
Chapter 13
General Aspects of Effective Descriptions

Effective actions or equations are always a powerful tool to analyze general effects
of a quantum theory. They can be difficult to derive, but once obtained at least in an
approximate form they allow detailed studies and provide more intuition than what
can be obtained from dealing with wave functions. Key for their derivation is the
availability of a simple solvable model in which quantum properties can be obtained
in an exact and compact form. In quantum mechanics, this sovable model is the
harmonic oscillator, which in the form of free field theories also appears as the firm
solvable basis for quantum field theory on a background space-time. Perturbation
theory around the solvable model allows one to include anharmonicities, interactions
or extra fields. The harmonic cosmology of a free massless scalar in a flat, isotropic
universe plays the solvable role for quantum cosmology.

13.1 Canonical Effective Equations

For a canonical quantization such as loop quantum cosmology we have to use a
Hamiltonian way of deriving effective equations. We start with a ∗-algebra A of
operators, possibly together with a representation on a Hilbert space H .A represen-
tation would help us in dealing with pure states, but our discussion here will be at the
general level of density states which may be mixed. We will focus on operators whose
algebra, rather than representation, turns out to be more important; most statements
in this chapter are representation-independent. (The algebra of observables is crucial.
We will be able to distinguish between a Wheeler–DeWitt quantization and a loop
quantization because the latter contains only holonomies of connection components
which obey different algebraic relations with fluxes. Once the algebra of operators
is fixed, crucial consequences are captured independently of whether a Schrödinger
or Bohr representation is introduced.)
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13.1.1 States and Moments

A state is a positive linear functional ω : A → C on the ∗-algebra, that is a linear
functional satisfying ω( Â∗ Â) ≥ 0 for all Â ∈ A as well as ω( Â∗) = ω( Â)∗.
(The latter property can be derived if the algebra is unital, as we normally assume.)
One example is a pure state ψ in a Hilbert-space representation of A , for which
ωψ( Â) = 〈ψ, Âψ〉, or a density matrix ρ for which ωρ( Â) = tr( Âρ). The notion
of states allows us to view observables in the algebra A in a “classical” way as
functions on a phase space. We first introduce the space on which these functions are
defined as the space P of all states ω on the algebra. Any element A of the algebra
then defines a function 〈 Â〉 : P → C, ω �→ ω( Â). As the notation indicates, this
function is nothing but the expectation-value functional associated with Â.

13.1.2 Quantum Phase Space

Classical observables are real-valued functions on the phase space. Accordingly,
we require that quantum observables Ô provide real expectation-value functionals
〈Ô〉, a large class being self-adjoint ones: Ô∗ = Ô. Moreover, classical observ-
ables are functions on a phase space, which is equipped with a Poisson bracket. For
expectation-value functionals, we introduce

{〈 Â〉, 〈B̂〉} = 〈[ Â, B̂]〉
i�

. (13.1)

For functions obtained as products or other expressions in terms of expectation-
value functions, we extend the Poisson bracket using linearity and the Leibniz rule.
It follows from the properties of the commutator that this is indeed a Poisson bracket.
(Note that we define the Poisson bracket by (13.1). It is not required to equal the
classical Poisson bracket for all expressions corresponding to Â and B̂. In general, it
will be identical to the classical Poisson bracket only if Â and B̂ are basic operators.)

For explicit calculations, it is often most useful to choose coordinates. There is
a natural choice if we have a distinguished set of basic operators in our algebra,
which form a closed subalgebra under taking commutators and which can be used to
generate all other elements in the algebra by their products. For quantum mechanics,
these basic operators would usually be taken as the position and momentum operators
q̂ and p̂ with [q̂, p̂] = i�, but one may use other versions such as eiμc/2 and p̂ with
[eiμc/2, p̂] = − 4

3πγ �
2
Pμeiμc/2 in loop quantum cosmology, or entire smeared field

algebras in quantum field theory and the holonomy-flux algebra in loop quantum
gravity.

Let us assume that we have a set of basic operators Ĵi , i = 1, 2, . . . , N , which
is linear and closed under taking commutators: [ Ĵi , Ĵ j ] = i�Ck

i j Ĵk . (For a canonical

algebra, we allow the identity Ĵ = 1̂I as a possible basic operator.) Expectation-
value functionals of the basic operators then satisfy the same Poisson algebra:
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{〈 Ĵi 〉, 〈 Ĵ j 〉} = Ck
i j 〈 Ĵk〉. But they do not provide a complete set of coordinates on

the space of all functions on P because in general we have 〈 Ĵi Ĵ j 〉 	= 〈 Ĵi 〉〈 Ĵ j 〉, and
no other general relation between 〈 Ĵi Ĵ j 〉 or other expectation values of products and
the basic expectation values of Ĵi exists. In fact, even if the basic algebra is finite,
as in quantum mechanics or homogeneous models of quantum cosmology, the space
of states is usually infinite-dimensional. (Exceptions are cyclic finitely generated
algebras as they occur for spin systems; see the examples below.) Expectation-value
functionals of products of the basic operators, called moments, provide the remaining
coordinates. Unless there are non-trivial relations between operators in the algebra,
all moments of density states are independent and in fact of infinite number.

It is convenient to define moments not directly as expectation-value functionals
of products of basic operators but in the form already introduced in (5.23):

�(O1 O2 · · · On) :=
〈
(Ô1 − 〈Ô1〉)(Ô2 − 〈Ô2〉) · · · (Ôn − 〈Ôn〉)

〉
symm

= 1

n!
∑
π∈Sn

〈
(Ôπ(1) − 〈Ôπ(1)〉)(Ôπ(2) − 〈Ôπ(2)〉) · · · (Ôπ(n) − 〈Ôπ(n)〉)

〉

(13.2)

where we totally symmetrize to remove redundancy due to re-ordering. (Moreover,
symmetrization makes the moments real provided the Ôi used are self-adjoint.) These
moments are non-trivial only for n ≥ 2 since 〈(Ô −〈Ô〉)〉 = 0 for normalized states.
At second order, we use the standard notation (�O)2 = �(O2).

With this choice of moments, it is guaranteed that expectation-value functionals of
the basic operators Poisson commute with their moments: {〈Ô〉,�(O1 O2 . . .)} = 0
provided the basic operators Ô, Ô1 and Ô2 satisfy a canonical algebra. This property
often provides computational advantages, but even for non-canonical basic operators
the choice of moments in this form is useful because they are all expected to be small
in a semiclassical state, or vanish in a classical correspondence. In this limit only the
basic expectation values remain and correspond to classical variables. Accordingly,
the moments (5.23) are sometimes called quantum variables. For the general Poisson
bracket of moments for canonical basic operators, see [1].

13.1.3 Relations

With expectation-value functionals and the moments we have a complete set of
coordinates on the state space. But the moments cannot take arbitrary real values:
Fluctuations of the form (�O)2 = 〈(Ô − 〈Ô〉)2〉 must clearly be non-negative, but
in general they are restricted even more strongly by uncertainty relations. For each
pair (Ô1, Ô2) of operators we have the Schwarz inequality

〈�̂O∗
1 �̂O1〉〈�̂O∗

2 �̂O2〉 ≥ |〈�̂O∗
1 �̂O2〉|2

with �̂Oi := Ôi − 〈Ôi 〉. If the operators are self-adjoint, this means

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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〈(�̂O1)
2〉〈(�̂O2)

2〉 ≥ |〈�̂O1�̂O2〉|2. (13.3)

Writing

�̂O1�̂O2 = 1

2
(�̂O1�̂O2 + �̂O2�̂O1)+ i

1

2i
[�̂O1, �̂O2]

with

1

2
〈�̂O1�̂O2 + �̂O2�̂O1〉 = 1

2
〈Ô1 Ô2 + Ô2 Ô1〉 − 〈Ô1〉〈Ô2〉

and [�̂O1, �̂O2] = [Ô1, Ô2] we have

|〈�̂O1�̂O2〉|2 = 1

4

(
〈Ô1 Ô2 + Ô2 Ô1〉2 − 2〈Ô1〉〈Ô2〉

)2 + 1

4
〈−i[Ô1, Ô2]〉2.

Again, we have used self-adjointness of the operators to compute the absolute square
of the complex number 〈�̂O1�̂O2〉. For the moments, we thus have the inequalities

(�O1)
2(�O2)

2 −�(O1 O2)
2 ≥ 1

4
〈−i[Ô1, Ô2]〉2 (13.4)

as uncertainty relations whenever Ô1 and Ô2 are self-adjoint. Similar conditions
exist for moments of higher order, but they mix the order and are more tedious to
derive.

Usually, [Ô1, Ô2] ∼ �. Near the saturation of the uncertainty relation, second-
order moments are thus of the order �, as realized for instance for Gaussian states of
canonical quantum systems (see the example below). In that case, �(O1 · · · On) ∼
O(�n/2) provides a suitable condition for semiclassicality much wider than one using
Gaussians or any specific class of wave functions.

Example 13.1 For the basic operators q̂ and p̂ represented as the usual operators on
the Hilbert space of square-integrable functions of q ∈ R, pure Gaussian states have
the general formψ(q) = exp(−z1q2+z2q+z3)with three complex numbers zi such
that Rez1 > 0 for normalizability. The parameter z3 is irrelevant for the moments
since its real part is fixed by normalization while its imaginary part contributes only
a phase factor. Writing z1 = α1 + iβ1 and z2 = α2 + iβ2 with real αi and βi ,

we have

〈q̂〉 = α2

2α1
, 〈 p̂〉 = �

α1β2 − α2β1

α1
, (13.5)

(�q)2 = 1

4α1
, (�p)2 = �

2α1 + �
2 β

2
1

α1
, �(qp) = −�

β1

2α1
(13.6)

characterizing the peak position, fluctuations and correlations of the state. For all
allowed values of the parameters, Gaussian states saturate the uncertainty relation
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(�q)2(�p)2 −�(qp)2 = 1

4
�

2. (13.7)

For β1 = Imz1 	= 0, the state is correlated. In this case, the uncertainty product
(�q)2(�p)2 is larger than the minimally possible value �

2/4. Correlations �(qp)
are bounded from above for given values of fluctuations �q and �p. These are all
the moments that can be varied for a Gaussian state; such states are thus much more
special than general semiclassical ones.

With (13.2), we are considering moments for general density states. If moments
are desired only for pure states of some type, further conditions arise which are
complicated to derive completely. Fortunately, such a restriction is rarely necessary.
Especially for quantum cosmology which constitutes models obtained by averaging
inhomogeneous configurations, density states should be expected to be relevant for
sufficient generality.

The preceding example illustrates that none of the second-order moments for a
canonical algebra of basic operators is redundant even for pure states: At saturation
we have one relation between the three variables, and there are indeed two free
parameters in a Gaussion once the expectation values of q̂ and p̂ are fixed. The
third independent moment then enters as a free parameter to describe deviations
from saturation. Such unsaturated states, however, are more difficult to write down
in closed form with specific moments; they are certainly no longer Gaussian. The
following examples illustrate the relationship between moments and density states.

Example 13.2 Take the algebra M2 of complex 2 × 2-matrices, with an adjoint
defined in the usual way by transposition combined with complex conjugation. Self-
adjoint generators can be taken to be the Pauli matrices σi together with the identity
id. There are relations idσi = σi = σi id and σiσ j = δi j + εi jkσk between them
such that any product can be reduced to an expression linear in the generators. That
means that expectation values of matrices in the set {id, σi } as basic operators are
sufficient to parameterize all expectation values, and no independent moments exist.
Disregarding the trivial unit which must always have the same expectation value one,
the quantum phase space is thus three-dimensional—in accordance with the fact that
2 ×2 density matrices have three free parameters. (They are self-adjoint and of trace
one.) An irreducible Hilbert-space representation H2, on the other hand, provides
a two-dimensional state space: the usual spin-1/2 representation is complex two-
dimensional, which with normalization and factoring out a total phase corresponds
to two real dimensions. In this simple example, we thus see that the state space we
obtain by expectation values and moments is larger than the space of pure states.

Example 13.3 Now take the tensor product M2 ⊗ M2 of the algebra M2 with itself.
It has 16 generators {id ⊗ id, id ⊗ σi , σ j ⊗ id, σk ⊗ σl}. Again, all products can be
reduced to expressions linear in the generators, and disregarding the unit we obtain a
15-dimensional state space in accordance with the dimension of the space
of self-adjoint, trace one, 4 × 4 density matrices. An irreducible Hilbert-space rep-
resentation H2 ⊗H2, on the other hand, is complex four-dimensional, implying six
real dimensions for the pure state space.
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13.1.4 Casimir Conditions

Further conditions may arise if several irreducible representations exist for a given
linear system [ Ĵi , Ĵ j ] = i�Ck

i j Ĵk . For instance, one may specify values of Casimirs

for group coherent states, such as Ĉ := Ĵ 2
1 + Ĵ 2

2 + Ĵ 2
3 = �

2 j ( j + 1) for SU(2)
with Ck

i j = εk
i j . Taking an expectation value of the operator equation then relates

expectation values of the basic operators to second-order moments (for a quadratic
Casimir), and provides relations for higher moments from expectation values of
the form

〈 Ĵ k
1 Ĵ l

2 Ĵ m
3 Ĉ〉 = �

2 j ( j + 1)〈 Ĵ k
1 Ĵ l

2 Ĵ m
3 〉. (13.8)

Evaluations of these relations then follow the lines as in the example of reality
conditions for harmonic loop quantum cosmology used in Sect. 6.1, which amount
to a Casimir condition for the algebra sl(2,R).

One may view the Casimir operator as a constraint operator and deal with it along
the lines of effective constraints to be described in Sect. 13.2 for first-class constraints.
In contrast to the procedure described there, however, a Casimir constraint is second
class, even if it is a single constraint. In such a case, it amounts to a constraint on a non-
symplectic Poisson manifold (with degenerate Poisson tensor) for which constraints
are classified in a generalized way compared to Dirac’s well-known procedure;
see [2]. A Casimir constraint, by definition, commutes with all basic operators:
[ Ĵi , Ĉ] = 0. In the quantum phase space, it does not generate any gauge transforma-
tions, a property that distinguishes second-class constraints.

13.1.5 Equations of Motion

On the state space parameterized by expectation values and moments, a flow is defined
once a Hamiltonian operator in the algebra A has been chosen. For expectation values
of arbitrary time-independent operators Ô, we have the well-known equation

d〈Ô〉
dt

= 〈[Ô, Ĥ ]〉
i�

(13.9)

which can be derived equally well in a Schrödinger or Heisenberg picture. Such an
equation also applies to evolving observables in deparameterized systems, as seen
in the preceding chapter; (12.6). Using linearity and the Leibniz rule of derivatives
we extend the dynamics to all moments, for instance

d(�O)2

dt
= d(〈Ô2〉 − 〈Ô〉2)

dt
= 〈[Ô2, Ĥ ]〉

i�
− 2〈Ô〉 〈[Ô, Ĥ ]〉

i�
. (13.10)

Example 13.4 (Harmonic oscillator) With Ĥ = 1
2m p̂2+ 1

2 mω2q̂2 in the Schrödinger
representation, we have

http://dx.doi.org/10.1007/978-1-4419-8276-6_6
http://dx.doi.org/10.1007/978-1-4419-8276-6_12


13.1 Canonical Effective Equations 281

d

dt
〈q̂〉 = 1

m
〈 p̂〉, d

dt
〈 p̂〉 = −mω2〈q̂〉

which can be solved easily and in closed form independently of any moment.
Solutions agree exactly with the classical ones, as is well known from the Ehrenfest
theorem. Similarly, the second-order moments satisfy

d

dt
(�q)2 = 2

m
�(qp)

d

dt
�(qp) = −mω2(�q)2 + 1

m
(�p)2

d

dt
(�p)2 = −2mω2�(qp)

and can also be solved for in closed form without knowing any higher moment.
Second-order moments, moreover, are subject to the (generalized) uncertainty
relation

(�q)2(�p)2 −�(qp)2 ≥ �
2

4
.

The second-order equations allow one to discuss coherent and squeezed states in
simple terms. We have non-spreading solutions of constant second-order moments
provided that�(qp) = 0, �p = mω�q.All these solutions correspond to coherent
states following exactly the classical trajectory. They satisfy the uncertainty relation
if �q ≥ √

�/2mω. If the uncertainty relation is saturated, we obtain fluctuations
that are fixed uniquely to be those of the ground state. If we saturate the uncertainty
relation at all times, we have general dynamical coherent states. From the previous
equations, this implies fluctuations changing in time unless we have exactly the
harmonic oscillator ground state; such states are called squeezed states. See Fig. 13.1
for an illustration. In their most general form, squeezed states may also have non-
vanishing correlations if�(qp) 	= 0. For given fluctuations, however, the amount of
squeezing is bounded by the uncertainty relation |�(qp)| ≤ √

(�q)2(�p)2 − �2/4
even if it is not required to be saturated.

Dynamics is more involved for anharmonic systems, in which the equations of
motion for all infinitely many moments no longer decouple to finitely coupled sets of
linear equations. In this case, quantum back-reaction results and the precise behavior
of an evolving state, including its spreading and deformations from a Gaussian, is
important for knowing the time dependence of expectation values or other moments.
It is generated by the quantum Hamiltonian

HQ = 〈H(q̂, p̂)〉 = 〈H(q + (q̂ − q), p + ( p̂ − p))〉 (13.11)

= H(〈q̂〉, 〈 p̂〉)+
∑
a,b

1

a!b!
∂a+b H(〈q̂〉, 〈 p̂〉)
∂〈q̂〉a∂〈 p̂〉b

�(qa pb). (13.12)
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Fig. 13.1 Spreading of a
squeezed state compared to
an unsqueezed state. Plotted
are the time-dependent
q-expectation value and
q-fluctuations around it for
two different states, one
without correlations (solid)
and one with non-vanishing
correlations (dashed)

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

q

t

The expansion in terms of the moments, just as a semiclassical �-expansion used for
the WKB approximation, or like the Feynman expansion, is in general not convergent
but asymptotic. The equations of motion ḟ = { f, HQ} it generates follow from the
Poisson bracket in the quantum phase space. Its relationship to commutators then
shows that HQ generates the correct flow for expectation values and moments based
on (13.9).

In canonical formulations, the Hamiltonian determines the dynamics together with the Pois-
son structure. One could therefore suspect that not only the Hamiltonian but also the Poisson
brackets receive quantum corrections. This suspicion is correct: The Poisson structure re-
ceives corrections by the presence of moments as new quantum degrees of freedom, enlarging
the classical phase space. However, by definition (13.1) there are no quantum corrections to
the basic variables as long as they form a closed algebra (belonging to a linear quantum sys-
tem). The Poisson brackets of expectation values of basic operators agree with the classical
Poisson brackets, without quantum corrections in this relation.

If one does not work with the full Poisson manifold of expectation values and all moments,
but rather embeds the classical phase space non-horizontally in the quantum phase space
seen as a fiber bundle over the classical phase space, quantum corrections to Poisson brackets
of expectation values do arise. For instance, in the following example we will see that under
certain conditions (more precisely, when an adiabatic approximation can be applied for the
moments) one can solve for the moments �(qa pb)(〈q̂〉, 〈 p̂〉) in terms of the expectation
values. These solutions then describe an embedding (q, p) �→ (q, p,�(qa pb)(q, p)) of
the classical phase space in the quantum phase space. If one pulls back the symplectic form
d〈q̂〉∧d〈 p̂〉+�a,b;c,d (�)d�(qa pb)∧d�(qc pd ) on the quantum phase space (with moment-
dependent coefficients encoding the Poisson structure (13.1) for moments), one may obtain
a quantum-corrected symplectic form

(1 + 2�a,b;c,d (�(q, p))(∂�(qa pb)/∂q)(∂�(qc pd )/∂p))dq ∧ dp.

(Such a correction does not arise in the following example because the moments solved for
in terms of expectation values depend only on 〈q̂〉, not on 〈 p̂〉.) Sometimes, corrections of
this form also arise when one begins the derivation of effective equations by an assumption
on, rather than derivation of, the dependence of moments on expectation values, as in [3].
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Thus, if quantum corrections to the symplectic or Poisson structure arise, they are a conse-
quence of a secondary step in solving effective equations or making assumptions about their
solutions. If moments are kept independent of expectation values, which is the most general
form of effective equations, no corrections to the Poisson brackets of expectation values
arise, while Poisson brackets between moments as they follow from commutators have no
classical analog whatsoever.

The infinitely-coupled dynamics of ordinary differential equations for moments is
equivalent to the partial differential equation given by the Schrödinger flow. Usually,
the Schrödinger equation is much more useful for solving the dynamics. But in cer-
tain regimes, equations for moments lend themselves more easily to approximation
schemes.

Example 13.5 (Anharmonic oscillator) With a cubic anharmonicity in the Hamil-
tonian

Ĥ = 1

2m
p̂2 + 1

2
mω2q̂2 + 1

3
λq̂3

we have equations of motion

d

dt
〈q̂〉 = 1

m
〈 p̂〉, d

dt
〈 p̂〉 = −mω2〈q̂〉 − λ〈q̂〉2 − λ(�q)2

with a non-linear coupling of expectation values and the q-fluctuation. To solve these
equations, we must know the behavior of �q, which is itself time dependent with a
rate of change

d

dt
(�q)2 = 2

m
Cqp (13.13)

given by the covariance, obeying

d

dt
Cqp = 1

m
Cqp + mω2(�q)2 + 6λ〈q̂〉(�q)2 + 3λ�(q3). (13.14)

Here, a higher moment �(q3) of third order couples. Proceeding this way in the
hope of finding a closed set of equations, one will have to include all infinitely many
moments.

For a general anharmonic system, we consider a classical Hamiltonian
H = 1

2m p2 + 1
2 mω2q2 +U (q). In this case, additional approximation schemes open

up which will allow us to compare results with other derivations based, for instance,
on effective actions. Using the parameters of the anharmonic system, we first in-
troduce dimensionless variables �̃(qb pa) := �

−(a+b)/2(mω)b/2−a/2�(qb pa). The
quantum Hamiltonian, including coupling terms between expectation values and
moments, can then be expanded in powers of �

1/2 :
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HQ(〈q̂〉, 〈 p̂〉,�(· · · )) = 1

2m
〈 p̂〉2+1

2
mω2〈q̂〉2+U (〈q̂〉)+�ω

2

(
(�̃q)2 + (�̃p)2

)

+
∑
n>2

1

n!
(

�

mω

)n/2
U (n)(〈q̂〉)�̃(qn). (13.15)

Here the dimensionless variables are useful to organize the formal expansion with
an explicit expansion parameter �. In general, such expansions can still be per-
formed if one assumes the moments to obey the semiclassical hierarchy�(qa pb) ∼
O(�(a+b)/2). With the dimensionless moments, we have �̃(qa pb) ∼ O(1) and all
orders of � are indeed shown explicitly in (13.15). From this expression, we see
the zero-point energy given just by the fluctuations, (�̃q)2 = (�̃p)2 = 1/2 for the
ground state, and quantum back-reaction from coupling terms between expectation
values and moments.

Equations of motion then follow in the usual Hamiltonian way as ḟ = { f, HQ}
for any phase-space function f, using the Poisson brackets as defined in (13.1)
together with linearity and the Leibniz rule. One can easily see that the resulting
equations agree with what we had earlier obtained by the background-state method
in Sect. 5.4.1, expanding the Hamiltonian operator directly but formally. For the
anharmonic oscillator, we have

〈 ˙̂q〉 = 〈 p̂〉
m

(13.16)

〈 ˙̂p〉 = −mω2〈q̂〉 − U ′(〈q̂〉)−
∑

n

1

n!
(

�

mω

)n/2

U (n+1)(〈q̂〉)�̃(qn) (13.17)

˙̃
�(qn−a pa) = −aω�̃(qn−a+1 pa−1)+ (n − a)ω�̃(qn−a−1 pa+1)

− a
U ′′(〈q̂〉)

mω
�̃(qn−a+1 pa−1)

+
√

�aU ′′′(〈q̂〉)
2(mω)

3
2

�̃(qn−a pa−1)�̃(q2)+ �aU
′′′′
(〈q̂〉)

3!(mω)2 �̃(qn−a pa−1)�̃(q3)

− a

2

(√
�U ′′′(〈q̂〉)
(mω)

3
2

�̃(qn−a+2 pa−1)+ �U
′′′′
(〈q̂〉)

3(mω)2
�̃(qn−a+3 pa−1)+ · · ·

)

+ a(a − 1)(a − 2)

24

(√
�U ′′′(〈q̂〉)
(mω)

3
2

�̃(qn−a pa−3)

+ �U
′′′′
(〈q̂〉)

(mω)2
�̃(qn−a+1 pa−3)+ · · ·

)
.

(13.18)

As expected, these are infinitely many coupled equations for infinitely many vari-
ables. (Incidentally, note that the expansion is in terms of

√
�, not of � as one might

have expected. Half-integer powers of � only drop out if all odd-order moments
vanish, which is the case for harmonic oscillator coherent states but not necessarily
in general.)

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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Solving these equations even approximately requires truncations that allow one
to disregard all but finitely many moments. The set of moments indeed has the
hierarchy of finite-dimensional spaces Pn defined as the subsets obtained by allow-
ing moments �(qa pb) only up to a finite order a + b ≤ n. Commutators do not
directly provide a closed Poisson bracket on these spaces; for instance, at third order
we have {�(q3),�(p3)} = 9(�(q2 p2) − (�q)2(�p)2) which includes a moment
of order four. (Only second-order moments have a closed Poisson algebra among
themselves.) But truncating not only the Hamiltonian but also the Poisson brackets
at a finite order n provides the dynamics on a closed Poisson manifold. That this
truncation also of the Poisson brackets is in fact required for a consistent approxi-
mation of equations of motion can be seen from the observation that it results in a
Hamiltonian flow corresponding exactly to the equations of motion truncated at the
same order n.

There is thus a consistent truncation procedure which in terms of dimensionless
moments disregards all terms beyond a certain order �

n/2. Here, the expansion is
a semiclassical one, but formally one can do similar truncations in other regimes.
To that end, we would replace each moment �(qa pb) with μ(a+b)/2�(qa pb) and
� with μ�, expand all equations up to terms of order μn/2 (irrespective of the
value of �). After setting μ = 1, we obtain the truncated equations.

In general, the truncation results in a higher-dimensional dynamical system in
which the expectation values are accompanied by some of the moments as true
quantum degrees of freedom. By the coupling terms among the equations, quantum
back-reaction is realized. Sometimes one can further reduce the system to one of
the classical dimension, involving only expectation values, such that quantum back-
reaction is realized in a simpler way, for instance by an effective potential. Such an
additional step requires solutions to some of the equations for moments in terms of
expectation values, which can then be inserted into the expectation-value equations.
For the anharmonic oscillator, this is possible by an adiabatic approximation for the
moments which indeed allows one to solve the moment equations without knowing
the behavior of expectation values, and then insert the solutions into the coupling
terms of expectation-value equations.

Performing an adiabatic approximation again makes use of a formal parameter
λ to arrange expansions, and in the end setting λ = 1. Now, a small value of the
parameter should mean that the time dependence of moments is only weak. We
thus rescale d/dt to λd/dt and expand �(qa pb) = ∑

e �e(qa pb)λe. After solving
the equations order by order in λ, we will finally set λ = 1. There is no claim
that the λ-expansion of �(· · · ) is a converging sum, and the procedure might seem
questionable. Instead, the expansion merely serves to organize different kinds of
time dependences of the moments. To n-th adiabatic order, comparing λ-coefficients
in the adiabatic expansion of the general Hamiltonian equation of motion leads to

{�n(q
a pb), HQ} = �̇n−1(q

a pb). (13.19)
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(Writing this equation as {�n(qa pb) − �n−1(qa pb), HQ} = 0 shows that at n-th
adiabatic order the highest-order term is assumed to provide a contribution of neg-
ligibly small time dependence to the expansion of moments.) Iterating (13.19)
over n, with the left-hand side computed as a Poisson bracket on phase space rather
than interpreted as a time derivative, this procedure provides algebraic equations to all
orders. We will see this explicitly when we apply these equations to the anharmonic
oscillator.

To first order in � and zeroth in λ, we have from (13.18) without the �-terms and
without the time derivative (which is at least of first order in λ) [4]

0 = (n − a)�̃0(q
n−a−1 pa+1)− a

(
1 + U ′′(〈q̂〉)

mω2

)
�̃0(q

n−a+1 pa−1). (13.20)

As a step-2 recurrence in a for �̃0(qn−a pa) starting with �̃0(qn), (13.20) must stop
at a = n since the sequence of n-th order moments is finite. Non-zero solutions of
this form can arise only if n = a is the last step in the recursion, which implies that
a must be even for even n and odd for odd n. For even n and a we have the general
solution

�̃0(q
n−a pa) =

(
n/2

a/2

)(
n

a

)−1 (
1 + U ′′(〈q̂〉)

mω2

)a/2

�̃0(q
n), (13.21)

and we will not need the odd-order solutions. To this order, �̃0(qn) remains free. To
first order in λ, we have

(n − a)�̃1(q
n−a−1 pa+1)− a

(
1 + U ′′(〈q̂〉)

mω2

)
�̃1(q

n−a+1 pa−1) = 1

ω

˙̃
�0(q

n−a pa)

which implies

∑
aeven

(
n/2

a/2

) (
1 + U ′′(〈q̂〉)

mω2

)(n−a)/2 ˙̃
�0(q

n−a pa) = 0

for consistency. This condition requires

�̃0(q
n) = Cn(1 + U ′′(〈q̂〉)/mω2)−n/4 (13.22)

with constants Cn . At this stage, we see that the zeroth-order adiabatic solutions are
not t-independent but implicitly depend on t via 〈q̂〉 if the potential is not quadratic.
The equation (13.20) we solved therefore cannot provide an exact solution to (13.18):
Higher orders in the adiabatic approximation correct for this error in the time depen-
dence; this reorganization of the t-dependence is the actual meaning of the formal
λ-expansion.

To obtain moments of the ground state for the harmonic limit U = 0, we must
have Cn = 2−nn!/(n/2)! (as well as �̃(qn−a pa) = 0 for a and n odd, which is why
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we do not need the solution of (13.20) for such values). The zeroth adiabatic order
for second-order moments is then fixed completely, and we obtain the first correction

ṗ = −mω2q − U ′(q)− �

2mω
U ′′′(q)(�̃0q)2 + · · ·

= −mω2q − U ′(q)− �

4mω

U ′′′(q)√
1 + U ′′(q)/mω2

+ · · ·

to the classical equations of motion. The last term shows the leading correction in the
effective force as compared to the classical force −U ′(q) from the effective potential
in HQ with the zero-point energy.

To second adiabatic order [4] we obtain additional corrections, which imply the
second-order equation of motion

(
m + �U ′′′(〈q̂〉)2

32m2ω5(1 + U ′′(〈q̂〉)/mω2)5/2

)
〈 ¨̂q〉

+ �〈 ˙̂q〉2 (
4mω2U ′′′(〈q̂〉)U ′′′′(〈q̂〉)(1 + U ′′(〈q̂〉)/mω2)− 5U ′′′(〈q̂〉)3)

128m3ω7(1 + U ′′(〈q̂〉)/mω2)7/2

+ mω2〈q̂〉 + U ′(〈q̂〉)+ �U ′′′(〈q̂〉)
4mω(1 + U ′′(〈q̂〉)/mω2)1/2

= 0.

for the position expectation value. There is a new velocity-dependent contribution
to the effective force at this order, and the classical mass has received a position-
dependent correction. One can verify that this equation results from an action

�eff [q(t)] =
∫

dt

(
1

2

(
m + �U ′′′(q)2

25m2
(
ω2 + m−1U ′′(q)

)5/2

)
q̇2 (13.23)

−1

2
mω2q2 − U (q)− �ω

2

√
1 + U ′′(q)

mω2

)
(13.24)

in agreement, to this order, with the low-energy effective action derived for instance
via path integration [5]. (Although the equations of motion coincide, the meaning
of q in the low-energy effective action is different from that of 〈q̂〉 in canonical
effective equations: q is related to off-diagonal matrix elements of q̂ [5] and not
even guaranteed to be real. Conceptually, the low-energy effective action is thus
problematic in a semiclassical context.)

13.1.6 General Properties

The examples of anharmonic systems illustrate that the solvable nature of the har-
monic oscillator, not surprisingly, is very special. Solvability does not just mean that
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one is lucky enough to find closed solutions for a wave function. We even have closed
solutions for all the moments (which would require additional integrations if derived
from a wave function) and the dynamical behavior of moments of any given order is
independent of the others. This strong harmonic sense of solvability is realized only
rarely, in explicitly treatable but most often unrealistic ideal models. In addition to
the harmonic oscillator in quantum mechanics, it can be found in the same form for
free quantum field theories—or in the harmonic cosmologies of Chap. 6.

In other systems, quantum corrections arise from the back-reaction of fluctua-
tions and higher moments. In the language of quantum field theory, these are loop
corrections. The scheme presented here also produces such terms, but it is more
encompassing: we obtain not only quantum-correction terms but compute state prop-
erties such as fluctuations along the way. Moments are not fixed completely, but their
dynamical behavior is solved for, starting from an initial state through the initial val-
ues required to be posed for the differential equations we have. In this way, if we
start with a harmonic oscillator ground state, we derive properties of the interacting
ground state in the anharmonic system. For instance, from (13.21) and (13.22) we
derive (�̃0q)2 = 1

2 (1+U ′′(〈q̂〉)/mω2)−1/2 and (�̃0 p)2 = 1
2 (1+U ′′(〈q̂〉)/mω2)1/2

in the anharmonic ground state, which still saturate the uncertainty relation to the
orders considered. This property is crucial for the general consistency of the scheme:
At times other than the initial time, state properties are not put in from the outset,
as it is sometimes suggested in other derivations based for instance on a geometrical
formulation of quantum mechanics [3]. Having to prescribe the state at different
times would require too much bias about the dynamical behavior especially if one
evolves toward high quantum regimes.

We have also seen, for instance in the application to harmonic cosmology, that the
equations shed much light on the availability and behavior of dynamical coherent
states, especially in combination with the uncertainty relation. Thus, not only the
interacting ground state is accessible, but a much larger class of states can be analyzed
by choosing different initial values.

In comparison with the low-energy effective action we notice several new features.
First, effective equations are state dependent; only when a specific state to expand
around is selected, even if this is done implicitly as in most derivations of effective
actions, do unique quantum-correction terms result. Not all regimes of interest clearly
distinguish a unique state to expand around, such as the vacuum state, and so more
freedom to parameterize state-dependent properties is present. The canonical proce-
dure allows this freedom; for instance we may decide not to fix C2 in the adiabatic
solutions, on which only a lower bound is then given by the uncertainty relation.
Secondly, general effective equations may not allow the application of an adiabatic
expansion, or some other approximation in addition to the semiclassical one. In the
example of anharmonic oscillators, it was the adiabaticity assumption that allowed us
to solve for the moments in terms of expectation values. When there is no substitute
for this assumption, moments remain a-priori undetermined and must be kept as addi-
tional independent variables. One is then dealing with a higher-dimensional effective
system with true quantum degrees of freedom. This enlargement of the dimension-
ality is reminiscent of higher-derivative effective actions which require additional

http://dx.doi.org/10.1007/978-1-4419-8276-6_6
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initial values to be posed for higher time derivatives of the fields. However, there
is no straightforward mapping between the degrees of freedom, and in fact not all
the freedom in perturbative higher-derivative effective actions is consistent [6]. The
degrees of freedom of higher-dimensional canonical effective systems, on the other
hand, are all consistent and have clear physical interpretations as the moments of a
state.

The procedure is manageable in explicit terms if a free system is available. For
canonical basic variables, this requires the Hamiltonian operator Ĥ to be quadratic.
More generally, however, there are additional options formulated by a linear system
with basic operators Ĵi forming a closed commutator algebra with the Hamiltonian:
[ Ĵi , Ĥ ] = ∑

j ai j Ĵ j + bi Ĥ . It is easy to see that such a linear algebra ensures
decoupling properties of the Ehrenfest equations (13.9), which then close for the
expectation values. Once a free system has been identified within a larger class
of models, perturbation theory can be used to test robustness and to derive more
general properties. An example for a linear system without a quadratic Hamiltonian
is harmonic cosmology.

Positivity of the Hamiltonian is another important aspect. It is guaranteed for the
harmonic oscillator, but it becomes an issue if systems need be reformulated to bring
them in the usual Hamiltonian form, for instance by deparameterizing a constrained
system. Especially if the system is relativistic, a square root must be taken and
combined with a judicious sign choice. We may for instance have a constraint of the
form p2

ϕ− H2 = 0 as in relativistic deparameterizable systems (Sect. 12.3.2). Taking
a square root pϕ = ±|H | means that the absolute value may destroy strict linearity,
as already discussed in the context of cosmology. As we will see in more detail in the
next section, quantum constraints can be dealt with just like quantum Hamiltonians,
by taking the expectation value as a function on the state space and expanding in the
moments. There are several differences compared to a non-relativistic system; for
instance, additional moments of pϕ may contribute to quantum constraints unlike in
the linearized deparameterized version. For now, we are interested only in the fact
that we will have to take a square root when solving for pϕ and bringing the system
to deparameterized form.

A sign ambiguity thus arises in solving for pϕ = ±|H | to obtain the two sectors
of positive-frequency and negative-frequency modes. No difference occurs between
classical and effective constraints from this perspective. But the nature of a linear
quantum system may be spoiled by the absolute value around H. Even if H is
quadratic in canonical variables, such as H = cp in the solvable model of Wheeler–
DeWitt cosmology, |H | is not strictly quadratic. However, on states supported only
on the positive or negative part of the spectrum of H, respectively, the absolute value
can be dropped and the system will be linear. If H is time-independent, the required
spectral property of states will be preserved and it is necessary to restrict only initial
values to the spectral property. This can easily be done without too strong restrictions
on the moments and the accessible states.

In a Hilbert-space representation, |ĉp| is usually a non-local operator if wave
functions such as ψ(c) or ψ(p) are used. However, this kind of non-locality is
representation dependent (and thus unphysical). An operator of this form would

http://dx.doi.org/10.1007/978-1-4419-8276-6_12
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certainly be local in a representation based on eigenstates of the operator ĉp. Since
effective equations are representation-independent, they are insensitive to this non-
locality problem.

13.2 Effective Constraints

As already indicated, a constraint operator gives rise to the quantum constraint
CQ = 〈Ĉ〉 = Cclass(q, p) + · · · on the state space since it must vanish when
the expectation value is taken in physical states. Quantum corrections to the classical
constraint surface thus arise. However, a single constraint on the quantum phase space
only removes two degrees of freedom (by constraining and factoring out a gauge,
provided the constraint is part of a first-class system). Corresponding quantum vari-
ables would remain unconstrained, leaving infinitely many spurious variables which
would never arise in a quantization of the classical reduced phase space.

Removing all degrees of freedem as appropriate requires additional constraints.
In fact, there are infinitely many ones

C f (q,p) := 〈 f (q̂, p̂)Ĉ〉
on the state space, which all have to vanish in physical states and which in general
are independent of CQ . Practically, one can usually work with polynomials f (q, p),
as we will also see in examples below. As with the truncations in the discussion of
effective dynamics, solutions of the constraints become feasible to any given order
in moments, where only finitely many C f have to be considered.

At this general level, several properties important for the consistency of the con-
strained system can be derived [7]. The system of constraints is first-class if the
ordering 〈 f (q̂, p̂)Ĉ〉 is indeed used as indicated in the definition. This means that
we are dealing with operator products not symmetric in general. Naive reorderings
either spoil the first-class nature, or lead to functions that are not constraints if the
constraint operator no longer stands at the very right or left of the operator prod-
uct. Alternatively, one may define quantum constraints via the generating functional
Cα = 〈ei�−1αi ·x̂ i

C(x̂ i )〉 (where (x̂ i )i=1,2 = (q̂, p̂)) for Weyl-ordered and thus sym-
metric constraints, which also provides a first-class system. This procedure does
include certain reorderings of our constraints above, obtained by all possible deriv-
atives of Cα by the components αi , and then setting α = 0. But practically it is not
always easy to derive the Weyl-ordered constraints and we will continue with the
non-symmetric constraints.

In fact, we do not require reality of kinematical quantum variables �(qa pb),

realized before constraints are solved. Usually the kinematical inner product has
to be changed to the physical one after the constraints are solved, and requiring
self-adjointness or reality before this step would not guarantee the correct reality
properties. Then there is no reason either to require constraint functions to be real, or
to come from symmetrically ordered operator products including the constraint. We
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will impose reality conditions only after solving the constraints to ensure physical
normalization. In this way, physical observables are accessible without deriving the
full physical Hilbert space or a specific integral form of the physical inner product.
Also here, the procedure is very well amenable to perturbative techniques, which is
not the case for other constructions of physical Hilbert spaces.

Different gauge fixings of the constrained system can in some cases be seen to be
related to different kinematical Hilbert space structures. Results will thus be indepen-
dent of ambiguities that otherwise arise by choosing a particular kinematical Hilbert
space as one does in group averaging. Moreover, since Hilbert-space representations
are not referred to, no difference in the treatment arises between constraints with
zero in their discrete or continuous spectra.

13.2.1 Non-Relativistic Constraints

Non-relativistic constraints are characterized by a linear dependence on one momen-
tum variable which can be considered as an energy. In non-relativistic deparameter-
izable systems, this linear momentum is conjugate to a global time variable. From
the point of view of physical Hilbert spaces as well as effective constraints this case
is easier to deal with, and we discuss it first by way of examples.

Example 13.6 (Linear constraint) Let us take a constraint Ĉ = p̂. It immediately
implies 〈 p̂〉 = 0, while 〈q̂〉 is pure gauge. At second order of the moments, we have
(�p)2 = 0 fully constrained, while Cq = 〈q̂ p̂〉 = 0 implies the complex-valued
kinematical covariance

�(qp) = 1

2
〈q̂ p̂ + p̂q̂〉 − 〈q̂〉〈 p̂〉 = −1

2
i�.

At least one of the kinematical variables must thus take complex values, which
means that we indeed have to redefine our kinematical inner product for the physical
Hilbert space. Dealing with complex variables cannot always be avoided; it even has
an advantage: the uncertainty relation

(�q)2(�p)2 −�(qp)2 ≥ 1

4
�

2

remains respected even though one of the fluctuations,�p, vanishes. (The other one,
�q, is pure gauge.) With the uncertainty relation at one’s disposal, one can analyze
dynamical coherent states also for constrained systems.

Example 13.7 (Two-component linearly constrained system and physical observ-
ables [7]) We now assume a constraint Ĉ = p̂1 − p̂ which is still linear but defined
for a system with two independent pairs of degrees of freedom. We denote the kine-
matical quantum variables as

�(paqb pc
1qd

1 ) = 〈( p̂ − p)a(q̂ − q)b( p̂1 − p1)
c(q̂1 − q1)

d〉symm.
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As second-order constraints in addition to CQ = 〈 p̂1〉 − 〈 p̂〉 we have

Cq = − i�

2
−�(qp)+�(qp1), C p = �(pp1)− (�p)2

C p1 = (�p1)
2 −�(pp1), Cq1 = 1

2
i� −�(pq1)+�(q1 p1)

solved by 〈 p̂1〉 = 〈 p̂〉 and

�(qp1) ≈ 1

2
i� +�(qp), �(pp1) ≈ (�p)2

(�p1)
2 ≈ �(pp1) ≈ (�p)2, �(pq1) ≈ 1

2
i� +�(q1 p1).

To derive observables, we also need the gauge flows which, for instance for C p, are
of the form

δ�(qp) = �(pp1)− 2(�p)2 ≈ −(�p)2

δ(�q)2 = 2�(qp1)− 4�(qp) ≈ i� − 2�(qp)

δ�(q1 p1) = �(pp1) ≈ (�p)2

δ�(qq1) = �(q1 p1)+�(qp)− 2�(pq1) ≈ �(qp)−�(q1 p1)− i�

δ(�q1)
2 = �(pq1) ≈ i� + 2�(q1 p1).

It is easy to check that all gauge flows satisfy δ�(qp) = −δ�(q1 p1),

δ�(qq1) = − 1
2

(
δ(�q)2 + δ(�q1)

2
)
.Thus, the functions

(Dq)2 := (�q)2 + 2�(qq1)+ (�q1)
2 (13.25)

(D p)2 := (�p)2 (13.26)

D(qp) := �(qp)+�(q1 p1)+ 1

2
i� (13.27)

on the kinematical state space are gauge invariant. They also satisfy the correct
algebra

{(Dq)2,D(qp)} = 2(Dq)2 (13.28)

{(Dq)2, (D p)2} = 4D(qp) (13.29)

{(D(qp), (D p)2} = 2(D p)2 (13.30)

expected for second-order quantum variables on a reduced state space. For this, the
imaginary contribution in (13.27) is required, which need not be added just to make
D(qp) gauge-invariant. At this stage, all moments involving the pair (q1, p1) are
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either expressed in terms of (q, p)-moments by solving constraints, or subject to
gauge. (One could certainly as well choose to express the (q, p)-moments in terms
of the (q1, p1) ones.)

We finally impose reality conditions: D(qa pb) ∈ R. The observable moments
can then be seen as those computed in a physical Hilbert space. Expressed in
terms of kinematical quantum variables, this again requires an imaginary part
Im(�(qp)+�(q1 p1)) = − 1

2 i� for D(qp) := �(qp)+�(q1 p1)+ 1
2 i� to be real.

Since kinematical quantum variables must be complex to provide correct physical
reality (although they appear symmetrically ordered), we have an explicit example
in which the kinematical Hilbert-space structure must be changed when deriving the
physical Hilbert space. We can also see explicitly that different kinematical choices
are possible, such as �(qp) real or �(q1 p1) real. They imply different kinematical
reality conditions, all resulting in the same physical observables, and thus correspond
to different kinematical Hilbert space structures.

This simple example can be used to illustrate one aspect of the problem of time and
how it can be overcome by effective techniques; see also Sect. 13.2.3. In the preceding
example we could easily choose q as time instead of q1; the choice is simply a
question of gauge fixing of the effective constraints. If one were to implement the
constraints for physical states in a Hilbert space, on the other hand, the situation would
be more subtle. The constraint equations could certainly still be solved easily, and
physical inner products be constructed, for instance by group averaging. However,
the different choices of time are difficult to compare at the Hilbert-space level, where
no obvious mapping between the two deparameterized Hilbert spaces exists. In this
simple model one could easily postulate a natural mapping thanks to the symmetric
way in which q and q1 and their momenta appear. For general constrained systems,
however, no such mapping would be available, while effective constraints still provide
comparisons between different choices of time via the corresponding gauge fixings.

Explicit derivations as in the case of a linear constraint are more complicated when
constraints are non-linear since different orders of moments are mixed in expectation
values. But similar structures for solutions to constraints and observables remain
realized.

Example 13.8 (Free particle) A parameterized free particle has the constraint Ĉ =
p̂t + p̂2/2M, and thus CQ = 〈 p̂t 〉 + 〈 p̂〉2/2M + (�p)2/2M, Cq = �(qpt ) +
i�〈 p̂〉/2M + 〈 p̂〉�(qp)/M and so on [7]. Solving the constraints is more involved
than in the linear case, but the procedure is the same. Now, second-order observables
are P = 〈 p̂〉, Q = 〈q̂〉 − 〈t̂〉〈 p̂〉/M −�(pt)/M and

(D p)2 = (�p)2

D(qp) = �(qp)+�(tpt )− 〈t̂〉
M
(�p)2 + i�

2
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= (�q)2 − 2
〈 p̂〉
M
�(qt)+ 〈 p̂〉2

M2 (�t)2

− 2〈t̂〉
M

(
�(qp)+�(tpt )+ i�

2

)
+ 〈t̂〉2

M2 (�p)2

with explicit couplings between kinematical expectation values and moments. Also
here, second-order moments satisfy the correct algebra. For a free particle, we do not
expect quantum back-reaction in the kinematical quantities, even though physical
expectation values depend on some moments. The relationship can be understood
by deparameterizing: We invert our equations for the observables to obtain

〈q̂〉(〈t̂〉) = Q + 〈t̂〉
M

P + 1

M
�(pt)

≈ Q + 〈t̂〉
M

P − 1

〈 p̂〉
(
�(tpt )+ i�

2

)

= Q + 〈t̂〉
M

P − 1

P

(
D(qp)+ 〈t̂〉

M
(D p)2 −�(qp)

)

and now interpret the observable coefficients as integration constants. For the gauge
choice�(tpt ) = − 1

2 i� identical to what we used before, we have correct deparame-
terized solutions

〈q̂〉(〈t̂〉) = Q + 〈t̂〉
M

P, �(qp)(〈t̂〉) = D(qp)+ 〈t̂〉
M
(D p)2 (13.31)

in terms of initial values. These equations can also be interpreted as relational observ-
ables between the remaining degree of freedom and time. (The gauge choice used is
not unique, but is the only one good for all P. Moreover, it implies real �(qp),
but imaginary �(tpt ) as it is realized in the deparameterized, time-independent
kinematical Hilbert space. This gauge choice is the one corresponding to the usual
Schrödinger representation of the deparameterized system, whose solutions for 〈q̂〉(t)
and �(qp)(t) are the same as (13.31). Other gauge choices provide different depa-
rameterized relationships, and are more difficult to formulate in a Hilbert-space
setting.)

The presence of quantum variables such as the covariance opens up new possi-
bilities for internal times and deparameterization, compared to a classical system. In
fact, the squeezing of a state has often been brought in contact with entropy and the
second law of thermodynamics, implying monotonic behavior [8–14]. Thus, a quan-
tum variable such as�(qp)may provide a good internal time even in regions where
all classical variables would behave in an oscillatory manner [15, 16]. It would also
imply that a natural concept of time would in fact include a strong quantum compo-
nent, showing a possible quantum origin of time.
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13.2.2 Relativistic Systems

Relativistic systems can be treated in much the same way as non-relativistic ones.
A major advantage of effective techniques in this context is the fact that square
roots need not be taken at the operator level (for which one would have to know the
complete spectral decomposition of the Hamiltonian) but simply for numbers such as
expectation values. We demonstrate these features using the previous Example 12.5
of the relativistic harmonic oscillator [17]. Up to second order in moments, the
effective constraints are

C = 〈 p̂ϕ〉2 − 〈 p̂〉2 − 〈q̂〉2 + (�pϕ)
2 − (�p)2 − (�q)2 (13.32)

Cϕ = 2〈 p̂ϕ〉�(ϕpϕ)+ i�〈 p̂ϕ〉 − 2〈 p̂〉�(ϕp)− 2〈q̂〉�(ϕq) (13.33)

C pϕ = 2〈 p̂ϕ〉(�pϕ)
2 − 2〈 p̂〉�(pϕ p)− 2〈q̂〉�(pϕq) (13.34)

Cq = 2〈 p̂ϕ〉�(pϕq)− 2〈 p̂〉�(qp)− i�〈 p̂〉 − 2〈q̂〉(�q)2 (13.35)

C p = 2〈 p̂ϕ〉�(pϕ p)− 2〈 p̂〉(�p)2 − 2〈q̂〉�(qp)+ i�〈q̂〉. (13.36)

Thus, some kinematical moments must be complex. Going through the solution
procedure for first-class constraints applied to this system [18], solving (13.32) for
〈 p̂ϕ〉 and eliminating all pϕ- and ϕ-moments using the other effective constraints,
one can see that the system is deparameterizable in ϕ with quantum Hamiltonian
〈 p̂ϕ〉 = ±HQ,

HQ =
√

〈 p̂〉2 + 〈q̂〉2

(
1 + 〈q̂〉2(�p)2 − 2〈q̂〉〈 p̂〉�(qp)+ 〈 p̂〉2(�q)2

2(〈 p̂〉2 + 〈q̂〉2)2

)
.

Reality is then imposed on Dirac observables 〈q̂〉(〈ϕ̂〉), 〈 p̂〉(〈ϕ̂〉), �(· · · )(〈ϕ̂〉)
obtained by solving the Hamiltonian equations.

13.2.3 Problem of Time

Dirac observables of the effective constrained system provide the observable infor-
mation just as one could compute it on the physical Hilbert space when a particular
representation is known. But now, in addition to the difficult task of computing a
complete set of obervables for the reduced phase space, we have a second option
which does not have an analog at the Hilbert-space level: we can treat the constrained
system by gauge fixing. An analysis of the constraints and the gauge flow they gen-
erate shows that one can fix the gauge (to second order in moments) by requiring the
moments (�ϕ)2, �(ϕq) and�(ϕp) to vanish when one decides to use 〈ϕ̂〉 as time.
Other moments involving time are then fixed by solving the constraints, such that no
ϕ-moments remain free. This outcome is just as expected if one were to choose ϕ
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as time from the outset and then quantize the system with ϕ as a parameter, not an
operator. Now, however, the procedure easily allows the use of 〈ϕ̂〉 as a local internal
time: one may use different gauge fixings to describe different parts of the phase
space, and one may easily transfer to a different choice of time by applying a gauge
transformation. Following [19], the gauge fixing that implements a specific choice
of time is called a Zeitgeist.

Once a Zeitgeist is specified, we gain access to properties of 〈ϕ̂〉, which are
interesting in the context of time even though this parameter is not an observable
on the reduced phase space. In particular, the value changes when a different time
is used; it depends on the Zeitgeist. As the following example illustrates, a general
consequence is that time is complex.

Example 13.9 (Time-dependent potential) We consider a constraint operator Ĉ =
p̂2
ϕ− p̂2 +V (ϕ̂) for a relativistic particle in an arbitrary ϕ-dependent potential V (ϕ).

The notation indicates that we are going to choose ϕ as internal time, but this choice
is not required from the outset. In particular, ϕ may not serve as global internal time
classically; there may be turning points where pϕ vanishes and ϕ fails to be a well-
defined parameter along solutions. The constraint operator gives rise to the effective
constraints

CQ = 〈 p̂ϕ〉2 − 〈 p̂〉2 + (�pϕ)
2 − (�p)2 + V (〈ϕ̂〉)+ 1

2
V ′′(〈ϕ̂〉)(�ϕ)2 (13.37)

Cϕ = 2〈 p̂ϕ〉�(ϕpϕ)+ i�〈 p̂ϕ〉 − 2p�(ϕp)+ V ′(〈ϕ̂〉)(�ϕ)2 (13.38)

C pϕ = 2〈 p̂ϕ〉(�pϕ)
2 − 2〈 p̂〉�(pϕ p)+ V ′(〈ϕ̂〉)

(
�(ϕpϕ)− 1

2
i�

)
(13.39)

to second order in the moments. We now implement 〈ϕ̂〉 as local internal time via
the Zeitgeist

(�ϕ)2 = �(ϕq) = �(ϕp) = 0. (13.40)

We see that �(ϕpϕ) = − 1
2 i� from Cϕ = 0, which then implies

(�pϕ)
2 = 〈 p̂〉2

〈 p̂ϕ〉2 (�p)2 + 1

2
i
V ′(〈ϕ̂〉)�

〈 p̂ϕ〉
because of C pϕ = 0. With this, we arrive at the expression

C = 〈 p̂ϕ〉2 − 〈 p̂〉2 + 〈 p̂〉2 − 〈 p̂ϕ〉2

〈 p̂ϕ〉2 (�p)2 + 1

2
i
V ′(〈ϕ̂〉)�

〈 p̂ϕ〉 + V (〈ϕ̂〉) (13.41)

for the constraint CQ = 〈Ĉ〉 on the space on which Cϕ and C pϕ are solved.

In (13.41), all terms except the last two are expected to be real-valued: 〈 p̂〉 and
�p are physical observables for the class of systems considered, and 〈 p̂ϕ〉 can be
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interpreted physically as the local energy value. When the constraint is satisfied, we
obtain the imaginary part of 〈ϕ̂〉 from

1

2
i
V ′(〈ϕ̂〉)�

〈 p̂ϕ〉 + V (〈ϕ̂〉) = 0. (13.42)

For semiclassical states, to which this approximation of effective constraints refers,
we Taylor expand the potential

V (〈ϕ̂〉) = V (Re〈ϕ̂〉+i Im〈ϕ̂〉) = V (Re〈ϕ̂〉)+i Im〈ϕ̂〉V ′(Re〈ϕ̂〉)+O((Im〈ϕ̂〉)2)
in the imaginary term, expected to be of the order �. To order �, the imaginary
contribution to C is given by

1

2
i
V ′(Re〈ϕ̂〉)�

〈 p̂ϕ〉 + iV ′(Re〈ϕ̂〉)Im〈ϕ̂〉 + O(�3/2) = 0.

Thus,

Im〈ϕ̂〉 = − �

2〈 p̂ϕ〉 . (13.43)

As a consistency result, one can check that changing the Zeitgeist by a gauge trans-
formation transfers the imaginary contribution from 〈ϕ̂〉 to the new variable used as
local internal time [20].

At this stage, one may note that the possibility of time as an operator has often
been considered in quantum mechanics, with the conclusion that it could not be self-
adjoint. Otherwise, it would generate unitary transformations changing the energy
by arbitrary amounts, in conflict with the expectation that energy should be bounded
from below for stability. A non-self-adjoint time operator would not be guaranteed to
have a real-valued expectation value, a consequence which seems in agreement with
what we have found here in explicit form. However, the result (13.43) is of a more
general nature: it applies whenever there is a time-dependent potential, irrespective of
whether it has a lower bound. Even if the potential is bounded neither from above nor
from below do our results hold, but arguments using the energy-translation generated
by time would no longer apply to tell us whether time could be real.

13.3 Applications of Effective Constraints in Quantum
Gravity and Cosmology

Canonical quantum gravity is plagued by several long-standing problems which
have not been resolved so far. While loop quantum gravity has introduced many new
ingredients in this field, it has barely been able to touch these difficult issues. Central
among them are the problem of time [21] and the anomaly problem, and they must
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both be solved before a consistent framework to derive physical predictions can be
obtained. Effective-constraint techniques allow one to address these problems in a
new way, and to solve them in semiclassical regimes where effective constraints can
be truncated and analyzed. This procedure does not eliminate the problems altogether,
but it considerably tames them for most practical purposes.

13.3.1 Problem of Time

The effective procedure to deal with non-deparameterizable constraints has several
advantages. Regarding the problem of time, local internal times and local relational
observables can be consistently implemented in quantum systems [19, 20]. Chang-
ing the internal time simply amounts to a gauge transformation; the equivalence of
different choices of time easily follows. As illustrated for instance by the fact that
the imaginary part of time is transferred when the time is changed, the procedure is
consistent. In particular, one can require that all physical observables be real even
in the presence of complex time. In fact, the complexity of time is crucial for the
consistency of the whole framework; requiring time expectation values to be real
would lead to contradictions with physical reality conditions. Complex time is thus
an important part of a consistent procedure to solve quantum constrained systems.

13.3.2 Anomaly Problem

Effective constraints are also useful to analyze the anomaly problem, as we have
already done for perturbation equations subject to inverse-triad corrections. For an
anomaly-free quantization of several constraints ĈI , effective constraints C f,I =
〈 f (q̂, p̂)ĈI 〉 satisfy a first-class system. But it is not always easy to quantize in
an anomaly-free way, such that constraint operators of a classical first-class system
would indeed be first-class. The first-class nature required for this is rather strong
since it is off-shell: it must be realized even off the solution space of the constraints
since anomaly-freedom would have to be checked before solving the constraints.
(The importance of properties of the off-shell algebra has been emphasized in [22].)

Effective techniques allow more direct ways of implementing anomaly-freedom:
One first formulates effective constraints for a possible quantization parameterized
by different choices (such as factor ordering or other ambiguities). At this stage no
inconsistency arises even if the corresponding constraint operators are not anomaly-
free; inconsistencies would result only when one tries to solve the constraints. Before
doing so, one can compute the Poisson algebra of the effective constraints and check
under which conditions, or if at all, it can be first-class. As always, this can be done
order by order and is much more feasible than a calculation of the full algebra of
operators. If an anomaly-free version exists, one can pick this first-class version of
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effective constraints for further calculations. This is the procedure we followed in
Sect. 10.3 for inverse-triad corrections in loop quantum gravity.

All this is more tractable than full quantum commutators, and yet it provides
consistent constraints incorporating quantum corrections. As a side product, it
shows how strongly kinematical quantization ambiguities are reduced by dynamical
consistency.
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