here is that the joint are perfect mechanical joints.

In most of the applications in VR high accuracy is not needed when measuring
joint positions in time. However animating avatars with such inaccurate data generally
leads to artifacts, such as foot skating, flying avatars or collisions with the ground.

8.3.2 Measuring Joint Angles

In most applications involving motion capture data, measuring joint position is only
a first step. Avatars are driven with joint angles and not with positions. Magnetic or
inertial motion capture systems provide the user with global orientation of sensors
attached to body segments. However, because of inaccuracies, local displacements
of the sensor on the body segments and external perturbations, the data provided by
these systems should be corrected (see [3, 22, 33] for the specific case of magnetic
sensors).

Let us consider now how to compute joint angles according to local reference
frames defined either thanks to the ISB recommendations [39, 40] or the H-ANIM
norm (see http://www.h-anim.org for a description). If we use the Euler-like angles
for a ball-and-socket joint, the problem consists in finding the three angles θx, θy and
θz that transform the father reference frame Fi (such as the one attached to the pelvis)
to the child one Fj (such as the one attached to the thigh), as depicted in Fig. 8.3.

Fig. 8.3 Local reference
frames associated with two
adjacent body segments: Fi
the parent segment (such as
the pelvis) and Fj the child
segment (such as the thigh)

http://www.h-anim.org
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Let � be the global reference frame. Let Xi, Yi and Zi (resp. Xj, Yj and Zj) be
the three axis of reference Fi (resp. Fj). Let us define:

Ti→� = (
Xi Yi Zi

)
Tj→� = (

X j Y j Z j
)

where Ti→� (resp. Tj→�) stands for the transformation matrix from the local frame
Fi (resp. Fj) to the world �. These matrixes can be computed according to the external
markers and joint centers for each time:

Tj→� = Tj→i × Ti→�

where Tj→i stands for the transformation matrix from Fj to Fi, i.e. the transformation
due to the action of the joint between Fi and Fj. Tj→i is thus given by:

Tj→i = Tj→� × T Ti→� =
⎛
⎝ t11 t12 t13

t21 t22 t23
t31 t32 t33

⎞
⎠

In the numerical model, this matrix is the product of three elementary symbolic
matrixes associated with each degree of freedom and which depends on the chosen
sequence of Euler angles. Let Tx, Ty and Tz be the elementary matrixes for a rotation
along the X, Y and Z axes respectively. From the theoretical point of view, for a ZYX
sequence (recommended by the International Society of Biomechanics), Tj→i could
also be expressed as the product:

T ∗
j→i = Tx × Ty × Tz

The resulting matrix has the following shape:

T ∗
j→i =

⎛
⎝ cos

(
θy

)
cos (θz) − cos (θy) ∗ sin (θz) sin (θy)

· · · · · · − cos
(
θy

)
sin (θx )

· · · · · · cos (θx ) cos (θy)

⎞
⎠

As T∗
j→i should be equal to Tj→i:

θz = −atan

(
t12

t11

)

θx = −atan

(
t23

t33

)

θy = atan

(
t13 × cos(θz)

t11

)
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When using this type of approach, the results are very sensitive to the well-known
Gimble-Lock problem. In the above equation, if θy = π /2, then the denominator
of the three equations is zero which leads to numerical problems. Other researchers
use quaternions or exponential maps to avoid this problem. Whatever the selected
formalism for the angles, noise or inaccuracies have a high impact on the result. In
biomechanics more and more researchers propose to use a higher number of markers
(named cloud of markers) and to apply the method described in the previous section:
global optimization to fit the simulated markers m∗

i to the measured ones mi [10].
Whatever the method, joint angles give a large quantity of information about the

user’s gait. These angles are directly used to animate avatars or to analyse if a user is
avoiding a virtual obstacles, which is almost impossible if just considering parameters
linked to the user’s center of mass. Another application is to evaluate the quality of
the user’s gait when walking in virtual environments. For example, it has been used
to demonstrate that treadmill walking in VR affects gait [31]. Moreover some authors
have shown that joint angles were also adapted during nonlinear walking [25]. It could
thus be used to detect turning in walk-in-place interfaces or to adapt the motion of
an avatar in real-time when turning.

8.3.3 Estimating Joint Torques with Inverse Dynamics

Some authors have demonstrated that even if kinematic gait parameters were similar
in ground and treadmill walking after some training, the joint torques and muscu-
lar activity remains different [14]. Taking this type of parameter into account could
thus help to evaluate the performance of the user’s gait in virtual environment, using
or not a treadmill. Indeed, this type of parameter seems to enable us to highlight
unperceivable modifications of gait even if joint angles look similar. However, there
is no direct method for measuring joint forces and torques. Indirect methods named
“inverse dynamics” have been introduced to compute these forces and torques accord-
ing to kinematic data associated with a physical model of the skeleton. There are
merely two main approaches to address this problem: isolated segments and use of
controllers.

8.4 Isolated Segments

The first approach is based on the Newton formalism and consists in considering each
body segment separately, assuming that the mechanical system is limited to body
segment Si [16, 38]. For each body segment Si external forces could be separated into
two families: external forces and torques (Fi

e, τ
i
e) exerted by the environment (such

as gravity and contacts), and the internal ones due to muscles (Fi
m, τi

m). Thanks to
kinematic data it is possible to compute the body segment center of mass acceleration.
The Newton equation gives:
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{
miγi = Fi

e + Fi
m

d Li
dt = MFi

e
+ MFi

m
+ τ i

e + τ i
m

where γi , mi and Li stand for the acceleration of segment Si center of mass, its mass
and its angular momentum respectively. Hence knowing the external forces, torques,
the mass and the acceleration of the body segment it is possible to deduce (Fi

m, τi
m) if

there is only one unknown for each equation. It means that there is only one force Fi
m

and only one muscle torque τi
m. However for a given segment Si with two adjacent

segments Si−1 and Si+1, Fi
m is the result of two forces: the forces exerted respectively

by each neighboured segment at contact point.
To solve this problem, there are two main methods. The first one consists in solving

the system from the extremities (without contact, such as the hands and the head) to
the ground. For body segments placed at the extremities of the skeleton, there is only
one unknown for Fi

m and τi
m (associated with the proximal joint attached to the body

segment). Fi
m and τi

m could thus be rewritten Fj→j
m and τ

j→i
m to express their relation

to the joint attached to segments i and j. The problem can then easily be solved by
inverting the above equation:

{
F j→i

m = Fi
e − miγi

τ
j→i

m = MFi
e
+ MFi

m
+ τ i

e − d Li
dt

When dealing with segment Sj, we can then reuse these results as known forces

Fj→i
m = −Fi→j

m and torques τ
j→i
m = − τ

i→j
m . The method is applied until the feet

so that the GRF could be deduced at contact point with the ground. Comparison
with measured GRF is a common method to estimate the errors due to this process.
The second method, named bottom-up method, consists in starting with the segments
which are in contact with the environment (and which external forces are known) and
finishing with the extremities free of any contact. A mixed method can also be used.

8.5 Global System and Controllers

A second approach to solve inverse dynamics problems is to model the global system
with the Lagrangian formalism (based on the principle of virtual works) in order to
obtain the motion equations, including the torques at any joints τi:

d

dt

∂C

∂q̇i
− ∂C

∂qi
− Q′

i = 0 wi th i = 1 . . . n

where C is the difference between the potential and kinetic energies, and qi is the ith
state of the system. The applied forces and torques Qi are expressed in the generalized
coordinates as generalized forces,
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Lagrangian multipliers are added to this equation in order to express that body
segment displacement should correspond to motion capture data (see [8] for details).
The model must be associated with a robust representation of contact forces with
the ground to deliver realistic results. When simulating the system with a dynamic
solver, Lagrangian multipliers will naturally compute forces and torques that are
necessary to ensure that the resulting simulation is compatible with the imposed
motion (generally motion capture data).

A famous solution consists in modelling the joint torques as proportional-
derivative (PD) controllers which merely consists in associating damped springs
to each joint:

τi = kp

(
θd

i − θi

)
− kd θ̇i

where θ
d
i stands for the desired joint angle for joint i, kp and kd are the proportionnal

and derivative gains of the controller. If we consider that the desired joint angles
correspond to those measured by the motion capture system, and if the gains are
correctly tuned, it is thus possible to compute the joint torques that are required
to perform the measured motion [42]. Torques obtained with the PD controller
is applied to a physical model of the human body. This physical model can be
obtained thanks to commercial software or opensource packages, such as OpenDy-
namicEngine (http://www.ode.org). This type of software provides us with a sim-
ulator of a physical model which inputs are internal and external forces applied to
the system. In our case, external forces are obtained either by direct measurements
with gauges or by using the above inverse dynamic method applied to the global
whole-body system (human body is modelled by its center of mass). Internal forces
and torques are computed using the PD controllers.

This approach is very difficult to tune, especially the values of the PD gains.
However for well-known motions such as walking, many researchers have proposed
semi-automatic methods to estimate these gains.

8.6 Conclusion About Inverse Dynamic Approaches

Joint torques and forces are mainly used in biomechanics and computer animation. In
biomechanics it enables to distinguish different motor strategies that kinematic data
fail to differentiate. In computer animation, it is mainly used to check if the square of
joint torques of a given simulated motion is minimized, assuming that it corresponds
to natural motions. When walking in VR, it could also help to evaluate gait effi-
ciency as human walking is supposed to be associated with low energy consumption
(see Chap. 3). For example, it has been used as a relevant criterion to distinguish
overground and treadmill walking, as explained above [31]. Moreover animating the
user’s avatar walking on uneven terrain implies to adapt the joint trajectories per-
formed by the user who is walking on a treadmill or a flat ground. Hence this motion
adaptation is necessary to compensate differences between the constraints imposed

http://www.ode.org
http://dx.doi.org/10.1007/978-1-4419-8432-6_3
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in the virtual environment and those actually linked to the real movement of the user.
In that case methods based on physical models enable to automatically adapt the
motion to different kinematic and physical constraints [41].

However inverse dynamics is sensitive to noise or inaccuracies especially when
computing joint accelerations. Another limitation is that it remains difficult to deal
with closed-loop systems, such as dealing with the double support phase in walking
where the two feet are in contact with the ground. In that case, it is very difficult to
strictly separate the forces exerted below each foot.

8.6.1 Measuring or Estimating Muscle Activities

In some very specific applications, joint torques is not accurate enough to understand
motion strategies. Indeed, joint torques provides us with the resulting action of a
group of muscles whereas control strategies could have a direct link with the action
of one isolated muscle. Slightly changing the axis of rotation of a motion may recruit
different muscle groups even if the resulting joint torque looks the same.

The direct approach to measure muscle activity consists in sensing the electromyo-
grams (EMG) of targeted muscles. EMG is a measurement of the electrical activity
of skeletal muscles recorded with the placement of small electrodes over the skin
(there exist more invasive electrodes but they are unusable for large movements).
Thus EMG is limited to surface muscles. The signal returned by the EMG system is
noisy and required heavy signal processing to estimate muscle tensions in Newtons.
However, it gives an interesting point of view about muscle coordination if several
muscles are measured concurrently. See [23] (among many others) for more details
on EMG.

Some researchers have proposed to use indirect methods to retrieve the tension of
all the muscles involved in the studied motion (including deeper muscles). Muscu-
loskeletal models have been introduced in the early nineties [6] thanks to the increase
of computation power of computers. The key idea is to model muscles thanks to action
lines acting along an axis determined by to muscle insertions. Knowing the accurate
location of each of these muscles and tendons insertion on bones, it is possible to
retrieve these action lines, as shown in Fig. 8.4.

A muscle is supposed to work only by applying a positive tension (leading to
contractions) and cannot push the bone. Hence for each muscle i, its tension Ti is
positive. Each muscle is also limited to a maximum voluntary contraction (MVC)
which is generally evaluated in isometric condition (i.e. no displacement of the bones
but exertion of a force against an external load). If we consider the surface of the
cross section area (perpendicular to the muscle fibers), this MVC is given by:

Fmax
i = K(l) × K0 × PCSA

where K0 is a constant ranging from 15 to 33 N/cm2 according to the authors, and
K(l) is a value that depends on the muscle length l. Indeed there exists a relation
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Fig. 8.4 Action line joining two adjacent segments Si and Sj. The insertions of this action line in
both segments are given by anthropometric tables in each local reference frame

between the maximum delivered force and the length of a muscle (named Force–
Length relation). This relation is given in the biomechanical literature. Hence a
muscle tension Fi for muscle i is constrained by:

0 ≤ Fi ≤ K (l) × K0 × PCSA

l is then the distance between the two insertion points of the action line. Motion
capture data enable to associate a local reference frame to each body segment, as
shown previously for the computation of joint angles. It is thus possible to apply
anthropometric tables that give the local coordinates of each line action insertion
in each bone. These tables are generally embedded in dedicated software, such as
OpenSim (see http://simtk.org/home/opensim for an example).

Knowing these insertion points for each action line, we can deduce the length of
each action line and consequently its MVC in the current pose. If external torques
τext are also known, such as gravity and the momentum of all the contact forces, the
torques applied by the muscles τmusc in static condition are given by:

τext = −τmusc

In the remaining of this section we assume that the system is static for simplifica-
tion but extension to dynamic situation simply involves adding to this formulae the
terms linked to the derivative of the angular momentum of each body segment.

τext could be expressed for each body segment i as:

∀i ∈ [1, n],
m∑

j=1

M j
i = −τ i

ext

where n is the number of body segments, m is the number of independent action
lines, and Mj

i stands for the moment of action line j on the ith body segment. If the
local reference frame Oi of segment i is placed on the proximal joint:

http://simtk.org/home/opensim
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M j
i = Oi P j

i × Fj

where Pj
i is the insertion point of muscle j on body segment i and Fj stands for the

force applied by this muscle. Let us consider that the norm of Fj is denoted Tj. Using

the superposition theorem we can express Mj
i as the product of Tj and Ij

i where Ij
i is

the theoretical Momentum associated with a unit force vector Fj (‖ Fj ‖= 1N ):

M j
i = I j

i ∗ Tj

and

∀i ∈ [1, n]
m∑

j=1

I j
i ∗ Tj = −τ i

ext

which can be rewritten in a matrix form:

�.Tmusc = −τext

where � is the n × m matrix containing Ij
i for all i (body segment) and j (action

line), Tmusc is the m-vector containing the forces of all the action lines and τext is the
n-vector of the external torques and moment applied to all the body segments.

This linear system is not invertible because n is not equal to m. In general m is
greater than n leading to redundancy of the actuators (the action lines). It consequently
leads to an optimization problem with a space of solutions. In addition to this equality
constraint, it is possible to add inequality constraints such as:

• A muscle force is positive and its maximum value is equal to K(l)*K0*PCSA as
shown previously,

• People naturally tend to minimize energy and torques (
∑m

j=1 F2
i in many motions

[32] (or the normalized effort (
∑m

j=1

(
Fi

Fmax
i

)2
) [18]),

• Taking some EMG signals into account in the solving process [1]

This domain is very active in biomechanics and many researchers try to improve
the quality and to validate the results. One of the most important problems is to be
able to take contraction of antagonist into account. Using EMG signals to check if
the antagonist muscles are active is a very promising approach.

The approach presented in this section is named inverse dynamics but there exist
two other approaches to solve this type of problem using direct dynamics within
an optimization loop or directly exploiting EMG signals. Whatever the method, it is
still difficult to validate the results. However, it is a promising contribution to analyse
more accurately the actions performed by the user in a virtual environment, as it has
been shown in ergonomics [27]. VR is more and more used to evaluate and train
disable people as it provides a safe and reproducible environment. In this type of
application EMG and muscle contraction feedbacks are very important.
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As for the joint torques and forces, muscle tensions are good indicators of gait
efficiency and can thus be used to determine subtle changes in gait patterns that
kinematic data fail to identify. It could thus be used to evaluate if the user’s gait is as
efficient in VR compared to natural walking.

8.7 Conclusion

J. E. Marey and E. Muybridge were the first researchers who proposed objective
measurements of animal and human locomotion [20]. Nowadays, numerous systems
exist to analyse and measure human gait. The biomechanics community is still very
active in this domain and collaboration with other domains will certainly lead to new
systems, such as using depth-cameras (Kinect of Microsoft) or inertial sensors. It is
difficult to predict what will be the future in this domain, but many researchers tend to
propose non-invasive and light systems associated with more and more sophisticated
numerical models in order to access to new parameters. Musculoskeletal models are
clearly a step forward in this domain but many researches have to be carried-out in this
domain for calibration and validation. The Table below summarizes the parameters
introduced in this chapter and their potential use in walking in VR (Table 8.1):

• sensing the user’s motion,
• delivering the most appropriate and accurate multisensory feedbacks,
• and evaluating the naturalness of the interaction for the user compared to reference

values (as those reported in Chapter “Biomechanics of walking in real world”).

Systems deliver more and more data (global parameters, joint positions, angles,
torques and muscle forces) and a new problem occur: how to deal with all these
parameters? In virtual reality researchers try to provide the user with more realistic
feedbacks which could rely on using such big amount of knowledge. Getting more
accurate data on the user’s gait could help to select and compute the corresponding
feedbacks. Let us consider the walk-in-place approach currently used in VR [36]. In
this approach, signal processing is applied to the orientation of the head depending
time. Extending this approach to more complex parameters would enable to deal
with more complex situations and behaviours, such as getting up and down stairs,
avoiding obstacles or taking specific gait style into account. As for future steps, one
main challenge therefore remains to be able to compile all the available data and to
compute the most appropriate feedbacks in real-time.
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