
Chapter 3
RESTful Domain Application Protocols

Ian Robinson

Abstract This chapter discusses the significance of domain application protocols
in distributed application design and development. Describing an application as
an instance of the execution of a domain application protocol, it shows how we
can design RESTful APIs that allow clients to drive the execution of a domain
application protocol without binding to the protocol itself. The second half of the
chapter provides a step-by-step example of a RESTful procurement application; this
application realizes a procurement protocol in a way that requires clients to couple
simply to media types and link relations, rather than to the protocol.

Introduction

This chapter reflects the concerns of systems architects and developers charged with
satisfying specific business needs – with getting things done. REST’s hypermedia
constraint (Fielding 2000) is all about getting things done: at the heart of the
constraint is a compact of application, application protocol and application state
that addresses the need to do useful things with computerized behaviors, to effect
the kinds of changes in application state that release value to the providers and
consumers of a business capability.

From an analytical perspective, every useful application of computerized be-
havior can be said to evidence what I call an underlying domain application
protocol – much as every meaningful utterance evidences an underlying natural-
language grammar. The design strategies I present in this chapter represent acts of
deliberate discovery through which we come to understand the domain protocols
behind specific, domain-sensitive applications of computerized behavior.

I. Robinson (�)
Neo Technology, Menlo Park, CA, USA
e-mail: iansrobinson@gmail.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 3, © Springer Science+Business Media, LLC 2011

61

iansrobinson@gmail.com

62 I. Robinson

Domain application protocols specialize the interactions between the participants
in a distributed application. This specialization is a good thing insofar as it helps sup-
port successful domain outcomes. Implemented unwisely, however, specialization
inhibits a system’s evolution and the serendipitous reuse of its components outside
their original context. To overcome this problem, a RESTful API communicates
specialization using several of the Web’s more generalized mechanisms: namely
media types, link relations and HTTP idioms. These artifacts help communicate a
domain protocol without our having to import a specific process description into the
client part of an application: the resulting domain application protocol is no more
written on the surface of the API than a grammar is written on the surface of a
sentence.

HTTP is the application protocol (Paul Prescod 2002), a domain-agnostic set of
rules and conventions for accessing and manipulating resource representations in a
uniform manner. Do we really need to introduce the concept of a domain application
protocol when we already have the ubiquitous HTTP at our disposal? The answer,
I believe, is: yes. Experience suggests that HTTP’s domain agnosticism, while
enormously beneficial in terms of standardization and interoperability, nonetheless
leads to a shortfall in domain semantics. This shortfall must be remedied by every
application in its own fashion, most often through prose documentation. HTTP
doesn’t tell us how to publish web content [the Atom Publication Protocol (Gregorio
and de hOra 2007) remedies that], or how to manage cloud resources [The Sun
Cloud API (2009) remedies that], or how to procure goods. To achieve a degree of
specialization, both AtomPub and Sun’s Cloud API apply specific web artifacts –
HTTP idioms, media types, and, in the case of AtomPub, link relations – to achieve
specific application goals. To retain the generalized benefits of HTTP’s uniform
interface, both require clients to bind to these web artifacts, rather than to the domain
protocols themselves. In doing so, neither restricts a client from applying a system’s
resources in other contexts and for other purposes. This is the very same approach
that I adopt here.

What Is a Domain Application Protocol?

To answer this question, consider the business process shown in Fig. 3.1.
Figure 3.1 illustrates the sequence of interactions that must take place for a

customer to purchase some goods from a supplier.1 The customer asks the supplier
for a quote. On receiving a quote, the customer decides to order the goods for which
they have been quoted. Once the supplier has confirmed the order, the customer pays
for the goods, or cancels the order.

1This example simplifies the set of interactions encountered in a real-world application in order to
highlight the key points in protocol design.

3 RESTful Domain Application Protocols 63

SupplierCustomer

Request Quote

Order Goods

Confirm Order

Cancel

Pay

Fig. 3.1 A simple procurement process

Imagine that we have been charged with exposing this procurement process to
third parties over the Web. A specific business need – the desire to allow customers
to order and pay for goods – motivates a specific engineering task: that of exposing
our quoting, order processing and payment functions in a way that allows customers
to execute and complete our procurement process in a repeatable, well-understood
manner. At the same time, however, we must remain mindful of the fact that other
applications may wish to reuse parts of our system for entirely different purposes.
Despite having been motivated by the specific business need behind this first project,
we do not want to overly specialise our systems’ interfaces; rather, we want to
implement our APIs in ways that allow them to be composed into other applications
and processes.

Fast forward to a time when we’ve built and deployed a solution to meet
our business’ procurement needs, and a client has just successfully completed an
instance of our procurement process. In order to reach the successful conclusion of
the process, the client had to initiate a series of legitimate interactions with whatever
systems we’d chosen to expose over the network. The successful completion of the
process implies the effective existence of a domain application protocol, a set of
rules and conventions through which participants in a distributed system coordinate
their interactions to achieve a useful, domain-specific application goal.

In the context of a RESTful web application, a domain application protocol is
an abstraction of the media types, link relations, and HTTP idioms necessary to
achieve a particular application goal. The design of a domain application protocol
incorporates the deliberate discovery activities necessary to describe a RESTful
API in terms of specific media types and links relations, plus a context-sensitive
narrowing of HTTP.

Application

We call the actual occurrence of a set of interactions between participants in a
distributed system an application. An application, in other words, is computing in

64 I. Robinson

action: computerized behavior directed towards achieving a particular client or end
user goal. A distributed application is one in which multiple participants employ
computing behavior to realize an application goal. By this definition, an application
is not so much a thing as a doing; it is the very act of putting software to work to
realize some benefit. Importantly, an application has duration – it unfolds in time.

Application State

Application state is a snapshot of the state of a distributed application at a particular
point in time. Because an application has duration, its state changes over time. Once
an application’s goal has been achieved, the application can be considered to be in
its final state. Prior to achieving this final state, the application passes through one
or more intermediate states.

In the context of a conversation between participants in a distributed application,
we can also think of application state as being the state of the conversation at a
particular point in time. In this respect, application state guarantees the integrity of
a sequence of requests. For example, if a client obtains an authenticated token at a
certain point in a conversation, it can supply this token with all subsequent requests.
Each request then contains sufficient application state information for the server to
handle the request without recourse to a server-side session store.

Domain Application Protocol

A domain application protocol is the set of rules and conventions that guides and
constrains the interactions between participants in a distributed application.2 By
adhering to a protocol, participants achieve a useful domain or business outcome.
Revisiting our definition of application, we can say that an application is an instance
of the execution of a protocol. In executing the protocol, the participants create an
application, which in turn achieves an application goal.

To achieve an application goal in the context of a RESTful web application, a
client progressively interacts with a community of resources. These resources can
be hosted and governed by a single server, or they can be distributed across the
network. Either way, every resource implements the same uniform interface, which
in the case of a web application is HTTP.

2The term “domain application protocol” and the three-step design methodology described here
were first proposed in Webber et al. (2010). We chose the term “domain application protocol” so
as to align it both with the book’s focus on automating business (domain) processes, and with
our use of the terms “application” and “application state.” A domain application protocol is more
commonly referred to as a coordination protocol: see, for example, Alonso et al. (2004).

3 RESTful Domain Application Protocols 65

Application State in a RESTful Application

Having a server remember the state of each client conversation is expensive,
particularly at web scale. To alleviate this burden, a RESTful web application
delegates the responsibility for remembering the overall state of an application to
the client or clients participating in that application.

As a host of application state, the client in a RESTful web application is
responsible for the integrity of a sequence of actions. After each interaction the
client is presented with one or more options to interact with additional resources.
Servers encode these options in responses using links and forms – otherwise known
as hypermedia controls.3 The client decides which control to operate based on its
understanding of the current state of the application.

Occasionally, a client may need to add some portion of application state
information to its next request in order to provide sufficient application state context
for the processing of that request. For example, if the client has received an
authorization token in a previous response, it might add this token to all subsequent
requests (by sending it in an Authorization HTTP request header), thereby
conveying to the server the portion of application state information necessary to
handle the request.

Design Steps

When automating multi-party business procedures in a RESTful web application,
the following three-step process can help guide our design and implementation
activities:

1. Model applications as application protocol state machines.
2. Implement them based on resources, resource life cycles and the server-governed

rules that associate resources.
3. Document and execute them using media types, link relations, and HTTP idioms.

Step 1 is concerned with the design of an abstract domain application protocol.
This step is accomplished without reference to any particular architecture or
technology. Steps 2 and 3, on the other hand, focus on the choices particular to
the design of a RESTful application, with Step 3 concentrating on the elaboration
of a RESTful API.

In practice, the design and implementation of a RESTful web application will
not always follow this three-step process. Step 1 in particular is often omitted. For
applications whose protocols are relatively trivial, this is perfectly acceptable. Such
is the case with simple data services: CRUD (Create, Read, Update and Delete) is a

3See Chap. 5, “Hypermedia Types,” for a more thorough, and more nuanced, discussion of
hypermedia control capabilities.

66 I. Robinson

protocol, albeit a very simple one. Most CRUD-based data services are designed and
implemented without reference to the underlying domain application protocol. This
doesn’t, however, mean that there isn’t a protocol – only that we haven’t modelled
it explicitly. Every application is an instance of a protocol, no matter how simple or
implicit.

Whereas Step 1 is optional, Steps 2 and 3 usually proceed iteratively and in
parallel. We start by identifying a number of candidate resources, and then detail
the HTTP interactions through which a client manipulates representations of these
resources. In working through these interactions, we discover additional resources
that help adapt the domain to the goals expressed in the protocol. In the worked
scenario later in this chapter, for example, we discover some forms-based resources;
these resources allow a client to request a quote, submit an order, and cancel an
order.

Step 1

As part of the process of articulating a domain application protocol and under-
standing how it contributes to the successful achievement of an application goal,
we create an application state machine representation of the state transitions to
be coordinated by the protocol. It is important to point out here that this state
machine representation of the protocol is neither an implementation artefact nor
public documentation; it simply aids analysis. By explicitly modelling a protocol as
a state machine, we gain a better understanding of the “value stream” of application
state transitions through which value is released both to the customer and to the
organisation(s) owning a process.

Figure. 3.2 shows the several different application state transitions that occur
when we execute our procurement protocol. The application terminates when it is
in either a Paid or a Cancelled state. Prior to that, the application passes through the
Quote Requested, Goods Ordered and Order Confirmed states.

A procurement application passes through these several different states no matter
how it is implemented. Each state refers to the state of the distributed application as
a whole (the system), rather than to the state of an individual participant (customer
or supplier) or entity (quote, order or payment).

Step 2

On the server side, a RESTful web application is based around resources and
resource life cycles.

3 RESTful Domain Application Protocols 67

Quote Requested

Goods Ordered

Order Confirmed

Paid Cancelled

request quote

order goods

confirm order

pay cancel

Fig. 3.2 Procurement protocol domain application state machine

Resources

Proponents of web-based systems define the resource abstraction in several different
ways. In the most general definition, a resource is simply anything that can be
identified by a URI (Berners-Lee et al. 2005). Such a definition lends itself to an
inside-out, server-centric view, which sees resources as stateful “things” residing on
the server. In contrast, the REST thesis (Fielding 2000) defines a resource as being
a membership function, which groups a set of equivalent resource representations
and identifiers. Membership of this set can vary over time. In a similar vein,
(Booth 2006) sees a resource in terms of a set of state-dependent network functions
that accept and return representations. Complementing these several viewpoints, I
propose that resources be understood less in terms of what they are, and more in
terms of what they do; resources adapt server-based capabilities so that hypermedia
clients (i.e., clients that use HTTP’s uniform interface to drive an application
forwards) can use them.

A hypermedia client applies networked data in pursuit of its application goals.
Consequently, a hypermedia system can be regarded as the partial application of
networked data to a client or end user goal. Each response to a client request
comprises a partial data structure; partial insofar as some of the data items represent
links or forms that must be activated to retrieve or produce more data. Clients extend

68 I. Robinson

the structure by applying some of this data back to the network through the uniform
interface. Applying the data – operating a link or form – only partially completes
the structure; more often than not, it reveals yet more links and forms.

By emphasizing the resource’s role in adapting server capabilities for con-
sumption by network-oriented clients, we address one of the downsides of the
server-centric perspective, which is the tendency to treat resources in terms of
a relatively closed set of domain entities, coarsely manipulated through a small
set of verbs. While suitable for simple CRUD-based data services, this entity-
oriented attitude to building RESTful systems fails to address the needs of more
sophisticated processes. The protocol perspective suggests that resources do not
map directly to domain entities; rather, they serve to adapt the domain for its partial
application through hypermedia and the uniform interface. Adapting a domain for
consumption by a hypermedia client results in our identifying more resources than
would normally be identified through a domain-entity-oriented approach. From the
client’s point of view, domain (i.e. business) behaviors emerge as a side effect
of applying a relatively closed set of document-oriented verbs to this open set of
resources.

Resource State

A resource has state, and this state, much like application state, can have its own
lifecycle. But whereas application state lends integrity to a sequence of interactions
with multiple resources, resource state is concerned solely with the state of an
individual resource. This resource state is governed and maintained by the server
hosting the resource. Attempts to manipulate a resource’s state representations must
conform to the business rules the server uses to govern the lifecycle of the resource.
Such business rules are private to the server and should never be exposed to clients.

For most resources, a resource’s state is simply a function of its data. For some
resources, however, a resource’s state is also partly a function of the state of other
resources with which the resource is associated through some server-governed rules.
For example, the state of an order is partly a function of the state of any payment
with which that order has been associated by the server hosting the order. As with
any other business rules governing the state of a resource, these rules remain hidden
behind the RESTful interface.

Servers, then, are responsible for maintaining resource state, not application
state. Application state remains significant, however. The overall distributed appli-
cation still moves through several different application states. What’s important is
that the application state model (and the corresponding protocol) is nowhere reified
on the server side. Changes to the state of the overall distributed application emerge
as a side effect of the client manipulating the states of individual resources through
their representations.

Through interacting with a community of resources, a client progressively
realizes an application goal in accordance with an implicit domain application
protocol. Some client interactions retrieve representations of resource state, others

3 RESTful Domain Application Protocols 69

manipulate that state. Interactions that manipulate representations of resource state
manifest an implicit domain application protocol such that resource state transitions
occur in a legitimate sequence. It only makes sense to create a payment resource
if one has first created an order with which the payment might be associated – and
any good system design ought encourage this kind of behavior. How, then, do we
encourage such behaviors in a RESTful web application?

Hypermedia

We coordinate a client’s interactions with a community of resources by applying
REST’s hypermedia constraint (Fielding 2000) to the design of our resources and
their representations. In this context, the hypermedia constraint is best summarized
as, “hypermedia systems change application state.”

A hypermedia system comprises a client, one or more server-governed resources,
and some systemic behavior. This systemic behavior is initiated when a client makes
a request of a resource – in a web application this will be a resource identified
by a URI. The resource responds with a representation of its resource state. This
representation includes one or more hypermedia controls – links and forms –
which advertise legitimate interactions with other resources. The client processes
the response and updates its understanding of the current state of the application. If
it hasn’t yet achieved its application goal, the client chooses the hypermedia control
best suited to making forward progress, and operates that control. Operating the
control triggers another request, and the cycle begins again.

When generating a response, the server that hosts and governs a resource uses
the resource’s state plus any application state information supplied by the client in
the request to determine which controls to include in the response.

Step 3

A RESTful API is documented using media types, link relations and HTTP idioms.

Media Types

A media type value, such as application/atomCxml, is a key into a data
format. While not all media types possess the capabilities necessary to implement a
hypermedia system, those that do typically define one or more of the following:

• The format to be used for representing content.
• One or more schemas to which content must conform.
• Processing models for schema elements.
• Hypermedia control formats.
• Semantic annotations for hypermedia controls.

70 I. Robinson

Fig. 3.3 A <link>

element with semantic
annotation

The Atom Syndication Format (Nottingham and Sayre 2005), for example, includes
all these elements. In terms of representation format, Atom is based on XML. With
regard to schemas, the Atom specification includes two RELAX NG schemas:
one for feeds, another for entries. To these it adds a processing model, which
determines how content, foreign mark-up and extensions to the Atom vocabulary
should be interpreted. In terms of its hypermedia capabilities, it identifies the
<atom:link> element as a hypermedia control, and defines five link relation
values (alternate, related, self, enclosure, and via) with which links can be annotated
with semantic context. The Atom Syndication Format interpretative scheme is
keyed off the application/atomCxml value in Content-Type request and
response headers.

Link Relations

On the human web, we intuitively understand what links and forms mean based on
the context in which they appear. Machines, on the other hand, cannot reliably infer
such implicit semantics. In order to help machine clients decide which hypermedia
control to activate in a received resource representation, we must provide some
additional, explicit semantics. One of the most popular ways of adding semantic
context to hypermedia controls is to annotate links with link relations.

Link relations describe the purpose of a link, the meaning of a target resource,
or the relationship between a link’s context and the target resource. By stating the
purpose of a link, a link relation helps a client use the link according to its purpose.
The semantic range of a link relation can vary from describing how the current
link’s context is related to another resource, to indicating that the target resource
has particular attributes or behaviors.

HTML defined the rel attribute for annotating both anchor and link elements
with link relations. This attribute convention was adopted by several other formats,
including the Atom Syndication Format. Links that have been annotated with a link
relation value are called typed links.

Figure. 3.3 shows a typed link taken from the example later in this chapter. The
link has been typed with the link relation value rb:order. This value acts as a key
into a semantic. In this instance, the associated semantic indicates that the linked or
destination resource is an order.

Link relations come in one of two flavors: registered and extension (Nottingham
2010). Registered relations are registered with IANA’s Link Relation Type registry
(Link Relations 2011). Such well-defined link types take the form of simple string
tokens. Examples of registered relation types include self and payment. Extension

3 RESTful Domain Application Protocols 71

relations, on the other hand, are types that have not been registered with IANA.
Such relations are often proprietary to an organisation or application. In order to
disambiguate them from any similarly named relations elsewhere, they take the form
of a URI. The link relation shown in Fig. 3.3 is an extension relation. It has been
formatted as a compact URI (Birbeck and McCarron 2009); expanding the URI
returns the absolute link relation value http://relations.restbucks.com/order.

Documenting a Protocol

A RESTful protocol is surfaced using an API composed of media types, link
relations and HTTP idioms. Both the Atom Publication Protocol (AtomPub)
(Gregorio and de hOra 2007) and Sun’s Cloud API (The Sun Cloud API 2009)
describe themselves in precisely these terms.

A protocol can draw on pre-existing media types and link relations, as well
as invent its own. AtomPub is a good example of this compose-and-invent ap-
proach. AtomPub reuses the Atom media type, which is defined in the sep-
arate Atom Syndication Format specification; to this, it adds two new media
types, application/atomsvcCxml and application/atomcatCxml,
for representing service and category documents. To Atom’s five link relations,
AtomPub adds two more: edit and edit-media.

HTTP Idioms

A domain application protocol lends domain meaning to a distributed application’s
HTTP-based interactions. While all such interactions continue to adhere to the
HTTP application protocol, their significance with respect to a client’s application
goal is determined by the domain application protocol. A domain application
protocol constrains HTTP in the context of a particular application; from the client’s
perspective, this creates a temporally varying subset of HTTP idioms the client can
use to manipulate representations of the resources participating in the protocol.

There are two approaches to communicating which HTTP idioms a client
should use over the course of an application: upfront, and inline. With the upfront
approach, we create a document describing the appropriate idioms. With the inline
approach, we use HTTP headers and status codes, plus entity body control data,
to communicate at runtime which idioms a client can use to manipulate resource
representations.

The Atom Publication Protocol exemplifies the upfront approach. The AtomPub
specification explicitly states that resources can be created with POST; that success-
fully creating a resource results in a response with a 201 Created status code
and Location header; that PUT and DELETE can be used to edit resources; and
that all edits should be done in a conditional fashion (using an If-Match header
with a previously supplied entity tag value).

The upfront approach determines which idioms are applicable to an application
prior to any client beginning an application instance. In contrast, the inline approach

http://relations.restbucks.com/order

72 I. Robinson

effectively “programs” the client on the fly. The advantage of the inline approach is
that it makes it easier to evolve and extend an application over time.

Here are some of the ways we can use HTTP headers, status codes and entity
body control data to describe at runtime which HTTP idioms a client should use to
manipulate resource representations:

• Cache-Control directives instruct intermediaries to cache content in accor-
dance with HTTP’s caching rules.

• Forms (HTML, XForms, etc.) program clients with control data (such as a URI,
HTTP verb, and required Content-Type value), which the client can then use
to encode and submit the form.

• ETag headers indicate to the client that subsequent requests for the same
resource should use a conditional idiom: either a conditional GET, which uses
an If-None-Match header with an entity tag value to instruct the server to
return a full-blown response only if the resource addressed in the request has
changed since the entity tag value was issued; or a conditional PUT, POST or
DELETE, which uses an If-None header with an entity tag value to instruct the
server to apply the request if and only if the resource addressed in the request has
not changed since the entity tag value was issued.

• Some of the HTTP status codes determine the next HTTP idiom to be used; 303
See Other, for example, instructs the client to issue a GET request for the
resource specified in the accompanying Location header.

• 405 Method Not Allowed tells the client that the verb in the request
cannot be used; issuing an OPTIONS request for the same resource will return a
200 OK response with an Allow header specifying which verbs can be used.

A RESTful Procurement Application

The remainder of this chapter comprises a narrative exposition of a set of HTTP
interactions through which a client executes an instance of our procurement
protocol. The example is set in Restbucks, a fictional coffee shop in a world of
coffee-loving HTTP robots.4 Starting from modest roots, Restbucks now has a
number of retail outlets. Recently, it has decided to sell coffee beans direct to
consumers.

In the course of this narrative, we’ll see how the state of the procurement applica-
tion changes as a result of the client accessing and manipulating representations of
resource state. The narrative represents not so much a documented design as it does
an act of deliberate discovery, as per the three-step methodology outlined earlier.
We’ve already drawn the abstract protocol (Fig. 3.2) for Step 1: in the narrative that
follows we identify a candidate set of resources, media types, link relations and

4Restbucks served as the basis for the examples in Webber et al. (2010).

3 RESTful Domain Application Protocols 73

Fig. 3.4 Client starts the application

HTTP idioms (Steps 2 and 3, performed in parallel). Throughout, we make design
decisions regarding resource boundaries, the connections between resources, HTTP
headers, representation formats, and the placement of links and forms – all of which
help drive out an API which is both specialized to the protocol and amenable to
serendipitous reuse.

In the accompanying diagrams, arrow-headed arcs represent requests, while
nodes represent responses. A response is shown either as a document containing
typed links or a form, or as a status code requiring further action from the client.
The round-cornered dashed boxes represent application states. These application
states are not built into any of the server-side resources; rather, they have been
superimposed onto the diagrams from the perspective of a third-party observer of
the entire distributed application.

Start

Every application needs at least one entry point, located at a well-known URI,
through which a client can initiate a sequence of interactions – and our procurement
application is no different. To start the application, clients navigate to http://
restbucks.com/shop, as shown in Fig. 3.4.

The response shown in Fig. 3.4 includes two headers of note: Cache-Control
and Content-Type.

The Cache-Control header influences the behavior of any caching interme-
diaries – local caches, proxies, and reverse proxies – along the request–response
path. Caching allows us to store copies of a representation closer to clients,
thereby helping to conserve bandwidth, reduce latency, and minimize load on the
origin server. In this instance, the header includes two directives: public, which

http://restbucks.com/shop
http://restbucks.com/shop

74 I. Robinson

GET /shop

rb:rfq

Started

Fig. 3.5 Application begins in a Started state

makes the response cacheable by all intermediaries, both private and shared; and
max-ageD86400, which indicates that the response will remain fresh for up to
one day after it was issued by the origin server. Together, these two directives ensure
that the majority of requests for the procurement “homepage” are satisfied by the
caching infrastructure, rather than by the origin server.

The response’s Content-Type header has a media type value of applica-
tion/restbucksCxml. This is a proprietary, but nonetheless reasonably gen-
eralized, format for representing quotes and orders; it is documented in more detail
at the end of this chapter.

Below the response header block is the entity body, comprising an XML-
formatted representation of the shop’s homepage. This entry-point resource repre-
sentation advertises the procurement application’s capabilities. It currently contains
a single <link> element. The link is typed rb:rfq, indicating that the resource at
the other end of the link allows the client to request a quote.

An entry-point resource such as this is the ideal place to advertise new ca-
pabilities. If, for example, we were to evolve our application to include search
functionality, we might advertise this new capability by adding a typed link (leading
to a search form) to the shop’s entry-point resource representation.

With this first client request, the overall distributed application enters the Started
state, as shown in Fig. 3.5.

Request Quote

Having started the application, the client now processes the shop representation. The
representation contains only one typed link, so to make forward progress, the client
issues a request for the request-for-quote form, as shown in Fig. 3.6.

3 RESTful Domain Application Protocols 75

Fig. 3.6 Client gets a request-for-quote form

The response shown in Fig. 3.6 contains an XForms form (Boyer 2009). XForms
is an XML vocabulary and data processing model for building web forms inside
a host application. It is based on a model-view-controller architecture. The form
shown in Fig. 3.6 uses an XForms <model> element to communicate control
data to the client. The <submission> element’s resource, method and
mediatype attributes specify the URI, HTTP method and Content-Type
header value to be used when submitting the form. The <model> element’s
schema attribute references an XML Schema instance to which the submitted
content must conform. A client programmed with the correct media type library and
appropriate HTTP and XForms processing capabilities can use this inline control
data to compose and submit its next request.

Note that the representation format used here doesn’t explicitly encode the
fact that this form allows the client to submit a request for a quote – there’s no
<request-for-quote> element, for example. This is because throughout our
procurement application we use a strategy of providing typed links to forms. The
link relation associated with a typed link establishes the meaning of the linked
resource. When dereferencing the link, the client retains this contextual knowledge
(in this instance, the client understands that the linked resource will allow it to
submit a request for a quote), and processes the received form accordingly. In doing
so, the client navigates a steady state space. Following the link doesn’t change the
state of the overall distributed application; it does, however, enrich that state. By
following a link to a form, the client discovers new opportunities – and appropriate
idioms – for progressing the application further.

The client “fills out” the form – that is, it creates a request whose body conforms
to the schema at http://schemas.restbucks.com/shop.xsd – and POSTs it to the URI
supplied in the control data, as shown in Fig. 3.7.

http://schemas.restbucks.com/shop.xsd

76 I. Robinson

Fig. 3.7 Client submits a request for a quote

3 RESTful Domain Application Protocols 77

The resource at http://restbucks.com/quotes creates a quote based on the details
supplied in the request. (Behind the RESTful interface, this resource contacts a
quote engine to generate the quote.) The server returns a response with a 201
Created status code, a Location header indicating the URI of the newly created
quote, and an entity body containing a representation of the quote itself. This
representation contains two typed links: a self link, which is the preferred URI for
the quote, and an rb:order-form link. The rb:order-form link relation indicates that
the resource at the other end of the link allows the client to submit an order based
on the quote.

As an aside, it’s worth noting that there’s nothing special about the POST
request that results from filling out the form shown in Fig. 3.6. In accordance with
the XForms processing model, the <model> and <submission> scaffolding
elements have been stripped away by the client. What ends up on the wire is simply
the data representing a request for a quote. In other words, we could have added
a typed link leading directly to the quotes resource to the application’s homepage,
and documented in our protocol specification that clients can POST a request for a
quote to this linked resource. By using a typed link to a form, however, we avoid
specifying specific HTTP idioms upfront. Instead, we put the control data in the
form. The downside of using a typed link to a form is that it requires an additional
request–response interaction – but given that the blank form is highly cacheable,
the overhead of this additional request will be mitigated in many instances by the
caching infrastructure.

With this POST request and response, the client sees that the overall distributed
application’s state has changed from Started to Quote Requested, as shown in
Fig. 3.8.

Place Order

Assuming the quote is satisfactory, we can now observe what happens when the
client wants to place an order. First, the client follows the quote’s rb:order-form
typed link, as shown in Fig. 3.9. The response contains another XForms form,
similar to the one in Fig. 3.6. But whereas the form in Fig. 3.6 was empty, this one
has been pre-populated by the server.

The response’s Content-Location header indicates the source for this form
data. The header value refers back to the quote issued earlier in the application.
In other words, the entity encoded in the form is also accessible from another
location: http://restbucks.com/quotes/1234.The result is that we have two resources,
both of which share the same underlying domain data. The first adapts the domain
so that a client can receive representations of a quote. The second – the pre-filled
form – adapts the domain so that a hypermedia client can advance the procurement
protocol by submitting an order based on a previously received quote.

http://restbucks.com/quotes
http://restbucks.com/quotes/1234

78 I. Robinson

Started

GET /request-for-quote

Quote Requested

POST /quotes

rb:order-formself

Location: http://restbucks.com/quotes/1234

Fig. 3.8 Application state changes from Started to Quote Requested

Based on the quote data, the server responsible for this resource has generated
a form that can then be POSTed to an order processor. The form contains all the
information necessary to create an order, thereby eliminating any need for the order
processor to look up the original quote. But this strategy, useful as it is in making
the message self-sufficient, also raises an issue of message integrity, for the form’s
target need not be hosted on the same server – that is, the order processor may very
well belong in an entirely different subsystem. Because we’re passing around quote
data, rather than a reference to a quote, a malicious client might be tempted to adjust
the quote values prior to submitting the form, thereby earning itself a substantial
discount. Given this possibility, how can we prevent clients from tampering with
the message?

The solution we’ve adopted depends on the quoting and order processing
subsystems having established a shared key. Prior to sending the response, the
quotes resource generates a hash of the form data (the <shop> element and its

3 RESTful Domain Application Protocols 79

Fig. 3.9 Client gets the order form

children) and signs the hash using this shared secret. It then appends the generated
value, together with its client ID, to the form URI, to make http://restbucks.com/
orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo%3D. On receiving the
POSTed form, the ordering subsystem is able to parse out the client ID and signed
hash, recalculate its own version of the signed hash, and compare the recalculated
value with the received value. 5

5This is an example of a one-time URI. See Allamaraju (2010) for more details of generating
one-time URIs.

http://restbucks.com/orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo{%}3D
http://restbucks.com/orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo{%}3D

80 I. Robinson

Note that the design decisions we’ve made here trade message integrity for
increased coupling. The quotes resource and the order processor are coupled through
their sharing a secret to sign the hash, and through their sharing a URI tem-
plate, /orders?c=fclientIdg&s=fsignedHashValueg, to generate the
form URI. Moreover, if the shared secret leaks out, the tamper proofing mechanism
will have been compromised.

There is one final thing to note about the response shown in Fig. 3.9. Restbucks
has a business rule that says that a quote is valid for up to seven days after it has
been issued. As we can see from the quote response in Fig. 3.7, the quote that was
recently requested by the client was generated on Monday, 26 July 2010 at 10:01:00
GMT. The Expires header attached to the order form response indicates that the
form representation can be cached, and will remain fresh, for exactly seven days
from when the underlying quote was first issued.

To place its order, the client submits the form, as shown in Fig. 3.10. The
order processor responds with 202 Accepted, indicating that it has successfully
received the request but has not yet finished processing it. Both the Location
header and the typed link in the response body point to a resource that the client can
later interrogate to discover the eventual result of processing the request.

The 202 Accepted status code separates the action of accepting the request
from the work necessary to fulfil it. In doing so, it coordinates the successful transfer
of the request in the context of an asynchronous server-side task. To create an order
in its initial state, a number of potentially slow operations must take place behind the
RESTful interface. The order processor must contact a third-party payment provider
and set up a transaction (to be completed later by the client); it must also contact
the warehouse to determine stock availability. Both of these operations are relatively
slow. Rather than have the client hang onto a connection waiting for a response de-
scribing the outcome of all this work, we’ve chosen simply to acknowledge success-
ful delivery of the request while queuing the work itself for subsequent processing.

With this interaction, the client’s view of the state of the overall distributed
application changes from Quote Requested to Goods Ordered, as shown in Fig. 3.11.

Confirm Order

The client can now begin to poll the resource identified in the Location header
of the response shown in Fig. 3.10. In polling, the client becomes responsible
for the successful “delivery” of the outcome of its order request. (In contrast,
pub/sub solutions depend on either the publisher or a piece of middleware to deliver
notifications to subscribers successfully.) Figure. 3.12 shows the client’s first attempt
at polling the order at http://restbucks.com/orders/9876.

The server responds with 404 Not Found, indicating that the order has not
yet been created (the tasks necessary to create the order in its initial state have not
completed). The client waits a couple of seconds, and then tries again, as shown in
Fig. 3.13.

http://restbucks.com/orders/9876

3 RESTful Domain Application Protocols 81

Fig. 3.10 Client submits the order form

This time, all the server-side tasks necessary to create an order in its initial state
have been completed, so the server responds with a representation of the newly
created order. As the value of the order’s <status> element indicates, the order
is Awaiting Payment. This is resource state – and a particularly interesting kind of
resource state at that, for the state of this order is not only a function of the data
proper to the resource, it is also (partly) a function of the state of the payment with
which the order was associated when it was created. While the payment is waiting
to be completed by the client, this order is in the state of Awaiting Payment. The

82 I. Robinson

Quote Requested

Goods Ordered

GET /order-forms/1234

POST /orders?c=99fe97e1&s=k2awEpciJkd2X8rt3NmgDg8AyUo%3D

202 Accepted

Fig. 3.11 Application state changes from Quote Requested to Goods Ordered

Fig. 3.12 The client polls
the order resource

server responsible for the order resource can “watch” the payment resource in order
to compute the state of the order.

The order’s resource state, then, can change over time; moreover, it can change
as a function of other resources changing state. This kind of situation requires us
to make some tradeoffs between consistency and efficient use of network resources.
The client here desires a view of the order consistent with the view held on the
server; we, however, as designers of a networked application, want to use caching
to conserve bandwidth, reduce latency, and save processing cycles.

3 RESTful Domain Application Protocols 83

Fig. 3.13 The client polls the order a second time

Fortunately, there is a way to provide both consistency and – to an extent –
cacheability, using, as we have done here, ETag and Cache-Control headers.

The ETag header attached to the response in Fig. 3.13 contains an opaque string
token – an entity tag value. An entity tag represents in digest form the state of a
resource at the time the entity tag was generated. When the resource changes, the
entity tag value changes. Clients and caches can use a previously supplied entity tag
value to make efficient queries of the server governing the resource to which the
entity tag belongs, as we’ll see shortly.

84 I. Robinson

Before we look at how a client or cache can use an entity tag value to maintain
consistency in a reasonably network-efficient manner, let’s examine the order’s
Cache-Control header. We’ve made the order resource representation cacheable
using a cache-but-revalidate strategy, implemented using two Cache-Control
directives. The first of these directives, public, makes the response cacheable
by all caches; the second, max-ageD0, indicates that the cached response must
immediately be treated as stale.

This cache-but-revalidate strategy provides consistency, but at the expense of
a small increase in network traffic. Anyone holding a copy of the order must
revalidate with the origin server with every request using a conditional GET.
Conditional GET requests look like normal GET requests, except they also include
an If-None-Match header, which takes a previously received entity tag as a
value. If the resource hasn’t changed since the supplied entity tag was generated,
the server responds 304 Not Modified, thereby allowing the requestor to use
its cached copy of the order. If the resource has changed since the supplied entity
tag value was generated, the origin server replies with a full-blown response. This
response travels all the way to the client, replacing any cached copies along the
response path as it does so.

Returning to the entity body, we see that it contains four typed links: two with
registered link relations (self and payment), and two with extension link relations
(rb:cancellation and rb:quote):

• The self link indicates the preferred URI for the order.
• The rb:quote link points back to the quote used to created the order.
• The rb:cancellation link points to a resource that allows the client to cancel the

order.
• The payment link refers to a resource that can be used to pay for the order.

With the transmission of the order response, the state of the overall distributed
application has changed from Goods Ordered to Order Confirmed, as shown in
Fig. 3.14.

Pay

Choosing now to pay for the order, the client GETs the payment typed link, as shown
in Fig. 3.15. This request is made over a secure channel to a third-party payment
provider.

The payment provider’s response comprises an XHTML form representation of
a payment waiting to be filled out with the client’s payment details. The client fills
out the form and POSTs it back to itself. The outcome of this POST request depends
on the current state of the payment. POSTing the client’s payment details back
to the payment resource for the first time changes the state of the payment from
Awaiting Payment to Paid, and causes the payment to return a 200 OK response, as
shown in Fig. 3.16. Once is in the Paid state, however, the payment will no longer

3 RESTful Domain Application Protocols 85

Goods Ordered

Order Confirmed

GET /orders/9876

paymentrb:quote

rb:cancellationself

Fig. 3.14 Application state changes from Goods Ordered to Order Confirmed

accept POST requests; subsequent POST requests will cause the resource to return a
405 Method Not Allowed response instead. In effect, the payment resource
implements idempotent POST; that is, multiple POSTs to the payment cause the
transaction to be completed only once.

The response shown in Fig. 3.16 comprises another form. When the order
processor set up the payment, it supplied the payment provider with a callback URI
and confirmation ID. The payment provider uses these details to create a pre-filled
payment confirmation form, which the client now submits, as shown in Fig. 3.17.

The resource to which the form data is POSTed validates the received con-
firmation ID and sets the state of the underlying order domain entity to Paid. It
then redirects the client to the order resource with a 303 See Other response.
As shown in Fig. 3.18, the client makes a GET request of the URI supplied in the
redirect’s Location header.

86 I. Robinson

Fig. 3.15 Client gets the payment form

When following the redirect to the order, the client adds the entity tag value it
received the last time it requested the order to an If-None-Match request header,
thereby making the request conditional. This conditional request requires the server
to return a full-blown response only if the entity tag associated with the requested
entity differs from the entity tag value supplied in the request. Because the order
has changed since the client last requested it (its resource state has changed from
Awaiting Payment to Paid, and therefore its entity tag value is different), the server
returns a full response. This response includes a new entity tag value.

With this last series of interactions, the payment’s state has changed to Paid, as
has the order’s. And with these two resource state changes, the client’s view of the
overall distributed application’s state has changed from Order Confirmed to Paid, as
shown in Fig. 3.19. The procurement application has reached a terminal state.

Cancel

Instead of paying for an order, a client may choose to cancel it. (In a real-world
application there would likely be several points where the client could choose
to cancel the order.) Following a link typed with rb:cancellation leads the client
to a form, which the client then uses to PUT a reason for cancelling the order

3 RESTful Domain Application Protocols 87

Fig. 3.16 Client submits payment details

Fig. 3.17 Client is redirected to the order

to a cancellation resource. This cancellation resource adapts the underlying order
domain entity on behalf of clients wishing to cancel orders. Much as POSTting a
payment confirmation modifies the underlying order and sets its state to Paid (as
shown in Fig. 3.17), creating a new cancellation cancels the underlying order.

88 I. Robinson

Fig. 3.18 Order is now in a Paid state

Documenting the Procurement API

Having described a likely sequence of interactions through which a client can
drive the procurement protocol forwards, together with the representation formats,
processing models and link relation values necessary to realize these interactions,
we’re in a position to begin documenting the public face of our system. In large part,
this documentation comprises descriptions of the media types and link relations we
use throughout the application. It does not include any reference to the underlying
protocol state machine. By coupling to our media types and link relations, clients
allow themselves to be guided towards successfully completing the procurement
protocol; at the same time, they are free to compose our resources and their
interactions with those resources into entirely different applications.

3 RESTful Domain Application Protocols 89

Order Confirmed GET https://example.org/payments/1010

POST https://example.org/
payments/1010

303 See Other

GET /orders/9876

rb:quote self

Paid

POST /payments/9876

Fig. 3.19 Application state changes from Order Confirmed to Paid

The documentation we provide client developers indicates that our procure-
ment application uses the application/restbucksCxml media type,
together with a couple of registered link relations: self and payment. We
also note that we use a third party payment provider whose protocol uses
application/xhtmlCxml.

The Restbucks Media Type

The documentation for the application/restbucksCxml media type says
that:

• Responses will contain either a <shop> entity corresponding to the schema
described at http://schemas.restbucks.com/shop.xsd, or an XForms <model>.

http://schemas.restbucks.com/shop.xsd

90 I. Robinson

• We use <link> elements to represent links, and XForms <model> elements
to represent forms and runtime control data.

• A <shop> may contain zero or more <link> elements, at most one
<items> element containing zero or more child <item> elements, and
at most one <status> element.

• We use five extension link relation values:

– http://relations.restbucks.com/quote – Indicates that the linked resource is a quote.
– http://relations.restbucks.com/order – Indicates that the linked resource is an

order.
– http://relations.restbucks.com/cancellation – Indicates a resource where an order

can be cancelled.
– http://relations.restbucks.com/rfq – Indicates a resource where a quote can be

requested.
– http://relations.restbucks.com/order-form – Indicates a resource where orders can

be submitted.

• User agents can automatically activate links typed with rb:cancellation, rb:rfq or
rb:order-form. That is, these link relations indicate external resources that a client
can prefetch to enrich its view of a steady state without changing the application’s
state.

• Clients wishing to use forms to further the application must understand and
implement the XForms 1.1 Core Module.

With this documentation, client developers can develop media type libraries that
parse and produce representations belonging to each media type, and which
implement any processing models particular to those types; they can then compose
these libraries into their client-side part of the application.

References

Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly, 2010.
Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services: Concepts,

Architectures and Applications. Springer-Verlag, Berlin, Heidelberg, New York, 2004.
Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource Identifier (URI):

Generic Syntax. 2005. http://www.ietf.org/rfc/rfc3986.
Mark Birbeck and Shane McCarron (eds). CURIE Syntax 1.0. 2009. http://www.w3.org/TR/curie/.
David Booth. URIs and the Myth of Resource Identity. 2006. http://dbooth.org/2006/identity/.
John M. Boyer (ed). XForms 1.1. 2009. http://www.w3.org/TR/xforms11/.
Roy Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD

thesis, University of California, Irvine, 2000.
Joe Gregorio and Bill de hOra (eds). The Atom Publishing Protocol. 2007. http://tools.ietf.org/

html/rfc5023.
Link Relations. 2011. http://www.iana.org/assignments/link-relations
M. Nottingham. Web Linking. 2010. http://www.rfc-editor.org/rfc/rfc5988.txt.
M. Nottingham and R. Sayre (eds). The Atom Syndication Format. 2005. http://tools.ietf.org/html/

rfc4287.

http://relations.restbucks.com/quote
http://relations.restbucks.com/order
http://relations.restbucks.com/cancellation
http://relations.restbucks.com/rfq
http://relations.restbucks.com/order-form
http://www.ietf.org/rfc/rfc3986
http://www.w3.org/TR/curie/
http://dbooth.org/2006/identity/
http://www.w3.org/TR/xforms11/
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5023
http://www.iana.org/assignments/link-relations
http://www.rfc-editor.org/rfc/rfc5988.txt
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287

3 RESTful Domain Application Protocols 91

Paul Prescod. Roots of the REST/SOAP Debate, 2002 Extreme Markup Languages Conference,
Montréal, Canada, Aug 2002.

The Sun Cloud API. 2009. http://kenai.com/projects/suncloudapis/pages/Home.
Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia and Systems

Architecture. O’Reilly, 2010.

http://kenai.com

	Chapter 3: RESTful Domain Application Protocols

	Introduction
	What Is a Domain Application Protocol?
	Application
	Application State
	Domain Application Protocol
	Application State in a RESTful Application

	Design Steps
	Step 1
	Step 2
	Resources
	Resource State
	Hypermedia

	Step 3
	Media Types
	Link Relations
	Documenting a Protocol
	HTTP Idioms

	A RESTful Procurement Application
	Start
	Request Quote
	Place Order
	Confirm Order
	Pay
	Cancel
	Documenting the Procurement API
	The Restbucks Media Type

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

