
Chapter 4
Dynamics: Changing Atoms of Space–Time

In the previous chapter, we have seen some aspects of spatial quantum geometry, with
its characteristic discrete spectra, emerge even in isotropic models. Now, these spatial
structures have to fit into a consistent quantum space–time which in a certain sense
reduces to a solution of Einstein’s equation in a semiclassical or low-curvature limit.
Only completing this most challenging step will make the theory one of quantum
gravity, rather than of spatial quantum geometry.

4.1 Refinement and Internal Time

On general grounds, we expect discrete growth of the expanding universe in any
theory with a microstructure of space–time. This has been anticipated several times
[1, 2, 3] but never fully formulated. Loop quantum gravity makes progress at least in
describing discrete spatial structures, and in providing means to analyze their evolu-
tion. A handle on these inhomogeneous features is necessary even for the consistency
of the quantum cosmological theory: any kind of discreteness is in danger of being
enlarged by the expansion of the universe and of becoming macroscopic unless its
structure is being dynamically refined. It is not guaranteed that refinement happens
in a suitable way so as to be consistent with the possibility of a macroscopic, very
nearly continuous universe. Whether suitable refinement is realized can be checked
in model systems, thereby providing feedback on the correct low-curvature limit of
the full theory.

The picture we will take to develop dynamics is that of an evolving quantum
geometry. Mathematically, it is implemented by constructing states in the Hilbert
spaces seen before, but subject to the condition that they be annihilated by a quan-
tization of the classical constraints: Ĉ |ψ〉 = 0. As the classical constraints make
sure that initial data indeed are as they can be derived by restricting the geometry
of a space–time solution to one of its spatial slices, quantum constraints ensure that
there is no spurious gauge-dependent information in the quantum states we use. Dis-
cussing quantum constraints can be quite involved not just because the expressions
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48 4 Dynamics: Changing Atoms of Space–Time

of constraints are complicated, but also because they are not always guaranteed to
have zero as an eigenvalue in their discrete spectrum. In fact, especially for the
Hamiltonian constraint of quantum gravity one expects interesting physical states to
correspond to zeros in the continuous part of the spectrum. (There may be states in
the discrete part as well.) Solutions then will not be normalizable in the spaces we
constructed so far, and new inner products would have to be introduced to extract
observable information from the states. Technical issues of constructing physical
Hilbert spaces are discussed in Chap. 12.

Also the issue of observables strikes again: A general operator on the kinematical
Hilbert space will not map a solution of Ĉ |ψ〉 = 0 to another such solution; it is
guaranteed to do so only if it commutes with Ĉ : [Ô, Ĉ] = 0. Such operators are
called Dirac observables, and thanks to the commutation property they correspond
to classical observables as phase-space functions invariant under the flow generated
by the constraints: their classical correspondents satisfy {O,C} = 0. Unfortunately,
complications in constructing general observables at the classical level become even
more severe at the quantum level. For instance, one would have to be very careful
with factor orderings to make a classical observable commute exactly with the con-
straints after quantization. (And exact commutation is required when it comes to
removing gauge.)

We will discuss issues of physical Hilbert spaces and quantum observables in
more detail in a later chapter; here we are primarily interested in the fact that the
non-commutativity of the Hamiltonian constraint and operators for spatial geometry
in general implies that physical states must be superpositions of different eigenstates
of any operator of spatial geometry. Explicitly, this follows from the fact that the
Hamiltonian constraint contains connection components, quantized to holonomies,
which as creation operators excite the spatial geometry. No state with a sharp non-
degenerate spatial geometry can be an eigenstate of such creation operators, and
general superpositions are required.

Choosing a particular non-observable operator φ̂, for instance the volume or a
matter field, and its eigenbasis, we expand a physical state as |ψ〉 = ∑

φ |ψ〉φ
where φ is a label for the eigenstates of φ̂. (Terms |ψ〉φ in such a superposition
are not physical states unless φ̂ is an observable.) We may then view the family
|ψ〉φ as an evolving quantum geometry, or a “state-time” [4]. It represents physical
information, for it is just another way of writing the original physical state |ψ〉,
supposed to solve the quantum constraint equation. Evolution is described not in
coordinate time, as one usually does it in classical solutions, but with respect to an
internal time φ. One could use a similar picture in classical gravity: The classical
variable φ corresponding to the operator φ̂ we picked for the decomposition fulfills
an equation of motion dφ/dt = {φ,C} = f with some phase-space function f. At
any phase-space point where f �= 0, the usual t-derivatives in classical equations of
motion can be traded forφ-derivatives by dividing all equations of motion by f.While
such a procedure would usually make classical calculations more complicated than
necessary, not even being too useful since one is mostly interested in the dependence
of quantities on variables such as proper time, it is a more natural viewpoint to take in
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4.1 Refinement and Internal Time 49

quantum gravity. The quantum representation of geometry, after all, does not contain
any space–time coordinates; it can refer only to degrees of freedom as found in the
classical phase space, and so the internal-time picture is the only one available for
evolution. Once physical states are parameterized with respect to an internal time,
one can compute time-dependent expectation values of operators other than time φ̂
and their fluctuations or other moments. Even if such an operator Ô would not be an
observable, the expectation value φ〈ψ |Ô|ψ〉φ is meaningful. In general, however,
care must be taken as to the inner product used here. For instance, one would like a
sense of unitarity of φ-evolution to be realized, which then implies that φ〈ψ |ψ〉φ is
constant in φ. (This is, of course, not guaranteed if the family |ψ〉φ comes from an
arbitrary decomposition of some state in any eigenbasis.)

Effective techniques allow one to formulate the concept of local internal time
systematically, and to address the possible failure of unitarity of the evolution mean-
ingfully. These methods and consequences such as the complexity of time will be
discussed in Chap. 13; for now it suffices to know that consistent formulations can
be provided, and we turn to the construction of the constraint operators themselves.

4.2 Constructions in the Full Theory

We will make use of the concept of internal time mainly in cosmological models
where it is rather tractable. But we will first have to see what the Hamiltonian con-
straint and the dynamics it provides look like in the full theory, since this will be
our guideline in reduced constructions just as it was for states and basic operators.
Also for the dynamics, the key will be the use and form of holonomies, their appear-
ance in the Hamiltonian constraint, and the way they influence superpositions in
the averaging of kinematical to physical states. Remaining non-holonomy terms in
the constraint are also important and provide clues to the small-scale behavior of
quantum gravity, but they merely influence the concrete coefficients rather than the
general form of such superpositions.

4.2.1 Gravitational Constraint

The classical expression of the Hamiltonian constraint in Ashtekar–Barbero variables
is

Cgrav[N ] = 1

16πγG

∫

�

d3x N

(

εi jk Fi
ab

Ea
j Eb

k√| det E |

− 2(1 + γ−2)(Ai
a − �i

a)(A
j
b − �

j
b )

E [a
i Eb]

j√| det E |

)

(4.1)
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Fig. 4.1 A loop used to
quantize curvature
components
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Δ α

smeared with the lapse function N . As the main term responsible for the creation
of geometrical excitations, we first turn to the curvature components Fi

ab. They are
functionals of the connection components Ai

a, which in a loop representation can-
not be quantized directly. Instead we have to use holonomies, providing curvature
components via the well-known expression

sa
1 sb

2 Fi
abτi = 	−1(hα − 1)+ O(	) (4.2)

for the leading-order term of a holonomy along a closed loop α of square shape, of
coordinate area 	 and along the tangent vectors sa

1 and sa
2 ; see Fig. 4.1.

The loop will give rise to holonomies and thus, when acting with the constraint,
excitations of geometry [5]. There are different specific constructions, with different
general behaviors. For instance, when acting on a given state the loop α may lie
entirely on the graph of edges already excited for the state. In this case, the graph
itself would not be changed, and no new vertices are being created (see e.g. [6]); only
the excitation levels of existing edges are raised or lowered. Otherwise, if α does not
lie entirely on the state’s graph, new vertices and new edges will emerge [7]. In the
picture of an evolving geometry, the number N of discrete sites may or may not
change in the internal evolution parameter φ. But in all possible constructions put
forward so far, individual sizes of elementary sites, earlier called v, must change:
since the volume operator does not commute with all holonomies, [V̂ , h] �= 0,
vertex volumes of states must change in φ. While we do not yet have a systematic
way of averaging these inhomogeneous results to isotropic geometries, the behavior
seen here provides strong motivation for a lattice-refinement picture, and it does put
limits on some parameters.

As the next important term in the classical constraint we have the triad-dependent
function εi jk Eb

j Ec
k/

√| det E |. Fluxes cannot directly be used to quantize this
expression since they have discrete spectra containing zero, making the determi-
nant potentially degenerate. Instead, as already seen in the isotropic setting, one
applies the classical identity [7]

{

Ai
a,

∫ √| det E |d3x

}

= 2πγGεi jkεabc
Eb

j Ec
k√| det E | sgn det(Ed

l ) (4.3)

(or another form since it is not unique) and quantizes the left-hand side regularly
by using holonomies for Ai

a, the volume operator, and turning the Poisson bracket
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into a commutator divided by i�. A densely defined operator results. This key result
of loop quantum gravity shows that Hamiltonians in quantum gravity, with similar
constructions for matter Hamiltonians [8], can be made well-defined by particular
properties of quantum geometry [7]. We do not have to normal-order Hamiltonian
operators, which would be difficult in a background-independent way that lacks the
ordinary creation and annihilation operators.1 Coefficients in any superposition of
physical states are automatically well-defined. In particular, the specific form of triad
operators appearing in the constraint, containing commutators such as h[h−1, V̂ ],
changes vertices and their intertwiners for states they act on; thus another reason to
expect a changing v(φ) in a physical state.

The remaining terms in the constraint are more difficult since they contain the spin
connection (3.24), a complicated functional of Ea

i . Fortunately, they can be reduced
to what has already been quantized by employing another Poisson identity [7]:

K i
a = γ−1(Ai

a − �i
a) ∝

{

Ai
a,

{∫

d3x Fi
ab

εi jk Ea
j Eb

k√| det E | ,
∫ √| det E |d3x

}}

. (4.4)

Putting all these ingredients together, one constructs a well-defined Hamiltonian
operator, schematically of the form

Ĉgrav[N ]ψg ∝
∑

v∈V (g)

N (v)
∑

eI ,eJ ,eK ∈E(g)

ε I J K tr
(

hI J heK

[
h−1

eK
, V̂

])
ψg (4.5)

summing over vertices v and triples of edges eI � v of a graph g, with hIJ the
holonomy around a closed loop tangent to eI and eJ in a vertex v. The specific form
is subject to ambiguity, but the general form is characteristic and, as used later, easily
extended to model systems.

There are several characteristic features implied by the construction steps, which
give rise to corrections to the classical dynamics explored in quite some detail in this
book. Also several fundamental properties arise in a specific form. For instance, for
the resulting operator to be well-defined it is crucial that one orders the commutators
quantizing inverse-triad components to the right of holonomies representing the cur-
vature. When the commutator acts first on a cylindrical state, only vertex contributions
appear. If holonomies act first, on the other hand, they create new vertices on arbi-
trary points of edges existing in the initial state, and on those new vertices (which are
trivalent but not immediately gauge-invariant) the commutator has non-trivial action.
Such an ordering would not give rise to a cylindrically consistent operator [7]. Once
a consistent operator is defined, one may order it symmetrically by averaging with its
adjoint. But this procedure is different from ordering the holonomies for curvature to
the right [9]: for an operator creating new edges, as the Hamiltonian constraint does

1 Notice that this sense of regularity does not by itself imply UV-finiteness in the usual meaning
of quantum field theory. To test finiteness, one would have to compute scattering amplitudes of
particle excitations on a quantum geometry state, which is difficult. It thus remains open how
exactly a fundamentally finite version of loop quantum gravity could resolve non-renormalizability
issues of perturbative quantum gravity.
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by multiplying with holonomies, the adjoint removes edges. A symmetric ordering
of such operators is different from simply reordering factors in its regularization.

The behavior of vertices under the action of the Hamiltonian constraint also plays
a role for an argument of anomaly-freedom which one may make [10]. Commu-
tators of Hamiltonian constraint operators should mimic the classical constraint
algebra for the dynamics and gauge aspects to be consistent. (This theme will be
discussed in more detail in the part on inhomogeneities, Chap. 10.) From the form
of full Hamiltonian constraint operators one can argue that this is realized at least on
diffeomorphism-invariant states, which are annihilated by the commutator. However,
several difficulties with this very general statement arise: first, it has been pointed
out that an extension to states that are not fully diffeomorphism invariant, and on
which the off-shell constraint algebra should nevertheless be represented faithfully
for anomaly-freedom, is difficult [11, 12]. Secondly, anomaly-freedom in the sense
proposed in [10], even if it would work at a fundamental level, does not at all guaran-
tee that effective geometries can be formulated with a consistent dynamics, a question
which we will address later by other means. Thirdly, the same argument of anomaly-
freedom does not apply in midisuperspace models such as spherically symmetric
ones, see Chap. 9, whose vertex structure is different from the full one. While this
failure of the argument may be due to a possible inadequacy of midisuperspace mod-
els regarding questions of fundamental anomaly-freedom, it should also be taken as
a warning sign.

4.2.2 Matter Hamiltonian

Matter fields are quantized by similar means in a loop quantization, using graph
states, and then coupled dynamically to the geometry by adding the matter Hamil-
tonian to the constraint. For a scalar field ϕ, the density-weighted momentum
π = √| det E |ϕ̇/N is a density of weight one. In the ϕ-representation, states, as
described in Sect. 3.2.2.3 will simply be of the form already used for the gravita-
tional field, except that each vertex now also carries a label νv ∈ R describing the
dependence on the scalar field ϕ(v) through exp (iνvϕ(v)) [13]. (The scalars take
values in the Bohr compactification of the real line.) Well-defined lattice operators
are given by ̂exp (iν0ϕ(v)), for any ν0 ∈ R, which shifts the label νv by ν0. The
momentum, with its density weight, has to be integrated before it can meaningfully
be quantized. We introduce

PR :=
∫

R
d3xπ

where R is a spatial region. Since we have {ϕ(v), PR} = χR(v) in terms of the
characteristic function χR(v) = 1 if v ∈ R and zero otherwise, a momentum
operator PR has eigenvalue

∑
v∈R �νv in a state introduced above.
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For the matter Hamiltonian of a scalar field ϕ with momentum π and potential
W (ϕ) we have the classical expression

Hϕ[N ] =
∫

d3x N (x)

(
1

2
√| det E |π(x)

2 + Ea
i Eb

i

2
√| det E |∂aϕ(x)∂bϕ(x)+ √| det E |W (ϕ)

)

containing inverse powers of the metric. It can be quantized by loop techniques
[8, 14] making use of identities similar to (4.3). One first generalizes the identity to
arbitrary positive powers of the volume in a Poisson bracket,

{Ai
a, V r

v } = 4πγGr V r−1
v ei

a (4.6)

with Vv the volume of a small region including only the vertex v, and then combines
such factors with suitable exponents r to produce a given product of triad and co-triad
components. Since such identities would be used only when inverse components of
densitized triads are involved and a positive power of volume must result in the
Poisson bracket, the allowed range for r is 0 < r < 1. Any such Poisson bracket
will be quantized to

ėa{Ai
a, V r

v } 	→ −2

i�δ
tr

(
τ i hv,e

[
h−1

v,e, V̂ r
v

])
(4.7)

using holonomies hv,e in direction ėa, starting at v and of parameter length δ. These
general parameterized expressions are also useful for alternative quantizations of
terms in the gravitational part of the constraint, where different choices of r would
represent quantization ambiguities.

The exponent used for the gravitational part is r = 1, while the scalar Hamilto-
nians introduced in [8, 14] use r = 1/2 for the kinetic term and r = 3/4 for the
gradient term. With

εabcεi jk{Ai
a, V 1/2

v }{A j
b, V 1/2

v }{Ak
c, V 1/2

v } = (2πγG)3εabcεi jk
ei

ae j
bek

c

V 3/2
v

= 6(2πγG)3
det(ei

a)

V 3/2
v

and

εabcεi jk{A j
b, V 3/4

v }{Ak
c, V 3/4

v } = (3πγG)2εabcεi jk
e j

bek
c

V 1/2
v

= 6(3πγG)2
Ea

i

V 1/2
v

sgn det(e j
b)

one can replace all inverse powers in the scalar Hamiltonian:
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Ĥϕ[N ]ψg =
∑

v∈g

N (v)

⎛

⎝1

2
P̂2

v

(
1

48

∑

eI ,eJ ,eK

ε I J K B̂(1/2)v,eI B̂(1/2)v,eJ B̂(1/2)v,eK

)2

+ 1

2

(
1

48

∑

eI ,eJ ,eK

ε I J K (	eI ϕ)(v)B̂
(3/4)
v,eJ B̂(3/4)v,eK

)2

+ V̂vW (ϕ(v))

⎞

⎠ψg (4.8)

where B(r)v,e denotes the vertex contribution at vertex v of a quantization of (4.7);	eϕ

denotes the difference operator along the edge e, and P̂v is the vertex contribution
to the momentum operator of the scalar.

In this way, inverse-triad corrections arise in matter Hamiltonians as well as in
the gravitational part of the constraint, affecting the dynamics. What kind of effec-
tive action this might correspond to and whether these corrections can be consistent
(not spoiling general covariance) will be discussed later in Chap. 10 about inhomo-
geneous perturbations. For now, we point out the relationship of full inverse-triad
expressions based on (4.7) with the corresponding behavior in isotropic models. In
isotropic models, we have seen that it is important to use the local patch volume
Vv (as a power of the elementary fluxes F�0 ) in order to ensure the correct scaling
dependence. In (4.7), or the Hamiltonians (4.5) and (4.8), we could use Vv as well as
the total volume V or that of any other region: volume contributions from vertices
not lying on the edge used for holonomies in the commutator drop out, anyway.
In homogeneous models, on the other hand, all vertices are equivalent and no such
difference arises. It is then important to ensure that only local vertex contributions
feature in the homogeneous expressions, which as seen in [15] has several other
important implications regarding consistency.

4.2.3 Problem of Dynamics

Handling the dynamics is the key problem of any approach to quantum gravity. It
splits into quite different but closely related subissues, the consistent construction
of the dynamics on one hand, and the evaluation on the other. In isotropic quantum
cosmology, the construction simplifies considerably and some of the key problems,
such as that of anomalies, trivialize. One can thus focus on developing methods for
the evaluation of quantum gravitational dynamics, which in the full setting has gained
only preliminary insights. Important issues of the evaluation, which we will see in
detail, are the role of lattice refinement, quantum back-reaction, and the implications
of changing states. Later constructions in models including inhomogeneity will allow
us to discuss also quantum space–time structure.

4.3 Isotropic Universes

A reduction of the Hamiltonian constraint from the full theory to symmetric models at
the quantum level is difficult, but there is information about the reduction of states and
spatial quantum geometry, as discussed in detail in Sects. 8.2.5, 9.1.3, and 10.1.2. This
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formalism allows us to derive the basic quantum geometrical principles for isotropic
loop quantum cosmology and then construct a Hamiltonian constraint operator along
the lines used in the full theory. Since general spectral properties of basic operators,
holonomies and fluxes, are preserved in this reduction, one can expect to capture
important features of full loop quantum gravity at least at a qualitative level. Specific
results seen in models can then be used to focus further derivations in the full theory.

4.3.1 Symmetry

Different procedures exist and are still being elaborated to reduce states from the full
stage to a reduced setting [16–22]. A natural definition of a symmetric state is one
that, as a functional on the space of connections, is supported only on the subset of
invariant connections [16]. By this procedure, one can directly reduce any given state
by evaluating it in the general expression of invariant connections for a symmetry
type of interest, such as isotropy. The result will not be a spin network state, but
rather a distribution on the full state space; it can be interpreted as being obtained
by averaging an inhomogeneous state over the symmetry group. Such states are not
embedded in the full Hilbert space but rather constitute truly reduced states. They
comprise a minisuperspace quantization, but one obtained with input from the full
theory. In contrast to Wheeler–DeWitt quantizations, crucial quantum space–time
structures are still realized in the models derived in this way.

Suitable combinations of basic operators can then be found which map those states
to others of this form, defining the basic representation of the model by reduction
from the full holonomy-flux algebra. Difficulties arise when one tries to implement
the full Hamiltonian constraint in such a way since it will not preserve the space of
symmetric states, and projections to ensure this cannot easily be introduced at the
distributional level. Constructions which may seem unnatural or contrived within
a minisuperspace model but are required to incorporate full features thus remain
required to implement the dynamics in a way mimicking the full one. No unique
dynamics can result in this way, which even with a complete reduction would not be
possible since the full dynamics is not unique in the first place. But with sufficiently
general parameterizations one can explore the range of possibilities and extract gen-
eral phenomena. As always with coarse-grained descriptions of microscopic physics,
one has to suitably parameterize one’s ignorance. If this is not done at a sufficiently
general level, results will be spurious. No guidelines are provided in Wheeler–DeWitt
quantizations, but much information is available from loop quantum gravity.

In particular, we will have to account for the crucial properties seen in the full
theory. Every proposal for the full Hamiltonian constraint so far changes the indivi-
dual sizes of discrete building blocks of geometry. In an isotropic setting this means
that the function v(φ) in (2.16), now written in an internal time φ, must indeed be a
function and cannot be constant in general. Although the precise form of v(φ) and
the associated N (φ) cannot easily be derived as mean fields of the refinement, a

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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quantization of isotropic dynamics must take the non-constant behavior of v(φ) into
account in a sufficiently general way.

4.3.2 Models

Since holonomies are the basic operators exciting and refining the geometry, they
will be crucial also in isotropic models. As already seen in Sect. 3.2.3.3, holonomies
refer to the number N = V /�3

0 of lattice states; now in a dynamical situation,
N (φ) will be a function of internal time. As in the full case, holonomies initially
enter the Hamiltonian constraint via curvature components of the Ashtekar–Barbero
connection, which in an isotropic setting reduces essentially to the Hubble parameter.
Classically, we have a Hamiltonian constraint

Cgrav = − 3

8πGγ 2 c2
√|p| + Hmatter(p, ϕ, pϕ) = 0 (4.9)

written for simplicity only in the spatially flat case (and without curvature coupling
in the matter Hamiltonian). Once the variables c and p are inserted in terms of the
scale factor a, this constraint indeed gives rise to the Friedmann equation with energy
density

ρ = Hmatter

a3V
(4.10)

in terms of a matter Hamiltonian for the region of size V .
The constraint also generates Hamiltonian equations of motion ḟ (c, p) ={

f (c, p),Cgrav[N ]} for a general phase-space function f. To specify the choice
of time coordinate, referred to by the dot, we have introduced the lapse function
N , Cgrav[N ] = NCgrav. Its main choices usually are N = 1 for proper time
and N = a = √| p̃| for conformal time. Using the appearance of the lapse func-
tion in the canonical form of the metric, this indeed provides the correct isotropic
line elements ds2 = −dt2 + a2

(
dx2 + dy2 + dz2

)
in terms of proper time t, and

ds2 = a2
(−dη2 + dx2 + dy2 + dz2

)
in terms of conformal time η. Equations of

motion for the basic variables read

ṗ = 2N
√|p|c/γ, (4.11)

implying the relationship c = V 1/3γ ȧ/N already seen, and

ċ = {c,Cgrav[N ]} = − c2

2γ
√|p| (N + 2pdN/d p)+ 8πγG

3

∂Hmatter

∂p
. (4.12)

This equation is the Raychaudhuri equation of the isotropic model, which can be
brought to the standard form after using the thermodynamical relation

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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P = −∂E

∂V
= − 1

3a2V N

∂Hmatter

∂a
(4.13)

for pressure. At this time, one should note that both equations, (4.11) and (4.12),
are derived from the Hamiltonian constraint. When quantized, the Hamiltonian most
likely receives quantum corrections, such that also these two equations, even the
innocent-looking (4.11), will be corrected.

The classical Hamiltonian constraint is not directly representable in terms of
holonomies due to the appearance of the non-almost periodic c2. However, almost
periodicity can be checked only when the full real range of the curvature variable c is
taken, which includes arbitrarily large values of curvature where one would no longer
trust the classical dynamics. At this time, the fundamental requirement that operators
in an isotropic loop quantization must be representable through holonomies which
are almost periodic in c becomes a guiding principle for deciding how the classical
dynamics must change in quantum gravity. Restricting the function c2/p ∝ (ȧ/a)2

to just a finite range, for instance up to Planckian curvatures, still allows one to extend
it to an almost-periodic function in c over the full range. Such an extension is not
unique, sin c and 1

2 sin(2c) being just two examples to extend c almost-periodically,
but the resulting quantization ambiguity, as always, can be parameterized and then
tested.

If we choose a class of almost-periodic extensions of c2 by δ−2 sin2(δc) with a
parameter δ,we can directly use the basic actions of exp(iδc) and p̂ to write the action
of a Hamiltonian constraint operator. As expected from the presence of holonomies,
it is a shift operator with terms raising and lowering the isotropic triad levels μ.
Expanding a general state in the triad eigenbasis, |ψ〉 = ∑

μ ψμ|μ〉, we obtain the
state’s triad representation as the set of coefficients ψμ, which may also depend on
other fields if different kinds of matter are present.

The construction proceeds along the following steps, which are analogous to
those from the full theory but can now be performed very explicitly. We represent√|p| via a commutator eiδc

[
e−iδc, V̂

]
to mimic the full treatment in the presence of

inverse powers of the densitized triad. (In isotropic models the inverse powers cancel
completely in the gravitational part of (4.9), and the treatment of inverse triads is not
required at this stage. Crucial properties remain unchanged if one uses a more straight-
forward quantization of

√|p|.) The action of the commutator on triad eigenstates
follows as before for inverse-triad operators. Also the action of the holonomy term
can be computed easily: sin2(δc) maps |μ〉 to − 1

4 (|μ+ 4δ〉 − 2|μ〉 + |μ− 4δ〉).
In the full theory, a consistent Hamiltonian constraint operator requires an ordering
in which holonomies quantizing the curvature components Fi

ab appear to the left.
Taking the same ordering in reduced models, we arrive at an operator with action

Ĉgrav|μ〉 ∝ δ−3sgn(μ)
(
Vμ+δ − Vμ−δ

)
(|μ+ 4δ〉 − 2|μ〉 + |μ− 4δ〉). (4.14)

The constraint equation Ĉgrav|ψ〉 = Ĉgrav
∑
μ ψμ|μ〉 = ∑

μ(Ĉgravψ)μ|μ〉 = 0

then implies a difference equation (Ĉgravψ)μ = 0, of the form
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sgn (μ+ 4δ)
(
Vμ+5δ − Vμ+3δ

)
ψμ+4δ(ϕ)− 2sgn(μ)

(
Vμ+δ − Vμ−δ

)
ψμ(ϕ)

+ sgn(μ− 4δ)
(
Vμ−3δ − Vμ−5δ

)
ψμ−4δ(ϕ) = −4

3
πGγ 3δ2�2

P Ĥmatter(μ)ψμ(ϕ)

(4.15)
for the wave functionψμ(ϕ) in the triad representation. Its coefficients, written here in

terms of volume eigenvalues Vμ = (
4πγ �2

P|μ|/3)3/2
, follow from the representation

of
√|p| as commutators.
The difference equation (4.15) follows from a constraint operator in which the

commutator h
[
h−1, V̂

]
quantizing triad components is ordered entirely to the right

of holonomies quantizing curvature components. This ordering is in fact suggested
by the full theory as explained in Sect. 4.2.1. But once the operator has been defined,

one can always order it symmetrically by replacing Ĉgrav with 1
2

(
Ĉgrav + Ĉ†

grav

)
.

In this case coefficients of the difference equation change but the structure remains
intact:

1

2

(
sgn(μ+ 4δ)

(
Vμ+5δ − Vμ+3δ

) + sgn(μ)
(
Vμ+δ − Vμ−δ

))
ψμ+4δ(ϕ)

− 2sgn(μ)
(
Vμ+δ − Vμ−δ

)
ψμ(ϕ)+ 1

2
(sgn(μ)

(
Vμ+δ − Vμ−δ

)

+ sgn(μ− 4δ)
(
Vμ−3δ − Vμ−5δ

)
)ψμ−4δ(ϕ)

= −4

3
πGγ 3δ2�2

P Ĥmatter(μ)ψμ(ϕ). (4.16)

There are other ways to order an operator symmetrically, such as
√

Ĉ†
gravĈgrav, but this

would be more complicated to compute. One might also be tempted to define an operator
symmetrically from the outset by splitting the sin2(δc) in two factors to be positioned to the

two sides of the commutator: sin(δc)h
[
h−1, V̂

]
sin(δc). (The commutator h

[
h−1, V̂

]
=

V̂ − hV̂ h−1 automatically gives rise to symmetric operators when an su(2)-trace is taken.)
However, this procedure does not properly mimic constructions in the full theory where hα
for a whole loop as in (4.2) could not be split into two equal factors.

Depending on the treatment of extrinsic-curvature contributions to the Lorentzian
constraint (4.1), using (4.4), a difference equation of higher order than shown here
may result. Such equations have been derived in [23, 24, 25].

4.3.3 Quantum-Geometry Corrections

In addition to obvious quantum features, two classes of quantum-geometry correc-
tions are present: holonomy and inverse-triad corrections. Both of them are based
directly on properties of the holonomy-flux algebra and the accompanying discrete-
ness of space, but there is a difference in their realization. Inverse-triad corrections
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result from a quantization of the classical reformulation (4.3) or (4.7) without regular-
ization. Holonomy corrections, on the other hand, are obtained after replacing c2 in
the isotropic Hamiltonian constraint by some almost-periodic function approximated
by c2 when δc is small. After this modification of connection terms, the dynamics is
no longer identical to the classical one. One may understand the higher-order terms
as some of the contributions expected from higher-curvature effective actions,2 but
the modification is done at whim. It disappears in the classical limit only if δ → 0
in the classical limit, which requires one to relate the curve parameter to the Planck
length. This relation, as seen in the context of lattice refinement, can be done only by
reference to an underlying inhomogeneous state, not within the symmetric model;
see Sect. 4.4.1.

The parameter δ is a regulator because it modifies the classical theory before it
can be quantized by loop methods. Since the limit δ → 0 cannot be taken at the
operator level—otherwise an operator for ĉ, not just for holonomies would exist—
one must give the extra terms arising from the regularization some physical meaning.
In loop quantum cosmology, this is done by interpreting them as higher powers
of curvature which are not relevant for the small-curvature regime of the classical
theory but are required for a well-defined quantum representation. At this stage,
as always in loop quantizations, one takes a considerable risk: one assumes that
the classical constraints can be modified in this way and still produce a reasonable
theory. In particular covariance is at stake here, for one is adding only higher powers
of the Ashtekar–Barbero connection at the Hamiltonian level, not higher powers
of covariant curvature contractions at the level of an action. We will come back to
the important related problem of anomalies later in this book (Chap. 10). For now,
we notice that the key and still outstanding test of holonomy corrections is not to
evaluate their dynamical implications in homogeneous models where they can be
implemented freely, thanks to a trivialization of the anomaly problem, but rather a
consistent extension to inhomogeneities.

In some models, notably isotropic ones with a free, massless scalar, it is possible
to quantize the Hamiltonian constraint in exponentiated form, rather than exponenti-
ating just the connection components [26]. One obtains an unregularized loop quan-
tization without higher-order corrections. Such a quantization would be preferred
compared to regulated ones because it would allow the anomaly-free inclusion of
inhomogeneities in much simpler terms. It would also eliminate all holonomy effects.
At the present stage of developments, however, the models in which such an unreg-
ulated loop quantization can be applied appear too special to rule out holonomy
corrections altogether.

One can remove the regulator δ at the level of the difference equation provided one
requires solutions to be smooth enough [27]. The difference equation then becomes
a differential equation, essentially reproducing the Wheeler–DeWitt equation as
the continuum limit. However, with the limit δ → 0 taken only at the level of

2 These cannot be all contributions because higher-derivative terms of the metric do not arise by
the holonomy replacement. See Chap. 13 for a general treatment of effective canonical dynamics
which introduces new quantum degrees of freedom analogously to higher-derivative actions.

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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equations of motion for states, not in a full quantization, the resulting theory cannot
be considered as fundamental.

It is sometimes suggested that the coordinate volume V , which appears in δ but
also in inverse-triad corrections, is a regulator and should be taken to infinity or the
total size of a compact space. This is not correct because the classical theory simply
does not depend on the value of V . Sometimes in this context it is claimed that
inverse-triad corrections disappear, just as holonomy corrections would disappear if
the limit δ → 0 could be taken. Also here, the limit could only be taken at the level
of equations, not at the level of operators where no inverse of the flux operator exists.

4.4 The Role of an Underlying State

So far, we have treated the parameter δ for different almost-periodic extensions as
a constant. In a derivation of holonomies directly from isotropic connections in the
general expression, we have δ = �0/V 1/3 as seen earlier. In terms of the mean fields
of lattice refinement, this can be written as δ = N −1/3, which shows that a lattice-
refinement model must be based on a parameter δ(φ) depending on the internal time
φ used to realize the refinement. In other words, while the size V is that of a constant
region chosen once and for all to set up the quantization, the coordinate length �0 of
curves used for holonomies can in general not be considered as a constant. Physically,
the elementary discrete geometry must be refined during expansion to avoid that the
discreteness scale is blown up to macroscopic sizes by the expanding universe. Such
refinement indeed happens by a fundamental Hamiltonian constraint operator, which
may generate new vertices and always changes the elementary sizes v(φ) of discrete
building blocks.

In isotropic models, it is often convenient to use the scale factor a as internal time,
such that we will have a function δ(a). In the mean-field picture, this will make the
step-size δ of the difference equation dependent on the label μ: the equation is no
longer one of constant step-size. We will later discuss how such equations can be
dealt with; for now we are only interested in their general form.

4.4.1 Refinement Models

For specific difference equations based on refinement models, we would need N (a)
or v(a), related by N v = V a3, as it arises from the genuine full dynamics in a
suitable state. Lacking a derivation, we parameterize N (a) = N0a−6x such that
δ(a) ∝ a2x and v(a) = V a3(1+2x)/N0. This is only an ansatz to probe different
behaviors; in general N (a) need not be of power-law form for all a.But power-laws
provide insights into the possible behaviors and can, at least for small ranges for a
to vary, be used as approximations of general functions. Looking at different values
of x, this procedure will show the behavior in different phases of refinement. For
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x > 0, N is decreasing with expansion; for x = 0 it is constant and the discrete
volume v ∝ a3 is proportional to the total volume. For 0 > x > −1/2, both v and
N are increasing, which makes it the regular range expected from the full behavior
of the discrete dynamics.

Another, independent argument for x < 0 is that δ(a) then depends on a via a negative
power, whose dimension can be compensated for only by a positive power of a parameter
with dimension length. If the Planck length is used as this parameter, δ → 0 in the classical
limit, removing holonomy corrections.

If x = −1/2, the local sizes v remain constant while the number N of sites
increases proportionally to volume. As already seen, this behavior is unlikely from
the point of view of the full theory because local vertex contributions to volume are
always changed by the Hamiltonian constraint. It could at best be a coarse-grained,
averaged description in a special case of the full dynamics. If x < −1/2, finally, the
discrete sizes v must decrease when the universe expands. Since both N and v are
bounded from below, the generic range where power-law behavior can be realized
for long times is −1/2 < x < 0.Near the upper bound, however, the discrete volume
contributions v are in danger of increasing too fast, or N is not increasing fast enough
and refinement is too weak. In this regime, phenomenological restrictions on x can
easily be found [28–32].

More generally, N may be a generic function, which one can think of as being
composed of different power-law phases each parameterized by its own x . At this
place we can see the real strength of using the Bohr compactification of the real
line as kinematical quantum configuration space: for a single power-law form, the
dynamical equation would always be periodizable by using |p|1−x instead of p as the
state label, and |p|x c as the canonically conjugate curvature parameter in holonomies.
Since the dynamics splits the range of all values into distinct sectors connecting only
countably many values by the difference equation, we could from the outset have
worked with states periodic in �0c̃ = c/N 1/3 ∝ a2x c. Irrespective of whether we
assume periodicity when choosing the dynamics or when formulating the kinematical
states, such an assumption will always seem ad-hoc. If different power-laws or a non-
power law function are involved, however, no periodicity occurs at all. This shows the
real strength of the Bohr compactification by providing a repository for all possible
refinement cases. (In a later chapter we will see that anisotropic models also make
use of the full Bohr compactification without implicitly using periodic sectors, even
if they are based on power-law behaviors of N , crucially leading to non-equidistant
difference equations.)

At this stage, it is worth commenting on differences between the mean-field picture and a pure
minisuperspace quantization. We have first derived the constraint operator for a constant δ,
and are then putting in the μ-dependence to ensure that full properties are reliably captured.
One can also take the point of view that δ(p) is used from the outset, having to quantize a more
complicated phase-space function exp (iδ(p)c) instead of ordinary holonomies. For simple
choices of δ(p) of power-law form, such quantizations can be performed: one employs a
canonical transformation such that the product δ(p)c which appears in the exponential is
now one of the basic variables, and considers “holonomies” to be written in this variable. If
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δ(p) ∝ |p|x is of power-law form, such a transformation can easily be done with |p|1−x being
the new momentum conjugate to |p|x c.For x = −1/2, for instance, this momentum would be
the volume V = |p|3/2. Pretending that c/

√|p| is to be used in almost-periodic holonomies
would thus lead to a difference equation which is equidistant in volume values rather than
densitized-triad values. For largeμ, this procedure is equivalent to inserting δ(μ) ∝ |μ|−1/2

directly in the basic difference equation (4.16), as one can see by substitution; for smaller
μ, one can think of the equation obtained after a canonical transformation as providing one
specific factor ordering of exp (iδ(p)c)which unlike the basic exp (iδc)with constant δ is not
defined uniquely. As one can see, however, there are difficulties in particular around μ = 0
due to the absolute value used in fractional powers and the appearance of inverses of μ.
Physically, this is not surprising since the μ-dependence of δ arises from lattice refinement,
and around μ = 0 not many lattice sites are excited. The lattice is thus very irregular, and
one cannot expect to describe the behavior well by using simple power-laws for N (p).
Keeping a general function δ(μ) for basic properties of the dynamics, and specializing to
simple forms only to analyze concrete cases at larger μ, is then the best way to shed light
on the discrete dynamics.

Refinement is also relevant for inverse-triad operators and the corrections they
imply, which contain the basic holonomies and fluxes (or the volume operator). In
the commutator (4.7) used crucially in their definition, the local vertex volume Vv
features, corresponding to the plaquette sizes in a refinement model.3 As already dis-
cussed in Sect. 3.2.3.5, it is then not p = V 2/3a2 (the total box size) which features
in commutators or correction functions but the plaquette size N −2/3 p = �2

0a2.

This change makes the flux contribution, appearing as the argument of correc-
tion functions, smaller, and the correction correspondingly larger. For instance for
x = −1/2 in a power-law form N (p)−1/3 = δ(p) ∝ |p|x , the plaquette size
�2

0a2 = N −2/3|p| is constant. Large p do not make inverse-triad corrections shrink
in this case, as it would happen without lattice refinement. Note that for a correct
treatment of inverse-triad corrections with refinement, implemented by a phase-space
dependent N (a), the refinement function is not to be inserted in the commutator
before its computation, which would give the wrong result since the a-dependence
of the factor would change the classical Poisson bracket. Refinement and the a-
dependence is a mean-field effect, and thus to be inserted in the final expressions
of an effective or coarse-grained theory. Since minisuperspace models by defini-
tion constitute coarse-grained descriptions of the full theory, mean-field treatments
cannot be avoided altogether.

4.4.2 Interpretations

Different viewpoints have emerged in the development of loop quantum cosmology,
all rooted in the original constructions of [23, 33–36]:

3 In such commutators in the full theory, a single Vv gives the same contribution as the volume
operator of all of space: contributions from vertices not lying on the edges used for the holonomy
in the commutator cancel. But this observation does not change the fact that inverse-triad operators
receive contributions only from local vertex contributions of the volume operator. In reduced models,
homogeneity implies that all vertex contributions must contribute equally; one can properly capture
the full behavior only by using single vertex or plaquette contributions from the outset.

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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Pure minisuperspace quantization4: One may argue that the curvature relation
(4.2), δ2sa

1 sb
2 Fi

abτi ∼ hα − 1 with hα ∼ sin2(δc) in isotropic models, used crucially
in quantizing the Hamiltonian constraint, should be evaluated by fixing the geometric
area A = a2δ2 as an ambiguity parameter rather than the coordinate area δ2. If A
indeed takes a fixed value, one obtains δ ∝ 1/

√|p|, corresponding to the refinement
scheme x = −1/2. In particular, by fixing A one trivially ensures that local patches
of the underlying lattice state are constant, and thus N ∝ V . (Most such realizations
make use of the further ad-hoc assumption that this fixed value of A should be the
minimal or some close-to-minimal non-zero eigenvalue of the full area spectrum. This
condition is ad-hoc because it brings in the full area spectrum—the area operator in a
reduced model does not have a non-zero minimal eigenvalue—and in that it crucially
refers to the area operator at a place where it is not made use of in full constructions.
Moreover, the resulting size of holonomy corrections is incompatible with inverse-
triad corrections [15], implying an �0 that gives rise to large inverse-triad corrections
even at large volume.)

The main (and perhaps only) justification of such a viewpoint toward the dynamics
of loop quantum cosmology, compared to a constant δ, is a posteriori: A behavior
of δ ∝ 1/

√|p| in holonomies appearing in the dynamics provides an additional
suppression of higher powers of curvature at large volume, thus making it easier
to comply with semiclassical and near-continuum behavior (provided inverse-triad
corrections are ignored, which is often done in this context). Holonomy corrections
depending on c2/p rather than just c2 are better behaved at large volume especially if
there is a positive cosmological constant (in which case c ∝ √|p| at large volume is
growing) or in the presence of intrinsic curvature. Moreover, holonomy corrections
automatically depend on the scale-independent Hubble parameter ȧ/a. The pure
minisuperspace viewpoint, without additional mean-field effects, thus presents a
valid refinement scheme regarding curvature, but there are no strict arguments why
it should be the preferred one. In fact, this viewpoint fails in Kantowski–Sachs models
for the Schwarzschild interior, where a refinement with N ∝ V is not viable near
the horizon; see Sect. 8.3. The scheme is also inconsistent with slow-roll inflation in
the presence of inhomogeneities [39].

The starting point itself of the pure minisuperspace view is not fully convincing:
curvature components Fi

ab are coordinate dependent, so why should one not refer to
coordinate areas in their regularization? A reference to coordinates is indeed what
happens in the full regularization, where using geometrical areas such as A would not
be possible. Finally, the improved view in holonomies goes only half-way toward
a consistent regularization. It uses refinement ideas in holonomies, where large-
volume effects are potentially most problematic, but not for fluxes. Accordingly,
minisuperspace quantizations typically produce wrong inverse-triad corrections by

4 These models were initially introduced under the name “improved” quantization [37, 38], indi-
cating advantages in certain regimes of low curvature and large volume. However, the modifications
introduced in these models turned out to be rather ad-hoc. (To appreciate this realization, the mod-
els are sometimes called “improvised.”) By now, what goes by the name “improved dynamics” is
under strong pressure from different types of inconsistencies. The improved dynamics is itself to
be improved, giving the name a rather misleading connotation.

http://dx.doi.org/10.1007/978-1-4419-8276-6_8
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overlooking the refinement for the volume operator appearing in commutators (see
the Second Principle). In the pure minisuperspace context, it is then often stated
erroneously that inverse-triad corrections play no role. By insisting that all quantum
effects be realized in reduced operators, rather than partially in an underlying state,
this view remains stuck in a mere minisuperspace picture, ignoring lessons from the
full theory.

One undeniable advantage of the improved dynamics is that it removes ambi-
guities, if only by ad-hoc choices, and thus tends to provide very specific schemes
and equations. For this reason, this special kind of the dynamics in loop quantum
cosmology is often explored.

Refined loop quantum cosmology: A general and consistent viewpoint realizes
that refinement is mainly implemented by properties of an underlying state: it is
a mean-field effect that appears in minisuperspace models but crucially rests on
behavior in the full theory. The incompleteness of the full theory and the compli-
cated nature of symmetry reduction at the quantum level make it difficult to derive
refinement models, but characteristic properties can be implemented by means of
sufficiently general parameterizations; see Sect. 9.1.6.3 for a model that illustrates
how refinement schemes could be derived. The state dependence will further be illus-
trated below. As the main justification for this refined view we state that it is required
in general models such as black-hole interiors, and that only such a treatment can
produce a consistent form of inverse-triad corrections.

4.4.3 Refinement from Reduction

Refinement arises in reduced models as a consequence of properties of underlying
states used in the reduction. One may wonder why state-dependence should arise
at all, and why effects cannot be captured completely in a reduction of operators.
Properties of solutions to constraint equations certainly depend on the operators used,
but the definition of reduced operators is normally not expected to depend on proper-
ties of solutions to the full operator. And refinement, ultimately a consequence of the
generation of new vertices or lattice sites by full Hamiltonian constraint operators,
is a property of solutions to the full constraint equation.

If quantum cosmological models were fundamental, they should in fact be defined
fully in terms of their operator algebra, and no free function such as N (p) or extra
parameters such as N0 or x could appear. But quantum cosmological models are
not fundamental; they provide an average description of full quantum gravity. In
the averaging, additional features not captured fully by the operator algebra arise as
mean fields.

A further crucial property especially in loop quantum gravity is the fact that
regularizations of the full Hamiltonian constraint depend on the state the operator is
going to act on. We refer to the graph when defining the loops used to rewrite the
curvature components of the constraint. In the end, cylindrical consistency allows
us to extend the graph-dependent definition to that of a consistent operator on the

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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full Hilbert space, but the state dependence of it remains. This state dependence
can then reappear in reduced models in a way whose explicit details may be rather
hidden by the reduction procedure but can still be parameterized. Such a reduction
is complicated to do for the actual problem of interest, the Hamiltonian constraint
operator of loop quantum gravity. But the resulting state dependence can easily be
seen in an example:

Example 4.1 Consider a classical phase space with three canonical degrees of free-
dom (q1, p1; q2, p2; q3, p3), subject to the first-class constraints D = p2,C = p3.

Instead of performing a symmetry reduction, we are going to look at consequences of
different implementations of gauge fixing the “diffeomorphism” constraint D, thus
reducing the “Hamiltonian” constraint C.As the classical gauge-fixing condition we
choose F = q2 − 1 = 0.

Let us propose the state-dependent quantization (with regularization)

Ĉ(n) = p̂3 + 1 − q̂2
2 + p̂2

2

2n + 1

on the subspace of the Hilbert space formed by states ψ1 ⊗ |n〉 ⊗ ψ3 with(
q̂2

2 + p̂2
2

) |n〉 = (2n + 1)|n〉. By using any integer n ≥ 0, a constraint opera-
tor with the correct classical limit is defined on the full Hilbert space. Note that
the state-dependent regularization of Ĉ(n) produces an anomalous quantization with[

D̂, Ĉ(n)
]

= q̂2/ (n + 1/2) �= 0, resembling what may happen with the diffeomor-

phism and Hamiltonian constraint in loop quantum gravity.
If we simply implement the gauge-fixing conditions for D in a reduced setting, n

becomes inaccessible. Just as we insert symmetric forms for the phase-space variables
in a minisuperspace quantization, we would require p2 = 0 and q2 = 1 to implement
D = 0 and F = 0 in a constraint operator Ĉred for a reduced model, leaving us with
the n-dependent

Ĉred,(n) = p̂3 + 1 − 1

2n + 1
.

We can recover n and thus uniquely fix the reduced Hamiltonian only if we know
the state |n〉 that gives rise to the gauge fixing at the full quantum level, corresponding
to the state of non-symmetric degrees of freedom in a minisuperspace quantization
(the underlying state). At the state level, p2 = 0 and q2 = 1 is possible only for
n = 0,which fixes n and brings the reduced Hamiltonian to the simple form Ĉ = p̂3.

In this example, no trace of the state-dependent regularization is left if the reduc-
tion is done completely because no regularization of the operator was required in
the first place; we just picked an unnecessarily contrived operator. For loop quan-
tum gravity, the initial regularization and state dependence of the full Hamiltonian
constraint is crucial, and so it should be expected to leave a trace in reduced models
as well. It is also easy to see that the reduction parameters, as long as they are not
eliminated by a complete reduction, may depend on the reduced or physical degrees



66 4 Dynamics: Changing Atoms of Space–Time

of freedom, just as a general refinement function N does. In the example here, we
may regularize C to

Ĉ(n) = p̂3 +
(

1 − q̂2
2 + p̂2

2

2n + 1

)

p̂1

and obtain a reduced Hamiltonian

Ĉred,(n) = p̂3 +
(

1 − 1

2n + 1

)

p̂1

with a state-dependent correction depending on the physical observable p̂1.

In the preceding example, a full reduction, computing the exact state that imple-
ments the reduction condition, allowed us to arrive at a unique reduced Hamiltonian
without any remnant of the state-dependent regularization. A further property that is
realized in loop quantum gravity (the full diffeomorphism constraint relating sym-
metric and non-symmetric degrees of freedom) prevents this from happening, as a
slight variation of the example shows:

Example 4.2 Now, take the constraints D = p2 + p3 with C = p3 and the previous
gauge-fixing condition F = q2 − 1 = 0. Implementing D = 0 and F = 0 in a
reduction with the same Ĉ(n) as before then leads to the reduced Hamiltonian

Ĉred,(n) = p̂3 + 1 − 1 + p̂2
3

2n + 1

and we are guaranteed a remnant of the state dependence in any reduced model:
any value for n that may be obtained from a complete reduction can only depend
on the (q2, p2)-state, and it cannot cancel the extra p3 appearing in the reduced
Hamiltonian.

As this set of examples shows, gauge-fixing the diffeomorphism constraint (for
which symmetry reduction is one example), the regularization of the Hamiltonian
constraint with its state dependence, and the anomaly issue all matter for a complete
understanding of refinement. Currently, these issues are only poorly understood, and
the best one can do is a sufficiently general parameterization of refinement options.

4.5 Basic Singularity Removal: Quantum Hyperbolicity

Given the difference equation in any form of lattice refinement, we use it to understand
quantum evolution in the small-volume regime, near the singularity μ = 0. First, in
contrast to a Wheeler–DeWitt quantization based on metric variables and the scale
factor a, the singular state is now in the interior of the configuration space rather
than at a boundary: the freedom of having two possible orientations of the triad
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makesμ take values of both signs. This fact opens up a direct way of testing whether
there is a singularity in the sense of breakdown of evolution, since the difference
equation for a state in the triad representation provides a natural evolution scheme
via its recurrence. Irrespective of what internal time one would choose to describe
evolution, that is whether it is indeed the triad value μ or something else entirely, we
can test whether physical wave functions satisfying the constraint equation remain
well-defined in a neighborhood of the singularity [40, 41].

Going through the recurrence, starting with suitable initial values on one side
of positive μ, say, it is indeed easy to see, using (4.15) that μ = 0 does not pose
any obstruction. The matter Hamiltonian remains regular at μ = 0, just as it does
in the full theory at degenerate triads. Nevertheless, it could happen that the recur-
rence stops at μ = 0 if coefficients of the difference equation vanish, preventing one
from determining the next values of the wave function. For the form written here,
coefficients can indeed vanish just at the classical singularity: for backward evolu-
tion toward smaller μ, the relevant term is Vμ−3δ(μ) − Vμ−5δ(μ), which vanishes if
μ = 4δ(μ). It multiplies ψ0, the value of the wave function at the classical singular-
ity, which thus remains undetermined by initial data. This would be a disaster if that
value would be required to continue the recurrence: the wave function at negative
μ, “at the other side of the singularity,” would not be determined by initial data at
positive μ. At vanishing volume, evolution would still break down, and we would
have a singularity as classically.

It turns out, however, thatψ0 is not needed for the further recurrence: it completely
decouples from the rest of the wave function. Whenever it would show up in the
difference equation, it is multiplied with a coefficient that vanishes at this rung of
the ladder. (For the symmetric ordering of the constraint giving rise to the difference
equation (4.16), we move through μ = 0 without decoupling. Other orderings lead
to singularities sinceψ0 or other values of the wave function nearμ = 0 could not be
determined but would be needed for further recurrence.) In this way, the recurrence
can be undertaken through the place of the classical singularity; there is no singularity
anymore and our evolving quantum space–time instead extends to a new region not
seen classically. “Before” the big bang, in this internal-time picture and now back
in forward evolution, we have a contracting universe since V (μ) decreases with
increasing μ for μ < 0. The change in sign of μ means that the orientation of the
triad reverses in the big bang transition where the universe, as it were, turns its inside
out.

Instead of determining the value of ψ0, the difference equation taken at
μ = 4δ(μ) provides a linear equation for two values of the wave function that
would be used in the recurrence for ψ0 if the ψ0-coefficient in the difference equa-
tion would not vanish. By the preceding recurrence steps, the linear equation can
be traced back to one for the initial values chosen at some large μ, providing a
dynamical initial condition [42, 43].

All this happens deeply in the quantum regime and different effects are at play.
The difference-equation nature, crucial for the recurrence, relies on the use of
holonomies. Comparing this to the classical expression of the constraint, we are
considering higher-order corrections to the classically quadratic term in c, as it is
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required for almost-periodic expressions. We also have crucially made use of the reg-
ular behavior of inverse-triad operators, especially in the matter Hamiltonian (which
then annihilates |0〉). We have not specified a refinement scheme but just used the
property that aroundμ = 0, δ(μ) is regular. Since singularity-traversal requires only
a fewμ-steps, possible changes in δ(μ) can be ignored. The argument is independent
of the refinement scheme. Finally, since we are considering the evolution of an entire
wave function, there are implicit quantum back-reaction effects of the whole state
on its expectation values, implying further deviations from classical evolution. All
these effects are at play in the highly quantum phase around μ = 0, which makes
the development of an intuitive picture difficult. There are, however, simple special
cases where one of the effects is dominant, or where the different effects can be
separated from one another. Such models provide more intuitive pictures of at least
some aspects of singularity resolution in loop quantum cosmology, and they allow
one to develop effective descriptions, the topic of the next part.
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