
Chapter 7
Vector, Tensor, and Spinor Fields

7.1 Vector Fields

The prime example of a vector field is the electromagnetic field in Minkowski
space–time. It is an essential component of the development of modern physics,
including the emergence of relativity and the relevance of the concept of symmetry
in physics. Due to the importance of this combination of theoretical and experimen-
tal results to the development of gauge theory let us briefly review the basics of
the electromagnetic field (for more details, see, e.g., [93]) and some more advanced
topics involving its interactions with scalar fields.

7.1.1 The Electromagnetic Field

The systematic observations of electricity is credited to Stephen Grey and François
da Fay between 1736 and 1739. However, real progress was possible only after
the Leyden (Holland) bottles were made in 1746. Quantitative results started to
show up around 1777 with the invention of the torsion balance by Charles Augustin
Coulomb, leading to the Coulomb law:

F = K
qq ′

r2

r
r
, K = constant

The systematic study of the electric current was possible only after 1794 with the
invention of the electric battery by Allesandro Volta, allowing for the use of the
electric current in a controlled way. The electromagnetism appeared around 1819,
after Hans Christian Oersted observed that magnetic forces, originally observed only
with permanent magnets, could also be induced by the presence of varying electric
current. The relation between this magnetic field and the derivative of the current
with respect to time was discovered by André Marie Ampére in 1819, leading to a
differential expression for the Coulomb law.

Ampère imagined the electric current as formed by small cylindrical moving
sections with length d� and area A of the conductor, with charge density ρ, so that
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the charge in each section is dq = ρdV = ρd�d A. Replacing in Coulomb’s law he
obtained a differential expression for the electric force

|dF| = K
qρAd�

r2

The experimental observation by Michael Faraday that this force induced a mag-
netic attraction between two close wires led to the concept of magnetic induction
and magnetic field flux and eventually to the Faraday law of 1831 stating that, The
variation of the magnetic flux with time induces an electric current on a conductor
which is proportional to that variation.

The final step in this rather complex development was given by Jean-Baptiste
Biot and Félix Savart in 1822, obtaining the expression

Fmag = K ′ d� ∧ d�′

r
, K ′ = constant

where d� and d�′ are the tangent vectors to two small cylindrical sections of two
conductors separated by a distance r .

Thus the electric and magnetic fields which were originally thought to be
two independent fields become related to each other. However, the differential
second-order equations describing these two fields were not quite consistent. The
completion of the consistency process was elaborated in 1861 by James Clark
Maxwell [94].

Of course, the electric and magnetic field equations were originally written with
the absolute time t and consequently with the idea of simultaneity sections Σt as in
the Galilean space–time. They were expressed in terms of the scalar φ and vector
potentials A as

B = ∇ ∧ A, E = −∇φ − 1

c

∂A
∂t

(7.1)

From these expressions we obtain immediately two homogeneous equations

< ∇,B >= 0, ∇ ∧ E+ 1

c

∂B
∂t
= 0 (7.2)

The two remaining equations, the Coulomb and Ampère equations, involve electri-
cal charges and current

∇2φ = −4πρ, ∇2 A = −4π

c
J+ 1

c

∂E
∂t

Originally these equations were inconsistent because the Faraday and Ampère equa-
tions hold under different conditions. This was fixed by Maxwell, and today they
combine in the four Maxwell’s equations
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< ∇,B >= 0 (7.3)

∇ ∧ E+ 1

c

∂B
∂t
= 0 (7.4)

< ∇,E >= 4πρ (7.5)

∇ ∧ B− 1

c

∂E
∂t
= −4πJ (7.6)

Only the last two (non-homogeneous) equations are the Euler–Lagrange equations
with respect to the vector potential A and the scalar potential φ in the Lagrangian

L = < E,E > − < B,B >

8π
− ρφ− < J,A > (7.7)

This Lagrangian is invariant under a special local transformation of the potential
functions given by

A′ = A+∇θ (7.8)

φ′ = φ − 1

c

∂θ

∂t
(7.9)

where the parameter θ is a function of the space–time coordinates.
The invariance of the Lagrangian under the above transformations follows

directly from the fact that in (7.1), the expressions of E and B are invariant under
the above transformations. Indeed

E′ = −∇φ − 1

c

∂

∂t
∇θ − 1

c

∂A
∂t
+ 1

c

∂

∂t
∇θ = −∇φ − 1

c

∂A
∂t
= E

B′ = ∇ ∧ (A+∇θ) = ∇ ∧ A = B

Consequently, Maxwell’s equations also do not change under the same transforma-
tions.

The set of transformations (7.8) and (7.9) constitute a group with respect to the
composition

A′ = A+ ∇θ, A′′ = A′ + ∇θ ′

φ′ = φ − 1

c

∂A
∂t

, φ′′ = φ′ − 1

c

∂θ ′

∂t

which combine into transformations of the same kind
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A′′ = A+ ∇(θ + θ ′) = A+∇θ ′′

φ′′ = φ − 1

c

∂

∂t
(θ + θ ′) = φ − 1

c

∂θ ′′

∂t

The identity transformation corresponds to θ = constant. Choosing this constant to
be zero, the inverse of a transformation corresponds naturally to −θ . We may easily
check that the above composition is associative. Since the order of composition
does not affect the result we have an Abelian group, where the only parameter θ is
a function of the coordinates. This is the electromagnetic gauge group. This group
is a Lie group with one coordinate-dependent parameter. Therefore, this group is
isomorphic to the local group of rotations SO(2) and as we have seen also to the
local unitary group U (1).

With the appropriate choice of conditions imposed on θ , we obtain different solu-
tions of Maxwell’s equations. The two most common choices are as follows:

(a) The Lorentz gauge
From (7.8) and (7.9) we may write

< ∇,A′ >=< ∇,A > +∇2θ

1

c

∂φ

∂t
= 1

c

∂φ

∂t
− 1

c

∂2θ

∂t2

so that

(

< ∇,A′ > + 1

c

∂φ′

∂t

)

=
(

< ∇,A > + 1

c

∂φ

∂t

)

+∇2θ − 1

c2

∂2θ

∂t2

Therefore, assuming that θ is such that

∇2θ − 1

c

∂2θ

∂t2
= 0 (7.10)

it follows that

< ∇,A′ > + 1

c

∂φ′

∂t
=< ∇,A > − 1

c

∂φ

∂t
= C

where C is a constant. In particular choosing this constant to be C = 0, we
obtain the Lorentz gauge condition

< ∇,A > −1

c

∂φ

∂t
= 0

which is compatible with the electromagnetic wave solution of Maxwell’s
equations.
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(b) The Coulomb gauge
Here we consider a more restrictive condition where the scalar potential does
not depend on time. Then we obtain

< ∇,A >= 0

Replacing this in Maxwell’s equations we obtain

∇2φ = 4πρ

which is Poisson’s equation for a charge density ρ(x, t) and whose solution
describes the Coulomb potential for the electrostatic field of an isolated particle.

7.1.2 The Maxwell Tensor

The development of the electromagnetic theory in the beginning of the 20th century
led to the conclusion that Maxwell’s theory written in the Galilean space–time with
its simultaneous sections was not compatible with the explanations of the negative
results of the Michelson–Morley experiment on the propagation of light within the
context of the Galilean space–time. This resulted in the theory of special relativity
based on the Minkowski space–time previously described. Then Maxwell’s equa-
tions are more appropriately written in the Minkowski space–time, using the concept
of proper time denoted by τ . Correspondingly, the Galilean group was replaced by
the Poincaré group and the light speed was assumed to be a fundamental constant
of nature.

The electromagnetic field which was written as a pair of vectors (E,B) can now
be more appropriately written as an anti-symmetric rank two tensor field composed
of the components of E and B given by (7.1):

Ei = −∂iφ − 1

c

∂

∂τ
Ai (7.11)

Bi = ∂ j Ak −∇k A j (i, j, k cyclic = 1, 2, 3) (7.12)

Define the tensor F = (Fμν) by its components

Fi j = ∂i A j − ∂ j Ai , Fii = 0

Fi4 = ∂i A4 − ∂4 Ai , F44 = 0

where we have denoted ∂4 = 1
c
∂
∂τ

. Introducing the potential four-vector

A = (A,−φ) = (A1, A2, A3, A4)

and denoting its individual components by Aμ, the expressions of Fμν can be sum-
marized as
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Fμν = ∂μAν − ∂ν Aμ, μ; ν = 1, . . . , 4

Therefore, comparing with (7.11) and (7.12) we obtain

F12=∂1 A2−∂2 A1= B3, F13=∂1 A3−∂3 A1=−B2, F23=∂2 A3−∂3 A2= B1,

Fi4 = ∂i A4 − ∂4 Ai = −∂iφ − ∂

∂τ
Ai = Ei , F44 = 0

In a shorter notation we may write

Fi4 = Ei , Fi j = εi jk Bk (7.13)

where εi jk is the standard Levi-Civita permutation symbol for i, j, k = 1, . . . , 3.
Explicitly, we obtain an array (it is not a matrix)

(Fμν) =

⎛

⎜
⎜
⎝

0 −E3 −E2 −E3
E1 0 B3 B2
E2 −B3 0 −B1
E3 −B2 B1 0

⎞

⎟
⎟
⎠

which is known as the covariant Maxwell tensor. The corresponding contravariant
tensor has components

Fμν = ημρηνβFρβ

In order to write Maxwell’s equations in terms of the Maxwell tensor, we start
with the components of the two non-homogeneous equations (7.5) and (7.6)

∑
∂i Ei = 4πρ

∑
εi jk∂ j Bk − 1

c

∂Ei

∂τ
= −4π Ji

Using (7.13), the two non-homogeneous equations correspond to

∑
∂i Fi4 = 4πρ

∑
∂ j Fi j − 1

c

∂Fi4

∂τ
= −4π Ji

However, F j4 = −Fj4 and Fi j = Fi j so that

−∑ ∂ j F j4 = 4πρ (Coulomb)
∑

∂ j Fi j + ∂4 F j4 = J (Ampère)
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Defining the four-dimensional current (J,−cρ) = (J1, J2, J3, J4) with components
Jμ and Jμ = ημρ Jρ , it follows that the above two equations can be summarized as

Fμν
,ν = 4π

c
Jμ

On the other hand, the two homogeneous Maxwell’s equations are

∑
∂i Bi = 0,

∑
εi jk∂ j Ek + 1

c

∂Bi

∂τ
= 0

which can also be written in terms of Fμν as

∂iεi jk Fjk = 0

εi jk∂ j Fk4 + 1

c

∂

∂τ
εi jk Fjk = 0

or, using the four-dimensional Levi-Civita permutation symbol

εμνρσ =
⎧
⎨

⎩

1 if μνρσ is an even permutation of 1234
− 1 if μνρσ is an odd permutation of 1234

0 in any other case

The last two equations can be summarized as

εμνρσ ∂νFρσ = 0

Therefore the four Maxwell’s equations are equivalent to

Fμν
,ν = 4π Jμ (7.14)

εμνρσ ∂νFρσ = 0 (7.15)

which are known as the manifestly covariant Maxwell’s equations, having the same
shape in any Lorentz frame in Minkowski’s space–time.

7.1.2.1 The Lagrangian of the Electromagnetic Field

The Lagrangian of the electromagnetic field (7.7) can be written in terms of the
Maxwell tensor Fμν . For that purpose consider the four-vectors Jμ and Aμ defined
previously and define the Lorentz-invariant quantity

ημν Aμ Jν =< J,A > + ρφ

On the other hand, from the components of E and B written in terms of Fμν we
obtain
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< E,E >=
∑

Ei Ei = −
∑

F14 F14 −
∑

F24 F24 −
∑

F34 F34

and

< B,B >=
∑

Bi Bi = F12 F12 + F13 F13 + F23 F23

Therefore,

< E,E > − < B,B >= 1

2
FμνFμν

where the factor 1/2 was included to compensate for the repeated terms in the sum
of the right-hand side. Therefore, the Lagrangian of the electromagnetic field (mul-
tiplied by 4π ) is

L = 1

4
FμνFμν − 4π JμAμ (7.16)

To see that this form of the Lagrangian leads directly to the covariant equations let
us calculate the variation with respect to Aμ

∂L

∂Aμ

= 4π Jμ and
∂L

∂Aμ,ν

= 1

2
Fρσ ∂Fρσ

∂Aμ,ν

= 1

2

(
δαρ δ

ν
σ − δνρδμσ

)
Fρσ = Fμν

Consequently, the electromagnetic Euler–Lagrange equations are

Fμν
,ν = 4π Jμ (7.17)

The other two equations (the homogeneous equations) are obtained directly from the
expressions of E and B in terms of A and φ. For this reason they are often referred
to as non-dynamical equations. Indeed, they are part of an identity satisfied by Fμν
as we shall see later.

7.1.3 The Nielsen–Olesen Model

The Nielsen–Olesen model arose originally from an attempt to describe a quantized
magnetic flux [95]. Consider that we have a scalar field ϕ and the electromagnetic
field Fμν , as if they are non-interacting, given by the Lagrangian

L = 1

4
FμνFμν + ημνϕ∗,μϕ,ν −U (ϕ) (7.18)

The first term is just the electromagnetic Lagrangian, the second term is the kinetic
term of the scalar field ϕ, and the third term is the potential energy of ϕ chosen to
be a generalization of the quartic scalar potential seen in the previous chapter
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U (ϕ) = −2αβϕ∗ϕ + α2(ϕ∗ϕ)2

where α, β are constants. Notice that there is not an explicit interaction term
involving the two fields, so they behave as if they were two independent fields.

As we have seen in the last section, the electromagnetic field is invariant under
the gauge transformation (7.8) and (7.9), which can now be written in terms of the
components of the four-vector potential as

A′μ = Aμ + θ(x),μ
On the other hand, from the same arguments seen in the study of the quartic potential
in the previous chapter, the scalar field component in the Lagrangian is invariant
under the global U (1) transformations, but not under the local U (1) group given by
the transformations

ϕ′ = eiθ ′(x)ϕ

Therefore, the Nielsen–Olesen Lagrangian also has two independent local gauge
groups: the gauge group of the electromagnetic field with parameter θ(x) and the
unitary gauge group U (1) of the scalar field with parameter θ ′(x). As we have seen,
the latter gauge transformation is not a symmetry, unless we take infinitesimal trans-
formations like in (6.12), and replacing the partial derivatives in the Lagrangian by
the more general covariant derivative (6.13) Dμ = I∂μ + iθ ′,μ.

To solve the problem of handling two independent gauge transformations Nielsen
and Olesen proposed that they are different manifestations of the same group, by
assuming that

iθ ′,μ = g Aμ, g = constant (7.19)

With such condition, the Lorentz gauge implies that ∂μθ ′,μ ≡ g∂μAμ = 0. There-
fore, using the Lorentz gauge, the two gauge symmetries become just one, namely
U (1), and the gauge covariant derivative becomes

Dμ = ∂μ + iθ ′,μ = ∂μ + g Aμ (7.20)

Then the original Lagrangian can be rewritten with Dμ in place of the partial deriva-
tive ∂μ:

L = 1

4
FμνFμν + ημν(Dμϕ)

∗(Dνϕ)−U (ϕ) (7.21)

With this covariant derivative the Lagrangian becomes constant under the local
gauge U (1).

Since Dμ depends on Aμ, the original Nielsen–Olesen Lagrangian acquired an
interaction term that did not exist before. To see this term explicitly, let us expand
the covariant derivatives
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L = 1

4
FμνFμν + ημν

(
ϕ∗,μϕ,ν + g Aμϕ

∗ϕ,ν + g Aνϕ
∗
,μϕ + g2 AμAνϕ

∗ϕ
)
−U (φ)

where the interaction terms are those involving products of both fields and their
derivatives. The emergence of the interaction has some interesting physical conse-
quence.

7.1.3.1 The Meissner Effect

The Euler–Lagrange equations obtained from (7.21) with respect to Aμ are

Fμν
,μ − g ημν[ϕ∗,νϕ + ϕ,νϕ∗ + 2g Aνϕ

∗ϕ] = 0 (7.22)

and with respect to ϕ they are

gημν
[

Aμ(Dνϕ)
∗ − ∂U (ϕ)

∂ϕ
− gημνDν(ϕϕ

∗)
]

= 0 (7.23)

(here we have written these equations using Dμ just for convenience. The Euler–
Lagrange equations are usually written with the ordinary derivatives.) Since Aμ are
the components of the electromagnetic potential, it must also satisfy the dynamical
Maxwell’s equations (7.17). Therefore, replacing the Maxwell tensor Fμν in (7.22),
we obtain a total of eight equations and only five unknowns Aμ and ϕ, so that the
system is over-determined. This means that we cannot guarantee that the system
remains consistent in its evolution.

The excess of equations can be lessened by reducing the number of dimensions
from 4 to 3 = 2 + 1 (with coordinates x ,y,t). There is no fundamental implication
in this, as it means only that the sought solution is valid only in a three-dimensional
subspace-time of space–time. In this case we obtain a compatible system with five
equations. From (7.22) a solution of this system on empty space (Jμ = 0), is
given by

Aμ = −
(ϕϕ∗,μ − ϕ∗ϕ,μ)

2g ϕϕ∗
(7.24)

Replacing this in (7.23) we obtain an equation involving only ϕ(x, y, t).
In a practical application of this solution, consider that S is a flat surface limited

by a circle c with radius r , in a region where there is no electrical current. Using the
center of the circle as the center of a polar system of coordinates (r, θ, t) we may
express the solution ϕ = √ f (r)eiθ . Replacing this solution in (7.22) we obtain the
electromagnetic potential Aμ in terms of f (r) and θ .

We may choose the radius of the circle such that ϕ∗ϕ = 1. In this normaliza-
tion, the magnetic field generated by this (2+1)-potential vector, as always, given by
B = ∇ ∧ A, produces a magnetic flux across an arbitrary surface S in the (x, y)
plane, limited by a closed curve c, given by
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Φ =
∫ ∫

< B, d Sn >=
∫ ∫

< ∇ ∧ A, d Sn >=
∮

c
Aμdxμ

In the traditional electromagnetic field, this flux would be given by a current in c.
Since here we have a vacuum solution (Jμ = 0), then the flux should also be zero.
However, using the above solution we find that

Φ =
∮

Aμdxμ = n

g

∮
θ,μdxμ = nπ

g

where n is the number of times in which the circle is run. Contrary to the expecta-
tions it is not zero, but it is discrete, depending on this integer n.

This result was confirmed by an experiment by Walther Meissner and Robert
Ochsenfeld in 1933 and is known as the Meissner effect [96]. The circle c was drawn
in a neutral metal plate (without any electrical current). A coil with n turns (called
the winding number) with the same diameter as the circle was placed orthogonally
to the plate. When a current flows in the coil, a magnetic flux should be produced
on the disk drawn in the plate, but classically and at room temperature that flux is
shielded by the plate itself. Nonetheless, at the critical temperature, they observed a
flux distribution on the opposite side of the plate. The only possible interpretation
of this somewhat strange result is that of a tunneling effect of a quantum magnetic
flux. Within the assumptions made, the quantum effect on the flux appears under
extremely low temperatures. When the temperature rises the quantum flux disap-
pears.

When the plate is kept at room temperature and the magnetic field is produced by
a cooled permanent magnet, then the flux causes a levitating effect on the magnet.
The Meissner effect is thus responsible for the ongoing experiments on magnetic
levitation and applications in public transportation.

The existence of a quantized flux only on one side of the plane may be also
interpreted as the result of quantum magnetic monopole called the ’tHooft-Polyakov
monopole [97, 98]. As in the example given by (6.1), the corresponding magnetic
charge can be obtained by a symmetry breaking mechanism. More specifically, con-
sider (7.21) where the parameters are chosen to be α2 = λ/3! > 0 and 2αβ = μ2.
Then the minimal energy condition ∂U/∂ϕ = 0 gives

ϕ∗
(

μ2 + λ

3! (ϕ
∗ϕ)
)

= 0

Therefore, if μ2 > 0, the only solution ϕ = 0. On the other hand, if μ2 = −m2 < 0,
then we have an infinite number of non-trivial vacuum states given by

ϕ0 = ±
√

6m2

λ
eiθ
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When any of these infinite vacua states is chosen for a value of θ , the gauge symme-
try of the field ϕ is broken and the Lagrangian acquires a mass term m2 (proportional
to ϕ∗ϕ), which can be interpreted as the magnetic mass of the monopole.

7.2 Spinor Fields

The best way to define spinor fields is through a particular tensor structure called a
Clifford algebra defined on space–time.

Definition 7.1 (Clifford Algebras) The Clifford algebra C1n generated by an
n-dimensional vector space V is the quotient of the tensor algebra V ⊗ V by the
bilateral ideal I , defined by a bilinear form B in V and denoted by [99]

C1n = (V ⊗ V )/I

A bilinear form is a map B : V × V → IR, which is linear in both arguments
B(v,w) ∈ IR. The above expression defines a subspace of the tensor algebra V ⊗V
given by the condition

v⊗ w+ w⊗ v = B(v,w)

This specifies that the rank-2 tensors in C1n are symmetric tensors (V ⊗ V ) and that
they are proportional to B(v,w). In terms of a basis {eα} of V the bilateral ideal
corresponds to imposing to the tensor algebra the condition

eα ⊗ eβ + eβ ⊗ eα = B(eα, eβ)

In general the tensor product notation in C1n is simplified to eα ⊗ eβ + eβ ⊗ eα =
eαeβ + eβeα . Denoting the coefficients of the bilinear form by B(eα, eβ) = 2gαβ ,
we may write the Clifford algebra as

eαeβ + eβeα = 2gαβe0 (7.25)

where e0 denotes the identity element of the algebra:

eαe0 = e0eα

The dimension of C1n is given by the maximum number 2n of linearly independent
elements of the algebra obtained with the independent products of the generators.
Therefore, a generic element of C1n is given by the linear combination of the gener-
ators and their independent products:

X = X0e0 + Xαeα + Xαβeαeβ + · · · + Xαβ...γ eαeβ, · · · , eγ
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Example 7.1 (Complex Algebra) The complex algebra is the simplest Clifford alge-
bra C11 = C1, with just one generator e1 = i plus the identity element e0 = 1. The
dimension of the algebra is 21 = 2, and its generic elements are like

X = X0e0 + X1e1 = X01+ X1i

It is usual to consider the real IR as a Clifford algebra with just the identity element,
denoted by C10 = IR.

After the complex algebra, the better known Clifford algebra is the quaternion
algebra (or hypercomplex algebra) defined by William Hamilton in 1843 [100].

Example 7.2 (Quaternions) The quaternion algebra is the Clifford algebra C12 gener-
ated by a two-dimensional vector space.

Denoting by {eα} an orthonormal basis of the three-dimensional space, with met-
ric coefficients δαβ , the quaternion algebra is given by the multiplication table

e1e2 + e2e1 = 0
e1e0 = e1, e2e0 = e2
e1e1 = e2e2 = −e0

Denoting e3 = e1e2 and X12 = X3, the quaternion can be written as

X = X0eo + X1e1 + X2e2 + X3e3

and the multiplication table can be simplified to

eαeβ + eβeα = −2ηαβe0, e0eα = eαe0 = eα, α, β, . . . 1..3 (7.26)

The conjugate of a quaternion is defined by

ēα = −eα, ē0 = e0

and the norm of a quaternion is

||X ||2 = X X̄ = X2
0 + X2

1 + X2
2 + X2

3

It should be mentioned that the complex and the quaternion algebras are the
only associative normed division algebras, that is, such that ||AB|| = ||A||||B|| and
(AB)C = A(BC) (by extension the set of real numbers is considered as a Clifford
algebra generated by the identity only). The division algebra property is relevant to
the construction of the standard mathematical analysis based on the properties of
limits and derivatives, allowing us to write

lim
Δx→0

||ΔF(x)

Δx
|| = lim

Δx→0

||ΔF(x)||
||Δx ||
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The set of real numbers IR is a division algebra because we have the same division
property, where in fact the concept appeared in the first place. There is a fourth
division algebra called the octonion algebra with seven generators, although it is
not associative. We shall return to it at the end in connection with the SU (3) gauge
theory.

Definition 7.2 (Spinors) Spinors are vectors of a representation of the group of
automorphisms of a Clifford algebra defined on space–time, satisfying a given vari-
ational principle:

Given an algebra A , an n-dimensional matrix representation of it is a homomor-
phism

R : A → Mn×n

where Mn×n denotes the n × n matrix algebra. Denoting by R(X) and R(Y ) the
matrix representing X , Y ∈ A , the homomorphism condition says that the product
of the algebra goes into the product of matrices R(XY ) = R(X)R(Y ).

Any matrix representation of an algebra can be seen as linear operators on some
vector space S , whose vectors are represented by a column

ϕ =

⎛

⎜
⎜
⎜
⎝

ϕ1
ϕ2
...

ϕN

⎞

⎟
⎟
⎟
⎠

(7.27)

In particular, we may construct spinor representations of Clifford algebras defined
on a space–time. The basic example is the representations of the quaternion alge-
bra given by the Pauli matrices associated with the spin properties of particles in
quantum mechanics [101]. The Pauli matrices can be written in a variety of ways,
corresponding to equivalent representations. Here we use the following:

σ0 =
⎛

⎝
1 0

0 1

⎞

⎠ , σ1 =
⎛

⎝
0 1

1 0

⎞

⎠ , σ2 =
⎛

⎝
0 − i

i 0.

⎞

⎠ , σ3 =
⎛

⎝
1 0

0 − 1

⎞

⎠

(7.28)

such that they satisfy the multiplication table

⎧
⎪⎨

⎪⎩

σiσ j + σ jσi = −2δi jσ0

σ0σi = σiσ0

σ0σ0 = σ0

which is the same multiplication table of the quaternion algebra.
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The above representation can be used as the basis to construct a matrix repre-
sentation of any Clifford by tensor products of matrices, known as the Brauer–Weyl
representation or simply as the Weyl representation [102]:

⎧
⎪⎨

⎪⎩

Pα = σ2 ⊗ σ2 ⊗ · · · ⊗ σ2 ⊗ σ1 ⊗ σ0 ⊗ · · · ⊗ σ0 ⊗ σ0

Pn+1 = σ2 ⊗ σ2 ⊗ · · · · · · · · · · · · · · · · · · · · · ⊗ σ2 ⊗ σ2

Qα = σ2 ⊗ σ2 ⊗ · · · ⊗ σ2 ⊗ σ3 ⊗ σ0 ⊗ · · · ⊗ σ0 ⊗ σ0

where the matrices σ1 and σ3 occupy the α position. The tensor product ⊗ is taken
to be from left to right (that is, each entry of the left matrix is multiplied by the
whole right matrix).1

The column vectors (7.27) of the representation space S of a matrix representa-
tion of a Clifford algebra are called spinors. From the above Brauer–Weyl represen-
tations we may conclude that the spinors of a representation of C1n with n generators
{eα} have N = 2[n]/2 independent components, where [n] = n for even n and
[n] = n − 1 for odd n.

An important result shows that C12n+1 ≈ C12n/C1, where the right-hand side
denotes the Clifford algebra on the complex field (with complex coefficients). Thus,
the Dirac matrices in five dimensions are essentially the same as Dirac matrices in
four dimensions.

An interesting case occurs in eight dimensions, where the spinors have 28/2 = 16
components, but they split in two equivalent halves with eight components each
[103]. If in addition these spinors are real, then each half spinor space is isomorphic
to the generator space of the Clifford algebra.

Example 7.3 (Pauli Spinors) The Pauli matrices (7.28) define two-component spinor
representation of the quaternion algebra. Indeed, the quaternion algebra is the
Clifford algebra C12 with two generators in the case of a two-dimensional (complex)
spinor representation S2. Thus, we obtain a two-dimensional spinor field in M ,
defined by

Ψ :M → S2

which gives a two-component spinor at each point of the space–time

Ψ (p) =
(
Ψ1
Ψ2

)

p

1 Tensor products in general are non-commutative. Here, Brauer and Weyl prescribed a specific
way to do it. It is possible to reverse the order, obtaining a different representation. Other spinor
representations, such as the Majorana and Majorana–Weyl, different from the one above are also
used in field theory.
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Example 7.4 (Dirac Spinors) The Dirac spinors are vectors of the four-dimensional
spinor representation of the Clifford algebra C14, generated by a four-dimensional
space.

Taking the generating space to be Minkowski’s space–time {eμ}, together with
the identity element e0, we obtain an algebra with 16 components, whose general
element is written as

X = X0e0+ Xαeα + Xαβeαeβ + Xαβγ eαeβeγ + · · · + X1234e1e2e3e4

The Brauer–Weyl matrix representation (simply known as the Weyl representation)
of this algebra gives the 2[4]/2 × 2[4]/2 matrices which are the Dirac matrices

γ1 =

⎛

⎜
⎜
⎜
⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞

⎟
⎟
⎟
⎠
, γ2 =

⎛

⎜
⎜
⎜
⎝

0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

⎞

⎟
⎟
⎟
⎠
, γ3 =

⎛

⎜
⎜
⎜
⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞

⎟
⎟
⎟
⎠
, γ4 =

⎛

⎜
⎜
⎜
⎝

0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

⎞

⎟
⎟
⎟
⎠

These matrices act as linear operators on a four-dimensional complex space V4,
which is the Dirac spinor space in the Minkowski space–time

ψ =

⎛

⎜
⎜
⎝

ψ1
ψ2
ψ3
ψ4

⎞

⎟
⎟
⎠

satisfying Dirac’s equation for a relativistic charged particle with spin 1/2 and
mass m

(γ μ∂μ − m)ψ = 0 (7.29)

This equation can be derived from the Dirac Lagrangian [104]

L = ψ̄(γ μ∂μ + m)ψ (7.30)

where we have denoted ψ̄ = ψ†γ 5, and where ψ† = (ψT )∗ and γ 5 = γ1γ2γ3γ4.

7.2.1 Spinor Transformations

Since spinor fields are derived from representations of Clifford algebras, the (inter-
nal) automorphisms of these algebra correspond to a spinor transformation, that is,
given a map τ : C1n → C1n defined by e′μ = τeμτ−1, such that it maintains invariant
the multiplication table
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τeμeντ
−1 + τeνeμτ

−1 = gμνe0

It follows that these automorphisms necessarily correspond to isometries of the met-
ric in the generating space. In the case of a matrix representation, the operators τ
correspond to a matrix acting on the spinor space as

Ψ ′ = R(τ )Ψ

In quantum mechanics, spinors represent quantum states and therefore these matrix
transformations R(τ ) correspond to unitary matrix operators denoted by u, such
that uu† = 1 and acting on the spinors as Ψ ′ = uΨ .

Example 7.5 (Transformations of Dirac Spinors) Let us detail the transformation
of the Lagrangian of the Dirac spinor field under a unitary gauge transformation
Ψ ′ = uΨ , of the local group U (1): u = eiθ(x)e0. The derivative of the transformed
spinor gives

Ψ ′,μ = eiθ(x)Ψ,μ + iθ,μeiθ(x)Ψ

and similarly for Ψ̄ ′. Replacing these transformations in the Dirac Lagrangian (7.30)
we find that

L (Ψ ′) = e−iθ(x)Ψ̄ [γ μ(eiθΨ,μ + iθ,μeiθΨ )] − mΨ̄ Ψ

= Ψ̄ (γ μ∂μ − m)Ψ + iθ,μΨ̄ Ψ

We see clearly that the Lagrangian is not invariant due to the presence of the deriva-
tive of the parameter θ . However, as it happened in the case of the complex scalar
field, taking an infinitesimal transformation and defining the covariant derivative

γ μDμ = γ μ∂μ + iθ,μ

Then the Lagrangian becomes invariant:

L (ψ ′) = ψ̄(iγ μDμ − m)Ψ = L (ψ)

Example 7.6 (Isospin) Returning to the quaternion algebra C12 satisfying the mul-
tiplication table (7.26), we have an algebra that is invariant under the group of
rotations SO(3) (that can be seen as a subgroup of the Galilei group in G4). When
this algebra is represented by the Pauli matrices (7.28), the corresponding quantum
states describe the orbital spin states.

On the other hand, we also have an internal action of the same algebra, but which
has nothing to do with the rotations in space–time. The matrix representations of
this global automorphism produce two-component spinors called isospin, which
transforms as
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(
Ψ ′1
Ψ ′2

)

= eiΘ
(
Ψ1
Ψ2

)

where now θ is the parameter of the global gauge symmetry. The matrix represen-
tation of the automorphism is the same as Pauli matrices, but to avoid confusion we
use a different notation

τ0 =
⎛

⎝
1 0

0 1

⎞

⎠ , τ1 =
⎛

⎝
0 1

1 0

⎞

⎠ , τ2 =
⎛

⎝
0 − i

i 0

⎞

⎠ , τ3 =
⎛

⎝
1 0

0 − 1

⎞

⎠
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