
Chapter 3
Kinematics: Spatial Atoms

Quantum geometry determines properties of quantized space–time structures, which
can be interpreted as providing an atomic understanding of space–time. A view
results which is fascinating not only in its physical implications but also in its rich
combination of aspects of geometry and quantum theory. Many relevant features
can already be seen by analogy with quantized particles, then borne out by rigorous
constructions of quantum space–time.

3.1 Quantized Particles

Different aspects seen already in single-particle quantum mechanics are important
in the context of quantum space–time as well. First, we consider an ordinary free
and non-relativistic particle. Its well-known solutions show that the wave function
in general spreads out in time even if the particle is not moving. Clearly, there is
more freedom in quantum compared to classical dynamics: quantum variables such
as fluctuations usually change independently of what one classically considers as
the degrees of freedom; even a particle which classically would stay at rest can have
non-trivial quantum dynamics. The degree of spreading can easily be determined
by solving an equation of motion for the position fluctuation: With the Hamiltonian
Ĥ = p̂2/2m and the general identity

d

dt
〈Ô〉 = 〈[Ô, Ĥ ]〉

i�
(3.1)

for an arbitrary operator Ô, we have the equation

d

dt

(
〈q̂2〉−〈q̂〉2

)
=〈[q̂

2, Ĥ ]〉−2〈q̂〉〈[q̂, Ĥ ]〉
i�

= 1

m
〈q̂ p̂ + p̂q̂〉 − 2

m
〈q̂〉〈 p̂〉 = 2

m
Cqp.

(3.2)

The fluctuation (�q)2 = 〈q̂2〉 − 〈q̂〉2 is not guaranteed to remain constant
in time; more precisely, its spreading is controlled by the covariance
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Cqp = 1
2 〈q̂ p̂ + p̂q̂〉 − 〈q̂〉〈 p̂〉 of the state. A usual unsqueezed Gaussian state,

for instance, which is often used for an initial profile and has the form ψ(q) ∝
exp(−q2/4σ 2)with a real variance σ, has vanishing covariance. Such an initial state
would ensure that the initial spreading does not change momentarily. However, as a
function of time the covariance must satisfy another equation of motion:

d

dt
Cqp = 2

m
(�p)2 (3.3)

again derived using (3.1). The covariance could be constant only if the momentum
fluctuation �p vanishes, which cannot be the case for a normalizable state. On the
other hand, the equation of motion for�p itself, derived by the same methods, tells us
that it is a constant in time. We can thus solve (3.3) for Cqp(t) = 2(�p)2t/m+C (0)

qp

in terms of its initial value C (0)
qp . This solution, in (3.2), gives

�q(t) =
√

2

m2 (�p)2t2 + 2

m
C (0)

qp t +�q(0) (3.4)

as the well-known result showing the spreading of a free-particle state in time.
We have discussed this familiar example, already encountered in Sect. 2.3, at some

length because it illustrates useful methods which we will come back to later, and
because it provides important lessons. As seen clearly in this simple example, while
one is always free to choose an initial state and make it as simple as possible, quantum
dynamics in general changes its properties as time goes on. Here, we have seen that
a vanishing covariance cannot be maintained in time; states tend to get “squeezed”
and develop non-vanishing correlations. This is true even in situations which one
would consider as semiclassical, and here correlations are even an integral part of
decoherence scenarios [1].

To visualize the meaning of correlations, we use the second-order moments (�q)2,
Cqp and (�p)2 of a state to define the family of ellipses

q2(�p)2 + 2qpCqp + p2(�q)2 = const (3.5)

around the origin in the q − p-plane. These ellipses demonstrate the amount of
quantum fluctuations: for Cqp = 0, for instance, we have an ellipse of semimajor
axes �q along the q-axis and �p along the p-axis. For Cqp �= 0, these ellipses
are rotated such that certain linear combinations of q and p show the maximal and
minimal fluctuations. A distribution function with these properties can be computed
from the wave function: the Wigner function

W (q, p) = 1

2π�

∞∫

−∞
ψ∗

(
q + 1

2
α

)
ψ

(
q − 1

2
α

)
e−ipα/�dα. (3.6)

The factor of 1/2π� ensures that W (q, p) and the marginal distributions it pro-
vides by integrating over q or p, respectively, are normalized:

∫∞
−∞

∫∞
−∞

W (q, p)dqd p = 1.
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(A probability distribution in a strict sense, that is a non-negative function, is
obtained if and only if ψ(q) is Gaussian.)

For a Gaussian state

ψ(q) = exp
(
− 1

4 (σ
−2
R + iσ−2

I )q2
)

(3.7)

of arbitrary squeezing, we obtain the Wigner function

W (q, p) = 1

π�
exp

(
− 1

2

(
σ−2

R + σ 2
R/σ

4
I

)
q2 + 2σ 2

Rσ
−2
I qp/�− 2σ 2

Rp2/�2
)
. (3.8)

In terms of fluctuations and the covariance, related to σR/I via (�q)2 = σ 2
R . (�p)2 =

�
2/4σ 2

R + �
2σ 2

R/4σ
4
I and Cqp = −�σ 2

R/2σ
2
I (see for instance (13.6)), we can write the

exponent as

E := −2�
−2

(
q2(�p)2 + 2qpCqp + p2(�q)2

)
. (3.9)

Constant-level lines of the Gaussian Wigner function in phase space are thus ellipses. In order
to determine their proportions, we choose reference values q0 and p0 with the dimensions
of q and p. respectively, and work with dimensionless ratios q/q0 and p/p0. In the absence
of a ground state or other specific features of states, no distinguished values for q0 or p0 can
be provided (unlike, for instance, if one could refer to the harmonic-oscillator ground state
with fixed fluctuations of the correct dimensions). After dividing E by q2

0 p2
0, we express

all terms by dimensionless variables, in which we find the major axis of the ellipse rotated
against the q-axis by an amount

tan(2α) = q0 p0Cqp

q2
0 (�p)2 − p2

0(�q)2
. (3.10)

An interpretation of the covariance is thus as the rotation of the likelihood ellipse in phase
space. The axes lengths of the ellipse are

p2
0(�q)2 + q2

0 (�p)2 ±
√
(p2

0(�q)2 − q2
0 (�p)2)2 + 4q2

0 p2
0C2

qp

2q2
0 p2

0

which thanks to (�q)2(�p)2 − C2
qp = �

2/4 (a Gaussian state saturates the uncertainty
relation) can be written as

p2
0(�q)2 + q2

0 (�p)2 ±
√
(p2

0(�q)2 + q2
0 (�p)2)2 − q2

0 p2
0�2

2q2
0 p2

0

.

Since there are no distinguished values for q0 and p0 in general, the only available meaning
of the squeezing of states is by non-vanishing correlations, rotating the likelihood ellipse.
Changing position and momentum fluctuations while keeping the uncertainty relation satu-
rated at vanishing correlations provides a meaningful sense of squeezing only if one can refer
to a distinguished state, such as the harmonic-oscillator ground state. In quantum cosmology,
no ground state is available to define squeezing in the absence of correlations. From now on,
we will use only the general sense of squeezing as determined by Cqp �= 0.

If (�p)2 is constant in time (as for the free particle), (�q)2 must be large for large Cqp.

The major axis of the ellipse then has a length approximately given by�q, while the minor
axis is very small. The ellipse is stretched out in one direction, along a linear combination
of q and p determined by the covariance or the angle α in (3.10). While this linear combina-
tion has large fluctuations, the orthogonal one has very small ones and thus behaves rather
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classical. In this way the emergence of a classical degree of freedom via decoherence can be
seen, whose precise form is determined by the underlying dynamics. Squeezed states with
large covariance automatically arise in the process, and play an important role for the nearly
classical behavior. In general quantum systems deviations from Gaussian form more general
than squeezing arise.

As far as semiclassical regimes are concerned, we arrive at our

First Principle State dynamics is important and to be derived. In particular, the
form of appropriate semiclassical states cannot always be guessed, or assumed to be
unsqueezed Gaussians.

From elementary particle physics, for which perturbations around the free vacuum
state are often sufficient, one is used to Gaussian states to play a central role. But
the form of the vacuum is a dynamical question, and general situations in quantum
cosmology may not even allow a distinguished vacuum or ground state. More general
classes of states and methods to deal with them must be used. In Sect. 5.4.1.3 we
will see an example of states rapidly moving away from Gaussian form, then settling
into a new, better preserved shape as determined by its moments [2]. Other example
systems have dynamical coherent states of exactly preserved shape, but these systems,
such as the harmonic oscillator, are very special and rarely realistic. More generally,
states of “stable” shape exist [3], but this is a mathematical rather than physical
generalization of the desired properties of dynamical coherent states. In fact, in these
more general states the shape does change: As time goes on, the entire state evolution
is determined by the change of as many parameters as there are classical degrees of
freedom; however, unlike in the harmonic-oscillator case, these parameters are not in
one-to-one correspondence with expectation values. They partially affect fluctuations
and other moments of the state as well, and thus the state’s shape evolves. In particular,
semiclassicality may be lost as the states evolve.

Considerations of the free particle in quantum mechanics offer another observa-
tion. If the particle is very massive or macroscopic with large m in (3.4), it takes a
long time for the wave function to spread out from some tightly peaked initial state. In
a naive interpretation, this would suggest that macroscopic bodies do not show quan-
tum effects at all. This conclusion can, of course, not be true since there are important
properties even in macroscopic situations, such as conductivity, which rely on quan-
tum aspects of their constituents. At this stage, the composite, atomic nature of matter
becomes important: microscopic building blocks are much smaller, and they almost
always behave very quantum. This is an obvious statement for condensed-matter
physics, but it shows that quantum cosmology, where the dominant view is usu-
ally one of a large macroscopic and homogeneous universe, must properly take into
account the underlying atomic nature of space–time if it is to describe all quantum
phases of the universe reliably.

Second Principle Microscopic physics is important. In cosmology, even homoge-
neous models must include the proper small-scale quantum behavior. They constitute
many-body systems when seen in quantum gravity; the large “number of particles”,
corresponding to N (t) of the preceding chapter, may lead to characteristic effects.

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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For instance regarding the singularity problem, a massive homogeneous “blob”
universe, which contains all its matter smeared-out, may be non-singular in some
models. For instance, examples exist in which effective violations of energy condi-
tions can trigger a “bounce” where the isotropic universe volume is minimal [4]. But
if the microscopic dynamics of its quantum building blocks remains singular, which
is a question more complicated to address, the theory is still in danger of breaking
down.

For the dynamics of many-particle systems at high energies, quantum field theory
rather than particle quantum mechanics is required. Here, one starts with fields on a
given space–time and applies quantization techniques. For gravity and cosmology,
however, it is the space–time itself that is to be quantized. Familiar techniques,
which always implicitly assume the availability of a background space–time, then
fail. Canonical quantization of a scalar field on Minkowski space–time, for instance,
might make use of a mode expansion

φ(x) =
∫

d3k√
2ωk

(
âkeik·x + â†

ke−ik·x)
. (3.11)

to define annihilation operators âk and distinguish the vacuum state |0〉 as the state
annihilated by all âk.Many-particle states are obtained by acting with creation oper-
ators, the adjoints of annihilation operators, on the vacuum:

|k1, n1; . . . ; ki , ni 〉 = (â†
k1
)n1 · · · (â†

ki
)ni |0〉. (3.12)

In such states, the total normal-ordered energy as the eigenvalue in

Ê |k1, n1; . . . ; ki , ni 〉 =
i∑

j=1

�n jω(k j )|k1, n1; . . . ; ki , ni 〉 (3.13)

is non-zero.
The mode decomposition, however, requires space–time equipped with a back-

ground metric to be defined: at least the integration measure d3x
√

det h must be
known in order to integrate the original field and obtain its modes (or use preferred
Cartesian coordinates in which the spatial metric is hab = δab). In (3.11), the scalar
product k · x refers to a flat background. Without the modes, we cannot even define
the vacuum state. This consideration finally provides the third principle:

Third Principle Tools of quantum field theory must be appropriately adapted to
deal with quantum geometry in a background-independent way. While the simplest
cosmological models are homogeneous and of finitely many degrees of freedom,
allowing straightforward quantizations of geometrical variables, significant changes
in the quantization methods due to the generally covariant nature of the underlying
field theory must also be reflected in quantum cosmology.

Quantum cosmology must take into account the lessons learned in attempted
constructions of quantum gravity. Constructing quantum gravity or even deriving
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quantum cosmology from it remains a formidable challenge, but important features
can nevertheless be implemented and explored in sufficiently general formulations
of quantum cosmological models. Sufficient generality is important for reliable con-
clusions and for stringent tests of the full framework, even if it comes at the expense
of additional ambiguities.

All three principles will be revisited throughout this book; they are important for
conceptual properties, for instance regarding singularities, and observational ones.
We will begin by reviewing the reformulation proposed by loop quantum gravity to
incorporate the Third Principle. The first two principles will have to be faced once
we deal with the dynamics.

3.2 Quantized Space–Time

In general relativity, the dynamical object is the space–time metric, now to be quan-
tized. As mentioned in the introduction, we do not require a viewpoint of general
relativity being fundamental, but rather take a more general one: even if there is
a more fundamental underlying theory, which may eventually be arrived at by the
quantization procedure, there must be a consistent way of endowing the metric with
fluctuations and uncertainty. There is a tried-and-true traditional method to unravel
quantum properties of hitherto classical theories: canonical quantization, a procedure
that takes a classical phase space and returns a non-commuting algebra of observ-
ables, such as pairs of basic operators on whose representation quantization can be
built.

Coordinates are often used to describe space–times, but this is only superficially
related to expressing point-particle dynamics by coordinates that become operators
q̂.Unlike the positions of point particles, space–time coordinates are not measurable;
they can play no role in the final algebra of quantum observables. What can be mea-
sured is only the geometry and dynamics of space–time, which requires extended
objects. Fully coordinate-independent observables, on the other hand, are infamously
difficult to construct: only very few general expressions are known, and even approx-
imate constructions become very tedious in anything but the simplest models. Instead
of trying to quantize classical observables, a two-step procedure looks more promis-
ing: one first considers just spatial quantum geometry at a fixed time (referring
to objects such as lengths, areas, volumes which for given regions are coordinate
independent), and then imposes additional constraints to make sure that kinematical
objects are combined suitably to space–time observables. Once complete, the results
will show the quantum dynamics of space–time; but even before all constraints are
implemented, spatial quantum geometry already provides interesting results.
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3.2.1 Scaling

Kinematically, we consider objects such as the volume VR =
∫

R d3x
√

deth of some
spatial region R,where hab is the metric induced by a space–time metric on a spatial
slice t = const with respect to some time coordinate. Volumes are surely sufficient
to probe isotropic quantum geometries, in which case the classical phase space is
small: as seen before, there is a single canonical pair (a, pa). But if we allow all
possible regions, spatial observables even in this simple geometry provide infinitely
many numbers VR = V (R)a3 for any given a, where V (R) is the coordinate-
dependent, co-moving volume of the region measured just with the non-dynamical
unit line element dσk of constant curvature, (2.2). With a single dynamical degree
of freedom, however, quantization can give wave functions only in one variable,
such as ψ(a) as used in a Wheeler–DeWitt quantization. It must then be ensured
that wave functions have the correct scaling behavior under changing coordinates or
V so that observables are invariant; otherwise one’s quantization would not capture
pure quantum geometry.

For a compact space (for instance the closed model), the total space would be a convenient
choice to define VR .But one may still capture all isotropic degrees of freedom completely by
any subspace, with a smaller value of V . Moreover, in the closed model in its most general
formulation one is not required to use the unit sphere as the total space multiplied by the
scale factor, although it is certaily convenient. If a sphere of non-unit radius is used for the
spatial coordinates, the coordinate volume changes to V = λ3Vunit. One can obtain the
new coordinate system by the transformation r 	→ λr while the angular coordinates do not
change. The parameter k 	→ λ−2k, obeying the scaling law of curvature, remains positive but
now differs from one. The line element is invariant with the usual transformation a 	→ λ−1a
of the scale factor under rescaling the coordinates, and so the curvature term k/a2 in the
Friedmann equation is invariant. Notice that this rescaling of coordinates and the sphere is
not the same as changing a smaller integration region within the unit sphere even if λ < 1,
if one chooses a smaller integration region within the sphere, k and a do not change. Just as
in the flat model, also in the closed model rescaling the coordinates and choosing different
integration regions is allowed by independent choices. The parameter V retains a free value
and is not fixed. Sometimes, V is called a “regulator” and then argued to require the limit
V → ∞ (or the maximum value in a compact space) rather than full V -independence of
wave functions. However, V is not a regulator because the classical predictions do not depend
on the chosen value. It is simply a parameter that labels different but equivalent formulations
of the symmetry reduction within one and the same model. While one may have reasons to
restrict all attention to a specific simple value, in doing so one loses access to an important
consistency check. Especially in isotropic and homogeneous models, in which the anomaly
problem, to be discussed later, trivializes, making sure that the proper V -behavior is realized
is the only remaining test of consistency.

The scaling issue turns out to be a manifestation of a more general problem: How
do we form a complete set of coordinate-independent measures of spatial geometry
(intrinsic as well as extrinsic for the whole phase space) while retaining an algebra
simple enough for further constructions? This problem, as of now, has not been solved
in Wheeler–DeWitt-type quantizations, which when applied beyond homogeneous
models remain formal. But at the level of spatial quantum geometry it can be solved
after a change of phase-space variables.

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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3.2.2 Canonical Gravity

For a Hamiltonian formulation of general relativity (see [5]), one first brings the
space–time metric in a form

ds2 = −N 2dt2 + hab(dxa + N adt)(dxb + N bdt) (3.14)

where hab, the only part contributing on a spatial slice t = const, is the spatial
metric. The lapse function N and shift vector N a provide the remaining components
of a space–time metric, and can be seen to contain information about the spatial
foliation in space–time: The unit normal vector na to a spatial slice t = const satisfies
Nna = (∂/∂t)a − N a, and the inverse space–time metric is gab = hab + nanb.

The spatial metric hab can serve as a set of configuration variables, and a suitable
geometric notion of its “velocities” is the extrinsic curvature

Kab = 1

2N
(ḣab − Da Nb − Db Na). (3.15)

It does indeed have a time derivative of the spatial metric, denoted by the dot, and
extra contributions if the shift vector is not constant and thus the spatial slice is
deformed as seen from the time coordinate t : the normal vector is not proportional to
(∂/∂t)a . The symbol Da denotes the spatial covariant derivative operator compatible
with the metric hab.

3.2.2.1 Action and Constraints

In these variables, the Einstein–Hilbert action of general relativity (ignoring boundary
terms) can be expressed as

Lgrav = 1

16πG

∫
d3x

√−detgR

= 1

16πG

∫
d3x N

√
deth

(
(3)R + Kab K ab − (Ka

a)2
)

(3.16)

with the three dimensional Ricci scalar (3)R computed from hab. In this way, the
action looks like a complicated version of the general form known from classical field
theories, with a kinetic term quadratic in the velocities Kab and a potential depending
only on configuration variables as well as their spatial derivatives, here given by the
spatial Ricci scalar. From the kinetic term, we first compute the momentum

pab(x) = δLgrav

δḣab(x)
= 1

2N

δLgrav

δKab
=
√

det h

16πG
(K ab − K c

c qab) (3.17)
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conjugate to hab : In this field-theoretical context, we have Poisson brackets

{hab(x), pcd(y)} = δc
(aδ

d
b)δ(x, y). (3.18)

From the action we obtain the Hamiltonian

Hgrav =
∫

d3x
(

ḣab pab − Lgrav

)

=
∫

d3x

(
16πG N√

deth

(
pab pab − 1

2
(pc

c)
2
)
+ 2pab Da Nb − N

√
detq

16πG
(3)R

)

=:
∫

d3x(NCgrav + N aCgrav
a ). (3.19)

All terms in the Hamiltonian are linear in the lapse function N and the shift vector
N a, but time derivatives of these fields do not appear. As components of the space–
time metric, the action is to be extremized with respect to them, too, not just with
respect to the spatial metric hab.While variation with respect to hab and pab provides
equations of motion due to the canonical piece ḣab pab, variation by lapse and shift
leads to constraints on the phase-space variables: the diffeomorphism constraint

Cgrav
a = −2Db pb

a (3.20)

and the Hamiltonian constraint

Cgrav = 16πG√
deth

(
pab pab − 1

2
(pa

a )
2
)
−
√

deth

16πG
(3)R. (3.21)

Matter terms will contribute extra pieces, which is why we denote the pure grav-
itational terms with the superscript “grav”. In vacuum, Cgrav

a = 0 and Cgrav = 0.
If these constraints are solved and objects invariant under the Hamiltonian flow

they generate are considered, we are dealing with space–time observables indepen-
dent of any coordinate choices. As already mentioned, completing such a program
is extremely difficult; we thus postpone a discussion of the constraints at the clas-
sical level, trying to represent the tensorial objects hab and pab as operators. For
this, we first need extra structures to get rid of the indices and integrate to scalars,
for only those can directly be operators. (Otherwise, an appropriate behavior under
complicated tensor transformations in a quantum algebra of non-scalar objects must
be ensured, which, as experience shows, is prone to becoming anomalous.) One
possibility to remove indices is by contraction with other geometrical objects, not
containing the dynamical fields so as to retain linear structures. For instance, one
may associate the length �e[hab] =

∫
e dt

√
ėa ėbhab with any differentiable curve e

in space. For any given curve, this is a scalar object not changing under coordinate
transformations. But it is not linear in phase-space variables due to the square root.

3.2.2.2 Ashtekar–Barbero Variables

No linear scalar representation of the full phase space of general relativity is known
in terms of metric variables. But such a formulation does exist in terms of a new
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set, formed by the densitized triad Ea
i together with the Ashtekar–Barbero con-

nection Ai
a [6, 7]. The densitized triad replaces the spatial metric and is defined

in several steps: Instead of using the metric we first introduce the co-triad ei
a via

hab = ei
aei

b. (The index i does not refer to the tangent space but simply labels the three
co-triad co-vectors. Its position, unlike the one of a, b, . . . , is thus not relevant and
we will freely move it up or down as convenient. No spatial metric is required to do
so. For repeated indices, as in the defining relation, we will understand the summa-
tion convention unless stated otherwise.) A given metric does not uniquely define
a co-triad, which can be redefined by any orthogonal transformation ei

a 	→ Ri
j e

j
a ,

Ri
j Rk

i = δk
j ,without changing hab.There is thus more freedom than in metric formu-

lations, which later on will be removed via additional constraints. From the co-triad,
one then obtains the triad ea

i as its matrix inverse: ea
i e j

a = δ j
i . Equivalently, the triad,

as suggested by the notation, is obtained by raising the index of ei
a using the inverse

metric hab. (The co-triad and the triad form dual orthonormal bases of the co-tangent
and tangent space, respectively.) Finally, we densitize the triad by multiplying it with
the scalar density

√
deth = |det(ei

a)| :

Ea
i := |det(e j

b)|ea
i . (3.22)

Notice the absolute value at this stage. Even after factoring out the rotational freedom of a
triad, it does have more information than a metric. Unless it is degenerate, the triplet of triad
vectors can be left- or right-handed, meaning that the determinant of ei

a seen as a 3 × 3-
matrix can take both signs. Changing the sign corresponds to a large gauge transformation
in O(3)/SO(3) not connected to the unit. It is thus not removed by factoring out the flow
generated by a constraint, and remains relevant for geometry. Its meaning is that of the
orientation of space, which will become important later in quantum cosmology.

Similarly, we manipulate extrinsic curvature Kab by first contracting with the triad
on one index, defining K i

a := eb
i Kab. This expression turns out to be canonically

conjugate to the densitized triad,

{K i
a(x), Eb

j (y)} = 8πGδb
aδ

i
jδ(x, y). (3.23)

To define scalar objects to be quantized, it is useful to do one final step and combine
extrinsic curvature with the spin connection i

a that is compatible with the triad:

Daeb
i = ∂aeb

i + b
acec

i − εi jk
j
a eb

k = 0, solved by

i
a = −εi jkeb

j

(
∂[aek

b] +
1

2
ec

kel
a∂[cel

b]
)
. (3.24)

We then have the Asthekar–Barbero connection

Ai
a = i

a + γ K i
a (3.25)

with the Barbero–Immirzi parameter γ > 0 [8]. This provides the final canonical
pair with
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{Ai
a(x), Eb

j (y)} = 8πγGδb
aδ

i
jδ(x, y), (3.26)

a relation which directly follows from (3.23) since i
a is a functional of the triad and

thus Poisson-commutes with it. These canonical variables have a structure analogous
to what is known in gauge theories: a connection and a densitized vector field. They
are subject to a Gauss constraint

D(A)
a Ea

i := ∂a Ea
i + εi jk A j

a Ea
k = Da Ea

i + γ εi jk K j
a Ea

k = 0 (3.27)

of the usual form. (In the last reformulation we used the fact that the covariant
divergence of a densitized vector field equals the coordinate divergence. Since the
spin connection is compatible with the triad, the Gauss constraint is equivalent to
εi jk K j

a Ea
k = 0. This relation implies that Kab = K i

aei
b is a symmetric tensor.)

Compared to those gauge theories that occur in particle physics, the gravitational
diffeomorphism constraint, which now reads

Cgrav
a = Fi

ab Eb
i (3.28)

with the Yang–Mills curvature

Fi
ab = ∂a Ai

b − ∂b Ai
a − εi jk A j

a Ak
b (3.29)

is new, and the Hamiltonian is quite different from the Yang–Mills form and now a
constraint contribution

Cgrav =
(
εi jk Fi

ab − 2(1+ γ−2)(Ai
a − i

a)(A
j
b −  j

b )
) E [aj Eb]

k√|detE | . (3.30)

3.2.2.3 Holonomy-Flux Algebra

Since we are ignoring the constraints for now, their specific form does not play a
role; we can thus define and use objects which are well-known from general gauge
theories: holonomies

he[Ai
a] =Pexp

∫

e

ėa Ai
aτi dλ (3.31)

for curves e in space, and fluxes

F ( f )
S [Ea

i ] =
∫

S

na Ea
i f i d2 y (3.32)

through surfaces S in space with smearing functions f i taking values in the internal

space. (The co-normal na = 1
2εabcε

uv ∂xb

∂yu
∂xc

∂yv of S : y 	→ x(y) is independent of any
metric.)
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For our purpose of finding a set of linear scalar quantities, these variables turn
out to be immensely useful. Fluxes are already spatial scalars linear in one of the
canonical variables, Ea

i . And while holonomies are not linear in Ai
a, they do form a

linear algebra together with the fluxes:

{he[A], F ( f )
S [E]} = 8πγGη(e, S)O( f )

e,S (τi he[A]) (3.33)

with a topological number η(e, S) which determines how and how often the curve
e and the surface S intersect, and O denoting a suitable ordering of τi ∈ su(2)
and he[A] ∈ SU(2) depending on where on the curve e its intersections with S lie.
For instance, if the intersection is at the endpoint of e, we have O

( f )
e,S (τi he[A]) =

he[A]τi f i (e(1)), and O
( f )
e,S (τi he[A]) = f i (e(0))τi he[A] if the intersection is at the

starting point. (Unless stated otherwise, we will always assume curves to be defined
on the interval [0, 1] of their parameter.) In general, we have

O
( f )
e,S =

∑
p∈e∩S

f i (p)he→p[A]τi h p←e[A] (3.34)

with he→p the holonomy along the starting piece of e up to p, and h p←e along the
ending piece from p onwards. See also [9] for detailed calculations of the holonomy-
flux algebra.

The algebra (3.33) can explicitly be represented as operators on a Hilbert space
[10]. All quantities are coordinate independent, and they do not make use of any
extra structures except their labels e, S and f. (They certainly make use of standard
structures such as topological or differentiable ones of the underlying manifold.
But no extra metric, for instance, is introduced which would make the construction
background dependent.) The algebra of F ( f )

S [E] and he[A] replaces the algebra

of annihilation and creation operators âk and â†
k for quantum field theories on a

background.
The specific form of the algebra suggests to view holonomies as creation operators,

raising the excitation level of fluxes: a state annihilated by some FS[E] would, after
being acted on by a holonomy along a curve intersecting S, have a non-vanishing
flux through S due to F̂S(ĥe|ψ〉) = ĥe F̂S|ψ〉 + [F̂S, ĥe]|ψ〉 = [F̂S, ĥe]|ψ〉 �= 0
with a non-vanishing commutator. What is needed for a construction of all possible
excited states in this way is also a state to start with, from which holonomies can
then generate new excitations. In common quantum field theories, this state would
be the vacuum devoid of particles; here it would be a state where not even fluxes,
and thus the densitized triad or spatial metric, would be present. It is a state in
which geometry itself is highly quantum and only lowly excited, unlike any classical
geometry. Such a state is extremely difficult to imagine physically, but it has a very
simple mathematical expression: if we choose the connection representation of states
ψ[Ai

a], it is a mere constant. Then indeed, fluxes which would be derivative operators
in such a representation, all vanish.

Let us thus define this state as the quantum geometrical “vacuum”, ψ0(Ai
a) = 1.

Since holonomies only depend on the connection, they will become multiplication
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operators, directly showing their action on the state. More precisely, as basic operators
we should allow all matrix elements of holonomies, which are in SU(2). Multiplying
several ones of them can be tedious due to the group structure, but what is relevant
now is already illustrated by the simpler case of holonomies taking values in the
Abelian group U(1). (This group would be obtained in a loop quantization of elec-
tromagnetism [11].) Then, each holomony is a simple connection-dependent phase
factor he[Aa] = exp(i

∫
e dλėa Aa), and excited states can be written as

ψe1,ne1 ;...;ei , nei
= ĥ

ne1
e1 · · · ĥ

nei
ei ψ0. (3.35)

As functionals, these states look like

ψg,n(Aa) =
∏
e∈g

he(Aa)
ne =

∏
e∈g

exp(ine ∫
e

dλėa Aa) (3.36)

In this notation, each occurrence of a curve ei in space signals that geometry is
excited along that curve: fluxes through surfaces intersected by the curve will be
non-zero. Moreover, each curve ei can be excited several times, as indicated by the
integer nei . Thus, curves and the integers technically play roles analogous to particle
wave numbers and occupation numbers in quantum field theories on a background
space–time.

These constructions are used in a more general setting in the diverse models of loop quantum
gravity. We now assume that we have a d-dimensional spatial manifold � (which in the
concrete applications of symmetry-reduced models will be d < 3,but formally the dimension
could be larger than three). Furthermore, we assume a compact structure group G, and as
fields (i) a G-connection Ai

a and a densitized L G-valued vector field Ea
i forming the gauge

part of the theory (with Ea
i dual to an L G-valued (d − 1)-form �i

a1...ad−1
= εa1...ad Ead

i ),

and (ii) scalars φI : � → R with densitized momenta pI : � → R forming the “matter”
part of the theory. In the actual models, the scalars may arise as some of the components of
the full gravitational connection, rather than playing the role of physical matter. The fields
form canonical variables

�gauge = 1

κ

∫

�

d3x Ȧi
a Ea

i −→ {Ai
a(x), Eb

j (y)} =κδi
j δ

b
aδ(x, y)

�scalar =
∫

�

d3x φ̇I pI −→ {φI (x), pJ (y)} =δ J
I δ(x, y)

with a coupling constant κ, and are subject to certain constraints Cα[Ai
a, Eb

j , φI , pJ ] = 0.

Examples for this general setting of fields are Yang–Mills theory, where (Ai
a, Eb

j ) are subject

to the Gauss law Gi := ∂a Ea
i + εi j

k A j
a Ea

k = 0 (for G = SU(2)), or general relativity in
Ashtekar–Barbero variables. Later chapters will provide a large set of further examples in
which scalars arise from symmetry reduction. In this context, we start with a gauge theory
(Ai

a, Ea
i ) in 3+1 dimensions and impose invariance under some symmetry group S acting on

the principal fiber bundle P → � that underlies the gauge theory. An example which will be
discussed in more detail later is spherically symmetric gravity; see also Sect. 9.1. It turns out
that spherically symmetric SU(2)-connections and densitized triads can always be written as

3DAi
aτi dxa =Ax (x)τ3dx + Aϕ�̄

A
ϕ dϑ + Aϕ(x)�

A
ϕ sin ϑdϕ + τ3 cosϑdϕ

3DEa
i τ

i ∂

∂xa
=Ex (x)τ3 sin ϑ

∂

∂x
+ Eϕ�̄ϕE sin ϑ

∂

∂ϑ
+ Eϕ(x)�ϕE

∂

∂ϕ

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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with a U(1)-connection Ax , a densitized triad Ex , real-valued scalars Aϕ, Eϕ, and the angles
α and β in�A

ϕ = cosβ(x)τ1+sin β(x)τ2, �
ϕ
E = cos(α(x)+β(x))τ1+sin(α(x)+β(x))τ2.

The remaining fields are fixed by the conditions tr(�̄A
ϕ �

A
ϕ ) = 0 = tr(�̄ϕE�

ϕ
E ).All free fields

depend only on the radial coordinate x, and are thus defined on a 1-dimensional manifold.
Loop quantization then presents a specific way of canonical quantization, turning the

Poisson algebra of basic fields into an operator algebra. Any such quantization requires
smearing for field theories to remove delta-functions in the elementary Poisson brackets,
usually done using a background metric, as in

∫
�

dd x
√

dethφ(x) for a scalar field. But such
a procedure is not suitable if the metric itself (or a densitized triad) is to be quantized: no linear
algebra of basic smeared objects would result. The advantage of connection variables is that
they provide a natural smearing without having to make use of a fixed metric: holonomies
(3.31) along curves e in space, fluxes (3.32), in general through surfaces of codim(S, �) = 1,
scalar values φI (x), and integrated momenta

∫
R pJ (y)dd y can all be defined without an

extra metric, and the integrations they contain remove all delta-functions from their Poisson
brackets.

Constructing a Hilbert-space representation leads to states in a space of square-integrable
functions L2( ¯A × �̄, dμAL) with a compact space ¯A × �̄ of generalized connections and
scalars [12]. For (finite analytical) graphs g ⊂ � with edge set E(g) and vertex set V (g),
we define spaces of g-connections

Ag = {Ag : E(g)→ G} (holonomies along the graph g)

and g-scalars

�g = {φg : V (g)→ R̄Bohr} (vertex values on g)

taking values in the Bohr compactification of the real line (see below). For g ⊂ g′, projections
πA

g : Ag′ → Ag andπ�g : �g′ → �g are defined by restriction, and they allow the definition

of the full space of generalized connections and scalars by projective limits to arrive at ¯A and
�̄ as the spaces of fields “on an arbitrarily fine graph”. To define generalized scalars we use a
certain compactification of the real line, the so-called Bohr compactification R ⊂ R̄Bohr. In
this way, generalized scalars, just like generalized connections, take values in a compact set.
This feature will allow us to provide a consistent definition of the inner product on ¯A × �̄.
The Bohr compactification is a topological space such that all continuous functions are the
almost-periodic ones:

f (φ) =
∑

μ∈I⊂R countable

fμexp(iμφ)

The set of almost-periodic functions forms an Abelian C∗-algebra, and as a consequence
the space R̄Bohr on which these functions are defined (the Gel’fand spectrum) is compact.
The Bohr compactification also inherits an Abelian group structure from R, allowing us to
introduce the Haar measure

∫

R̄Bohr

dμHaar(φ) f (φ) = lim
T→∞

1

2T

T∫

−T

dφ f (φ).

An orthonormal basis with respect to this measure is given by {φ 	→ exp(iμφ) : μ ∈ R};
the Hilbert space L2(R̄Bohr, dμHaar) is non-separable. For more information on R̄Bohr, see
Sect. 3.2.3.4. With these constructions we proceed to defining the inner product on our states.
We focus on the dense set of cylindrical states: the projection πg : ¯A × �̄ → Ag × �g,

obtained by combining πA
g and π�g , lifts any fg : Ag × �g → C to the cylindrical state

ψ = fg ◦ πg such that
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ψ(A, φ) = fg(A(e1), . . . , A(en), φ(v1), . . . , φ(vm)).

On these states, the inner product is obtained from the Haar measures on G and R̄Bohr [13]:
If ψ(1) and ψ(2) are cylindrical with respect to the same graph g,

〈ψ(1), ψ(2)〉 =
∫

Gn×R̄
m
Bohr

|E(g)|∏
i=1

dμHaar(hi )

|V (g)|∏
j=1

dμHaar(φ j )

× f (1)g (h1, . . . hn, φ1, . . . , φm)
∗ f (2)g (h1, . . . hn, φ1, . . . , φm).

If states are not based on the same graph, one can embed both graphs in a larger one by
subdivision, or by an extension of the graphs by “dummy” edges without connection depen-
dence. From properties of the Haar measure one quickly sees that states are orthogonal if
they are cylindrical with respect to graphs such that there is an edge e for whichψ(1) depends
non-trivially on A(e) while ψ(2) does not. On the resulting Hilbert space holonomies act by
multiplication, fluxes as derivative operators measuring the excitation level of geometry.

How exactly flux values are increased by excitations of geometry is derived from
the action of the flux operator. We already know the states, and a flux, which is
linear in the densitized triad, becomes a simple functional derivative operator by the
connection. Again in the U(1)-example (with {Aa(x), Eb(y)} = 8πγGδb

aδ(x, y) ),

F̂Sψg,n = 8πγG�

i

∫

S

d2 yna
δψg,n

δAa(y)
= 8πγ �2

P
i

∑
e∈g

∫

S

d2 yna
δhe

δAa(y)

∂ψg,n

∂he

= 8πγ �2
P

∑
e∈g

ne

∫

S

d2 y
∫

e

dtna ėaδ(y, e(t))he
∂ψg,n

∂he
= 8πγ �2

P

∑
e∈g

neη(e, S)ψg,n

(3.37)

with the intersection number η(e, S). Since such a state is reproduced after acting
with a flux operator, we can directly read off the flux eigenvalues, which are propor-
tional to sums over integers. Thus, the flux spectrum is discrete, providing a detailed
realization of discrete spatial geometry [10].

Returning to SU(2)-valued variables, as required for general relativity, we have
slightly more complicated expressions for states and operators. Instead of multi-
plying phase factors, as elements of irreducible U(1)-representations which all are
1-dimensional, we now multiply all possible matrix elements of SU(2)-holonomies
along a set of edges. Such states can conveniently be expressed in terms of spin
network states [14]

ψg, j,C (A
i
a) =

∏
v∈g

Cv
∏
e∈g

ρ je (he[A]) (3.38)

where g is a graph in space, labelled with spins je on its edges for irreducible SU(2)-
representations ρ j and with projection matrices Cv in the vertices of the graph which
tell us how to pick and combine matrix elements of the holonomies used.

If we consider the example of an n-valent vertex v in which n edges e1, . . . , en meet and, to
be specific, all have the vertex as their endpoint, a suitable projection matrix Cv has n indices
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Fig. 3.1 Splitting an
n-valent vertex into unique
trivalent vertex contractions

j j j

k k kk

j

j j

j1

2 3 4 n–2 n–1

n

n–3321
...

such that the incoming holonomies (hei )
Ai Bi are multiplied to Cv,A1,...,Anρ j1 (he1 )

A1 B1 · · ·
ρ jn (hen )

An Bn . (The remaining indices Bi will be contracted with projection matrices in the
vertices corresponding to starting points of the edges incoming at v.) For a gauge-invariant
state, the projection matrices have to satisfy certain conditions. A gauge transformation
maps internal vectors vA at a point to g A

Bv
B with g ∈ SU(2). Holonomies along a curve

e : [0, 1] → � transform as he 	→ g(e(1))heg(e(0))−1 such that (hev)
A = (he)

A
Bv

B

transforms as an internal vector at e(1) if vA is an internal vector at e(0). The spin-
network vertex v considered here, with v = ei (1) for all edges, thus receives a gauge
transformation Cv,A1,...,Anρ j1 (g(v))

A1 C1 · · · ρ jn (g(v))
An Cn by moving gauge factors from

the incoming holonomies to the projection matrix. For the spin network to be gauge invariant,
Cv,A1,...,Anρ j1 (g(v))

A1 C1 · · · ρ jn (g(v))
An Cn = Cv,C1,...,Cn must hold, which can be realized

only if the trivial representation is contained in the tensor product of the ρ jn . For a trivalent
vertex, for instance, a gauge-invariant contraction exists if there is an integer 0 ≤ k ≤ 2 j1
such that j3 = j2 − j1 + k, where we assume j1 ≤ j2. If this condition is satisfied, there
is a unique gauge-invariant contraction. Higher-valent vertices do not have unique contrac-
tions. One can parameterize spaces of contraction matrices by integer spins, splitting the
n-valent vertex into subsequent trivalent contractions as illustrated in Fig. 3.1. All interme-
diate spins ki can take values only in finite ranges, and spaces of contraction matrices are
finite dimensional.

Holonomies then act by contributions of new factors, changing some of the labels
je in an original state by tensor-product decomposition. Fluxes become intersection
sums of derivative operators on SU(2), of the well-known angular-momentum form:
By analogy with (3.37), functional derivatives by the connection can be written in
terms of

Ĵ i
e = tr

(
(heτ

i )T ∂/∂he

)
(3.39)

or using invariant derivative operators on SU(2). Since angular-momentum operators
have discrete spectra and we now sum finitely many such contributions over intersec-
tions of the graph and a surface, SU(2)-fluxes have discrete spectra, too. (If an edge
lies entirely on the surface, thus having infinitely many intersections, the flux van-
ishes thanks to a product naėa = 0 in (3.37).) Also the action of holonomies shows
a key feature: While holonomy operators are well-defined, one cannot extract a con-
nection operator from them. Trying to do so, for instance by applying the classical
identity

ėa(p)Ai
a(p)τi = lim

t→0

dhe|[0,t]
dt

in the limit where e approaches e(0) = p, fails because he|[0,t1]ψ and he|[0,t2]ψ are
orthogonal for t1 �= t2: they are cylindrical with respect to different graphs.
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From the elementary fluxes one can construct more familiar geometrical objects

[15–17], such as the area AS[E] =
∫

S d2 y
√

na Ea
i nb Eb

i of a surface S or the volume

VR[E] =
∫

R d3x
√|detE | of a region R. Area eigenvalues, just like fluxes, depend

on spin labels on curves in the graph intersecting the surface; volume eigenvalues
depend on the contraction in vertices within the region. Also these operators have
discrete spectra, which in the case of area follow easily from the square of derivative
operators. For volume, the spectrum is more difficult to compute since the determinant
of Ea

i involves products of three factors of triad components, resulting in couplings
of different SU(2)-representations. Nevertheless, recoupling theory allows one to
derive matrix elements [18, 19], and powerful computer codes now exist to analyze
the eigenvalues [20, 21]. This is expected to be of particular importance for quantum
cosmology since the volume spectrum can show how a discrete growing universe
must refine its structure as it expands. We will come back to refinement in more
detail once we have introduced the dynamics.

3.2.3 Isotropic Models

Many constructions characteristic of canonical quantum gravity can conveniently be
illustrated and explicitly be evaluated in symmetric models. The simplest case is that
of isotropy, where the spatial geometry is determined by a single number: the scale
factor a. Quantum cosmology has traditionally been formulated in this context, and
also much work in loop quantum cosmology has been done in an isotropic setting.

3.2.3.1 Symmetry Reduction

Classical symmetry reduction is performed by restricting fields to those left invariant
by a set of symmetries (possibly up to gauge transformations only). For invariant
connections, for instance, one is looking for the general form of 1-forms ω on a
principal fiber bundle P = (�,G, π) with structure group G and base manifold �
such that s∗ω = ω for any element s ∈ S of a symmetry group S acting on P.

This general definition has two important consequences:

1. An action on the principal fiber bundle P is required, while one usually starts
with a desired symmetry on the base manifold, such as isotropy on the space
�. Lifts of the symmetry action to the whole bundle must thus be found, which
are often non-unique. (They are classified by conjugacy classes of homomor-
phisms λ : F → G, where F is the isotropy subgroup of S and G the structure
group.) This lifting procedure gives rise to different inequivalent classes of
invariant connections, which in physical terms can be classified by topological
charges. (An example is magnetic charge as the quantity characterizing topolog-
ically inequivalent spherically symmetric U(1)-connections; see the following
example.)
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2. In terms of local connection 1-forms, invariance implies that a connection may
change under a symmetry transformation, but only by a gauge transformation:
s∗A = g(s)−1 Ag(s)+g(s)−1dg(s)where g : S→ G is a mapping between the
symmetry and structure groups. This mapping is not a group homomorphism,
but must satisfy certain other conditions. Solving these conditions is equivalent
to determining the possible lifts of symmetry actions to the bundle. In the
bundle language, invariant connections are given by (i) a connection AS/F

on a reduced bundle Q over �/S whose structure group ZG(λ(F)) is the
centralizer of λ(F) in G, and (ii) scalar fields φ : Q ×L F⊥ → L G subject
to φ(Ad f X) = Adλ( f )(φ(X)) for f ∈ F, X ∈ L S. For more details of the
bundle formulation, see [5].

Example 3.1 (Magnetic charge) Magnetic monopoles are spherically symmetric
configurations of the magnetic field, which can be described by a U(1)-connection
Aa, the vector potential. We are thus interested in the general form of spherically
symmetric connections on U(1)-principal fiber bundles, on which the symmetry
group SU(2) is acting. In general, inequivalent lifts of a symmetry group S from
the base manifold, where its action is given and may have an isotropy subgroup F,
to a principal fiber bundle with structure group G over the same base manifold, are
classified by conjugacy classes of group homomorphisms λ : F → G. They describe
the twisting along fibers when the symmetry action is lifted from the base manifold
to the bundle. In this example, we have F ∼= U(1) ∼= G, all conjugacy classes are
labelled by an integer k ∈ Z and can be represented as λk(exp(tτ3)) = exp(ikt).
For every k, invariant U(1)-connections must have the form of an arbitrary radial
U(1)-connection Ar dr plus a contribution of� : L F → L G with�|L F⊥ = 0 for
U(1), �|L F = dλk : τ3 	→ ik applied to the pull-back of the Maurer–Cartan form
on S under an embedding of S/F in S. For spherical symmetry with S = SU(2) and
F = U(1), this pulled-back form can be expressed as

AS/F = (τ2 sin ϑ + τ3 cosϑ)dϕ + τ1dϑ. (3.40)

With these ingredients, we obtain generic spherically symmetric U(1)-connections
of the form

A = Ar dr + k cosϑdϕ.

We have a radial (densitized) magnetic field with Br = −k sin ϑ, which implies
a magnetic charge

Q = 1

4π

∫

S2

Banadϑdϕ = −k.

For a reduction of the full phase space, one must determine invariant forms of
densitized vector fields as well. Once the form of invariant connections is known, for
which a richer basis of mathematical results exists, the general form of invariant fields
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can uniquely be read off from the symplectic structure they must imply. For every free
field AI in the symmetric form of connections Ai

a, there is a conjugate field E I in the
invariant form of densitized triads Ea

i such that
∫
�

d3x Ȧi
a Ea

i =
∫
�/S ȦI E I when

evaluated on invariant fields. For gravitational variables one must take into account an
extra condition to ensure that momenta of Ai

a can be non-degenerate. This condition
in most of the standard cases leads to a unique sector with no topological charge.
Examples will be provided in Sect. 9.1 and the next section.

3.2.3.2 Isotropic Configurations

For isotropic connections invariant under arbitrary translations R
3 and rotations,

combining to the Euclidean group, one can always choose a gauge where they take
the form

Ai
a = c̃δi

a . (3.41)

The single component c̃ is spatially constant but for general solutions to the equations
of motion depends on time. A densitized triad of the same symmetry type is of the
form

Ea
i = p̃δa

i . (3.42)

The reduced symplectic potential

1

8πγG

∫

R

d3x Ea
i δAi

a =
3V

8πγG
p̃δc̃, (3.43)

where δ denotes a derivative on phase space as opposed to space �, then shows that
c̃ and p̃ form a canonical pair,

{c̃, p̃} = 8πγG

3V
. (3.44)

In this derivation, as before, we have selected a bounded region R ⊂ � to make
the spatial integration of homogeneous fields well-defined. If we are considering a
cosmological model with compact spatial manifolds, we could choose R = �, but
this is not possible for unbounded spatial manifolds. And even for compact spaces, we
may as well choose a smaller region as long as it is non-empty; no information about
homogeneous configurations is lost provided we just know them in an arbitrarily
small neighborhood. The definition of our variables then depends on the choice of
the region, and its coordinate size V = ∫

R d3x . Physical results, of course, must be
independent of the choice.

In metric variables, isotropic models are formulated on the phase space with coor-
dinates (a, pa); triad variables differ from this description by a canonical transforma-
tion as well as an extension of the configuration space. From the general relationships

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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between (Ai
a, Eb

j ) and metric variables, one can directly derive the relation between

(c̃, p̃) and the scale factor. For the triad component, we obtain | p̃| = 1
4 ã2, where

the factor of 1/4 can be seen to arise from matching variables of a closed model,
not subject to arbitrary rescaling freedom of coordinates, at a fixed curvature scale
[5, 22]. Computing the spin connection and extrinsic curvature for an isotropic metric,
we combine them to obtain c̃ = 1

2 (k+γ ȧ). For flat models, one may rescale the scale
factor ã so as to eliminate the factor of 1/4 in p̃, as often done. We will denote the
rescaled parameter as a = 1

2 ã, such that | p̃| = a2, c̃ = 1
2 k+γ ȧ.When a is rescaled,

also coordinates and thus V are rescaled such that a3V remains unchanged. Taking
this into account, the Poisson-bracket relation (3.44) remains unchanged under any
rescaling.

Before we describe possible quantizations of these variables, turning the Poisson
bracket (3.44) into a commutator relationship, we should properly deal with the
factor of V . It merely multiplies the constant result for the Poisson bracket, but it is
coordinate dependent. No such factors can be represented on a Hilbert space, which
is defined independently of any coordinates chosen on space. We thus redefine our
basic variables to absorb V :

c := V 1/3c̃, p := V 2/3 p̃. (3.45)

The particular powers of V will turn out to be suitable later on in the context of a loop
quantization. Moreover, they make the basic variables coordinate independent since
p̃ and V 2/3 change exactly in opposite ways when coordinates are rescaled, leaving
the product invariant. Our new basic variables (c, p), being coordinate independent,
should thus be representable on a Hilbert space. They do, however, depend on the
size of the region R chosen which affects V but not p̃ or c̃.Care is then still needed in
interpretations of our quantizations once they are formulated. In particular, although
there is no explicit V -dependence in the symplectic form

� = 3

8πγG
dc ∧ dp, (3.46)

it must be rescaled proportionally by λ if the region R is enlarged to change V
to λV . This rescaling will require a corresponding transformation on the resulting
Hilbert-space representation.

3.2.3.3 Quantum Representation

Given just a pair of canonical variables allowed to take all real values, one possible
quantum representation is a standard Schrödinger one as in quantum mechanics.
Following this procedure will essentially be a Wheeler–DeWitt quantization, where
we may choose either the triad representation with wave functions ψ(p) or the
connection representation with wave functionsψ(c), required to be square integrable
to make up a kinematical Hilbert space. Compared to the earlier choice of wave
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functions ψ(a) in Chap. 2, this formulation has two minor advantages: (i) we use
one of the coordinate-independent (but integration-region dependent) variables, and
(ii) any of the two basic variables takes the full real line as its range, such that no
boundary conditions are required, in contrast to a > 0 which can make adjointness
conditions of operators difficult.

But this representation cannot be the final one since we know that a full quanti-
zation in inhomogeneous situations does not allow quantum representations of con-
nection components directly, but only of their holonomies. If an isotropic model is to
grasp any of these characteristic features, it should be based on variables analogous to
holonomies. For an isotropic connection, it suffices to consider segments of straight
lines (along generators of the homogeneity group). Only the length of the segment
matters, but not its position or direction. A single parameter �0 can then be used
to label all such straight-edged holonomies. For curves along integral vector fields
with tangent ėa = Xa, normalized with respect to a metric δab on the homogeneous
space, we have holonomies

Pexp
∫

e

c̃δi
a Xaτi = exp(�0τi X i c̃) = cos

( 1
2�0c̃

)+ 2τi X i sin
( 1

2�0c̃
)
. (3.47)

Since c̃ (in contrast to Xi ) is the only dynamical variable, we can express all relevant
functions by the U(1)-holonomies h�0(c) = exp( 1

2 i�0c̃) = exp( 1
2 i�0c/V 1/3),where

the length parameter first multiplies the original connection component c̃, which
is then expressed in terms of the new c. Similarly, fluxes are integrated densitized
triads, which for an isotropic configuration and a square surface of edge length given
by the same parameter �0 is of the form F�0(p) = �2

0 p̃ = �2
0 p/V 2/3. As is clear

from the definitions, all these quantities are independent of coordinates, and they are
independent of the region of size V chosen. In addition to the classical geometry
given by a phase-space point (c̃, p̃), they only depend on the label �0 which alone
now plays the role of all the curves and surfaces used in the full representation.

We could have chosen different parameters as labels for holonomies and fluxes at
different places, instead of a single �0.The reason for not doing so is the understanding
that an isotropic quantum configuration should require a rather regular graph, made
of straight edges roughly of the same length �0. Such a graph also provides natural
choices for similar-sized square surfaces filling a whole plane, such that each of them
is transversal to one edge and intersects other surfaces at most at their boundaries.
Regularity then requires all these surfaces to have the size �2

0, which we have used
above.

In this picture, we have the added benefit of bringing in the number of discrete
sites N in a natural way, allowing us to incorporate the Second Principle of Sect. 3.1:
If there are N sites of linear dimension �0 in a region of size V , then N = V /�3

0
(Fig. 3.2). The geometrical size of each discrete site as measured by the metric to be
quantized, moreover, is �3

0 p̃3/2 = �3
0a3, which we can identify with the elementary

size v in the refinement picture used before. Indeed, with the relations written here
we identically satisfy (2.16). As we will see in the next chapter about dynamics, the

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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Fig. 3.2 A region of size V ,
built from patches of linear
size �0

0

parameter �0, once it is allowed to become phase-space dependent, is in fact directly
related to refinement.

We thus choose the 1-parameter family {exp( 1
2 iμc), p}|μ∈R as our basic set of

objects to construct the quantum representation. Here, we have definedμ = �0/V 1/3,

and have dropped the μ2-factor of p since it would just be a multiplicative con-
stant. The specific form of μ and its relationship with �0 and V are not relevant for
basic operators, for which we can treat μ simply as a real-valued parameter. But the
relationship to underlying discrete structures will become important for composite
operators such as inverse triads or the Hamiltonian constraint.

As in the full theory, we construct the state space by starting from a basic state
ψ0, given in the connection representation by a mere constant, and generate all other
states by multiplying with “holonomies” as creation operators. The result is a space
of states all having the general form

ψ(c) =
∑
μ∈I

ψμexp
( 1

2 iμc
)

(3.48)

where I ⊂ R is a countable index set. As already encountered in Sect. 3.2.2.3, all
these functions are called almost periodic, forming a subset of all continuous func-
tions on the real line. Since the space of these functions forms a C∗-algebra, there
is a compact space such that almost-periodic functions give the set of all contin-
uous functions on that space. This space is compact because its set of continuous
functions is a unital C∗-algebra. It contains the real line because almost-periodic
functions are functions of a real variable. The real line allows many more continuous
functions, and so the space on which almost-periodic functions are all the continu-
ous ones must be larger, with additional points making continuity conditions more
restrictive. This larger space contains the real line as a dense subset; it is called the
Bohr compactification RBohr of R.

Having based isotropic loop quantization on the space of almost-periodic func-
tions, the quantum configuration space will be the Bohr compactification RBohr rather
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than the real line itself. The usual integration on R also extends to RBohr, which is
an Abelian group and thus has a unique Haar measure up to a constant factor. It can
be written explicitly as

∫

RBohr

dμ f̄ (c) = lim
T→∞

1

2T

T∫

−T

dc f (c) (3.49)

where for any continuous function f̄ on RBohr, f is its restriction to the dense subset
R on which the ordinary integration measure is used.

As usual, holonomies then act on states simply by multiplication. We pick a basis
given by the uncountable set {|μ〉}μ∈R where

〈c|μ〉 = exp( 1
2 iμc) (3.50)

in the connection representation. It is clear that these states span all states (3.48), and
with the inner product based on (3.49) they are orthonormal. On the basis, holonomies
act by shifting the labels:

̂exp( 1
2 iδc)|μ〉 = |μ+ δ〉. (3.51)

To compare with basic holonomy operators in the full theory, one can think of this
action as being analogous to changing the spin of an SU(2)-representation by coupling
the edge spin of a spin network state with the spin of the holonomy used for the
operator; or one can think of it as a holonomy operator extending an already existing
edge, thus making the length parameter larger. In an isotropic context, these two
interpretations (or any mixtures thereof) cannot be separated—a degeneracy which
has to be taken into account for proper interpretations of operator actions.

The flux operator p̂ can be expressed directly as a derivative operator

p̂ = 8πγ �2
P

3i

d

dc
(3.52)

taking into account the factor in the symplectic structure (3.46) and introducing the
Planck length �P =

√
G�. Its action on the basis states follows directly as

p̂|μ〉 = 4πγ �2
P

3
μ|μ〉 (3.53)

which shows that we picked the flux eigenbasis with (3.50). Just as in the full case,
(3.37), the flux operator has a discrete spectrum: all its eigenstates are normalizable.
Unlike with the full spectrum, however, every real number is an eigenvalue. These
two properties are consistent with each other in the present case of a non-separable
Hilbert space. As we will see later, the mathematical definition of a discrete spectrum
via the normalizability of eigenstates turns out to be the appropriate one here, too,
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because it shows that crucial features of the full theory are realized in isotropic
models as well. Also our isotropic quantum geometry is thus atomic in the sense of
discrete flux spectra.

Now having the basic representation of the isotropic holonomy-flux algebra at
our disposal, we can analyze its rescaling behavior. We had absorbed factors of V
in the original canonical variables c̃ and p̃ in order to deal with coordinate-invariant
quantities. But then the variables c and p, as well as their resulting quantum the-
ory, become dependent on the volume V of a region chosen arbitrarily. Changing
the region must result in a well-defined transformation between the quantum repre-
sentations obtained for different values of V ; otherwise there would be no way of
eventually testing whether observables are indendent of the rescaling.

To analyze this, let us rescale V to λV with a positive real number λ. Then, c and
p change to λ1/3c and λ2/3 p, respectively. Also the symplectic structure changes to
λ� which indeed follows from the classical rescaling. Thus, the rescaling transfor-
mation is not canonical. Since the symplectic structure of basic variables is rescaled,
also the quantum representation must change: commutators of basic operators, fol-
lowing from the basic Poisson brackets, are to be divided by λ. Instead of modifying
commutators, which are universally defined, we can formally implement this rescal-
ing of the representation by changing Planck’s constant to λ� in all equations where
it enters. (Of course, the physical value of � is fixed. The scaling can be normalized
to the correct value only if the underlying discreteness scale of quantum gravity is
taken into account. Such a scale is not explicitly available in minisuperspace models,
but will be included at a later stage once we discuss inhomogeneity; Sect. 10.1.) This
indeed provides the correct rescaling relationship between c and p. For instance,
in (3.52) we have d/dc 	→ λ−1/3d/dc, while �2

P 	→ λ�2
P, combining to the correct

p̂ 	→ λ2/3 p̂. From (3.53) we then read off that the state parameter μ must rescale
to λ−1/3μ. (In particular, μ rescales like the classical c−1, not like the flux p whose
eigenvalues it provides after multiplying it with 4πγ �2

P/3.) Also this is consistent,
for (3.51) tells us that μ and the holonomy coefficient δ ∝ �0/V 1/3 must rescale in
the same way for |μ+ δ〉 to have a meaningful rescaling.

In quantum cosmology we are thus dealing with a family of models (ĉ, p̂, [·, ·])V .
Classically, changing V is not a canonical transformation; in quantum theory there is
no unitary relationship between models of different V with the same Hilbert-space
representation. Still, there are simple means to check the V -independence of results,
as we will use them in what follows.

As a final remark, we notice that we could have decided to fix �0 once and for all, as it
was indeed done in the first formulations of loop quantum cosmology [23, 24]. There is a
disadvantage of implying, essentially, that one makes the configuration space of connections
strictly periodic. From holonomies of this type, we could not reconstruct c̃ ∈ R completely,
but only up to integer multiples of 4π/�0. Almost-periodic functions, on the other hand,
do not require a periodification of the configuration space but rather compactify it by an
enlargement. At the kinematical level, no freedom is lost by using the Bohr compactification.
Still, it remains to be seen at this stage what the dynamics actually requires: it will also rely
on holonomies as basic building blocks of the Hamiltonian; and if there is a choice of �0 to
be made there, as it will turn out to be indeed the case, one could have made that restriction
already at the kinematical level. Dynamics, in this case, would see only one sector of periodic

http://dx.doi.org/10.1007/978-1-4419-8276-6_10


3.2 Quantized Space–Time 41

connections, and nothing would be lost by fixing attention to one periodic sector from the
outset. To allow the full freedom of how this might turn out, we do not fix �0 for now,
permitting all exp( 1

2 i�0c̃) as operators. (In fact, lattice refinement especially for anisotropic
models will require this general attitude, as we will see later.) Quantum dynamics will then
be based on the Bohr compactification of the real line as the configuration space. Since we
already indicated the relationship between �0 and lattice refinement, this issue will naturally
be revisited in the chapter on dynamics.

3.2.3.4 More on Bohr

The Bohr compactification of the real line plays an important role in loop quantum
cosmology to include all kinematical sectors of the models in one non-separable
Hilbert space. The dynamics sometimes picks a separable sector, but since the one that
is realized depends on the specific form of the dynamics and is subject to quantization
ambiguities, as we will see, it is useful to consider all quantum configurations in one
setting even though this information is only kinematical. In this context, several
properties and characterizations of the Bohr compactification are of interest. For
additional mathematical discussions, see [25, 26].

• The Bohr compactification of the real line contains R densely. It is thus not a
periodification which would identify different points in R and not contain all the
original ones. It is also different from the one-point compactification, which, too,
contains the real line densely but adds just one point at infinity. The difference can
be seen by the set of continuous functions on these two compact spaces. For the
Bohr compactification, as used in the definition, this is the set of almost-periodic
functions; for the one-point compactifications, this is the set of functions f (c)
for which limc→−∞ f (c) and limc→∞ f (c) exist and agree. The only functions
continuous on the Bohr compactification as well as the one-point compactification
are the constant ones.

• One can visualize the Bohr compactification by subsets in a torus [0, 1]2. The
whole real line can be embedded in the torus as a straight line x = ωy if ω is
irrational. In the trace topology, the resulting subset of the compact torus can be
completed to a compact space containing the real line (the original embedding)
densely.

• The Fourier space of the Bohr compactification is the discrete real line whose open
neighborhoods are arbitrary unions of single points. This is indeed the space of
momenta as it arises from (3.48) with (3.53).

• If we contrast a periodification with the Bohr compactification, the configuration
space in one case is a circle with Fourier space given by the integers Z. The
enlargement of the Bohr compactification as compared to the periodification allows
more momenta filling all of R. As a trace of the compactness of the configuration
space, the momentum space is the real line with discrete topology.

• A Wigner function for states supported on R̄Bohr can be defined as [25]
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W (c, p) = 1

2π�2
P

∫

R̄Bohr

ψ∗
(

p − 1
2α

)
ψ

(
p + 1

2α
)

h(2α/�
2
P)(c)dα (3.54)

with holonomies h(δ)(c) = exp(iδc/2). The Wigner function of a triad eigenstate,
for instance, is then a delta-function peaked at the triad eigenvalue, and independent
of c. Further properties of the Bohr-Wigner function are discussed in [25].

3.2.3.5 Inverse-Triad Operators

For a first glimpse on the singularity issue we now have a look at suitable quantizations
of a−1 or any other inverse power, which would diverge at the classical singularity of
isotropic cosmology. In a Wheeler–DeWitt quantization, a−1 can easily be quantized
as a multiplication operator acting on wave functions ψ(a). It is densely defined
and thus suitable. It certainly fails to be a bounded operator, but so does â itself.
Kinematically, the classical singularity does not appear to be different in Wheeler–
DeWitt quantum cosmology.

At first, the problem seems worse in loop quantum cosmology: we would now have
to find an inverse of the triad operator p̂ which has a discrete spectrum containing
zero. No such operator has a densely defined inverse. One could define an inverse
using multiplication with μ−1 on all states except |0〉, but since |0〉 is orthogonal
to all states |μ〉 with μ �= 0,1 this procedure would not make the inverse densely
defined. It thus does not correspond to an operator on the Hilbert space. This issue
would not just be a problem indicating a singularity, it would even prevent us from
quantizing Hamiltonians, including the gravitational one (3.30), which all contain
some form of inverse-triad components.

Nevertheless, operators whose classical limit is a−1 do exist. To see this, we follow
a construction which is also available in the full theory [27, 28] and which in the next
chapter will allow us to quantize Hamiltonian constraints and matter Hamiltonians.
Applied in an isotropic setting [29], we have the identity

2i

δ
eiδc/2{e−iδc/2, |p|r/2} = {c, |p|r/2} = 4πγGr

3
|p|r/2−1 sgn p (3.55)

If we choose the real parameter r to be in the range 0 < r < 2, we have an inverse
power of the triad component p on the right-hand side, while no inverse is required
on the left. The left-hand side of this equation can easily be quantized by using
the volume operator V̂ = p̂3/2, holonomy operators for exp(iδc/2) and turning the
Poisson bracket into a commutator divided by i�. A densely defined operator with
an inverse of p as the classical limit results.

To be closer to operators of the full form we first replace the exponentials by
SU(2)-holonomies evaluated in isotropic connections:

1 Assuming a sequence of states in |ψn〉 ∈ H /(C|0〉) such that limn→∞ |ψn〉 = |0〉, we obtain
the contradiction 0 = limn→∞〈0|ψn〉 = 〈0| limn→∞ ψn〉 = 1.
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Fig. 3.3 Correction function
(3.59) from inverse-triad
corrections
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tr(τ3exp(δcτ3)[exp(−δcτ3), V̂ r ]) = sin(δc/2)V̂ r cos(δc/2)−cos(δc/2)V̂ r sin(δc/2).
(3.56)

(The trace can be evaluated explicitly after inserting exp(Aτ3) = cos
( 1

2 A
) +

2τ3 sin
( 1

2 A
)
.) Using the basic operators, it is easy to see that the resulting

̂|p|r/2−1sgn(p) = 3

4πγ �2
Pδr

(
̂eiδc/2[̂e−iδc/2, | p̂|r/2] − ̂e−iδc/2[̂eiδc/2, | p̂|r/2]

)

(3.57)
has the same eigenbasis |μ〉 as the triad operator, with eigenvalues

(
̂|p|r/2−1sgn(p)

)
μ
= 1

δr

(
4πγ �2

P

3

)r/2−1

(|μ+ δ/2|r/2 − |μ− δ/2|r/2) (3.58)

clearly well-defined even atμ = 0. Atμ = 0, in fact, the eigenvalue vanishes instead
of being divergent like the classical value. For large |μ| � δ, on the other hand, the
classical expression sgn(μ)|4πγ �2

Pμ/3|r/2−1 is approached. The difference gives
rise to correction functions

α(r)(μ) =

(
̂pr/2−1sgn p

)
μ

pr/2−1
μ sgn pμ

=
(

̂|p|r/2−1sgn(p)
)
μ

∣∣∣∣∣
4πγ �2

P
3

μ

∣∣∣∣∣
1−r/2

sgn(μ)

= 1

δr
|μ|1−r/2

(
|μ+ δ/2|r/2 − |μ− δ/2|r/2

)
sgn(μ) �= 1

(3.59)

in quantizations of expressions that classically contain inverses of densitized-triad
components; see Fig. 3.3. (The δ-dependence is not explicitly noted as an ambiguity
in α(r) because it simply rescales μ.)

This calculation demonstrates that densely defined operators with the classical
limit of an inverse power of p do exist; we will later use these constructions for
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Hamiltonians. The classical divergence at the singularity implies that these operators
cannot be inverse operators of p̂ :

p̂r/2−1 p̂1−r/2 �= 1;
they only approach the inverse in the classical limit. In this way, the initial problem
of p̂ having zero in its discrete spectrum is overcome.

Instead of being singular, the small-μ behavior is bounded and approaches zero
at μ = 0 as already seen. Around μ ∼ δ/2, a peak is reached demarkating the
strong quantum-geometrical behavior for small μ and the nearly classical behavior
for large values. The position of the peak is not unique, but depends on quantization
ambiguities. For instance, one can use different values of δ and also different r in
the specified range without changing the crucial properties. As we will see later,
the precise form of the function enters cosmological and other equations, such that
ambiguities can in principle be fixed by phenomenology. The freedom is also reduced
by considering the anomaly problem of quantum constraints, where inverse-triad
operators enter, too; see Sect. 10.3.

For phenomenology, it will be important to consider the typical size of deviations
of inverse-triad operators from the classical expectation. In an effective formulation,
we would refer not to eigenvalues μ as in (3.59) but to an effective geometry recon-
structed fromμ via pμ = 4πγ �2

Pμ/3. This relationship leads to correction functions

α(r)(pμ) = 1

δr

(
4πγ �2

P

3

)−1

|pμ|1−r/2sgn(pμ)

×
(
|pμ + 2πγ δ�2

P/3|r/2 − |pμ − 2πγ δ�2
P/3|r/2

)
(3.60)

with strong corrections setting in at pμ ∼ 2πγ δ�2
P/3.At this stage lattice refinement

again becomes relevant. If corrections are to arise from a general quantum state, we
should use in expressions such as (3.56) not the total volume V of our region of
coordinate size V , but the elementary volume of coordinate size �3

0. (Otherwise, the
expressions we obtain cannot be considered local. Further justification comes from
the analogous operators in the full theory, where only local vertex terms touched
by the holonomies contribute. See [30] for a calculation using kinematical coherent
states in the full theory.) The conversion from pμ to the scale factor then does not
come from |pμ| = V 2/3a2, but from |pμ| = |F�0(p)| = �2

0a2; see also Sect. 10.1.
Once the replacement of the cell volume by the patch volume is made, we refer to
almost-local phase-space variables; Planck’s constant or the Planck length in com-
mutators or other quantum formulas no longer rescale when V changes. In terms of
a, we have a correction function

α(r)(a) = �2
0

δr

(
4πγ �2

P

3

)−1

a2−r (|a2 + 2πγ δ�2
P/3�

2
0|r/2 − |a2 − 2πγ δ�2

P/3�
2
0|r/2

)

(3.61)
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with strong corrections setting in at a ∼ a∗ := √2πγ δ/3�P/�0.

This refined procedure has two consequences: (i) While using the region of size V
would make expressions dependent on V , which is not allowed for observables, the
elementary sizes F�0 are independent of V and instead refer to an underlying discrete
state via the quantity �0; and (ii) with the region �3

0 being smaller than V we get deeper
into the small-scale regime and inverse-triad corrections will become comparatively
larger (a∗ being proportional to �−1

0 ).When elementary sizes are used in expressions
for correction functions, the latter peak for values of the discrete increment δ of
about the elementary plaquette size a2�2

0/�
2
P relative to the Planck scale, not for δ ∼

a2V 2/3/�2
P which could be huge, and is even subject to coordinate and other choices.

These features must be taken into account for consistent formulations of models as
well as reliable phenomenology, but also for a meaningful realization of inverse-
triad corrections. We will provide an inhomogeneous calculation in Sect. 10.1.4.2,
exhibiting these properties explicitly. As another consequence of the fuller treatment,
the range of values for the ambiguity parameter δ will be restricted.

The explicit formulas provided here rely on the Abelianization of the full theory when
it is reduced to isotropy. Several new features arise if one tries to construct inverse-triad
operators in an SU(2)-setting and to evaluate the characteristic commutators [31]. First, the
commutators quantizing tr(h{h−1, V }) no longer commute with the volume operator and it
becomes less clear how to compare spectra when they refer to different eigenbases. Secondly,
inverse-triad operators, though still densely defined, are no longer bounded [32]. The latter
is a feature which is shared by some related operators in anisotropic models discussed later,
and is thus not only a consequence of non-Abelian behavior. The non-commutativity of
inverse-triad operators with the volume operator, on the other hand, is directly related to
the full non-Abelian nature. It is probably the most serious issue that suggests some caution
toward results obtained only in isotropic models.
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