
Chapter 12
NLSE: Parameter-Based Inversion Algorithm

12.1 Introduction

Chapter 11 introduced us to the notion of an inverse problem and gave us some
examples of the value of this idea to the solution of realistic industrial problems.
The basic inversion algorithm described in Chap. 11 was based upon the Gauss–
Newton theory of nonlinear least-squares estimation and is called NLSE in this
book. In this chapter we will develop the mathematical background of this theory
more fully, because this algorithm will be the foundation of inverse methods and
their applications during the remainder of this book. We hope, thereby, to introduce
the reader to the application of sophisticated mathematical concepts to engineering
practice without introducing excessive mathematical sophistication.

We separate the discussion of inversion algorithms into two categories: (a)
parameter-based, in which a few parameters are used to define the problem or
anomalous region (as in Chap. 11) and (b) voxel-based, in which the anomalous
region is constructed voxel-by-voxel on a grid. NLSE is the prototype of the former
algorithm; the next volume in this series will introduce us to voxel-based algorithms.

12.2 NLSE: Nonlinear Least-Squares Parameter Estimation

12.2.1 Overview of the Algorithm: Nonlinear Least-Squares

Let

Z = g(p1, . . . , pN , f ) , (12.1)

where p1, . . . , pN are the N parameters of interest, and f is a control parameter at
which the impedance, Z, is measured. f can be frequency, scan-position, lift-off,
etc. It is, of course, known; it is not one of the parameters to be determined. To be
explicit during our initial discussion of the theory, we will call f “frequency.”
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In order to determine p1, . . . , pN , we measure Z at M frequencies, f1, . . . , fM ,
where M > N:

Z1 = g(p1, . . . , pN , f1)

...

ZM = g(p1, . . . , pN , fM). (12.2)

The right-hand side of (12.2) is computed by applying the volume-integral code to
a model of the problem, usually at a discrete number of values of the vector, p,
forming a multidimensional interpolation grid.

Because the problem is nonlinear, we use a Gauss–Newton iteration scheme to
perform the inversion [97]. First, we decompose (12.2) into its real and imaginary
parts, thereby doubling the number of equations (we assume the p1, . . . , pN are real).
Then we use the linear approximation to the resistance, Ri, and reactance, Xi, at the
ith frequency:

⎡
⎢⎢⎢⎢⎢⎣

R1

X1
...

RM

XM

⎤
⎥⎥⎥⎥⎥⎦
≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1(p(q)1 , . . . , p(q)N )

X1(p(q)1 , . . . , p(q)N )
...

RM(p(q)1 , . . . , p(q)N )

XM(p(q)1 , . . . , p(q)N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂R1

∂ p1
· · · ∂R1

∂ pN

∂X1

∂ p1
· · · ∂X1

∂ pN
...

∂RM

∂ p1
· · · ∂RM

∂ pN

∂XM

∂ p1
· · · ∂XM

∂ pN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p(q)1 ,...,p(q)N )

⎡
⎢⎢⎣

p1 − p(q)1
...

pN − p(q)N

⎤
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where the superscript (q) denotes the qth iteration and the partial derivatives are
computed numerically by the software. The left side of (12.3) is taken to be the
measured values of resistance and reactance. We rewrite (12.3) as

0 ≈ r+ Jp , (12.4)

where r is the 2M-vector of residuals, J is the 2M×N Jacobian matrix of derivatives,
and p is the N-dimensional correction vector. Equation (12.4) is solved in a least-

squares manner starting with an initial value, (x(0)1 , . . . ,x(0)N ), for the vector of
unknowns, and then continuing by replacing the initial vector with the updated

vector (x(q)1 , . . . ,x(q)N ) that is obtained from (12.3), until convergence occurs.
We are interested in determining a bound for the sensitivity of the residual norm

to changes in some linear combination of the parameters. Given an ε > 0 and a unit
vector, v, the problem is to determine a sensitivity (upper) bound, σ , such that

‖r(x∗+σv)‖ ≤ (1+ ε)‖r(x∗)‖ . (12.5)
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We will derive a first-order estimate of σ . Equation (12.5) is equivalent to

‖r(x∗+σv)‖−‖r(x∗)‖ ≤ ε‖r(x∗)‖ . (12.6)

The left-hand side of (12.6) can be approximated to the first order in σ by the first-
order Taylor expansion:

‖r(x∗+σv)‖−‖r(x∗)‖ ≈ σv ·∇‖r(x∗)‖ , (12.7)

where ∇ is the gradient operator in N-dimensional space. We compute the gradient
of the norm of the residual vector:

∇‖r(x)‖ = ∇
[

f 2
1 (x)+ f 2

2 (x)+ · · ·+ f 2
2M(x)

]1/2

=
1
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= eT (x) · J , (12.8)

where the superscript T denotes the transpose of a matrix (or vector) and e(x) =
r(x)/‖r(x)‖ is a unit vector. Thus, (12.7) becomes

‖r(x∗+σv)‖−‖r(x∗)‖ ≈ σeT (x) · J · v . (12.9)

The factor multiplying σ in (12.9) is the dot product of the two vectors, e(x) and
J ·v. Hence, its value is less than the product of the magnitude of each vector, which
means that (12.9) becomes

‖r(x∗+σv)‖−‖r(x∗)‖ ≤ σ‖J · v‖ , (12.10)

because e(x) has unit magnitude. Upon equating the right-hand side of (12.10) to
the right-hand side of (12.6), we obtain the first-order estimate of σ :

σv = ε
( ‖r(x∗)‖
‖J(x∗) · v‖

)
. (12.11)
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Fig. 12.1 Showing sensitivity parameters for two system responses to xi. Response S is sensitive
to xi at x∗i , whereas response I is not

Note that if ‖J(x∗) ·v‖ is small compared to ‖r(x∗)‖, then σ is large and the residual
norm is insensitive to changes in the linear combination of the parameters specified
by v. If v = ei, the ith column of the N ×N identity matrix, then (12.11) produces
σi, the sensitivity bound for the ith parameter. Since σi will vary in size with the
magnitude of x∗i , it is better to compare the ratios σi/x∗i for i = 1, · · · ,N before
drawing conclusions about the fitness of a solution.

The importance of these results is that we now have metrics for the inversion
process: Φ = ‖r(x∗)‖, the norm of the residual vector at the solution, tells us how
good the fit is between the model data and measured data. The smaller this number
the better, of course, but the “smallness” depends upon the experimental setup and
the accuracy of the model to fit the experiment. Heuristic judgement based on
experience will help in determining the quality of the solution for a given Φ .

The sensitivity coefficient, σ , is more subtle, but just as important. It, too, should
be small, but, again, the quality of the “smallness” will be determined by heuristics
based upon the problem. If σ is large in some sense, it suggests that the solution
is relatively independent of that parameter, so that we cannot reasonably accept the
value assigned to that parameter as being meaningful, as suggested in Fig. 12.1,
which shows a system, S, for which the system is sensitive to variable, xi, at the
solution point, x∗i , and another system, I, for which the system is insensitive to xi.

An example occurs when one uses a high-frequency excitation, with its attendant
small skin depth, to interrogate a deep-seated flaw. The flaw will be relatively
invisible to the probe at this frequency, and whatever value is given for its parameters
will be highly suspect. When this occurs we will either choose a new parameter to
characterize the flaw, or acquire data at a lower frequency.
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These metrics are not available to us in the current inspection method, in which
analog instruments acquire data that are then interpreted by humans using hardware
standards. The opportunity to use these metrics is a significant advantage to the
model-based inversion paradigm that we propose in this book.

If the residual norm is relatively insensitive to changes in some linear com-
bination of the parameters, then the Jacobian matrix at the solution is nearly
rank-deficient, and it may be useful to determine a set of linearly-independent
parameters. The covariance matrix (JT J)−1 can be used for this purpose.

12.2.2 Stochastic Methods for Global Optimization

The problem defined above leads to the global optimization problem: finding the
lowest minimizer of a nonlinear function of several variables that has multiple local
minimizers. In the stochastic approach to global optimization, one applies a strictly
descent local search procedure to a subset of a sample of starting points drawn from
a uniform distribution over R, so as to find all the local minima of ‖r‖ that are
potentially global [58–60]. One such stochastic approach, the multilevel, single-
linkage, will, with probability one, find all relevant local minima of the objective
function with the smallest possible number of local searches [59, 61]. We do not
implement the multilevel, single-linkage approach in this book, but use a uniform
distribution of starting points (in each coordinate direction), as in the multilevel
approach. We do not reduce the sample size, however, but use the entire sample,
comprising, perhaps, 500 points in each variable. We have found that, even with four
variables, the procedure is so fast with modern machines, that it is quite efficient.

Hence, our global optimization algorithm starts by generating a uniform dis-
tribution of 500 points in each coordinate, and then immediately applying the
Gauss–Newton iteration to each of these points. The result is 500 local minima,
which are then ordered to give the smallest to largest values of the norm of the
residual. The location of the smallest of these local minima is presumed to be the
global minimum.

12.2.3 Computation of Function Values

NLSE is a post-processing feature of VIC-3D R©. VIC-3D R© is applied a priori to
compute function values at certain equi-spaced values of the parameters, and these
results are then stored in a table for interpolation. This speeds up the application of
the algorithm, though it will require a large database for interpolation, the size, of
course, depending upon the number of unknowns, and the number of precomputed
function values for each unknown. The order of the interpolator is arbitrary, but we
typically use first-order to fourth-order polynomial-splines for each variable, which
means that we need to compute the norm of the residuals at two to five values of
each variable. The derivatives in the Jacobian matrix are computed by interpolating
in this table of precomputed function values.
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12.2.4 Application of Statistical Communication Theory

Additional insight can be gained by appealing to the statistical theory of communi-
cation [50]. Pretend that the measured impedance vector, Z = [Z1, . . . ,ZM], of (12.2)
is a random vector, along with the parameter vector, p = [p1, . . . , pN ]. Think of Z
as a received message over some communication channel, and p as a transmitted
message. These two random vectors have a joint probability density, PZ,p(Z,p),
which is to be maximized. That is to say, for a given Z, we want to determine that p
which maximizes PZ,p.

From probability theory, we have Bayes rule:

PZ,p = PZ(Z)P(p|Z)
= Pp(p)P(Z|p)
= Pp,Z(p,Z) , (12.12)

where PZ(Z) and Pp(p) are called a priori probability density functions, and
P(p|Z), P(Z|p) are called conditional, or a posteriori, probability density func-
tions. The variable to the right of the vertical bar in these latter functions is
called the conditioning variable; for example, P(p|Z) is called the a posteriori
probability density for p, conditioned on the fact that Z was received (or measured).
This a posteriori probability density function is the object of our interest, as we
shall now see.

From (12.12) we want to maximize

PZ(Z)P(p|Z) = Pp(p)P(Z|p) (12.13)

over p. Because PZ(Z) is independent of p, we can ignore it and maximize the a
posteriori probability density

P(p|Z) ∝ Pp(p)P(Z|p) . (12.14)

That is, we want to choose that “message,” p, that is best associated with the
“received signal,” Z.

If the measured Z of (12.2) is corrupted by “noise,” of density Pn, then we
can replace the conditional density P(Z|p) by Pn(Z1 − g1,Z2 − g2, . . . ,ZM −
gM|p), where g1 = g(p, f1),. . . , gM = g(p, fM) in (12.2). Because the noise in the
measurements is independent of the transmitted message, p, we can ignore the
conditioning variable, and replace (12.14) by

P(p|Z) ∝ Pp(p)Pn(Z− g(p)) . (12.15)

If we have no prior knowledge of p, or if all transmitted messages are a priori
equally likely, then we can ignore Pp(p) in (12.15) and work with the “likelihood
function,” PN(Z − g(p)). Maximizing the likelihood function over p is called
“maximum likelihood estimation.” We usually have some prior knowledge of p,
however, so we incorporate that knowledge in the a priori function, Pp(p).
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If p and n are jointly Gaussian processes, then we have the classical problem of
communicating a Gaussian signal in Gaussian noise, which reduces to a classical
least-squares problem. Typically, we work with the negative logarithm of the a
posteriori density in (12.15), so we need to minimize

− lnP(p|Z) =− lnPp(p)− lnPn(Z− g(p))+ f (Z) . (12.16)

Now, we let the M components of the noise vector, n, be statistically independent,
zero-mean, Gaussian random variables, each with variance, σ2

n , and the N com-
ponents of p be statistically independent Gaussian random variables, with mean
values p, and each with variance, σ2

p . Then, upon taking the negative logarithm of
the appropriate density functions, and discarding unimportant factors, we replace
(12.16) with the objective function

Φ(p|Z) = 1
2σ2

n

M

∑
i=1

(Zi − gi(p))
2 +

1
2σ2

p

N

∑
i=1

(pi − pi)
2

=
|Z− g(p)|2

2σ2
n

+
|p−p|2

2σ2
p

, (12.17)

which is to be minimized over p. Multiply (12.17) by 2σ2
n to get the final expression

for the objective function

Φ(p|Z) = |Z− g(p)|2 + σ2
n

σ2
p
|p−p|2 , (12.18)

where we use the same notation for the objective function.
The ratio, σ2

p/σ2
n , of the variances is called the signal-to-noise ratio and is

usually known. In the context of least-squares problems, this ratio is known as the
Levenberg–Marquardt parameter, and in mathematical inverse theory it is called the
Tichonov–Miller parameter.

Setting the value of the LM-parameter determines the certainty with which we
choose to assert the a priori constraint on p. If σp is very small, then the LM-
parameter is large, and we are more certain to impose the constraint. Unless we
know the variances, we cannot determine the LM-parameter at the outset. There are
numerical techniques, such as ridge regression [53] and cross-validation [62], that
can be useful in selecting the LM-parameter.

Appendix

A.1 Cramer–Rao Lower Bound

The Cramer–Rao lower bound (CRLB), being the lower bound on the variance of
any unbiased estimator, plays a role in statistical estimation theory [64, 65] that is
similar to the sensitivity (upper) bound, σ , of (12.11). As with σ , the CRLB finds
application in electromagnetic scattering and inverse problems [66].
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A.1.1 Inverse Method Quality Metrics

Given the potential of inverse methods, it is important to develop a rigorous method
for quantifying the performance and reliability of inversion schemes [105, 107].
Although empirical studies provide the means for evaluating the quality of NDE
techniques incorporating inverse methods, opportunities also exist with inverse
methods to use the model calculations with quantitative measures to evaluate key
estimation performance metrics without considerable experimental burden.

In estimation theory, the Cramer–Rao Lower Bound (CRLB) provides the
minimum variance that can be expected for an unbiased estimator of a set of
unknown parameters. In other words, the CRLB provides a way of quantifying
the inversion algorithm performance. For Gaussian noise, there is a simple inverse
relationship between the CRLB and the Fisher information [65]:

var
(
θ̂i
)
=
[
Cθ̂

]
ii ≥

[
I−1(θ

]
ii , (12.19)

where C is the covariance matrix, the Fisher information is defined as

I (θ )ii =−E

[
∂ 2 ln f (Z;θ )

∂θi∂θ j

]
, (12.20)

θ is the parameter being estimated, and Z is the measurement vector. Fisher
information represents the amount of information contained in a measurement and
depends on the derivatives of the likelihood function which is based on the forward
model and the noise parameters. The variance in a measurement is inversely related
to the amount of information contained in the measurement, so it is not a surprise
that (12.19) shows that the variance in the measurement is greater than or equal to
the inverse of the Fisher information matrix. In eddy-current NDE, the measurement
is often the real and imaginary component of the impedance, Z = [R,X ], and the
Fisher information becomes a square matrix with dimensions equal to the number
of parameters being estimated.

The covariance matrix can be evaluated as a performance metric for inverse
methods. First, the diagonal terms of the covariance matrix (the CRLB variances)
provide a metric of sensitivity of a parameter estimated using inverse methods to
measurement variation. Second, the off-diagonal terms represent the interdepen-
dence between select parameters being estimated to measurement variation. The
corresponding metric is the correlation coefficient given by

ρi, j =
Ci j√
CiiCj j

. (12.21)

These metrics can be used with parametric studies involving frequency or other
probe parameters to optimize the NDE system design. As a general design rule
for inverse methods, it is desirable to minimize the sensitivity to variation (the
CRLB variances) and to have the correlation coefficient between the parameters
being estimated approach zero.
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Another tool used in numerical linear algebra for sensitivity analysis is singular
value decomposition (SVD). SVD essentially provides a measure of sensitivity
of measurements to perturbations in the unknown parameters [106]. To evaluate
the sensitivity of an inverse problem for a set of measurements to changes in fit
parameters, SVD can be applied to the Jacobian matrix where

J =

⎡
⎢⎢⎢⎢⎣

∂Z1

∂θ1
· · · ∂Z1

∂θn
...

. . .
...

∂Zm

∂θ1
· · · ∂Zm

∂θn

⎤
⎥⎥⎥⎥⎦
= UΣV′ . (12.22)

The condition number (CN) of the matrix is defined as the ratio of the largest and
smallest singular values resulting from SVD. For inversion, CN has been used to
quantify the well-posedness of the inverse problem for select parameters. The ability
to estimate parameters independently increases as the condition number approaches
unity. It should be noted that SVD does not incorporate noise; it depends only on the
noiseless relationship between the measurement output and the parameter changes.

A.1.2 Optimizing Layer Estimation Using Metrics

An inversion experiment is revisited [55] for the purpose of demonstrating estima-
tion theory metrics [107]. In this experiment, the thickness of an AISI-304 stainless
steel plate and probe lift-off were estimated. A thickness and lift-off model, similar
to the one shown in Chap. 11, was used to solve the forward problem. The estimation
procedure is represented in (12.23). The left side is the measured impedance, the
Jacobian is simply the derivative information from the forward model, and the
thickness and lift-off parameters are updated until this equation converges,

[
R( f , t, l)
X( f , t, l)

]
≈
[

R( f , t0, l0)
X( f , t0, l0)

]
+

⎡
⎢⎢⎢⎣

∂R
∂ t

∂R
∂ l

∂X
∂ t

∂X
∂ l

⎤
⎥⎥⎥⎦

t0,l0

[
t − t0
l − l0

]
. (12.23)

Four scenarios in particular are investigated. Impedance values were generated
for combinations of lift-off values of 0.75 and 1.5 mm and a plate thickness values
of 1.0 mm and 2.0 mm with Gaussian noise of 1 % of the impedance value added
as shown in Fig. 12.2a. For each of these measurements, the NLSE algorithm is
applied to estimate the thickness and lift-off simultaneously. Figure 12.2b shows the
inversion results in the parameter space. Note that for high lift-off, visual inspection
indicates the variance in the estimation is much greater for lift-off and likewise for
the thicker plate, the variance of the estimation of thickness is greater.
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Fig. 12.2 (a) Distribution of source data in impedance plane, and (b) corresponding estimated
values in lift-off-thickness parameter space

The calculations required for the CRLB involve taking numerical derivatives of
the impedance changes with respect to the parameter changes from the forward
model. These calculations thus require far less computational expense with respect
to Monte-Carlo simulation. Following (12.20), the Fisher information for this
particular case is given by:

I =
[

J2
11 + J2

21 J12J11 + J22J21

J11J12 + J21J22 J2
12 + J2

22

]
. (12.24)

The covariance matrix is then calculated from the Fisher information (by (12.19)):

C = σ2I−1 . (12.25)

The Jacobian is also decomposed into its singular values and singular vectors in the
form of the right-hand side of (12.22). The ratio of the smallest to largest singular
values provides the condition number.

Figure 12.3 shows the CRLB of the estimation of the thickness and lift-off of a
1 mm thick plate and 1 mm lift-off for multiple frequencies. The agreement between
the CRLB and the Monte-Carlo approach is quite good. This analysis demonstrates
that there is an optimal frequency to achieve highest accuracy in the estimation of
thickness. Estimating conductivity and thickness simultaneously is typically more
ill-conditioned than estimating thickness and lift-off simultaneously. The CRLB
for conductivity and thickness estimation along with the condition number and
correlation number as a function of frequency are all displayed in Fig. 12.4. The
behavior of the CRLB as a function of frequency for estimating conductivity and
thickness simultaneously follows a similar trend and this is expected since the
impedance changes due to conductivity and thickness are similar. The condition
number reaches a maximum around 95 kHz which implies that selectivity is good
and the correlation is zero at this frequency which further confirms that point.
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Fig. 12.3 Comparison of variance with varying frequency using CRLB and Monte Carlo methods
for estimating (a) lift-off and (b) thickness, respectively

Fig. 12.4 Comparison of inversion metrics with varying frequency: (a) CRLB variance for
thickness and conductivity estimation and (b) correlation and condition number

A.1.3 Two Examples from Chap. 11

Figure 11.5 of Chap. 11 shows the variation with frequency of the derivative of
impedance with respect to thickness for Test Case 1 (shown in Fig. 11.4). There is a
relatively broad peak in this derivative extending from roughly 20 to 50 kHz. Thus,
we would expect that the optimum range of frequencies to be used for determining
the thickness should lie in this range and that was essentially confirmed when
frequencies in the range of 20–40 kHz were found to give good results.

Figure 12.5(top) illustrates the CRLB thickness response for this same test case,
and we see that there is a relatively broad minimum centered near 50 kHz, but
generally including the same frequency range chosen in executing the test case. This
confirms the consistency between the CRLB result and the information contained in
the first derivative.
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Fig. 12.5 Comparison of variance with varying frequency for Test Case 1 in Chap. 11, using
CRLB and Monte Carlo methods for estimating (top) thickness and (bottom) lift-off, respectively

As for the lift-off problem in Test Case 1, we see from Fig. 11.6 that the derivative
with respect to lift-off continues to increase with frequency even beyond 100 kHz,
which corresponds to what we might expect for the CRLB associated with lift-off,
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Fig. 12.6 Comparison of variance with varying frequency for Test Case 2 in Chap. 11, using
CRLB and Monte Carlo methods for estimating (top) thickness and (bottom) lift-off, respectively

as shown in the bottom part of Fig. 12.5. In the latter figure, we see that the CRLB
never does achieve a true minimum, even out to 150 kHz, but the decrease is leveling
off at this frequency.
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Similar results are obtained for Test Case 2 of Chap. 11, except that the
frequencies are much lower (see Figs. 11.9 and 11.10). The derivative with respect to
thickness for a 1.0 mm-thick brass plate has a maximum in the vicinity of 2 kHz, and
the derivative with respect to lift-off peaks at approximately 10 kHz, for a nominal
lift-off of 2.0 mm. These results are consistent with the CRLB results shown in
Fig. 12.6. In particular, note that the CRLB for lift-off is virtually flat beyond 8 kHz,
which corresponds with the levelling off of the peak derivative shown in Fig. 11.10.
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