
Chapter 3
Symmetry

Weyl’s classic book on symmetry conveys the idea that the notion of symmetry
is not just an art or an invention of the mind, but part of the observational struc-
ture of nature [59]. However, the awareness of the importance of symmetry in
physics became clear only after the debate on the negative result of the Michelson–
Morley experiment and the subsequent interpretation of the relative motion between
observers and observables given by Einstein. This interpretation led us to the emer-
gence of the Poincaré symmetry. From then on, the structure of Lie symmetry has
become the essential tool to the understanding of the fundamental interactions.

3.1 Groups and Subgroups

A group G is a set composed of elements a, b, c, . . . , endowed with a closed oper-
ation (generically denoted by ∗) such that

(a) The operation is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c;
(b) There is a neutral or identity element 1: a ∗ 1 = 1 ∗ a = a; and
(c) For each element a ∈ G, there is an inverse element denoted by a−1 such that

a−1 ∗ a = a ∗ a−1 = 1.

For an Abelian or commutative group we also have a ∗ b = b ∗ a. The number
of elements in a group is called the order of the group. A group of infinite order has
infinite elements.

A subset H ⊂ G is a subgroup of G, when its elements form a group with the
same operation of G. If H ⊂ G, H �= G, then H is a proper subgroup of G. It is
easy to see that the identity of G must be also contained in all subgroups of G.

Like a manifold, a group can be parameterized by a set of real numbers
(θ1, . . . , θN ), given by 1:1 maps or charts X : G → IRN such that for each element
r ∈ G we have an element of IRN

X (r) = (θ1, . . . , θ N )

and conversely, given a point in IRN we obtain an element of G
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r = X−1(θ1, . . . , θN ) = X−1(θ)

The dimension of a group is the maximum number N of independent parameters
required to describe any element of the group.

Given two elements r = X1(θ) and s = Y−1(θ ′), the group composition gives
r ∗ s = X−1(θ) ∗ Y−1(θ ′) = t = Z−1(θ ′′) ∈ G. The parameters θ ′′ must then be
related to θ and θ ′ as

θ ′′ = Z ◦ (X−1(θ) ∗ Y−1(θ ′)) = f (θ, θ ′) (3.1)

Since these charts cover the whole group, they form an atlas similar to the case of
differentiable manifolds. Then the above condition (3.1) must be satisfied for all
elements of the group (such condition does not exist in differentiable manifolds).

When the parameters vary continuously within a given interval on IRN and (3.1)
is a homeomorphism we have a continuous group. This is less demanding than the
differentiable manifold structure where the relation between the parameters (the
coordinates) is a diffeomorphism. However, later on we shall be using an even
stronger condition imposed by Lie, where (3.1) is required to be an analytic function.

For notational simplicity, from now on we will omit the ∗ operation and write it
simply as a product.1 Thus r ∗ s is written simply as rs.

Definition 3.1 (Cosets and Normal Subgroups) Consider a subgroup of H ⊂ G and
r a specific element of G. Then the set denoted by

r H = {r x | x ∈ H}

is called the left coset of H . Similarly we may define the right coset of H denoted
by Hr . It follows from this definition that r H �= H because r is not necessarily
in H . However, r H necessarily contains r because as a subgroup H contains the
identity 1. Hence r = r1 ∈ r H .

Given two left cosets (or right cosets) of a subgroup H in G, aH and bH , if
they possess a common element then they are necessarily identical.

Indeed, consider the left cosets A = aN and b = bN and let x be a common
element belonging to A and B. Then we may write x = ar, x = bs, r, s ∈ H , it
follows that ar = bs and therefore, a = bs r−1 = bt, t = sr−1 ∈ H . Conse-
quently,

aH = {am |m ∈ H} = {btm |m, t ∈ H} = {bn | n ∈ H} = bH

A subgroup N in G such that its left and right cosets are equal is called an invariant
(or normal) subgroup of G. From the defining condition aN = Na, it follows that

1 Except for additive groups where the operation is a sum and the neutral element is zero.
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N = a−1 Na = {q = a−1xa | x ∈ N , a ∈ G}

In other words, the elements of an invariant subgroup belong to a class of equiva-
lence where they differ by an equivalence relationship q ∼ x defined by q = a−1xa.

An interesting property is that if A = aN and B = bN are cosets of an invariant
subgroup N , then the set C = AB = {xy ∈ G | x ∈ A and y ∈ B} is also a coset of
G. Indeed, writing x = ap and y = bq, p, q ∈ N , it follows that the elements of C
have the form xy = apbq. Since N is an invariant subgroup the left and right cosets
of N are identical. Hence, if p, q ∈ N then aga−1 = r and bab−1 = a where
r, s ∈ s. Therefore, ap = cp and bs = sb and a f = apbq = apsb. However,
p, s ∈ N , ps ∈ N , and using again the fact that N is invariant, psb = bm, m ∈ N .
Consequently, xy = abm = cm, c = ab, which implies that xy belongs to a left
coset of N , C = AB = cN .

The above result suggests the construction of a product operation between cosets
of a group G as follows: Given two left cosets A and B defined by the same invariant
subgroup N in G, then C = AB is also a left coset cN where c = ab, A = aN
and B = bN .

It can be easily seen that this product defines a group, where the identity element
is N :

A = AN = {xy = cm | c = a1, m ∈ N } = {z = am |m ∈} = A

the inverse of A = aN is A−1 def= a−1 N :

C = AA−1 = {xy = cm|c = aa−1 = 1, m ∈ N } = {z = m|m ∈ N } = N .

Finally, the product of cosets is associative: If A = aN , B = bN , C = cN , then
(AB)C = (ab)cN = a(bc)N = A(BC).

The set of all cosets of an invariant subgroup N , like A = aN , defines a group,
called the quotient group G/N , with respect to the above defined coset product.

3.2 Groups of Transformations

Groups can be studied by themselves as abstract groups. On the other hand, sym-
metry groups are transformation groups, whose elements are operators acting on a
space or manifold. We shall be dealing mostly with transformation groups, separated
in two cases which are of immediate interest to field theory and to the fundamental
interactions. They are groups of coordinate transformations acting on the coordi-
nates of a space–time manifold and the groups of field transformations acting on
field variables.

The groups of coordinate transformations act on the coordinate spaces of the
manifolds, changing a given coordinate system to another as
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x ′i = f i (x1, x2, . . . , xn, θ1, θ2, . . . , θN ) = f i (xμ, θa) (3.2)

where in the abbreviated notation xμ are the old coordinates and θa are the param-
eters of the group.

A simple example of a coordinate transformation group is given by a group of
linear operators acting on the parameter space IR3 of some three-dimensional man-
ifold. If (eμ) is an arbitrary basis of IR3, then the action of the group on that space
can be obtained by the action of the group on that basis. For a linear operator r ∈ G
the result is a linear combination of the same basis elements:

r(ei ) = r j
i e j

The quantities r j
i define a matrix in that basis which represents the group action.

Definition 3.2 (Representations of a Group) A representation of an abstract group
G by a transformation group G ′ is a homomorphism R : G → G ′. In the product
notation the homomorphism writes as

R(xy) = R(x)R(y) (3.3)

Of particular importance is a linear representation of a group G, which is the homo-
morphism

R : G → G ′

where G ′ is a group of linear operators acting on some vector space V , called the
representation space.

Therefore, for each element r of the group G there is a corresponding operator
R(r) acting linearly on the representation space. Since R is a homomorphism,

R(rs) = R(r)R(s)

From the properties of groups it follows that R(r) = R(r1) = R(r)R(1).
Hence R(1) = 1 and R(r−1) = R(r)−1.

Therefore, to find a linear representation of a given group, we need in the first
place to define a representation space where a transformation group G ′ acts linearly.
Then determine how the group G ′ acts on that space. Finally, choose a basis of the
representation space.

Generally speaking, given one basis {ηi } in the representation space, the linear
representation is defined by the coefficients Ri

j in the operation

R(r)ηi = R
j

i (r) η j

Note also that a homomorphism between groups is not necessarily a 1:1 map. In
particular we may have several objects in G ′ corresponding to the identity element
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of G. The set of all such elements is called the kernel of the representation. Denoting
this kernel by K , the above definition says that R(K ) = 1.

A faithful linear representation of a group is a linear representation which is 1:1.
That is,

R(r) = R(s) ⇐⇒ r = s

In this case the kernel contains only the identity element: K = {1}.

3.3 Lie Groups

A continuous group is such that its elements vary continuously with its parameters.
The relation between parameters (3.1) can be just a homeomorphism: continuous
with an inverse which is also continuous.

Like in a manifold a continuous group may have an induced topology from its
parameter space, so that the operations of limits and derivatives can be defined.
From this topology it is easy to infer that we may define continuous curves on a
continuous group G as a continuous map α : IR → G, with tangent vector at a
point r = α(t0) ∈ G, given by α′(t) = dα/dt�t0 as long as the relation between the
parameters (3.1) remains valid.

Consequently we may define on a continuous group some topological properties
and classify them according to topological characteristics such as

1. When any two elements of a continuous group G can be connected by any con-
tinuous curve or by a continuous sequence of segments of continuous curves,
then G is called a connected group.

2. A group G is multiple connected when there are multiple curves connecting
any two elements of G, but they cannot be continuously deformed into one
another.

3. A group is compact when each of its parameters θa varies in a closed and limited
interval.

Definition 3.3 (Lie Group) A continuous group G is a Lie group when the com-
position between the parameters (3.1) is analytic in the sense that f (θ, θ ′) can be
represented by converging positive power series [60]. We will see the relevance of
this condition when discussing Lie’s theorem.

A coordinate transformation produced by a Lie group acting on a differentiable
manifold can be written as

x ′μ = f μ(xν, θa) (3.4)

where f μ = x ′μ are differentiable functions of the coordinates xμ, but as a con-
sequence of the analyticity of (3.1), they are analytic functions of the parame-
ters θa . The local inverse transformation can be either postulated or derived from
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the condition that the transformation (3.4) is also regular in x , that is, when the
Jacobian matrix

J ( f ) =
(
∂x ′μ

∂xν

)

is non-singular.
A natural linear representations of the Lie group of a coordinate transformations

on a manifold is given by the action of the group in the tangent and cotangent spaces,
using, respectively, the coordinate basis {eμ = ∂/∂xμ} and its dual {eμ = dxμ}.
Taking an arbitrary element r ∈ G, its action on the coordinates also changes the
tangent basis as

e′μ =
∂

∂x ′μ
= R(r)eμ =

∑
R(r)μ

νeν =
∑

R(r)μ
ν ∂

∂xν

where R(r)μν denote the matrix elements of the linear representation defined in the
tangent space.

Similarly, we obtain the dual representation of the same group using the cotan-
gent space, with the dual coordinate basis {eμ = dxμ}. In this basis the linear
representation is given by

e′μ = dx ′μ =
∑

R∗(r)μνeν =
∑

R∗(r)μνdxν

where R∗(r)μν denote the matrix elements of the dual linear representation defined
in the cotangent space.

More generally we may consider the group G acting on the fibers Vp defined
on an arbitrary vector bundle (M , π, V ), where each fiber Vp is a vector space in
which a generic field Ψ , is defined.

Like in the tangent spaces, the action of the group on these fields can be defined
by its action on a field basis of these spaces. For example, denoting a basis in one
such space by {ηi }, then the group action on a vector Vp can be determined by its
action on that basis as

η′i = R(r)ei =
∑

R(r)i
jη j (3.5)

and a similar linear representation can be defined in the dual basis of the dual
fiber V ∗p .

The following table shows some examples of Lie symmetry groups which are
relevant for the current development of the theory of the fundamental interactions.
Some of these groups will be also discussed in the next sections. For more on excep-
tional groups see, e.g., [61].



3.4 Lie Algebras 31

Group Name Group elements Parameters

Galilean group 3 rotations + 3 boosts + 3 translations
+ 1 time scale

10

General Galilean
group

3 Rotations + 3 general boosts + 1 time
scale +Newton’s potential gauge

10

P4 Poincaré group 6 Pseudo-rotations + 4 translations 10
C0 Conformal group Poincaré subgroup + SCTa + dilatations

+ inv.
15

d Sn deSitter group Pseudo-rotations on n-dimensional
positive sphere

n(n + 1)/2

Ad Sn Anti-deSitter groups Pseudo-rotations on n-dimensional
negative sphere

n(n + 1)/2

GL(N , IR) Real linear group Real N × N matrices N 2

SL(N ) Special linear group Complex N × N matrices with
determinant 1

2(N 2 − 1)

SL(N ) Unimodular group Real N × N matrices N 2 − 1
U (N ) Unitary group Unitary matrices N 2

SU (N ) Special unitary
group

Unitary matrices with determinant 1 N 2 − 1

SO(N ) Special orthogonal
group

Real orthogonal matrices with
determinant 1

N (N − 1)/2

G2 Smallest
exceptional group

Automorphisms of octonions 14

E8 Largest exceptional
group

The symmetry group of its Lie algebra 248

aSpecial conformal transformations

3.4 Lie Algebras

The relevance of continuous groups for the study of symmetries is that they allow us
to consider infinitesimal transformations defined by when the parameters are small
in the presence of unity. As before, we start with the simpler case of a group of
coordinate transformations on a manifold M .

3.4.1 Infinitesimal Coordinate Transformations

Consider a coordinate transformation described in (3.4) x ′μ = f μ(xν, θa), fol-
lowed by a second transformation to another set of coordinates close to x ′μ. By the
continuity of the group, the parameters of this second transformation must corre-
spond to a small deviation from θ . That is,

x ′′μ = f μ(xν, θa + δθa)

Next, expand this function in a Taylor series around δθμ = 0. Keeping only the first
power of δθ , we obtain
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x ′′μ = f μ(xμ, θa)+
∑ ∂ f μ(x, θa + δθa)

∂θa

⌋

δθ=0
δθa = x ′μ+aμa (x)δθ

a = x ′μ+ξμ

where we have denoted ξμ = aμa (x ′)δθa(x, θ), called the infinitesimal descriptor
of the transformation. As a consequence of (3.1), these functions are also analytic
in θa .

The array aμa depend on x and θ so that the inverse transformation exists only if
it has rank equal to the smallest value between N and n. Simplifying, we may drop
the excess primes to write the above infinitesimal coordinate transformation as

x ′μ = xμ + ξμ (3.6)

To obtain the transformations of fields consider first the infinitesimal coordinate
transformation on a differentiable real function F on the manifold

d F = ∂F

∂xμ
dxμ = ∂F

∂xμ
aμa (x)δθ

a = δθa Xa F

where we have introduced a linear operator acting on the space of all such differen-
tiable functions on M by

Xa =
∑

aμa (x)
∂

∂xμ
(3.7)

Using these operators the infinitesimal variation of the function can be expressed as

F ′ = F + d F = (1+
∑

δθa Xa)F

In particular, taking F to be any coordinate xμ we obtain our previous infinitesimal
coordinate transformation (3.6).

The linear operators (3.7) generate an N -dimensional vector space with the oper-
ations of sum and multiplication by numbers given by

(aXa + bYa) f = aXa f + bYa f, a, b ∈ IR

Indeed, suppose that there are constants ca ∈ IR, such that
∑

ca Xa = 0. Applying
this to xμ, we obtain

∑
ca Xa xμ = 0

Replacing definition (3.7), we obtain
∑

caaμa = 0. Since the matrix ai
a(x) has rank

equal to the smallest value between N and n, it follows that ca = 0. Therefore, the
operators Xa are independent and generate a vector space called the space of the
linear operators of the Lie Group G, denoted by G .
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3.4.2 Infinitesimal Transformations on Vector Bundles

The situation here is similar to the previous case, with the difference that G acts on
the fibers V of an arbitrary vector bundle, not necessarily resulting from a coordi-
nate transformation.

Denoting a generic field defined in that vector bundle by Ψ : M → T V and
denoting a field basis ηi , we may express the field as

Ψ = Ψ iηi

The infinitesimal transformation of the field is obtained as in the case of coordinates,
where instead of a transformation of the coordinates xμ we have a transformation
of the components Ψ i by the action of the group G, denoted by

Ψ ′i = f i (Ψ j , θa)

which is followed by another transformation close to the first, given by

Ψ ′′i = f i (Ψ ′ j , θb + δθb)

Expanding f i in Taylor series around δθb = 0 and keeping only the first powers of
δθb we obtain as before

Ψ ′′i = f i (Ψ ′ j , θb)+
∑ ∂ f i (Ψ ′ j , θb + δθb)

∂θc

⌋

δθ=0
δθc = Ψ ′i + ai

b(Ψ )δθ
b

(3.8)

where we have denoted ai
b(Ψ ) =

∂ f i

∂θb

⌋

δθ=0
. Therefore, the infinitesimal variations

of the field components are

δΨ i = ai
b(Ψ )δθ

b (3.9)

and the infinitesimal variation of a function (or better, of a functional of the field
such as, for example, the Lagrangian), of the field F(Ψ ), resulting from the above
infinitesimal transformation is

δF = ∂F

∂Ψ i
δΨ i = ∂F

∂Ψ i
ai

b(Ψ )δθ
b = δθb Xb F

where we have denoted the linear operators

Xa =
∑

ai
a(Ψ )

∂

∂Ψ i
(3.10)

These operators act on the space of all differentiable functions on M .
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In particular, applying Xa to the field components Ψ α we obtain

XaΨ
i = ai

b (3.11)

The commutator or Lie bracket between these operators is defined by

[Xa, Xb]F = Xa(Xb F)− Xb(Xa F) (3.12)

where F is an arbitrary function. Replacing the above expressions for Xa we find
that

[Xa, Xb] =
(

ak
a
∂a j

b

∂Ψ k
− ak

b
∂a j

a

∂Ψ k

)
∂

∂Ψ j
(3.13)

A non-trivial result obtained by Marius Sophus Lie in 1872 shows that for a Lie
group the commutators between two linear operators define an algebra in the space
G generated by {Xα}. The mathematical and physical implications of Lie’s theorem
reside in the fact that under the conditions defining the Lie group, it is sufficient to
work with the above-mentioned algebra of linear operators.

Except for a few discrete symmetries, all relevant symmetries of the fundamental
interactions satisfy these conditions. The result of Lie is part of the development
of field theory and particle physics from the 20th century onward. Actually, the
results derived by Noether and Wigner suggest that any present or future theoretical
proposals to modify the Lie symmetry structure must be checked against the theoret-
ical and experimental results that are currently dependent on the Lie theorem. This
classic and non-trivial theorem can be shown in different ways. In the following we
present some of its details [62–64].

Theorem 3.1 (Lie) The commutator between two linear operators Xa of a Lie group
is a linear combination of these operators

[Xa, Xb] = fab
c Xc

where fab
c are constants, called the structure constants of the group.

Consider a Lie group G with parameters θ , acting on the fiber Vp of a vector
bundle

(M , π, V )

Consider two consecutive infinitesimal transformations of the Lie group, one with
increment θ+δθ to the original values θ and the other with increments θ+dθ . From
(3.1) and the definition of a Lie group, it follows that there is an analytic function
between these parameters:



3.4 Lie Algebras 35

θa + dθa = φa(θ, θ + δθ)

The first-order terms of the Taylor expansion of this function around the identity
(here represented by θ = 0) gives a relation between the increments dθ and δθ as

dθa = φ(0, 0)+
∑ ∂φa(θ, θ + δθ)

∂δθb
�θ=0 δθ

b =
∑

b

Fb
aδθb (3.14)

where we have denoted

Fb
a(δθ) = ∂φa(θ, θ + δθ)

∂δθb

⌋

θ=0

We note that φ(0, 0) is the relation between the parameter of the identity transfor-
mation (θ = 0) and itself, so that φ(0, 0) = 0.

From the existence of the inverse element of a group, it follows that the relation
(3.1) must also be invertible. That is, there exists the inverse matrix F−1b

a(θ) and
the inverse relation is given by δθa = F−1a

b(δθ)dθb.

Replacing this in the differential dΨ = Ψ ′′ − Ψ ′ given by (3.8) we obtain

dΨ i = ∂ f i (Ψ j , θb)

∂θb
dθb =

∑
ai

aF−1a
b(θ)dθ

b

from which we obtain

∂ f i

∂θb
=
∑

ai
aF−1a

b(θ) (3.15)

Now, since the transformation function f i are analytic in θ they satisfy the Leibniz
derivative rule, and the last expression gives

∂ai
cF
−1c

b

∂θa
= ∂ai

cF
−1c

a

∂θb

or equivalently

ai
c

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

+F−1c
b
∂ai

c

∂θa
−F−1c

a
∂ai

c

∂θb
= 0 (3.16)

However, from (3.8), ai
c depends on θa only through Ψ i , so that

∂ai
c

∂θa
= ∂ai

c

∂Ψ j

∂Ψ j

∂θa
= ∂ai

c

∂Ψ j
a j

dF−1d
a

Consequently, (3.16) becomes
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ai
c

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

+ ∂ai
c

∂Ψ j
a j

dF−1d
aF−1c

b − ∂ai
c

∂Ψ j
a j

dF−1d
bF
−1c

a = 0

Therefore, multiplication of this by F a
mF b

n gives

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

F a
mF b

n ai
c=−a j

d
∂ai

c

∂Ψ j

(
δd

mδ
c
n−δd

n δ
c
m

)
=a j

m
∂ai

n

∂Ψ j
−a j

n
∂ai

m

∂Ψ j

(3.17)

defining a function of the parameters θ by

(
∂F−1c

b

∂θa
− ∂F−1c

a

∂θb

)

F a
mF b

n = f c
mn(θ) (3.18)

or equivalently

∂F−1b
a

∂θc
− ∂F−1b

c

∂θa
= f b

mn(θ)F
−1m

cF
−1n

a (3.19)

(3.17) can be written in the more compact form

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j
= f c

mn(θ)a
i
c (3.20)

To end the theorem we have to show that f c
mn(θ) are constants. For this purpose,

take the partial derivatives of the above expression with respect to θb, obtaining

∂ f c
mn(θ)

∂θb
ai

c + f c
mn(θ)

∂ai
c

∂Ψ k

∂Ψ k

∂θb
= ∂

∂Ψ k

(

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j

)
∂Ψ k

∂θb

or

ai
c
∂ f c

mn(θ)

∂θb
=
[

∂

∂Ψ k

(

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j

)

− f c
mn(θ)

∂ai
c

∂Ψ k

]
∂Ψ k

∂θb

Since f a
bc(θ) depend only on θ , the derivative of (3.20) with respect to Ψ k gives

∂

∂Ψ k

(

ai
n
∂a j

m

∂Ψ j
− a j

m
∂ai

m

∂Ψ j

)

= f c
mn(θ)

∂ai
c

∂Ψ k

so that the right-hand side of the previous expression vanishes and consequently

ai
c
∂ f c

mn(θ)

∂θb
= 0
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Since the matrix ai
b has rank less than or equal to the smallest value between

N and n, it follows that

∂ f c
mn(θ)

∂θa
= 0

showing that f b
mn(θ) are in fact constants. Replacing this result in (3.13) we obtain

the Lie theorem

[Xa, Xb] = f c
ab Xc (3.21)

This implies that the space generated by {Xa} defines an algebra with the product
(the Lie product) defined by the commutator. The result is called Lie algebra of the
group G denoted by G . The constants f c

ab are antisymmetric in the lower indices
f c
ab = − f c

ba .
Another property of the Lie algebra is that it is non-associative. Instead of the

associativity, it satisfy the Jacobi identity

[[Xc, Xa], Xb] + [[Xb, Xc], Xa] + [[Xa Xb], Xc] = 0

or in terms of the structure constants

f p
ca f n

pb + f p
bc f n

pa + f p
ab f n

pc = 0 (3.22)

One interesting aspect of Lie’s theorem is that almost everything can be done
within the Lie algebra, including the representations of the Lie group [62]. This is
a consequence of the analytical property which implies that it is possible to recover
the full group starting from the Lie algebra.

Theorem 3.2 (The Inverse of Lie Theorem) A finite transformation of a Lie group
G can be obtained from the converging series of infinitesimal transformations gen-
erated by its Lie algebra G .

In fact, consider a set of constants f c
ab satisfying (3.19) and (3.20). This means

that there are functions F−1a
b and ai

a satisfying the equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂F−1b
a

∂θc
− ∂F−1b

c

∂θa
= f b

mnF−1m
c F−1n

a

a j
m
∂ai

n

∂Ψ j
− a j

n
∂ai

m

∂Ψ j
= f c

mnai
c

(3.23)

Replacing F−1a
b from (3.15) and applying the initial condition (corresponding to

the identity transformation)

F a
b (0) = δa

b (3.24)
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we may solve in principle (3.23) for the functions F−1b
a . However, it is easier and

more intuitive to change the parameterization of the group to a more convenient one,
called the vector parameterization defined by

θa = saτ

whose geometrical interpretation is as follows: each set of values (θ1, . . . , θ N )

defines a straight line with parameter τ in the space of parameters, passing through
the origin and with direction sa . Then, each transformation of the group corresponds
to a point in such line. The identity transformation (conventionally described by
θa = 0) corresponds to origin τ = 0.

In this new parameterization the operation of the group in a space V can be
described by the line operator S(τ ) = S(s1τ, . . . , s N , τ ) such that for each set
of constant values of s1, . . . , s N , the operator depends only on τ defined in the
straight line. Then, the transformation of the field from Ψ i (0) to Ψ i (τ ) can be
represented by

Ψ i (τ ) = S(τ )Ψ i (0) (3.25)

where the operator S(τ ) still needs to be defined. For this, consider the variation of
the field along the line

dΨ i (τ )

dτ
= ∂Ψ i

dθa

dθa

dτ
= ∂Ψ i

∂θa
sa = saF−1b

a(s, τ )XbΨ
i

where in the last equal sign we have used (3.15). Consequently, the variation of Ψ α

can be expressed as ∂Ψ i/∂τ = ∂S/∂τΨ i (0). The derivative of (3.25) compared
with the above expression gives a differential equation for S(τ ):

d S(τ )

dτ
= saF−1b

a(s, τ )Xb S(τ )

This equation can be integrated with the boundary condition S(0) = 1 at τ = 0,
compatible with (3.24), obtaining

d S(τ )

dτ

⌋

τ=0
= sa Xa

From the analytic dependence on the parameters it follows that S(τ ) is also analytic
in τ , so that it can be represented by a converging positive power series

S(τ ) = S(0)+ τ d S

dτ

⌋

τ=0
+ · · ·

or, using the above initial conditions,
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S(τ ) = 1+ τ sa Xa + · · ·

Therefore, for each straight line defined by the parameters sa , we may obtain the
finite operation of the group. Then, for other finite group operations we only add the
rotations of the straight line around the origin. This completes the theorem.

To obtain the finite transformations of a field Ψ we just apply the operator S(τ )
to Ψ i (0), obtaining

Ψ i (τ ) = Ψ i (0)+ τ sa XaΨ
i (0)+ · · ·

From the above theorems it follows also that the existence of Lie subgroups implies
the existence of Lie subalgebras, that can be characterized by the structure constants.

As an example, if H is a subgroup of a Lie group G with p parameters, then the
commutator of two linear operators of H belongs to H :

[Xa Xb] = f c
ab Xc, c = 1, . . . , p,

f c
ab = 0, c = p + 1, . . . , N .

In particular, using the structure constants we may characterize Lie invariant
subalgebras. From this we may define a simple Lie algebra (when it does not have
proper invariant subalgebras) which corresponds to a simple group. A semi-simple
Lie algebra (which does not have any Abelian invariant subalgebras) also corre-
sponds to a semi-simple Lie group [63, 64] (these properties make an interesting
exercise).

Definition 3.4 (Adjoint Representations of Lie Algebras) A representations of a Lie
algebra G is a homomorphism

R : G → G ′

where G ′ is an algebra of linear operators on a space V , such that

R([Xa, Xb]) = [R(Xa),R(Xb)]

From the definition of Lie algebra it follows immediately that

[R(Xa),R(Xb)] = f c
abR(Xc) (3.26)

A consequence of the inverse theorem of Lie is that the representation of a Lie
algebra induces the representation of the corresponding Lie group.

Similar to the representations of groups, the representations of Lie algebras are
not unique, as they depend on the choice of the representation space, on their
action of the algebra on that space, and finally on the choice of the basis of the
representation space. Once the action of the algebra and the representation space is
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chosen, we may finally take a basis of that space and apply the Lie algebra operators
R(Xa) on that basis:

R(Xa)(ηi ) =
∑

R(Xa)
j
iη j (3.27)

where R(Xa)
j
i denote the components of the representation matrix.

One particularly interesting representation of a Lie algebra is defined by the space
of the Lie algebra itself, using the basis {Xa}, the same where the structure constants
were defined. In this basis the algebra acts in the following way:

G̃ (Xa)Xb
def= [Xa, Xb] = f c

ab Xc

where we have used a special notation G̃ for this representation, which explicitly
tells that the representation space is the space of the Lie algebra itself.

Comparing with (3.27), the matrix elements of the adjoint representation asso-
ciated with the basis (taking ηi = Xa) are G̃ (Xa)Xb = G̃ (Xa)

c
b Xc. Therefore, it

follows from (3.26) that the matrix elements of the adjoint representation are the
structure constants of the Lie algebra

G̃ (Xa)
c

b = f c
ab (3.28)

In the adjoint representation all relevant group quantities are characterized by the
structure constants.

Definition 3.5 (Casimir Operators) Given two operators A = Aa Xa and B = bb Xb

defined in the adjoint representation of a Lie algebra G , we may define the product
of the two operators consistently with the Lie algebra product as

G̃ (A)G̃ (B)Xc = [A, [B, Xc]] = Aabb[Xa, [Xb, Xc]] = Aa Bb f m
bc f n

am Xn

Since {Xa} are linearly independent vectors, the above expression defines a matrix
with components

(G̃ (A)G̃ (B))nc = Aa Bb f m
bc f n

am

whose trace is

tr(G̃ (A)G̃ (B)) =
∑

c

(G̃ (A)G̃ (B))cc = Aa Bb f m
bn f n

am

This is a symmetric bilinear form which defines a scalar product in the Lie algebra
space <,>: G × G → IR. It can be written as

< A, B >= gab Aa Bb, where gab = f n
am f m

bn (3.29)
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This product is called the Killing form [65]. When the coefficients gab define an
invertible matrix, we obtain a scalar product defining a metric geometry in the space
of the Adjoint representation.

The Casimir operators of a Lie algebra are defined in the basis {Xa} by

C2 = gab Xa Xb = f n
am f m

bn Xa Xb

C3 = f p
am f m

bn f n
cp

...

Ck = f mk
a1m1

f m1
a2m2
· · · f mk−1

ak mk Xa1 Xa2 · · · Xak

They are invariant operators in the sense that they do not depend on the choice of
basis in the Lie algebra.

The importance of the Casimir operators resides in the fact that the classification
of the unitary irreducible representations of a Lie algebra (or of a Lie group) is given
by the eigenvalues of these operators. In particular, Eugene Wigner showed that in
the case of the Poincaré group, there are only two Casimir operators: The eigen-
values of the operator C2 (the mass operator) acting on a Hilbert space gives the
mass of the relativistic particles. On the other hand the eigenvalues of the operator
C3 (the spin operator) gives the spins of these particles [30]. This result provided a
deep insight into the structure of the physical manifold.

The spectrum of the eigenvalues of the spin operator is discrete (formed by inte-
gers and semi-integers). On the other hand the spectrum of the mass operator is
continuous, with isolated points (that is, not all real values appear).
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