
Chapter 10
A REST Framework for Dynamic
Client Environments

Erik Albert and Sudarshan S. Chawathe

Abstract The REST Framework for Dynamic Client Environments (RFDE) is a
method for building RESTful Web applications that fully exploit the diverse and
rich feature-sets of modern client environments while retaining functionality in the
absence of these features. For instance, we describe how an application may use a
modern JavaScript library to enhance interactivity and end-user experience while
also maintaining usability when the library is unavailable to the client (perhaps due
to incompatible software). These methods form a framework that we have developed
as part of our work on a Web application for presenting large volumes of scientific
datasets to nonspecialists.

Introduction

The REST Framework for Dynamic Client Environments (RFDE) is a method
for building RESTful Web applications (Fielding and Taylor 2002; Fielding 2000;
Pautasso et al. 2008) that fully exploit the diverse and rich feature-sets of modern
client environments while retaining functionality in the absence of these features.
For instance, we describe how an application may use a modern JavaScript library
to enhance interactivity and end-user experience while also maintaining usability
when the library is unavailable to the client (perhaps due to incompatible software).
These methods form a framework that we have developed as part of our work on a
Web application for presenting large volumes of scientific datasets to nonspecialists.

The key problem addressed by the framework is: How do we build a robust
and scalable Web application that, on one hand, uses to its advantage the numer-
ous and increasingly capable clients and client-side libraries (e.g., Scriptaculous,

S.S. Chawathe (�)
Department of Computer Science, University of Maine, 237 Neville Hall,
Orono, ME 04469-5752, USA
e-mail: chaw@cs.umaine.edu

E. Wilde and C. Pautasso (eds.), REST: From Research to Practice,
DOI 10.1007/978-1-4419-8303-9 10, © Springer Science+Business Media, LLC 2011

237

chaw@cs.umaine.edu


238 E. Albert and S.S. Chawathe

OpenLayers) but, on the other hand, retains all important functionality when one or
more such client features are unavailable? More specifically, how do we combine
the benefits of the REST approach to Web application design with those of active
client-side features such as JavaScript and techniques such as Ajax (Asynchronous
JavaScript and XML) (Garrett 2005)?

To reach a wide audience, a Web application must be able to support a wide
range of client capabilities. Some mobile clients and clients on older computers
often cannot use the latest Web technologies such as Adobe Flash, scalable vector
graphics (SVG) (Jackson and Northway 2005), Java applets, or even advanced
JavaScript. In order to develop an application that is accessible to the largest
audience, developers often design for a simple set of capabilities and eschew the
newer technologies. Alternatively, developers utilize new technologies and provide
an alternative, reduced-functionality version for clients that cannot support the
chosen technologies. And very often, unfortunately, Web applications will simply
display a requirements message to the reduced-capability clients and provide no
functionality at all. The RFDE framework provides a much more attractive option,
as it permits the use of modern JavaScript and other features while retaining
usability on clients without these features, and permits the Web programmer to
support all such clients without explicitly writing code to handle the many cases. In
an RFDE Web application, requests from a client returns a version of the application
that is best matched to that client’s supported, and active, features. The RFDE frame-
work also endows an application with the ability to automatically upgrade itself
using JavaScript and Dynamic HTML (DHTML) to a representation that can take
advantage of more dynamic and advanced client features when they are available.

In the remainder of this chapter, we will describe the Climate Data Explorer, a
climatological web application that inspired the RFDE framework, and identify the
types of applications that can benefit from this approach. We will then introduce
widgets and application templates, which are the building blocks of an RFDE
application, and describe how they can be designed to target a large number of client
environments with varying capabilities. Next, we will describe how we represent
and maintain the state of a dynamic and event-driven application that is implemented
using a RESTful, stateless application server. Finally, we will describe some of the
work related to the RFDE framework, summarize the approach, and describe some
possible future enhancements.

Motivating Case Study: A Climate Data Explorer

We describe a concrete application, the Climate Data Explorer (henceforth, CDX),
that motivates our design criteria and also serves as a running example for
illustrating the RFDE framework in this chapter. The primary goal of CDX is
enabling nonspecialists to intuitively and interactively explore an integrated view
of a large and diverse collection of datasets related to climate, with emphasis on the
spatial and temporal attributes of this data.



10 A REST Framework for Dynamic Client Environments 239

Fig. 10.1 A screen-shot of the Climate Data Explorer (CDX) application, which provides an
integrated and interactive view of a large and diverse collection of datasets. CDX combines REST
and modern dynamic client features using the RFDE framework

Various government and other organizations routinely publish data with direct
relevance to climate. Examples of such organizations in the U.S. include the
Environmental Protection Agency, the National Oceanic and Atmospheric Adminis-
tration, and various state agencies such as the Maine Department of Environmental
Protection. Data from these organizations differs in format and encoding, spatial
and temporal coverage, measured or modeled attributes, and several other char-
acteristics. As a result, it is difficult even for specialists to effectively use this
data, even though most of it is publicly available on the Web. For example, a
record of the global temperature and humidity fields for, say, December 31, 1984
is conceptually trivial to obtain based on datasets available on the Web. However,
actually generating a suitable map-based representation of these fields is a difficult,
laborious, and time-consuming (several hours) task for a specialist, and completely
unworkable for a nonspecialist. In CDX, this representation may be generated in a
matter of seconds using only a few mouse clicks and with no need for specialized
knowledge.

Figure 10.1 depicts a screen-shot of the CDX Web application, illustrating its
use for exploring climate data on a world map. For clients that support the required
capability (mainly, modern JavaScript), the map uses common map features such as
the ability to click and drag the map in order to pan around the globe, and balloon
windows providing instantaneous feedback with more information on a clicked
feature.

Some of the other components used by the CDX application include a historical
graph and a level indicator. At the broadest level of client compatibility, these
controls are both implemented using static images with hyperlinks to new windows



240 E. Albert and S.S. Chawathe

containing additional or explanatory information. When clients support more
advanced browser features, these components are rendered using SVG and support
animation, panning, mouse-over tooltips, and other advanced usability features.
When a new value is displayed in a level indicator (see Fig. 10.5 on page 48 for
an example indicator), the horizontal bar is animated as filling from left to right,
and the color changes as values transition from healthy to unhealthy ranges. The
historical graph allows the user to pan the visible area of a very long time line. This
is accomplished by clicking and dragging the display when supported, or by clicking
on panning control buttons when the browser does not support client-side rendering
of the data.

While the advanced interface features are important for enhanced usability and
for designing a compelling and attractive application, their use may be counterpro-
ductive if it were to lock out some, or many, users with low-powered computers,
older browsers (or sometimes very new ones), or some mobile browsers from being
able to view the same information. Having the ability to easily support clients
with a varying array of capabilities is one of the most important and challenging
requirements of this application, and one that motivates much of the work described
in the rest of this chapter.

Target Applications

We outline some characteristics of the applications that are best suited to the RFDE
framework, using the CDX application of “Motivating Case Study: A Climate
Data Explorer” as a typical and concrete example. The target Web applications for
RFDE are essentially those for which the three requirements of, briefly, portability,
interactivity, and scalability are of primary importance. These requirements are
elaborated below.

The portability requirement refers to the ability to run on numerous and diverse
computing environments, including various combinations of hardware (desktop
computers, smart phones, kiosks, and more), operating systems, and Web browsers.
For our CDX example, this requirement is crucial in ensuring that the benefits
of exploring climate data are available to as many people as possible, including
those using older hardware and software, and those with special accessibility needs.
A similar comment also applies to, say, a Web store that would like to attract as
large a customer base as possible.

The interactivity requirement refers to the need to have a strong visual impact
and maintain user interest, based on a dynamic interface design that includes
familiar modern Web widgets and provides instant feedback to user actions.
Examples of these widgets include ones for browsing tiled maps, updating lists
and selections based on user actions, and displaying pop-up windows with hints
and error messages. Also included are widgets designed primarily to provide a
visually pleasing experience, such as those for providing smooth transitions between
images, and fade-in and -out of displayed items. While it may be tempting to



10 A REST Framework for Dynamic Client Environments 241

write off the latter as frivolous decorations, their presence often makes a significant
difference to the overall success and user acceptance of the application. For the
CDX application, for instance, retaining user interest to encourage progressively
more detailed exploration of the datasets and the underlying scientific and societal
issues is greatly aided by such widgets.

The scalability requirement refers to the ability to easily increase the number of
concurrent users supported by an application over several orders of magnitudes.
For the CDX application, it is important that the implementation scale easily
from hundreds to several tens of thousands of users as interest in the application
grows and, further, that this scalability be achieved in a predictable manner by
incorporating more hardware resources but without any significant qualitative
change in the core design.

The portability and scalability requirements argue for the use of well documented
and widely implemented Web standards. In particular, the REST approach is very
natural and attractive design choice. The interactivity requirement argues for the use
of modern Web widgets, tools, and JavaScript libraries that take advantage of recent
developments in various parts of the client computing environment. Unfortunately,
these two design choices are, without further work, largely incompatible. The core
REST design and its typical implementations are based on the early interaction
model between Web clients and servers, where most client actions generate a round-
trip to the server, with concomitant implications for response times. Further, it is
not immediately clear how one may apply the REST design to a Web application
in which many actions, and state changes, occur through mechanisms such as
Ajax (Asynchronous JavaScript and XML). This apparent incompatibility and its
resolution are the core topics addressed by the RFDE framework, and this chapter.

While the RFDE approach itself is not dependent on any specific programming
languages, scripting libraries, or client technologies, our implementation of the
RFDE framework built to support the CDX application uses a number of specific
languages that we will use in the examples throughout this chapter. Server-side
code is written in the Java programming language, and client-side libraries and
dynamically generated scripts are written in the JavaScript scripting language.

Widgets

The fundamental resource (in REST terminology) used by RFDE is the widget,
which is a reusable user-interface element that allows one to view and manipulate
application data. Common Web application widgets include form-entry fields,
buttons, pull-down menus, checkboxes, radio buttons, and images. Widgets can also
be built using other widgets, allowing for more complicated interface elements to be
created quickly from the existing library, while also reducing proliferation of very
similar code. By building a large collection of widgets, both general purpose and
application specific, we can quickly create new Web applications that are portable,
interactive, and scalable.



242 E. Albert and S.S. Chawathe

Fig. 10.2 A screen-shot depicting the use of the mapview application template in the CDX
application

The CDX application (Motivating Case Study: A Climate Data Explorer) uses
several application-specific widgets that allow the user to view and manipulate
data from a multi-terabyte climate database. The screen-shot in Fig. 10.2 shows
a simpler version of the climate-data browsing interface that consists of three
primary widgets. The central widget is a map widget that supports the display of
geographical distribution of the concentration of a climate parameter, such as the
pollutant lead or stratospheric ozone. To the left of the map is a navigation control
widget, consisting of several button widgets, that enables the user to pan and zoom
the map. The third widget, displayed as the list of climate parameters to the right
of the map, is a selectable-list widget that permits the selection of a parameter to
display on the map.

A widget is implemented using one or more representations (e.g., a static
image, DHTML, Flash, etc.) that correspond to the capability set (Client Capability
Tiers) of the client. In the CDX application, the map widget is represented using
the OpenLayers JavaScript library when the client supports it; otherwise, it is
represented using a static image rendered on the server-side. Likewise, the map
navigation buttons and the climate variable list items are represented using HTML
anchor tags when JavaScript is not available, and as JavaScript supported clickable
markup when it is.

Widgets can perform tasks through invokable methods and registered event han-
dlers. The map widget is implemented using several methods such as moveNorth,
moveSouth, moveEast, and moveWest which pan the map in the given
direction; center, which centers the map on a given latitude and longitude; and
methods to control the zoom level such as zoomIn, zoomOut, and zoomWorld.
Each of these methods have dual implementations in the CDX library: one in Java



10 A REST Framework for Dynamic Client Environments 243

that implements the method on the server, and one in JavaScript that can be invoked
directly on the client when the widget is represented using the OpenLayers library
(in general, each additional tier would require another implementation of the widget
class). In addition to its methods, a widget can also identify a set of events that it
generates. An event typically corresponds to a user action, such as changing the
zoom level of the map widget (an onZoom event), and an application can specify
what actions are performed when a given event occurs. Further details on methods
and event handling, including examples, appear in “Event Handling”.

The RFDE server publishes a common widget interface that can be used to obtain
the value of a specific widget (that has a derived value) given a set of parameters.
The value of the widget is represented using a language that is appropriate for
programmatic use, such as such as XML or JavaScript Object Notation (JSON)
(Crockford 2006). Later, we will discuss how this interface is used to implement
much of the application dynamically, on the client side, when this feature is
supported by the client environment.

Application Templates

An RFDE Web application is built using application templates, each of which is a
composite resource (in REST terminology) that consists of collections of widgets
that implement a common application usage pattern. In addition to its widgets, an
application template also encodes the logic that controls the behavior of the widgets
in the context of the template. A Web application contains only one instance of each
application template, although a template may be replicated on multiple servers for
load sharing.

An important property of RFDE templates, and one required by REST, is that
the server side of an application does not save the state of a template for any of its
clients. Instead, the client sends a request to the template that includes an encoding
of its state, and the template returns a representation of the application at that
state. For example, the CDX application uses a mapview template as suggested by
Fig. 10.2. This template is initialized to a specific location, zoom level, and climate
parameter; however, by manipulating the state value in the URI of the application,
the client can change what information is displayed on the map.

The definition of the example mapview template is given in Listing 10.1. In
lines 1–2, the template is created and assigned a CSS style sheet. The map widget
and its corresponding navigation widget are created in lines 4–6. The navigation
widget combines all of the map navigation buttons and automatically adds event
handlers that invoke the corresponding methods of the map widget. Next, the list
of parameters is created and populated with all of the possible variables that can
be displayed on the map. In lines 14–15, an action is added to the list widget’s
onChange event handler that causes the parameter state variable of the map
widget to be changed when the user selects a new value from the list. Finally,
the widgets are added to the template (using a horizontal panel) and the template
is initialized. This initialization routine involves the generation and caching of



244 E. Albert and S.S. Chawathe

1template = new AppTemplate("CDX mapview Example", "mapview");
2template.addStyleSheet("cdx");
3

4MapWidget map =
5new MapWidget(40.7166, -74.0067, 1, 400, 300, "o3");
6MapNavigator nav = new MapNavigator(map);
7

8List plist = new List();
9plist.addItem("Ground Level Ozone", "o3");
10plist.addItem("Stratospheric Ozone", "o3strat");
11// ... additional values omitted ...
12plist.addItem("Nitrogen Dioxide", "no2");
13

14plist.onChange().addAction(
15new StateChangeAction(
16map, "parameter", plist, "selectedValue"));
17

18template.addWidget(new HorizontalPanel(nav, map, plist));
19template.init();

Listing 10.1 The definition of the mapview application template

static markup that will be used in every document generated by the template; the
creation of an explicit representation of the default state of the template, based on
the parameters specified in the template definition (Representation of Application
State); and the use of a widget dependency graph to create a valid ordering for
instantiation in client-side code.

When a new template request is made, the server program that hosts the
application is responsible for translating the encoded application state into a state
object, “executing” the template, and returning the resulting document. Executing a
template requires generating the markup language for each of the widgets based on
the current state of the application, as well as creating initialization parameters for
client-side versions of the widget implementation classes. The resulting document
contains static references to external resources used by the document (such as style
sheets), references to the RFDE libraries that implement the client-side versions of
the widget classes used by the template, the generated upgrade parameters and event
handlers, and finally, the markup the implements the page and its widgets (example
markup for an image push button widget is given on page 247).

Client Capability Tiers

The RFDE framework supports the development and deployment of Web appli-
cations that support, concurrently and interchangeably, client environments with
diverse and changing capabilities. For instance, one user may run the application on



10 A REST Framework for Dynamic Client Environments 245

Upgrade / 

Downgrade

Tier 1 Representation
Static HTML and Images

Tier 2 Representation
DHTML and JavaScript

Tier     Representation

Template Document

Template Request

Client Server
Widget Request

Widget Value

Widget Request

Widget Value

Widget Interface

Template Interface

Application

n

Fig. 10.3 Client capability tiers in RFDE

a desktop computer running Windows XP and Internet Explorer 8 while others (or
the same user) access it using, variously, a smart phone running Symbian and Opera,
a kiosk running GNU/Linux and a customized version of Firefox, or a computer with
software that is several years behind the current versions.

It would be foolhardy to attempt to explicitly address every possible combination
of the components of a client environment: hardware, operating system, Web
browser, and so on. Instead, RFDE models the features and abilities of the comput-
ing environment on the client side using client capability tiers. These tiers classify
client environments by specifying the properties required for tier membership.
RFDE includes a default definition of these tiers, but application programmers may
easily modify both the number of tiers and the individual tier definitions, and such
modification is expected and encouraged. The lowest tier (Tier 1) is designed to be
as inclusive as possible, and thus specifies the bare minimum for what is needed
for the application to function. A guideline for Tier 1 is to include only those
requirements without which there is no reasonable way to accomplish the key tasks
of the application. As suggested by Fig. 10.3, each higher tier adds increasingly
demanding requirements for the client environment. When a client interacts with an
RFDE application, the framework automatically uses the highest (most capable) tier
that the client’s environment supports. This default behavior may be changed, and
the tier may be explicitly set to a desired one by using tier selection widgets which
are typically used during testing.

Tier 1 clients that support only the minimum requirements are able to use a fully-
functional version of the Web application, although some of the visual and usability
enhancements afforded by more capable environments may be missing. As a simple
example, a client without scripting support may not provide immediate feedback
on potentially incorrect data. However, not only are the functions implemented by



246 E. Albert and S.S. Chawathe

the form (perhaps a purchase) fully supported, but also the feedback on incorrect
data is provided, albeit with a slightly longer response time due to a server round-
trip and page refresh. If the client environment supports additional capabilities,
the application widgets will be automatically upgraded to versions that use these
capabilities to improve the speed, responsiveness, usability, or appearance of the
application. A special JavaScript class in the client-side RFDE library, called the
widget manager, is responsible for the instantiation and automatic upgrade of all of
the widgets in an application document based on the identified tier level of the client
environment.

For the CDX application, consider the mapview template of Fig. 10.2. In Tier 1,
the user is able to pan and zoom the map but must do so using the navigation buttons
on the left. A more direct manipulation of the map by clicking and dragging on the
map itself is not supported because the client environment capabilities (JavaScript,
etc.) that are needed to implement such manipulation are not part of Tier 1. Map
manipulations, and most other actions, in this tier also require full page refreshes
and a new rendering of the visible area of the map, with the associated, typically
noticeable, delays. In Tier 2, the map is more interactive. In addition to the direct
manipulation using dragging, it also permits zooming in and out using scroll wheels
and similar input modes. Further, map features are associated with pop-up balloon
windows with hints or other brief messages. Map tiles and other images are loaded
asynchronously and partial updates of the displayed Web page are accomplished by
manipulating the DOM tree; these enhancements avoid full page refreshes in most
cases and so greatly improve responsiveness.

Figure 10.3 depicts this tiered approach of a RFDE Web application. At the
lowest level of the figure, a client communicates with the application server to
request an updated view of the application. At this level, the document returned
contains the entire application template, including all the widgets in the template.
The state of the application is explicitly encoded in the URI that the client sends, and
the application view that is returned is represented using a markup language such
as HTML. The hyperlinks in the document contain URIs that encode new states for
the application, so that when the user clicks on a link, the net effect is that the state
of the application is updated and the new view of the data is returned.

Embedded in a Tier 1 client document is a small script that checks client
capabilities when the document is loaded. If the client does not support the scripting
code, it will simply be ignored and the client will remain at this tier for the duration
of the exchange. If the capability check determines that the browser supports
a higher tier, the client-side widget manager will automatically upgrade all the
widgets on the page to their higher-tier representations. For example, Tier 1 may
represent the application using HTML and static images, Tier 2 may add JavaScript
and client-rendered images, and a third tier may use Adobe Flash or advanced SVG
graphics to render the application. If the client supports JavaScript, but not Flash or
advanced SVG, the client code will upgrade the widgets to their Tier 2 versions and
future interactions with the server will take place at the RFDE widget interface.

In addition to the server-side Tier 1 widget library, an RFDE server supports
an arbitrary number of additional levels of higher-capability, client-side widget



10 A REST Framework for Dynamic Client Environments 247

libraries. At these higher tiers, the client requests the value of individual widgets,
instead of entire application templates, through the common widget interface. This
design allows the client to use asynchronous transactions to replace the value
for individual widgets in a template, improving the application’s responsiveness.
The upper-tier widget libraries use representations for widget values that are more
appropriate than HTML, such as JSON, allowing for any type of client technology
(such as HTML, DHTML, SVG, Flash, etc.) to be used to render the widget.

The initial framework developed for the CDX application consists of two tiers
of client capability. However, additional tiers are likely to be added based on
the expected mix of client categories and an important aspect of RFDE is that
such additions can be made easily, without affecting existing code and application
functionality. In the lowest tier, the widgets are represented using HTML 3.2, static
images, image maps, and hyperlinks. The application also uses cascading style
sheets to control the look and feel of the page. These style sheets are ignored by
browsers that do not support them. Images, such as the tiles in the visible area of the
map, are rendered by the server and sent to the client in a widely supported format
such as JPEG, GIF, or PNG. In this level, each user interaction with the application
(informally, each click) requires a complete page refresh. For example, a single-
button widget, such as the zoom-in button in the map navigation control widget, is
represented using the following HTML:

<a id="ImagePushButton5"
class="ImagePushButton ImagePushButton-t1"
href="/cdx/1.0/mapview?state=&e5=zoomIn">

<img src="/images/map/zoom-in.jpg"
alt="Zoom In"
border="0" />

</a>

The widget is represented as a simple hyperlinked image in this tier. When the
user clicks on the image, indicating a zoom-in event, the state of the application
is updated (in a REST-compatible manner) following a round-trip interaction with
the application server and subsequent page refresh at the client. Event handling is
discussed further in “Event Handling”.

If the client supports JavaScript, DHTML, Ajax, and SVG, it is automatically
promoted to second tier functionality when the application is loaded. In this tier,
each upgradeable widget is replaced with its JavaScript and DHTML implemen-
tation. After such an upgrade, client interactions no longer require a full page
refresh. Widgets change their displayed forms by using client technologies, such as
JavaScript and DHTML. For example, the upgrade dynamically replaces the earlier
static-HTML representation of the zoom-in button with its second tier equivalent:

<img id="ImagePushButton5"
alt="Zoom In"
src="/images/map/zoom-in.jpg"
class="ImagePushButton ImagePushButton-t2">

Unlike the earlier representation, there is no longer a static hyperlink and the
widget identifier now appears in the image tag. The ImagePushButton-t1
CSS class has been replaced with the ImagePushButton-t2 class, allowing



248 E. Albert and S.S. Chawathe

for independent styling of the two tiers. When upgraded, a JavaScript-class
implementation of the widget is instantiated and the class registers any required
event handlers (such as onClick for this button) with the browser. If a widget has
a derived value, a value that is determined by its parameters that is also dependent
on other information, such as a database, the widget will update its value using
an asynchronous callback to the RFDE widget interface. These changes allow a
control to remain dynamic without requiring the full-page refresh caused by the
hyperlink-based implementation. The two representations of the zoom-in button are
visually and functionally nearly identical; however, in Tier 1 pressing the zoom in
button requires a complete page refresh to perform the operation, while in Tier 2,
the event is handled completely in the browser without requiring a page refresh.

Representation of Application State

Following REST conventions, the current state of an RFDE Web application is
explicitly encoded in the application’s URIs. The advantages of this design are
similar to those of other REST-based ones: By using a completely stateless protocol,
multiple servers can implement the application, client requests can be handled by
any available server, and the application can be scaled by increasing the number of
available servers in a load-sharing environment. This design also allows the use of
caching strategies to optimize common requests, such as the most recent map images
for frequently queried areas of the United States. Finally, by explicitly representing
the state of the application in the URI, users of the application can bookmark and
revisit a particular view of the application, or share their experiences with others, in
a robust and standard manner.

Our implementation of RFDE identifies state variables using a positional scheme
in order to reduce the total size of the state encoding (compared to an alternative
named-variable scheme, as used for HTML query strings). To further reduce the size
of the state string, values that have not changed from their template-specific default
values are omitted from the encoding. The state of each widget (the collection of its
parameters) is represented as a string composed of the widget identifier followed by
a colon delimited list of the state values. The state of the entire application template
consists of an asterisk-delimited list of widget states. In order to support long-term
bookmark compatibility as an application and its widgets evolve over time, each
application template URI includes the application version. When an application
receives a request with an old version number, it should attempt to construct an
equivalent URI compatible with the latest version and redirect the client (using an
HTTP 301 Moved Permanent redirection).

Figure 10.4 shows an example hierarchical state representation for the mapview
application template from Fig. 10.2. This application template consists of three
widgets; however, the map navigation widget does not have any internal state and is
omitted from the state representation. The map widget has the Map1 identifier and
the selectable list of climate parameters is given the identifier List1. The default



10 A REST Framework for Dynamic Client Environments 249

Default Template State

Working State (Client State)

Working State (Future State)

Map1

Latitude: 48.4070

Map1

Zoom: 6 Selected: 3
List1

Selected: 0
List1Map1

Longitude: −74.0067
Zoom: 1
Width: 400
Height: 300
Parameter: o3

Latitude: 40.7166

Fig. 10.4 An example of the representation of an application template’s state. The innermost state
represents the application’s default state while the outer states are specific to a client request

application state is shown in the innermost layer of the diagram, which contains
values for all of the properties for the two widgets. The order of the properties in the
diagram corresponds to the order of the values in the state value string, so latitude
is the first, longitude is the second, and so on. When the client does not specify a
value for the application state, the default state is used (1.0 identifies the version of
the web application):

/cdx/1.0/mapview

A client may also use the following complete state representation, even when the
application is at its default state.

/cdx/1.0/mapview?state=Map1:40.7166:-74.0067:1:400:300:o3*List1:0

A working state is a representation of state that keeps track of changes from another
state (typically the default state, but working states may also be nested). When the
client sends a request for an application template, the server builds the working state
for the request which is then used to generate the document that is returned. If a state
variable is not included in a working state, the default value for the variable is used.
The middle layer in Fig. 10.4 represents the current client state, in which the values
of two state variables have been changed from their defaults. This state is created in
response to a client request with the following application URI:

/cdx/1.0/mapview?state=Map1:::6*List1:3



250 E. Albert and S.S. Chawathe

The only changed property of the map widget is the zoom level, which is the
third property of the widget. The colons corresponding to the first two properties
of the map widget must be included in the encoding to ensure proper positional
representation; however, additional colons at the end of an encoding may be
dropped. In this example, the colons corresponding to the last three properties
(width, height, and parameter) are dropped because these properties retain their
default values.

The outermost working state in Fig. 10.4 represents a potential future state that
may be used to generate proper URIs for inclusion in the current application
hypertext. In this example, this future state represents the state of the application
if the user were to pan the map to the north, and this state could be encoded in the
hyperlink URI for the corresponding map control button:

/cdx/1.0/mapview?state=Map1:48.4070::6*List1:3

The default state representation for an application template is a constant value that is
only initialized once, when the template is created, and then shared among all client
requests. When the server receives a new request, it only has to instantiate a more
light-weight working state to represent the changes from the default state. When a
working state is created, the RFDE application server automatically performs type
and sanity checking of the state values based on constraints that can be specified
when a widget registers a new state variable in the default state.

While operating at the lowest tier level, the client manages the application
state implicitly, using state-encoded URIs in hyperlinks and HTML forms. When
a client is upgraded to a higher tier level; however, the client becomes more actively
responsible for keeping track of the state of the application. Many of the actions
that are performed by an event handler are simple to complete on the client, such as
changing the CSS classes used by the selectable-list widget in order to highlight a
newly selected value, and requiring a round-trip exchange with the server in order
to perform this task would be an unnecessary cause of latency that would affect the
perceived responsiveness of the application.

The widget manager is responsible for keeping track of the application state on
the client. While the server needs to explicitly model the default state and any
changes to the default state made by each of the clients, the client only needs to
keep track of the current state of the application. When the application state is
changed, the widget manager requests any updated widget values from the server
(if necessary) and updates the current application URI to allow the user to bookmark
any particular view of the application.

Event Handling

We use the term events to refer to the interactions of a Web application user with
the user interface. Examples of events include clicking on buttons, selecting items
in drop-down menus, and panning a map. Each application widget recognizes the



10 A REST Framework for Dynamic Client Environments 251

events that relate to it. For example, a map may have an onMove event which
corresponds to a user request for panning to a new location and an onZoom event
which corresponds to a user request for changing the zoom level. Each event may be
associated with a set of actions that are performed whenever the event occurs, and
these actions may in turn affect other widgets in the application. A simple example
in the CDX mapview template is that changing the selected climate parameter in
the list widget also changes the parameter that is displayed in the map.

After creating the widgets in an application template, the programmer specifies
the application behavior by associating actions with widget events. Actions can
affect an application in various ways, such as changing a state variable, invoking a
widget’s method, or even firing another event, which may in turn trigger additional
actions, recursively. For example, the zoom-out button in the navigation widget of
the CDX application is assigned an action that invokes the map’s zoomOut method
when the user clicks on the button:

zoomOutButton.onClick().addAction(
new InvokeMethodAction(map, "zoomOut")

);

The manner in which this event handler is executed depends on the client capability
tier (Client Capability Tiers) that is active at the time of the event.

In Tier 1, an event is initiated by including an event identifier in a request query
string. Events have an optional argument which is used to specify event parameters.
For example, an event caused by the user selecting a different climate variable
would be parameterized with the index of the new selection. When there is no actual
parameter, the value 1 is used to indicate that the event was activated. In the CDX
application, the zoom-out button’s onClick event is assigned the identifier e3 and
the hyperlink has the following URI:

/cdx/1.0/mapview?state=List1:2&e3=1

This URI indicates that the only change from the default state of the mapview
template is that the third climate parameter is selected in List1 (using zero-based
indexing) and that the zoom-out button has been pushed.

When the server receives a request that includes an event identifier, it immedi-
ately triggers the associated event handler. In this case, the only associated action is
to execute the zoomOut method of the map widget, as specified by the following
server-side code fragment:

public void zoomOut(WorkingState state, String param) {
int zoom = state.getIntegerValue(getId(), "zoom");

// Update the zoom state variable
state.setStateVariable(getId(), "zoom",

(int) Math.max(0, zoom - 1));

onZoom().fireEvent(state, "out");
}

Since templates are stateless, the current application state is passed as the argument
state to the zoomOut method. The method determines the current value of the



252 E. Albert and S.S. Chawathe

zoom, updates it, and modifies the working state. Finally, the method triggers the
map widget’s onZoom event which, by similar mechanisms, triggers the appropriate
event-handling method for the map widget, which will cause any actions identified
as side-effects to changing the zoom level to be also be executed (there are none in
the mapview example template).

Once the server has completed executing all of the event handlers, the client is
immediately redirected, using an HTTP 303 See Other redirect, to a URI that fully
encodes the new application state based on the updated value of the working state.
Thus, the non-transient URIs at the client never include pending events. As a result
of the zoom-out widget’s onClick event, the client is redirected to the following
URI with a modified zoom value:

/cdx/1.0/mapview?state=Map1:::0&List1:1

At higher tier levels, more of the event handling is managed on the client side
in order to increase the responsiveness of the application and to reduce the number
of complete page refreshes. Tier 2 event handling in RFDE is performed by the
JavaScript implementations of the widgets. When widgets are initialized, they are
given JavaScript versions of event handlers. The zoom-out button is instantiated
with the following event handler, which is automatically generated from the Java
version of the event handler (the $I function returns the instance of the identified
widget):

onClick: function(param) {
$I(’Map1’).zoomOut(param);

}

The client-side JavaScript version of the map widget has the following implementa-
tion of the zoomOut method:

zoomOut: function(param) {

// Update the zoom state variable
this.state.zoom = max(0, this.state.zoom - 1);
this.state.update()

// Zoom out the JavaScript map
this.map.setZoom(this.state.zoom);

this.onZoom("out");
}

This client-side implementation of zoomOut is nearly identical to the earlier
server-side implementation, but there are two notable differences: First, the widget
manages its own state directly rather than requiring the state as an additional
argument. Second, and more important, the client-side version of the method
actually causes the map to zoom out as a direct side-effect. Recall that the server-
side version only modifies the representation of the application state.

When a widget needs to update its value due to an event that is handled on the
client side, it requests the value from the RFDE server’s widget interface, based on
its updated parameters. For example, one of the widgets in the CDX application is a
level indicator, a widget that graphically presents the value and health implications
of a specified climate parameter, such as a pollutant, at a location and time which



10 A REST Framework for Dynamic Client Environments 253

Stratospheric Ozone
Level: 293.68 PPB

?

Fig. 10.5 An example of the level indicator widget which, when upgraded, uses asynchronous
calls to the server to modify its value as a user changes the selected location or date being displayed

are specified using other widgets. Figure 10.5 depicts an example level indicator
for stratospheric ozone (the ozone layer). The horizontal bar in the figure is filled
to indicate the comparative value of the underlying parameter. The bar’s color is
mapped to health standards, with green denoting a healthy level, for instance. In our
Tier 1 implementation of the level indicator widget, it is rendered as a static image
generated on the server side. When the client is upgraded to Tier 2, the indicator is
rendered on the client side and gains niceties such as animated filling of the bar and
a textual description of the level that appears as a balloon activated by a pointer-
hovering event.

When the user changes the selected date or location, the level indicator must
be updated to display the parameter value at the date or location. The widget
sends an asynchronous request for the new value to the widget library. This REST-
based interface can supply the value of a widget based on the widget’s parameters,
in a representation that is more appropriate for programmatic manipulation. For
example, the following URI requests an updated value for a level indicator widget:

/w/1.0/LevelIndicator?state=o3strat:48.41:-74.01:2010-09-23

The server responds with a representation of that value, in this case encoded using
JSON:

{
"widget" : "LevelIndicator",
"version" : 1.0,
"state" : { "parameter" : "o3strat" ,

"latitude" : 48.41,
"longitude" : -74.01,
"date" : "2010-09-23" },

"uri" : "/w/1.0/LevelIndicator?state=
o3strat:48.41:-74.01:2010-09-23",

"param_name" : "Stratospheric Ozone",
"param_alt" : "The Ozone Layer",
"units" : "PPB",
"level" : 293.68,
"US_limit" : undefined,
"EU_limit" : undefined,
"health_idx" : 0

}

On receiving this response from the server, the client-side widget code changes its
internally stored value and re-animates the filling of the display bar.



254 E. Albert and S.S. Chawathe

A Sample User Session

We now illustrate some of the interactions outlined in earlier sections in the context
of a simple session of user interactions with the CDX application of “Motivating
Case Study: A Climate Data Explorer.” First, the client loads the CDX portal, which
is a directory for a number of CDX application templates, by sending a request to the
server. Next, the user selects a link to the mapview application template. Finally,
the user performs two events on this application page: (1) changing the selected
parameter in the list to lead and (2) activating the zoom out control for the map.

Figure 10.6 illustrates this sequence of events for both Tier 1 and Tier 2
compatible clients. For simplicity, this figure focuses entirely on the interactions
that represent the main application logic flow; not shown are the additional requests
for document resources, such as embedded images, made by the client. The Tier
1 interactions are shown in Fig. 10.6 (a). The first two user requests (for the CDX
portal and the mapview template) are made as standard HTTP GET requests; each
results in the server generating and returning a complete Tier 1 document. The event

Hyperlink

mapview Template
Request

Select Lead

User Event

Request

Request

State Redirect

User Event

Zoom Out Map

Request

Request

State Redirect

User

a

Load CDX Portal

Hyperlink

Client

Request

Server

Tier 1 Document

Tier 1 Document

Tier 1 Document

Tier 1 Document

Tier 1

b
User

Load CDX Portal

Hyperlink

mapview Template

Select Lead

User Event

User Event

Zoom Out Map

Hyperlink

Client

Request

Request

Widget Value

Map Widget

Server

Widget Request

Tier 1 Document

Tier 1 Document

event handler

event handler

upgrade

upgrade

Tier 2

Fig. 10.6 An simple CDX session. At Tier 1, each request and event requires a full-page refresh.
Event handlers on the server compute the modified state representation and redirect the client to
the new URI. At Tier 2, event handling is performed on the client and only the values of individual
widgets are requested from the server and updated on the client side. Some events may be handled
completely on the client and do not require a request to the server (such as the onZoom event
corresponding to the user zooming out the map in this example)



10 A REST Framework for Dynamic Client Environments 255

requests (selecting lead and zooming out) require server-side event handling. For
both of these requests, the server receives the request from the client which includes
the event identifier, executes the event handler which computes the new application
state, and then redirects the client to the new application URI, which encodes the
new state.

The corresponding sequence of events for a Tier 2 client is shown in Fig. 10.6 (b).
For complete template requests, the Tier 2 interactions are handled exactly as in
Tier 1; however, when the client loads a Tier 1 document, the embedded script
upgrades the document to its Tier 2 equivalent. In Tier 2, event handling is
performed on the client side, rather than requiring a complete page refresh, reducing
latency and allowing the application a much greater level of responsiveness. When
the user changes the parameter to lead, the event handler for the selectable list
widget’s onChange event (in client-side code) signals the widget manager to
asynchronously request a new value for the map widget. The response from the
widget interface, which is significantly smaller than a complete Tier 1 document,
includes details that the map widget requires to properly render the new map and
to request a new set of map tiles. Some events, such as when the user zooms the
map out, can be handled completely on the client, and do not even require a request
for an updated widget value. The underlying map tiles are requested from the server
as usual, although they may also be cached on the client side by the usual browser
mechanisms.

Related Work and Discussion

The RFDE framework described in this chapter is an advanced and REST-based
progressive enhancement strategy (Wells and Draganova 2007; Parker et al. 2010)
for Web development. This strategy uses, at the core, basic markup that is supported
by the capabilities of the most primitive expected client. Advanced features and
layout implemented through external links to JavaScript and Cascading Style
Sheets. Progressive enhancement is based on the separation of document structure
from the layout styling, and all presentation tasks are handled by style sheets. In
contrast to strategies based on graceful degradation (Randell et al. 1978), which
degrade to a more basic implementation when the client does not support the
full implementation, the progressive enhancement strategy ensures that any client
always obtains the full content and at least a minimal set of functionality and styling.
This strategy is especially important for ease of indexing by search engines, and
for users of assistive technologies which typically require that the basic content is
always available and not hindered by dynamic content delivery.

With the development of mobile Internet devices such as smart phones, eReaders,
and tablets, there has been a large amount of work on multi-device user interfaces
(e.g., Grundy and Yang 2003; de Oliveira and da Rocha 2005) that allow an
application to use the native features of the host device. Many of these approaches
have adopted a device-independent user-interface specification language such as



256 E. Albert and S.S. Chawathe

UIML (Edwards et al. 2000; Ali and Abrams 2001), and use an application-
independent user interface library to realize the application on the host device.

Nokia has described a Remote MVC (model-view-controller) application con-
troller (Stirbu 2010) that models user interfaces as REST resources and that uses
an event-based system to keep the client and service synchronized. When this
framework is initialized, applications can discover and acquire platform-specific
representations of the user interface elements that use a device’s native functionality
and match the look-and-feel of the device.

A significant advantage of the RFDE framework of this chapter is that it allows
the development of portable, interactive, and scalable applications. Rather than
attempt to support the myriad of client devices natively, RFDE models common
client features in tiers of capability. These tiers allow the development of specific
representations for interface elements based on a small number of tiers that
framework implementations support, rather than developing a representation for
each possible device.

While our description in this chapter uses several specific technologies such
as JavaScript and Java, the RFDE design does not depend in any significant
manner on these technologies, and others may be substituted where appropriate.
The framework also does not impose an architectural style (such as MVC) on an
application, and the programmer may choose the one best suited to a task.

Application programmers who use RFDE can develop an application by adding
widgets to an application template and then specifying actions that should occur
as a result of their related events. This development approach is similar to appli-
cation development for desktop applications and Web development frameworks
that are modeled on desktop application development, such as the Google Web
Toolkit (McFall and Cusack 2009). In this approach, the application programmer
may treat widgets as abstract entities without immediate concern to their implemen-
tation on various client environments.

A major goal of this approach is to develop user interfaces that can become
more responsive and intuitive according to the capabilities of the client environment,
while affording all of the functionality of the application, even at the lowest level
of capabilities. Here, the functionality of the application refers to what can be done
with the application and not necessarily how it is performed. In the CDX application,
for example, the user must use the buttons in order to navigate the map at Tier 1,
but at Tier 2, the map becomes responsive to mouse control. Tier 1 users can still
fully navigate the map, even though they need to do so via a slightly more primitive
interface and changes require a full request/response cycle with the server. Tier 2
map users can still use the familiar button interface to navigate the map and both
visual representations (assuming that basic CSS is supported by the Tier 1 clients)
of the maps are identical at both tiers.

While the RFDE approach removes, or at least significantly reduces, the need
for a Web application developer to produce device or platform specific interface
elements, it does not preclude the development of native interface implementations.
In fact, the REST uniform interface constraint supports and facilitates the develop-
ment of these native interfaces. Devices can use their own implementations of the



10 A REST Framework for Dynamic Client Environments 257

interface widgets and populate any derived values via requests through the widget
interface, in the same way that the CDX Tier 2 clients do. Optimized clients for the
Climate Data Explorer are currently under development for several popular mobile
device platforms.

The current version of the RFDE server implementation does not include a
uniform and generic method for describing the logic of an application template (e.g.,
the widgets, layout, constraints, and event handlers that comprise the template);
however, the development of such a language is an important next step in our
research. This language would allow native implementations to utilize the same
application templates that the Web applications use and reduce the development
costs associated with adapting new application templates and updating existing
templates as they are improved.

One potential drawback to the RFDE approach is that each widget needs to be
implemented multiple times. For example, in order to create a widget for CDX,
a Java class that implements the Tier 1 widget needs to be written, a JavaScript
analog needs to be written for the Tier 2 client-side implementation, and (for some
of the widgets) the RFDE widget interface needs to be updated to generate a JSON
representation for the value of the widget. On the other hand, once the underlying
widgets have been implemented, an application can be developed that automatically
supports the various levels of capabilities of its clients – the alternative would be
to develop multiple versions of the same application. One solution to the problem
of handling the dual implementation of the widget library, and one that we plan on
investigating for the next version of the framework, is the development of a language
or library that can be used to write widgets that will automatically compile both
the client-side JavaScript libraries as well as the server-side implementation from a
single source.

Acknowledgements This work was supported in part by the U.S. National Science Foundation
grant EAR-1027960 and the University of Maine.

References

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. “big” web
services: making the right architectural decision. In WWW ’08: Proceeding of the 17th
International Conference on World Wide Web, pages 805–814, ACM, New York, NY, USA,
2008.

Dean Jackson and Craig Northway. Scalable vector graphics (SVG) full 1.2 specification.
WD not longer in development, W3C, April 2005. http://www.w3.org/TR/2005/WD-SVG12-
20050413/.

Douglas Crockford. The application/json Media Type for JavaScript Object Notation (JSON). RFC
4627 (Informational), 2006.

Jesse James Garrett. Ajax: A new approach to web applications. 2005.
John Grundy and Biao Yang. An environment for developing adaptive, multi-device user interfaces.

In AUIC ’03: Proceedings of the Fourth Australasian user Interface Conference on User
Interfaces 2003, pages 47–56, Australian Computer Society, Inc., Darlinghurst, Australia,
Australia, 2003.



258 E. Albert and S.S. Chawathe

John Wells and Chrisina Draganova. Progressive enhancement in the real world. In HT ’07:
Proceedings of the Eighteenth Conference on Hypertext and Hypermedia, pages 55–56, ACM,
New York, NY, USA, 2007.

Mir Farooq Ali and Marc Abrams. Simplifying construction of multi-platform user interfaces using
UIML. In European Conference UIML, 2001.

B. Randell, P. Lee, and P. C. Treleaven. Reliability issues in computing system design. ACM
Comput. Surveys (CSUR), 10(2): 123–165, 1978.

Rodrigo de Oliveira and Heloı́sa Vieira da Rocha. Towards an approach for multi-device interface
design. In WebMedia ’05: Proceedings of the 11th Brazilian Symposium on Multimedia and the
Web, pages 1–3, ACM, New York, NY, USA, 2005.

Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture. ACM
Trans. Internet Technol., 2(2):115–150, 2002.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine, 2000.

Ryan McFall and Charles Cusack. Developing interactive web applications with the google web
toolkit. J. Comput. Small Coll., 25(1): 30–31, 2009.

Stephen Edwards, Manuel A. Prez-quiones, Mary Beth Rosson, Robert C. Williges, Constantinos
Phanouriou, and Constantinos Phanouriou. UIML: A device-independent user interface markup
language. Technical report, 2000.

Todd Parker, Scott Jehl, Maggie Costello Wachs, and Patty Toland. Designing with Progressive
Enhancement: Building the Web that Works for Everyone. New Riders Publishing, Thousand
Oaks, CA, USA, 2010.

Vlad Stirbu. A restful architecture for adaptive and multi-device application sharing. In WS-REST
’10: Proceedings of the First International Workshop on RESTful Design, pages 62–66, ACM,
New York, NY, USA, 2010.


	Chapter10 A REST Framework for Dynamic Client Environments
	Introduction
	Motivating Case Study: A Climate Data Explorer
	Target Applications
	Widgets
	Application Templates
	Client Capability Tiers
	Representation of Application State
	Event Handling
	A Sample User Session
	Related Work and Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


