Chapter 12

A Framework for Rapid Development
of REST Web Services for Integrating
Information Systems

Lars Hagge, Daniel Szepielak, and Przemyslaw Tumidajewicz

Abstract Integrating information systems and legacy applications is a frequently
occurring activity in enterprise environments. Service Oriented Architecture and
Web services are currently considered the best practice for addressing the integration
issue. This chapter introduces a framework for rapid development of REST-based
Web services with a high degree of code reuse, which enables non-invasive, resource
centric integration of information systems. It focuses on the general framework
design principles and the role of REST, aiming to remain independent of particular
implementation technologies. The chapter illustrates the framework’s capabilities
and describes experience gained in its application by examples from real-world
information system integration cases.

Introduction

The concept of integration has been present in the software development domain
in various forms for the last two decades. Over the years, integration approaches
evolved from simple remote procedure calls (Brose et al. 2001) and message passing
systems (Monson-Haefel and Chappell 2000) to service oriented solutions and have
found their way to become integral parts of programming platforms like J2EE or
NET (Erl 2005). Recent years have witnessed an unprecedented shift in distributed
computing towards Service-Oriented Computing (SOC) (Chang et al. 2006), which
is gaining prominence as an efficient approach for integrating applications in
heterogeneous distributed environments (Erradi et al. 2006). The most popular
branch of SOC research is dedicated to advances in Service Oriented Architecture
and SOAP Web services (Curbera et al. 2005), but the growing popularity of the

L. Hagge (b<)
Deutsches Elektronen-Synchrotron, Notkestrasse 85, Hamburg 22607, Germany
e-mail: lars.hagge @desy.de

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice, 279
DOI 10.1007/978-1-4419-8303-9_12, © Springer Science+Business Media, LLC 2011

lars.hagge@desy.de

280 L. Hagge et al.

Web 2.0 (Musser and O’Reilly Radar Team 2006) concept has brought increased
attention to the REST architectural style as an alternative way of building service
oriented environments (Howerton 2007; Vinoski 2007).

Building an integrated software environment in an enterprise often requires
developing large amounts of Web services. The integration efforts can be greatly
reduced by using a specialized framework for their development. Providing such
tools that simplify software development in integration projects is essential for
optimizing their efficiency and cost.

This paper describes a framework for rapid development of REST Web services
which are suitable for integrating information systems. It first illustrates the
application scenario with a simple example, which is used to explain the proposed
integration architecture. Then, it introduces the framework architecture, putting
particular emphasis on code reusability as basis for rapid development. The next
section describes three application examples of the framework, and the final section
summarizes experience gained and outlines possible next steps. The paper focuses
on the general framework design principles and the role of REST, independent of
particular implementation technologies.

Integrating Information Systems Using REST

One of the most important choices to make when building an integration solution
is to select an appropriate integration approach and suitable technologies for its
realization. These choices can vary depending on the characteristics of the software
environment and the particular goals of the specific integration project. This section
introduces an example integration scenario and uses it for deriving an architecture
for integrating enterprise information systems. The architecture is based on a layer
of REST Web services which provide unified access to the information systems
of the integrated environment. The section concludes by discussing those types of
integration for which REST is well suitable, and those for which it is not.

Integration Architecture

Figure 12.1 (a) shows a simplified information model for equipment documentation.
It states that equipments have descriptions in terms of documents, where equipments
can be complex items which are built using other equipments, and documentation
can consist of various documents with cross-references and dependencies. The
schema has to be adapted and specialized for each particular business, yielding an
ontology of the target application area. An example is given for facility planning
and plant design (b): Facilities are organized into functional subsystems. They
comprise functional units, are driven by power supplies, are controlled by safety

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 281

- Process Drawing
a X Has Description » Ctrl. System Archive
Equipment Document N
Functional Has Descr. b Technical
— Drawing
bsyst —
uses b refers to » Subsystem Descr. » d
made from » depends on » uﬂes > epends on »
= - Descr.
Example: Facility Plannin Power 3D
F ional W 9 Facilit Design Supply Model
ur:jm_c: nal acility Specification
ni }ﬁ\ e <fiepon uses> <5 dep.on » [« dep.dn
Has D tion
Safety P 3D Safety Design
Monitor lasDessoton s | Model Monitor Specification
Functional escription » |d Specification
Subsystem sicepon n
Power |[4US y [FasBeseription » | 1ochnical Powelr Operation
Supply Drawing Manual
it Has Desctiption » Has Desgcription » «refdrs to
Has Description » < depjon Technical < synch» Technical
Technical « refers to Operation Data Sheet Data Sheet
Data Sheet Manual Equipmen Document
Database C Management

Fig. 12.1 Example scenario illustrating integrated information systems

monitors, etc., all of which are special types of equipments. They are described by
a variety of technical documentation, including specifications, design models and
drawings, work instructions, and operation manuals, all of which are special types
of documents.

When it comes to implementation, ideally a single information system (IS) would
support the entire ontology and its business processes, but in practice objects and
functionalities are often spread over a number of systems. Figure 12.1 (c) shows
a typical example for a deployment scenario: Operators use a process control
system (PCS) for setting-up and running of the facility. Technicians use equipment
databases (EDB) to keep track of the inventory and organize regular inspections and
repairs. Management and staff use a central document management system (DMS)
for review, approval and archival, while designers and engineers use a dedicated
CAD drawing archive (CDA) for design models and drawings.

The information systems are not independent as there are business requirements
which extend beyond the scope of individual systems. Consider the following
examples:

1. An operator who may need to respond to an alarm in the PCS, e.g. of an over-
heated power supply, would benefit from navigational support to the appropriate
operation manual in the DMS.

2. A planned subsystem update, e.g. for improved performance, would require lead
engineers to update specifications in the DMS, and then propagate necessary
change information to different engineering groups, who then implement the
change and update their equipment information and documentation accordingly.
The objective would be to coordinate the entire business (change) process
independent of any IS boundaries.

282 L. Hagge et al.

Integration Application

e.g. Information Portal, Workflow Engine Ontology

Equipment Equipment Document HasDescrRel Document
inPcs inEdb inEdb inEdb inDms
1 A\ _ . [
\ (= 7 == : -
€ = € o e = e ©
= | 5 9] = 9
wol T3 NS = . S|B 28582 S=sle|s 0|52
R} = o= 29 o =|lEte © c| = S Q c £
@ O |A [T = o ||e & £ D5 |R 32| E €0
°op| T > feze LE||l |2 a3 EP a8 |a2||EcteiE LI5S
o ez 3|5 > © S © Sle|c s|5E G| 28|90 cs|lo®
aT 528 ol n "= Q-U)Dq)*(gu.m [a 3R Q> = |0 %|loc
gL o |7 gl olds|l| g/l _Jv|-olas
£ =

Fig. 12.2 Integration architecture using REST WS for unified IS access

The analysis reveals two characteristic groups of system integration requirements:

* Cross-system item relations: Relations need to be established across boundaries
of IS, e.g. Has-Description relations between subsystem equipments in the PCS
and technical documents in the DMS and CDA.

* Fragmented objects: Different aspects of the same item are stored in different
IS, e.g. technical data are partially kept in the EDB (e.g. parameter values) and
partially in the DMS (e.g. signed certificates).

Obviously, the IS environment has to be extended by a component which stores
cross-system relations and synchronizes fragmented objects. This could be done by
extending the capabilities of one or more of the available IS, or by introducing a
dedicated integration component. The latter is preferable as it has the advantage of
not interfering with available IS. For interfacing this integration component with
the IS, an access layer should be foreseen which abstracts IS access to a uniform
interface. Figure 12.2 summarizes the approach, proposing REST Web services for
implementing the access layer.

This paper concentrates in the following on the REST Web services which are
used for creating the unified access layer.

Identifying and Defining Resources

Integration of information systems based on REST architectural style is resource-
centric in its nature as standard REST operations are tightly aligned with the
CRUD pattern. Thus, the first step in building an integrated environment involves
identifying and defining the resources in that environment. The resource-centric

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 283

| MDA approach | | Integration approach
‘7 7777777 I;I &7777777] ONTOLOGY

information about

\,,,,ta,r,ggt,glétjqw,s,,,J VS. transform

(o
transform information about

intended abstraction level

|
1

PSM | | PSM | | PSM i t

A B o 'PSM | | PSM | | PSM
A B C

g g —————

Fig. 12.3 Top-down design vs. bottom-up integration

approach requires a common vocabulary, which contains definitions of all resource
types that are used by the participants. Such a vocabulary can be realized in many
different forms. One of the most effective ways of formal knowledge representation
and sharing it in a coherent and consistent manner among interacting software
agents is ontology (Dietz 2006; Guber 1993).

At this point it should be noted, that the initial example can be read in two
directions: Figure 12.1 may be the result of a top-down business design process
(a—c), which deploys the overall information model to the best-suited available
application platforms, or it may be the result of legacy applications which were in-
dependently introduced and afterwards brought bottom-up into co-operation (c—a).
The former is similar to the MDA-approach (MDA 2003), which transforms high-
level platform independent models (PIM) to target systems represented as platform
specific models (PSMs). The latter, which is typical for integration projects, implies
that the information model would have to be inferred from a bottom-up analysis of
the different information systems.

Figure 12.3 illustrates and compares the two approaches. The ontology corre-
sponds to the PIM in MDA terminology, and the models of the individual ISs
correspond to PSMs. In MDA, the PIM is the first model to be created, followed
by the generation of PSMs for specific platforms (Kleppe et al. 2003). Integration of
existing information systems requires reversing this process, i.e. the PIM has to be
derived from a set of PSMs of the existing information systems (Szepielak 2007).
This involves:

* Comparative analysis of all PSMs to identify similar resource classes in multiple
PSMs and ensure they are abstracted into the same concepts.

* Analysis of relations between resources across IS boundaries.

* Analysis of all PSMs to reveal overlapping resource classes and create according
cross PSM model mappings.

284 L. Hagge et al.

Ontology Can represent the
[Consumer 1: Integration App. I Consumer 2 |~--- same IS acting in

both roles
access resources accessresources
e.g.Cand D e.g.Aand B
CRUD CRUD CRUD CRUD) (CRUD
conceptual
resources
I | N (] | can be
Iresource Al Iresource Bl I resource C | Iresource Dl _ |physically
Provider 1 Provider 2 J L Provider 3 distributed
1

Fig. 12.4 Integration architecture

The emerging ontology has to be checked for consistency and compliance with the
original IS data models. It will stabilize in an iterative process. Figure 12.4 redraws
the integration architecture from a resource-centric perspective and emphasizes, that
ISs can act both as resource providers and consumers.

Modelling Workflow as Resources

The rigorously applied resource-centric approach should completely avoid any
form of thinking in categories of processes. All communication among information
systems in the integrated environment should be performed with the help of
resources only. From a REST perspective, the appropriate way of implementing
processes is to represent them as sequences of CRUD operations which are executed
on the resources of the ontology.

This approach is feasible for simple transactional workflows. Example 1 from
“Integration Architecture”, navigating from an alarm in the PCS to the correspond-
ing operation manual in the DMS, could e.g. be written as

1. RETRIEVE status information of Equipment
2. RETRIEVE connected Has Description relation
3. RETRIEVE connected Document

More complex workflows will need richer expressions. Example 2, organizing an
engineering change process, could start as

1. CREATE change request
2. APPROVE change request
3. UPDATE specification

4. APPROVE specification
5....

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 285

In this example, approving items denotes that they are read, signed and this
way endorsed by responsible persons. Such approvals or sign-offs are common
functionalities of information systems, often provided as workflows. To remain
compliant with the REST approach, such workflows also have to be represented
and treated as resources. This requires translating all functional aspects of workflow
into data structure and defining it as an ontology class. For manipulating workflow,
the standard CRUD operations can be used with the following interpretation:

¢ Create — start workflow

e Retrieve — check workflow status

e Update — alter workflow execution
e Delete — abort workflow

The above example would then be re-written as

1. CREATE change request (cr-id, title, description, author, .. .)
2. CREATE approval workflow (cr-id. reviewer-1, reviwer-2, .. .)
3. UPDATE specification (...)

4. ...

If it turns out that reviewer-1 is not available, an alternative reviewer may be
assigned by updating the approval workflow. Authors may inquire how many
reviewers have already processed the request by RETRIEVing the workflow status,
and in case they discover mistakes, withdraw the request for approval by DELETing
the workflow.

The described scenario shows how standard CRUD operations can be used to
manipulate workflows within an information system.

The scenario neglects that in a “real” business process, the different actions
would be conducted by different users. This would require additional steps of
routing information to process participants and asking them to perform their actions
and acknowledge their completion. Routing, acknowledging, etc. can be treated in
the same way as described above for the approval workflow, which leads to the
conclusion that any business process can be implemented with this schema.

In case of complex processes, the granularity of resources should be carefully
considered. Defining too unspecific resources can lead to insufficient control over a
process, while too detailed resources may impose too many actions on the IS users
and thus become inefficient. On the other hand, building a library of general-purpose
process building-blocks will allow quick and easy future process modification by
simply rearranging items in the process sequence.

Suitability of the Proposed Integration Approach

The proposed integration approach has been specifically developed for integrating
business information systems. It assumes an existing environment of legacy infor-

286 L. Hagge et al.

mation systems, which are characterized by transactions-type processing of business
objects. In such cases, the strategy of introducing CRUD Web services for accessing
business objects and executing transactions is applicable. In other environments,
such as e.g. agent-based systems, the applicability of the approach needs to be
reviewed.

The effective application of the proposed approach requires careful consideration
of the granularity of the information system resources which are exposed as Web
services. With the growing number of Web services necessary for intersystem
communication, the level of coupling increases, and the environment becomes
harder to manage in case of future updates or changes. To avoid the necessity of
creating and managing a too large number of Web services, it is advisable to define
the ontology on the highest possible level of abstraction that still meets the needs of
the IS that need to be integrated. In typical enterprise environments, this condition
should be moderately easy to achieve. The proposed method can still be used if fine-
grained Web services are necessary, but in such cases it is worth considering if those
systems which require such tight integration would benefit from other integration
techniques.

As the REST architectural style is highly resource-centric, it is very effective
for integrating environments where the primary focus is on data access and
manipulation, as representing data as resources is a very straight forward procedure.
Environments which focus primarily on complex processes, which span over
multiple information systems, are hard to integrate using REST. This is related to
the fact that creating a resource interface to a process grows in complexity with the
process complexity and the number of involved information systems. While it is
always possible to provide access to a complete process through multiple resource
interfaces to parts of the process, again the then high number of Web services can
lead to tight coupling and according difficulties in maintenance.

While there are situations when the described integration approach is not the best
way to proceed with an integration project, it also has its undisputable advantages.
First, it allows for a non-invasive integration of existing information systems. The
REST Web services that allow for accessing and manipulating information system
resources are built on top of the existing code base and have no direct impact on
the systems. This ensures that operation of an existing IS (provider) can continue
without any interruptions, and users do not experience any side effects to the way
they used to work with the system. On the other hand it still allows other IS
(consumers) to interact with it through its new interfaces.

Second, in the proposed approach all information systems in the environment
can be accessed with the same consistent API, which compared to situations where
each IS has its own API greatly reduces development efforts and cost. In particular,
the proposed approach allows developers to realize complete integration scenarios
without the necessity to learn individual IS APIs, as more IS are added to the
environment.

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 287
Framework for Rapidly Developing REST Web Services

This section introduces a REST Web services framework with specific emphasis
on rapid development. Building an integrated enterprise environment, which often
consists of dozens of individual applications that should cooperate, requires devel-
oping large families of Web services. The described framework can considerably
speed up the development process by achieving high levels of code reuse and easing
code maintenance. The section presents the framework architecture, introduces the
strategy for code reuse, and describes how the framework is effectively used in large
environments.

Objectives

Building an integration solution based on the proposed approach requires devel-
oping families of Web services for all resource classes which are defined in the
ontology. A development framework shall satisfy the following requirements:

e The framework shall minimize development efforts and time, as the expected
number of Web services which have to be provided may be high.

e The framework shall support changing and adapting Web services when the
environment evolves; e.g. new ISs are introduced or existing ISs updated.

* The framework shall ensure the Web services are uniform in their structure as far
as possible, to make them easier to understand, use and maintain.

As general strategy, the framework shall attempt to achieve an as-high-as-possible
degree of code reuse, as code reuse is an efficient and established method of increas-
ing productivity and reliability (Gui and Scott 2006), which significantly accelerates
and reduces the development cost of new software (Boxall and Araban 2004).
Among other advantages, it:

* Reduces the amount of code to be developed, and thus effort and time.
* Keeps the code base small, and thus eases quality assurance.
e Minimizes code duplication, and thus side-effects of changes.

Strategy for Code Reusability

Reusability is defined as the degree to which a software module or other work
product can be used in more than one computing program or software system. The
proposed framework facilitates reuse for developing families of Web services by
providing code blocks that can be generalized for all or a subset of Web services.
Figure 12.5 illustrates the approach: It shows three Web services, one for
retrieving equipment information of power supplies from the PCS, and two for

288

L. Hagge et al.

| Integration Application

retrieve retrieve update gerzjera' 0pseprgéiicgir; S};?Zé?ﬁc

PwrSupplylnfo|| Manual Manual code code code
processRequest processRequest

perfromRetrievel| ||performRetrievel| || perfromUpdate B code shared among all web services
connectPcsApi ||| connectDmApi |||| connectDmApi code shared among subset of web services

p
[[] code not shared
‘ Ctﬁrcgfssém H Document Management ‘

Fig. 12.5 Approach to code reusability

retrieving and updating documents, in particular operation manuals, in the DMS
(left). A closer look reveals that:

» The Web services shall provide uniform access to the underlying IS, hence al
three of them should respond to similar URIs and provide similar response.

* Two Web services are providing retrieve operations, hence they should have
similar internal sequencing.

* Two Web services are serving the same business object, hence they should use
the same data definition.

* Two Web services are connecting to the same IS, hence they should use similar
calling sequences of the IS APL.

Or, more general, the Web services exhibit three major sources of reusability:

* General code that can be shared among all Web services

* Code shared among Web services which are performing the same operation (e.g.
code shared between all “update” services)

* Code shared among Web services for accessing a specific IS

The code for a particular Web service can thus be separated into general code,
operation specific code, target-IS-specific code, and unique code for that Web
service (Fig. 12.5, right). Except for the unique code, the code can be provided by
the framework, which is designed to represent each source of reusability by a code
block which encapsulates the according functionality:

* A Request-Response Processor (RRP) provides functionality which is specific
for all Web services, such as request parsing, response formatting and exception
handling

e Operation Controllers (OC) provide the generic sequencing for specific opera-
tions, which can be used for any type of object. E.g. the generic “update” can be
written as:

open a transaction,

find an object using a given set of filtering attributes,

if the object exists, update it with a set of new attribute values,
on success commit transaction,

otherwise, rollback

O O O O O

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 289

Request-Response e System Drivers |————————~
Processor

SystemDriver

uses >
RESTWebService

/N

| EDB Driver ” PCS Driver

—___________________\

I !
| |
| |
! I EDB EDB PCS

i Systemlntergctmg ; Document Equipment Equipment | **®*
! WebService l Driver Driver Driver
| |

|
| | A A
I I
: : EDB use
! 1 Document_WS A
i i EDB e
i CRUDWebService : Equipment WS
I I

|
i ! PCS
‘.| Operation Controller|_. Equipment_WS | __

Fig. 12.6 Framework structure

e System Drivers (SD) provide functionality for accessing specific ISs, such as
connecting to and disconnecting from the IS, beginning and finalizing transac-
tions, and creating, locating, retrieving, modifying and deleting resources. System
Drivers encapsulate the IS APIs

Framework Structure

Figure 12.6 presents the structure of the framework and the mapping of its classes
to functional layers. The left side of the class hierarchy contains classes which
implement the operational skeleton of a Web service, while the right side represents
system specific code. Figure 12.7 illustrates the interplay of the different classes
in an activity diagram. Partitions represent framework classes, and the allocation
of actions shows their implementing classes. Structured activity blocks spanning
multiple partitions represent abstract methods.

The topmost RESTWebService abstract class encapsulates functionality which
is common to all REST Web services and realizes the Request—Response Pro-
cessor. The class is responsible for handling incoming requests, processing them
and passing their parameters together with stored configuration to the abstract
action() method for operation-specific processing. Upon successful completion of
the operation, the results are formatted and returned. In case of failure, exception
handling takes place and error messages are returned.

290 L. Hagge et al.

o) Load
% configuration
] connection
L | securyano e e)
é’ authentication [[yes] 9
ok ?
on Parse [yes]
L request [no]
an Parameters
valid ?
_ I\ N N
Validate parameters action()
[0}
IS g g getDriver()
8B g
® Sy —
U>)' -g 8 Connect Disconnect
== to system from system
[0}
2
[a)] - -
=) GZ, Valid operation Dispatch operation ||
?:_) g specific parameters E by HTTP method
[}
=
3 o
= ———»{ Retrieve
= Vaiidate syst . PUT 5 (Update
alidate system bELeTE - Rdate) | (et
g f DeLETE) P |[Dscomee)
2 specific parameters
(%* J A\ — —

Fig. 12.7 Activity flow and implementation distribution of the framework

The abstract action() method is narrowed down in the SystemlInteractingWeb-
Service class, which isolates system interactions common for all Web services. An
instance of a SystemDriver is created through a call to an abstract factory method
getDriver() and uses it to connect to the system. Finally, the CRUDWebService class
performs the dispatching of operations into Create (POST), Retrieve (GET), Update
(PUT) and Delete (DELETE) depending on the HTTP method used for the request.
Each of the four basic operations is decomposed into a sequence of atomic method
calls, which can be overloaded if necessary by an extending subclass.

The SystemlInteractingWebService and CRUDWebService classes realize the
Operation Controller functionality. In case of operations other than CRUD System-
InteractingWebService should be extended by a class that implements a controller
for a specific operation.

The SystemDriver abstract class acts as a flexible interface for the enclosed
set of atomic interactions. It enforces the implementation of basic interactions
(like connect and disconnect), but allows for partial implementation of the CRUD
functionality and runtime checking of driver capabilities. Such implementation is
useful for practical reasons, as not all system resources allow or require the full set
of operations. The SystemDriver class is a parent class for all specific information
system drivers. Single information systems can contain many different types of
resources, which require different behavior of the driver at a system specific level.

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 291

EDB PCS
—{ Document - - Equipment = - Equipment -
Create ' Retrieve Update | Delete: Create Retrieve: Update: Delete Create Retrieve. Update ' Delete
RRP |//[RRP ||| RRP (/| RRP | || RRP RRP ||| RRP || RRP || RRP RRP RRP RRP

sis sis sis sis sis sis sis sis |
[ec][J[we] [fac J[cc [o[wJ[a] i
[so J[so [so Ji[so Ji[so f[so [so][so] K

Driver Driver | | Driver

fffffffffffffff

‘ code o implement [__notused | ‘

Fig. 12.8 Effective code reuse in Web Service development

Therefore, drivers for specific ISs can have sub-hierarchies of drivers for specific
types of resources. The structure of the hierarchy is not enforced by the framework
and can be built according to the specification of a given IS.

The actual Web service classes for each of the resource types extend the CRUD-
WebService class (e.g. EDB_Equipment_WS), thereby inheriting the full operational
skeleton, and implement the getDriver() method so that it produces an instance of a
SystemDriver subclass appropriate for the particular system-resource combination.

The Framework at Work

The framework structure has been designed to allow for various development
strategies depending on the type of a required Web service. There are three basic
development paths that are enabled by the framework:

» Rapid development of CRUD Web services for inclusion of new resources to the
integrated environment by adding new drivers

* Development of system specific operations not belonging to the CRUD set by
extending the SystemlInteractingWebService

* Development of freeform REST Web services by extending the RESTWebService

Figure 12.8 illustrates the rapid development of CRUD Web services for accessing
equipment and document information in an EDB, and document in a DMS. Once the
first Web service has been completed, subsequent Web services require only minor
and well-encapsulated development efforts (Szepielak 2007).

The figure shows that each Web service comprises 6—7 code blocks from the
framework, only 1-2 of which need to be newly provided when the pool of Web

292 L. Hagge et al.

services is extended. Assuming the code blocks to be of equal size and complexity,
this would correspond to 14-33% of code needing to be provided, or an expected
average code reuse of at least 70%. This number can get much higher, if the
components which have to be developed are small compared to the others.

The different development paths offer developers great flexibility and allow using
only partial framework functionality, if required. This way, the potential framework
application extends beyond the described integration scenario and allows it to be
used for general software development purposes.

Application Examples

The integration approach and the REST Web-service framework have been de-
veloped and applied in the engineering data management domain at Deutsches
Elektronen-Synchrotron DESY in Hamburg, Germany. DESY is one of the world’s
leading centers for research at particle accelerators. DESY develops, builds and
operates particle accelerators, which are large scientific instruments, and conducts
basic research in a great variety of scientific fields, ranging from particle physics to
materials science and molecular biology.

This section describes three application examples of the presented REST WS
framework: Integrated information access across several information systems,
synchronization of information between existing systems, and building new appli-
cations on top of an existing environment. The examples involve some of DESY’s
key information systems, namely:

e The DESY Engineering Data Management System (EDMS), a customized
product lifecycle management (PLM) solution

e A combined Geographic Information System and Facility Management System
(GISEMS), built with various commercial components

e An Inventory Management System (IMS) based on a commercial IT Asset
Management System

Integrated Information Access

DESY has developed a powerful portal which allows users to jointly and intuitively
search and navigate the GISFMS and EDMS. The portal provides information
about the DESY facilities (buildings and accelerators) through means of metadata
querying, hierarchy browsing or visual navigation using maps. The information
provided through the portal includes maps and building information from the
GISEMS, related with documents and 3D CAD models from the EDMS. REST Web
services are used for connecting to the GISFMS and EDMS, querying the systems,
and retrieving (lists of) objects.

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 293

Facility Information Portal

Maps Floor Plans . Reports Documentation 3D Models |
P99 0P0P GOOO COOO
Location Document Relation 3D Model

CRUD web services

GISFMS EDMS
Building Mgt, Person info, Floor Plans, Documentation, 3D Models, Tasks,
Technical Infrastructure, Maps ... QA Certificates, Signatures ...

Fig. 12.9 Portal for integrated information access

Figure 12.9 illustrates the architecture of the portal application. The portal
provides location-centric information access, i.e. locations are the primary key to
information access. For this purpose, the portal provides a tree browser which
enables navigating from sites through buildings and floors to rooms, and a map
and plan viewer are provided. The Web components retrieve their data from the
GISFMS database using CRUD Web services.

The location information of the GISFMS is mirrored and synchronized in the
EDMS, where documentation, technical drawings and 3D models are processed
and related with their locations. CRUD Web services enable accessing locations,
documents, models etc. and traversing relations in the EDMS.

At the time of writing, the portal is already in operation for three years. It serves
information for a large-scale accelerator construction project and needs to adapt to
growing and changing requirements as the project progresses. So far, it has been
both very robust and flexible against changes: Additional information types, such as
e.g. 3D model viewing, have been added to the portal without impact on available
functionalities, and major software upgrades of the underlying information systems
have been successfully carried out without affecting the portal functionality.

Synchronizing Information

A Web-based information system had been developed based on EDMS and IMS
for coordinating the installation process in an accelerator project. It registered all
the components of the accelerators, provided work lists for the various technical
groups, tracked the installation progress, and provided a central information access

294 L. Hagge et al.

retrieve : retrieve retrieve
component V\;gtrﬂelivs?s installation)(reference
o P3PO lists status design
retrieve -
‘— reference manage Component Web -based Reporting
design components, Manager
Mech_anlcal Tetrieve = _o =
Engineer corr;ips(t)Snent manage g S 23 3
work lists 2 S 238 5
retrieve Coordinator £z 33 3
. Q c 2@ =1
manage Sha 2 @
PETRA IIl ~Tetrieve™\\documents
Project Member 'nssttaa”uajts'on
Document manage
Manager manage 9 manage

work lists / \components documents

Fig. 12.10 Using IMS and EDMS to support the installation process of a large facility

point for the installation status. The IMS was used for component and infrastructure
management and handling work lists, while the EDMS managed the technical
documentation of components. An integration component ensured consistency of
the information in both systems by propagating changes in one system to the other.
The integration component used the REST Web services framework to connect to
the systems, access and update objects, and trigger workflows.

Figure 12.10 summarizes the scenario. The different actors are working directly
with the ISs, as their roles are mapping 1:1 to one of the systems. Coordinators and
process managers use the rich native IMS or EDMS interfaces. The other project
workers, who are carrying out installation works in the accelerator facility, are able
to retrieve work lists and instructions through a Web-based reporting interface. An
integration application in the background ensures that information changes from
one system are propagated to the other: If a crucial information change is retrieved
from one system, an update Web service is called which propagates the change to
the other system.

The application has been realized in very short development time. It was built
on top of two information systems, which were in production and starting to show
an information overlap. According to the approach, the application has been non-
invasive, i.e. did not affect other projects that were also using the EDMS and/or IMS
for their activities.

Building New Tools and Applications

The presented framework can be used to build new, specialized clients on top
of existing systems. As the DESY EDMS is a very large and complex system,
users often request lightweight and easy to use clients for special purposes. The
Web services are efficient building blocks for such applications by providing the
necessary basic functionalities for connecting, accessing and updating information.

Figure 12.11 illustrates a number of tools and applications, which have been built
on top of the DESY EDMS using the REST Web-services framework. They include
e.g. direct document searches and accesses from public project Web pages, bulk

12 A Framework for Rapid Development of REST Web Services for Integrating . ..

295

Project Web File System Architectural || Requirements Facility Geographical
Site CAD System || Management || Management Information
System
s r————, — —

/ACAD Drawing
MgtApplication

Requirements
export

Location-WBS
mapping

Location-WBS[
mapping |,

EDMSdirect EDMS
Web access Bulkloader
PLM Backbone

e.g. Parts & Document Mgt., Change / Configuration Mgt., Workflow Mgt.,
Collaboration, Communication and Visualization Tools, Access Control, ...

Fig. 12.11 Special-purpose tools and applications on top of the DESY EDMS

loaders for batch upload of large amounts of files, and connectors for exchanging
and synchronizing data with other external databases and applications. Many of
these tools are requested at extremely short notice. With the framework in place,
such requests can usually be handled.

Summary

This chapter summarizes results and experience from implementing and operating
the described framework, and provides an outlook on a strategy for extending the
framework architecture for automating the integration of information systems.

Results

The first components of the presented framework are in stable in operation since
their initial deployment at DESY in 2005. Numerous extensions and applications
have been developed since then, increasing both the scope of operations and the
number of accessible information systems.

Figure 12.12 shows the byte code length for the different code blocks of
the framework as they have been measured for the initial set of Web services.
Figure 12.13 shows the increasing level of code reuse that has been observed as more
and more Web services have been developed (Szepielak 2007). The observed level
of reuse for all Web services operating in the DESY environment ranges between
83% (for the most complex Web services) and 98% (for the simplest Web services)
with an average of 93%. The calculations concern only the internal level of reuse
of the framework code itself. Taking into account external libraries used to build
the framework, as well as the fact that the Web services are designed to be used in
multiple applications, the average level of reuse exceeds 95%.

296

L. Hagge et al.

Web Service
UTERTD Functional Block L
Request-Response Request-Response 11300
Processor Processor (RRP)
system interaction skeleton (sis) 1680
create controller (cC) 310
Operation Controller retrieve controller (rC) 330
update controller (uC) 280
delete controller (dC) 270
generic System Driver (SD) 1230
System Driver EDMS Driver (sd) 6420
IMS Driver(sd) 1120
create (c) 1130
retrieve (r) 4460
EDMS Document Driver
update (u) 1990
g delete (d) 750
E create (c) 1180
e
) .
retrieve (r 4680
% EDMS Component Driver ("
% update (u) 1720
g delete (d) 790
u create (c) 1020
retrieve (r) 1090
IMS Component
update (u) 1060
delete (d) 1010

Fig. 12.12 Byte code length of code blocks in the initial set of Web services

Experience

Setting up the framework was experienced as a time consuming process, but the
initial time spent on building the framework resulted in faster and more efficient
development of the necessary Web services. The framework allows developing new
Web services for accessing further objects from underlying information systems
within a few days of work, thus assuring scalability for dynamic environments and
increasing integration. The framework also greatly eases the maintenance of existing

code.

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 297

EDMS services - - e IMS services _ _

A

100

s

(sfl)

Average level of reuse

70 = observed in DESY
— w / environment ~93%
& 601—= =
= o / 2B (not counting external libraries)
3 501+ T

T

g 40___%J/ [

30 r:t /

201 -

101 / Operation >

controllers

o
|

Consequtively developed web services

framework and information system driver development

Fig. 12.13 Increasing level of code reuse observed during Web service development

The framework has been built completely from scratch, as at the time of the
project no mature enough frameworks were available. With the official JSR for
RESTful Web Services in place, JAX-RS (JSR311: JAX-RS 2009), a similar integra-
tion framework could be created based on one of the available JAX-RS implemen-
tations. Most of the functionality of the RESTWebService and CRUDWebService
classes could be taken directly from e.g. Sun’s reference implementation of JAX-
RS, Jersey. The other classes would still need to be custom-developed, as they are
specific to the presented integration framework and to date not available in any
generic REST framework.

Several of the underlying information systems have undergone major software
upgrades. As the framework successfully encapsulated those systems, no side
effects were observed on applications which were built using the Web services.
As newer versions of underlying ISs offer richer functionality, some of the Web
services may need to be extended to make this functionality also accessible to
other applications. In such cases, the REST CRUD paradigm has shown to be well-
suited for maintaining backward compatibility and thus avoid impacts on productive
environments.

Also the resource-centric approach has shown various advantages in the software
development process. The major advantage is that it reflects the business vocabulary,
which is particularly beneficial for developers, as they do not need to familiarize
with specific system APIs, but can work with a high-level intuitive information
access layer which is addressed in the same vocabulary as used in the business
itself. This greatly reduces the time until developers get productive and at the same
time improves the quality of the resulting software. For example, some of the tools
and applications described in “Building New Tools and Applications” have been
developed by new staff or students within the first month of their work.

298 L. Hagge et al.

Integration Application

e.g. Information Portal, Workflow Engine Ontology ===

) —
WOIA middleware

Request
Executor

synchronize Ontology
models Engine

execute
request

Execution

Service Directory
Controller

Engine

<> Regist
— Requelst — gisiny — 5
Transform. Execution Service Ontology |-
Reposito Module Directory oy

i REST Web Services for Unified IS Access E

Equipment Equipment Document HasDescrRel Document

inPcs inEdb inEdb inEdb inDms

S _ \\ <~] " N prd T ”/, A
£ R S - L E
28| T§ - s - SlElE28 58 Sl{s<le/s8/5e
gﬁ S-g A@—; -Z‘_g Q_Z-%,fgg gm 5)8 ggm.&’; GE)E
oql T2 Hal2e Scl| |z 812 S8 o2l |ScieglEP| 5 Y
07| 8 |32 o2 |2alla|8 &8 55 S3gll82|e|gslas
as| 535 |@ = L& =8 218 S Tl ot
sLL-o | § Q) w & v [a] ng

Fig. 12.14 Web-oriented integration architecture (WOIA)

Extending the Integration Framework

The analysis in “Integration Architecture” has shown that all integration applications
share two core functionalities: They need to be able to establish cross-system
relations, and to handle business objects which are fragmented over several ISs.
DESY has developed a dedicated integration application which generalizes these
capabilities. It shall act as a middleware which provides Web service registra-
tion, discovery, composition and execution capabilities. The architecture which
employs this middleware is called Web-Oriented Integration Architecture (WOIA)
(Szepielak 2007; Szepielak et al. 2010).

Figure 12.14 illustrates the WOIA middleware in the context of an integrated
environment as shown in Fig. 12.2: It consists of a registry and a request execution
module, which are both using the ontology to operate. Information systems register
within the registry as providers of resources which are defined in the ontology. Based
on the registration data, the request execution module allows consumers to directly
operate on resources without any knowledge about their providers, almost as if the
middleware itself would be providing all the Web services. The middleware has a
REST interface which allows the consumers to interact with it in the same way as
they would with any other REST service: Consumers send requests for required
resources directly to the middleware (the only part of the request that changes is the
host name), and the middleware will automatically identify the necessary providers,

12 A Framework for Rapid Development of REST Web Services for Integrating . .. 299

invoke the required Web services and compose the response, in case of distributed
resources by combining responses from several Web services. It also enriches the
response with links pointing to the related resources based on the information
retrieved from the ontology before the complete response is sent to the consumer.

Using such a generic middleware has the potential to reduce the integration effort
to defining an ontology and providing system and resource drivers for the available
information systems, while the rest of the required integration software would be
provided by the framework.

References

Boxall, M.A.S., Araban, S.: Interface Metrics for Reusability Analysis of Components. In
Proceedings of the 2004 Australian Software Engineering Conference (ASWEC’04). IEEE
Computer Society, Los Alamitors, CA, pp. 28-37, 2004

Brose, G., Vogel, A., Duddy, K.: JavaTM Programming with CORBATM: Advanced Techniques
for Building Distributed Applications. Wiley, NY, USA, 3rd edition 2001

Chang, M., He, J., Castro-Leon, E.: Service-Orientation in the Computing Infrastructure, In Pro-
ceedings of second IEEE International Symposium on Service-Oriented System Engineering
(SOSE’06), 2006

Curbera, F., Weerawarana, S., Leymann, F., Storey, T., Ferguson, D.F.: Web Services Platform Ar-
chitecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,
and More. Prentice Hall PTR, Englewood, Cliffs, NJ 2005

Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, New York 2006

Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River 2005

Erradi, A., Anand, S., Kulkarni, N.: Evaluation of Strategies for Integrating Legacy Applications
as Services in a Service Oriented Architecture. In Proceeding of IEEE International Conference
on Services Computing (SCC’06), 2006

Guber, T.R.: A Translation Approach to Portable Ontologz Specifications. Academic Press,
New York 1993

Gui, G., Scott, P.D.: Coupling and Cohesion Measures for Evaluation of Component Reusability.
In Proceedings of the 2006 International Workshop on Mining Software Repositories. ACM
Press, New York 2006

Howerton, J.T.: Service-Oriented Architecture and Web 2.0. IT Professional, vol. 9, no. 3,
pp. 62-64, May/Jun 2007

JSR311: JAX-RS: The JavaTM API for RESTful Web Services available at: http://jcp.org/en/jsr/
summary?id=311, accessed on June 08, 2011 (2009)

Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Practice and
Promise. Addison-Wesley Professional, Reading, MA, USA, Ist edition 2003

MDA Guide Version 1.0.1 available at: http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf, ac-
cessed on June 08, 2011 (2003)

Monson-Haefel, R., Chappell, D.: Java Message Service (O’Reilly Java Series). O’Reilly Media,
1st edition 2000

Musser, J. and O’Reilly Radar Team: Web 2.0 Principles and Best Practices. ISBN: 0-596—
52769-1 O’Reilly Radar 2006

Szepielak, D.: Web Oriented Integration Architecture for Semantic Integration of Information
Systems, PhD Thesis, Silesian University of Technology, Gliwice/DESY, Hamburg 2007

Szepielak, D., Tumidajewicz, P., Hagge, L.: Integrating Information Systems Using Web Oriented
Integration Architecture and RESTful Web Services, pp. 598-605, 6th World Congress on
Services 2010

Vinoski, S.: REST Eye for the SOA Guy, IEEE Internet Computing, vol. 11, no. 1, pp. 82-84, 2007

http://jcp.org/en/jsr/summary?id=311
http://jcp.org/en/jsr/summary?id=311
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

	Chapter
12 A Framework for Rapid Development of REST Web Services for Integrating Information Systems
	Introduction
	Integrating Information Systems Using REST
	Integration Architecture
	Identifying and Defining Resources
	Modelling Workflow as Resources
	Suitability of the Proposed Integration Approach

	Framework for Rapidly Developing REST Web Services
	Objectives
	Strategy for Code Reusability
	Framework Structure
	The Framework at Work

	Application Examples
	Integrated Information Access
	Synchronizing Information
	Building New Tools and Applications

	Summary
	Results
	Experience
	Extending the Integration Framework

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

