
Chapter 5
Beyond CRUD

Irum Rauf and Ivan Porres

Abstract REST web services offer interfaces to create, retrieve, update and delete
information from a database (also called CRUD interfaces). However, REST web
services can also be used to create rich services that offer more than simple CRUD
operations and still follow the REST architectural style. In such a case it is important
to create and publish behavioral service interfaces that developers can understand in
order to use the service correctly. In this chapter we explain how to use models to
design rich REST services. We use UML class diagrams and protocol state machines
to model the structural and behavioral features of rich services. The design models
are then implemented in Django Web Framework. We also show how to use the
behavioral interfaces to implement a service monitor.

Introduction

The interface of a web service advertises the operations that can be invoked on it.
A web service developer looking for a particular service finds the service over the
web and integrates it with other services by invoking the advertised operations and
providing it the required parameters.

Many RESTful web services present simple interfaces to create, retrieve, update
and delete information from a database (also called CRUD interfaces). However,
REST is not limited to simple CRUD applications. It is possible to create web
services exhibiting a rich application state that still follow the REST architectural
style, e.g., flight and hotel reservation systems, stock trading services etc. In such
cases, it is important to create and publish behavioral service interfaces so other
developers can understand how to use a service correctly. A behavioral interface

I. Rauf (�)
Department of Information Technologies ICT, Abo Akademi University,
Joukahainengatan 3-5 A, FI-20520 ABO, Finland
e-mail: irauf@abo.fi

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 5, © Springer Science+Business Media, LLC 2011

117

irauf@abo.fi

118 I. Rauf and I. Porres

of a web service provides information about the order of invocation and about any
special conditions under which interface methods can be invoked and their expected
effect.

A REST interface should offer features of addressability, connectedness, uniform
interface and statelessness. In order to provide these interface features for beyond
CRUD REST applications along with behavioral interface specifications, we present
a design methodology that caters to the REST design philosophy earlier in the devel-
opment cycle (Porres and Rauf 2011). The design approach addresses modeling of
REST features using UML (Unified Modeling Language) (OMG UML 2009), thus
creating web services that are RESTful by construction. In this chapter, we overview
the design methodology presented in Porres and Rauf (2011) and then detail how the
design approach is implemented in Django Web Framework. The service monitor
implemented in Django Web Framework checks the correctness of a service with
regard to its design.

Modeling the RESTful way

Models represent a system in graphical notations that are easier to understand
and communicate between system developers and with other stake-holders of the
system. We use UML to model the structural and behavioral features of REST web
service. UML is a standard modeling notation and is well-accepted by industry. It
provides representation of the system in an abstract manner from different perspec-
tives and also serves as part of the specification document (Mens and Gorp 2005).

The objective of this modeling activity is to represent a REST web service
with UML models that provide features of a REST interface, i.e., addressability,
connectedness, uniform interface and statelessness. Using these design models, we
can create a web service that will exhibit REST features thus making it RESTful by
construction.

The starting point of the modeling activity is an informal web service specifica-
tion in natural language. This specification is used to model structural features as
a conceptual resource model and behavioral features as a behavioral model of the
web service. Both the models are built in parallel and refined iteratively.

REST web services expose their functionality through resources. We model these
resources in our conceptual resource model. The conceptual resource model is
represented by a UML class diagram and tackles the addressability and connectivity
requirements of a REST interface. The behavioral specifications of an interface are
represented with UML Protocol state machine. A protocol state machine contains a
number of states with state invariants and transitions. Each transition is triggered by
a method. In a RESTful interface, resources do not have different access methods,
instead the standard HTTP methods are used. Our approach uses four HTTP
methods, i.e., GET, PUT, POST, and DELETE, for retrieving and updating data in a
resource. The behavioral model tackles with the uniform interface and statelessness
features of REST style.

5 Beyond CRUD 119

In the next two sections, we show how these models are developed. We use
as example an imaginary hotel room booking (HRB) service. The service allows
a client to book a room, pay for the reservation, and cancel it. It is a simplified
pedagogical example, but it shows how to design a REST interface for a service
with a complex application state.

Conceptual Resource Model

A RESTful web service is data-centric and exposes its functionality through
resources. Each resource has a representation in the form of data attributes. These
resources form part of the static structure of the web service. We represent this
static structure as a conceptual resource model using UML class diagram. A UML
class diagram represents classes and associations between them. An association
defines a relationship between two classes by which one class knows about the other
class (OMG UML 2009).

As a starting step we analyze the natural language specifications of the service
and identify the resources. Any important information in a service interface is
exposed as a resource. Each resource is shown as a class in the class diagram.
Identifying resources can be an iterative process and as we analyze and design
the behavioral model of a web service, we can add or remove the resources in its
conceptual resource model. As a general practice, the number of resources can be
increased to reduce the complexity of a service interface. Every piece of information
that needs to be retrieved or manipulated by the users of the service is modeled as a
resource.

Figure 5.1 shows the conceptual resource model of the HRB RESTful service.We
have broken our HRB service into six (non-collection) resources, i.e, (booking,
room, payment, pwaiting, pconfirmation and cancel). A user interested in retrieving
certain information can invoke a GET method on that resource and get represen-
tation of resource as a response. For example, if a user is interested in knowing
whether a booking is canceled or a certain payment is confirmed, she would invoke
GET method on cancel or pconfirmation resource, respectively.

A resource can also be a collection resource that contains a group of other
resources. A collection resource is identified from the specifications and stereotyped
as <<collection>> in the conceptual model. In Fig. 5.1, bookings and rooms
represent collection resources with the stereotype collection and are linked to child
resources, booking and room, respectively. A collection resource has a cardinality
of more than 1 on the association end of a child resource. A GET method on a
collection resource returns a list of all the child resources it contains. For example, a
GET method on bookings will give a list of all the booking resources that it contains.

The attributes that form representation of a resource are represented as attributes
of a class. These class attributes would appear in the resource representation, i.e. an
XML document or a JSON serialized object.

120 I. Rauf and I. Porres

Fig. 5.1 Conceptual model for HRB RESTful web service

Figure 5.1 shows representation of resources in the HRB service. For example,
room resource contains three attributes i.e. rid, rType and floor. Room ID(rid) and
floor(floor) are integer values and room type(rType) is a string value. Attributes are
modeled as a public attribute as the representation of a resource is available for
manipulation.

Classes are connected via associations and each association is marked with role
names on association ends. These associations show connection between resources
and their multiplicity shows number of resources that can be related to the resource
on the other end of the resource. These associations provide addressability and
connectivity features to web service interface as explained in the next section.

Addressability and Connectedness

The associations between classes in the conceptual model provide information
on the connection between the resources. The association direction shows the
navigation direction and the role names on the association ends show the relative
navigation path. Collection resources can be used as the starting point of the
navigation paths to address each resource. Starting from a collection resource, we
can access other resources by navigating the successive associations. For example,
in Fig. 5.1, payment resource of a particular booking with id fbidg is retrieved by
visiting the path =bookings=fbidg=payment=. Paths visiting the same association
more than once are not valid. In our example, the valid paths are listed below.

5 Beyond CRUD 121

/bookings/{bid}/
/bookings/{bid}/cancel/
/bookings/{bid}/payment/
/bookings/{bid}/rooms/{rid}/
/bookings/{bid}/payment/pconfirmation/
/bookings/{bid}/payment/pwaiting/
/rooms/{rid}/
/rooms/{rid}/booking/
/rooms/{rid}/booking/cancel/
/rooms/{rid}/booking/payment/
/rooms/{rid}/payment/pconfirmation/
/rooms/{rid}/payment/pwaiting/

The REST style requires that all resources should be addressable and connected.
Thus, we require that our resource model should not contain an isolated resource.
Each resource can be reached from at least one collection resource by navigating
one or more associations.

Uniform Interface

A UML class diagram allows us to define a number of operations for each class.
Since a RESTful web service provides uniform interface for all resources, all
resources would only have from one to four method names GET, POST, PUT, and
DELETE. Thus, we do not show operation information in the conceptual resource
model. However, by constraining the allowed transition triggers in behavioral model
to the standard HTTP method we comply with the uniform interface requirement.

Behavioral Service Model

The purpose of the behavioral model is to describe the behavioral interface speci-
fications of a RESTful web service. It shows the sequence under which operations
should be invoked, the conditions under which they can be invoked and the expected
results.

We use a UML protocol state machine with state invariants to describe the
allowed operations in a web service. A UML protocol state machine is suitable
for representing the behavior of a web service as it provides interface specifications
that give information about conditions under which methods can be invoked and
their expected output.

A UML protocol state machine contains mainly states and transitions. We require
that each state has a state invariant that is defined as a boolean expression. We then
say that a state is active if and only if its state invariant evaluates to true. A state
may contain other states and is called a composite state. In such a case, the actual

122 I. Rauf and I. Porres

state invariant of the contained state is given by the conjunction of the state invariant
specific for the contained state and the state invariants of all the states that contain it.
These state invariants within a composite state should be mutually exclusive. That
is, only one state within a region of a composite state can be active at a time.

A transition is an arc from one or more source state(s) to one or more target
state(s) labeled with a method name and a guard. If the source states are active,
the guard is true and the method is invoked, then the transition may be fired and
as a consequence the target state(s) become active. When no guard is shown in the
transition it is assumed to be true.

Since we are describing RESTful web interfaces, the only allowed operations are
GET, POST, PUT, and DELETE on resources.

The GET method retrieves representation of a resource and it should not have
side effects, i.e., not cause a change in the state of the system. Due to the addressabil-
ity requirement, it is possible to always invoke a GET method over a resource. For
example, GET(/bookings/fbookingIdg/payment/) and GET(/bookings/fbookingIdg/
cancel/) represent GET requests on resources payment and cancel, respectively.
Whenever a GET method is invoked on a resource, it gives the representation of
resource as a response if the resource is present, else a response code of 404 is sent
back. In practice, the access to resources may be restricted by an authentication and
access control mechanism.

The transition triggers can only be defined as POST, PUT, or DELETE operations
over resources described in the conceptual model. The POST, PUT, and DELETE
methods can have side effects, i.e., they can cause a change in the state of the system.

Our behavioral model shows different states of a RESTful web service and gives
information on what HTTP methods on a particular resource can be invoked from
a certain state. According to Fig. 5.2, the protocol state machine of HRB service
is initiated by the HTTP POST method on the bookings resource. The client can
make payment for a booking by invoking a PUT method on payment resource only
if the name of the credit card is same as the name of the guest. The booking service
invokes a third party credit card payment service(CCService) from the paid state
as an internal action. If the CCService is asynchronous, then the booking service
invokes a PUT on pwaiting resource and the transaction enters a wait state. It
then invokes a PUT on pconfirmation resource when response is received from
the CCService. If the CCService is synchronous, the booking service invokes a
PUT on pconfirmation resource from the paid state when it receives response from
the CCService. The case of synchronous and asynchronous services is explained in
“Synchronous and Asynchronous Web Services.” A booking can be canceled from
the composite state reserve and pay and simple state pconfirmation info. A booking
cannot be canceled if it is waiting for the payment confirmation from a third-party
service. A booking can be deleted only if it is canceled. Note that all the information
needed to process the request on a resource are contained in the invoked method
and URL.

A GET method can be invoked on every resource as it is free of any side-effect.
However, a closer look at the behavioral model also exposes information about
the allowed side-effect methods on a resource. For example, Fig. 5.2 shows that

5 Beyond CRUD 123

Fig. 5.2 Behavioral model for HRB RESTful web service

only a POST (side-effect) method can be invoked on collection resource bookings,
similarly allowed (side-effect) method on resource booking, payment, pwaiting,
pconfirmation and cancel is PUT. On booking resource, a DELETE method can
also be invoked.

The guards and postconditions on transitions are defined only using GET requests
on request on resources and the request parameters that include values parsed out
of the request URI. A guard condition on the transition specifies the condition
required to invoke an HTTP method on a resource. For example, consider guard
[b.guestName==ccName] for the method PUT(payment) in Fig. 5.2, where b refers
to the relative navigation path to resource booking. This guard specifies that the
PUT method on payment resource can be invoked only if the guestName in resource
representation of booking for booking Id fbookingIdg matches the name of the credit
card provided by the client.

State Invariants Using Resources

State invariants show the current state of an application during the lifecycle of
an object. We are representing behavioral interface of a REST web service using
protocol state machines. REST invocations do not contain any state or session
information, so defining state invariants for REST application states is not obvious.

124 I. Rauf and I. Porres

We address this problem by performing GET requests on different resources and
using their representations and response codes to form boolean expressions.

When we invoke an HTTP GET method on a resource, it returns its representation
along with the HTTP response code. This response code tells whether the request
went well or bad. If the HTTP response code is 200, this means that the request
was successful and the referred resource exists. Otherwise, if the response code is
404, this implies that URI could not be mapped to any resource and the referred
resource does not exist. We do not treat this 404 code as an error but as an important
determinant of protocol state.

We use a boolean function OK(r) to express that the response code of HTTP GET
method on a resource r is 200. Similarly, the boolean function NOT FOUND(r) is
true when the response code of HTTP GET method on resource r is 404. These
boolean functions on the resources along with the attributes that represent a resource
are used to define a state invariant in our RESTful behavioral model.

For example, consider the state invariant for the state reserved not paid
in Fig. 5.2. NOT FOUND(payment) checks the response code for the HTTP
GET method on the resource payment. It evaluates to true if response code of
GET method on payment for a particular booking ID(fbidg) is 404. For the
HRB service to be in state reserved not paid, the state invariant of this simple
state is conjuncted with the state invariants of all the states that contain it,
i.e., NOT FOUND.payment/&&NOT FOUND.pconfirmation/&&NOT FOUND
.pwaiting/ &&OK.booking/ &&OK.room/&&NOT FOUND.cancellation/.

Synchronous and Asynchronous Web Services

Interaction between web services can be either synchronous or asynchronous. This
interaction is distinguished in the manner request and response are handled. When
a client invokes a synchronous services, it suspends further processing until it gets a
response from the service. On the other hand, when a client invokes an asynchronous
service it does not wait for the response and continues with its processing. The
asynchronous service can respond later in time. The client receives this response
and continues with its processing.

We have modeled the scenario for both the synchronous and asynchronous third
party service in Fig. 5.2. In case of interaction with an asynchronous service, we
create a waiting state in our state machine. In Fig. 5.2, a third party credit card
payment service is invoked when a PUT is invoked on the payment resource. This
would invoke CCService as an internal action. If CCService is an asynchronous
service, then it may take a long time to process the credit card and confirm the
payment back to the client. Thus, the system goes into a wait state for the particular
booking with booking ID fbookingIdg and resumes processing of other transactions.
When a response on payment confirmation is given by the third party service, the
processing for this booking is resumed.

5 Beyond CRUD 125

Fig. 5.3 (Left) Interaction with Synchronous CC Service. (Right) Interaction with Asynchronous
CC Service

For synchronous service, there is no need for a waiting state since the service
does not take long to respond and system can continue with its processing after
receiving the response. This is shown in Fig. 5.2 by a direct transition from paid
state to pconfirmation info state with PUT(pconfirmation) as a trigger.

The two scenarios showing the request and response behavior in synchronous
and asynchronous services is shown in Fig. 5.3. The left side shows the scenario
in which credit card(CC) verification service is synchronous and on the right hand
side show interaction with an asynchronous CC verification service. It may be worth
pointing out that the agent PUTing the payment (the client) must also be able to act
as a server in order to receive a PUT payment confirmation. As an alternative, the
CCService might return 202(Accepted) response with location. This would require
the client to poll for confirmation.

Stateless State Machines

We have used state machines to model the stateless behavior of REST web service.
Using a state machine to model a stateless interface may seem an oxymoron. In the
context of a RESTful service, statelessness is interpreted as the absence of hidden
information kept by the service between different service requests. In that sense, a
RESTful web service should exhibit a stateless protocol. Also, there is no sense of
session or sequence of request in a true RESTful service.

On the other hand, state machines have a notion of active state configuration,
that is, what states are active at a certain point of time. If an implementation of
an interface described using a state machine would have to keep the active state
configuration between different requests, then this would break the statelessness
requirement of the RESTful service.

It is notable that the behavioral modeling described above, does not actually
require that a service implementation keeps any additional protocol state. In our

126 I. Rauf and I. Porres

approach a state is active if its invariant evaluates to true, but the invariants are
defined using addressable application resources. Therefore, an implementation of
a service can determine the active state configuration by querying the application
state. There is no need to keep any additional protocol state.

Determining what is the active state configuration of the interface state machine
every time that a service implementation has to fulfill a request may be a slow task
in the case of complex interfaces with many states. However, in practice it is not
necessary to explore all states in the state machine but only the source states of the
transitions that can be triggered based on the current request. We show in the next
section how we can do that by computing the precondition (and postcondition) of
each method request.

Service Preconditions and Postconditions

In this section, we show how to extract the contract information from a UML
protocol state machine with state invariants. The contract contains the precondition
and postcondition for each method that triggers a transition in the behavioral model.

The precondition of a method states under what conditions a method can be
triggered. We say that the precondition of a method m is satisfied when the state
invariants of all the source states of transition t are true along with its guard
condition.

In a similar manner, if a method m triggers a transition t in a behavioral model,
then its post-condition is satisfied when the state invariants of all the target states of
transition t are true along with the postcondition annotated on the transition t.

In order to shorten the description of the contract we use path variables to
represent the address of a resource. First, the precondition for a method that triggers
a transition in the behavioral model is presented. The precondition of a method m is
given by taking into account all the transitions that are triggered by m. If it is a simple
transition, then the state invariant of its source state is conjuncted with the guard of
the transition. In case the transition is a trigger to more than one transition, with true
guards, and all the transitions have different source states, then the precondition is
given by taking a disjunction of state invariants of all the different source states. This
implies that the method can trigger a transition whenever it is in one of its source
states.

A transition can occur from one state to another if the method that triggers this
transition is invoked and its precondition is true. For the transition to be successful,
the postcondition of the transition should also be true after the method is invoked.
This is specified by the implication operator that relates a precondition of a transition
with its postcondition.

A postcondition for a method is extracted from the protocol state machine
by manipulating the state invariants of the target states of transitions and the
post-conditions on transitions. The post-condition of a fork transition, with true

5 Beyond CRUD 127

postcondition, specifies that the state invariants of all its target states are true and
for a self-transition, its post-condition ensures that the same state invariants are true
that were true before invoking the HTTP method.

For the details and formal definitions of generating preconditions and postcondi-
tions for different elements in a UML protocol state machine of a class readers are
referred to Porres and Rauf (2010).

The postcondition of a transition will be evaluated only if the precondition for
that transition is true. We define as pre OK(r) the function that gives boolean
value of OK(r) on resource r before invoking the trigger method. Similarly,
pre b.guestName and pre NOT FOUND(r) give the representation of booking and
boolean value of NOT FOUND(r) before invoking the trigger method, respectively.

The excerpt below from the list of high-level contracts generated from Fig. 5.2
shows the contracts generated for the HTTP method PUT on payment resource.

PATH
b: bookings/{bid}/
r: bookings/{bid}/rooms/
p: bookings/{bid}/payment/
pc: bookings/{bid}/payment/pconfirmation/
pw: bookings/{bid}/payment/pwaiting/
c: bookings/{bid}/cancel/

PUT {bookings/{bid}/payment/}
precondition
((OK(b) && OK(r) && NOT_FOUND(c)) &&
(NOT_FOUND(pc) && NOT_FOUND(pw)) && NOT_FOUND(p) &&

[b.guestName == ccName])

postcondition
((pre_OK(b) && pre_OK(r) && pre_NOT_FOUND(c)) &&
(pre_NOT_FOUND(pc) && pre_NOT_FOUND(pw)) && pre_NOT_FOUND

(p) && [pre_b.guestName == ccName]) ==> ((OK(b) && OK
(r) && NOT_FOUND(c)) &&

(NOT_FOUND(pc) && NOT_FOUND (pw))&& OK(p))

The conceptual model as shown in Fig. 5.1 and behavioral model as show in
Fig. 5.2 are implemented as REST web services. This is explained further in the
next section.

Implementation of a Service Using the Django Framework

Django is a web framework that makes it easy to develop web applications and
web services in Python. At a glance, Django can be understood with its three
basic files that support separation of concerns, i.e. models.py, urls.py and views.py
where models.py contains descriptions of database tables, views.py contains the
business logic, and urls.py specifies which URIs map to which view. For a

128 I. Rauf and I. Porres

from django.db import models

class room(models.Model):
rType = models.CharField(max_length=200)
floor = models.IntegerField()

class guest(models.Model):
fName = models.CharField(max_length=200)
phone = models.IntegerField()
email = models.CharField(max_length=200)

class booking(models.Model):
bDate = models.DateTimeField()
cancel = models.BooleanField(default=False)
cancel_note = models.CharField(max_length=500)
room = models.ForeignKey(room)
gName = models.CharField(max_length=500)

class payment(models.Model):
amount = models.FloatField()
pDate = models.DateTimeField()
confirm = models.BooleanField(default=False)
waiting = models.BooleanField(default=False)
p_try = models.IntegerField(default = 0)
ccName = models.CharField(max_length=500)
booking = models.ForeignKey(booking)

Listing 5.1 Implementation of Database Models for HRB Service

detailed working of Django Framework, readers are encouraged to read Django
Documentation (Django Software Foundation 2010) and Django Book (Holovaty
and Kaplan-Moss 2010).

The design approach we have used to design REST web services in this chapter
can be easily implemented in Django. In this section, we show how this implemen-
tation is done. We carry forward the example of HRB service demonstrated above
and show its implementation procedure.

The main steps in our implementation phase are:

• Implement database tables in models.py
• Create views for each resource and its transitions in views.py
• Map relative URIs from resource model to respective views in urls.py.

As a first step, the database tables are specified in models.py. The database tables
we have created are shown in Listing 5.1.

In the second step, for each resource, shown in the conceptual resource model, a
view is defined. The information on allowed and not-allowed methods is retrieved
from behavioral model. The incoming request to the view is verified against the
allowed methods and redirected to the view that supports the request method for the
resource.

5 Beyond CRUD 129

def booking_payment(request, bid):
if not request.method in ["GET", "PUT"]:

return HttpResponseNotAllowed(["GET", "PUT"])
if request.method == "GET":

bid = bid
return booking_payment_get(request, bid)

if request.method == "PUT":
bid = bid
amnt = request.POST.get(’amnt’)
ccName = request.POST.get(’ccName’)
return booking_payment_put(request, bid, amnt, ccName

)

def booking_payment_get(request, bid):
p = payment.objects.filter(booking=bid)
if p:

json = serializers.serialize("json", p)
return HttpResponse(json, mimetype="application/

json")
else:

return None

def booking_payment_put(request, bid, amnt, ccName):
b = booking_detail_get_local(bid)
r = room_detail_get_local(bid)
c = booking_cancel_get_local(bid)
p = booking_payment_get_local(bid)
pc = booking_pconfirmation_get_local(bid)
if not p:

pre_p = False
else:

pre_p = True
deserialized = serializers.deserialize("json", b)
b_detail = list(deserialized)[0].object
a = []
for field in ["bDate", "cancel", "cancel_note", "room"

, "gName"]:
new_val = getattr(b_detail, field, None)
a.append(new_val)

if b and r and not p and not pc and not c and a[4]==
ccName:
now = datetime.datetime.now()
cc = ccName
a = amnt

Listing 5.2 Payment View

The first view booking payment.request; bid/ in Listing 5.2 shows implementa-
tion of payment resource. The behavioral model in Fig. 5.2 shows that the allowed
methods for this resource are GET and PUT. These two methods are listed in the

130 I. Rauf and I. Porres

p = payment(confirm=False, pDate=now, waiting=
False, amount=a, p_try=0, ccName = cc,
booking_id=bid)

p.save()
b = booking_detail_get_local(bid)
r = room_detail_get_local(bid)
c = booking_cancel_get_local(bid)
pc = booking_pconfirmation_get_local(bid)
post_p = booking_payment_get_local(bid)
if b and r and not pre_p and post_p and not pc and

not c:
response = HttpResponse("created")
response.status_code = 201
return response

else:
response = HttpResponse("not created")
response.status_code = 406
return response

Listing 5.2 (continued)

urlpatterns = patterns(’’,
(r’ˆbookings/$’, collection_bookings),
(r’ˆbookings/(\d{1,3})/$’,

booking_detail),
(r’ˆrooms/$’, collection_rooms) ,
(r’ˆbookings/(\d{1,3})/rooms/$’,

room_detail),
(r’ˆbookings/(\d{1,3})/payment/$’,

booking_payment),
(r’ˆbookings/(\d{1,3})/payment/waiting

/$’, booking_waiting),
(r’ˆbookings/(\d{1,3})/payment/

pconfirmation/$’,
booking_pconfirmation),

(r’ˆbookings/(\d{1,3})/cancel/$’,
booking_cancel),

)

Listing 5.3 Relative URIs and views mapping for HRB Service

list of allowed methods in booking payment view and each incoming request to this
view is first verified to be one of these methods, otherwise an HTTP response of
method not allowed is given.

In the third step, the relative URIs shown in the conceptual resource model
are mapped to the respective views. Every resource in our conceptual model is
addressable. We can get the relative URI for each resource directly from Fig. 5.1
that is then mapped to the respective views as show in Listing 5.3.

Users can use cURL to invoke URIs specifying the methods they want to invoke
on the service. cURL is a command line tool that is a capable HTTP client and

5 Beyond CRUD 131

supports most of HTTP methods, authentication mechanisms, headers etc. (cURL
2010). For invoking a POST method on payment resource with amnt value, on local
server, the following command can be used on cURL:

curl � X PUT � d amnt D 115 �d ccName D00 Thomas00 ht tp W ==127:0:0:1 W
8000= bookings=3=payment=

Now lets look in detail on the implementation of views. A separate view is
implemented for each of the allowed methods on each resource. Once a view
related to a specific URL is called, it further redirects the control to the view that
corresponds to the invoked HTTP method.

As an example, we are only looking into the payment resource and its allowed
methods in Listing 5.2. The allowed methods on payment resource are GET and
PUT as specified in Fig. 5.2. When the client invokes /bookings/13/payment/, control
is passed to booking payment view. This view verifies the input method and if
the request method is neither GET nor PUT, an HTTP not allowed response
is given. If the method is GET or PUT on payment, the client is redirected
to booking payment get.request; bid/ view or booking payment put.request; bid;

amnt; ccName/ view, respectively.
The GET view, i.e., booking payment get.request; bid/, queries the database,

retrieves the payment information for booking id 13 and returns it as a JSON object.
If there is no booking record with id 13, then a response code of 404 is returned.

The PUT view creates the specific resource and returns a successful HTTP re-
sponse method. When the client invokes /bookings/13/payment/ with PUT method,
the control goes to booking payment put.request; bid; amnt; ccName/ view and a
payment record is entered for booking with id 13.

However, if a payment record is already present for this booking id, then the
operation of inserting additional record in payment table should not be executed.
Such rich behavioral specifications are present in the behavioral model and earlier
in “Service Preconditions and Postconditions” we saw how preconditions and
postconditions of methods can be generated from this model. We now detail how
these behavioral specifications are inserted for methods in Django Web Framework.

The pre-condition of a method is extracted from the state machine by manipulat-
ing the state invariants of all the source states and guard on the transition. Likewise,
a post-condition is extracted by manipulating the state invariants of all the target
states and post condition on the transition.

When a method with side-effects, i.e. PUT, POST or DELETE is called on a
resource, we need to extract the current state of different resources to check whether
the conditions to invoke the method are satisfied. In a similar fashion, we have to
check the status of different resources to ensure that desired effect is created before
returning the client a success message. By current state we mean the presence or ab-
sence of a resource or values of its attributes at the time of invoking certain method.

In Django, we extract the current state of resources by calling the view that
maps to GET request on the resource. However, to take advantage of relative
URI mechanism and to reduce the number of HTTP calls, local GET views are

132 I. Rauf and I. Porres

def booking_payment_get_local(bid):
p = payment.objects.filter(booking=bid)
if p:

data = serializers.serialize("json", p)
return data

else:
return None

Listing 5.4 Excerpt of Local GET View on ‘payment’ for HRB Service

implemented for each resource. The local GET views retrieve information from the
database and return them as normal objects rather than as HTTP response objects.
An implementation of local GET view on payment resource is shown in Listing 5.4.

The pre and post conditions are asserted in each of the views that correspond
to the methods that trigger a transition in state machine. Listing 5.2 shows how
pre and post conditions are asserted for PUT method on payment. Information of
the resources that form the state invariant of source states and guard condition is
stored in different variables. These variables are combined as a boolean expression
and asserted as an if condition before performing the desired task. Similarly, before
giving a success response to the client, a local get is performed on the resources that
make the state invariant of target states and transition’s post conditions. Only if the
expected behavior is observed, a success response is given to the client.

Implementation of a Service Monitor

A service monitor can be used to continuously verify the functionality of an
implemented web service. This monitoring mechanism can keep a check on the
behavior of both the client and the provider. The client is checked for invocation
to the service under right conditions and the provider of the service is constraint to
provide the implementation as specified.

The monitoring mechanism can be implemented in Django by using the rich
behavioral information present in our state machine. The service monitor is
implemented as a service proxy. It listens for requests from the client, verifies
the conditions to invoke the method and then forward it to the actual service
implementation.

The behavioral model provides a rich behavioral interface that can be published
with the service as a specification. This gives information about the conditions in
which a method should be invoked on its interface and also about its expected
conditions. This specification of a service interface can be used to build a proxy
interface to test the functionality of that service and to invoke the service in right
conditions.

5 Beyond CRUD 133

def booking_payment_get(request, bid):
print "booking payment get"
req = urllib2.Request(’http://127.0.0.1:8000/bookings/%s/

payment/’ % bid)
try:

response = urllib2.urlopen(req)
the_page = response.read()
return HttpResponse(the_page)

except:
return HttpResponse(status=404)

Listing 5.5 Excerpt of GET view in Proxy Interface

def booking_payment_put(request, bid, amnt, ccName):
b = booking_detail_get(request, bid)
r = room_detail_get(request, bid)
c = booking_cancel_get(request,bid)
p = booking_payment_get(request, bid)
pc = booking_pconfirmation_get(request, bid)
pw = booking_pconfirmation_get(request, bid)
if not p.status_code == 200:

pre_p = False
else:

pre_p = True
if b.status_code = 200 and r.status_code == 200 and p.

status_code == 404 and pc.status_code == 404 and pw.
status_code == 404 and c.status_code == 404:
values ={’amnt’: 33, ’ccName’: ’Thomas’}
mydata = urllib.urlencode(values)
opener = urllib2.build_opener(urllib2.HTTPHandler)
request = urllib2.Request(’http://127.0.0.1:8000/

bookings/%s/payment/’ % bid, data=mydata)
request.add_header(’Content-Type’, ’your/contenttype’)
request.get_method = lambda: ’PUT’
url = opener.open(request)

else:
return = HttpResponse(status=404)

post_p = booking_payment_get(request, bid)
if b.status_code = 200 and r.status_code == 200 and pc.

status_code == 404 and pw.status_code == 404 and c.
status_code == 404 and not pre_p and post_p.status_code
== 200:
return HttpResponse(the_page,status=201)

else:
return HttpResponse("not created",status=406)

Listing 5.6 PUT Method on Payment in the Proxy Interface

134 I. Rauf and I. Porres

In this section, we show how we have implemented a proxy interface for HRB
service detailed above. In proxy interface, a method is implemented for each of the
methods that are invoked on the REST web service interface using urllib2. urllib2 is
a Python module that is used to fetch URLs (urllib2 extensible library for opening
URLs 2010). In a proxy interface for HRB service, a GET method on payment
resource is implemented as shown in Listing 5.5.

Each GET view returns an HTTP response object. When a POST, PUT or
DELETE method is implemented in the proxy interface, it manipulates the status
codes of the HTTP response objects and asserts them as method pre and post
conditions. An excerpt of HRB proxy interface that shows a PUT method on the
payment resource is given as shown in Listing 5.6.

Conclusions

RESTful web services can be used in rich services that go beyond simple operations
of creating, retrieving, updating, and deleting data from the database. These rich
services should also offer interface that would exhibit REST features of uniform
interface, addressability, connectedness, and statelessness. In this chapter, we
discuss the design methodology that creates RESTful web services by construction.
The approach uses UML class diagram and state machine diagram to represent the
structural and behavioral features of a REST web service. The conceptual resource
model that represents the structural feature adds addressability and connectivity
features to the designed interface. The uniform interface feature is offered by
constraining the invocation methods in the state machine to HTTP methods. In
addition, to provide the feature of statelessness in our interface we use a state
machine for behavioral modeling. This oxymoron is addressed by taking advantage
of the fact that state invariants can be defined using query method on resources and
the information contained in their response codes.

The rich behavioral specifications present in the behavioral model show the
order of method invocations and the conditions under which these methods can
be invoked along with the expected conditions. We use this behavioral model to
generate contracts in the form of preconditions and postconditions for methods of
an interface.

The design approach is implemented in Django web framework and the contracts
generated from the behavioral model are asserted as contracts in the implemented
interface.

A proxy interface is also implemented in Django as a service monitor. This
service monitor can also be implemented for services that are already implemented
and only provide their behavioral specifications in natural language or in any other
form. A service monitor can continuously verify functionality of a service and
reports if a service user violates a precondition or the implementation does not
provide the expected behavior.

5 Beyond CRUD 135

References

cURL. 2010. http://curl.haxx.se/.
urllib2 extensible library for opening URLs. Python Documentation, 2010. http://docs.python.org/

library/urllib2.html.
Django Software Foundation. Django Documentation. Online Documentation of Django 1.2, 2010.

http://docs.djangoproject.com/en/1.2/.
A. Holovaty and J. Kaplan-Moss. The Django Book. Online version of The Django Book, 2010.

http://docs.djangoproject.com/en/1.2/.
T. Mens and P. V. Gorp. A Taxonomy of Model Transformation. Proceedings of the International

Workshop on Graph and Model Transformation, 2005.
I. Porres and I. Rauf. From uml Protocol Statemachins to Class Contracts. Procceedings of the

International Conference on Software Test, Verification and Validation(ICST 2010), 2010.
I. Porres and I. Rauf. Modeling Behavioral RESTful Web Service Interfaces in UML. Accepted for

Publication in 26th Annual ACM Symposium on Applied Computing Track on Service Oriented
Architectures and Programming (SAC 2011), 2011.

OMG UML. 2.2 Superstructure Specification. OMG ed, 2009. http://www.omg.org/spec/
UML/2.2/.

http://curl.haxx.se/
http://docs.python.org/library/urllib2.html
http://docs.python.org/library/urllib2.html
http://docs.djangoproject.com/en/1.2/
http://docs.djangoproject.com/en/1.2/
http://www.omg.org/spec/
UML/2.2/

	Chapter 5: Beyond CRUD
	Introduction
	Modeling the RESTful way
	Conceptual Resource Model
	Addressability and Connectedness
	Uniform Interface

	Behavioral Service Model
	State Invariants Using Resources
	Synchronous and Asynchronous Web Services
	Stateless State Machines

	Service Preconditions and Postconditions
	Implementation of a Service Using the Django Framework
	Implementation of a Service Monitor
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

