Chapter 23
Towards Distributed Atomic Transactions over
RESTful Services

Guy Pardon and Cesare Pautasso

Try-Cancel/Confirm: Transactions For the REST of Us

- Atomikos.com

Abstract There is considerable debate in the REST community whether or not
transaction support is needed and possible. This chapter’s contribution to this debate
is threefold: we define a business case for transactions in REST based on the
Try-Cancel/Confirm (TCC) pattern; we outline a very light-weight protocol that
guarantees atomicity and recovery over distributed REST resources; and we discuss
the inherent theoretical limitations of our approach. Our TCC for REST approach
minimizes the assumptions made on the individual services that can be part of a
transaction and does not require any extension to the HTTP protocol. A very simple
but realistic example helps to illustrate the applicability of the approach.

Introduction

The Uniform Interface (Fielding 2000) of a RESTful Web service (Richardson and
Ruby 2007) implemented using HTTP has very useful and positive implications on
the reliability of the interaction of clients with a service following the constraint.
Considering that GET, PUT, DELETE requests are by definition idempotent, any
failure during these interactions can be addressed by simply repeating the request.

This property, however, cannot be directly applied in a service composition
scenario (Pautasso 2009) where multiple interactions between a set of RESTful
services need to happen atomically. Even if a single idempotent interaction between
one client and one RESTful Web service is reliable, it is not clear how to guarantee
the same property of atomicity when a client is interacting with multiple RESTful
Web services. This problem is the central topic of this chapter, and will be discussed
by means of the running example illustrated in the following section.

G. Pardon (X))
ATOMIKOS, Hoveniersstraat 39/1, 2800 Mechelen, Belgium
e-mail: guy @atomikos.com

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice, 507
DOI 10.1007/978-1-4419-8303-9_23, © Springer Science+Business Media, LLC 2011

guy@atomikos.com

508 G. Pardon and C. Pautasso
Example: Booking Two Connecting Flights

Suppose we want to book a flight composed of two connecting flights from two
different and autonomous airlines: swiss.com and easyjet.com, via some travel
agency service acting as a service composition over the two airlines. Let’s assume
that both airlines have the same hypermedia contract for bookings (for reasons of
simplicity, and without loss of generality since the composite service is supposed to
know all of the hypermedia contracts involved). The REST implementation of the
airline information and booking services could be designed as follows.

Checking Seat Availability

Clients can inquire about the availability of seats on a flight at the URI:
/flight/{flight-no}/seat/{seat-no}. For example, the GET/f1light
/LX101/seat/ request will return a hyperlink to the next available seat on the
flight LX101 or none (e.g., 204 No Content) if the flight is fully booked.

Booking a Seat

A POST request to the /booking URL with a payload referencing such seat will
create a new booking resource and redirect the client to it by sending a hyperlink
identifying it such as /booking/{id}/. The body of the request can contain
a reference to the chosen flight and seat (i.e., <flight number="LX101"
seat="33F"/>). The booking can be updated with additional information using
a PUT /booking/{id}/ request.

Composition of Bookings

We are now ready to present the first user story, which will be our motivating
example throughout this chapter.

Story 1 As a customer, I want to book a composed flight consisting of two
independent, connecting flights from both airlines.

It is the responsibility of the travel agency composite service to satisfy this
requirement. A straightforward implementation (without a transaction model for
REST) would be the following:

. GET swiss.com/flight/LX101/seat/

. POST swiss.com/booking

. GET easyjet.com/flight/EZ222/seat/
. POST easyjet.com/booking

B O R S R

23 Towards Distributed Atomic Transactions over RESTful Services 509

The problem is that it may happen that after the first airline service has
successfully performed the booking (step 2), the second airline may reply that there
are no seats available. Thus we have only a partial flight.

Even if we reorder the requests as follows:

. GET swiss.com/flight/LX101/seat/

. GET easyjet.com/flight/EZ222/seat/
. POST swiss.com/booking

. POST easyjet.com/booking

B O R S R

the problem is not solved. Even if both step 1 and 2 may return a link to an available
seat, the following booking requests may fail due to concurrent intermediate
bookings. Thus, we may still end up in a situation where we have reserved one flight
but not the other one. If 3 fails (due to, say, intermediate bookings at easyjet.com
between steps 2 and 4) then we have one flight but not the other one. The retry of
individual requests does not help here: we can try to repeat step 4 as many times as
we like, but if the flight is fully booked then we will keep getting the same failure
each time. What we really need is the ability to make step 3 and 4 tentative, so
that they can be confirmed later. This way the whole process becomes atomic and
happens entirely or not at all.

Our Goal: Lightweight Transactions for REST

The goal of this chapter is to propose a solution to the problem of atomicity within
distributed RESTful interactions within the constraints of: (a) Using a lightweight
transaction model (Pardon and Alonso 2000) based on ATOMIKOS TCC (Pardon
2009); (b) Minimizing, or in the best case, avoiding changes to the REST uniform
interface and the HTTP protocol. (c) Assigning to the service running the composi-
tion the responsibility of ensuring the atomicity of the transaction.

A solution should provide the ability to transparently group multiple RESTful
interactions and treat them as a single logical step, as well as to ensure that the
consistency of a set of resources which are distributed over multiple servers can
be kept. Whereas solutions have been proposed to batch interactions affecting
multiple resources provided by a single server [e.g., WebDAV’s explicit lock-
ing methods (Goland et al. 1999), or the transactions as a resource approach
from (Richardson and Ruby, 2007, p. 231)], these are not directly applicable to
interact with multiple resources distributed across multiple servers.

About this Chapter

This chapter contribution focuses on addressing the atomicity property of distributed
transactions across RESTful Web services. This already satisfies the requirements

510 G. Pardon and C. Pautasso

of a wide class of applications, where atomicity is a necessity, while isolation is not.
For example, all scenarios involving some kind of resource reservation are relevant,
since once a resource is reserved within a transaction, its reserved state should
become immediately visible to other clients in order to avoid overbooking. Our
solution is thus applicable whenever clients need to atomically perform a purchase
(or more in general, change the state) of a set of distributed and autonomous
resources.

The rest of this chapter is structured as follows: in “A Transaction Model for
REST” we use our running example to further define the business-driven case
for REST transactions and then discuss the technical requirements that a solution
should satisfy. In “Protocols” we outline the transaction protocol, which is discussed
at length in “Discussion”. Finally, we give a brief survey of related work before
drawing some conclusions.

A Transaction Model for REST

Whether or not REST needs transactions has been heavily debated within the REST
community (Little 2009). We claim there is a clear need, and we try to motivate it
here. Our motivation is in two parts. First, we define a business model for RESTful
services that needs transactions. Next, we define the technical qualities that we think
a transaction model for REST should possess in order to be successful.

Why REST Needs Transactions

With the first story we have already motivated the need for atomicity, and why
idempotent requests are not enough. We will now refine this model based on realistic
business needs of each of the parties involved.

Refining our Example: Confirmation of Bookings

As hinted in the introduction, we need a way to make bookings tentative until
confirmed:

Story 2 As a customer, I want to be able to confirm a booking when I am done.
Bookings that are not confirmed are not billed to my account.

Confirmation can (and should) be business-specific. In the context of our running
example, we assume that a confirmation hyperlink is returned by the RESTful API
of the airline service (e.g., in response to a GET /booking/{id} the service returns
<flight number seat><payment uri="/payment/X"></flights>).
Thus, the booking can be confirmed with a PUT/payment /X <VISA ...>
request.

23 Towards Distributed Atomic Transactions over RESTful Services 511

Fig. 23.1 Example of an Workow [GET swiss. com/F11ght/LX101/seat
atomic reservation for two Engine 200
flights (happy path) POST swiss.com/booking

302 (Location: /booking/A)
GET easyjet.com/flight/Ez999/seat
200

POST easyjet.com/booking

302 (Location: /booking/B)
GET swiss.com/booking/A

200 (Link to confirm: /payment/A)
GET easyjet.com/booking/B

200 (Link to confirm: /payment/B)

Transaction |pyT swiss.com/payment/A
Coordinator 200

PUT easyjet.com/payment/B
200

Transactional Booking Workflow

The travel agency can now implement a transactional booking as shown by Fig. 23.1.

In terms of design, the first set of interactions can be driven by the workflow that
composes the two services, while the final confirmations to close the transaction
could be sent to a transaction coordinator component.

What if Step 4 Fails?

Let’s return to the original problem: what if step 4 (i.e., the second booking) fails?
By not performing any confirmation, the workflow engine ensures that no billing is
done for either flight. This avoids our original problem as the transaction coordinator
will not confirm any of the bookings.

Refining even more: Cancellation of Bookings

Confirmation is driven by the needs of the customer and the travel agency that
composes the individual services. From the point of view of the airlines, an
additional story arises:

Story 3 As an airline, I do not want to wait for a confirmation forever. In other
words, I want to be able to autonomously cancel a pending booking after some
timeout expires.

This should be obvious: as an airline, I do not want to loose money because some
travel agency keeps seats reserved without confirmations. Consequently, we need a
cancellation event triggered by some timeout specific to the airline.

512 G. Pardon and C. Pautasso

Fig. 23.2 Generic state Cancel
machine of a resource
complying with the Initial o " Confirm Final
Try-Cancel/Confirm protocol 4O)
y p State wReserved State
State

The REST implementation could be as follows: GET /booking/{id}
returns <£1ight number seat><payment uri="/payment/X" deadli
ne="24h"></flights>). The composing workflow service can use the deadline
as a hint to when the expiry of the reservation will happen.

Generalisation: Try-Cancel/Confirm

Our stories are particular illustrations of the more general Try-Cancel/Confirm
(TCC) protocol. As shown in Fig. 23.2 each request is “tried” and remains tentative
until it is either confirmed or cancelled. Composition of TCC services leads to a
natural, loosely-coupled transaction model. Cancellation may occur spontaneously
after a timeout or might be triggered by an external event (the latter we consider
out-of-scope for this chapter).

Although originally formulated by Pardon (2009), a similar model seems to have
been discovered independently at Amazon (Helland 2007) — which supports our
vision about TCC’s broad applicability and relevance.

Technical Requirements for REST Transactions

Industry practice has shown that transactions need to be non-invasive or they will
be avoided. This is mostly due to the tight coupling and the additional complexity
they introduce in the design and implementation of services which can participate
in a transaction.

Our simple proposal attempts to avoid the negative impacts of existing ap-
proaches while ensuring that the visibility and the interoperability that have come
to be expected of RESTful services are not affected.

Loose Coupling

The resources published by a RESTful Web service are typically seen as
independent entities whose state changes happen autonomously from one
another (Richardson and Ruby 2007). Clients interacting with resources may
change their state trough atomic interactions which however do not span across
multiple resources (Helland 2007).

The main constraint for our proposal is to ensure that resources remain au-
tonomous and that performing transactions over them does not introduce any

23 Towards Distributed Atomic Transactions over RESTful Services 513

additional coupling among them. This is important to remain within the scope of the
REST constraints which emphasize the role of the client as the one driving forward
the state of an application.

A transaction solution for REST is considered loosely-coupled (Pautasso and
Wilde 2009) if participating services are unaware of the fact that they are being
part of a global transaction. More precisely: the individual participating services
do not need to have any additional knowledge or implement any extra protocols
besides what they already support. Whereas not all RESTful services may be able
to participate in such transactions, we claim that there is a significant number of
resources that naturally fit with our assumptions due to the nature of the business
service they implement. This is particularly true for services that comply with the
TCC business model outlined in the previous section.

No Context Please

Avoiding to make use of an explicit transaction context is a radical departure from
most distributed transaction protocols which assume that a transactional context
needs to be established and maintained among the participants, which must be aware
of the transaction and thus become tightly coupled with one another.

One of the most important requirements to ensure loose coupling is that there
should be no transaction context shipped around, thereby eliminating a lot of
shared state interpretation and hidden dependencies among services. Most existing
protocols for distributed transactions rely on such mechanism to establish a context
shared among the participants. Thus the services become aware of participating in
a transaction and must carry the burden of maintaining such context. Our goal is
to define a protocol which removes the need for establishing and maintaining such
context.

Align with the Business Functionality

The classical ACID transaction paradigm revolves around database locks and low-
level rollback at the database level (Bernstein et al. 1987; Gray and Reuter 1993).
Distributed ACID transactions (i.e., involving more than one database backend
and/or service) usually require a “distributed transaction coordinator” to drive the
individual ACID transactions via the XA protocol.

A lot has been said about the blocking nature of XA (Open Group 1992) and
two-phase commit in classic ACID transaction technology — we will not repeat that
here. Suffice it to say: any successful transaction technology for SOA should avoid
the distributed locks associated with XA. The most natural way of doing this is with
TCC (Pardon 2009). Instead of introducing long-running ACID transactions, this
allows us to use multiple, short-lived ACID transactions for each of the resource
state transitions triggered by the “try”, “cancel” and “confirm” events (Fig. 23.2). In
addition to avoiding lots of problems, service-specific confirm and cancel logic are

514 G. Pardon and C. Pautasso

also natural with respect to the business model of the service provider. This in turn
means that transaction models embracing these will be less invasive and therefore
more likely to be used.

Protocols

We will now introduce a set of protocols that ensure transactional correctness in
REST systems. Let’s start by defining the transaction a bit more formally:

Definition 1. A REST-based transaction 7" (e.g., booking a composed flight) is a
number of invocations R; (e.g., booking individual flights) across RESTful services
S; (e.g., swiss.com and easyjet.com) that need to either confirm altogether or cancel
altogether. In other words: either all R; succeed via an explicit confirmation R; confirm
(e.g., by paying for the flight), or all R; cancel but nothing in between.

The Happy Path

1. A transactional workflow 7" goes about interacting with multiple distinct REST-
ful service APIs §;

2. Interactions R; may lead to a state transition of the participating service S;
identified by some URI — this URI corresponds to R; confirm

3. Once the workflow T successfully completes, the set of confirmation URIs and
any required application-level payload is passed to a transaction service (or
coordinator)

4. The transaction service then calls all of the R; ufim With an idempotent PUT
request on the corresponding URIs with the associated payloads

The protocol (Fig. 23.3) guarantees atomicity because each participating service
receives a consistent request to either cancel or confirm. All participating services
terminate their business transaction in the same way.

Note that we assume that R; .o, is idempotent. In REST, this is a natural
assumption to make. In practice, this means that the confirmation URI is called
with a PUT or DELETE method — the particular choice depending on the contract
defined by S; and known to the workflow application, Fig. 23.4 illustrates this in the
context of the running example.

Recovery Protocol

The basic protocol is very simple so it is natural to ask how this can work even in
the presence of failures and recovery. Recovery is outlined below. We assume that
each party is able to restore its own durable state, so we focus on the recoverability
of the atomicity property across all parties.

23 Towards Distributed Atomic Transactions over RESTful Services 515

0 —1
Client 'O Workflow

,_@_ Engine

<5j> <?%Confirm

Transaction
Coordinator

—

of | ot | |e1”

Composite Confirm
RESTful TCC
Service Resources

Fig. 23.3 Protocol architecture for the happy path

Fig. 23.4 Example of a flight

reservation resource POST /Booking

complying with the TCC

pattern PUT /Payment/X
Timeout

DELETE /Booking/{id}

Defining Recovery

For practical purposes, we define recovery as follows:

1. Checking the state of a transaction after node failure followed by restart, or
2. Checking the state of a transaction triggered by timeout

Recovery is something that is performed by the coordinator service as well as the
participant services. For the coordinator this is expected since it intends to recover
the transaction 7" that it knows about. For a participant, recovery also happens
naturally: although a participant is not aware about 7" (following the loose coupling
requirement), a participant service will want to release its reserved resources at the
earliest possible time (as required by the business-level service contract).

Participant Service Recovery

Each participating service S; does the following:

1. For recovery before step 2, do nothing.

2. For recovery after step 4: do nothing.

3. For recovery in between steps 2 and 4: execute R; cqnce; autonomously (This can
be triggered by a timeout).

516 G. Pardon and C. Pautasso

Coordinator Recovery

Like the participant service, we assume that the coordinator service is capable
of restoring its durable state. Consequently, we focus on the recoverability of
the overall atomicity. The coordinator has a slightly more complex job than the
participants, because it has to make sure that all the participants will eventually
arrive at the same end state for the transaction 7'. In particular, step 4 actually
involves multiple participants so a failure during step 4 could be problematic'. We
propose a naive protocol here, and leave optimisations to future work.

1. For recovery before step 2, do nothing.

2. For recovery between steps 2 and 4: do nothing.

3. For recovery after step 4: do nothing.

4. For recovery during step 4: retry R;confrm With each participating service S;.
Since R; confirm are performed using idempotent methods, they may be retried as
many times as necessary. Note: this requires the coordinator to durably log all
participant information before starting step 4.

Discussion

This section presents reflections on the proposed protocols. In particular, we show
that they can guarantee atomicity even in the event of failures and outline the known
limitations of the approach.

Atomicity Guaranteed even with Failures

Even if there are arbitrary failures, we still preserve atomicity — eventually. In other
words: given enough time, the global transaction 7" will be confirmed everywhere,
or cancelled everywhere, or nothing will have happend in the first place. More
precisely: either all R; are confirmed, or all are cancelled. In order to prove this,
we take a closer look at the protocol steps from the point of view of the coordinator.
Here is our proof:

1. If there are no failures, then steps 1-4 run through and each R; will have been
confirmed.

2. For any failures before step 2, no R; exists, meaning that nothing has happened.

3. For any failures during or after step 2 but before step 4: all R; will eventually be
cancelled autonomously by each S; (since nothing has been confirmed yet).

!Especially because the participants are not aware that they are part of a transaction

23 Towards Distributed Atomic Transactions over RESTful Services 517

4. For any failures during step 4: the coordinator will retry each R; copfirm until it
succeeds. Because confirmation is idempotent, this will eventually succeed (note:
there is one caveat here — discussed next).

5. For any failures after step 4: all R; confirm have been done, so we already have
atomicity and no action is required.

The Exception that Confirms the Rule: Heuristics

There is one weak spot in our proof of atomicity: during step 4, some service S; may
time out and cancel on its own, while the coordinator is performing confirmation.
In the worst case, this means that some participants confirm whereas others cancel
on their own — effectively breaking atomicity. We call this a heuristic exception for
reasons outlined in the following.

Perfection does not Exist

There has been a lot of interesting work related to atomicity, and the more general
problem of distributed agreement, and the most important result is that a perfect
solution is not possible (Fischer 1985). In practice, this means that there is always
the possibility that at least one participating service/node is unaware of the outcome
of the “global” distributed transaction - be it with our TCC protocol for RESTful
Web services or with classic, ACID, XA-style transactions.

The practical consequence is that one or more nodes can remain “in-doubt” about
the global result of one or more business transactions that they are participating in.
For instance, flight reservations may never complete because payment never arrives
(either due network failures, node failures or both).

This is not specific to REST or WS-*, it exists in any networked environment:
there is no perfect protocol for distributed agreement. This is a limitation one has to
live with (and one of the drivers behind the CAP theorem Brewer 2000).

Enter Heuristics

The bottom line is that perfect atomicity may not be possible sometimes, and we
need a practical way of dealing with such scenarios (just like workflow-based solu-
tions do). We propose a simple way based on the “heuristic exceptions” known from
the industry’s two-phase commit protocol families (such as OTS Ram et al. 1999).
In practice, most industrial distributed two-phase commit (2PC) technologies
recognize that similar anomalies may happen. In order to avoid that a participant

518 G. Pardon and C. Pautasso

remains in-doubt about the outcome, these protocols allow the participants to
timeout and unilaterally terminate their part of the a global transaction with a so-
called “heurisitic decision” (e.g., heuristic rollback).

Our Protocol Compared to Two-Phase Commit

Once a participant completes R;, it can be considered in-doubt: all its durable state
changes are on disk, and the only remaining thing is the pending confirmation
R; conirm On behalf of T'. If the participant decides to time-out then this is similar
to what classical two-phase commit calls a heuristic rollback. The default way of
handling this is very similar: we make sure that the coordinator logs this fact on
behalf of 7" and assume that this will be reported in some implementation-specific
way to allow for out of band manual resolution of the inconsistency by a human
operator.

Advantages of our Protocol Compared to Classical Two-Phase Commit

One big advantage our protocol offers (compared to classical heuristic cases) is the
fact that it offers higher-level semantics and does not hold low-level database locks.
In-doubt participants do not block any other work other than the one affected by
the business resources they reserve on behalf of 7. When a heuristic cancel is done
by S, the consequences are well-defined and known to the business: it corresponds
to a unilateral breach (by S;) of the contract entered into with the execution of
R;. Both the coordinator of 7 and the site administrators at S; can use the high-
level information to manually resolve the inconsistency. Contrast this to classical
transactions, where heuristic exceptions are very low-level error conditions with
vague impact and little context information. In this way, our protocol embraces the
fact that distributed agreement between businesses is challenging due to the inherent
limitations of distributed agreement and the CAP theorem.

Optimisations and Future Work

We have presented a simple protocol that ensures atomicity in at least as many cases
as ACID transactions do, without the restrictions. However, there is a lot of room
for optimisation. We can see at least the following things to refine:

1. Optimising the basic protocol with coordinator-driven cancellation in addition
to confirmation. This allows the application/workflow to signal failures early,
so that participating services do not have to time out. This in turn minimises
resource contention.

23 Towards Distributed Atomic Transactions over RESTful Services 519

2. Optimising timeout management by the coordinator in order to minimize the
occurrence of heuristic exception cases. For instance, the coordinator could
inquire (GET) with each participant to discover the remaining timeout before
attempting to confirm. If the remaining timeout is below a threshold, then the
coordinator might refuse to even start confirmation.

3. Optimising the handling of heuristic exceptions if they do happen. For instance,
the coordinator could inquire at each participating service to find out more about
what to do, or a management-by-exception type of workflow could be triggered
that requires human intervention at the workflow end. This sounds all the more
interesting because it is backed by the way that real businesses work today.

4. Our basic assumptions could be weakened. For instance, it might be that
some service providers do not hold reservations. Likewise, it might be that
some requests cannot fail under normal circumstances (like read-only GET
requests). Further research along these lines, will help to widen the applicability
of transactions over RESTful APIs which do not fully comply with the Try-
Cancel/Confirm pattern.

Related Work

RESTful Service Composition

REST is widely perceived as an emerging lightweight technology for build-
ing Web services (Richardson and Ruby 2007). The properties of the REST
architectural style are meant to enable serendipitous reuse by means of composi-
tion (Vinoski 2008).

The idea of RESTful service composition has also been explored in the Bite
project (Rosenberg et al. 2008), or with the BPEL for REST extensions (Pautasso
2008). Also, Xu et al. (2008); Pautasso (2009) proposes to use workflow languages
for composing RESTful services. All of these contributions to do not explicitly
address the requirement for transactional composition of RESTful services.

RESTful Transaction Models

In addition to several threads on the rest-discuss mailing list, summarized by Little
(2009), the problem of transactional interactions for RESTful services has started
to attract some interest also in the research community. For example, an approach
to RESTful transactions based on isolation theorems has been recently proposed
in Razavi et al. (2009). The RETRO (Marinos et al. 2009) transaction model also
complies with the REST architectural style.

520 G. Pardon and C. Pautasso

REST-*

The recently appeared book “REST in Practice” (Webber et al. 2010) also has a
dedicated chapter discussing transaction support for REST. The approach seems
similar to what REST-* is trying to accomplish, with the same drawback of tight
coupling due to, among other things, a transaction context going all around.

More in detail, the JBoss REST-* initiative aims at providing various QoS
guarantees for RESTful Web services, in much the same way as WS-* has done
for Web services by creating a “stack” of agreed upon best practices and standards
for REST middleware. In its attempt at offering transactions, REST-* follows an
approach that is reasonably close to TIP and WS-AT: a context is added to each
invocation in order to make the invocation transactional. The receiving service has
to understand that context in order to participate in the transaction outcome. This
leads to tight coupling, something that we have tried to avoid.

ATOM Pub/Sub

Another common approach for reaching distributed agreement in REST uses a
publish/subscribe mechanism based on feeds wherein the “transaction coordinator”
publishes updates on the “outcome” of the transaction, and each participant then
listens for any updates it might be interested in. This is certainly technically feasible,
however it assumes that each participant knows the right feed that should be
subscribed to, and understands the semantics of the updates being published by the
coordinator. In our solution, the participants do not have to know anything besides
their own business contract (API). Thus, we believe our approach introduces less
coupling than this one.

Also, a publish/subscribe mechanism implies that the coordinator has no direct
means of asking a participant service about its final outcome (taking into account
any heuristic decisions it may have taken after a timeout). This seems a bit
awkward to us.

Distributed Transaction Technologies

This section provides some relevant background information on related trans-
action technologies/standards for Internet-scale systems and/or service-oriented
architectures.

TIP

The TIP (Transaction Internet Protocol) was one of the first initiatives to offer
reliability on the wider scale of the Internet (Vogler et al. 1999), and across different

23 Towards Distributed Atomic Transactions over RESTful Services 521

service providers. It is based on the notion of a transaction context that is passed
along with each request. The notion of such a context is far from ideal because it
introduces tight coupling and limits the interoperability of the participants.

CORBA OTS

Within the CORBA ecosystem (Henning 2006), the OTS (Object Transaction
Service) is a distributed transaction framework that (at least in theory) provides
interoperability of transactions across CORBA objects and even across ORBs (Ram
et al. 1999). It is used primarily in financial and telecom industries and it allows for
a certain heterogeneity. However, as every system based on binary ORB protocols
and bindings, CORBA/OTS cannot be directly reused in the domain of RESTful
Web services.

WS-#

The WS-* stack would not have earned its fame if it did not offer some
form of transaction support. A number of competing standards have been
proposed (Zimmermann et al. 2007), but all of them were designed by committee.
This implies that they all tend to be somewhat over-engineered, and above all they
are driven by technology vendors (Tai et al. 2004) rather than by practical needs or
demands. Consequently, their practical relevance is rather limited.

The two most common approaches are the following: WS-AT and WS-BT. We
will discuss them starting from the assumption that the main value proposition of the
WS-* technology stack lies in its intrinsic interoperability between heterogeneous
platforms.

Web Service — Atomic Transactions (WS—AT) is the WS-* counterpart of the
classical ACID transaction technologies. It offers distributed XA transactions over
web service protocols.

As far as we know, this is the only transaction standard that enjoys real cross-
vendor support from the bigger players like IBM and Microsoft. Unfortunately,
this complex specification leads to tight coupling between participating sites.
Configuration is not easy, especially if security is involved. Interoperability among
existing implementations has also been difficult to achieve.

Web Service — Business Activity (WS-BA) is a compensation-based protocol
that arose out of the BPEL world as a way to make BPEL engines coordinate com-
pensation scopes across vendors/engines. It offers the possibility to “compensate”
for unrightfully executed work with application-level callbacks. However, there is
no notion of a business-level “confirmation” phase, which may be needed to address
our requirements.

We do not know of many vendors who support this standard. Microsoft, for
instance, does not. This makes the usefulness for interoperability rather limited and
hence the relevance of this technology may be questionable.

522 G. Pardon and C. Pautasso

XA Technology

The XA (Open Group 1992) specification defines an open, vendor-independent
way of supporting distributed ACID transactions across back-end systems. It is the
classical way of doing distributed transactions a distributed system — but due to tight
coupling limitations it is too restrictive for service-oriented architectures and REST.

Try Confirm/Cancel

Try Confirm/Cancel (TCC) is a business-level protocol for distributed atomic trans-
actions offered by Pardon (2009). The main difference with the previously described
approaches is that the transactional events corresponding to cancel (“rollback’) and
confirm (“commit”) are not defined by the needs of the middleware/database but
rather by the application/business services”. This makes TCC a highly practical and
business-oriented protocol, which — as we have shown in this Chapter — fits very
well within the constraints of the REST uniform interface.

Although the current implementations by Atomikos are based on protocols such
as RMI/IIOP and WS-*, the underlying ideas lend themselves very well to RESTful
Web services, without the need to introduce coupling. In fact, applying TCC to
REST allows to offer distributed transactions with services that are unaware of being
part of such atomic transaction.

Conclusion

In this chapter, we propose a light-weight atomic transaction solution for REST
based on applying the Try-Cancel/Confirm (TCC) pattern to the design of a RESTful
Web service. The pattern fits with the business requirements of many service
providers (e.g., e-Commerce sites) that need to participate within long running
transactions and thus offer services allowing clients to issue requests which can
later be canceled and have to be confirmed within a given timeout before they are
carried out.

In addition to defining the business case for REST transactions, we have proposed
a simple protocol to achieve atomicity among distributed resources that comply
with the TCC pattern. We illustrated the protocol’s behaviour with an example
also showing that the resources involved in the transaction remain unaware of the
transaction. Finally we have discussed how the protocol provides a loosely coupled
solution to guarantee atomicity and consistency in the event of failures and outlined
the known limitations (shared by all distributed agreement protocols) mainly due to
heuristic timeouts.

2 A similar idea (but lacking the “try” phase) was also proposed in the OASIS BTP proposal (Dalal
et al. 2003), which was standardized but remains without any current implementations.

23 Towards Distributed Atomic Transactions over RESTful Services 523

References

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

Eric A. Brewer. Towards robust distributed systems (abstract). In Proc. of the 19th Annual ACM
Symposium on Principles of Distributed Computing, page 7, Portland, Oregon, July 2000.

Sanjay Dalal, Sazi Temel, Mark Little, Mark Potts, and Jim Webber. Coordinating Business
Transactions on the Web. IEEE Internet Computing, 7(1):30-39, January 2003.

Roy Fielding. Architectural Styles and The Design of Network-based Software Architectures. PhD
thesis, University of California, Irvine, 2000.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374-382, 1985.

Yaron Y. Goland, E. James Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions for
Distributed Authoring — WebDAV. Internet RFC 2518, February 1999.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

Pat Helland. Life beyond Distributed Transactions: an Apostate’s Opinion. In Third Biennial
Conference on Innovative Data Systems Research (CIDR 2007), pages 132—141, Asilomar,
CA, January 2007.

Michi Henning. The Rise and Fall of CORBA. ACM Queue, 4(5):28-34, June 2006.

Mark Little. REST and transactions?, 2009. http://www.infoq.com/news/2009/06/rest-ts.

Alexandros Marinos, Amir R. Razavi, Sotiris Moschoyiannis, and Paul J. Krause. RETRO: A
Consistent and Recoverable RESTful Transaction Model. In Proc. of the IEEE International
Conference on Web Services (ICWS 2009), pages 181-188, Los Angeles, CA, USA, July 2009.

Open Group. Distributed TP: The XA Specification, February 1992.

Guy Pardon. Try-Cancel/Confirm: Transactions for (Web) Services, 2009. http://www.atomikos.
com/Publications/TryCancelConfirm.

Guy Pardon and Gustavo Alonso. CheeTah: a Lightweight Transaction Server for Plug-and-Play
Internet Data Management. In Proceedings of 26th International Conference on Very Large
Data Bases (VLDB 2000), pages 210-219, Cairo, Egypt, September 2000.

Cesare Pautasso. BPEL for REST. In 7th International Conference on Business Process Manage-
ment (BPMO0S), Milan, Italy, September 2008.

Cesare Pautasso. Composing RESTful Services with JOpera. In Proc. of the International
Conference on Software Composition (SC09), pages 142—159, Zurich, Switzerland, July 2009.

Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-Faceted Metric for
Service Design. In Proc. of the 18th International World Wide Web Conference, pages 911-920,
Madrid, Spain, May 2009.

Prabhu Ram, Lyman Do, Pamela Drew, and Tong Zhou. Object Transaction Service: Experiences
and Open Issues. In International Symposium on Distributed Objects and Applications (DOA
1999), pages 296-304, Edinburgh, UK, September 1999.

Amir R. Razavi, Alexandros Marinos, Sotiris Moschoyiannis, and Paul J. Krause. RESTful
Transactions Supported by the Isolation Theorems. In ICWE’09, pages 394-409, 2009.

Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, May 2007.

Florian Rosenberg, Francisco Curbera, Matthew J. Duftler, and Rania Kahalf. Composing RESTful
Services and Collaborative Workflows. IEEE Internet Computing, 12(5):24-31, September-
October 2008.

Stefan Tai, Thomas Mikalsen, Eric Wohlstadter, Nirmit Desai, and Isabelle Rouvellou. Transaction
policies for service-oriented computing. Data Knowl. Eng., 51(1):59-79, 2004.

Steve Vinoski. Serendipitous Reuse. IEEE Internet Computing, 12(1):84-87, 2008.

Hartmut Vogler, Marie-Luise Moschgath, Thomas Kunkelmann, and J. Griinewald. The Transac-
tion Internet Protocol in Practice: Reliability for WWW Applications. IEEE Computer Society,
Internet Workshop’99 (IWS’99), February 1999.

Jim Webber, Savas Parastatidis, and Ian Robinson. REST in practice. O’Reilly, September 2010.

http://www.infoq.com/news/2009/06/rest-ts
http://www.atomikos.com/Publications/TryCancelConfirm
http://www.atomikos.com/Publications/TryCancelConfirm

524 G. Pardon and C. Pautasso

Xiwei Xu, Liming Zhu, Yan Liu, and Mark Staples. Resource-Oriented Architecture for Business
Processes. In Proc of the 15th Asia-Pacific Software Engineering Conference (APSEC2008),
December 2008.

Olaf Zimmermann, Jonas Grundler, Stefan Tai, and Frank Leymann. Architectural Decisions and
Patterns for Transactional Worlflows in SOA. In Proc. of the 5th International Conference on
Service-Oriented Computing, Vienna, Austria, 2007.

	Chapter
23 Towards Distributed Atomic Transactions over RESTful Services
	Introduction
	Example: Booking Two Connecting Flights
	Checking Seat Availability
	Booking a Seat
	Composition of Bookings

	Our Goal: Lightweight Transactions for REST
	About this Chapter

	A Transaction Model for REST
	Why REST Needs Transactions
	Refining our Example: Confirmation of Bookings
	Transactional Booking Workflow
	What if Step 4 Fails?
	Refining even more: Cancellation of Bookings
	Generalisation: Try-Cancel/Confirm

	Technical Requirements for REST Transactions
	Loose Coupling
	No Context Please
	Align with the Business Functionality

	Protocols
	The Happy Path
	Recovery Protocol
	Defining Recovery
	Participant Service Recovery
	Coordinator Recovery

	Discussion
	Atomicity Guaranteed even with Failures
	The Exception that Confirms the Rule: Heuristics
	Perfection does not Exist
	Enter Heuristics
	Our Protocol Compared to Two-Phase Commit
	Advantages of our Protocol Compared to Classical Two-Phase Commit

	Optimisations and Future Work

	Related Work
	RESTful Service Composition
	RESTful Transaction Models
	REST-*
	ATOM Pub/Sub

	Distributed Transaction Technologies
	TIP
	CORBA OTS
	WS-*
	XA Technology
	Try Confirm/Cancel

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

