
Chapter 13

Container Rehandling at Maritime Container

Terminals

Marco Caserta, Silvia Schwarze, and Stefan Voß

Abstract

In this paper, we review recent contributions dealing with the rehandling of con-
tainers at maritime container terminals. The problems studied in the paper refer to a
post-stacking situation, i.e. problems arising after the stacking area has already been
arranged. In order to increase efficiency of loading/unloading operations, once up-
dated information about the state of the containers as well as of the vessels becomes
available, it is possible to reshuffle the container yard, or a portion of it, in such
a way that future loading operations are carried out with maximal efficiency. The
increase in efficiency of loading/unloading operations has a bearing on the berthing
time of the vessels, which, in turn, is a widely accepted indicator of port efficiency.
Three types of post-stacking problems have been identified, namely (i) the remar-
shalling problem, (ii) the premarshalling problem, and (iii) the relocation problem.
With respect to each of these problems, a thorough explanation of the problem itself,
its relevance and its connections with other container handling issues are offered. In
addition, algorithmic approaches to tackle such problems are summarized.

13.1 Introduction

Container terminals can be seen as buffers within larger logistic chains encompass-
ing worldwide distribution systems. The major purpose of using container termi-
nals is to serve as transshipment points. Container terminals are used as temporary
storage points for containers, so that, e.g. unloading operations from a vessel and
loading operations onto a train or a truck need not be synchronized.

Marco Caserta · Silvia Schwarze · Stefan Voß
Institute of Information Systems - University of Hamburg
Von-Melle-Park 5, 20146 Hamburg, Germany
email: marco.caserta@uni-hamburg.de, schwarze@econ.uni-hamburg.de,

stefan.voss@uni-hamburg.de

247J. W. Böse (ed.), Handbook of Terminal Planning,
Operations Research/Computer Science Interfaces Series 49,
DOI 10.1007/978-1-4419-8408-1_13, © Springer Science+Business Media, LLC 2011

248 Marco Caserta, Silvia Schwarze, and Stefan Voß

Broadly speaking, a container terminal can be divided into three major areas:
The quayside, i.e. the side in which vessels are berthed, the landside, i.e. the side
in which other means of transportation operate (trucks, trains), and the container
yard, i.e. the area in which containers are stored for future operations. The way in
which the container yard is managed is of paramount importance in determining the
efficiency of a port. Due to the fierce competition on the global market, container
terminal operators are forced to increase the efficiency of their operations in order
to capture and retain their customers.

As pointed out by a number of authors, e.g. Choe et al (2009), Park et al (2009),
Stahlbock and Voß (2008), and Zhang et al (2003), some performance indicators of
container terminal efficiency are: (i) the vessel berthing time, and (ii) the through-
put of the quay cranes, i.e. the efficiency in unloading/loading containers from/to
vessels. While such key performance indicators can be improved through the use
of new technology, such as new equipment, terminal layout re-design, etc. the effi-
ciency of container terminal operation can also be enhanced by optimizing the way
in which such operations are carried out. More specifically, a great deal of attention
should be devoted to the definition of efficient container stacking policies.

Moreover, in the stages of design, construction and operation of a container ter-
minal, simulation tools play a crucial role, examples are given in, e.g. Gambardella
et al (1998) and Yun and Choi (1999). Optimization methods, like those address-
ing rehandling and stacking operations at ports are suited to extend and enhance
classical simulation approaches. Simulation recreates dynamical processes of real
life within a (computerized) model. Experimental studies based on those models
aim to gain insights on system behavior and efficient layouts of, e.g. manufactur-
ing or transportation systems. Simulation has turned out to be a powerful tool for
container terminal planning and its complex processes. Questions of interest are,
among others, the layout of the terminal itself, including location and size of facil-
ities (container yards, mooring, maintenance areas, etc.), design and operation of
transport systems (automated guided vehicles, cranes, etc.), and modeling of con-
tainer flows. Consequently, the development of simulation methods for container
terminal planning has attracted research interest and respective models have been
applied successfully to ports all over the world.

In terms of methodologies, several approaches like discrete-event simulation,
multi-agent systems, petri-nets, or integrated simulation-optimization exist. The lat-
ter combines simulation with optimization methods by establishing the simulation
tool on a higher level, having the permission to call optimization methods on a sub-
level. The role of the optimization tool might differ. For instance, the optimization
algorithm can take over a tactical position and be used to define and control gen-
eral system parameters on an aggregate level (see Saccone and Siri (2009)). This
approach is not to be mixed up with simulation optimization (see, e.g. Swisher et al
(2000)) where optimization techniques are employed to fit parameters of the simula-
tion itself before starting the simulation. In an alternative setting, optimization tools
could be used to take decisions on a detailed, operational level. For instance, while
analyzing transport systems at a container terminal using simulation, it could be-
come necessary to call optimization tools that solve particular rehandling and stack-

13 Container Rehandling at Maritime Container Terminals 249

ing problems to obtain information about capacity utilization of cranes and vehicles.
Along the same line, while designing a terminal layout through simulation, analysis
of detailed stacking operations at container yards could become necessary to deter-
mine transport and handling times. The availability of fast optimization techniques is
a crucial issue of integrated simulation-optimization tools, as typically optimization
methods will be called quite often. Thus, the development of efficient optimization
techniques is an important matter of terminal planning.

As highlighted in Dekker et al (2006), stacking can be seen as a three-level prob-
lem. Strategic stacking decisions must be made with respect to the layout of the
container yard, the type of equipment, and the design itself of the container termi-
nal. Tactical stacking decisions are concerned with decisions that affect capacity
in the medium term, e.g. whether a pre-stacking area should be used, whether pre-
arrangement policies should be implemented (remarshalling, premarshalling, etc.).
Finally, operational stacking decisions deal with the identification of slots to be
assigned to containers, the rehandling of containers within the yard, the berth al-
location problem, the assignment of equipment to tasks, the definition of a load-
ing/unloading (stowage) plan, etc. In this paper, we deal with operational stacking
decisions, with a special focus on collecting previous work dealing with those oper-
ations that are carried out upon an existing stack of containers.

Let us therefore suppose that a block of the container yard has already been filled
with a number of stacked containers. One of the key goals of any major port is to
reduce the berthing time of vessels. Therefore, if possible, it is worthwhile to use
some time before a vessel reaches the port to rearrange, or prearrange containers in
such a way that the subsequent loading operations are carried out in the fastest and
most efficient way possible. However, some relevant issues with respect to how to
carry out these types of preliminary operations arise, e.g.:

• How can the loading area be rearranged with the minimum amount of crane
movements?

• How can it be ensured that, during the preliminary operations of rearrangement,
interference among cranes is prevented?

The focus of this paper is to provide an overview of current research on post-
stacking policies, i.e. what could be done to prepare a stack of containers to increase
the effectiveness of the future loading operations. For reasons that will become
clearer later on, these policies play a vital role especially in outbound operations,
i.e. loading of containers to a vessel. However, most of the proposed approaches
could also be used to deal with inbound operations, i.e. loading of containers to
trains or trucks.

In this paper, we use the term stacking to indicate the policy of container handling
in which containers are piled up vertically. Typically, once containers are stacked in
a pile, they can only be accessed from above, in a Last In First Out (LIFO) fashion.
Consequently, a trade-off between the effective use of the container yard surface
and the minimization of container handling operations arise. On the one hand, the
limited stacking area of a container yard pushes in the direction of increasing the
height of the stacking area to maximize the total number of containers that can be

250 Marco Caserta, Silvia Schwarze, and Stefan Voß

accommodated within the yard; on the other hand, the minimization of the number
of unproductive moves within the yard leads to the creation of stacks with a maxi-
mum height of one container. Therefore, the definition of a stacking policy should
take into account conflicting objectives. According to Dekker et al (2006), a stack-
ing strategy should take into account at least three objectives: (i) efficient use of
storage space, (ii) efficient inbound and outbound transportation and (iii) avoidance
of unproductive moves.

As pointed out by Dekker et al (2006) as well as by Taleb-Ibrahimi et al (1993),
at least two different types of stacking operations can be identified: On one side
of the container terminal yard, i.e. the quayside, export containers are dealt with.
These are containers that arrive in the terminal in some way (e.g. via land) and must
be loaded onto the vessel. Typically, these containers arrive somehow randomly and
moreover, relevant data, like weight information, is not always given at that time.
Usually, export containers arrive up to two weeks before being loaded to the vessel.
However, the detailed loading sequence becomes available only shortly before the
loading process. Since the stacking strategy to be used to pile up export containers
can only exploit partial information, re-handling operations might be introduced to
make use of information becoming available over time. On the other side of the
yard, i.e., the landside, containers that are unloaded from the vessel and are finally
shipped via hinterland transportation are treated. These are called import containers.
While the arrival of such containers is somehow predictable, the departure of import
containers is related to the time of arrival of trucks and therefore, subject to higher
variability. Consequently, using high stacking areas can lead to inefficiencies. It
is worth noting though, that some authors identify a third category of containers,
i.e. transhipment containers. These are containers that are unloaded from a vessel,
temporarily stored in the yard, and loaded back to a different vessel. However, as
pointed out by Kim and Park (2003), many times transshipment containers can be
dealt with as if they were export containers.

A basic ingredient in the container terminal management is the stowage plan. A
stowage plan for each ship to be loaded is defined. Such plan specifies which con-
tainers should be loaded onto the vessel and which exact position within the vessel
should be occupied by each container. Factors such as containers’ weight, destina-
tion, type of goods transported (e.g. hazardous material) are taken into account when
the stowage plan is computed and released.

Whenever the stowage plan is known some time in advance, remarshalling oper-
ations can be performed to reduce the need for further relocation of containers. The
goal of the remarshalling phase is to create stacking areas that fully take into ac-
count precedences among containers. This implies that whenever containers are to
be loaded from the yard onto the vessel, the number of unproductive moves is min-
imum. It is worth noting though, that during the remarshalling phase containers are
not retrieved and the number of containers in the stacking area is kept unchanged.
The remarshalling phase is aimed at reshuffling containers so that in the subsequent
loading or unloading phases containers can be retrieved with a minimum amount of
unproductive moves.

13 Container Rehandling at Maritime Container Terminals 251

Finally, if the configuration of a stacking area is given, regardless of whether the
area is made up by import or export containers, and if containers must be retrieved
following a pre-defined sequence, a relocation problem might arise. Whenever a
container that must be retrieved first is found below containers that will be retrieved
at a later time, there arises a need to relocate such containers within the stacking
area in order to make the high priority container accessible. In this context, the re-
location of a lower priority container is an unproductive move required to free up
and retrieve a higher priority container underneath it. Therefore, while in the remar-
shalling phase the total number of containers in the stacking area is kept unchanged,
in the relocation problem containers are retrieved one at a time, following a pre-
specified order.

In this paper we assume that a priority is associated with each container in the
stacking area, where this priority could account for a number of different factors.
Some of these factors defining the priority of a container are, (i) category: e.g. con-
tainers with the same priority might belong to the same category and could be piled
up on top of each other; (ii) departure time: e.g. containers with earlier departure
time will have higher priority than containers with later departure time; (iii) size
and weight: e.g. typically containers with higher weight are not stored on top of
containers with lower weight, in order to respect overall ship balancing constraints.

We follow the typical terminology adopted in the context of container terminal
operation. We indicate with the term bay a two-dimensional portion of the container
yard, made up by a number of stacks, i.e. the width, and tiers, i.e. the height, as
illustrated in Figure 13.1. A block is a set of consecutive bays, as presented in Fig-
ure 13.2. Finally, a container yard is made up by a set of blocks.

Stacks

Tiers

Fig. 13.1 A bay

Stacks

Tiers

Bays

Fig. 13.2 A block

The two terms retrieving and rehandling are used to describe movement of con-
tainers. More specifically, the term retrieving is used to indicate a movement of a
container from the bay to the vessel. Conversely, we use the term rehandling to in-
dicate a move of a container within the container yard, both in the case of intra-bay
or intra-block movements.

Finally, the focus of our paper is on three problems in the context of container ter-
minal operation, namely the Blocks Relocation Problem (BRP), the ReMarshalling
Problem (RMP), i.e. intra-block marshalling and the PreMarshalling Problem (PMP),
i.e. intra-bay marshalling.

252 Marco Caserta, Silvia Schwarze, and Stefan Voß

In all cases we consider the layout of the stacking area as given, i.e. the position
and priority of each container in the stacking area is known. Therefore, our interest
is not centered on finding effective stacking policies but rather, given a stacking area,
we wish to determine how containers should be rehandled in order to minimize the
total number of unproductive movements.

According to Choe et al (2009), Park et al (2009), and Kang et al (2006b), the
unproductive movement of containers in the different phases of the container man-
agement process, i.e. rehandling, is perceived as the major source of inefficiency
in most container terminals. Therefore, special emphasis has been put on finding
approaches aimed at minimizing the total amount of rehandling needed during a
vessel unloading/loading cycle. Consequently, a number of references dealing with
this type of problem can be found under the captions “minimizing the number of re-
handling operations,” e.g. Caserta et al (2009a), Caserta et al (2009c), and Kim and
Hong (2006) or, alternatively, “minimizing rehandling time,” e.g. Choe et al (2009),
Kang et al (2006b), Park et al (2009).

The structure of the paper is as follows: In Section 13.2 an overview of stacking
approaches, i.e. approaches aimed at defining how containers should be piled up in
the stacking area is presented. The section concludes illustrating why, no matter how
well-thought the stacking policy can be, container rehandling is going to be needed
during the loading phase. Therefore, Section 13.3 is devoted to the presentation of
marshalling problems, aimed at reshuffling the storage area in order to eliminate
or reduce the total number of future rehandling. Section 13.4 deals with a differ-
ent type of problem, the blocks relocation problem. Exact and heuristic approaches
for this special type of rehandling problem are presented. Section 13.5 constitutes
a bridge between rehandling problems at maritime container terminals and similar
problems arising in different realms. Some references to related work in other appli-
cation domains are provided in this section. Finally, Section 13.6 concludes offering
a brief overview of the current status in the container handling discipline along with
a glimpse of future challenges and opportunities.

13.2 Container Stacking

In this section, we present a brief overview of approaches aimed at managing con-
tainer terminals with respect to defining an effective stacking policy. The papers
presented below study, often via simulation, different strategies for the container
stacking problem. An overview of storage and stacking logistics at container termi-
nals is provided in Steenken et al (2004) and Stahlbock and Voß (2008).

The stacking problem arising at container terminals is the following: Export con-
tainers of various destinations, weights, and due dates arrive at a container yard in a
random fashion. Very often, not all relevant data is given at the arrival time, e.g. the
precise weight is usually given only shortly before loading the container to the ves-
sel. In addition, some containers need special treatment, such as containers carrying
hazardous material or reefer containers. The task is to find good storage slots for

13 Container Rehandling at Maritime Container Terminals 253

incoming containers, where several objectives might be addressed, e.g. minimizing
the number of future relocations, minimizing the overall crane utilization, or storing
containers of equal destination within the same bays. The stacking problem requires
optimization techniques that work with uncertain information and allow to deal with
data arising in an online fashion.

Dekker et al (2006) present an interesting overview of some of the most relevant
optimization problems at container terminals and propose a number of alternative
policies for stacking containers in a yard. They test the validity of the proposed
approaches through simulation. The simulation study concerns a time period of 15
weeks with a movement of around 175,000 containers and generates arrival and de-
parture times for each container. Based on the stochastic set of data, a stacking algo-
rithm made up by different stacking policies has been tested and compared against
the naive random stacking policy. Total number of reshuffles, cranes workload, and
level of occupation are used as performance measures of each stacking policy. The
focus of the paper is on evaluating stacking strategies, i.e. how stacks should be
filled up to achieve efficiency with respect to these performance measures. How-
ever, no details about how containers are reshuffled, i.e. which rules are employed,
are given.

Kang et al (2006b) present a simulated annealing algorithm for the identifica-
tion of stacking policies when the information about the weight of containers is not
certain. The authors first explain that one of the principal reasons why rehandling
occurs is due to the lack of precise information about the weight of containers. Ship
balancing constraints require heavy containers to be placed at the bottom of the
ship. Therefore, in order to minimize rehandling during loading operations heavy
containers should always be placed on top of lighter containers when they are piled
up at the container yard, so that they can easily be reversed when loaded onto the
vessel. However, when the containers are brought into the terminal by trucks, only
an estimate, and not a precise value of container weights is available. As a result,
rehandling during the loading phase cannot be entirely avoided. The authors present
a simulated annealing algorithm that allows to define an appropriate stacking policy,
i.e. the “best” stack to be used by an incoming container is identified. A simulation
approach is used: first, a random sequence of incoming containers is generated fol-
lowing predefined probability distribution functions that account for the likeliness
of receiving containers of a given weight class. These probability distribution func-
tions are derived from historical data. Next, a strategy to be evaluated is applied to
stack the incoming containers. Once all the incoming containers have been stacked,
the expected number of rehandling operations required to load these containers to a
vessel is estimated. The amount of rehandling is taken as a measure of “goodness”
of the stacking strategy. In order to have a more thorough evaluation, the simula-
tion cycle is repeated over multiple runs. It is also worth pointing out that, in order
to increase the accuracy of prediction of the actual container weights based upon
the estimates, a machine learning approach (decision trees) to derive a classifier is
employed. The authors report an improvement in accuracy when the learning mech-
anism is used.

254 Marco Caserta, Silvia Schwarze, and Stefan Voß

Yang and Kim (2006) consider the problem of finding the stacking policy of in-
coming containers that minimizes the total number of rehandling operations. Each
container is characterized by arrival and departure dates. When a container with
early departure date is placed below another container with late departure date,
a rehandling is deemed necessary. The focus of the paper is on the definition of
“groups” of containers, defined as a collection of containers that can be stored to-
gether on the same stack and subsequently retrieved in any order without incurring
extra rehandling. An example is given by containers with the same destination port,
size and weight class. A mathematical model is proposed with the aim of creating
such groups of homogeneous containers and identifying which portion of the bay
should be used to stack each group. The goal of the model is, therefore, to identify
the group stacking policy with minimum rehandling. Two versions of the problem
are tackled by the authors: a static version, in which the precise information about
departure date of each container is known in advance, and a dynamic version of the
same problem, in which the retrieval date of a container becomes known only at
its arrival. While in the static version of the problem the whole planned schedule
can be used to find the optimal stacking policy, in the dynamic version of the stack-
ing problem a position is assigned to a container whenever the container arrives at
the yard, using updated information about the container as well as considering the
current state of the bay.

Kim et al (2000) tackle the problem of determining the storage location of ex-
port containers with the aim of minimizing the expected number of future rehan-
dling. Containers are considered one at a time, in a dynamic fashion. Whenever a
new container reaches the container yard information about its weight, the current
state of the bay and the distribution of the weight groups within the bay are used
to assign a slot to the incoming container. An optimization model based upon dy-
namic programming is employed, under the strong assumption that a container is
rehandled at most once. Two basic terms of the dynamic programming recursion
are: (i) the probability of arrival of a container of a given weight group (estimated
from historical data), and (ii) the expected number of extra rehandling generated
when a container of a given group is placed at a specific slot within the current bay.
Given these two terms, the dynamic programming scheme iterates over the num-
ber of available empty slots within the bay and minimizes the expected number of
rehandling operations for a given set of incoming containers.

Taleb-Ibrahimi et al (1993) study the stacking problem from two different per-
spectives. First, they propose a set of rules aimed at determining the amount of space
required to stack a set of containers without moving each container more than a pre-
specified number of times. Next, they study the dual problem, where the amount
of space available for container stacking is kept fixed and a method to organize the
storage area while minimizing the number of rehandling operations is given.

A number of authors propose “richer” approaches, in which the container han-
dling problem is tackled from a broader perspective. These “integrated” approaches
typically attempt to take into account a pool of factors affecting the total berthing
time, e.g. traveling time of containers from the quayside to the container yard, stack-
ing policy within the container yard, and rehandling policy.

13 Container Rehandling at Maritime Container Terminals 255

Kozan and Preston (1999) present an integrated model that considers both the
unloading and stacking problems, together. The problem is modeled as a job-shop
machine scheduling problem, where the set of containers to be moved corresponds
to the set of jobs to be processed and the set of available cranes corresponds to the set
of machines to be used. They propose an interesting characterization of setup times.
Two subproblems are identified: (i) which containers should be assigned to which
crane, i.e. in the context of scheduling problems, this corresponds to finding which
jobs should be processed on which machine; and (ii) the scheduling sequence for
each crane, i.e. how jobs should be processed on each machine. The authors point
out that, while the proposed model resembles the classical scheduling problem, a
major difference consists in the way in which setup times are computed. While
in the classical scheduling problem setup times are exclusively dependent on the
job immediately preceding the current job, in their model the setup time, i.e. the
time it takes to access a specific container within a stack, depends on the order of
scheduling of containers initially stored on top of the target container. In this paper
they propose a model aimed at minimizing the total berthing time, computed as
the sum of the setup and traveling times of all containers handled. Minimizing the
traveling time corresponds to finding the proper assignment of containers to cranes
and minimizing the setup time corresponds to finding the optimal rehandling policy
for stacked containers. The model is solved by using a genetic algorithm, where the
chromosome representation captures both the container-crane assignment and the
scheduling problem per crane.

In a similar fashion, Kozan and Preston (2006) present a mathematical model
for the integrated problem of determining the optimal storage strategy and con-
tainer handling scheduling. The main goal of the authors is to define an approach
that minimizes the total throughput time, which is seen as the sum of two terms:
The transferring time of the containers to the storage area and the handling time of
all containers from a ship at berth. Consequently, a container transfer model and
a container location model are proposed, respectively. The two separated models
are finally integrated into a single model and iteratively solved using a hybrid tabu
search/genetic algorithm.

Other integrated approaches are presented in e.g. Froyland et al (2008), Lee et al
(2006), and Kozan (2000).

A different and yet somehow related problem is the one studied by Kim and
Park (2003), where the problem of how to pre-allocate storage space for export
containers, i.e. containers that are going to be loaded onto a vessel, is investigated.
Such space should be allocated with the goal of maximizing efficiency of future
loading operations. As pointed out by the authors, the process of determining storage
locations of export containers can be decomposed into two major steps: (i) space
allocation problem, and (ii) container location problem. While problem (ii) deals
with the identification of the specific storage location of a container within a bay, i.e.
stack and tier number, problem (i) only defines the amount of space and the specific
area, i.e. how many and which bays need to be assigned to store export containers for
a specific vessel. Some basic criteria are enforced in determining such area, e.g. bays
assigned to a vessel should be located near the vessel berthing position, containers

256 Marco Caserta, Silvia Schwarze, and Stefan Voß

of different groups should not be mixed in the same bay etc. A mathematical model
and a solution approach based upon heuristic rules are presented in the paper.

Further works dealing with the storage location assignment problem are, e.g.
Bazzazi et al (2009), Park and Seo (2009), Han et al (2008), Zhang et al (2003), and
Preston and Kozan (2001).

As pointed out by many authors, e.g. Park et al (2009), Kang et al (2006b), and
Kim and Bae (1998), rehandling during the loading phase cannot be avoided al-
together, even after a well-planned strategy aimed at identifying a stacking policy
that minimizes the total number of expected rehandling is employed. Some of the
reasons why this occurs are that containers to be shipped to different vessels are
stored together due to the limited space capacity of the yard, the precise information
about the weight of containers is not available until just before the loading opera-
tions begin and the loading plan is not yet determined when a container arrives at
the yard.

13.3 Remarshalling and Premarshalling

As mentioned in the introduction, the goal of the remarshalling problem is to reshuf-
fle containers so that no further relocations, i.e. unproductive moves are required
when the loading/unloading phase is performed. As formalized in Choe et al (2009),
“remarshalling refers to the task of relocating export containers into a proper ar-
rangement for the purpose of increasing the efficiency of the loading operations.”

Two types of marshalling activities are carried out at a typical container terminal
yard: (i) intra-block remarshalling, in which containers that are scattered around
within a block are rearranged into designated bays within the same block; (ii) intra-
bay premarshalling, in which containers within the same bay are reshuffled. In both
cases, the goal is to minimize the number of future unproductive moves.

Typically, intra-block remarshalling refers to the problem of moving a set of
containers to pre-specified bays within the same block. As indicated in Kang et al
(2006a), the bays in which the target containers are located before remarshalling are
called source bays and the empty bays to which these containers should be moved
are called target bays. Containers within a block are characterized by two types of
information:

• a group or category, accounting for, e.g. the port of destination. In order to min-
imize the distance traveled by the cranes during the loading phase, containers
belonging to the same group are placed in adjacent slots within the same block;

• a priority, accounting for, e.g. weight information, order of retrieval, etc. Within
the same group, containers should be stacked by ensuring that no container with
lower priority is found on top of a container with higher priority.

Therefore, the two-objective problem of intra-block remarshalling is aimed at
grouping together containers belonging to the same category and, for each set of

13 Container Rehandling at Maritime Container Terminals 257

containers of the same category, at piling up such containers taking into account
priorities.

On the other hand, intra-bay premarshalling is motivated by the use of a specific
technology. As pointed out by Lee and Chao (2009) and Lee and Hsu (2007), yards
that use rail mounted gantry cranes as major container handling equipment typically
solve the marshalling problem at bay level. For safety reasons, in some terminals
where access of containers to and from the block is usually from the side, a gantry
crane is not moved from one bay to another, even within the same block, while car-
rying a container. Therefore, in those terminals, to move a container from one bay to
another, it would be necessary to temporarily unload the container from the crane,
put it on a truck, move the truck and, possibly the empty crane to the target bay,
pick up the container from the truck with the crane and store the container within
the target bay. This operation is time consuming and, therefore, it is avoided when-
ever possible. This consideration motivates the study, from a practical perspective,
of the intra-bay premarshalling problem. The goal of the premarshalling problem is,
therefore, to rehandle containers within the same bay in order to eliminate (or mini-
mize) future rehandling while minimizing the total number of rehandling operations
during the premarshalling process itself.

Intra-block remarshalling could be seen as more than a simple extension of intra-
bay premarshalling, since more than one crane could be used to handle the contain-
ers. Therefore, typically the remarshalling problem also encompasses some consid-
erations with respect to avoiding or minimizing interference among cranes within
the same block.

Conversely, as illustrated in Figure 13.3, the premarshalling problem could be
seen as a special case of the remarshalling problem, in which the following charac-
teristics arise:

• only one source bay is given;
• only one target bay is given;
• the target bay coincides with the source bay;
• only one crane is used and, therefore, there is no need to take into account crane

scheduling interference issues.

To the best of the authors knowledge, the computational complexity of the RMP has
not been addressed yet. We close this gap in Section 13.4, after introducing the BRP
in detail. It turns out that the RMP is NP-hard which can be proven by transforming
the NP-hard BRP to the RMP.

Choe et al (2009) study the intra-block remarshalling problem where more than one
crane is used to handle containers. Therefore, interference among cranes is taken
into account. The problem takes as input a current configuration, in which contain-
ers are placed on source stacks and is aimed at relocating such containers into target
stacks in such a way that two constraints are satisfied: (i) after remarshalling, all
containers can be loaded without further rehandling; and (ii) during remarshalling,
each container should be moved from its source bay to its target bay without re-

258 Marco Caserta, Silvia Schwarze, and Stefan Voß

Fig. 13.3 PMP as special case of RMP.

handling. The authors propose a two-phase algorithm: The first phase is devoted
to identifying the target slots to which handled containers should be moved, and
the second phase is aimed at finding an optimal schedule of the cranes to actually
perform the relocation of containers. The proposed algorithm, based upon simu-
lated annealing, is aimed at finding a rehandling-free configuration of the block that
can be achieved in the minimum amount of time. Based upon a partial order graph
that captures all the feasible moves leading from the current block configuration
to a target configuration, at each step of the search phase the algorithm evaluates
the goodness of a candidate solution configuration by heuristically creating a crane
schedule and estimating the time needed to complete remarshalling to achieve that
particular configuration.

Park et al (2009) analyze the remarshalling problem with respect to export con-
tainers at the intra-block level, i.e. the reshuffling of containers is done within the
same block. Typical dimensions of the considered problem are 41 bays per block,
where each bay is made up by 10 stacks and 6 tiers. A block is managed by the use
of two cranes, a first crane dealing with export containers and a second one dealing
with import containers. Due to the large size of the considered blocks, the authors
identify two sources of inefficiencies in the handling of containers. The first one is
related to the horizontal movement of the cranes used to load containers to the ves-
sel. Typically, export containers are unloaded from tracks and, therefore, are piled
up near the landside of the block. This means that during the loading operations the
crane operating on the waterside is forced to travel long distances toward the land-
side of the block to pick up export containers, hence affecting the overall time of
the loading operations. A second source of inefficiency can be ascribed to the stack-
ing of high priority containers below low priority containers, forcing a rehandling
of the uppermost containers. The authors present a two-stage heuristic algorithm.
The first stage uses heuristic rules to identify where, i.e. in which stacks containers
must be relocated. Stacks are selected with the aim of avoiding future rehandling of
containers during the loading operations. In the second stage of the algorithm, a co-

13 Container Rehandling at Maritime Container Terminals 259

operative co-evolutionary algorithm is used to identify the precise slot within which
containers should be relocated (stack and tier), along with the order of movement of
the containers to be reshuffled. Two populations are created to identify the slots and
to define the order of movement. Information is exchanged in the following way:
initially, a solution for the target slots identification is found; such solution is then
used as input to the subproblem dealing with the movement sequence. In turn, the
movement sequence defined by this last subproblem is used to find a better set of
target slots and the cooperative approach is repeated in cycles.

Similarly, Kang et al (2006a) deal with the intra-block remarshalling problem,
where containers are reshuffled at a block level, moving them into designated slots
within the same block. As for the previous works, they deal with export containers
and the objective is to find a rearrangement that avoids future rehandling during the
loading operations. As in Choe et al (2009), multiple cranes are used within a block
and, therefore, interference among cranes is also minimized. The problem takes as
input a current configuration in which containers are placed on source stacks and
is aimed at relocating such containers into target stacks in such a way that two
constraints are satisfied: (i) after remarshalling, all containers can be loaded without
further rehandling; and (ii) during remarshalling, each container should be moved
from its source bay to its target bay without rehandling. The proposed approach is
similar to the one of Choe et al (2009), since a two-phase algorithm is designed.
First, a set of target locations is defined ensuring that the two main constraints are
enforced. Next, a partial order graph is created with the goal of finding a set of
feasible moves leading from the source configuration to the target configuration.
The partial order graph captures all the possible moves leading from source to target
configuration, while respecting the two aforementioned constraints. Next, simulated
annealing is used to find the solution that minimizes the overall time required to
carry out the remarshalling operations. Finally, a heuristic is employed to find a
crane’s feasible schedule. An interesting point brought out by the authors is related
to the notion of neighbor solutions. Given a partial order graph, a neighbor of such
graph is obtained by appropriately modifying the current one via the application of
swapping among containers stored on different stacks of the same bay.

In a seminal work, Kim and Bae (1998) deal with the problem of how to effi-
ciently move a set of containers from source bays to target bays. Containers in the
target bays should be accommodated according to a pre-specified layout, called tar-
get layout. The intra-block remarshalling problem is decomposed into two subprob-
lems: (i) the bay matching and move planning problem, in which each source bay
within the block is matched with the target bay in the target layout. Decisions with
respect to how many containers should be moved between any two bays are made at
this stage. This part of the problem is solved using dynamic programming (to define
the bay matching needs) and the transportation algorithm (to plan the movement
of containers among bays and assignment to cranes). Whenever crane interferences
arise throughout the container movements, the bay matching is called again under
additional constraints that prohibit the conflicting bay matching; (ii) the movement
sequencing problem, in which the actual movements required to reach the target
layout are scheduled. Kim and Bae (1998) adopt a “macroscopic” perspective of the

260 Marco Caserta, Silvia Schwarze, and Stefan Voß

problem, i.e. only the number of containers per group type and bay are considered,
whereas the actual positions and rehandling within a bay are neglected.

More recently, Lee and Hsu (2007) proposed an optimization model for the intra-
bay premarshalling problem. As previously mentioned, the study of the intra-bay
problem is motivated by the specific technology used at the container yard. Rail
mounted gantry cranes are moved from one bay to the other while being empty, i.e.
the trolley of the crane does not carry any container. Therefore, in order to move a
container from one bay to another, even within the same block, the use of an aux-
iliary truck to temporarily store the container to transport it from the source bay to
the destination bay is required. Such an inter-bay operation is obviously time con-
suming and consequently should be avoided whenever possible. For this reason, the
authors study the problem of intra-bay premarshalling. The premarshalling process
reshuffles the containers within a bay in order to reach a final bay layout that does
not require further rehandling during the loading phase. The authors work under the
following four basic assumptions:

• reshuffling takes place only within the same bay;
• containers are assumed to be of the same length;
• each crane is involved in the loading of one ship at a time;
• the loading order of containers is known.

These authors propose an integer programming model based upon a multi-
commodity network flow problem. The network accounts for two dimensions, time
and space. Each level of the network describes a specific point in time and captures
the state of the bay at that instant. Connections between different levels of the net-
work account for moves of containers over time and space, i.e. edges within the
network are used to model the movement of a container from one stack to another
in a given time period. The basic mathematical model, along with some extensions,
is presented in the paper. Finally, in order to reduce the number of variables and to
make the model tractable, some simplifications are introduced. One drawback of the
model worth mentioning concerns the need to pre-define a parameter T , i.e. the to-
tal number of time periods required to completely reshuffle the bay. While the goal
of the problem is to find the rehandling pattern that sorts out the whole bay in the
minimum amount of moves, i.e. in the minimum amount of time periods T (which
is unknown), the appropriate choice of the value of T has a strong bearing on the
computational time required to solve the model. If T is chosen too large, then a very
large number of variables is created and, therefore, the MIP solver might not be able
to reach the optimal solution in a reasonable amount of computational time. On the
other hand, if T is chosen too small, a feasible solution might not even exist. Some
analysis about this trade off is presented by the authors.

Lee and Chao (2009) propose a different algorithm for the same premarshalling
problem. In order to overcome the limitations imposed by the size of the integer
programming model of Lee and Hsu (2007), the authors propose a heuristic ap-
proach aimed at minimizing the number of movements required to complete the
premarshalling process. More specifically, a bi-objective problem is proposed: On
the one hand, the authors attempt to create a reshuffled bay that requires the mini-

13 Container Rehandling at Maritime Container Terminals 261

mum amount of rehandling during the loading phase; on the other hand, such desired
configuration should be reached in the minimum amount of steps, i.e. the final con-
figuration should be reached minimizing the total number of rehandling operations.
The approach is hybrid in the sense that heuristic techniques, such as neighborhood
search and mathematical programming techniques, such as integer programming
are intertwined to deal with different subproblems. First, the neighborhood search
heuristic is used to find a chain of movements to sort out the bay in such a way that
the number of further rehandling required during the loading phase is minimum.
Next, a binary integer programming model is solved to reduce the number of move-
ments required to reach that final configuration. A number of minor heuristic rules
are used to foster the effectiveness of the proposed algorithm. Some comments on
Lee and Chao (2009) together with a simple lower bound calculation can be found
in Voß (2008).

Caserta and Voß (2009) present a metaheuristic algorithm for the premarshalling
problem. The central idea of the approach relies on iteratively solving to optimality
smaller portions of the original problem. The usual assumptions, i.e. premarshalling
is carried out within the same bay, containers are assumed to be of the same size and
loading preferences are known, are made. The algorithm consists of four different
phases, in which ideas from the Corridor Method, roulette-wheel selection and lo-
cal search techniques are intertwined to foster intensification around an incumbent
solution. The algorithm is stochastic in nature and is based upon the use of a set of
greedy rules that bias the behavior of the scheme toward the selection of the most
appealing moves.

13.4 Relocation and Retrieval

The BRP is closely related to the previously discussed pre- and remarshalling prob-
lems but with one major difference: While pre- and remarshalling problems only
consider rehandling operations, BRP also allows for retrieving operations, e.g. mov-
ing a container from a bay to a destination vessel. Retrieving and rehandling oper-
ations might be carried out in parallel for the BRP. Consequently, the number of
containers in the bay decreases for the BRP, whereas the number of containers in
the bay (block) remains constant for premarshalling (remarshalling) problems.

More precisely, the BRP is described by the following properties:

• A single bay is considered and consequently operations are carried out by a
single crane.

• Containers are piled up vertically in stacks, i.e. only the uppermost container of
each stack is accessible for rehandling or retrieving and each container is either
placed on the ground or on top of another container.

• The number of stacks describes the width of the bay.
• The height of stacks is bounded by the number of tiers.
• The total number of containers in the bay is denoted by N.

262 Marco Caserta, Silvia Schwarze, and Stefan Voß

• Each container in the bay is associated with a priority number, where more than
one container might belong to the same priority group (indicated by the priority
number). Moreover, the location of each container is given in advance.

• Containers have to be retrieved from the bay according to their priority number,
i.e. a container with a certain priority can only be retrieved if all containers with
higher priorities have already been removed.

• Containers that are to be removed next are called target containers. Rehandling
operations become necessary, if no target container is accessible.

• A majority of models given in literature add the following condition: (A1) Only
containers located in the same stack as and above the current target container are
allowed to be rehandled (see, e.g. Kim and Hong (2006), Caserta et al (2009a),
Caserta et al (2009c), and Caserta et al (2009b)).

The objective of the BRP is to retrieve all the containers from the bay in the
prescribed order while minimizing the number of rehandling operations. As pointed
out at the beginning of this section, the BRP is closely related to remarshalling. In
particular, the BRP can be considered as a specific case of remarshalling as each
BRP can be transformed to a remarshalling problem by the following procedure:

Transformation BRP to RMP: Given a BRP with a certain bay defined by a num-
ber of stacks and a number of tiers. Generate a remarshalling problem with a single
source bay of the same size by carrying over the layout from the BRP bay to the
remarshalling source bay. Moreover, generate a single and empty target bay with
one stack of height equal to the number of containers to be retrieved (N) and impose
the use of a single crane for carrying out the rehandling operations. A solution to the
remarshalling problem with a minimum number of rehandling operations is then an
optimal solution to the BRP. The transformation process is illustrated in Figure 13.4.
The transformation “BRP to RMP” implies the following result:

Lemma 1 The remarshalling problem is NP-hard.

Proof 1 Assume there exists a polynomial algorithm for RMP. Then each BRP
instance could be solved in polynomial time as a polynomial transformation from
BRP to RMP exists. However, BRP is proven to be NP-hard (Caserta et al (2009b))
and, unless P = NP holds true, there is no such polynomial algorithm.

So far, only a few publications have discussed the BRP. Kim and Hong (2006) de-
scribe the BRP together with assumption (A1) and suggest two solution procedures.
First, in an exact approach a branch-and-bound method is described that branches
over all possible bay layouts resulting from the retrieval of a target container. For
determining lower bounds, the confirmed rehandlings are counted and added to the
already realized rehandling, where each container located above a container with
higher priority causes a confirmed rehandling. Second, Kim and Hong (2006) pro-
poses a heuristic method based on the Expected Number of Additional Rehandling
(ENAR). Each time, if there is more than one rehandling operation possible, choose

13 Container Rehandling at Maritime Container Terminals 263

1

2

3

4

5

6

7

N

BRP RMP

Fig. 13.4 Transformation BRP to RMP

the one that minimizes the ENAR for the resulting bay configuration. Experimental
studies are carried out for scenarios where precedence relations are given among
individual containers, i.e. each priority group has exactly one member and for sce-
narios where precedence relations are given for container groups. The exact branch-
and-bound approach is compared with the heuristic method and an average increase
of the number of rehandling operations up to 7.3 % is reported for using the heuristic
instead of the exact method.

Caserta et al (2009a) describe a novel encoding of the bay to a binary matrix
and describe the benefit of this encoding in terms of computational matters. Fast
access to information about the current layout of the bay is enabled and fast trans-
formation of bays when rehandling takes place is possible which, in turn allows a
lean and fast implementation of the solution method. The BRP as well as the pre-
marshalling problem are stated in the notion of the binary encoding. Nevertheless,
the focus of the article is on investigating the BRP under assumption (A1). In par-
ticular, a random-guided look-ahead procedure is implemented. This metaheuristic
approach is based on a set of simple rules that are used to compute heuristic solu-
tions based on any initial bay configuration. The objective function value of these
heuristic solutions serves as a score for the quality of a found partial solution and as
an upper bound for the search procedure. The experimental study compares the re-
sults of the presented procedure against those of Kim and Hong (2006) and Caserta
et al (2009c) and proves the quality of the proposed method by showing a decreased
average number of rehandling operations in the solution.

Caserta et al (2009c) present a corridor method algorithm for the blocks reloca-
tion problem, in which a dynamic programming scheme is presented and used in
a metaheuristic fashion. The approach belongs to the realm of hybrid algorithms,
since mathematical programming techniques are used within a metaheuristic frame-
work, iteratively solving to optimality “constrained” versions of the original BRP.

To the best of our knowledge, Caserta et al (2009b) is up to now the only work
presenting mathematical model descriptions for the BRP. Two mathematical formu-
lations are proposed, where the first one (BRP-I) is not taking into account condition

264 Marco Caserta, Silvia Schwarze, and Stefan Voß

(A1), whereas the second one (BRP-II) does. Thus, BRP-I is exploring a larger solu-
tion space and an example showing that BRP-I is indeed able to find better solutions
than BRP-II is presented. On the other hand, assumption (A1) allows a leaner for-
mulation which results in shorter computational times for solving the problem using
a commercial MIP-solver. Consequently, using BRP-II, larger instances can be ad-
dressed compared with BRP-I, as reported in the computational study. In addition,
in the same work, upper bounds on the number of rehandling operations are pre-
sented. Furthermore, the complexity of the BRP is stated as NP-hard for the BRP,
as well as for the BRP under assumption (A1). Finally, a simple heuristic rule is
proposed and measured against the exact solution and the heuristic solution of Kim
and Hong (2006).

13.5 Related Work in Different Fields

Stacking, sorting and rehandling problems are discussed not only in the context of
containers and ports, but also in different areas like warehousing, production plan-
ning, and artificial intelligence. This section is not meant to give a comprehensive
overview of the work in different fields, but to refer the interested reader to related
notions and concepts.

Some warehouses are organized following the stacking principle by storing uni-
form items piled up on top of each other, where access is only granted for the up-
permost item. Stacking operations in those warehouses follow similar rules as in
container yards. However, a major difference between container yards and ware-
houses is given by the item flow, as warehouses have to offer retrieving and receiv-
ing operations in parallel (see, e.g. Nishi and Konishi (2009)), whereas in container
yards the receiving operations are usually completed before the retrieval operations
take place. Moreover, in general warehouses handle a much larger number of items
than container yards. In addition, the physical properties of the items in a warehouse
might differ from those of a box-shaped container. For instance, in the steel industry
coils are stored by stacking them on top of each other. The resulting storage setting
is not forming “stand-alone” stacks, as each coil is placed on top of two consecutive
coils from the row below (see, e.g. Zäpfel and Wasner (2006)).

Also the handling of trains involves stacking operations; see, e.g. Felsner and
Pergel (2008). A train can be seen as a sequence of wagons. It might happen that
the wagon sequence of a single train needs to be changed or that the wagons of
several trains have to be reshuffled to new collections of trains. These operations
are physically carried out on dead end sidings, where trains or part of trains can be
stored intermediately and taken away later on. Thus on dead end sidings trains can
be “stacked” together and moreover, rehandling of wagons is possible. Each of those
dead end sidings relates to a stack in the container yard, where only the uppermost
container/wagon is accessible.

A well-known concept in artificial intelligence is that of blocks-world (see, e.g.
Romero and Alquézar (2004), Gupta and Nau (1992)). The blocks-world is carried

13 Container Rehandling at Maritime Container Terminals 265

out on a “table” where blocks are stacked on top of each other. A typical blocks-
world instance consists of a given initial table state and a desired goal state. The task
is to transform the initial state to the goal state with a minimum number of moves.
Variants of blocks-world incorporate limitations on the table size and different levels
of given conditions for the goal state. Gupta and Nau (1992) prove the NP-hardness
of blocks-world and Caserta et al (2009b) show that the BRP is a particular case of
blocks-world.

13.6 Conclusion and Future Challenges

Ever since the first containers were introduced in the early 1960s, container handling
techniques and strategies have always been key factors in measuring the efficiency
of major ports. However, due to the growth of container vessels in recent years,
whenever one of such ships berths at a port, a number of containers that would
have been unthinkable some time ago must be handled in just a few hours. This
poses a serious challenge for container terminal operators, since the volume of traffic
has grown exponentially while the available surface for managing such traffic has
remained virtually unchanged. Therefore, optimization techniques for handling and
rehandling containers acquire a prominent role in fostering efficiency of container
terminal operation.

In this paper we have presented a survey of techniques for post-stacking situa-
tions, i.e. once the stacking area has already been filled with containers. Exploiting
the fact that updated information becomes available while the vessel approaches the
port, export containers could be rearranged prior to the arrival of the vessel with the
objective of minimizing the time required for future loading operations. We have
identified three classes of post-stacking problems:

• the remarshalling problem, i.e. the problem in which one wants to rehandle
containers from a set of source bays to a set of target bays within the same block.
Such containers are rehandled in such a way that future loading operations will
be carried out with the maximum efficiency;

• the premarshalling problem, i.e. the problem in which one wants to reshuffle
containers within the same bay. The crane used to carry out these operations
is kept fixed over the specific bay and, therefore, no horizontal movements of
the crane are allowed. As in the previous problem, the final layout of the bay
is such that the number of future relocations required to load the containers is
minimized, or eliminated altogether;

• the relocation problem, i.e. the problem in which one wants to retrieve contain-
ers following a prescribed list of precedences among containers. Such retrieval
operations are carried out minimizing the total number of rehandling operations.

Some of the challenges concerning the aforementioned problems from the opera-
tions research point of view are, e.g. the design of efficient algorithms for online

266 Marco Caserta, Silvia Schwarze, and Stefan Voß

optimization, the use of recent findings in the metaheuristic field and the develop-
ment of broader, integrated approaches for container terminal logistics.

With respect to the design of algorithms for online optimization, as presented in
this paper, a number of heuristic rules have been proposed for any of these problems.
However, a more thorough effort with respect to the design of learning mechanisms
inspired by metaheuristics could be made, in a fashion similar to what is proposed
by Bazzazi et al (2009), Lee and Chao (2009) and Kozan and Preston (1999). Per-
haps one of the major challenges facing operations research experts in designing
metaheuristic algorithms consists in proposing alternative encodings for such prob-
lems. The dynamic nature of the problem itself seems to impose a “constraint” in
the type of encoding used. However, ideas about alternative encoding schemes for
any of these problems could lead to the design of radically different approaches.
As it often happens with metaheuristic algorithms, such approaches should be fast
enough to be used in dealing with online optimization.

When it comes to exploring recent findings in the metaheuristic field, one of
the new trends concerns connecting metaheuristic paradigms with classical mathe-
matical programming techniques. In general, such mathematical programming tech-
niques are used in a metaheuristic “philosophy,” in the sense that the powerful exact
technique is exploited only on a limited portion of the solution space, or perhaps
over different portions of the solution space, as opposed to attempting to solving
the original problem to optimality. This could lead to more powerful algorithms that
could produce higher quality solutions. Some ideas about how to use mathematical
programming techniques in the spirit of metaheuristics are provided in Maniezzo
et al (2009). Similarly, a first application of such approach in the context of the
blocks relocation problem has been proposed in Caserta et al (2009c).

Finally, a third avenue of opportunity could be offered by recent advances in com-
puter technology and parallel computing. Due to the astonishing increase in compu-
tational power, problems that in the past were seen as intractable, today can be dealt
with using, e.g. parallel or grid computing. The interesting aspect is that broader
models, perhaps taking into account more than one single optimization problem at
a time, can now be considered and solved. The current trend so far has been the
one of “divide and conquer,” i.e. to take the original logistic problem and to divide
it into smaller problems. Each one of these smaller problems is then solved, either
heuristically or exactly. However, due to this spur in computing power, perhaps it is
now possible to tackle larger problems taking into account a bigger portion of the
whole picture. This idea is in line with what is attempted by, e.g. Kozan and Preston
(1999), Kozan and Preston (2006), and Lee et al (2006).

13 Container Rehandling at Maritime Container Terminals 267

References

Bazzazi M, Safaei N, Javadian N (2009) A genetic algorithm to solve the storage
space allocation problem in a container terminal. Computers and Industrial Engi-
neering 56(1):44–52

Caserta M, Voß S (2009) A Corridor Method-based Algorithm for the Pre-
marshalling Problem. In: Giacobini M, Brabazon A, Cagnoni S, Di Caro G, Ekart
A, Espacia-Alcázar A, Farooq M, Fink A, Machado P, McCormack J, O’Neill
M, Neri F, Preuss M, Rothlauf F, Tarantino E, Yang S (eds) Applications of Evo-
lutionary Computing, Lecture Notes in Computer Science, vol 5484, Springer,
Berlin, pp 788–797

Caserta M, Schwarze S, Voß S (2009a) A New Binary Description of the Blocks
Relocation Problem and Benefits in a Look Ahead Heuristic. In: Cotta C, Cowling
P (eds) Evolutionary Computation in Combinatorial Optimization, Lecture Notes
in Computer Science, vol 5482, Springer, Berlin, pp 37–48

Caserta M, Schwarze S, Voß S (2009b) A mathematical formulation and complex-
ity considerations for the blocks relocation problem, Working Paper, Institute of
Information Systems, University of Hamburg

Caserta M, Voß S, Sniedovich M (2009c) Applying the corridor method to a blocks
relocation problem. OR Spectrum (DOI: 10.1007/s00291-009-0176-5)

Choe R, Park T, Oh MS, Kang J, Ryu KR (2009) Generating a rehandling-
free intra-block remarshaling plan. Journal of Intelligent Manufacturing (DOI:
10.1007/s10845-009-0273-y)

Dekker R, Voogd P, van Asperen E (2006) Advanced methods for container stack-
ing. OR Spectrum 28(4):563–586

Felsner S, Pergel M (2008) The Complexity of Sorting with Networks of Stacks and
Queues. In: Halperin D, Mehlhorn K (eds) Algorithms – ESA 2008: 16th Annual
European Symposium, Lecture Notes in Computer Science, vol 5193, Springer,
Berlin, pp 417–429

Froyland G, Koch T, Megow N, Duane E, Wren H (2008) Optimizing the landside
operation of a container terminal. OR Spectrum 30(1):53–75

Gambardella LM, Rizzoli AE, Zaffalon M (1998) Simulation and planning of an
intermodal container terminal. Simulation 71(2):107–116

Gupta N, Nau DS (1992) On the complexity of blocks-world planning. Artificial
Intelligence 56(2–3):223–254

Han Y, Lee LH, Chew EP, Tan KC (2008) A yard storage strategy for minimiz-
ing traffic congestion in a marine container transshipment hub. OR Spectrum
30(4):697–720

Kang J, Oh MS, Ahn EY, Ryu KR, Kim KH (2006a) Planning for Intra-block Re-
marshalling in a Container Terminal. In: Ali M, Dapoigny R (eds) Advances in
Applied Artificial Intelligence, Lecture Notes in Artificial Intelligence, Springer,
Berlin, pp 1211–1220

Kang J, Ryu KR, Kim KH (2006b) Deriving stacking strategies for export con-
tainers with uncertain weight information. Journal of Intelligent Manufacturing
17(4):399–410

268 Marco Caserta, Silvia Schwarze, and Stefan Voß

Kim KH, Bae JW (1998) Re-marshalling export containers in port container termi-
nals. Computers and Industrial Engineering 35(3–4):655–658

Kim KH, Hong GP (2006) A heuristic rule for relocating blocks. Computers &
Operations Research 33(4):940–954

Kim KH, Park KT (2003) A note on a dynamic space-allocation method for out-
bound containers. European Journal of Operational Research 148(1):92–101

Kim KH, Park YM, Ryu KR (2000) Deriving decision rules to locate export contain-
ers in container yards. European Journal of Operational Research 124(1):89–101

Kozan E (2000) Optimising container transfers at multimodal terminals. Mathemat-
ical and Computer Modelling 31(10–12):235–243

Kozan E, Preston P (1999) Genetic algorithms to schedule container transfers
at multimodal terminals. International Transactions in Operational Research
6(3):311–329

Kozan E, Preston P (2006) Mathematical modeling of container transfers and stor-
age locations at seaport terminals. OR Spectrum 28(4):519–537

Lee LH, Chew EP, Tan KC, Han Y (2006) An optimization model for storage yard
management in transshipment hubs. OR Spectrum 28(4):539–561

Lee Y, Chao SL (2009) A neighborhood search heuristic for pre-marshalling export
containers. European Journal of Operational Research 196(2):468–475

Lee Y, Hsu NY (2007) An optimization model for the container pre-marshalling
problem. Computers & Operations Research 34(11):3295–3313

Maniezzo V, Voß S, Stützle T (eds) (2009) Matheuristics: Hybridizing Metaheuris-
tics and Mathematical Programming. Springer, Berlin

Nishi T, Konishi M (2009) An optimisation model and its effective beam search
heuristics for floor-storage warehousing systems. International Journal of Pro-
duction Research (DOI: 10.1080/00207540802603767)

Park C, Seo J (2009) Assembly block storage location assignment problem: revis-
ited. Production Planning and Control 20(3):216–226

Park K, Park T, Ryu KR (2009) Planning for Remarshalling in an Automated Con-
tainer Terminal using Cooperative Coevolutionary Algorithms. In: SAC ’09: Pro-
ceedings of the 2009 ACM Symposium on Applied Computing, ACM, New York,
pp 1098–1105

Preston P, Kozan E (2001) An approach to determine storage locations of containers
at seaport terminals. Computers & Operations Research 28(10):983–995

Romero AG, Alquézar R (2004) To Block or Not to Block? In: Lemaitre C, Reyes C,
Gonzalez J (eds) Advances in Artificial Intelligence – IBERAMIA 2004, Lecture
Notes in Computer Science, vol 3315, Springer, Berlin, pp 134–143

Saccone S, Siri S (2009) An integrated simulation-optimization framework for the
operational planning of seaport container terminals. Mathematical and Computer
Modelling of Dynamical Systems 15(3):275–293

Stahlbock R, Voß S (2008) Operations research at container terminals: a literature
update. OR Spectrum 30(1):1–52

Steenken D, Voß S, Stahlbock R (2004) Container terminal operations and opera-
tions research – a classification and literature review. OR Spectrum 26(1):3–49

13 Container Rehandling at Maritime Container Terminals 269

Swisher JR, Hyden PD, Jacobson SH, Schruben LW (2000) Simulation Optimiza-
tion: A Survey of Simulation Optimization Techniques and Procedures. In: WSC
’00: Proceedings of the 32nd Conference on Winter Simulation, Society for Com-
puter Simulation International, San Diego (California), pp 119–128

Taleb-Ibrahimi M, De Castilho B, Daganzo CF (1993) Storage space vs handling
work in container terminals. Transportation Research B 27B(1):13–32

Voß S (2008) Extended Mis-Overlay Calculation for Pre-Marshalling Contain-
ers. Technical Report, Institute of Information Systems, University of Hamburg,
Hamburg

Yang JH, Kim KH (2006) A grouped storage method for minimizing relocations in
block stacking systems. Journal of Intelligent Manufacturing 17(4):453–463

Yun WY, Choi YS (1999) Simulation model for container-terminal operation anal-
ysis using an object-oriented approach. International Journal of Production Eco-
nomics 59(1):221–230

Zäpfel G, Wasner M (2006) Warehouse sequencing in the steel supply chain as
a generalized job shop model. International Journal of Production Economics
104(2):482–501

Zhang C, Liu J, Wan Y, Murty KG, Linn RJ (2003) Storage space allocation in
container terminals. Transportation Research B 37(10):883–903

	Chapter 13 Container Rehandling at Maritime Container Terminals
	13.1 Introduction
	13.2 Container Stacking
	13.3 Remarshalling and Premarshalling
	13.4 Relocation and Retrieval
	Transformation BRP to RMP:
	Lemma 1
	Proof 1

	13.5 RelatedWork in Different Fields
	13.6 Conclusion and Future Challenges
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

