
Chapter 18
RESTful Service Architectures for Pervasive
Networking Environments

Mauro Caporuscio, Marco Funaro, and Carlo Ghezzi

Abstract Computing facilities are an essential part of the fabric of our society, and
an ever-increasing number of computing devices is deployed within the environment
in which we live. The vision of pervasive computing is becoming real. To exploit
the opportunities offered by pervasiveness, we need to revisit the classic software
development methods to meet new requirements: (1) pervasive applications should
be able to dynamically configure themselves, also benefiting from third-party
functionalities discovered at run time and (2) pervasive applications should be aware
of, and resilient to, environmental changes. In this chapter we focus on the software
architecture, with the goal of facilitating both the development and the run-time
adaptation of pervasive applications. More specifically we investigate the adoption
of the REST architectural style to deal with pervasive environment issues. Indeed,
we believe that, although REST has been introduced by observing and analyzing the
structure of the Internet, its field of applicability is not restricted to it. The chapter
also illustrates a proof-of-concept example, and then discusses the advantages of
choosing REST over other styles in pervasive environments.

Introduction

The Internet evolution is moving fast from “sharing” to “co-creating”. The clear
distinction between content producer and consumer roles, which characterized the
Internet so far, is blurring towards a generic “prosumer” role that acts indistinguish-
ably as both producer and consumer (Papadimitriou 2009). Hence, a “prosumer”
is any active participant in a business, information, or social computing process.
When prosumers are integrated with the computational environment and available
anytime and anywhere, they are generically denoted as “things”. Likewise, the term

M. Caporuscio (�)
Politecnico di Milano, Piazza Leonardo, Da Vinci 32, 20133 Milano, Italy
e-mail: caporuscio@elet.polimi.it

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 18, © Springer Science+Business Media, LLC 2011

401

caporuscio@elet.polimi.it

402 M. Caporuscio et al.

Internet of Things is also often used. Due to the multitude of possible different
“things” available within the environment, applications require knowledge and
cognitive intelligence in order to discover, recognize, and process such a huge
amount of heterogeneous information. “Things” provide services to other “things”.
Furthermore, it is possible to retrieve them, interact with them and change their state,
and compose them to build composite “things”, thus creating an Internet of Services.

The above concepts of prosumer, internet of things and internet of services
underlie the Future Internet vision (Papadimitriou 2009), which in turn rests on the
future communication and computational infrastructure. We will be virtually con-
nected through heterogeneous means, with invisible computing devices pervading
the environments (Saha and Mukherjee 2003). Such environments, referred to as
pervasive networking environments, will be composed as spontaneous aggregation
of heterogeneous and independent devices, which do not rely on predetermined
networking infrastructures.

In pervasive networking environments applications emerge from compositions
of the resources (the “things”) available in the environment at a given time. Indeed,
pervasive applications are characterized by a highly dynamic software architecture
where both the resources that are part of the architecture and their interconnections
may change dynamically, while applications are running. As an example, because of
mobility, new things may become available dynamically, while others may suddenly
disappear.

In order to face the extreme flexibility that characterizes pervasive environments,
applications must support adaptive and evolutionary situation-aware behaviors.
Adaptation refers to the ability to self-react to environmental changes to keep
satisfying the requirements, whereas evolution refers to the ability of satisfying new
or different requirements.

In order to be self-adaptable and easily evolvable, applications should exploit
design models that support loose coupling, flexibility, genericity, and dynamicity.
Different architectural styles and coordination mechanisms have been proposed to
deal with, and reason about, distributed applications. For example, the procedural
style, where stateless components interact via remote procedure call, or the object
oriented style, where stateful components interact via messages. Or the service-
oriented style, where functional or object-oriented components are not directly
bound, but rather the binding may be achieved dynamically after a discovery
procedure.

This chapter exploits the REpresentational State Transfer (REST) style to achieve
adaptation and evolution in the context of pervasive networking environment. REST
has demonstrated to be a well-suited design abstraction to deal with flexibility,
genericity and dynamism (Fielding 2000), which are inherent properties of the
Internet. In fact, since networked software applications are conveniently abstracted
as autonomous loosely-coupled resources, they can be dynamically discovered and
accessed at run time (e.g., by means of search engines), as well as combined on-the-
fly to accomplish complex tasks (e.g., mashups).

The standards available for the WEB support quite effective technologies target-
ing the Internet domain. However, supporting WEB resource access in pervasive

18 RESTful Service Architectures for Pervasive Networking Environments 403

networking environments is still challenging. In fact, actual WEB standards es-
sentially rely on stability assumptions associated with distributed systems and do
not take into account the issues introduced by mobility (Roman et al. 2000) and,
more generally, situational change, which instead permeates pervasive applications.
In this case, the network structure is no longer stable and resources may come
and go (physical mobility), as well as resources may move among devices (logical
mobility). To comply with these constraints this chapter promotes the adoption of
the REST architectural style as a design model.

The remainder of the chapter is organized as follows. “Background” describes
background information on design models and software adaptation. “Why REST?”
discusses why we should adopt a REST approach to address software adaptation
and evolution in pervasive environments. “REST for Pervasive Systems” introduces
P-REST, a meta-model for pervasive REST-oriented applications. “P-RESTful Self-
adaptive Systems” illustrates how to design an adaptive and evolvable system
according to P-REST. “P-REST at Work: The EXPO2015 Scenario” validates
the proposed approach through a case study. “Conclusion and Final Remarks”
concludes the paper and delineates future work.

Background

Research has been focusing for more than a decade on adaptive and distributed
systems. Such systems have been investigated from many points of view and at
different levels of abstraction. Particular attention has been devoted to architectural
aspects, i.e., how to architect distributed systems to make them amenable to
changes (Cheng et al. 2009). In this area, research has been mainly following
two trends. On the one hand, it focused on the properties to be met by software
architectures to enable applications to adapt to run-time changes. On the other,
research focused on high-level models of architecture that can be kept alive at run
time to support adaptation.

Since our work builds on top of both the research lines, in this section we will
give a brief review of the main architectural styles emerged during the past decade
and then we will go through the work on run-time models.

Architectural Styles

Many different architectural styles1 have been proposed to deal with, and reason
about, distributed systems. They can be classified according to several dimensions:
(1) the type of coupling imposed by the model on entities; (2) the degree of
flexibility, that is the ability of the specific model to deal with the run-time growth

1We also use the terms architectural model and design model interchangeably throughout the paper.

404 M. Caporuscio et al.

Table 18.1 Distributed design models dimensions

Coupling Flexibility Genericity Dynamism

RPC Tight � � �

OO Tight � � �2

SOA Loose � � �2

REST Loose � � �2

of the application in terms of involved components; (3) the degree of genericity, that
is the ability to accommodate heterogeneous and unforeseen functionalities into the
running application; (4) the kind of dynamism, that is the possibility to rearrange
the application in terms of binding, as well as adding new functionality discovered
at run time.

Table 18.1 classifies the main architectural models in terms of their characteris-
tics with respect to the pervasive networking issues.

The oldest design model for distributed architectures is based on functional
distributed components that are accessed in a synchronous way through Remote
Procedure Call (RPC). This supports a client–server style, where: (1) client and
server are tightly coupled, (2) adding/removing functions strongly affects the
behavior of the overall network-based system, (3) function signatures are strict, and
(4) binding between entities is generally statically defined and cannot vary (new
functions cannot be discovered at run time).

Object Oriented architectures support distributed objects, and provide higher-
level abstractions by grouping functions (methods) that manipulate the same object
and encapsulating (and hiding) state information. The type of interaction among
objects, however, is synchronous, as for the previous case. In summary: (1) interact-
ing objects are still tightly-coupled in a client–server fashion, (2) adding/removing
entities as the system is running is hard to support, (3) interfaces are specified via
strict method signatures, and (4) once a reference to a remote object is set, normally
it does not change at run time, and there is no predefined way of making objects
discoverable (i.e., supporting this feature requires for additional ad-hoc effort).

Service Oriented Architecture (SOA) is a further step from the previous two cases
because networked entities are abstracted as autonomous software services that can
be accessed without knowledge of their underlying technologies. In addition, SOA
opens the way to dynamic binding through dynamic discovery. In summary: (1)
services are independent and loosely-coupled entities, (2) services can be easily
added/removed and accessed, irrespective of their base technology, (3) service
access is regulated by means of well-defined interfaces, and (4) binding between
services can in principle be dynamically established at run time (although in existing
SOA application this is not common practice), and new entities may be discovered
and bound dynamically.

2This feature is conceptually feasible, although several existing instantiations of the architectural
style do not support it.

18 RESTful Service Architectures for Pervasive Networking Environments 405

1

0..*

0..* 1

1..*

1

1

11 1

1

Decision Maker Actuator

Manipulates
1

1..*

1..*
1

1

1

1

1

1

1

1

1

1

Requirement

Relies on Monitor

Environment
Run-Time Model

Relies on

Updates

Sensor Contains

Senses

Updates

Queries

Environment

Contains

Manipulates

Application

External Service/
Component

Current
Application

Architecture
Run-time Model

Queries

Interprets

Fig. 18.1 Conceptual model for self-adaptive systems

REpresentational State Transfer (REST) differs from all the previous models in
the way distributed entities are accessed and in the way their semantics is captured.
REST entities are abstracted as autonomous and univocally addressable resources,
which have a uniform interface consisting of few well-defined operations. In all
previous cases, entities have different and rich interfaces, through which designers
capture the semantic differences of the various entities. In REST, all entities have
the same interface. Semantic information is attached separately to the identification
mechanism that allows entities to be accessed. In addition, interaction with REST
entities is stateless. In summary: (1) resources are independent and loosely-coupled
entities, (2) resources can be easily added, removed and accessed, irrespective of
their underlying technology, (3) resource access is regulated by means of a uniform
interface, and (4) binding between resources is dynamically established at run time
even though, in general, there is no standard way to discover and access them.
However, this might be achieved by means of additional support.

Model-centric Software Adaptation

As we mentioned earlier, once an architecture is built, following some specific style,
it is useful to keep a model of the architecture alive at run time to support dynamic
adaptation. This section briefly elaborates on this important concept. The pivotal
role played by architectural run-time models was initially recognized by Oreizy
et al. (1998). In our previous work we explored this idea in two different directions
in Epifani et al. (2009) and Caporuscio et al. (2010). The former paper discusses how
the model can be updated as a consequence of changes observed in the environment
and how this change may drive self-adaptations. The focus is on changes of the non-
functional requirements of the application (performance and reliability). The latter
introduces and motivates a conceptual-model (shown in Fig. 18.1) that identifies the
building blocks of self-adaptive systems dealing with both adaptation and evolution.
In this approach, the model kept alive at run time is composed of two sub-models,
which describe the application and the environment, respectively – i.e., Architecture
Run-time Model and the Environment Run-time Model.

In case of evolution, Requirements change and the Decision Maker (which in this
case most likely requires human intervention) leverages the Architecture Run-time

406 M. Caporuscio et al.

Model to reason about the current state of the application and to devise a new
abstract architecture that meets the new Requirements. The Actuator is in charge of
translating the solution into an architecture and keeping the Architecture Run-time
Model synchronized with the new Architecture. Adopting a suitable architectural
style for describing the Architecture Run-time Model eases the decision maker’s
reasoning process (i.e., rules and constraints are well-known and predefined) and
provides the actuator with a clear set of actions (i.e., actions are narrowed by the
style’s constraints) that can be performed. This also guarantees that newly devised
solutions are compliant with the change by construction.

As for adaptation, an application must be aware of the environment it is working
in. This is modeled by the Environment entity, which contains the applications
running in an environment. An Application is described as an aggregation of
the description of its architecture and of the external services or components it
interacts with. The conceptual model includes the Sensors that abstract the physical
context. The Decision Maker accesses the Environment Run-time Model and the
Architecture Run-time Model to decide about the possible adaptive changes that
need to be made to the architecture in response to changes in the environment. As
opposed to evolution, adaptation is mostly achieved in a self-managed manner by
the Actuator.

Why REST?

The exploitation of the REST architectural style in the context of pervasive
systems is still challenging, and literature so far has been focusing mainly on
interaction protocols. For example, Romero et al. (2010) exploit REST to enable
interoperability among mobile devices within a pervasive environment.

On the other hand, we are interested on investigating the issues related with
the design and development of RESTful applications able to evolve and adapt at
run time. To this extent, this section discusses how the design of self-adaptive
applications benefits from the REST principles.

The original REST architectural style (Fielding 2000) defines two main archi-
tectural entities (see Fig. 18.2): the User Agent that initiates a request and becomes
the ultimate recipient of the response, and the Origin Server that holds the data of
interest and responds to user agent requests. REST defines also two optional entities,
namely Proxy and Gateway, which provide interface encapsulation, client-side and
server-side respectively. The data of interest, held by origin servers, are referred to
as Resources and denote any information that can be named. That is, any resource
is bound to a unique Uniform Resource Identifier (URI) that identifies the particular
resource involved in an interaction between entities. Referring to Fig. 18.2, when
User Agent issues a request for the resource identified as Rb to Origin Server2,
it obtains as a result a Representation of the resource (i.e., �b). Specifically, a
Representation is not the resource itself, but captures the current state of the resource
in a format matching a standard data type.

18 RESTful Service Architectures for Pervasive Networking Environments 407

Fig. 18.2 REST architectural style

The concept of a Resource plays a pivotal role in the REST architectural style.
In fact, it can be seen as a model of any object in the world (i.e., “things”) with a
clear semantics that cannot change over its lifetime. An application built according
to the REST style is typically made of a set of interacting resources. An application
built according to the REST architectural style is said to be “RESTful” if it does
respect the four basic principles introduced by Fielding (2000) and then elaborated
by Richardson and Ruby (2007): Addressability, Statelessness, Connectedness,
Uniformity. These principles, along with the design model they induce on the
application, seem to naturally apply to pervasive environments.

Addressability requires resources to have at least one URI. This RESTful
applications to be found and consumed, as well as their constituent resources to be
accessed and manipulated. The possibility to retrieve and use constituent resources
enables prosumers to opportunistically reuse parts of a RESTful application in ways
the original designer has not foreseen (Edwards et al. 2009).

The statelessness principle makes REST very appealing to pervasive systems. It
establishes that the state of the interaction between a user and a RESTful application
must always reside on the user side.

Since the state of the interaction is kept by the user, computations can be
suspended and resumed (without losing data) at any point between the successful
completion of an operation and the beginning of the next one. Indeed, using two
different but equivalent resources,3 will produce the same results. This is important
in a pervasive environment since a computation, hindered by the departure of a
resource, can, in principle, be resumed whenever an equivalent resource is available.
Other advantages – for non-ephemeral resources – are contents “cacheability” and
the possibility of load balancing through resource cloning. Hence, statelessness
enhances (1) decoupling of interacting resources, (2) flexibility of the model, since
it allows for easily rearranging the application at run time and, (3) scalability, by
exploiting resource caching and replication. The price to pay derives from the need
for an increased network capacity because the whole state of the interaction must be
transferred at each request.

3We define two resources as equivalent iff they have the same behavior and adopt the same
encoding for their representations.

408 M. Caporuscio et al.

The connectedness principle, which refers to the possibility of linking resources
to one another, is the backbone of RESTful applications. It was initially introduced
by Fielding in his thesis (Fielding 2000) as the “Hypermedia As The Engine Of
Application State” (HATEOAS) principle. It allows for establishing dynamic and
lightweight workflows such that: (1) clients are not forced to follow the whole
workflow – i.e., they can stop at any time – and, (2) workflows can be entered at
any time by any client provided with the proper link.

Furthermore, the state can be passed to a resource by means of the URI where
it can be retrieved. In this way such a state is retrieved only if (when) needed,
according to a lazy evaluation scheme.

Uniformity means that every resource must understand the core operations and
must comply with their definition.

Thus, there will be no interface problems among resources. Since operations
have always the same name and semantics, the genericity of the model is improved.
Clearly the problem is not completely solved because data semantics and encoding
must still be negotiated. It could be argued that reliance on data encoding and
semantics increases the coupling between resources. However, REST eliminates the
need for negotiating also the name and semantics of operations, as it happens for
instance in SOA (Vinoski 2008).

Different from SOA, where service semantics is defined by means of the
operations it exposes, the semantics of a resource is identified by its name. Indeed,
the URI defines which semantic entity the resource models. However, as we will
discuss later, this is good practice intended to ease comprehension for human beings,
and cannot be applied to generic RESTful applications.

REST for Pervasive Systems

REST technologies rely on (1) the stability of the underlying communication envi-
ronment and (2) tightly-coupled synchronous interaction protocols only. Pervasive
environments, instead, require to (1) cope with an ever-changing communication
infrastructure because devices join and leave the environment dynamically (Roman
et al. 2000) and (2) to support loosely-coupled asynchronous coordination mecha-
nisms (Huang and Garcia-Molina 2001).

This section investigates how the REST architectural style should be modified to
cope with pervasive environments, and introduces the Pervasive-REST (P-REST)
design model. Indeed, to make REST pervasive we need to adapt the different
levels of abstraction, namely the architecture, the coordination model, and the
infrastructure.

As we observed, in pervasive environments and, more generally, in systems
envisioned for the Future Internet the role of “prosumer” will be central. Further-
more, such a prosumer role might be played by any “thing” within the environment.
Hence, we foresee the necessity of departing from usual REST description of the
world, made in terms of user agents that consume resources from origin servers

18 RESTful Service Architectures for Pervasive Networking Environments 409

Fig. 18.3 P-REST architectural style

(see “Why REST?”). Rather, the P-REST architectural style promotes the use
of Resource as first-class object that fulfills all roles. This means that, at the
architectural level, we remove the distinction among actors, and thus we model
entities in the environment as resources, which can act both as clients and servers.

To support coordination among resources, we extend the traditional request/re-
sponse REST mechanism through primitives that must be supported by an un-
derlying middleware layer. First, we assume that a Lookup service is provided,
which enables the discovery of new resources at run time. This is needed because
resources may join and leave the system dynamically. Once the resource is found,
REST operations may be used to interact with it in a point-to-point fashion.
The Lookup service can be implemented in several ways [e.g., using semantic
information (Mokhtar et al. 2006), leveraging standard protocols (Romero et al.
2010)]. However, we do not rely on any specific implementation since we are
focusing on the study of the design model.

The Lookup service yields the URI of the retrieved resource. Since resource
locations may change as a result of both logical mobility (e.g., the migration of a
resource from a device to another) and physical mobility (e.g., resources temporarily
or permanently exiting the environment), a service is needed to maintain the maps
between resource URIs and their actual location. Such service plays the role of a
distributed Domain Name System (DNS) (Network Working Group 2003).

In addition, we adopt a coordination style based on the Observer pattern, as
advocated in the Asynchronous-REST (A-REST) proposal described by Khare
and Taylor (2004). This allows a resource to express its interest in state changes
occurring in another resource by issuing an Observe operation. The observed re-
source can then Notify the observers when a change occurs. In this case, coordination
is achieved via messages exchanged among resources.

Figure 18.3 summarizes the modification we made to the REST style. Resources
directly interact with each other to exchange their representations (denoted by � in

410 M. Caporuscio et al.

Fig. 18.4 P-REST meta-model

the figure). Referring to Fig. 18.3, both Resource1 and Resource2 observe Resource3

(messages a�). When a change occurs in Resource3, it notifies (message b�) the
observer resources. Once received such a notification, Resource1 issues a request
for the Resource3 and obtains as a result the representation �3 (message c�). Note
that, while observe/notify interactions take place through the point-to-multipoint
connector (represented as a cube), REST operations exploit point-to-point connector
(represented as a cylinder). All the resources exploit both the Lookup operation to
discover the needed resources, and the DNS service to translate URIs into physical
addresses.

P-REST Meta-model

Along with the P-REST architectural style introduced above, we also define a
P-REST meta-model (depicted in Fig. 18.4) describing the pervasive environment,
the resources within the environment, and the relations among resources that define
a pervasive application.

The Environment entity defines the whole distributed and pervasive environ-
ment as a resource container, which provides infrastructural facilities. In particular,
it provides three operations that can be invoked by a resource: (1) OBSERVE,
which declares its interest in the changes occurring in a resource identified by a
given URI, (2) NOTIFY, which allows the observed resource to notify observers

18 RESTful Service Architectures for Pervasive Networking Environments 411

about the occurred changes, and (3) LOOKUP, which implements the distributed
lookup service. These operations are the straightforward implementations of both
the A-REST principle and of the lookup service, respectively.

Since Resource is a unifying first-class object, the P-REST meta-model
describes every software artifact within the environment as a Resource. According
to the Uniformity principle (see “Why REST?”), each resource implements a set
of well-defined operations, namely PUT, DELETE, POST, GET, and INSPECT.
The PUT operation updates the resource’s internal state according to the new
representation passed as parameter. The DELETE operation results in the deletion of
the resource. The POST operation may be seen as a remote invocation of a function,
which takes the representation enclosed in the request as input. The actual action
performed by POST is determined by the resource providing it and depends on both
the input representation and the resource’s internal state. The semantics of the POST
operation is different for different resources. This differs from the other operations
whose semantics is always the same for every resource. Even if the semantics of
POST is not defined by the architectural style, it is still constrained. Indeed, it
can have only one semantics per-resource, and thus, overloading is not allowed.
The GET implements a read-only operation that returns a representation of the
resource. The INSPECT operation allows for retrieving meta-information about the
resource.

REST operations can be safe and/or idempotent. An operation is considered safe
if it does not generate side-effects on the internal state, whereas it is idempotent
if the side-effects of N > 0 identical requests is the same as for a single request.
GET and INSPECT operations are both idempotent and safe, PUT and DELETE
operations are not safe but they are idempotent, whereas for the POST operation
nothing is guaranteed for its behavior.

The REST architectural style does not provide any means to describe the
semantics of resources, which is rather embedded in the URIs of resources or
delegated to natural language descriptions. Instead, P-REST assumes that every
resource is provided with meta-information concerning both its static and dynamic
properties. As an example, for a resource representing a theater, the semantic
description includes the total number of seats (a static property) as well as the
number of free seats (a dynamic property). Indeed, P-REST promotes resource’s
semantics as first-class concern by explicitly introducing the Description entity.
Specifically, Description describes both functional and non-functional properties of
a resource, possibly relying on a common ontology that captures the knowledge
shared by the entire pervasive environment (Berners-Lee et al. 2001). Description
can also define which operations, among the available ones, are allowed or not –
e.g., DELETE could be forbidden on a specific resource. Moreover, Description
entities are also used to achieve dynamism (see Table 18.1). In fact, Descriptions
support the implementation of the lookup service by exploiting efficient algorithms
for distributed semantic discovery (e.g., Mokhtar et al. 2006), thus enabling de facto
run-time resource discovery. As introduced above, Descriptions are retrieved via
the INSPECT operation. Referring to the HTTP uniform interface that underlies

412 M. Caporuscio et al.

REST, INSPECT operation encapsulates both HEAD and OPTION operations and
goes further by providing also the functional and non-functional specification of the
target resource.

At run time, resources have their own internal state, which should be kept
private and not directly accessible by other resources. The Representation
entity overcomes such an issue by exposing a specific rendering of its internal
state rather then the state itself. Hence, a Representation is a complete snapshot
of the internal state, which is made available for third-party use. Every resource
is associated with at least one representation, and multiple representations might
be available for a given resource. This is particularly useful when dealing with
heterogeneous environments in which several different data encodings are needed.
A resource’s representation can be retrieved by means of the GET operation, which
can also implement a negotiation algorithm to understand which is the most suitable
representation to return.

As introduced in “Why REST?”, addressability states that every resource must
be identified by means of an URI. Hence, in P-REST, every Resource is bound to
at least one Concrete URI (CURI), and multiple CURI can refer to the same
resource. Resources without any CURI are forbidden, as well as CURIs referencing
multiple resources. However, P-REST enhances the concept of URI by introducing
the Abstract URI (AURI) entity. Specifically, an AURI is a URI that identifies a
group of resources. Such groups are formed by imposing constraints on resource
descriptions (e.g., all the resources implementing the same functionality). The
scheme used to build AURIs is completely compatible with the one used for CURI,
thus they can be used interchangeably. Moreover AURIs are typically created at run
time by exploiting the LOOKUP operation to find resources that must be grouped.
This addition to the standard concept of URI is meant to support a wider range
of communication paradigm. Indeed, using CURI allows for establishing point-to-
point communication while using AURI allows for multicast communication. The
latter can be useful, for instance, to retrieve the values of an entire class of sensors
(e.g., humidity sensors scattered in a vineyard).

Resources can be used as building-blocks for composing complex functionalities.
A Composition is still a resource that can, in turn, be used as a building-block
by another composition. REST naturally allows for two types of compositions:
mashup and work-flow. A mashup is a resource implemented by exploiting the
functionalities provided by third-party resources. In this case, an interested client
always interacts with the mashup, which in turn decomposes client’s requests
into sub-requests and routes them to the remote resources. Responses are then
aggregated within the mashup and the result is finally returned to the client. On
the other hand, a composition built as work-flow directly leverages the HATEOAS
principle. In this case, an interested client starts interacting with the main resource
and then proceeds by interacting with the resources that are discovered/created step-
by-step as result of each single interaction.

Resources involved in a composition are handled by a Composition Logic,
which is in charge of gathering resources together and, if they were not designed
to interact with each other, of satisfying possible incompatibilities (e.g., handling

18 RESTful Service Architectures for Pervasive Networking Environments 413

the encoding mismatches between representations provided and expected by com-
ponent resources).The composition logic is executed by a composition engine,
which implements the classic architectural adaptation policies, namely component
addition, removal, substitution, and rewiring (we will discuss later how such
operations work). In the case of mashups, the composition logic describes how
the mashup’s operation are implemented; that is, how they are wired to component
resources’ operations. Indeed, the composition logic is the direct consequence of
the exploitation of REST principles: (1) the composition is defined in terms of
explicit relations between resources (i.e., connectedness), (2) resources involved
in the composition are explicitly identified by means of resource identifiers (i.e.,
addressability) and, (3) operations on resources are expressed in terms of their
interface (i.e., uniformity).

According to REST terminology, an application built following the P-REST
design model is said to be P-RESTful.

P-REST Run-time Support

Traditional distributed systems differ from pervasive systems in terms of the
assumptions on the underlying networking infrastructure. In particular, in pervasive
systems (1) the network stability assumption is no longer guaranteed (i.e., network
topology and routing strategies change over time) and (2) devices hosting resources
are mobile and may have scarce processing power. Indeed, computing devices can
come and go and, as a result, the network topology can change in response to either a
node’s arrival/departure or performance needs. Due to this new networking scenario,
in order to make P-RESTful applications effective, we need to abandon the usual
networking infrastructure exploited by REST. To cope with these issues, and to
offer programming abstractions suitable for the rapid and efficient development of
P-RESTful applications, we introduce the PRIME (P-Rest run-tIME) middleware.

Referring to Fig. 18.5, the PRIME middleware presents a layered software
architecture where each layer, spanning from transport to programming abstraction,
deals with specific concerns.

Transport layer: The pervasive environment, and its inherent instability calls for the
adoption of a communication system resilient to structural changes (e.g, node arrival
and departure). To this extent, PRIME arranges the nodes (i.e., devices) involved in
the pervasive environment in a cooperative overlay network built on top of low-
level wireless communication technologies (e.g., Bluetooth, Wi-Fi, Wi-Fi Direct,
and UMTS). That is, each device makes use of the overlay network and, at the same
time, cooperates in it by actively participating to the distributed packet routing. The
transport layer is network-agnostic and does note rely on any specific technology.
Indeed, it can be used on top of any IP-based network.

Coordination layer: Relying on the transport layer, PRIME provides two
basic coordination mechanisms, namely point-to-point and point-to-multipoint.

414 M. Caporuscio et al.

…

Abstraction

Operation

Coordination

Transport

Container

Move / Create

Point-to-Point

Access

Resource

Observe Lookup

Point-to-Multipoint

Overlay Network

Ethernet Wi-Fi UMTS Bluetooth

N
am

in
g

S
ystem

Application (Composition Logic)

Fig. 18.5 Layered representation of PRIME

Point-to-point communication grants a given node direct access to a remote node,
whereas point-to-multipoint communication allows a given node to interact with
many different nodes at the same time.

Operation layer: The operation layer specifically deals with the concepts defined
by the P-REST meta-model. In particular, it is in charge of providing the set of
actions that can be performed on resources. Access gathers the set of operations
needed to access and manipulate a resource – i.e., the set of standard REST opera-
tions provided by resources in Fig. 18.4. Access operations exploit the coordination
layer to achieve point-to-point request-response interactions. OBSERVE allows
resources to declare interest in a given resource, while NOTIFY benefits from point-
to-multipoint communication and allows observed resources to advertise all the
observers about occurred changes. LOOKUP allows for searching for new resources
based on the description fed to it. The operation layer provides also CREATE
and MOVE operations. While CREATE provides the mechanism for creating a new
resource at a given location, MOVE provides the mechanism to migrate an existing
resource between locations. Resource migration is useful when dealing with load
balancing –by relocating the resource to an outperforming host–, device mobility –
by relocating the resource to a more stable host4–, or energy management –by
relocating a resource from a host with low battery to a lost with full battery. All
the operations make use of a DNS whose task is keeping URIs consistent despite
resources mobility. To this extent, the naming system shall be able to resolve URIs
into physical addresses without letting resource mobility hinder such mechanism.

Abstraction layer: On top of the operation layer, PRIME provides the set of facil-
ities and programming abstractions needed to implement P-RESTful applications.
In REST, resources are held by Web servers, which handle both their life-cycle
and provision. PRIME offers the same abstraction by means of containers. That is,

4Clearly, this scenario requires for additional mechanisms able to foresee whether the device leaves
the environment.

18 RESTful Service Architectures for Pervasive Networking Environments 415

each device within the pervasive environment hosts one container that, just like a
Web server, handles both the life-cycle and the provision of its resources. However,
unlikely Web servers, containers provide the primitives for both creating resources
and migrating resources among containers (i.e., MOVE, CREATE). Their behavior,
however, can be customized in order to achieve specific behaviors. For example, the
CREATE operation can be made aware about the current load of the local container
and actually allocate a resource in another similar container. As a final remark, the
physical address provided by the DNS for a specific URI actually is the container’s
one. Indeed, a container receives all its contained resources’ requests and dispatches
them to the right resource based on the CURI.

Using the programming abstractions provided by the Abstraction layer, a
P-RESTful application is then built as a resource that relies on other resources to
meet its requirements. Specifically, the interactions between resources is specified
by means of a composition language, which allows for composing and managing
sets of resources. PRIME offers primitives to modify the composition logic at run
tim, thus enabling architectural reconfiguration (i.e., ADD, REMOVE, SUBSTITUTE
and REWIRE). We will account for these operations in “P-RESTful Self-adaptive
Systems.”

The PRIME APIs exploit a functional programming paradigm, which naturally
achieves resource composition as the sequential application of functions. Functions
are bound each other by accepting and producing immutable data structures.
Immutable data structures map to resources representation, and functions are
the operations exposed by resources. Through a functional language, resource
compositions amounts to wiring the output of a function (i.e., operation) to the input
(i.e., resource representation) of the next function. Such a functional composition
can also be applied to functions that are, in turn, implemented as compositions.
Thus the handling of arbitrarily complex compositions is easy and intuitive.

It is worth to note that, the abstractions provided by PRIME recall the ones
introduced by CREST (Erenkrantz et al. 2007). The difference between the two
approaches lies in the fact that PRIME provides such operations as infrastructural
facilities, whereas in CREST resource mobility is promoted to a design principle.
For such a reason we keep containers and their operations outside the P-REST meta-
model. Indeed, a designer who wants to instantiate the P-REST meta-model should
not be concerned with problems related to the deployment and distribution of the
application.

P-RESTful Self-adaptive Systems

We argue that self-adaptive applications for pervasive systems may benefit from the
adoption of the P-REST design model. To prove this, we show how the conceptual
model for self-adaptive systems (Background) can be implemented by means of the
P-REST meta-model (REST for Pervasive Systems), and show how the mechanisms
provided by PRIME make P-RESTful application effective.

416 M. Caporuscio et al.

Both the conceptual model (Fig. 18.2) and the P-REST meta-model (Fig. 18.4)
contain an environment entity. While in the conceptual model the environment is
populated by generic software artifacts, in P-REST all the entities contained in the
environment are modeled as a resource.

As shown in Fig. 18.2, the conceptual model revolves around the architecture
run-time model and the environment run-time model. In P-REST, the architecture
of the application is rendered by means of the set of resources it is composed of
and the composition logic that orchestrates them. The type of composition used
(i.e., workflow or mashup) depends on the specific functional requirements of the
application. The environment run-time model is a composition of resources defined
as a mashup. The corresponding composition logic is in charge of realizing the
mashup by querying component resources and aggregating the results of such
queries. Thus, this composition logic plays the role of the monitor.

Here we are not concerned with investigating how a decision maker might exploit
the run-time models to adapt/evolve the system. Rather we want to show which
mechanisms, enabled by P-REST, can be leveraged by the actuator to modify the
running system according to decision maker’s instructions. As reported by Oreizy
et al. (1998), an actuator operating at the software architecture level should support
two types of change: one affecting the components, namely addition, removal and
substitution, and one affecting the connectors, namely rewiring.

The problem of dynamically deploying and/or removing a component from
an assembly has been repeatedly tackled in literature (Kramer and Magee 1990;
Vandewoude et al. 2007). Such solutions are often computationally heavy and
require expensive coordination mechanisms. Moreover, preserving the whole dis-
tributed state is often very difficult since the internal state of a component is not
always directly accessible. To make the problem easier, several architectural styles
have been introduced. According to P-REST, adding a new resource is trivial and
requires two simple steps: (1) deploy the new resource within the environment, and
(2) make it visible by disseminating its URI. Once these steps are performed, the
resource is immediately able to receive and process incoming requests.

On the other hand, removing a component can in general cause the loss of some
part of the distributed state. P-REST, instead, works around this problem because
of the stateless nature of the interactions. That is, the removed resource carries
away only its internal state, thus the ongoing computations it is involved in are
not jeopardized.

Substituting a component with another one cannot be simply accomplished by
composing removal and addition operations. Specifically, the issue here concerns
how to properly initialize the substituting component with the internal state of the
substituted one. Indeed, due to information hiding it is not always possible (and
not even advisable) to directly access the internal state of a component. Clearly the
component can always expose part of its internal state but there is no guarantee about
the completeness of the information provided. On the contrary, P-REST imposes
that a resource’s representation is a possible rendering of its internal state, which
is always retrievable by exploiting the GET operation, eventhough the resource is

18 RESTful Service Architectures for Pervasive Networking Environments 417

embedded within a composition. Thus, leveraging the interaction’s statelessness and
the properties of a resource’s representation, a P-REST resource can be substituted
almost seamlessly.

As pointed out by the P-REST meta-model (see Fig. 18.2), every composition
holds a composition logic describing it. Architectural run-time adaptation can be
achieved by modifying the composition logic. Hence, the Composition Logic, which
undertakes the run-time change, offers a specific substitute operation that is
aware of the composing resources and of the status of requests in the composition.
In particular, the semantics of the substitute operation is provided by means of
its pseudo-code, where we leverage the PRIME container abstraction:

1 void s u b s t i t u t e (cURI o l d r , cURI newr) f
2 C o n t a i n e r c = DNS . r e s o l v e (o l d r)
3 c . b u f f e r R e q u e s t s (o l d r) ;
4 c . w a i t F o r F i n i s h (o l d r) ;
5 R e p r e s e n t a t i o n temp = send (GET, o l d r) ;
6 send (PUT (temp) , newr) ;
7 t h i s . components . s u b s t i t u t e (o l d r , newr) ;
8 L i s t <Messages > r e q s = c . ge t Pend i ngReqs (o l d r) ;
9 for (Message m: r e q s)

10 send (m, newr) ;
11 g

The first step of the operation retrieves the reference to the container of the
old resource (i.e., the resource to be substituted). As we have already highlighted,
the physical address of a container coincides with the physical address of all the
resources contained in it. Thus, the resolve operation provided by the DNS can be
exploited to retrieve, given a CURI, the physical address of the container managing
the resource identified by CURI. Once retrieved, such a reference is used to access
the operations offered by the container for monitoring and regulating the activities of
the contained resources (i.e., their life-cycle). Line 3 instructs the container holding
the old resource to buffer all the incoming requests directed to oldr while the
substitution is taking place. As a next step, the substitute operation executes
a blocking operation to wait for oldr to finish processing all the requests that
are still ongoing (line 4). Now the internal state of oldr can be retrieved safely
through its uniform interface (line 5) and used to initialize the new resource (newr)
using a PUT operation (line 6). As stated above, a composition logic knows all its
composing resources (through their CURIs), and we are assuming their CURIs to be
stored in an instance of a data type called components. The instruction on line
7 substitutes the old CURI with the new one, so that the latter will always be used
from now on instead of the former. Lines 8–10 retrieve the buffer of blocked requests
addressed to oldr, and let newr consume them. It is important to remark that since
the state of the new resource is overwritten by the substitute routine, it is good
practice to create the new resource from scratch in order to avoid unpredictable
side-effects. Indeed, if the newly inserted resource is used concurrently by other

418 M. Caporuscio et al.

compositions, overwriting its state can be harmful. The complementary argument
applies to the substituted resource. It is not deleted because it might be concurrently
used by other compositions.

As for rewiring components, due to the stateless nature of the interactions,
changing the URIs within the Composition Logic is sufficient for accomplishing
the task. Referring to the meta-model in Fig. 18.2, the signature of the rewire
operation is:

REWIRE (cURI res, cURI old , cURI new)

Its semantics is such that all the occurrences of the old CURI in the resource res
will be substituted with the new CURI. In a mashup composition res is always the
mashup itself because it is the only resource actually managed by the composition
logic. In a workflow composition, it is important to specify res because it is
possible that the scope of the rewiring is not extended to the whole composition, but
it must be applied only to a specific point in the workflow. Unlike the substitute
operation the state of the old resource is not transferred to the new one.

P-REST at Work: The EXPO2015 Scenario

In this section we describe a small case study, which is inspired by the 2015 Milan
Universal Exposition (EXPO2015). We envision a city-wide pervasive environment
where people, equipped with mobile devices embedding networking facilities (e.g.,
PDAs, smart-phones), are interconnected with each other to share information and
functionalities. Any attendee may be a prosumer, acting as either participant or
organizer of unexpected events.

Specifically, suppose that Carl wants to organize and promote his own BarCamp.
A BarCamp5 is an ad-hoc and spontaneous event with discussions and demos where
participants, who are the main actors of the event, interact with each other sharing
knowledge about a specific topic. To bootstrap his BarCamp, Carl has to (1) choose
the topic and advertise the event in order to gather potential participants, (2) find and
reserve a free pavilion, and (3) deploy the needed software infrastructure to handle
participants’ registrations.

Hereafter we address the functional design of the BarCamp application, starting
from the identification of the involved resources and their relationships. Figure 18.6
sketches a simplified design of the application where some details are omitted for
simplicity. We represent the Environment as an enclosing container for the resources
instead of representing it as an explicit box and, as a consequence, drawing a
containment relation from every other entities towards it. Also, representations and
descriptions do not appear in the diagram since they are not relevant to our purpose.

5http://www.barcamp.org/.

http://www.barcamp.org/.

18 RESTful Service Architectures for Pervasive Networking Environments 419

has

Environment

Application Run-Time Model

cURI
eURI

+URI

Comp Logic

BarCamp Logic

send(GET rfURI)
send(GET, eURI) ≈GET :=

PUT := send(PUT, rep, rfURI)
DELETE := send(DELETE, eURI);
send (DELETE,rfURI)
POST := send(POST,rep,rfURI)
INSPECT := send(INSPECT, eURI) ≈
send(INSPECT, rfURI)

Res
Event

+Type
+Topic
+GET()
+PUT()
+DELETE()
+INSPECT()

has

Comp
BarCamp

+Type
+Topic

+GET()
+PUT()
+DELETE()
+INSPECT()
+POST()

has

Res
RegFac

+Registrations[]

+GET()
+PUT()
+DELETE()
+INSPECT()
+POST()

has
rfURI

cURI

+URI

Comp
Context

+Seat #
+Reservation #

+GET()

Environment Run-Time model

Res
Pavilion

+MaxSeat #
+Schedule
+GET()
+DELETE()
+INSPECT()
+POST()

has

cURI
pURI

+URI

Comp Logic

Context Logic

GET := send(GET,
pURI) ≈
send(GET rfURI)

Monitor

Fig. 18.6 Resource diagram of the BarCamp application

The cornerstone element of the BarCamp application described in Fig. 18.6 is the
BarCamp resource, which is designed as a composition of (1) Event, which carries
information about the event and (2) RegFac, which gathers attendee registrations to
the event.6 The associated composition logic, namely BarCamp Logic, defines the
behavior of the operations exposed by the composite resource. The GET operation
is computed by retrieving the current representation from both Event and RegFac
and joining them (join operations are denoted by the ˚ symbol). The actual result
will be returned as a representation containing information about the event along
with the registrations gathered so far. The PUT operation is directly mapped to the
PUT operation provided by RegFac. The DELETE operation deletes the composite
resource by invoking DELETE on Event and then on RegFac. The POST operation
directly maps to the POST operation provided by RegFac. In this case, the specific
semantics of POST is to create a new registration in the RegFac. The INSPECT
operation is computed by inspecting both Event and RegFac and joining the results.
The Context resource carries environmental data. It exposes only the GET operation
that is computed by the ContextLogic by joining the number of available seats in
the Pavilion and the number of registrations submitted to RegFac.

The application design, shown in Fig. 18.6, is a static description of the applica-
tion and does not take into account deployment concerns, which in turn should be
specified by means of different notation [e.g., UML Deployment Diagrams (Object
Management Group 2010)]. Hence, we assume that resources created by Carl,
namely BarCamp, BarCamp Logic, Event, Context and Context Logic will be
deployed on his PDA. On the other hand, Pavilion and RegFac resources are hosted
by the corresponding pavilion’s infrastructural server.

According to “Background”, in order to address self-adaptation the application
should implement the concepts defined by the conceptual model in Fig. 18.1. The

6We assume that the software implementing the registration facility is provided by the Exposition
Center’s infrastructure as a downloadable package to foster the organization of spontaneous events.

420 M. Caporuscio et al.

application is implemented by BarCamp and its constituent resources (i.e., Event,
RegFac and Pavilion). Hence, the architecture run-time model (dashed area in
Fig. 18.6) is represented by the BarCamp composition, its constituent resources
(i.e., Event, RegFac, Pavilion), and the BarCamp Logic that orchestrates the
composition. The whole run-time model represents the current semantics of the
application and will be the hinge of the adaptation activities.

The Context resource maps straightforwardly to environment run-time model
concept, while the context logic plays the role of monitor since it is in charge
of aggregating data and feeding them to the context resource (i.e., environment
run-time model). The case study presented here does not use neither sensors nor
external services/components. Moreover, since we are not interested in investigating
solutions for automated decision-making and actuation, we assume a human-in-the-
loop solution for both the Decision Maker and the Actuator roles.

Let us assume that, once advertised, the BarCamp event is very successful and the
number of requests exceeds the maximum number of available seats. Carl monitors
the ongoing situation by querying the context resource, and decides to adapt the
application to the changing context – i.e., relocate the Barcamp to a larger pavilion.
The software support for the BarCamp must adapt accordingly. The Exhibition
Center’s policy forbids the use of a pavilion’s machinery to organizers unless they
have a valid reservation for it. Since Carl is going to cancel his reservation for the
first pavilion, he must substitute the original RegFac resource, which encapsulates
the state of the first pavilion (i.e., the registrations gathered so far), with a new one
encapsulating the new pavilion’s state. Contextually, Carl does not want to restart
the registration process from scratch.

To accomplish the substitution, Carl must (1) substitute the old RegFac
resource, in both BarCamp and Context compositions, with the new one, and (2)
rewire the old Pavilion resource with the new one in the Context composition.
Note that, Pavilion is rewired, instead of being substituted, because we need to
preserve the internal state of RegFac (i.e., the registrations). On the other hand,
since Pavilion is a read-only resource that gathers information about the facility, it
does not have an internal state to be transferred from the old instance to the new one.
Thus, Carl creates the new RegFac resource and passes its URI as a parameter to
the substitute operations exposed by BarCampLogic and ContextLogic, along
with the URI of the old RegFac resource. Hence, Carl retrieves the CURI of the
new Pavilion resource and uses it as a parameter for the rewire operation of the
ContextLogic. In this way substitution takes place automatically.

Conclusion and Final Remarks

In this chapter we have addressed the problem of designing applications operating in
evolving pervasive environments. Such applications are required to support adaptive
and evolutionary situation-aware behaviors, to deal with changes occurring in the
run-time environment. Changes are mainly the result of the dynamic appearance/dis-
appearance of functionalities and the interaction with the physical context.

18 RESTful Service Architectures for Pervasive Networking Environments 421

We presented our model-centric conceptual model, which identifies the building
blocks of self-adaptive systems dealing with both adaptation and evolution. We
advocated the benefits of the REST architectural style in pervasive settings (due
to its loose coupling, flexibility and dynamism) and proposed Pervasive-REST
(P-REST), a REST-oriented approach for designing pervasive applications. P-REST
is a meta-model that can be instantiated to design applications that follow the
P-REST principles. Moreover, to support the development of P-RESTful application
we introduced PRIME, a distributed middleware and a development framework
that both realizes the pervasive networking environment and offers programming
abstractions for implementing P-REST.

Furthermore, we have shown how to render the entities of the conceptual model
using the P-REST meta-model, and presented a case study for which we designed an
application exploiting P-REST. Such a case study can be implemented by exploiting
any of the architectural styles discussed in “Background”. However, the adoption of
P-REST reduces the effort of providing at design time the mechanisms needed for
adaptation purposes. Indeed, by exploiting P-REST, the application can be managed
at run time without the need for the designer to foresee possible adaptation issues at
design time. In particular, the basic mechanisms we took advantage of are:

1. Retrieving the internal state of a component,
2. Initializing the internal state of a component,
3. “Unboxing” a composition to access one of its composing elements,
4. Run-time rebinding of components within the composition logic.

To support the same set of adaptation mechanisms within an application designed
according to a traditional SOA paradigm, the designer should foresee several special
cases at design time. First, the designer should figure out how to grant direct
access to information embedded in a composition. Indeed, a service composition
is provided (and consumed) through a set of interfaces and most of the business
logic is hidden behind those interfaces. Thus, referring to the case study presented
in “P-REST at Work: The EXPO2015 Scenario,” an ad-hoc interface should be
provided for exposing only the information regarding the registration facility. The
same applies for granting access to information regarding the pavilion needed to
trigger the adaptation. Finally, one more ad-hoc interface must be designed to allow
for initializing the new registration facility with the old state. Moreover, dynamic
binding is not directly provided by SOA, but requires for additional ad-hoc support.

We have shown instead that the adoption of P-REST allows adaptation to be
carried out in a seamless way, without any special preventive actions by the designer
since all the needed functionalities are imposed by the architectural style.

Acknowledgements This research has been Funded by the European Commission, Programme
IDEAS-ERC, Project 227077-SMScom (SMSCom 2008).

422 M. Caporuscio et al.

References

Ben Mokhtar, S., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic service discovery in
pervasive computing environments. Middleware 2006, pp. 240–259 (2006)

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
Caporuscio, M., Funaro, M., Ghezzi, C.: Architectural issues of adaptive pervasive systems. In:

G. Engels, C. Lewerentz, W. Schäfer, A. Schı̈urr, B. Westfechtel (eds.) Graph Transformations
and Model Driven Enginering – Essays Dedicated to Manfred Nagl on the Occasion of his 65th
Birthday, Lecture Notes in Computer Science, vol. 5765, pp. 500–520. Springer (2010)

Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Software Engineering
for Self-Adaptive Systems, Lecture Notes in Computer Science, vol. 5525. Springer, Berlin,
Heidelberg, New York (2009)

Edwards, W.K., Newman, M.W., Sedivy, J.Z., Smith, T.F.: Experiences with recombinant comput-
ing: Exploring ad hoc interoperability in evolving digital networks. ACM Trans. Comput.-Hum.
Interact. 16(1), 1–44 (2009). DOI http://doi.acm.org/10.1145/1502800.1502803

Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter
adaptation. In: ICSE ’09, pp. 111–121. IEEE Computer Society, Washington, DC, USA (2009).
DOI http://dx.doi.org/10.1109/ICSE.2009.5070513

Erenkrantz, J.R., Gorlick, M., Suryanarayana, G., Taylor, R.N.: From representations to computa-
tions: the evolution of web architectures. In: ESEC-FSE ’07, pp. 255–264 (2007)

Fielding, R.T.: REST: Architectural styles and the design of network-based software architectures.
Ph.D. thesis, University of California, Irvine (2000)

Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile enviroment. In: Proceedings of the
2nd ACM International Workshop on Data Engineering for Wireless and Mobile Access, pp.
27–34 (2001)

Khare, R., Taylor, R.N.: Extending the representational state transfer (rest) architectural style for
decentralized systems. In: ICSE ’04, pp. 428–437. IEEE Computer Society, Washington, DC,
USA (2004)

Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change management. IEEE
Tran. Soft. Eng. 16(11), 1293–1306 (1990). DOI http://dx.doi.org/10.1109/32.60317

Network Working Group: Role of the Domain Name System (DNS) (2003). RFC3467
Object Management Group: Unified Modeling Langiage Specification (2010). Version 2.3
Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In: ICSE

’98, 1998.
Papadimitriou, D.: Future internet – the cross-etp vision document. http://www.future-internet.eu

(2009). Version 1.0
Richardson, L., Ruby, S.: Restful web services. O’Reilly (2007)
Roman, G.C., Picco, G.P., Murphy, A.L.: Software engineering for mobility: a roadmap. In: FOSE

’00, pp. 241–258. ACM, New York, NY, USA (2000). DOI http://doi.acm.org/10.1145/336512.
336567

Romero, D., Rouvoy, R., Seinturier, L., Carton, P.: Service discovery in ubiquitous feedback control
loops. In: DAIS, pp. 112–125 (2010)

Saha, D., Mukherjee, A.: Pervasive computing: A paradigm for the 21st century. Computer 36(3),
25–31 (2003). DOI http://doi.ieeecomputersociety.org/10.1109/MC.2003.1185214

SMSCom: Self Managing Situated Computing. http://www.erc-smscom.org/ (2008)
Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low disruptive alternative

to quiescence for ensuring safe dynamic updates. IEEE Trans. Softw. Eng. 33(12), 856–868
(2007). DOI http://dx.doi.org/10.1109/TSE.2007.70733

Vinoski, S.: Demystifying restful data coupling. IEEE Internet Computing 12(2), 87–90 (2008)

http://www.future-internet.eu
http://www.erc-smscom.org/

	Chapter
18 RESTful Service Architectures for Pervasive Networking Environments
	Introduction
	Background
	Architectural Styles
	Model-centric Software Adaptation

	Why REST?
	REST for Pervasive Systems
	P-REST Meta-model
	P-REST Run-time Support

	P-RESTful Self-adaptive Systems
	P-REST at Work: The EXPO2015 Scenario
	Conclusion and Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

